
MINT 709 – CAPSTONE PROJECT

REMOTE STORAGE REPLICATION: OPEN SOURCE RAID

JUAN ARISTIZABAL

PROFESSOR: Dr. Mike MacGregor

University of Alberta

Electrical and Computer Engineering Department

Edmonton, April 2008

ABSTRACT

Nowadays storage area networks (SAN) have become an important part of small and

large enterprises, where the need of a reliable and flexible architecture for storage across

different location arises. Having said this, the selection of the very basic components

where the storage solution will be implemented play a decisive role on the future success

and scalability of the solution.

The components mentioned above constitute a primary task of storage networks and it is

accomplished by remote replication, which purpose is basically provide access to remote

block devices that are not located on the same physical machine or system where the host

is.

Currently there are multiple hardware and software commercial implementations for

remote replication, as well as different open source solutions; this project tries to give a

big picture of some of the most commonly used solutions on the open source side, and

shows the performance and stability of one particular implementation composed by

software RAID and iSCSI.

This implementation incorporates two widely used technologies, software RAID-1 and

iSCSI; both are standard and are well documented. Here, the stability of the iSCSI

protocol implementation is tested and compared to the network block device NBD (open

source solution for block device representation). Then, having a stable block device

mapping technology the next step for remote replication is integrate Linux MD (software

RAID driver), a tool that duplicates the data and synchronizes it among different disks.

Linux MD provides several advantages further than just raw data replication, including

reading performance improvement and write intent log capabilities. These features are

presented in the project and their applicability on the remote replication task is discussed.

Finally the performance of the iSCSI –MD model is analyzed with the IOZONE File

system benchmarking tool and conclusions from the results are presented.

TABLE OF CONTENTS

Page

ABSTRACT

Table of Contents 3

1. Objective: A tool for storage remote replication 5

2. Problem description and methodology 7

2.1. Remote replication components: Splitting the task 7

2.2. Remote replication tools 7

2.2.1. Multi-disk layer: Software RAID 7

2.2.2. Block device mapping: iSCSI 9

2.3. Open source remote replication tools 12

2.3.1. Block device mapping 12

2.3.1.1. Open iSCSI 12

2.3.1.2. iSCSI Enterprise Target 14

2.3.2. Multi disk layer 15

2.3.2.1. Linux software RAID: mdadm. 15

2.3.3. Other remote replication tools 18

2.3.3.1. DRBD 18

2.3.3.2. NBD (Network Block device): 19

2.3.3.3. PRATIMA (Asynchronous Remote Volume Replicator): 20

2.3.3.4. EVMS (Enterprise Volume Management System): 20

3. Testing environment 22

3.1. Dummynet 22

3.2. Linux environment 22

4 . Results 24

4.1 Performance and stability of the block device mapping layer: 24

4.1.1 iSCSI stability (iSCSI advanced settings): 24

4.1.2 iSCSI performance: 26

4.1.3 iSCSI network performance: 35

4.2 Remote replication performance: 36

5. Conclusions 40

6. Bibliography 42

7. Appendix A: Testing machine profile 43

8. Appendix B: Open source software versions 49

9. Appendix C: iSCSI testing scripts 50

1. OBJECTIVE: A tool for storage remote replication

Remote replication is described as the task of duplicating data from one central location

to one or more distant located storage. The purpose for achieving such assignment could

be distribution of data among multiple sites, backup storage for fault tolerance

improvement, high availability clusters or for any application that requires distributed

storage.

Now that the data is going to be stored on multiple disks several implications arise like

data consistency, writing/reading performance and fault tolerance among others.

The scenario posed in this study involves dealing with low speed links, like public

Internet access speeds or small enterprise networks; these conditions require a stable

solution able to handle delay, packet loss and large delays. The idea is to find a robust

and flexible implementation capable to work efficiently over any kind of network, or

where the available network resources are shared by multiple applications.

The following diagram pictures a host with local storage on site 1, and a remote disk

which is connected thorough a WAN on site 2. The remote replication tool sends all the

writings operations performed on site 1 to site 2, ensuring that the data has come across

the network and the I/Os have been successfully executed on the remote site.

A solid solution also must be capable of providing the state of the remote replication

process at any point in time, in other words show the difference between the disks and

indicate how much data is pending to be written to the remote site(s).

Another feature required in the implementation of the tool is the capability of redirect the

reading operations to the fastest device, in our case, to always read from the local disk

when it is available is a must.

Remote replication comes in two flavors, synchronous and asynchronous. Our study is

focused on the synchronous, where the data is continuously replicated to the remote side

as soon as it is written on the local disk. In some applications, especially when the link

speeds are low, would be desirable to have asynchronous replication, and improve the

performance by sending updates to the remote disk periodically instead of continuously.

The tool designed here provides the flexibility to be used on asynchronous replication,

but for purposes of the project scope the later mode is not described on this study.

Next, the two basic components for remote replication: iSCSI and RAID will be

described in more detail, and their usage and advantages over other solutions will be

explained as well.

2. PROBLEM DESCRIPTION AND METHODOLOGY:

2.1 REMOTE REPLICATION COMPONENTS: Splitting the task

Two main modules compose the remote replication solution, multi disk layer replication

and block device mapping.

The multi disk layer takes care of the data duplication, making a multi disk array look as

one block device to the system. This task is accomplished by Linux MD, giving some

interesting features including reading local performance, block device bitmap

representation and smart resynchronization after link failure.

The second module is described as the block device mapper, and its function is to

represent a remote disk as local to the local system. iSCSI provides this function, sending

SCSI commands to a remote disk via TCP/IP networks. The block transfers are carried

using the SCSI protocol, and the reliability issuing this data transfer relies on the TCP

stack protocol.

2.2 REMOTE REPLICATION TOOLS

2.2.1 Multi-disk layer: Software RAID:

RAID stands for Redundant Array of Inexpensive Disks, and it employs the use of two or

more storage disks to achieve better levels of performance, reliability or larger data

volume sizes. The term array means that the data is distributed across several disks but

the storage is seen by the operational system as only one disk.

The basic concepts in RAID are three: mirroring, the copying of data to more than one

disk; stripping, the splitting of data across more than one disk; and error correction,

where redundant data is stored to allow data recovery or fault-tolerance.

There are different levels of RAID depending on the user requirements needed, capacity,

speed and protection against loss. The software solutions are typically implemented on in

the operational system and present the RAID drive as one disk to the main system.

Here are the most frequently used levels and their principal features:

Striped set without parity: Provides performance and increases the

storage capacity, but without fault tolerance.

Mirrored set without parity. Provides fault tolerance form disk errors

and single disk failure. The array continuous to operate as long as at

least one disk is working.

Striped set with distributed parity. Increased fault tolerance

by storing the parity between two disks in a third disk.

Stripped set with dual parity. Improved fault tolerance

from two drive failures.

RAID levels are often nested to get more than the advantages of one particular level, for

example RAID-10 is a combination of RAID-0 and RAID-1; it consists of several level 1

arrays of physical drives, each of which is one of the "drives" of a level 0 array striped

over the level 1 arrays

Mirroring with RAID:

Remote replication requires the features implemented by RAID-1 to duplicate the data

onto separate physical devices.

Each member of the RAID contains the same data and has equal role in the array. In the

event of a disk failure, data can be read from the remaining disks. Reading performance

is improved by RAID-1 when no failure is present, by reading data in parallel from each

disk in the mirror, or by reading from a preferred location, when one or more of the disks

on the RAID are distant by WAN links and their reading speeds are different.

Because data has two be written twice or more, mirroring could decreased the writing

performance if the disks are on the same physical disks (for example, on the same

partition or logical volume) but when the RAID is used for remote replication, the second

write is performed by a different system on a different physical disk, therefore the local

system is not impacted.

