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Abstract

Multivariate statistics play an important role in performance analysis of wireless communi-

cation systems in correlated fading channels. This thesis presents a framework which can

be used to derive easily computable mathematical representations for some multivariate sta-

tistical distributions, which are derivatives of the Gaussian distribution, and which have a

particular correlation structure. The new multivariate distribution representations are given

as single integral solutions of familiar mathematical functions which can be evaluated using

common mathematical software packages. The new approach can be used to obtain single

integral representations for the multivariate probability density function, cumulative distri-

bution function, and joint moments of some widely used statistical distributions in wireless

communication theory, under an assumed correlation structure. The remarkable advantage

of the new representation is that the computational burden remains at numerical evalua-

tion of a single integral, for a distribution with an arbitrary number of dimensions. The

new representations are used to evaluate the performance ofdiversity combining schemes

and multiple input multiple output systems, operating in correlated fading channels. The

new framework gives some insights into some long existing open problems in multivariate

statistical distributions.
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Chapter 1

Introduction

Over the last two decades, we experienced a rapid advancement of telecommunication tech-

nologies. Wireless communication technologies can be considered as the main contributor

for this rapid growth. Wireless communication, which started with Marconi’s radio signals,

has now evolved into wide variety of sophisticated technologies, and has taken over the role

played by wired networks in voice and data communications. Demand for both fixed and

mobile wireless services has grown exponentially over the past few years and according to

recent surveys, there are more than four billion mobile wireless subscribers worldwide. The

popularity of mobile wireless communications was boosted by the invention of small hand-

held devices such as smart phones and palmtop computers withwireless communication

capabilities.

In the process of designing new wireless communication systems, the designer must

make sure that the system is capable of functioning at a desirable level with a higher prob-

ability, under the impairments caused by the propagation channel. Performance measures

such as average signal-to-noise ratio (SNR), average bit error rate (BER), outage probabil-

ity and amount of fading (AF) are very popular quality indicators of wireless communica-

tion systems. Therefore it is quite beneficial to have a theoretical understanding on how

the system performs with different configurations and different channel conditions. The

impairments caused by the wireless propagation fall into several categories. Two major ef-

fects can be identified as multipath fading and shadowing. Several other impairments such

as interference and jamming can also degrade the performance of wireless communication

systems.

Due to the importance of the role played by performance evaluation in the system de-

sign process, it has been a popular research topic for more than five decades. It is evident

from the large the number of research publications available on this topic. In this thesis,
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we mainly focus on performance analysis of wireless communication systems, where the

impairments are caused by multipath fading. We provide someimportant theoretical tools

which can greatly reduce the complexity of performance evaluation of wireless communi-

cation systems. In the remaining discussion of this chapter, we provide a brief background

on the topics discussed in this thesis. From Chapter 2 onwards, we present our results.

1.1 Multipath Fading

Signal (radiowave) propagation in a wireless medium is a complicated process. A signal

propagating in a wireless medium may undergo several phenomenon such as scattering,

reflection, refraction, and diffraction. Therefore the received signal at the receiver may

consist of constructive and destructive combination of randomly scattered, delayed and re-

flected versions of the transmitted signal. This may result in random fluctuations of the

received signal amplitude or power at the receiver. This entire process is referred to as mul-

tipath fading in wireless communications. Random variations of received signal amplitude

and signal phase may result from multipath fading.

Depending on the type of signals used and the characteristics of the propagation chan-

nel, fading can be categorized into several forms. The relation between symbol duration

and coherence time of the channel, defines two forms of fading, namely slow fading and

fast fading. Coherence time is defined as the time period where we can consider the fading

process is correlated. Slow fading occurs when the symbol duration is less than the channel

coherence time. And fast fading is vice versa. Similarly another two forms of multipath

fading can be identified as flat fading and frequency selective fading. These two types are

defined based on the relation between channel coherence bandwidth and the transmitted

signal bandwidth. Coherence bandwidth is defined as the frequency range over which the

fading process is correlated. If the transmitted signal bandwidth is much smaller than the

channel coherence bandwidth, the fading is considered to beflat and otherwise it is fre-

quency selective.

In this thesis we consider the cases where the fading processis both slow and flat.

When the multipath fading process satisfies these properties, it is common to use statisti-

cal distributions to model the random nature of the receivedsignal amplitude. The basic

and most widely used distributions include the Rayleigh distribution, Rician distribution,

Nakagami-m distribution, Nakagami-q (Hoyt) distribution, and Weibull distribution.

2



1.1.1 Rayleigh fading

The Rayleigh distribution is often used to model the time varying characteristics of the

received signal amplitude in a wireless channel where thereis no direct line-of-sight (LOS)

path between the transmitter and the receiver. The probability density function (PDF) of the

Rayleigh distribution is given by

fα(x) =
x

σ2
exp

(

− x2

2σ2

)

, x ≥ 0 (1.1)

where2σ2 is the mean square value of the received signal amplitude.

1.1.2 Rician fading

When a dominant signal component (eg: LOS component) is present in addition to the

weaker multipath signals, the randomness of the received signal amplitude is modeled using

the Rician distribution with the PDF given as

fα(x) =
x

σ2
exp

(

−x2 + µ2

2σ2

)

I0

(µx

σ2

)

, x ≥ 0 (1.2)

whereI0(·) is the modified Bessel function of first kind and zeroth order,andµ2 is the

power of the dominant component. The mean-square value of the signal amplitude of a

Rician faded signal is given byµ2 + 2σ2.

1.1.3 Nakagami-m fading

Nakagami-m model, first proposed in [1] is a more versatile distributionused to model

multipath fading in wireless channels. It has shown a betterfit for empirical data than

Rayleigh and Rician distributions. The PDF of the Nakagami-m distribution is given by

fα(x) =
2

Γ(m)

(m

Ω

)m
x2m−1 exp

(

−mx2

Ω

)

, x ≥ 0,m ≥ 0.5 (1.3)

whereΓ(·) is the Gamma function, andΩ is the mean square value of the amplitude. The

fading severity parameterm is given byΩ2/E[(α2 − Ω2)], whereE[·] denotes the expec-

tation of a random variable. Form = 1, the Nakagami-m distribution simplifies to the

Rayleigh distribution andm = 0.5 represents the one-sided Gaussian distribution. As the

value of the parameterm increases, the fading severity decreases.
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1.1.4 Nakagami-q fading

Signal envelopes which closely follow the Nakagami-q (Hoyt) distribution [1], [2] have

been observed in satellite links subject to strong scintillation [3]. The PDF of a Nakagami-

q distributed random variable (RV) can be written as

fα(x) =
(1 + q2)x

qΩ
exp

(

−(1 + q2)2x2

4q2Ω

)

I0

(
(1 − q4)x2

4q2Ω

)

, x ≥ 0 (1.4)

whereq is the Hoyt parameter which ranges from 0 to 1 andΩ = E[α2]. Whenq = 1, the

Hoyt distribution simplifies to the Rayleigh distribution.

1.1.5 Weibull fading

The Weibull distribution was first introduced for the purpose of estimating the lifetime of

machinery. It has several other applications such as reliability engineering, failure data

analysis and weather forecasting. Several studies have shown that the Weibull distribution

seems to be a good fit for experimentally measured fading channels in both indoor and

outdoor environments [4], [5]. The PDF of the Weibull distribution can be written as [6]

fα(x) =
β

γ
xβ−1 exp

(

−xβ

γ

)

, x ≥ 0, β > 0 (1.5)

whereβ is the Weibull fading parameter, which determines the severity of fading, andγ is

a positive scale factor which is related to moments ofα such thatγ = E[αβ].

Some recent studies [7], [8] have developed statistical distributions with more degrees

of freedom to model the multipath fading process, namely theα−µ distribution,κ−µ dis-

tribution, andη − µ distribution. The basic fading distributions introduced above represent

some special cases of these general fading distributions given in [7], [8]. Composite fad-

ing models have been introduced that can model the combined effects of multipath fading

and shadowing with one tractable distribution. TheK-distribution [9] and the generalized

K-distribution fall in to this category.

1.2 Diversity Methods

Multipath fading and diversity methods are closely relatedtopics in wireless communica-

tions. The diversity concept was introduced to countermeasure the detrimental effects of

multipath fading on wireless communication system performance. The basic idea is to re-

ceive multiple independent versions of the transmitted signal and apply some processing

4



Figure 1.1.System model for a wireless communication system with diversity combiner.

algorithm at the receiver to obtain the decision statistic for decoding. The intuition un-

der this concept is to exploit the low probability that multiple independent copies of the

transmitted signal undergo a deep fade at the same time. The independence of the received

signals may be achieved with several different techniques.

• In the spatial domain, using multiple receiver antennas

• In the frequency domain, using multiple frequency channels

• In the time domain, using multiple time slots

• Resolving multipath components at different delays (in wideband wireless systems)

In this thesis, we focus only on the diversity in the spatial domain with multiple receiver

antennas. A basic system model for a wireless communicationsystem with diversity com-

bining is given in Fig.1.1. The effect of multipath fadingHi, i ∈ (1, 2, · · · , N) is mod-

eled as a multiplicative effect on the transmitted signals. The additive noise is given as

ni, i ∈ (1, 2, · · · , N). The variablesri, i ∈ (1, 2, · · · , N) denote the received signals at

each receiver antenna. The symboly denotes the output of the diversity combiner, which is

used for symbol detection.

5



The four principal diversity combining techniques can be identified as follows.

1.2.1 Maximal ratio combining

Maximal ratio combining (MRC), is known as the optimal diversity combiner in the sense of

maximizing the SNR of the decision statistic, in the absenceof other interfering sources. In

MRC, the received signals of each antenna (branch) are cophased and optimally weighted to

obtain the combiner output. It has been shown that the SNR of the combiner output is equal

to the summation of the SNR of all the branches. However, MRC requires complete channel

state information (both channel gain amplitude and phase) of all the diversity branches to

perform combining, and hence it is known to be the most complex diversity combiner.

1.2.2 Equal gain combining

In equal gain combining (EGC), the received signals of the branches are only cophased

and added together to obtain the combiner output. It is a sub-optimal scheme compared

to MRC, yet results in comparable performance with a lower complexity since only the

knowledge of channel phase is required for combining. EGC isoften limited in practice to

coherent modulations with equal energy symbols.

1.2.3 Selection combining

In selection combining (SC), the receiver selects the branch with the highest instantaneous

SNR for symbol decoding. Since SC processes only a single branch, it has a much lower

complexity compared to MRC and EGC. However SC may not exploit the full diversity

offered by the channel. SC can be used with coherent modulations (on a packet or block

basis rather than on a symbol basis), noncoherent modulations and differentially coherent

modulations.

1.2.4 Switched diversity combining

SC may not be suitable for communication systems with continuous transmissions, since it

requires concurrent and continuous monitoring of all the branches. Switched diversity (SD)

was proposed to overcome this limitation. In SD, the receiver selects a particular branch and

remains with that branch until the SNR falls below a pre-determined threshold. Whenever

the current branch SNR falls below a specified threshold, thereceiver switches to another

branch.

6



In addition to these principal combining techniques, several hybrid combining tech-

niques have been proposed. These techniques were often developed such that they have

characteristics of two or more principal combining algorithms. The purpose of hybrid com-

bining techniques is to obtain maximum possible diversity benefit, while maintaining a

reasonable receiver complexity. Generalized selection combining (GSC) was introduced by

combining MRC with SC. In GSC, the receiver selects the strongestL branches out ofN

available branches, and combines the selected branches using MRC.

1.3 Fading Correlation Models

As mentioned in Section 1.2, independence of the multiple signal replicas at the branches

is quite important to obtain the maximum benefit out of a diversity combiner. However

satisfying this condition may be difficult in practical situations. In spatial diversity systems,

it is known that the multiple receiver antennas should be placed sufficiently distant from

each other to obtain independently faded signals at the antennas. As the wireless devices

become smaller in size, implementing sufficiently spaced multiple antennas at the receiver

may not be always possible. When this situation occurs, the fading conditions may be

correlated among the multiple receiver antennas.

Theoretical performance evaluation of diversity combiners is an important stage in wire-

less system design. In order to choose a suitable combining scheme, a system designer

should have a sound knowledge of the achievable performanceof diversity combiners un-

der different conditions. In order to study the performanceusing a realistic framework,

we must include the effects of fading correlation in our theoretical analysis. To make the

task analytically tractable, different fading correlation models have been introduced. The

most widely used correlation models in the wireless communications literature include the

exponential correlation model and the constant correlation model.