The replication can be achieved in different ways, synchronous, asynchronous, or point in

time. Performance constraints arise when using these techniques, and according to the

applications and network characteristics some of the replication modes are more suitable.

Synchronous replication requires that the write operation completes on both sides or not

at all, and it is not considered complete until acknowledgement by both remote and local

storage. On asynchronous replication the write is considered complete as soon local

storage acknowledges it, increasing the performance at the expense of a big risk of losing

the data consistency between the disks if the local storage fails. To overcome this

situation point in time replication is used, introducing periodic snapshots that are

replicated instead of primary local storage.

Mirroring is typically synchronous, with the objective of zero lost data, or both disks with

same information almost always at anytime. On the other hand, asynchronous and point

in time replication allow a difference of synchronicity between the disks in order to

improve the writing performance and the network resources optimization. These

differences on time replication could be of minutes, hours or even days, once again

depending on the application requirements or the selected criteria by the system

administrator.

In our case we are focused on synchronous replication, but the storage solution proposed

is flexible enough to incorporate the asynchronous replication or any periodical update

policy into the data transmission process.

2.2.2 Block device mapping:

iSCSI:

iSCSI is a SAN protocol, that implements the SCSI (Small Computer System Interface)

protocol over TCP/IP networks. iSCSI has became widely used because no extra

hardware is required to its implementation and it is an effective low cost solution for

small organizations and local area networks. Instead of needing expensive equipment

like Fiber SCSI, iSCSI takes advantage over the currently deployed networks running

TCP/IP and provides a reliable storage platform with no extra costs, at good data transfer

rates thanks to the current development of cooper Ethernet.

iSCSI is defined by the RFC 3720 and typically uses TCP port 3260. This protocol is

mainly used either for storage consolidation on datacenters or for disaster recovery, when

the data is migrated across the WAN from remote locations to a central consolidated

backup storage server.

Compared to other storage technologies that work at the file system level, iSCSI

operates at the block level, directly accessing the data stored in form of blocks on the

hard disks.

iSCSI concepts:

- Initiator: It is the iSCSI client, and it behaves as a SCSI bus adapter, but rather than

physically cabling SCSI devices, the initiator sends SCSI commands over an IP network.

Initiator can be found on software as code on a device driver that uses the NIC network

stack to emulate SCSI devices for a computer by speaking iSCSI protocol.

Initiators are available on hardware as Host Bus Adapters (HBA) when the performance

wants to be improved. They combine a Gigabit network card with a processor capable of

processing SCSI commands, in this way the host CPU consumption is decreased.

- Target: It is a storage resource located on an iSCSI server and usually represents hard

disk storage. As the initiator, it can be found implemented on hardware appliances as a

combination of storage plus iSCSI capability or it is available as software on different

operational systems to share through iSCSI any storage attached to the system.

- Logical Unit Number (LUN):

In SCSI, a LUN represents an individual SCSI device and for iSCSI it is a numbered disk

drive. The initiator negotiates with a target connectivity to a LUN, resulting on a iSCSI

session that emulates a SCSI hard disk.

- iSCSI qualified name:

The iSCSI initiators and targets are referred to by special names; in our case the IQN

notation is used.

Format: iqn.yyyy-mm.{reversed domain name)

(e.g iqn.2008-04.com.uofa:storage.dr.sys1.xyz)

- iSCSI Session:

A session is the basic communication "pipe" from an iSCSI initiator to the iSCSI target,

and this session can be made up of several TCP/IP connections. The connections can be

logically separate on the same physical link or can be separate connections on different

physical links. iSCSI supports IPV4 and IPV6 addressing scheme.

- Security:

The CHAP (Challenge Handshake Authentication Protocol) protocol is used by initiators

and targets to prove their identity, this includes a mechanism to prevent clear text

passwords from appearing on the wire. The IPsec can be used also as in any other IP

based protocol.

Because on the same machine or hardware appliance multiple iSCSI targets can coexist,

iSCSI is design in a way an initiator can start a session with a specific target without

affecting other session on the same target server.

2.3 OPEN SOURCE REMOTE REPLICATION TOOLS

We have discussed so far the modules that compose the remote replication storage

solution, each of these components have one or several implementation on open source

for Linux. The solution posed here uses the Open-iSCSI and IET pair for the iSCSI

implementation, and Linux MD (mdadm) for the RAID construction.

There are other open source tools that more or less accomplish our same objective, but

the implementations used in this study are currently maintained , have enough

documentation and have proven reliability and stability across all the tests.

On the section Other Open Source Remote Replication Tools, some other popular

alternatives for remote replication are mentioned and high level details are provided.

2.3.1 BLOCK DEVICE MAPPING:

2.3.1.1 Open iSCSI:

Open iSCSI is the implementation of an iSCSI initiator on the Linux kernel. It is

supported for kernel versions 2.6.16 or later and it is based on the RFC3720.

Among the different features Open iSCSI has are:

- Persistent configuration database

- SendTargets discovery

- CHAP

- Multiple sessions.

The solution is split into user and kernel parts. The kernel section implements iSCSI data

path, which is iSCSI Read and iSCSI Write; on the other hand the user space contains all

the control plane, including the configuration manager, iSCSI discovery, Login and

logout processing, connection-level error processing and Nop-OUT (ping command used

to verify if a connection is still alive and operational) and Nop-IN (response to a Nop-

OUT) handling.

The user space Open iSCSI consists of a daemon process called iscsid and a management

utility called iscsiadm.

- Installation:

All the versions of Open-iSCSI are available for downloading as tar balls, and compiling

using make; instructions are provided on the open-iscsi website.

- Open-iSCSI daemon:

It implements control path of iSCSI protocol and some management facilities, like

automatically re-start discovery at startup based on the persistent iSCSI database.

The daemon is called iscsid and the service is started running: ./iscsid start.

The available options are:

 -c, --config=[path] Execute in the config file (/etc/iscsi/iscsid.conf).

 -f, --foreground run iscsid in the foreground

 -d, --debug debuglevel print debugging information

 -u, --uid=uid run as uid, default is current user

 -g, --gid=gid run as gid, default is current user group

 -h, --help display this help and exit

 -v, --version display version and exit

- Open-iSCSI Configuration Utility:

Open-iSCSI persistent configuration is implemented as a DBM database available on all

Linux installations.

The database contains two tables:

- Discovery table (/etc/iscsi/send_targets);

- Node table (/etc/iscsi/nodes).

The regular place for iSCSI database files: /etc/iscsi/nodes

The iscsiadm utility is a command-line tool to manage (update, delete, insert, query) the

persistent database. Moreover, it presents set of operations that a user can perform on

iSCSI nodes, sessions, connections, and discovery records.

Every session initiated by iscsiadm is identified by a sid, and it will appear listed when

the option –m session –i.

Example:

Search for targets on IP 192.168.1.1 and port 3260.

./iscsiadm -m discovery -t sendtargets -p 192.168.1.1:3260

Log into a particular target previously discovered:
./iscsiadm -m node -T iqn.2005-03.com.max -l

- Initiator configuration:

The default configuration file is /etc/iscsi/iscsid.conf, it contains only configuration that

could be overwritten by iSCSI discovery, or manually updated by via iscsiadm.

Important parameters of the initiator can be modified on this file, like the time-out

parameters to keep alive the connections or the variables that trigger a failure on the SCSI

layer. More about this parameters is discussed on the iSCSI stability section.

2.3.1.2 iSCSI Enterprise Target:

iSCSI Enterprise Target or IET, is the software for building iSCSI storage system on

Linux. The software has a kernel module and requires the open SSL library for the user-

space routines. IET is capable of running multiple targets simultaneously, and each target

can provide services to multiple initiators.

The iSCSI target consists of a kernel module (iscsi_trgt.ko) , daemon (ietd) and control

utility (ietadm).

IET is available for 2.6 Linux kernels, 64 bit architectures and SMP, but for the later

versions of kernels after 2.6.18 a patch might be required to compile the code.

- IET Daemon Configuration:

The daemon is configured via the configuration file /etc/ietd.conf. This file contains all

the parameters required to share storage on the machine via iSCSI to a local or remote

initiator. IET can export any device including raw block devices, partitions, LVM

volumes (logical volumes) or RAIDs to an iSCSI initiator.

The iSCSI service is started using:
/etc/init.d/iscsi-target start

And it is stop using:
/etc/init.d/iscsi-target stop

When iSCSI target service is started, the configuration file /etc/ietd.conf is loaded and the

targets described on this file are exported. By default the iSCSI IET listens for any

incoming connections in all the IP interfaces on the iSCSI port 3260. For more

information on how to configure the file refer to the man page.

- Dynamic configuration:

The ietadm utility is for managing IET software dynamically. You can change the

configurations of running targets at any time by using ietadm.

- Adding a target:

ietadm --op new --tid=[id] --params Name=iqn.foo.bar:baz

ietadm --op new --tid=[id] --params Name=iqn.foo.bar:baz

[id] must be unused. You can get a list of the currently used Target IDs by: cat

/proc/net/iet/sessions

- Adding a LUN:

Note: This adds a LUN to a pre-existing target.

ietadm --op new --tid=[id] --params Path=/path/to/exported/file,Type=fileio

[id] must be an already existing Target ID.

The ietadm utility is for managing IET software dynamically. You can change the

configurations of running targets at any time by using ietadm.

- Security:

The access control based on initiator address and target name patterns is configured via

two configuration files (/etc/initiators.allow and /etc/initiators.deny). These files work

like tcpd files (/etc/hosts.allow and /etc/hosts.deny). This feature enables you to hide a

particular targets from some initiators. The files can be dynamically modified using the

echo command on the Linux shell.

2.3.2 MULTI DISC LAYER:

2.3.2.1 Linux software RAID: mdadm.

mdadm is the standard software RAID management tool for Linux; it provides a single-

command line interface for managing software arrays on Linux. mdadm is a complete

replacement to the old Linux raidtools (which use is deprecated now) and it is fully

functional without the use of a configuration file. mdadm is capable of creating RAID-0,

RAID-1, RAID-4, RAID-5 and RAID-6 structures.

The mdadm tool was written by Neil Brown, a software engineer at SUSE Labs and a

kernel developer, and it is currently maintained by him.

Compared to raidtools, mdadm provides the following features:

- mdadm can diagnose, monitor and gather detailed information about the arrays.

- mdadm is a single centralized program and not a collection of disperse programs,

therefore there's a common syntax for every RAID management command.

- mdadm can perform almost all of its functions without having a configuration file and

does not use one by default.

The general syntax of the tool is:

mdadm [mode] mddevice [options] memberdevices

mdadm has several modes of operation: create, build, assemble, and monitor. Each mode

has its own command-line switch; some of the management features operate

independently from the others. These standalone capabilities are grouped into the

Miscellaneous mode.

- mdadm concepts:

Devices: Software RAID devices are called "block" devices, like ordinary disks or disk

partitions. A RAID device is "built" from a number of other block devices - for example,

a RAID-1 could be built from two ordinary disks, or from two disk partitions. A device

could be a "spare disk", it could have failed and thus be a "faulty disk", or it could be a

normally working and fully functional device actively used by the array.

Spare disks: Spare disks are disks that do not take part in the RAID set until one of the

active disks fail. When a device failure is detected, that device is marked as "faulty" and

reconstruction is immediately started on the first spare disk available. Once

reconstruction to a hot-spare begins, the RAID layer will start reading from all the other

disks to re-create the redundant information. If multiple disks have built up bad blocks

over time, the reconstruction itself can actually trigger a failure on one of the "good"

disks.

Faulty disks: When the RAID layer handles device failures the crashed disks are marked

as faulty and reconstruction is immediately started on the first spare-disk available. If no

spare is available then the array runs in 'degraded' mode. If a device needs to be removed

from an array for any reason then it must be marked as faulty before it can be removed.

The faulty option can be used for any specific reason, like changing the RAID writing

performance because of a slow disk, and then the disk can be re-added when necessary.

RAID superblock: Starting with version 0.36 of the md driver. Each disk in an array

includes a superblock that describes the properties and stores them on each member disk.

The superblock consists of a 4K block of data written to member disks when the array is

initialized for the first time, its information includes the RAID level, the member disks

and the UUID identification. The superblock is written near the end of each disk or

partition at the start of the 64K block.

- mdadm modes:

The man page for mdadm or one of the links provided on the bibliography section

contain complete information on how to use mdadm and its different modes, here we

present the basic commands an the more often used during the creation of the RAID-1

storage for the remote replication tool.

- Create and Build: create new array. Build mode is only used to create legacy

arrays without RAID superblock.

-c, --chunk= specify the chunk size on KB.

-l, --level= set the RAID level.

-n, --raid-devices= specify the number of active devices

-x, --spare-devices= specify the number of spare devices

-z, --size= specify the space on KB to use from each device for the RAID, if it is

not specify the size of the smallest device is selected.

--assume-clean= Tell mdadm that the array pre-existed and is known to be clean.

-W, --write-mostly = This is valid for RAID1 only and means that the 'md' driver

will avoid reading from these devices if at all possible. This can be useful if

mirroring over a slow link.

--write-behind= Specify that write-behind mode should be enabled (valid for

RAID1 only). If an argument is specified, it will set the maximum number of

outstanding writes allowed. The default value is 256. A write-intent bitmap is

required in order to use write-behind mode, and write-behind is only attempted on

drives marked as write-mostly.

-b, --bitmap= Specify a file to store a write-intent bitmap in. The file should not

exist unless --force is also given. The same file should be provided when

assembling the array. If the word internal is given, then the bitmap is stored with

the metadata on the array, and so is replicated on all devices.

--bitmap-chunk= Set the chunksize of the bitmap. Each bit corresponds to that

many Kilobytes of storage. When using an internal bitmap, the chunksize is

automatically determined to make best use of available space.

- Assemble: Assemble the parts of a previously created array into an active array.

-u, --uuid= uuid of array to assemble. Devices which don't have this uuid are

excluded.

-R, --run= Attempt to start the array even if fewer drives were given than are

needed for a full array.

- Manage: This is for doing things to specific components of an array such as

adding new spares and removing faulty devices.

 -a, --add= hotadd listed devices.

-r, --remove= remove listed devices. They must not be active. i.e. they should

be failed or spare devices.

-f, --fail, --set-faulty= mark listed devices as faulty.

- Misc: This mode allows operations on independent devices such as examine MD

superblocks, erasing old superblocks and stopping active arrays.

-R, --run= start a partially built array.

-S, --stop= deactivate array, releasing all resources.

-o, --readonly= mark array as readonly.

-w, --readwrite= mark array as readwrite.

-D, --detail = Print detail of one or more md devices.

-X, --examine-bitmap= Report information about a bitmap file.

- Follow or Monitor: Monitor one or more md devices and act on any state

changes. This is only meaningful for RAID-1, 4, 5, 6 or multipath arrays as only

these have interesting state. RAID-0 or linear never have missing, spare, or

failed drives, so there is nothing to monitor.

- Grow: Grow (or shrink) an array, or otherwise reshape it in some way. Currently

supported growth options including changing the active size of component

devices in RAID level 1/4/5/6 and changing the number of active devices in

RAID1.

- RAID status:

If you're using the /proc filesystem, /proc/mdstat lists all active md devices with

information about them. mdadm uses this to find arrays when --scan is given in Misc

mode, and to monitor array reconstruction on Monitor mode.