1.3.1 Exponential correlation model

The exponential correlation model, discussed in [10], is used to model the spatial fading

correlation of an antenna system with equally spaced antennas. A uniform linear array is

an example for an equally spaced set of antennas. This model assumes that the correlation

between the pairs of received signals, decays as the spacingbetween antennas increases.

The fading correlation coefficient betweenith andjth receiver antennas is given as

ρij = ρ|i−j|, 0 < ρ < 1, i 6= j (1.6)
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It is known that the covariance matrix of the exponential correlation model has tri-diagonal

inverse, which makes it a tractable mathematical model for analysis.

1.3.2 Constant correlation model

The constant correlation model [10] is considered to be valid for a set of closely placed

diversity antennas. In [11], it has been shown that a three-element circular antenna array

gives rise to constant correlation conditions. Also the constant correlation model may be

used as a worst case performance benchmark for a set of antennas [12]. The normalized

covariance matrix for the constant correlation model can begiven as













1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

ρ ρ 1 · · · ρ
...

...
...

...
...

ρ ρ ρ · · · 1













(1.7)

where0 < ρ < 1.

1.3.3 Need for better correlation models

In addition to these models, several attempts have been madeto include arbitrary correlation

conditions in theoretical analysis. The main difficulty that arises when we are dealing with

performance evaluation of systems with fading correlationis that we have to use the joint

fading statistics over the diversity branches. Generally it is extremely difficult to evaluate

the joint statistics, since we must know the mathematical representations for the joint sta-

tistical distributions for the prevailing correlation conditions. For an example, performance

analysis of selection diversity receivers in correlated fading channels generally requires the

joint cumulative distribution function (CDF) of the branchSNRs. Also the analysis of EGC

in correlated fading channels requires the joint PDF of the received signal envelopes. For

MRC receivers, the joint moment generating function (MGF) of the branch SNRs is pre-

ferred.

Since the performance evaluation of diversity reception inthe presence of fading corre-

lation became an important research area in wireless communications, several researchers

focused their attention on the problem of finding mathematically tractable forms for the

multivariate PDF, CDF and MGF of the widely used statisticaldistributions such as Rayleigh,

Rician, Nakagami-m and Weibull. In the following section, we present a summary of the
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existing results on the multivariate PDF, CDF and MGF representations of these distribu-

tions.

1.4 Related Previous Results

In this section, we present some previous results availablefor representing the multivariate

PDFs and CDFs of statistical distributions considered in this thesis.

A thorough analysis of multivariate PDFs and CDFs of statistical distributions derived

from the Gaussian distribution is found in [13]. Using the methodology given in [13],

multivariate probability distributions for the Rayleigh distribution were investigated in [14].

Special cases of the constant correlation model and the exponential correlation model were

considered in the analysis of [14]. A closed-form multivariate PDF expression was derived

for the exponential correlation case and the joint PDF for the constant correlation case was

given in terms of a multidimensional integration requiringN levels of integration for aN

dimensional distribution. An infinite series representation (ISR) for the bivariate Rayleigh

CDF was first given in [15]. A finite range single integral representation for the bivariate

Rayleigh distribution was given in [16].

There are limited results on multivariate PDF and CDF representations for the Rician

distribution. The bivariate Rician PDF is given as an infinite summation in [17] – [19].

Extending Miller’s approach [13], an infinite series representations of the PDF and CDF of

the tri-variate Rician distribution, when the underlying Gaussian RVs have a tri-diagonal

inverse covariance matrix, are given in [20] where the Rician PDF is expressed using 2

nested infinite summations while the CDF is given using 7 nested infinite summations. A

useful single integral representation for the bivariate Rician PDF was given in [21], which

was readily obtained from the results of [22].

Certain forms of multivariate probability distributions for the Nakagami-m distribution

are found in the literature [1], [15], [23] – [28]. A closed-form representation of the bivari-

ate Nakagami-m PDF was given in [1] for identical fading severity parameterm for both

random variables (RVs). An infinite series representation of the bivariate Nakagami CDF,

when the two RVs have identicalm values was first published in [15]. The bivariate Nak-

agami PDF, with arbitrary fading parameters for the RVs, canbe found in [23]. The authors

of [26], generalized the results in [23], to represent more general correlation that may ex-

ist in real propagation channels. Infinite series representations for the joint characteristic

function (CHF), PDF, and CDF were given for the bivariate Nakagami-mdistribution using
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generalized Laguerre polynomials. The trivariate Nakagami-m and Rayleigh distributions

are known for arbitrary covariance matrices of the underlying Gaussian RVs [25], [27], [29]

in forms where the PDF and CDF are represented using a single infinite summation. Also,

quadri-variate Nakagami-m and Rayleigh distributions are given in [25], [29] for the most

general case of covariance matrix for the underlying Gaussian RVs. The PDF and CDF are

expressed as multiple nested infinite summations. A multivariate Nakagami-m distribution

with exponential correlation among the underlying Gaussian RVs was presented in [24].

Reference [30] presented an efficient approach to obtain multivariate PDF and CDF repre-

sentations for the Nakagami-m distribution, by approximating the covariance matrix of the

RVs with a suitable Green’s matrix. Since Green’s matrix is guaranteed to have its inverse

in tri-diagonal form, Miller’s approach [13] can then be used to obtain the multivariate PDF

and CDF. The multivariate Nakagami CDF was given using multiple nested infinite sum-

mations. An infinite series representation of a multivariate Nakagami-m PDF for arbitrary

correlation matrix and arbitrary fading severity parameters was given in [28]. The PDF

was given using a single infinite summation of Laguerre polynomials. The multivariate

Nakagami-m CDF was given using a multidimensional integration of the PDF in [28]. A

union upper bound for multivariate Nakagami-m fading model is given in [31].

The Rician distribution is a special case of the non-centralchi (χ) distribution1 where

the number of degrees of freedom is equal to 2. An ISR for the bivariate generalized Ri-

cian distribution was given in [13]. Royen [32] gives integral representations for central

and non-central multivariate chi-square (χ2) distributions with specific correlation struc-

tures. An ISR for the PDF and CDF of the trivariate non-central χ2 distribution is given

in [33], where the inverse covariance matrix of the underlying Gaussian random variables

(RVs) is in tri-diagonal form. Both the PDF and CDF are expressed using nested infinite

summations. Reference [34] gives a new representation for the trivariate non-centralχ2

distribution derived from the diagonal elements of a complex non-central Wishart matrix.

Special forms of the multivariate Weibull fading process generated from correlated

Gaussian processes were studied in [6]. A closed-form expression for the multivariate

Weibull PDF with exponential correlation among the underlying Rayleigh RVs is given

in [6]. A nested integral form of the multivariate PDF for theconstant correlation model

is also given in [6] for identically distributed Weibull RVs. A multivariate CDF is given

for the exponential correlation case using multiple nestedinfinite summations. A CDF ex-

1If RV X is distributed as non-centralχ2 then the RV
√

X is a non-centralχ distributed RV.
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pression for the constant correlation case was not given in [6]. The results of [6] were

extended to arbitrary correlation conditions using a Green’s matrix approximation in [35].

However the results are given in terms of multiple nested infinite summations and are not

exact. Infinite series representations for the trivariate Weibull PDF and CDF with arbitrary

correlations are given in [36] for the general case of non-identically distributed Weibull

RVs. Reference [36] gives ISRs for the quadri-variate Weibull PDF and CDF with a very

general correlation matrix. However, neither the PDF nor the CDF given in [36] for the

quadri-variate Weibull distribution is valid for the constant correlation case. A general and

exact multivariate PDF expression for theα − µ distribution with arbitrary correlation is

given in [37] where the Weibull distribution is considered as a special case of theα − µ

distribution. However, only an approximate solution is given for the multivariate CDF.

1.5 Motivation

Reviewing the existing literature on multivariate PDF and CDF representations of Rayleigh,

Rician, Nakagami-m, non-centralχ2 and Weibull distributions, we notice the following.

• Despite their usefulness, there exist a limited number of multivariate PDF and CDF

representations for Rayleigh, Rician, Nakagami-m, Weibull and non-centralχ2 dis-

tributions.

• When the multivariate PDF and CDF representations are available, their mathemati-

cal complexity precludes their use in certain applications.

• In some cases where the multivariate PDF is known, still we have to use multi-

dimensional integration to evaluate the multivariate CDF.

• The majority of the known results on multivariate distributions are given in terms of

infinite series solutions or multi-dimensional integral expressions, which are difficult

and time consuming to evaluate using mathematical software.

• The number of infinite series computations or integral computations increases with

the dimensionality of the distribution.

• The approximation methods used to obtain multivariate PDF and CDF representa-

tions become less accurate as the number of dimensions increases.
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• The tightness of the known bounds for multivariate PDF and CDF representations

tend to deteriorate as the distribution grows to higher dimensions.

Due to the availability of multivariate Gamma type MGFs for arbitrary correlation con-

ditions, the performance of MRC receivers under arbitrary fading correlation conditions

have been studied extensively for correlated Rayleigh, Rician and Nakagami-m fading chan-

nels. However, exact performance results available for SC receivers in correlated fading

channels appear to be limited. Motivated by this fact and thelimitations we identified ear-

lier, in this thesis, we present a framework to derive conveniently computable mathematical

representations for multivariate Rayleigh, Rician, Nakagami-m, non-centralχ2 and Weibull

distributions. Special types of correlation models are used in our analysis. Although per-

formance evaluation of SC receivers is a motivation for thisthesis, it will be shown that

the new results developed in this thesis can also be used in the analysis of multiple input

multiple output (MIMO) systems with antenna selection and in the analysis of output SNR

moments of EGC.

In addition to the new representations for the multivariatedistributions, motivated by

the fact that the available solutions for the performance analysis of a dual branch MRC

receiver operating in correlated Hoyt fading channels are quite complicated in mathematical

evaluation, we present a new simple methodology to tackle this problem as well.

1.6 Thesis Outline and Contributions

This thesis develops a simplified framework to derive multivariate PDF and CDF expres-

sions for some popular statistical distributions used in wireless communications theory.

Specific types of correlation matrices are used in our analysis. We focus our attention on

deriving easily computable mathematical representationsfor multivariate distributions in-

cluding Rayleigh, Rician, Nakagami-m, Weibull and non-central chi-square distributions2.

This thesis consists of four main chapters. Each chapter corresponds to a major contribu-

tion.

Chapter 2 presents a framework to derive novel single integral solutions for multivari-

ate PDFs and CDFs of Rayleigh, Rician and Nakagami-m distributions with generalized

correlation structure. We show that our new methodology enables derivation of single in-

tegral expressions for multivariate PDFs and CDFs of Rayleigh, Rician and Nakagami-m

2For each case, with the aid of mathematical software such as MAPLE, we can show that the marginal
distributions follow the appropriate forms
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distributions with a generalized correlation matrix. The new PDF expressions are used to

derive single integral expressions for joint moments. We use the new multivariate CDF

representations to evaluate performance of SC diversity, operating in correlated Rayleigh,

Rician and Nakagami-m fading channels.

In Chapter 3, we consider the special case of constant (equal) correlation model for

our analysis. We derive new single integral representations for the multivariate non-central

chi-square distribution with equally correlated component Gaussian RVs. The new repre-

sentations are derived for the multivariate PDF, CDF, jointCHF and joint moments. Also

we discuss the applicability of the new representations of the non-central chi-square dis-

tribution to study of MIMO systems with antenna selection, operating in correlated Rician

fading channels.

Chapter 4 presents new single integral expressions for the multivariate Weibull distri-

bution with constant correlation. New single integral expressions for the multivariate PDF,

CDF and joint moments are derived. We use the new CDF representation to evaluate the

performance of SC diversity operating in correlated Weibull fading channels. New expres-

sions for the outage probability, average symbol error rateand average SNR are derived.

Furthermore, the new PDF is used to obtain new expressions for the output SNR moments

of EGC operating in equally correlated Weibull fading.

Chapter 5 presents a new framework to analyze the performance of a dual MRC re-

ceiver operating in identically distributed, correlated Nakagami-q (Hoyt) fading channels.