The standard names for non-partitioned arrays is :

/dev/mdNN

/dev/md/NN

where NN is a number. The standard names for partitionable arrays (as available from 2.6

onwards) is one of

/dev/md/dNN

/dev/md_dNN

2.3.3 OTHER OPEN SOURCE TOOLS

The tools described above are not the only ones available to implement remote

replication with open source software. In fact, these solutions by themselves might not

constitute a standalone solution for remote replication, but combined with other tools and

even with components of the implementation proposed here, Linux md or iSCSI, these

tools can achieve the same goal in some sort of way.

For example the Network Block Device (NBD) supports the block device mapping layer,

achieving what iSCSI does on a different way; and DRBD presents a solution for high

availability clusters which is somehow one of the scenarios where RAID can be used,

therefore the DRBD characteristics could be used on the multi-disc layer.

Here are some of these solutions available for Linux under the open source umbrella.

More information can be found visiting the websites referenced on the bibliography

section.

2.3.3.1 DRBD:

DRBD means Distributed Replicated Block Device, which is design to build high

availability clusters by mirroring a block device through a network. DRBD can be seen as

a network RAID-1.

DRBD layers logical block devices over existing block devices, defining one of the disks

as primary node, and the rest as secondary. Writes are transferred to the lower level

block device where the primary node stands, and simultaneously they are replicated to the

secondary node. All the read I/Os are performed locally.

If the primary node fails, a secondary node is promoted to primary by a cluster

management process; usually Heartbeat is used along with DRBD. When the ex-primary

node comes back the management system may decide to raise it to primary level again,

after the device is synchronized. The resynchronization process is carried only over the

data that changed since the disk failed.

DRBD has compatibility with conventional file systems and other logical block device

software like LVM.

2.3.3.2 NBD (Network Block device):

NBD is a device node whose content is provided by a remote machine. It makes a remote

disk act as if it was a local disk on the machine where it resides.

Roughly, NBD consists of a server that receives network requests and forwards them to

the disks defined as shared, and a client which is a kernel module and controls the remote

device, showing it as a local block device.

NBD is intended to work together with RAID-1 over networks for backup and replication

purposes. This solution works over TCP/IP networks.

2.3.3.3 PRATIMA (Asynchronous Remote Volume Replicator):

Pratima provides block level remote replication of one or more block devices on a

machine. The devices are replicated to a server computer. The local service layers a

device (or a logical volume) creating its own block device.

Pratima provides methods for initial synchronization, fast on-line resynchronization and

automatic reconnection. It runs on both client and server computers. The Pratima device

driver captures updates on the client computer, and a daemon on the server computer

receives replication data over the network and writes it down to replica devices. The

client module is a stacked device driver interposed below the files system and above the

storage device driver

The driver queues some number of block writes, but if the buffers cannot be flushed out

to the replica, the queue fills up. Then, after a time-out value the driver gives up allowing

the replica to go out of sync. When the replica disk comes back the resynchronization

process is speeded up by a block number logging.

Pratima involves kernel-mode components for high performance and it can be controlled

from both the command line and a graphical interface; although, this solution has not

been tested under high load conditions.

2.3.3.4 EVMS (Enterprise Volume Management System):

EVMS is a complete solution to manage storage. It provides a single, unified system to

handle all the storage tasks; also software RAID and logical volumes can be managed by

EVMS.

The solution doesn’t require individual utilities to perform the storage tasks but it has

compatibility with Linux MD and LVM (logical volume manager). Among the extra

features EVMS provides are:

- Bad block relocation

- Linear drive linking

- Generic snapshotting

EVMS is also compatible with the most common file systems on Linux and it comes with

GUI, a text mode GUI and a command line interface to manipulate the storage.

The following picture presents a system configuration and the data structures used by

EVMS:

3. TESTING ENVIRONMENT

3.1 DUMMYNET:

All the performance tests over iSCSI and the remote replication solution were ran

simulating WAN links with dummynet.

Dummynet simulates queue and bandwidth limitations, delays, packet looses and

multipath effects. This open source software is developed on FreeBSD.

It works intercepting packets in their way to the protocol stack using the FreeBSD

firewall ipfw, and passing these packets through one or more objects called queues and

pipes, which enforce the effects of bandwidth limitations, propagation delays, packet

losses, etc. While the pipes are fixed-bandwidth cannels, the queues represent queues of

packets associated with a weight that share the bandwidth of the pipes.

The pipes and queues can be configured separately; therefore different limitations/delays

to different traffic can be applied. Dummynet allows the creation of cascade pipes, so you

can simulate networks with multiple links and paths in between hosts.

3.2 LINUX ENVIRONMENT:

All the tests were run in Linux OS, more specifically on Fedora Core 8. See the appendix

A for all the memory, processing characteristics and kernel details regarding the

machines where the tests ran.

Basically all the tests involved two Linux machines, one running the software iSCSI

initiator and Linux MD (Machine 1), and the other running the software iSCSI target

(Machine 2). The target machine exports the storage to the initiator machine, where the

remote replication solution is residing having one local disk and one remote disk.

From the machine 1 I/Os are issued to the RAID disk, and all the information is

replicated to the remote disk via iSCSI. See appendix B for the version of the open source

used on the tests.

Dummynet sits on between the links that connect the two machines, simulating the WAN

constraints.

4. RESULTS

4.1 PERFORMANCE AND STABILITY OF THE BLOCK DEVICE MAPPING

LAYER:

Before testing the remote replication solution as a whole, it is required to ensure the block

device mapping layer is capable of handling different WAN constrains, like bandwidth

restrictions and delay.

The open source iSCSI is tested with a raw block device connected over distance using

dummynet. The target service is initiated at the machine 2, and the initiator on the

machine 1 discovers the target and logs into it.

From the machine 1 a series of continuous write operations are started using the dd utility

directly to the block device exported by iSCSI.

4.1.1 iSCSI stability (iSCSI advanced settings):

Initially we wanted to verify whether iSCSI is stable enough for large data transfers over

slow links with reasonable big delays.

Dummynet settings:

Bandwidth: 1 Mbps

Delay: 25 ms

Initial test: continuous 100 MB file transfers using the dd utility, with 1.44 MB block

size.

The test failed after less than two hours.

Verifying the messages on the kernel it was found that the iSCSI connections were timing

out due to the slow links simulated with dummynet. At this time, the iSCSI initiator time-

out parameters were on their default values. The open iSCSI solution allows you to

manipulate the iSCSI time-out parameters changing the values on a config file.

The config file is located at: /etc/iscsi/iscsid.conf.

Here is a description of the time-out parameters manipulated on the stability tests

described later on:

iSCSI ping/Nop-Out settings:

iSCSI layer will send iSCSI pings (iSCSI NOP-Out requests) to the target. If a NOP-Out

times out the iSCSI layer will respond by failing running commands and asking the SCSI

layer to requeue them if possible.

To control how often a NOP-Out the following values can be set:

- node.conn[0].timeo.noop_out_interval = X

X value is in seconds, by default is 10 seconds.

- node.conn[0].timeo.noop_out_timeout = X

X value is in seconds, by default is 15 seconds.

Replacement timeout

Replacement_timeout will control how long to wait for session re-establishment before

failing pending SCSI commands and commands that are being operated on by the SCSI

layer's error handler up to a higher level like multipath or to an application.

- node.session.timeo.replacement_timeout = X

X value is in seconds, by default is 120 seconds.

Session and device queue depth

To control how many commands the session will queue set:

- node.session.cmds_max = 128

Must be an integer between 2 and 2048 that is also a power of 2. The default is 128.

To control the device's queue depth set:

- node.session.queue_depth = 32

Must be an integer between 1 and 128. The default value is 32.

Now, sequences of transfers are run for different sets of iSCSI time-out parameters to

verify the stability of the protocol.

Test

Load iSCSI initiator time-out parameters Results

1 Continuous

100 MB file

transfers

using dd

with block

size = 1.44

MB

node.session.queue-depth = 128

node.session.cmds_max= 512

node.conn[0].timeo.noop-out.interval=100

node.conn[0].timeo.noop-out.timeout=150

node.session.timeo.replacement.timeout=600

7 transfers

executed,

run time:

3 hours;

test failed

2 Continuous

100 MB file

transfers

using dd

with block

size = 1.44

MB

node.session.queue-depth = 128

node.session.cmds_max= 1024

node.conn[0].timeo.noop-out.interval=1000

node.conn[0].timeo.noop-out.timeout=1500

node.session.timeo.replacement.timeout=6000

17

transfers

executed,

run time:

8 hours;

test

manually

halted

3 Continuous

100 MB file

transfers

using dd

with block

size = 1.44

MB

node.session.queue-depth = 128

node.session.cmds_max= 1024

node.conn[0].timeo.noop-out.interval=1000

node.conn[0].timeo.noop-out.timeout=1500
node.session.timeo.replacement.timeout=6000

40 loops

executed,

run time:

18 hours;

test

manually

halted

4 1 GB file

transfer

using dd

with block

size = 1.44

MB

node.session.queue-depth = 128

node.session.cmds_max= 1024

node.conn[0].timeo.noop-out.interval=1000

node.conn[0].timeo.noop-out.timeout=1500
node.session.timeo.replacement.timeout=6000

Single

transfer

success.

Transfer

time:

18707.7 s,

transfer

Rate: 56.1

KB/s.

According to these tests, the iSCSI time-out parameters provide the stability required for

iSCSI to work over busy networks. The time-out values used in this case are for general

purpose and do not have a tuning for a specific network conditions; they just illustrate

that the protocol can adapted to work under many different loads and network conditions.

4.1.2 iSCSI performance:

The performance data is obtained from the dd transfer times for a set of different file and

block (page) sizes. The dd utility is used because it allows us to skip the IO system

buffering, and therefore get a more realistic measurement. The complete script used to

test the iSCSI implementation was written as a Linux shell script and is available on the

Appendix C.

- 1 Mbps bandwidth link test:

99.000

100.000

101.000

102.000

103.000

104.000

105.000

106.000

107.000

108.000

Tra
nsf

er r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfer

1 Mbps bandwidth/ 150 ms delay

1KB page

4KB page

16KB page

64KB page

103.000

103.500

104.000

104.500

105.000

105.500

106.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

1 Mbps bandwidth/ 150 ms delay

1KB page

4KB page

16KB page

64KB page

100.000

102.000

104.000

106.000

108.000

110.000

112.000

Transfer rate KB/s

1 2 3 4 5

iSCSI 10 MB transfers

1 Mbps bandwidth/ 100 ms delay

1KB page

4KB page

16KB page

64KB page

105.500

106.000

106.500

107.000

107.500

108.000

108.500

Transfer rate KB/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

1 Mbps bandwidth/ 100 ms delay

1KB page

4KB page

16KB page

64KB page

108.500

109.000

109.500
110.000

110.500

111.000

111.500
112.000

112.500

113.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfers

1 Mbps bandwidth/ 50 ms delay

1KB page

4KB page

16KB page

64KB page

108.500

109.000

109.500

110.000

110.500

111.000

111.500

112.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

1 Mbps bandwidth/ 50 ms delay

1KB page

4KB page

16KB page

64KB page

110.500

111.000

111.500

112.000

112.500

113.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfers

1 Mbps bandwidth/ 0 ms delay

1KB page

4KB page

16KB page

64KB page

98.000

100.000

102.000

104.000

106.000

108.000

110.000

112.000

114.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

1 Mbps bandwidth/ 0 ms delay

1KB page

4KB page

16KB page

64KB page

Overall performance of iSCSI at 1 Mbps bandwidth, transfer rates on KB/s:

TRANSFER RATES (maximum ideal data transfer at 0 delay = 122.07 KB/s)

Delay 1 KB page 4 KB page 16 KB page 64 KB

150 ms 104.357 104.556 104.453 104.493

100 ms 107.011 106.907 107.674 107.704

50 ms 110.899 111.322 111.395 111.245

0 ms 112.416 112.416 111.567 112.294

- 45 Mbps bandwidth link test:

620.000

640.000

660.000
680.000

700.000

720.000

740.000
760.000

780.000

800.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfers

45 Mbps bandwidth/ 150 ms delay

1KB page

4KB page

16KB page

64KB page

580.000

600.000

620.000
640.000

660.000

680.000

700.000
720.000

740.000

760.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

45 Mbps bandwidth/ 150 ms delay

1KB page

4KB page

16KB page

64KB page

960.000
980.000

1000.000
1020.000
1040.000

1060.000
1080.000

1100.000
1120.000
1140.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfers

45 Mbps bandwidth/ 100 ms delay

1KB page

4KB page

16KB page

64KB page

1070.000

1080.000

1090.000

1100.000

1110.000

1120.000

1130.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

45 Mbps bandwidth/ 100 ms delay

1KB page

4KB page

16KB page

64KB page

0.000

500.000

1000.000

1500.000

2000.000

2500.000

3000.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfers

45 Mbps bandwidth/ 50 ms delay

1KB page

4KB page

16KB page

64KB page

2080.000

2100.000

2120.000

2140.000

2160.000

2180.000

2200.000

2220.000

2240.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

45 Mbps bandwidth/ 50 ms delay

1KB page

4KB page

16KB page

64KB page

0.000

1000.000

2000.000

3000.000

4000.000

5000.000

6000.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfers

45 Mbps bandwidth/ 0 ms delay

1KB page

4KB page

16KB page

64KB page

4400.000

4500.000

4600.000

4700.000

4800.000

4900.000

5000.000

5100.000

5200.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

45 Mbps bandwidth/ 0 ms delay

1KB page

4KB page

16KB page

64KB page

Overall performance of iSCSI at 45 Mbps bandwidth, transfer rates on KB/s:

TRANSFER RATES (maximum ideal data transfer at 0 delay = 5493.16 KB/s)

Delay 1 KB page 4 KB page 16 KB page 64 KB

150 ms 738.927 745.637 739.628 737.518

100 ms 1109.271 1101.458 1094.947 1114.059

50 ms 2108.823 2113.362 2164.759 2113.362

0 ms 4975.931 4998.095 5024.693 4975.931

- 100 Mbps bandwidth link test:

0.000

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfers

100 Mbps bandwidth/ 150 ms delay

1KB page

4KB page

16KB page

64KB page

620.000

630.000

640.000
650.000

660.000

670.000

680.000
690.000

700.000

710.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

100 Mbps bandwidth/ 150 ms delay

1KB page

4KB page

16KB page

64KB page

0.000

200.000

400.000

600.000

800.000

1000.000

1200.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfers

100 Mbps bandwidth/ 100 ms delay

1KB page

4KB page

16KB page

64KB page

940.000

960.000

980.000

1000.000

1020.000

1040.000

1060.000

1080.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

100 Mbps bandwidth/ 100 ms delay

1KB page

4KB page

16KB page

64KB page

0.000

500.000

1000.000

1500.000

2000.000

2500.000

3000.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfers

100 Mbps bandwidth/ 50 ms delay

1KB page

4KB page

16KB page

64KB page

1750.000
1800.000

1850.000
1900.000
1950.000

2000.000
2050.000

2100.000
2150.000
2200.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

100 Mbps bandwidth/ 50 ms delay

1KB page

4KB page

16KB page

64KB page

0.000

2000.000

4000.000

6000.000

8000.000

10000.000

12000.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 10 MB transfers

100 Mbps bandwidth/ 0 ms delay

1KB page

4KB page

16KB page

64KB page

9600.000
9800.000

10000.000
10200.000
10400.000
10600.000
10800.000
11000.000
11200.000
11400.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5

Iteration

iSCSI 100 MB transfers

100 Mbps bandwidth/ 0 ms delay

1KB page

4KB page

16KB page

64KB page

Overall performance of iSCSI at 100 Mbps bandwidth, transfer rates on KB/s:

TRANSFER RATES (maximum ideal data transfer at 0 delay = 12207.03 KB/s)

Delay 1 KB page 4 KB page 16 KB page 64 KB

150 ms 681.668 720.151 680.499 687.801

100 ms 1023.333 1017.887 1031.381 1014.673

50 ms 2053.000 2019.943 2128.980 2075.265

0 ms 10240.000 10353.778 10467.556 10581.333

4.1.3 iSCSI network performance:

The results presented above describe the performance of the protocol as seen by the

application layer, which in this case is the linux dd utility sending data to the remote

device. We are also interested on seeing what the bandwidth utilization of the iSCSI

protocol is.