The new method allows computing the SER of a large number of coherent and noncoher-

ent modulation formats with dual MRC in correlated Hoyt fading using finite range single

integrals of elementary mathematical functions. Also we show that this method allows com-

puting other performance measures such as outage probability of the MRC receiver, using

efficient numerical techniques developed for independent fading branches.

Chapter 6 concludes this thesis while giving some suggestions for potential future re-

search based on the contributions of this thesis. It is important to note that although we

discuss the applicability of the new representations of themultivariate distributions in wire-

less communications, the new distributions can be used in other areas of statistics as well.
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Chapter 2

New Representations for
Multivariate Rayleigh, Rician and
Nakagami-m Distributions With
Generalized Correlation

2.1 Introduction

In this chapter1, we present a framework to obtain single integral representations for multi-

variate Rayleigh, Rician and Nakagami-mdistributions with a generalized correlation struc-

ture. The multivariate PDFs and CDFs are expressed explicitly in terms of single integral

solutions. A remarkable feature of these representations is that the computational com-

plexity is limited to a single integral computation for an arbitrary number of dimensions.

Correlated RVs are generated using a special transformation of independent Gaussian RVs.

A similar approach was used in [12] to obtain distribution functions of the output signal-to-

noise ratio (SNR) of a selection diversity combiner exclusively for equally correlated fad-

ing. In [40], this approach was used to evaluate performanceof diversity combiners with

positively correlated branches. Prior to the publication of [12] and [40], the basic idea for

the approach was found in [41]. Our model is two-dimensionalas is the model in [12], [40],

and admits some negative values of correlation as does the most general model in [41].

The remainder of this chapter is organized as follows. In Section 2.2, we present

models used to generate correlated Rayleigh, Rician and Nakagami-m distributed RVs

from independent Gaussian RVs. Detailed derivations of multivariate Rayleigh, Rician

and Nakagami-m distributions are presented in Section 2.3. Section 2.4 presents applica-

1This chapter has been presented in part at the IEEE Wireless Communications and Networking Conference
(WCNC) 2010, held in Sydney, Australia [38], [39].
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tions of the new representations, while some numerical examples and simulation results are

presented in Section 2.5.

2.2 Representation of Correlated RVs

The following notations will be used throughout this chapter and the remainder of this

thesis. We denote a Gaussian distribution with meanµ and varianceσ2 by N (µ, σ2), and a

complex Gaussian distribution with meanµ and varianceσ2 is denoted asNc(µ, σ2). Var(·)
denotes the variance of a RV, and the magnitude and complex conjugate ofX are denoted

as|X| andX∗, respectively. We usefX(x) andFX(x) to denote the PDF and CDF of RV

X.

2.2.1 Correlated Rayleigh RVs

Similar to [40, eq.(6)], the complex channel gain can be represented by extending the cor-

relation model used in [41, eq.(8.1.6)] to the complex planeas

Gk = (
√

1 − λ2
kXk + λkX0) + i(

√

1 − λ2
kYk + λkY0), k = 1, · · · , N (2.1)

wherei =
√
−1, λk ∈ (−1, 1) r {0} andXk, Yk(k = 0, · · · , N) are independent and

N (0, 1
2). Then for anyk, j ∈ {0, · · · , N}, E[XkYj] = 0, andE[XkXj ] = E[YkYj ] =

1

2
δkj

whereδkj is the Kronecker delta function defined asδkk = 1 andδkj = 0 for k 6= j.

Then Gk has a zero-mean complex Gaussian distribution asNC(0, 1), and |Gk| is

Rayleigh distributed with mean square valueE[|Gk|2] = 1. The cross-correlation coef-

ficient between anyGk, Gj can be calculated as

ρkj =
E[GkG

∗
j ] − E[Gk]E[G∗

j ]
√

E[|Gk|2]E[|Gj |2]
= λkλj. (2.2)

Observe that (2.1) can generate correlated Rayleigh RVs with the underlying complex

Gaussian RVs having the cross-correlation structure givenin (2.2). The corresponding enve-

lope correlations can be found using [42, eq. (1.5-26)]. When all λk = λ, (k = 1, · · · , N),

this model simplifies to the equal correlation case.

2.2.2 Correlated Rician RVs

We can denote a set of correlated Rician RVs by modifying the correlation model used in

(2.1), namely

Hk = (
√

1 − λ2
kXk + λkX0) + i(

√

1 − λ2
kYk + λkY0), k = 1, · · · , N (2.3)
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wherei =
√
−1, λk ∈ (−1, 1) r {0} andXk, Yk(k = 1, · · · , N) are independent and

N (0, 1
2). The RVsX0 andY0 are independent and distributed asN (m1,

1
2) andN (m2,

1
2).

Then for anyk, j ∈ {1, · · · , N}, E[XkYj] = 0, andE[XkXj] = E[YkYj] = 1
2δkj .

Note thatHk is a non-zero mean complex Gaussian distributed RV, and|Hk| is Rician

distributed with Rician factorKk = λ2
k(m

2
1 + m2

2) and mean square valueE[|Hk|2] =

1 + Kk. The cross-correlation coefficient between anyHk,Hj can be calculated as

ρkj =
E[HkH

∗
j ] − E[Hk]E[H∗

j ]
√

E[|Hk − E[Hk]|2] E[|Hj − E[Hj]|2]
= λkλj . (2.4)

Therefore, (2.3) can represent correlated Rician RVs with the underlying complex Gaussian

RVs having the cross-correlation structure given in (2.4) .When allλk = λ(k = 1, · · · , N),

this model simplifies to the equal correlation case.

2.2.3 Correlated Nakagami-m RVs

Modifying the model described in [41], we can denoteN correlated Nakagami-m (for posi-

tive integerm) random variables withNm number of zero-mean complex Gaussian random

variables. Using a similar approach as [40],

Gkl = σk(
√

1 − λ2
kXkl + λkX0l) + i σk(

√

1 − λ2
kYkl + λkY0l)

k = 1, · · · , N l = 1, · · · ,m (2.5)

wherei =
√
−1, λk ∈ (−1, 1)\{0} andXkl, Ykl(k = 0, 1, · · · , N l = 1, · · · ,m) are inde-

pendent andN (0, 1
2 ). Then for anyk, j ∈ {1, · · · , N}, l, n ∈ {1, · · · ,m}, E[XklYjn] = 0,

andE[XklXjn] = E[XklYjn] =
1

2
δkjδln. The cross-correlation coefficient between any

Gkl andGjn (k 6= j) can be calculated as

ρkl,jn =
E[GklG

∗
jn] − E[Gkl]E[G∗

jn]
√

E[|Gkl|2] E[|Gjn|2]

=







λkλj (k 6= j and l = n)

0 (l 6= n).
(2.6)

DenoteRk as the summation of squared magnitudes ofGkl, then

Rk =

m∑

l=1

|Gkl|2. (2.7)

Rk(k = 1, · · · , N) is sum of squares of2m independent Gaussian RVs. The cross-

correlation coefficient betweenRk andRj can be calculated as [1]

ρRk ,Rj
=

E[R1R
∗
2] − E[R1]E[R∗

2]
√

Var[R1]Var[R2]
= λ2

kλ
2
j . (2.8)
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We identify that
√

(Rk)(k = 1, · · · , N) are a set ofN correlated Nakagami-m RVs with

mean square valuemσ2
k, identical fading severity parameterm and cross-correlation of the

underlying complex Gaussian RVs having the structure givenin (2.6).

2.3 Multivariate Rayleigh, Rician and Nakagami-m Distribu-
tions

2.3.1 Multivariate Rayleigh distribution

In Section 2.2.1, it was shown that the|Gk|s are Rayleigh distributed. We condition the

RVs |Gk|s on the RVsX0 andY0. Then we identify that the|Gk|s become conditionally

Rician distributed since the inphase and quadrature components have equal variances and

non-zero means. The PDF of|Gk| conditioned onX0 andY0 can be written as [43]

f|Gk||X0,Y0
(rk|X0, Y0) =

rk

σ2
k

exp

(

−(r2
k + µ2

k)

2σ2
k

)

I0

(
rkµk

σ2
k

)

(2.9a)

µ2
k = µ2

x + µ2
y (2.9b)

µx = λkX0 (2.9c)

µy = λkY0 (2.9d)

σ2
k =

1 − λ2
k

2
, k = 1, · · · , N. (2.9e)

One can compute the conditional cross-correlation coefficient betweenGk andGj using

ρc
kj =

E[GkG
∗
j |X0, Y0] − E[Gk|X0, Y0]E[G∗

j |X0, Y0]
√

E[|Gk − E[Gk]|2|X0, Y0] E[|Gj − E[Gj ]|2|X0, Y0]
= 0. (2.10)

The conditionalGks are uncorrelated. Since they are Gaussian distributed, they are con-

ditionally independent. Therefore, the|Gk|s are conditionally independent, and the joint

conditional PDF of the|Gk|s can be written as

fG|X0,Y0
(r1, r2, · · · , rN |X0, Y0) =

N∏

k=1

f|Gk||X0,Y0
(rk|X0, Y0) (2.11)

wheref|Gk|(rk|X0, Y0) is given in (2.9) andG = [|G1|, · · · , |GN |].
From the laws of probability we know that [44]

fG(r1, r2, r3, · · · , rN ) =

∫

Y0

∫

X0

fG,X0,Y0(r1, r2, · · · , rN ,X0, Y0) dX0dY0. (2.12)
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Also we have

fG,X0,Y0(r1, r2, · · · , rN ,X0, Y0) = fG|X0,Y0
(r1, r2, · · · , rN |X0, Y0) fX0,Y0(X0, Y0).

(2.13)

Then we can write the unconditional joint PDF as

fG(r1, r2, r3, · · · , rN ) =
∫

Y0

∫

X0

fG|X0,Y0
(r1, r2, · · · , rN |X0, Y0) fX0,Y0(X0, Y0) dX0dY0. (2.14)

SinceX0, Y0 are independent andN (0, 1
2), the joint PDF is given by

fX0,Y0(X0, Y0) =
1

π
exp(−(X2

0 + Y 2
0 )). (2.15)

Then we can write the joint unconditional PDF of correlated Rayleigh RVs as

fG(r1, r2, · · · , rN ) =

∫

Y0

∫

X0

N∏

k=1

f|Gk|(rk|X0, Y0)
1

π
exp(−(X2

0 + Y 2
0 )) dX0dY0.

(2.16)

Substituting (2.9) in (2.16), and using some straightforward variable transformations, we

simplify the double integral in (2.16) to a single integral,namely

fG(r1, r2, · · · , rN ) =

∫ ∞

0
exp(−t)

N∏

k=1

rk

σ2
k

exp

(

−r2
k + λ2

kt

2σ2
k

)

I0




rk

√

λ2
kt

σ2
k



 dt.

(2.17)

Eq. (2.17) is a new single integral form of a class of multivariate Rayleigh distributions,

the class admitted by the correlation structure given in (2.2). In comparison to other special

forms of the multivariate Rayleigh distribution, we make the following remarks. Only a sin-

gle integral calculation is needed to compute theN -dimensional multivariate Rayleigh PDF

(2.17) having the correlation structure given in (2.2). No multiple nested infinite series com-

putations are required, in sharp contrast to previously published forms of the PDF [15], [29].

In comparison to the result in [14],N -fold integration is required in [14], but the solution

is valid for arbitrary correlation.

The bivariate Rayleigh PDF is well known [45]. One can show that (2.17) specializes

to this known form using [46, eq. (3.15.17.1)] as

f|G1|,|G2|(r1, r2) =
4r1r2

1 − λ
exp

(

− 1

1 − λ

(
r2
1 + r2

2

)
)

I0

(

2r1r2

√
λ

1 − λ

)

(2.18)

where the correlation coefficientρ = λ2
1λ

2
2, can have arbitrary value0 ≤ ρ < 1.
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We obtain a single integral representation for the multivariate Rayleigh CDF using the

same approach. We write

FG(r1, r2, r3, · · · , rN ) =
∫

Y0

∫

X0

FG|X0,Y0
(r1, r2, · · · , rN |X0, Y0) fX0,Y0(X0, Y0) dX0dY0 (2.19)

whereFG|X0,Y0
(r1, r2, · · · , rN |X0, Y0) is given by [43]

FG|X0,Y0
(r1, r2, · · · , rN |X0, Y0) =

N∏

k=1

[

1 − Q

(
µk

σk
,
rk

σk

)]

(2.20)

andQ(a, b) is the 1st order MarcumQ-function [43] andµk andσk are as defined in 2.9.