Thus, for the entire tests run, packet traces were taken using tcpdump on the dummynet

machine. These traces are now analyzed with the Wireshark network protocol analyzer,

and the following results came from the utilities provided by this software package.

Bandwidth 1 45 100

Trace Transfer

speed

0.988 Mbps

42.368 Mbps

81.132 Mbps

% of data sent on

the trace (For the

TCP protocol)

99.73% 99.78% 99.81%

Here is a data transfer graph (IO graph) obtained with Wireshark on a 1 Mbps and 0

delay link.

4.2 PERFORMANCE OF THE REMOTE REPLICATION SOLUTION:

The overall performance of the remote replication solution (iSCSI layer + software

RAID) shows a very similar behavior compared to the iSCSI layer, and although the

same iSCSI tests were performed over the remote replication implementation, only a few

results are presented, for the purpose of illustrating that the bottleneck on the solution is

the link speed. Indeed, the speed of the local disk is reduced by the speed of the iSCSI

remote disk, which is always slower than the performance of a directly connected disk.

The way the software RAID mdadm is set up, is in write through mode, which means that

after data is written to the RAID, it has to wait for the acknowledgements from both local

and remote disks in order to process the next IO.

This situation can be improved by, using a file system on the block device which

provides an IO buffer and thus improves the performance as seen by the application; or

by using the write-behind option on mdadm, which allows the user to set the value of

outstanding writes that can be done on the local disk without receiving and

acknowledgement from the remote disk, which must be defined as write-mostly when

mdadm creates the RAID.

The write-mostly feature also improves the writing performance on the RAID, by always

reading from the local disk; the only time the remote disk will be used to read data is

when the local disk fails.

720.000

740.000

760.000

780.000

800.000

820.000

840.000

860.000

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5 6 7 8 9 10

Iteration

Remote replication performance

15 MB transfers, Bandwidth 45 Mbps delay 150 ms

64 KB page

The average transfer rate is: 827.274 KB/s

The performance is superior compared to standalone iSCSI under the same network

conditions (737.518 KB/s).

106
107
108
109
110
111
112
113
114
115
116

Tra
nsf

er
 r
at

e K
B
/s

1 2 3 4 5 6 7 8 9 10

Iteration

Remote replication performance

15 MB transfers, Bandwidth 1 Mbps delay 50 ms

64 KB page

The average transfer rate is: 113.207882

Again, the performance is slightly superior compared to standalone iSCSI under the same

network conditions (111.245 KB/s).

The later measurements test the writing performance, but in order to test the reading

performance is required to use a different tool. The Linux hdparm utility allows set/get

IDE hard drive parameters, and moreover it provides the option to measure the reading

performance of a block device without the buffering effect form the Linux OS or from a

file system buffer.

Hdparm provides the reading performance with and without buffering. The tests were run

3 times as suggested on the man page for meaningful results:

Network conditions “hdparm –tT”

output 1
“hdparm –tT”

output 2
“hdparm –tT”

output 3

1 Mbps bandwidth,
150 delay

Timing cached

reads: 7326 MB

in 2.00 seconds

= 3669.65 MB/sec

 Timing buffered

disk reads: 2

MB in 21.48

seconds = 95.36

kB/sec

Timing cached

reads: 7288 MB

in 2.00 seconds

= 3650.48 MB/sec

 Timing buffered

disk reads: 2

MB in 21.09

seconds = 97.09

kB/sec

Timing cached

reads: 7214 MB

in 2.00 seconds

= 3612.97 MB/sec

 Timing buffered

disk reads: 2

MB in 21.18

seconds = 96.70

kB/sec

1 Mbps bandwidth, 0
delay

Timing cached

reads: 7372 MB

in 2.00 seconds

= 3692.46 MB/sec

 Timing buffered

disk reads: 2

MB in 18.10

seconds = 113.14

kB/sec

Timing cached

reads: 7426 MB

in 2.00 seconds

= 3720.07 MB/sec

 Timing buffered

disk reads: 2

MB in 18.11

seconds = 113.09

kB/sec

Timing cached

reads: 7534 MB

in 2.00 seconds

= 3773.38 MB/sec

 Timing buffered

disk reads: 2

MB in 18.19

seconds = 112.58

kB/sec

45 Mbps bandwidth,
150 delay

Timing cached

reads: 7190 MB

in 2.00 seconds

= 3601.54 MB/sec

 Timing buffered

disk reads: 2

MB in 5.56

seconds = 368.27

kB/sec

Timing cached

reads: 7424 MB

in 2.00 seconds

= 3718.23 MB/sec

 Timing buffered

disk reads: 2

MB in 5.20

seconds = 393.77

kB/sec

Timing cached

reads: 7578 MB

in 2.00 seconds

= 3795.65 MB/sec

 Timing buffered

disk reads: 2

MB in 4.26

seconds = 480.53

kB/sec

45 Mbps bandwidth, 0
delay

Timing cached

reads: 7318 MB

in 2.00 seconds

= 3665.41 MB/sec

 Timing buffered

disk reads: 14

MB in 3.08

seconds = 4.54

MB/sec

Timing cached

reads: 7524 MB

in 2.00 seconds

= 3769.33 MB/sec

 Timing buffered

disk reads: 16

MB in 3.26

seconds = 4.91

MB/sec

Timing cached

reads: 7358 MB

in 2.00 seconds

= 3685.75 MB/sec

 Timing buffered

disk reads: 14

MB in 3.07

seconds = 4.56

MB/sec

100 Mbps bandwidth,
150 delay

Timing cached

reads: 7940 MB

in 2.00 seconds

= 3977.65 MB/sec

 Timing buffered

disk reads: 2

Timing cached

reads: 7546 MB

in 2.00 seconds

= 3780.03 MB/sec

 Timing buffered

disk reads: 2

Timing cached

reads: 7240 MB

in 2.00 seconds

= 3625.78 MB/sec

 Timing buffered

disk reads: 2

MB in 5.35

seconds = 382.95

kB/sec

MB in 4.36

seconds = 469.64

kB/sec

MB in 6.18

seconds = 331.43

kB/sec

100 Mbps bandwidth,
0 delay

Timing cached

reads: 7196 MB

in 2.00 seconds

= 3604.37 MB/sec

 Timing buffered

disk reads: 34

MB in 3.14

seconds = 10.82

MB/sec

Timing cached

reads: 7850 MB

in 2.00 seconds

= 3932.74 MB/sec

 Timing buffered

disk reads: 34

MB in 3.14

seconds = 10.81

MB/sec

Timing cached

reads: 7586 MB

in 2.00 seconds

= 3799.99 MB/sec

 Timing buffered

disk reads: 30

MB in 3.01

seconds = 9.97

MB/sec

5. CONCLUSIONS

The remote replication implementation described on this study presents the combination

of two widely used tools, iSCSI and software RAID. The correct selection of the open

source tools to implement the iSCSI protocol and the RAID driver, determines the

stability and reliability of the whole system.

There are several open source tools available which can implement remote replication,

but Linux MD mdadm for RAID and the combination of Open-iSCSI and iSCSI

Enterprise Target for the iSCSI protocol are currently developed software, and have

multiple users around the world, including large organizations and have been included on

several commercial solutions. Furthermore, mdadm and Open-IET iSCSI provide enough

documentation and have multiple active forums that provide a space to get solutions to

common problems and to forward bugs and suggestions to the developer’s team.

As seen on the results, the iSCSI protocol can handle multiple network scenarios, where

the bandwidth is a constraint and the delays are high. This places the remote replication

solution as a reliable way to replicate data over the Internet, and although the results

presented were taken on a controlled environment, the worst network conditions tested

are closely the same conditions expected by an average Internet user.

The RAID-1 mdadm layer doesn’t impact the performance of the iSCSI layer; indeed the

remote disk becomes the bottleneck of the system, due to the fact that the local drive is

expected to be always faster then the remote device. Even though mdadm provides

interesting options to improve reading and writing performance, by marking the remote

disk as write-moslty, mdadm only tries to read from it when the local disk fails. Using the

write-behind option, the writes over the remote disk doesn’t have to be acknowledged up

to a certain value; as a result the writes over the local disk are not slowed down by the

remote disk (at least for a while).

iSCSI operates on top of TCP, and as seen on the protocol bandwidth analysis it doesn’t

add much header data to the transmission. But iSCSI is in fact a high CPU consuming

protocol, and because of this there are hardware implementation iSCSI processors. The

hardware HBA (host bus adapter) takes care of performing iSCSI commands on a

separate processor, without overloading the main system CPU.

On all the measurements taken, the utilities used to get the results were chosen based on

the capability to exceed the system buffer, in order to get a more realistic result without

the performance improvement embedded on the system.

Finally, the remote replication solution described in this study is flexible enough to

implement new requirements like multiple replication targets or disaster recovery after a

WAN failure; without having to add another layer of complexity or merge the solution

with another open source solution.

6. BIBLIOGRAPHY

1. Managing RAID on Linux By Derek Vadala

2. Wikipedia: http://en.wikipedia.org/wiki/RAID.

3. iSCSI: The Universal Storage Connection, John L. Hufferd

4. Wikipedia, http://en.wikipedia.org/wiki/Iscsi

5. RFC 3720 - Internet Small Computer Systems Interface (iSCSI)

6. http://www.open-iscsi.org/, Open iSCSI implementation

7. http://www.storusint.com/pdf/storage_protocols/iscsi/iSCSI%20White%20Paper.pdf

 iSCSI guide

8. http://iscsitarget.sourceforge.net/ iSCSI target implementation

9. http://www.cse.unsw.edu.au/~neilb/source/mdadm/, mdadm source code.

10. http://man-wiki.net/index.php/8:mdadm , mdadm man page

11. http://unthought.net/Software-RAID.HOWTO/ , Linux RAID guide.

12. http://www.drbd.org/, DRBD official homepage.

13. http://nbd.sourceforge.net/ , the network block device homepage.

14. http://evms.sourceforge.net/ , EVMS homepage.

15. http://sourceforge.net/projects/pratima/, Pratima homepage.

16. http://www.dummynet.com/, Dummynet homepage.

17. http://info.iet.unipi.it/~luigi/ip_dummynet/, Dummynet guide

18. http://www.wireshark.org/, Wireshark protocol analyzer homepage.

19. http://linux.die.net/man/8/hdparm, hdparm man page.

http://en.wikipedia.org/wiki/RAID
http://www.informit.com/authors/author_bio.asp?ISBN=020178419X
http://en.wikipedia.org/wiki/Iscsi
http://tools.ietf.org/html/rfc3720
http://www.open-iscsi.org/
http://www.storusint.com/pdf/storage_protocols/iscsi/iSCSI%20White%20Paper.pdf
http://iscsitarget.sourceforge.net/
http://www.cse.unsw.edu.au/~neilb/source/mdadm/
http://man-wiki.net/index.php/8:mdadm
http://unthought.net/Software-RAID.HOWTO/
http://www.drbd.org/
http://nbd.sourceforge.net/
http://evms.sourceforge.net/
http://sourceforge.net/projects/pratima/
http://www.dummynet.com/
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://www.wireshark.org/
http://linux.die.net/man/8/hdparm

7. APPENDIX A: TESTING MACHINE PROFILE

INITIATOR MACHINE (1):

Kernel version:
[root@localhost ~]# uname -a

Linux localhost.localdomain 2.6.23.1-42.fc8 #1 SMP Tue Oct 30 13:18:33

EDT 2007 x86_64 x86_64 x86_64 GNU/Linux

CPU profile:
[root@localhost ~]# cat /proc/cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 15

model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

stepping : 11

cpu MHz : 2399.977

cache size : 4096 KB

physical id : 0

siblings : 4

core id : 0

cpu cores : 4

fpu : yes

fpu_exception : yes

cpuid level : 10

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe

syscall nx lm constant_tsc arch_perfmon pebs bts rep_good pni monitor

ds_cpl vmx est tm2 ssse3 cx16 xtpr lahf_lm

bogomips : 4802.86

clflush size : 64

cache_alignment : 64

address sizes : 36 bits physical, 48 bits virtual

power management:

processor : 1

vendor_id : GenuineIntel

cpu family : 6

model : 15

model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

stepping : 11

cpu MHz : 2399.977

cache size : 4096 KB

physical id : 0

siblings : 4

core id : 3

cpu cores : 4

fpu : yes

fpu_exception : yes

cpuid level : 10

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe

syscall nx lm constant_tsc arch_perfmon pebs bts rep_good pni monitor

ds_cpl vmx est tm2 ssse3 cx16 xtpr lahf_lm

bogomips : 4799.90

clflush size : 64

cache_alignment : 64

address sizes : 36 bits physical, 48 bits virtual

power management:

processor : 2

vendor_id : GenuineIntel

cpu family : 6

model : 15

model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

stepping : 11

cpu MHz : 2399.977

cache size : 4096 KB

physical id : 0

siblings : 4

core id : 1

cpu cores : 4

fpu : yes

fpu_exception : yes

cpuid level : 10

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe

syscall nx lm constant_tsc arch_perfmon pebs bts rep_good pni monitor

ds_cpl vmx est tm2 ssse3 cx16 xtpr lahf_lm

bogomips : 4799.85

clflush size : 64

cache_alignment : 64

address sizes : 36 bits physical, 48 bits virtual

power management:

processor : 3

vendor_id : GenuineIntel

cpu family : 6

model : 15

model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

stepping : 11

cpu MHz : 2399.977

cache size : 4096 KB

physical id : 0

siblings : 4

core id : 2

cpu cores : 4

fpu : yes

fpu_exception : yes

cpuid level : 10

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe

syscall nx lm constant_tsc arch_perfmon pebs bts rep_good pni monitor

ds_cpl vmx est tm2 ssse3 cx16 xtpr lahf_lm

bogomips : 4799.91

clflush size : 64

cache_alignment : 64

address sizes : 36 bits physical, 48 bits virtual

power management:

Memory description:
[root@localhost ~]# cat /proc/meminfo

MemTotal: 4064116 kB

MemFree: 2124068 kB

Buffers: 160540 kB

Cached: 850544 kB

SwapCached: 0 kB

Active: 1144312 kB

Inactive: 625496 kB

SwapTotal: 2031608 kB

SwapFree: 2031544 kB

Dirty: 4 kB

Writeback: 0 kB

AnonPages: 758708 kB

Mapped: 164048 kB

Slab: 96676 kB

SReclaimable: 72524 kB

SUnreclaim: 24152 kB

PageTables: 34488 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

CommitLimit: 4063664 kB

Committed_AS: 1494372 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 21848 kB