Then we can write the joint CDF as a single integral, namely

FG(r1, r2, · · · , rN ) =

∫ ∞

0
exp(−t)

N∏

k=1



1 − Q





√
t
√

λ2
k

σk
,
rk

σk







 dt. (2.21)

Eq. (2.21) for the multivariate Rayleigh CDF was published previously in [40], with the

difference that in [40], it was specified that theλk, k = 1, · · · , N must be positive whereas

the derivation given here allows negative and positive values forλk.

2.3.2 Multivariate Rician distribution

In Section 2.2.2, a model for Rician distributed|Hk| was given. Now we conditionHk

on random variablesX0 andY0. Then we can identify that|Hk| is still Rician distributed

since the inphase and quadrature components have equal variances and non-zero means.

The PDF of|Hk| conditioned onX0 andY0 can be written as [43]

f|Hk||X0,Y0
(vk|X0, Y0) =

vk

σ2
k

exp(−(v2
k + S2

k)

2σ2
k

)I0(
vkSk

σ2
k

) (2.22a)

S2
k = µ2

x + µ2
y (2.22b)

µx = λkX0, µy = λkY0 (2.22c)

σ2
k =

1 − λ2
k

2
, k = 1, · · · , N. (2.22d)

One can compute the conditional cross-correlation coefficient betweenHk andHj using

ρc
k,j =

E[HkH
∗
j |X0, Y0] − E[Hk|X0, Y0]E[H∗

j |X0, Y0]
√

E[|Hk − E[Hk]|2|X0, Y0] E[|Hj − E[Hj]|2|X0, Y0]
= 0. (2.23)
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The conditionalHk ’s are uncorrelated. Since they are jointly Gaussian, they are condition-

ally independent. Therefore, we can write the joint conditional PDF of the|Hk|’s as

fH|X0,Y0
(v1, v2, · · · , vN |X0, Y0) =

N∏

k=1

f|Hk||X0,Y0
(vk|X0, Y0) (2.24)

wheref|Hk||X0,Y0
(vk|X0, Y0) is given in (2.22) andH = [|H1|, · · · , |HN |].

Reasoning as the Rayleigh case, we can write the unconditional joint PDF as

fH(v1, v2, v3, · · · , vN ) =
∫

Y0

∫

X0

fH|X0,Y0
(v1, v2, · · · , vN |X0, Y0) fX0,Y0(X0, Y0) dX0dY0. (2.25)

SinceX0, Y0 are independent and distributed asN (m1,
1
2) andN (m1,

1
2), the joint PDF is

fX0,Y0(X0, Y0) =
1

π
exp(−((X0 − m1)

2 + (Y0 − m2)
2)). (2.26)

Then we can write the joint unconditional PDF of correlated Rician RVs as

fH(v1, v2, · · · , vN ) =

∫ ∞

−∞

∫ ∞

−∞

1

π
exp(−((X0 − m1)

2 + (Y0 − m2)
2))

N∏

k=1

vk

σ2
k

exp

(

−v2
k + λ2

k(X
2
0 + Y 2

0 )

2σ2
k

)

I0




vk

√

λ2
k(X

2
0 + Y 2

0 )

σ2
k



 dX0dY0. (2.27)

Using the variable transformationX0 = Rcos(θ) andY0 = Rsin(θ), we can simplify

(2.27) to a single integral, namely

fH(v1, v2, · · · , vN ) =

∫ ∞

0
exp(−t) exp(−(m2

1 + m2
2))I0(2

√

(m2
1 + m2

2)t)

N∏

k=1

vk

σ2
k

exp

(

−v2
k + λ2

kt

2σ2
k

)

I0




vk

√

λ2
kt

σ2
k



 dt. (2.28)

Eq. (2.28) is a new representation of a class of multivariateRician PDF with the correla-

tion structure given in (2.3). Only a single integral is needed to compute theN -dimensional

Rician PDF (2.28) having the correlation structure given in(2.4). Multiple nested infinite

summations are not required to compute theN -dimensional Rician PDF. Also, we will

show that the CDF can be obtained in single integral form as well.

We obtain a single integral representation of the multivariate Rician CDF using a similar

approach by replacingf
H|X0,Y0

(v1, v2, · · · , vN |X0, Y0) byFH|X0,Y0
(v1, v2, · · · , vN |X0, Y0),

which is given by

FH|X0,Y0
(v1, v2, · · · , vN |X0, Y0) =

N∏

k=1

[

1 − Q

(
Sk

σk
,
vk

σk

)]

. (2.29)
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Then we can represent the multivariate Rician CDF as

FH(v1, v2, · · · , vN ) =

∫ ∞

0
exp(−t) exp(−(m2

1 + m2
2))I0

(

2
√

t
√

m2
1 + m2

2

)

×
N∏

k=1



1 − Q





√
t
√

λ2
k

σk
,
vk

σk







 dt. (2.30)

Eq. (2.30) is a new representation for a multivariate RicianCDF. Only a single integral

computation is required to evaluate theN -dimensional Rician CDF with correlation struc-

ture given in (2.3). No multiple nested infinite summations are required for computation, in

contrast to the forms given in [17] and [25].

2.3.3 Multivariate Nakagami-m distribution

A model to generate correlated Nakagami-m RVs was given in (2.5). Now we condition

the RV’s Gkl on X0l and Y0l for l = 1, · · · ,m. Then the real and imaginary parts of

Gkl have equal variance ofσ2
k

(
1−λ2

k

2

)

and meansσkλkX0l andσkλkY0l, respectively. We

can identify thatRk has a noncentral chi-square distributionχ2m(Sk,Ω
2
k) whereS2

k =
m∑

l=1

σ2
kλ

2
k(X

2
0l + Y 2

0l) and Ω2
k = σ2

k

(
1−λ2

k

2

)

. We can write the conditional PDF ofRk

as [43]

fR(γ|X0l, Y0l) =
1

2Ω2
k

(
γ

S2
k

)2m−2
4

exp(−(S2
k + γ)

2Ω2
k

) I 2m
2

−1

(√
γ

Sk

Ω2
k

)

. (2.31)

We can find the conditional PDF of
√

Rk using a variable transformation; it is given by

f√Rk
(wk|X0l, Y0l) =

1

Ω2
k

wm
k

Sm−1
k

exp(−(S2
k + w2

k)

2Ω2
k

) Im−1

(

wk
Sk

Ω2
k

)

. (2.32)

Since the componentsGkl are conditionally independent onX0l andY0l, the resultingRk’s

are independent fork = 1, · · · , N . Then the conditional joint PDF of the resulting
√

Rk’s

can be written as a product of individual conditional PDFs, viz.

fW|X0,Y0
(w1, · · · , wN |X0l, Y0l) =

N∏

k=1

1

Ω2
k

wm
k

Sm−1
k

exp(−(S2
k + w2

k)

2Ω2
k

) Im−1

(

wk
Sk

Ω2
k

)

, l = 1, · · · ,m (2.33)

whereW = [
√

R1, · · · ,
√

RN ], X0 = [X01, · · · ,X0m] andY0 = [Y01, · · · , Y0m].

From the laws of probability we know that [44]

fW(w1, · · · , wN ) =
∫

Y0l

∫

X0l

fW,X0,Y0
(w1, · · · , wN ,X0l, Y0l) dX0ldY0l, l = 1, · · · ,m. (2.34)
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Also, we have

fW,X0,Y0
(w1, · · · , wN ,X0l, Y0l) = fW|X0,Y0

(w1, · · · , wN |X0l, Y0l) fX0,Y0
(X0l, Y0l).

(2.35)

Then we can write the unconditional joint PDF as

fW(w1, · · · , wN ) =
∫∫

X0l,Y0l,l=1,··· ,m

fW|X0,Y0
(w1, · · · , wN |X0l, Y0l) fX0,Y0

(X0l, Y0l)dX0ldY0l,

l = 1, · · · ,m. (2.36)

SinceX0l, Y0l are independent and Gaussian distributed asN (0, 1
2), the joint PDF

fX0,Y0
(X0l, Y0l) is given by

fX0,Y0
(X0l, Y0l) =

1

πm
exp(−

m∑

l=1

X2
0l + Y 2

0l). (2.37)

Substituting (2.37) in (2.36), we get

fW(w1, · · · , wN ) =

∫∫

X0l,Y0l,l=1,··· ,m

N∏

k=1

1

Ω2
k

wm
k

Sm−1
k

exp(−(S2
k + w2

k)

2Ω2
k

) Im−1

(

wk
Sk

Ω2
k

)

1

πm
exp(−

m∑

l=1

X2
0l + Y 2

0l)dX0ldY0l l = 1, · · · ,m. (2.38)

We can simplify the2m-fold integral in (2.38) using a hyperspherical coordinatesystem

transformation, where we substitute

X01 = Rcos(φ1)

Y01 = Rsin(φ1)cos(φ2)

X02 = Rsin(φ1)sin(φ2)cos(φ3)

...

X0m = Rsin(φ1)sin(φ2) · · · cos(φ2m)

Y0m = Rsin(φ1)sin(φ2) · · · sin(φ2m). (2.39)

Then we have
m∑

l=1

(X2
0l + Y 2

0l) = R2 and S2
K = σ2

kλ
2
kR

2. The Jacobian of the

transformation can be found as

|J | = R2m−1 sin2m−2(φ1) sin2m−3(φ2) · · · sin(φ2m−2) (2.40)
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and the joint PDF of the Nakagami-m RVs can be written as

fW(w1, w2, · · · , wN ) =
∫ ∞

R=0

∫ π

φ1=0

∫ π

φ2=0
· · ·
∫ 2π

φ2m−1

R2m−1 sin2m−2(φ1)sin
2m−3(φ2) · · · sin(φ2m−2)

1

πm
exp(R2) exp(−

N∑

k=1

S2
k

2Ω2
k

)

N∏

k=1

Im−1

(

wk
Sk

Ω2
k

)

N∏

k=1

1

Sm−1
k

N∏

k=1

1

Ω2
k

wm
k exp(− w2

k

2Ω2
k

)dφ1dφ2 · · · dφ2m−1dR. (2.41)

To simplify the2m-fold integral in (2.41) to a single integral, we take the part of the

integral which contains anglesφ1 · · · φ2m

∫ ∞

R=0

∫ π

φ1=0

∫ π

φ2=0
· · ·
∫ 2π

φ2m−1

R2m−1 sin2m−2(φ1)sin
2m−3(φ2) · · · sin(φ2m−2)

1

πm
exp(−R2)dφ1dφ2 · · · dφ2m−1dR. (2.42)

The problem of integrating out all the angles can be considered as deriving the envelope

PDF of2m independent Gaussian variables with zero mean and equal variance1
2 . This PDF

can be found as a central chi-distribution with2m degrees of freedom [43]. Therefore, we

can simplify the2m-fold integral in (2.42) to a single integral, namely
∫ ∞

0
2
R2m−1

Γ(m)
exp(−R2)dR. (2.43)

Then the joint PDF of Nakagami RVs can be written as

fW(w1, · · · , wN ) =

∫ ∞

0

tm−1

Γ(m)
e−t

N∏

k=1

1

(σ2
kλ

2
kt)

m−1
2

wm
k

Ω2
k

exp

(

−w2
k + σ2

kλ
2
kt

2Ω2
k

)

Im−1




wk

√

σ2
kλ

2
k

√
t

Ω2
k



 dt. (2.44)

Eq. (2.44) can be rearranged and represented as a Laplace transform integral

fW(w1, · · · , wN ) =
[

N∏

k=1

1

(σ2
kλ

2
kt)

m−1
2

wm
k

Ω2
k

exp(− w2
k

2Ω2
k

)

]
∫ ∞

0

tm−1

Γ(m)

× exp(−t(1 +
N∑

k=1

σ2
kλ

2
k

2Ω2
k

))
N∏

k=1

Im−1




wk

√

σ2
kλ

2
k

√
t

Ω2
k



 dt (2.45)
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where the usual Laplace transform parameters has the particular values = 1 +
N∑

k=1

σ2
kλ

2
k

2Ω2
k

.

Eq. (2.45) is a new single integral representation of a classof multivariate Nakagami-m

PDF for integer order and identical fading severity parameter m. The solution is given in

terms of well known mathematical functions available in common mathematical software

packages such as MATLAB. No multiple nested infinite summations are required for the

computation of theN -dimensional Nakagami-m PDF with the underlying complex Gaus-

sian components having the correlation structure (2.6). A remarkable advantage of this

representation is that the computational complexity is limited to a single integral compu-

tation for aN -dimensional PDF. Also as we show in the next section, theN -dimensional

Nakagami-m CDF can be obtained directly without additional integration operations on the

N -dimensional PDF.

We obtain a single integral representation of the multivariate Nakagami-m CDF using a

similar approach by integrating (2.36) with respect tow1, w2, · · · , wN

FW(w1, · · · , wN ) =
∫

Y0l

∫

X0l

FW|X0,Y0
(w1, · · · , wN |X0l, Y0l)fX0,Y0

(X0l, Y0l) dX0ldY0l

l = 1, · · · ,m. (2.46)

Sincew1, · · · , wN conditioned onX0 andY0 are independent, the joint conditional CDF of

w1, · · · , wN can be written as

FW|X0,Y0
(w1, · · · , wN |X0l, Y0l) =

N∏

k=1

F√
Rk |X0,Y0

(wk|X0l, Y0l), k = 1, · · · , N

(2.47)

whereF√
Rk|X0,Y0

(wk|X0l, Y0l), k = 1, · · · , N is given by [43]

F√
Rk|X0,Y0

(wk|X0l, Y0l) =

[

1 − Qm

(
Sk

Ωk
,
wk

Ωk

)]

(2.48)

andQm(a, b) is themth order generalized MarcumQ-function [43], which is available in

common mathematical software packages such as MATLAB.Sk andΩk are as defined in

Section (2.3.3).

Following the same methodology as in (2.39) and (2.43), we obtain the single integral

representation of the multivariate Nakagami CDF, namely

FW(w1, · · · , wN ) =

∫ ∞

0

tm−1

Γ(m)
exp(−t)

N∏

k=1



1 − Qm





√
t
√

σ2
kλ

2
k

Ωk
,
wk

Ωk







 dt. (2.49)
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Eq. (2.49) is a new representation for the CDF of a class of multivariate Nakagami-m

distributions with identical and integer order fading severity parameters among the corre-

lated RVs. Only a single integral computation is required toevaluate theN -dimensional

Nakagami-m CDF with the correlation structure (2.6) among the corresponding complex

Gaussian components. No multiple nested infinite summations are required for computa-

tion of the multivariate Nakagami-m CDF form given in (2.49). To the best of our knowl-

edge, this single integral representation of the multivariate CDF is new. In [12], the CDF of

the output SNR of a selection combiner was obtained for equally correlated Nakagami-m

fading channels. Also reference [40] gives the output SNR CDF for aN -branch selection

combiner operating in generalized correlated Nakagami-m fading, but the analysis is lim-

ited to positive values ofλk. The results in this chapter are more general than the cases

considered in [12] and [40]. We are unaware of any other studywhich provides simple

forms for the multivariate Nakagami-m CDF with integer order fading severity parameter

m. If we let σ1 = σ2 = σ, we get the case where the correlated Nakagami-m RVs are

identically distributed.

2.4 Applications to Performance Analysis of Selection Diversity
Combining

Here we use our new representations of multivariate Rayleigh, Rician and Nakagami-m

distributions to analyze the performance ofN -branch selection diversity combining (SC) in

generalized correlated Rayleigh, Rician and Nakagami-m fading channels.

In SC, the combiner selects the branch with the largest instantaneous SNR. Then, the

output SNR of the selection combiner is [47]

γSC = max(γ1, γ2, · · · , γN ). (2.50)

The instantaneous SNR of thekth branch can be given as

γk =
|Gk|2Es

N0
(2.51)

whereEs is the transmitted symbol energy andN0 is the additive white Gaussian noise

(AWGN) power spectral density (PSD) at each branch. We assume identically distributed

correlated fadings on the branches. Then, the average fadedSNR,γ̄k, is given by

γ̄k = γ̄ =
E[|Gk|2]Es

N0
. (2.52)
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We denote
Es

N0
by Γ, thenγ̄ equalsΓ for the Rayleigh fading model assumed in (2.1). For

the Rician fading case, the average SNR per branch is not equal across the branches. This

is due to the correlation model (2.3) used in the analysis. Then γ̄k for a Rician branch is

equal to(1 + Kk)Γ.

2.4.1 Rayleigh fading

The CDF of the output SNR of the selection combiner for Rayleigh fading can be obtained

as [47]

FγSC
(y) = Pr(γ1 < y, γ2 < y, · · · , γN < y)

=

∫ ∞

0
exp(−t)

N∏

k=1

[

1 − Q

(√

tλ2
k

σ2
k

,

√
y

Γσ2
k

)]

dt. (2.53)

We can calculate the outage probability ofN -branch selection diversity in generalized cor-

related Rayleigh fading by replacingy by γth , the outage threshold SNR of the system.

One has

Proutage = Pr

(

|G1| <

√
γth

Γ
, |G2| <

√
γth

Γ
, · · · , |GN | <

√
γth

Γ

)

=

∫ ∞

0
exp(−t)

N∏

k=1

[

1 − Q

(√

tλ2
k

σ2
k

,

√
γth

Γσ2
k

)]

dt. (2.54)

2.4.2 Rician fading

The CDF of the output SNR of the selection combiner for Ricianfading can be found

similarly as

FγSC
(y) = Pr

(

|G1| <

√
y

Γ
, |G2| <

√
y

Γ
, · · · , |GN | <

√
y

Γ

)

=

∫ ∞

0
exp(−t) exp(−(m2

1 + m2
2))I0

(

2
√

t
√

m2
1 + m2

2

)

×
N∏

k=1

[

1 − Q

(√

tλ2
k

σ2
k

,

√
y

Γσ2
k

)]

dt. (2.55)

Then we can similarly calculate the outage probability ofN -branch selection combining

in generalized correlated Rician fading by replacingy by γth, the outage threshold SNR of
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the system, giving

Proutage = Pr

(

|G1| <

√
γth

Γ
, |G2| <

√
γth

Γ
, · · · , |GN | <

√
γth

Γ

)

=

∫ ∞

0
exp(−t) exp(−(m2

1 + m2
2))I0

(

2
√

t
√

m2
1 + m2

2

)

×
N∏

k=1

[

1 − Q

(√

tλ2
k

σ2
k

,

√
γth

Γσ2
k

)]

dt. (2.56)

In [12], N -branch selection diversity combining was analyzed for themore restrictive

case of equicorrelated Rayleigh and Rician fading using a single integral representation

of the multivariate CDF, while in [40], a similar result for correlated Rayleigh fading was

obtained, but which admits only positive values ofλk. As an additional minor point, we

are not aware of any literature dealing withN -branch selection combining in correlated

Rician fading channels with a generalized correlation model which admits negative as well

as positive correlations among the underlying complex Gaussian RVs. Examples of wireless

channels with negative correlation can be found in [48].

2.4.3 Nakagami-m fading

The CDF of the output SNR of the selection combiner can be obtained as [47]

FγSC
(y) = Pr(γ1 < y, γ2 < y, · · · , γN < y)

= Pr(R1 <
y

Γ
, R2 <

y

Γ
, · · · , RN <

y

Γ
)

= Pr

(
√

R1 <

√
y

Γ
,
√

R2 <

√
y

Γ
, · · · ,

√

RN <

√
y

Γ

)

=

∫ ∞

t=0

tm−1

Γ(m)
exp(−t)

N∏

k=1



1 − Qm





√
t
√

σ2
kλ

2
k

Ωk
,

√
y

ΓΩ2
k







 dt. (2.57)

The outage probability ofN -branch selection diversity operating in correlated Nakagami-

mfading can now be calculated by substitutingγth , the outage threshold SNR of the system,

in (2.57). One has

Proutage

= Pr

(
√

R1 <

√
γth

Γ
,
√

R2 <

√
γth

Γ
, · · · ,

√

RN <

√
γth

Γ

)

=

∫ ∞

t=0

tm−1

Γ(m)
exp(−t)

N∏

k=1

[

1 − Qm

(√

tσ2
kλ

2
k

Ω2
k

,

√
γth

ΓΩ2
k

)]

dt

(2.58)

as the final solution.
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Figure 2.1.The outage probability in Rayleigh fading for N=3, 4 and 5 branches.

2.5 Numerical Results and Discussion

In this section, we present some numerical examples and simulation results for the outage

probability of selection diversity combining operating incorrelated Rayleigh, Rician and

Nakagami-m fading. We use−→ρ = [λ1, λ2, · · · , λN ] to denote the set ofλk values used in

the theoretical and simulation results.

Fig.2.1 shows the outage performance ofN -branch selection combining in correlated

Rayleigh fading forN = 3, 4 and5. For N = 3, we have used−→ρ = [0.8,−0.4, 0.7],

for N = 4, −→ρ = [0.8,−0.4, 0.7,−0.6], and−→ρ = [0.8,−0.4, 0.7,−0.6, 0.5] for N = 5.

The normalized thresholdγ∗is calculated asγth/Γ. One can see that the theoretical results

are in excellent agreement with simulation results. As in the case with independent fading,

the outage performance improves with an increasing number of branches but the marginal

benefit diminishes with an increasing number of branches.

Fig. 2.2 shows the outage performance ofN -branch selection combining in correlated

Rician fading forN = 3, 4 and5. We use the same respective sets of−→ρ as for Rayleigh

fading for N = 3, 4 and5, and we setm1,m2 = 2 in our theoretical computations and

simulations. The normalized thresholdγ∗is calculated asγth/Γ. Note that in the Rician

28



−10 −5 0 5 10 15
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N=3

N=4

N=5

O
ut

ag
e

pr
ob

ab
ili

ty

Normalized threshold dB

Figure 2.2.The outage probability in Rician fading for N=3, 4 and 5 branches.
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Figure 2.3. The effect of correlation on the outage probability for 4-branch selection combining in
correlated Rayleigh fading.
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Figure 2.4. The outage probability forN -branch selection combining in correlated Nakagami-m
fading for N=3, 4 and 5 with m=2.
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Figure 2.6.The outage probability for 3-branch selection diversity incorrelated Nakagami-mfading
for m = 2, 3 and 4.

case, the branch fadings are not identically distributed. One can see the excellent agreement

between the theoretical results and simulation results in all cases.

Fig. 2.3 shows the effect of the values ofλk on the outage performance in correlated

Rayleigh fading. We have used sets ofλk with values ranging from low to high. Since

correlation betweenGk andGj is given asλkλj , by changing the values ofλk, we change

the magnitude of the correlation between theGks. We observe that the outage performance

deteriorates as the magnitudes of theλk values increase, as expected.

Note that we have used both negative and positive values of cross-correlations between

theGks in our examples. The results obtained with the new PDF and CDF representations

derived in this chapter are more general than the results in [12] and [40], which do not allow

negative values of correlation in the underlying Gaussian RVs.

Fig. 2.4 shows the outage probability ofN -branch selection diversity in correlated

Nakagami-m fading forN=3, 4 and 5. Theλk values used in theoretical computations and

simulation are denoted asρ = [λ1, λ2, · · · , λN ]. We have assumedm = 3 for the results

in Fig. 2.4. We have usedρ = [0.8,−0.86, 0.88] for N = 3, ρ = [0.8,−0.86, 0.88, 0.9]

for N = 4 andρ = [0.8,−0.86, 0.88, 0.9, 0.92] for N = 5 in the theoretical calculations
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and simulations. For simplicity, we usedσk = σ = 1, k = 1, · · · , N in our results. The

normalized thresholdγ∗ is calculated asγth/Γ.

Fig. 2.5 shows the effect of the magnitude of theλk values on the outage probability of

3-branch selection combining operating in generalized correlated Nakagami-m fading. We

usedm = 2 in our simulations and theoretical calculations. The powercorrelation between

Rk andRj is given byλ2
kλ

2
j . Therefore by increasing values ofλk, we increase the power

correlation across branches. We can observe that the outageperformance deteriorates as the

magnitudes of theλk values increase.

Fig. 2.6 shows the outage probability of3-branch selection diversity operating in gen-

eralized correlated Nakagami-m fading for different values of fading severity parameterm.