VmallocChunk: 34359716475 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

Hugepagesize: 2048 kB

Storage capacity:
[root@localhost ~]# fdisk -l

Disk /dev/sda: 250.0 GB, 250059350016 bytes

255 heads, 63 sectors/track, 30401 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Disk identifier: 0x000a7e67

 Device Boot Start End Blocks Id System

/dev/sda1 * 1 25 200781 83 Linux

/dev/sda2 26 30401 243995220 8e Linux LVM

Disk /dev/sdb: 250.0 GB, 250059350016 bytes

255 heads, 63 sectors/track, 30401 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Disk identifier: 0x647a9f34

 Device Boot Start End Blocks Id System

/dev/sdb1 1 10000 80324968+ 83 Linux

/dev/sdb2 10001 10974 7823655 83 Linux

/dev/sdb3 10975 11948 7823655 83 Linux

Disk /dev/sdc: 22.4 GB, 22446756864 bytes

64 heads, 32 sectors/track, 21406 cylinders

Units = cylinders of 2048 * 512 = 1048576 bytes

Disk identifier: 0x00000000

Disk /dev/sdc doesn't contain a valid partition table

TARGET MACHINE (2):

Kernel version:
[root@localhost ~]# uname -a

Linux localhost.localdomain 2.6.23.1-42.fc8 #1 SMP Tue Oct 30 13:18:33

EDT 2007 x86_64 x86_64 x86_64 GNU/Linux

CPU profile:
[root@localhost ~]# cat /proc/cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 15

model name : Genuine Intel(R) CPU 2140 @ 1.60GHz

stepping : 2

cpu MHz : 1599.999

cache size : 1024 KB

physical id : 0

siblings : 2

core id : 0

cpu cores : 2

fpu : yes

fpu_exception : yes

cpuid level : 10

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe

syscall nx lm constant_tsc arch_perfmon pebs bts rep_good pni monitor

ds_cpl est tm2 ssse3 cx16 xtpr lahf_lm

bogomips : 3202.73

clflush size : 64

cache_alignment : 64

address sizes : 36 bits physical, 48 bits virtual

power management:

processor : 1

vendor_id : GenuineIntel

cpu family : 6

model : 15

model name : Genuine Intel(R) CPU 2140 @ 1.60GHz

stepping : 2

cpu MHz : 1599.999

cache size : 1024 KB

physical id : 0

siblings : 2

core id : 1

cpu cores : 2

fpu : yes

fpu_exception : yes

cpuid level : 10

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe

syscall nx lm constant_tsc arch_perfmon pebs bts rep_good pni monitor

ds_cpl est tm2 ssse3 cx16 xtpr lahf_lm

bogomips : 3199.81

clflush size : 64

cache_alignment : 64

address sizes : 36 bits physical, 48 bits virtual

power management:

Memory description:
[root@localhost ~]# cat /proc/meminfo

MemTotal: 766060 kB

MemFree: 11860 kB

Buffers: 257692 kB

Cached: 142260 kB

SwapCached: 0 kB

Active: 470784 kB

Inactive: 173252 kB

SwapTotal: 1004052 kB

SwapFree: 1003992 kB

Dirty: 44 kB

Writeback: 0 kB

AnonPages: 244284 kB

Mapped: 51572 kB

Slab: 64932 kB

SReclaimable: 52676 kB

SUnreclaim: 12256 kB

PageTables: 23472 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

CommitLimit: 1387080 kB

Committed_AS: 585088 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 6660 kB

VmallocChunk: 34359731667 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

Hugepagesize: 2048 kB

Storage capacity:
[root@localhost ~]# fdisk -l

Disk /dev/sda: 80.0 GB, 80026361856 bytes

255 heads, 63 sectors/track, 9729 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Disk identifier: 0x00010b8b

 Device Boot Start End Blocks Id System

/dev/sda1 * 1 5 40131 83 Linux

/dev/sda2 6 130 1004062+ 82 Linux swap /

Solaris

/dev/sda3 131 5111 40009882+ 83 Linux

/dev/sda4 5112 9729 37094085 5 Extended

/dev/sda5 5112 6085 7823623+ 83 Linux

/dev/sda6 6086 7000 7349706 83 Linux

/dev/sda7 7001 9729 21920661 83 Linux

Disk /dev/sdb: 512 MB, 512753664 bytes

16 heads, 32 sectors/track, 1956 cylinders

Units = cylinders of 512 * 512 = 262144 bytes

Disk identifier: 0xfd52e224

 Device Boot Start End Blocks Id System

/dev/sdb1 * 1 1956 500720 e W95 FAT16 (LBA)

8. APPENDIX B: OPEN SOURCE SOFTWARE VERSIONS

iSCSI initiator tools:

[root@localhost ~]# iscsid --version

iscsid version 2.0-865

[root@localhost ~]# iscsiadm --version

iscsiadm version 2.0-865

iSCSI target:

[root@localhost ~]# ietadm --version

ietadm version 0.4.15

Software RAID: mdadm

[root@localhost ~]# mdadm --version

mdadm - v2.6.2 - 21st May 2007

9. APPENDIX C: ISCSI TESTING SCRIPT

#!/bin/sh

#iscsi performance test loop

echo Initiating 10M write transfers

header=10M_files_writes

echo $header >>/root/MINT/iscsi-tests/iscsi-b1d150

for((i=1;i<=5;i++))

do

 echo $i Writing to disc...

 date=$(date | cut -b12-19)

 /usr/bin/time -o tmp.txt dd bs=1024x1 conv=fdatasync if=/root/testf/file1

of=/dev/sdc

 dd_stats1k=$(cat tmp.txt | grep user | cut -b1-42)

 /usr/bin/time -o tmp.txt dd bs=1024x4 conv=fdatasync if=/root/testf/file1

of=/dev/sdc

 dd_stats4k=$(cat tmp.txt | grep user | cut -b1-42)

 /usr/bin/time -o tmp.txt dd bs=1024x16 conv=fdatasync if=/root/testf/file1

of=/dev/sdc

 dd_stats16k=$(cat tmp.txt | grep user | cut -b1-42)

 /usr/bin/time -o tmp.txt dd bs=1024x64 conv=fdatasync if=/root/testf/file1

of=/dev/sdc

 dd_stats64k=$(cat tmp.txt | grep user | cut -b1-42)

 record=$date";"$dd_stats1k";"$dd_stats4k";"$dd_stats16k";"$dd_stats64k

 echo $record>>/root/MINT/iscsi-tests/iscsi-b1d150

 echo Waiting $i...

 sleep 2

done

echo Initiating 100M write transfers

header=100M_files_writes

echo $header >>/root/MINT/iscsi-tests/iscsi-b1d150

for((i=1;i<=5;i++))

do

 echo $i Writing to disc...

 date=$(date | cut -b12-19)

 /usr/bin/time -o tmp.txt dd bs=1024x1 conv=fdatasync if=/root/testf/file100

of=/dev/sdc

 dd_stats1k=$(cat tmp.txt | grep user | cut -b1-42)

 /usr/bin/time -o tmp.txt dd bs=1024x4 conv=fdatasync if=/root/testf/file100

of=/dev/sdc

 dd_stats4k=$(cat tmp.txt | grep user | cut -b1-42)

 /usr/bin/time -o tmp.txt dd bs=1024x16 conv=fdatasync if=/root/testf/file100

of=/dev/sdc

 dd_stats16k=$(cat tmp.txt | grep user | cut -b1-42)

 /usr/bin/time -o tmp.txt dd bs=1024x64 conv=fdatasync if=/root/testf/file100

of=/dev/sdc

 dd_stats64k=$(cat tmp.txt | grep user | cut -b1-42)

 record=$date";"$dd_stats1k";"$dd_stats4k";"$dd_stats16k";"$dd_stats64k

 echo $record>>/root/MINT/iscsi-tests/iscsi-b1d150

 echo Waiting $i...

 sleep 2

done