We usedλk valuesρ = [0.8,−0.86, 0.88] for the results in Fig. 2.6. The outage perfor-

mance improves as the fading severity parameter value increases from 2 to 4. One can

see the excellent agreement between the theoretical and simulation results in all the cases

considered.

2.6 Summary

In this chapter, we presented novel single integral representations for the PDF and the CDF

of a class of multivariate Rayleigh, Rician and Nakagami-mdistributions with a generalized

correlation structure. An important feature of this solutions is that the numerical evaluation

complexity is limited to a single integral computation for an arbitrary number of correlated

RVs. Another benefit of the new solution is that the CDF is computed directly, and with a

single integration, not requiring multiple (N for N -dimensional distributions) integrations

to calculate the CDF from the PDF. Also we used the new forms ofthe CDF to evaluate

the outage probability ofN -branch selection combining in correlated Rayleigh, Rician and

Nakagami-m fadings. Simulation results were used to verify the accuracy of the theoretical

results.
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Chapter 3

New Representations for the
Multivariate Non-Central
Chi-Square Distribution With
Constant Correlation

3.1 Introduction

In this chapter,1 motivated by the limited availability of mathematical representations for

the multivariate non-centralχ2 distributions, we derive new single integral representations

for the PDF and CDF of the multivariate non-centralχ2 distribution when the underlying

Gaussian RVs follow the equal correlation model. The advantage of the new representation

is that theN -dimensional distribution can be computed by evaluating a single integral. The

new expressions for the PDF and CDF are given in-terms of wellknown mathematical

functions which are readily available in common mathematical software packages such as

MATLAB. The basic idea for the methodology used in this studyis found in [41].

The remainder of this chapter is organized as follows. In Section 3.2, we present the

model used to generate correlated RVs using a special linearcombination of independent

Gaussian RVs. Detailed derivation of the multivariate non-centralχ2 PDF and CDF is

presented in Section 3.3. Section 3.4 presents an application of the new CDF representation

to a multiple antenna system with receiver antenna selection operating in correlated Rician

fading channels. Some numerical examples and simulation results are presented in Section

3.5.
1A version of this chapter has been submitted to theIEEE Transactions on Communications.
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3.2 Representation of Equicorrelated RVs

We use uppercase bold letters to denote matrices and lowercase bold letters for vectors.

We use(·)T and (·)H to denote the transpose and the Hermitian transpose of a matrix,

respectively.

Using the method described in [41, eq.(8.1.6)] we define a Gaussian RV as

Gkl = (
√

1 − λ2Xkl + λX0l) + m0l k = 1, · · · , N, l = 1, · · · ,m (3.1)

whereλ ∈ (−1, 1) \ {0} andXkl(k = 0, 1, · · · , N l = 1, · · · ,m) are independent and

N (0, 1
2). Then for anyk, j ∈ {1, · · · , N}, l, n ∈ {1, · · · ,m}, E[XklXjn] = δkjδln, where

δkk = 1 andδkj = 0 for k 6= j. The cross-correlation coefficient between anyGkl andGjn

(k 6= j) is given by

ρkl,jn =
E[GklG

∗
jn] − E[Gkl]E[G∗

jn]
√

Var[Gkl] Var[Gjn]

=







λ2 (k 6= j and l = n)

0 (l 6= n).
(3.2)

DenoteRk as the summation of squared values ofGkl for l = 1, · · · ,m, then

Rk =

m∑

l=1

G2
kl. (3.3)

Note thatRk(k = 1, · · · , N) is a summation of squares ofm independent Gaussian RVs

with non-zero means and identical variances. Then it is evident thatRk(k = 1, · · · , N)

is a set of correlated non-centralχ2 distributed RVs withm degrees of freedom and non-

centrality parameterξ, whereξ is equal to
∑m

l=1 m2
0l. The component Gaussian RVs follow

the equal correlation model.

3.3 Derivation of PDF and CDF of Multivariate Non-Central χ
2

Distribution

In this section, we present the derivation of the PDF and CDF of the multivariate non-central

χ2 distribution with equal correlation among the component Gaussian RVs. We introduce

a new RV,U0l = X0l + m0l

λ . Define another new RVT such that

T =
m∑

l=1

U2
0l. (3.4)
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We identify thatT is non-centralχ2 distributed withm degrees of freedom and non-

centrality parameterS2 =
∑m

l=1

(m0l

λ

)2
. The PDF ofT is given by [43]

fT (t) =

(
t

S2

)m−2
4

exp(−(S2 + t))Im
2
−1

(

2S
√

t
)

. (3.5)

Now assume the values of RVsU0l are fixed atu0l for l = 1, · · · ,m. Then the value

of T also becomes fixed att. Now we consider the conditional RVsGkls. Note that the

RVs Gkls conditioned on RVsU0ls have equal variances(1 − λ2)/2 and meansλu0l. We

identify that the RVsRks conditioned onU0l are also non-centralχ2 distributed withm

degrees of freedom and non-centrality parameterC2 = λ2
∑m

l=1 u2
0l = λ2t. We can write

the conditional PDF ofRk as [43]

fRk|U0
(rk|U01, · · · , U0m) =

1

2Ω2
k

( rk

λ2t

)m−2
4

exp

(

−(λ2t + rk)

2Ω2
k

)

Im
2
−1

(

√
rk

√
λ2t

Ω2
k

)

(3.6)

whereΩ2
k = (1 − λ2)/2 andU0 = [U01, · · · , U0m].

One can compute the conditional cross-correlation coefficient betweenGkl and Gjn

using

ρc
kl,jn =

E[GklGjn|X0, Y0] − E[Gkl|X0, Y0]E[Gjn|X0, Y0]
√

E[(Gkl − E[Gkl])2|X0, Y0] E[(Gjn − E[Gjn])2|X0, Y0]
= 0. (3.7)

TheGkls are conditionally uncorrelated. Since they are jointly Gaussian distributed, they

are conditionally independent. Since the componentsGkl are independent once conditioned

on U0l, the resultingRk ’s become conditionally independent fork = 1, · · · , N . Then the

conditional joint PDF of the resultingRk ’s can be written as a product of the individual

PDFs,

fR|T (r1, r2, · · · , rN |t) =

N∏

k=1

1

2Ω2
k

( rk

λ2t

)m−2
4

exp

(

−λ2t + rk

2Ω2
k

)

Im
2
−1

(

√
rk

√
λ2t

Ω2
k

)

,

(3.8)

whereR = [R1, · · · , RN ].

From the basic laws of probability we have [44]

fR(r1, r2, r3, · · · , rN ) =

∫ ∞

0
fR,T (r1, r2, · · · , rN , t) dt. (3.9)

Also we have

fR,T (r1, r2, · · · , rN , t) = fR|T (r1, r2, · · · , rN |t) fT (t). (3.10)
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Then we can write the unconditional joint PDF as

fR(r1, r2, r3, · · · , rN ) =

∫ ∞

0
fR|T (r1, r2, · · · , rN |t) fT (t) dt. (3.11)

Substituting (3.5) and (3.8) into eq. (3.11), we get

fR(r1, r2, · · · , rN ) =

∫ ∞

0

(
t

S2

)m−2
4

exp
(
−(S2 + t

)
)Im

2
−1 (2S

√
y)

N∏

k=1

1

2Ω2
k

( rk

λ2t

)m−2
4

exp

(

−λ2t + rk

2Ω2
k

)

Im
2
−1

(

√
rk

√
λ2t

Ω2
k

)

dt. (3.12)

Eq. (3.12) is the new single integral representation for themultivariate non-central

χ2 distribution with the component Gaussian RVs having an equal correlation structure.

The solution is given in terms of well known mathematical functions available in common

mathematical software packages such as MATLAB. No multiplenested infinite summations

are required for the computation of theN -dimensional PDF. The computational burden is

limited to a numerical evaluation of a single integral for aN -dimensional distribution.

The multivariate CDF for the non-central chi-square distribution can be obtained using

a similar methodology.

FR(r1, · · · , rN ) =
∫

· · ·
∫

FR|U0
(r1, · · · , rN |U01, · · · , U0m) fU0

(U01, · · · , U0m) dU01 · · · dU0m.

(3.13)

Since the RVsRks are conditionally independent onU01, · · · , U0m, the joint conditional

CDF can be written as the product of individual conditional CDFs as

FR|U0
(r1, r2, · · · , rN |U01, · · · , U0m) =

N∏

k=1

FRk |U0
(rk|U01, · · · , U0m) (3.14)

whereFRk |U0
(rk|U01, · · · , U0m) can be obtained using [43]

FRk |U0
(rk|U01, · · · , U0m) =

∞∑

j=0

e
∆2

2
(∆2/2)j

j!

γ(j + (m/2), (1 − λ2)rk/2)

Γ(j + (m/2))
(3.15)

where∆2 = 2C2

1−λ2 , j =
√
−1, γ(a, b) is the lower incomplete gamma function [49] and

Γ(·) is the gamma function [49] . For even values ofm, we can write this CDF in terms of

generalized Marcum-Q function [43], namely

FRk |U0
(rk|U01, · · · , U0m) = 1 − Qm/2

(
C

Ωk
,

√
rk

Ωk

)

. (3.16)
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Using the same approach used for the multivariate PDF derivation, we derive the single-

integral representation for the CDF of the multivariate non-central chi-square distribution

as

FR(r1, r2, · · · , rN ) =

∫ ∞

0

(
t

S2

)m−2
4

exp(−(S2 + t))Im
2
−1 (2S

√
y)

N∏

k=1

∞∑

j=0

e
∆2

2
(∆2/2)j

j!

γ(j + (m/2), (1 − λ2)rk/2)

Γ(j + (m/2))
dt (3.17)

and for the special case of evenm,

FR(r1, · · · , rN ) =
∫ ∞

0

(
t

S2

)m−2
4

exp(−(S2 + t))Im
2
−1 (2S

√
y)

N∏

k=1

[

1 − Qm
2

(√
λ2t

Ωk
,

√
rk

Ωk

)]

dt.

(3.18)

Eqs. (3.17) and (3.18) are the new single-integral representations for a multivariate non-

centralχ2 distribution with the component Gaussian RVs having the equal correlation struc-

ture (3.2). Contrary to the representations given in [13], [33], [34], the computational time

required does not grow exponentially with the dimensionality of the distribution. Note that

the infinite series in (3.17) can be computed easily with the function NCX2CDF available

in MATLAB.

Using the single integral representation of the multivariate PDF, the joint CHF ofR can

be found in single integral form as

ΨR(ω1, · · · , ωN ) =

∫ ∞

0

(
t

S2

)m−2
4

exp
(
−(S2 + t)

)
Im

2
−1

(

2S
√

t
)

N∏

k=0

1

(1 − jωkΩ
2
k)

1/2
exp

(
jωkS

2

1 − j2ωkΩ2
k

)

dt. (3.19)

3.4 Applications of the New Representations

The new representation derived for the CDF of the multivariate non-centralχ2 distribution

can be used to evaluate the outage probability of a single-user MIMO system with receiver

antenna selection. MIMO systems, which marked a remarkableadvancement in wireless

communication technologies, were introduced to provide both diversity and capacity en-

hancement in a wireless system, subject to a fundamental tradeoff. The implementation

of MIMO technology requires the availability of multiple radio frequency (RF) chains in
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wireless devices, leading to higher implementation complexity. In order to achieve the ben-

efit of having multiple antennas while maintaining a reasonable system complexity, several

antenna selection schemes have been proposed for MIMO systems [50], [51].

Independent fading channels are assumed in the majority of studies that deal with the

performance of antenna selection in MIMO systems. However,in practical scenarios, the

fading experienced by different antenna elements can be correlated. The performance of

MIMO systems with antenna selection, operating in Rayleighfading channels in the pres-

ence of fading correlation was investigated in [52], [53]. The exponential correlation model

is used in [52] for the case when the number of receiver antennas is greater than 3. In

this section, we examine the performance of a single-user MIMO system which employs

receiver antenna selection, operating in correlated Rician fading channels. We consider a

MIMO system model withNt transmitter antennas andNr receiver antennas. The received

signal after the matched filter can be written in vector form as

y = Hx + n (3.20)

wheren denotes theNr-dimensional noise vector and theNt-dimensional independent and

identically distributed (i.i.d.) signal vector is denotedasx. The Nr × Nt-dimensional

channel matrixH is modeled using

hij =
(√

1 − λ2Xij + λX0j + m1

)

+
√
−1
(√

1 − λ2Yij + λY0j + m2

)

(3.21)

wherehij denotes the channel coefficient from thejth transmit antenna to theith receive

antenna,λ ∈ (−1, 1)r{0} andXij , Yij(i = 0, 1, · · · , Nr j = 1, · · · , Nt) are independent

andN (0, 1
2). The RVhij is NC((m1 +

√
−1m2), 1), and|hij | is Rician distributed with

Rician factorK = (m2
1 + m2

2) and mean-square valueE[|hij |2] = 1 + K. The cross-

correlation coefficient between anyhkl andhjn (k 6= j) is given by

ρkl,jn =
E[hklh

∗
jn] − E[hkl]E[h∗

jn]
√

Var[hkl] Var[hjn]

=







λ2 (k 6= j and l = n)

0 (l 6= n).
(3.22)

Therefore, the model given in (3.21) can represent correlated Rician RVs with the underly-

ing complex Gaussian RVs following the equal correlation model (3.22).

The channel matrixH can be written as

H = [h1, · · · ,hNt
] = [p1, · · · ,pNr

]T (3.23)
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wherehi andpj denote the columns and rows ofH respectively. From the correlation

model (3.22) we identify that thehi (i = 1, · · · , Nt) are mutually independent and the

elements of eachhi are equally correlated. The equal correlation model [10], [12], [54] is

considered to be valid for a closely placed set of antennas and may be used as a worst case

performance benchmark [12]. We assume perfect channel state information (CSI) only at

the receiver. The transmitter uses equal power allocation among the all transmitter antennas.

The instantaneous capacity of the MIMO system can be obtained as

Cinst = log2 det

(

INr +
ρ

Nt
HHH

)

(3.24)

whereρ is the average unfaded SNR which is equal toE
σ2

n
, E = xHx andσ2

n is the variance

of the noise.

Similar to the system model used in [52], we assume that only one receiver antenna

which maximizes the instantaneous capacity is selected at the receiver. LetCi denote the

instantaneous capacity if theith receiver antenna is selected. Then the achievable capacity

with the antenna selection scheme can be written as [52]

Csys = max {C1, C2, · · · , CNr} (3.25)

whereCi is given as

Ci = log2

(

1 +
ρ

Nt
Wi

)

(3.26)

and whereWi = pH
i pi =

∑Nt

k=1 |hij |2. We identify thatWi is non-central chi-square

distributed with2Nt degrees of freedom. Note thatCi is maximized whenWi is maximized.

Then we defineZ = max {W1,W2, · · · ,WNr}, and the achievable capacity with antenna

selection can be written as

Csys = log2

(

1 +
ρ

Nt
Z

)

. (3.27)

3.4.1 Outage probability of the system

Following the same outage probability definition used in [52], we consider an outage event

to occur when the instantaneous capacity of the system fallsbelow a threshold information
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rate. Then the system outage probability can be calculated as

Proutage = Pr {Csys ≤ Cth}

= Pr

{

log2

(

1 +
ρ

Nt
Z

)

≤ Cth

}

= Pr

{

Z ≤ Nt(2
Cth − 1)

ρ

}

= FZ

(
Nt(2

Cth − 1)

ρ

)

. (3.28)

Also we have

FZ(z) = Pr {Z ≤ z}

= Pr {W1 ≤ z, · · · ,WNr ≤ z}

= F{W1,··· ,WNr} (z, · · · , z) . (3.29)

The single integral expression for outage can be given as

Pr {Csys ≤ Cth}

= F{W1,··· ,WNr}

(
Nt(2

Cth − 1)

ρ
, · · · ,

Nt(2
Cth − 1)

ρ

)

=

∫ ∞

0

t
2Nt−2

4

SNt−1
1

e−(t+S2
1 )INt−1(S1

√
t)




1 − QNt






√

2λ2t

1 − λ2
,

√
2Nt(2Cth−1)

ρ

1 − λ2











Nr

dt

(3.30)

whereS2
1 = Nt(m

2
1+m2

2)/λ
2. To the best of our knowledge, this result is novel. Compared

to previous results, we are unaware of outage analysis on MIMO receiver antenna selection

in correlated Rician fading that do not place restrictions on the dimensions of the system.

3.5 Numerical Results

In Fig. 3.1, the outage probability is plotted for the case whenNt = 3 andNr = 3, 4, 5

and6 with λ = 0.7, and Rice factorK = 3 dB. A threshold information rate of 2 bits/s/Hz

is assumed for the numerical and simulation results. It can be observed that the outage

probability improves with additional receiver antennas, as expected. However, the marginal

benefit with each additional receiver antenna is decreasing. For example, whenNr increases

from 3 to 4, we obtain a SNR gain of 1.2 dB while the gain is 0.6 dBfor the case whenNr

increase from 5 to 6. Fig. 3.1 also shows the outages for uncorrelated antennas. Observe
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that the marginal benefit of an additional receiver antenna is smaller in the correlated case.

Fig. 3.2 shows the outage probability variation with the number of transmitter antennas

whenNr = 3, λ = 0.7 and the Rice factorK = 3 dB. We observe SNR gains of 1.7

dB whenNt changes from 3 to 4 and 1.1 dB whenNt changes from 4 to 5 at an outage

probability of10−6. The new representation of the CDF permits accurate comparison of the

correlated system with the uncorrelated antenna system. The outage probability behavior

for the case ofNt, Nr = 3 with differentλ values is plotted in Fig. 3.3. The SNR loss due to

fading correlation can be clearly quantified from Fig. 3.3. Fig 3.4 shows the system outage

probability for differentK values. A SNR gain of 7.5 dB can be observed for the correlated

system whenK varies from 1 dB to 7 dB with outage probability of10−6, demonstrating

clearly the benefit of increased power in the line-of-sight component. The single integral

expressions are evaluated using numerical integration in MATLAB, while one may use

other numerical integration techniques to evaluate the single integral to a desired accuracy.

3.6 Summary

Novel single-integral representations were derived for the PDF and the CDF of a multi-

variate non-centralχ2 distribution with the underlying Gaussian RVs following the equal

correlation model. The solutions were given in terms of mathematical functions which

are available in common mathematical software packages such as MATLAB. An important

feature of these solutions is that the computational burdenremains at the level of a sin-

gle integral computation for aN -dimensional distribution. We used the new form of the

multivariate CDF to numerically evaluate the outage probability of MIMO systems with

receiver antenna selection, operating in equally correlated Rician fading channels. Finally

numerical examples and simulation results were given to demonstrate the accuracy of the

new solutions.
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Figure 3.1.The outage probability forNt = 3 with different values ofNr with λ = 0.7 andK = 3
dB.
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Figure 3.2.The outage probability forNr = 3 with different values ofNt with λ = 0.7 andK = 3
dB.
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Figure 3.3.The outage probability forNt = 3 andNr = 3 for different values ofλ.
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Chapter 4

New Representations for the
Multivariate Weibull Distribution
With Constant Correlation

4.1 Introduction

In this chapter1, we derive single integral representations for the PDF and CDF of the joint

multivariate Weibull distribution with constant correlation. We use the new representations

to evaluate the performance of a selection diversity systemoperating in equally correlated

Weibull fading channels. The advantage of this approach is that the complexity of the

numerical evaluation of the distributions does not grow exponentially with the number of

dimensions of the distribution, as is the case for some previously known results. The new

representations are given in terms of well known mathematical functions which can be eas-

ily and rapidly evaluated with commonly available mathematical software packages such

as MATLAB. Thus the performance measures of a selection diversity scheme can be com-

puted conveniently. References [12], [40] used this approach for performance evaluation

of correlated Rayleigh, Rician and Nakagami-m fading channels. The basic idea for this

approach is found in [41]. Furthermore, we show how to use ournew representations to ex-

ecute moment analysis of the output SNR of EGC diversity operating in equally correlated

Weibull fading channels. Previously, only the average output SNR (first moment) of EGC

in correlated Weibull fading has been studied [56].

The remainder of this chapter is organized as follows. In Section 4.2, we present the

model used to generate equally correlated Weibull RVs from independent Gaussian RVs.

1This chapter will be presented in part at the IEEE Global Communications Conference (GLOBECOM)
2010 [55].
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The approach used to derive the multivariate Weibull PDF andCDF is presented in Section

4.3. In Section 4.4, we use the new representation of multivariate Weibull CDF for per-

formance evaluation of a selection diversity system operating in correlated Weibull fading.

Section 4.5 presents the output SNR moment analysis of EGC inequally correlated Weibull

fading using the new multivariate PDF representation. Numerical examples and simulation

results are presented in Section 4.6.

4.2 Representation of Correlated Weibull RVs

The Weibull fading model has several definitions. In [6], it was shown that Weibull dis-

tributed RVs can be generated by a power transformation on Rayleigh distributed RVs.

Therefore we denote a set of correlated Rayleigh distributed RVs using the approach given

in [41, eq. (8.1.6)],

Gk = σk(
√

1 − λ2Xk + λX0) + iσk(
√

1 − λ2Yk + λY0) (4.1)

where i =
√
−1, λ ∈ (−1, 1) \ {0} and Xk, Yk(k = 0, · · · , L) are independent and

N (0, 1
2). Then for anyk, j ∈ {0, · · · , L}, E[XkYj] = 0, andE[XkXj ] = E[YkYj] =

1

2
δkj

whereδkk = 1 andδkj = 0 for k 6= j. ThenGk is a zero-mean complex Gaussian distri-

bution withNc(0, σ
2
k), and|Gk| is Rayleigh distributed with mean square valueE[|Gk|2] =

σ2
k. It can be shown that the correlation coefficient between anyGk, Gj for k 6= j is given

by

̺k,j =
E[GkG

∗
j ] − E[Gk]E[G∗

j ]
√

E[|Gk|2]E[|Gj |2]
= λ2. (4.2)

According to [6, eq. (1)], we denote the complex envelopeWk of the Weibull fading model

as

Wk = (σk(
√

1 − λ2Xk + λX0) + iσk(
√

1 − λ2Yk + λY0))
2
β (4.3)

where the Weibull power parameterβ > 0.

Let Zk = |Wk|. Then we can writeZk as a power transformation of a Rayleigh dis-

tributed RV|Gk|, namely

Zk = |Gk|
2
β (4.4)

where|Gk| is determined by (4.1) with the correlation structure (4.2). The corresponding

correlations between the resulting Weibull RVs can be calculated using [6, eq. (15)]. Using

this power transformation on correlated Rayleigh RVs, we can obtain correlated Weibull
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RVs with identical power parameterβ and themth moment given by

E[Zm
k ] = σ

2m/β
k Γ

(

1 +
m

β

)

. (4.5)

By changing the value ofβ, we can obtain RVs with other distributions such as the Rayleigh

and the negative exponential.

4.3 Derivation of the PDF and CDF of the Multivariate Weibull
Distribution

In this section, we present the derivation of the new representations for multivariate Weibull

distributions with constant correlation. As the first step,we condition the RVsGks on the

RVsX0 andY0. The PDF and CDF of|Gk| conditioned onX0 andY0, can be written as

f|Gk|(rk|X0, Y0) =
rk

Ω2
k

exp

(

−(r2
k + µ2

k)

2Ω2
k

)

I0

(
rkµk

Ω2
k

)

(4.6a)

F|Gk|(rk|X0, Y0) =

[

1 − Q

(
µk

Ωk
,

rk

Ωk

)]

(4.6b)

µ2
k = µ2

x + µ2
y (4.6c)

µx = σkλX0 (4.6d)

µy = σkλY0 (4.6e)

Ω2
k = σ2

k

(
1 − λ2

2

)

, k = 1, · · · , L. (4.6f)

One can compute the conditional cross-correlation coefficient betweenGk andGj using

̺c
kj =

E[GkG
∗
j |X0, Y0] − E[Gk|X0, Y0]E[G∗

j |X0, Y0]
√

E[|Gk − E[Gk]|2|X0, Y0] E[|Gj − E[Gj ]|2|X0, Y0]
= 0. (4.7)

The conditional PDF and CDF of theZk ’s can be written as

fZk
(zk|X0, Y0) =

βzβ−1
k

2Ω2
k

exp

(

−(zβ
k + µ2

k)

2Ω2
k

)

I0




z

β

2
k µk

Ω2
k



 (4.8a)

FZk
(zk|X0, Y0) =



1 − Q




µk

Ωk
,
z

β

2
k

Ωk







 . (4.8b)

The RVsGk ’s become uncorrelated when they are conditioned on the RVsX0 andY0. Since

theGks are jointly Gaussian distributed, they are conditionallyindependent. Therefore, the

resulting RVs, the|Gk|s are independent. Since we obtainZk using a power transformation
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on |Gk|, the resultingZks also become conditionally independent. Then the conditional

joint PDF of theZks can be written as the product of the individual conditionalPDFs,

namely

fZ|X0,Y0
(z1, z2, · · · , zL|X0, Y0) =

L∏

k=1

fZk
(zk|X0, Y0) (4.9)

whereZ = [Z1, Z2, · · · , ZL]. From the laws of probability, we know that [44]

fZ(z1, · · · , zL) =

∫

Y0

∫

X0

fZ,X0,Y0(z1, z2, · · · , zL,X0, Y0) dX0dY0. (4.10)

Also we have

fZ,X0,Y0(z1, · · · , zL,X0, Y0) = fZ|X0,Y0
(z1, z2, · · · , zL|X0, Y0) fX0,Y0(X0, Y0). (4.11)

Then we can write the unconditional joint PDF as

fZ(z1, · · · , zL) =
∫

Y0

∫

X0

fZ|X0,Y0
(z1, z2, · · · , zL|X0, Y0) fX0,Y0(X0, Y0) dX0dY0. (4.12)

SinceX0, Y0 are independent andN (0, 1
2), the joint PDF is given by

fX0,Y0(X0, Y0) =
1

π
exp(−(X2

0 + Y 2
0 )). (4.13)

Then we can write the joint unconditional PDF of the correlated Weibull RVs as

fZ(z1, · · · , zL) =
∫

Y0

∫

X0

L∏

k=1

fZk|X0,Y0
(zk|X0, Y0)

1

π
exp(−(X2

0 + Y 2
0 )) dX0dY0. (4.14)

Substituting (4.8) in (4.14), and after some straightforward manipulations, we can simplify

the double integral in (4.14) to obtain a single integral representation for the PDF of the

multivariate Weibull distribution as

fZ(z1, · · · , zL) =

∫ ∞

t=0
exp(−t)

L∏

k=1

βzβ−1
k

2Ω2
k

exp

(

−zβ
k + σ2

kλ
2t

2Ω2
k

)

I0






z
β

2
k

√

tσ2
kλ

2

Ω2
k




 dt. (4.15)

Eq. (4.15) is the new single integral representation for thePDF of a Gaussian class mul-

tivariate Weibull distribution with constant correlation. The L-dimensional PDF can be
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computed by numerically evaluating the single integral representation. An interesting ob-

servation regarding this representation compared to previously available forms [6, eq. (29)],

is that the numerical implementation and evaluation complexity does not increase exponen-

tially with the number of dimensions in the distribution.

For the special case ofL = 2, eq. (4.15) can be solved in closed-form using [57, eq.

(3.15.17.1)] to obtain

fZ1,Z2(z1, z2) =

β1β2z
β1−1
1 zβ2−1

2

σ2
1σ

2
2(1 − λ4)

exp

[

− 1

1 − λ4

(

zβ1
1

σ2
1

+
zβ2
2

σ2
2

)]

I0

(

2
√

λ4z
β1/2
1 z

β2/2
2

σ1σ2(1 − λ4)

)

(4.16)

which was previously given in [6, eq. (11)].

In order to obtain a new representation for the multivariateWeibull CDF, we integrate

(4.12) with respect to variablesz1, z2, · · · , zL, and we get

FZ(z1, · · · , zL) =

∫

Y0

∫

X0

FZ|X0,Y0
(z1, z2, · · · , zL|X0, Y0) fX0,Y0(X0, Y0) dX0dY0

(4.17)

whereFZ|X0,Y0
(z1, z2, · · · , zL|X0, Y0) is given by

FZ|X0,Y0
(z1, z2, · · · , zL|X0, Y0) =

L∏

k=1

FZk|X0,Y0
(zk|X0, Y0) (4.18)

and whereFZk|X0,Y0
(zk|X0, Y0) is defined in (4.8).

Substituting (4.8) and (4.13) in (4.17), we get

FZ(z1, · · · , zL) =

∫ ∫ L∏

k=1



1 − Q




µk

Ωk
,
z

β

2
k

Ωk








1

π
exp(−(X2

0 +Y 2
0 ))dX0dY0. (4.19)

Using the same manipulations we used for the multivariate PDF derivation, we get the

single integral form for the multivariate Weibull CDF with equally correlated RVs as

FZ(z1, · · · , zL) =

∫ ∞

t=0
e−t

L∏

k=1



1 − Q





√
t
√

σ2
kλ

2

Ωk
,
z

β

2
k

Ωk







 dt. (4.20)

Eq. (4.20) is the new representation for the CDF of a Gaussianclass multivariate Weibull

distribution with constant correlation. TheL-dimensional CDF can be computed by nu-

merically evaluating the single integral representation.Note that once again the numerical

implementation and evaluation complexity does not grow exponentially with the number of

dimensions in the distribution.
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Also note that if we consider that only the underlying Rayleigh (or complex Gaussian)

RVs are equally correlated (but not the resulting Weibull RVs as in [36]), we can modify our

new representations to include non-identical values of power parameterβk > 0 by replacing

β with βk, k = 1, · · · , L. Therefore, the results presented in this chapter are more general

than the results given in [6].

4.4 Performance of a L-branch Selection Diversity Combiner
Operating in Equally Correlated Weibull Fading Channels

In this section, we use the new representations of the multivariate Weibull CDF for perfor-

mance evaluation of a selection diversity combiner operating in equally correlated Weibull

fading channels. We show that the outage probability for aL-branch selection combiner can

be obtained in single integral form using the new representation of the multivariate Weibull

CDF. Also, the average symbol error rate (SER) of some coherent and non-coherent modu-

lation schemes can be evaluated in double integral form.

4.4.1 CDF of the output SNR

The complex baseband representation of the received signalat thekth branch is given by

rk = zkx + nk (4.21)

wherex is the data symbol with energyEs, zk, k = 1, · · · ,L are the channel gains modeled

as Weibull RVs andnk, k = 1, · · · ,L are zero-mean Gaussian noise samples with variance

N0, assumed to be equal across all the branches. The instantaneous SNR of thekth branch

can be given as

γk =
z2
kEs

N0
. (4.22)

The average faded SNR,γ̄k, is given by

γ̄k =
E[z2

k]Es

N0
. (4.23)

We denote
Es

N0
by E. Then, γ̄k = Eσ

4/βk

k Γ

(

1 +
2

βk

)

. Using the interesting property

that thenth power of a Weibull distributed RV with parameters(β, σ2) is another Weibull

RV with parameters(β/n, σ2) [6], the joint CDF of the branch SNRs can be obtained by

replacingβk with βk/2 andσ2
k with (akγ̄k)

βk/2, whereak = 1/Γ(1 + 2
βk

).
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The joint CDF of the branch SNRs is given by

Fγ(γ1, · · · , γL) =

∫ ∞

t=0
e−t

L∏

k=1







1 − Q







√

2tλ2

1 − λ2
,

√
√
√
√ 2Υ

βk
2

k

1 − λ2













dt (4.24)

whereΥk =

(
γk

akγ̄k

)

andγ = [γ1, γ2, · · · , γL]. The SC selects the branch with the largest

instantaneous SNR. The output SNR of SC is given by

γSC = max(γ1, γ2, · · · , γL). (4.25)

The CDF ofγSC can be expressed as

FγSC
(y) = Pr(γ1 < y, γ2 < y, · · · , γL < y)

= Fγ(y, y, · · · , y). (4.26)

Then one has

FγSC
(y) =

∫ ∞

0
e−t

L∏

k=1






1 − Q







√

2tλ2

1 − λ2
,

√
√
√
√ 2Υ

βk
2

k

1 − λ2













dt. (4.27)

For the case of identically distributed fading withσk = σ, andβk = β, k = 1, · · · , L, the

CDF can be written as

FγSC
(y) =

∫ ∞

0
e−t



1 − Q





√

2tλ2

1 − λ2
,

√

2Υ
β

2

1 − λ2









L

dt. (4.28)

4.4.2 PDF of output SNR

A single integral expression for the PDF of the output SNR of the selection combiner can

be obtained by differentiating eqs. (4.27) and (4.28), namely

fγSC
(y) =

∫ ∞

t=0
e−t

L∑

k=1

βky
βk/2−1

2(aγ̄k)βk/2
exp



−
( y

akγ̄k
)

βk
2

(1 − λ2)



 I0




2

√
√
√
√ tλ2

1 − λ2

(
y

akγ̄k

)βk
2






∏

j 6=k




1 − Q






√
2tλ2,

√
√
√
√ 2

1 − λ2

(
y

aj γ̄j

)βj
2









 dt (4.29)
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and

fγSC
(y) =

∫ ∞

t=0
e−t Lβyβ/2−1

2(aγ̄)β/2




1 − Q






√
2tλ2,

√
√
√
√ 2

1 − λ2

(
y

aγ̄

)β

2











L−1

exp



−
( y

aγ̄ )
β
2

(1 − λ2)



 I0




2

√
√
√
√ tλ2

1 − λ2

(
y

aγ̄

)β
2




 dt (4.30)

for the identically distributed case.

The MGFs for each case can be obtained in double integral formby taking the Laplace

transform of the PDFs in (4.29), (4.30).

4.4.3 Performance measures for selection combining

The expressions we derived for the PDF, CDF and MGF of the output SNR can be used to

evaluate some performance measures of a selection diversity combiner operating in corre-

lated Weibull fading.

Average Symbol Error Rate

The average symbol error rate (SER) of some coherent and noncoherent modulation formats

can be evaluated by averaging the conditional error probability (CEP)P (e|γ) over the PDF

of the output SNR. Therefore, we can evaluate the average SERusing

P̄e =

∫ ∞

0
P (e|γ)fγSC

(γ)dγ. (4.31)

Alternatively, one can use the CDF approach which is given in[12, eq. (32)] to evaluate

error rates using the CDF of the output SNR. In both cases, theaverage SER for a large

family of modulations can be computed by numerically evaluating a double integral for an

arbitrary number of diversity branches. The expressions for the CEP of some coherent and

noncoherent modulation formats are given in [43].

Outage Proability

The outage probability of the system is found using

POutage = Pr(0 ≤ γSC ≤ γth) = FγSC
(γth) (4.32)

whereγth is the threshold SNR of the system. The system outage can be evaluated using a

single integral computation for an arbitrary number of diversity branches.
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Average SNR

Average SNR is another output quality measure of a wireless communication system. The

average output SNR for the selection combiner can be evaluated using

γ̄SC = E[γSC ]

= −dMγSC
(s)

ds

∣
∣
∣
s=0

=

∫ ∞

0

∫ ∞

0
e−t

L∑

k=1

βky
βk/2

2(aγ̄k)βk/2
exp



−
( y

akγ̄k
)

βk
2

(1 − λ2)



 I0




2

√
√
√
√ tλ2

1 − λ2

(
y

akγ̄k

)βk
2






∏

j 6=k




1 − Q






√
2tλ2,

√
√
√
√ 2

1 − λ2

(
y

aj γ̄j

)βj

2









 dtdy.

(4.33)

More generally, thenth moment of the SC output SNR can be found using

mn = −dnMγSC
(s)

dsn

∣
∣
∣
s=0

. (4.34)

4.5 Output SNR Moment Analysis of a L-branch Equal Gain
Combiner

The new representation derived for the multivariate Weibull PDF can be used to examine the

performance of an equal gain receiver operating in equally correlated Weibull fading chan-

nels. We mainly focus on deriving expressions for the moments of the EGC output SNR.

The output SNR moments can be used to gain insight into the system performance in cor-

related fading channels. Furthermore, they can be used to evaluate performance measures

such as average SER and outage probability using the standard approximation procedures

developed in previous studies [58]. Reference [58] analyzed the output SNR moments for

an equal gain receiver operating in equally correlated Rayleigh, Rician and Nakagami-m

fading channels.

We use the same signal model given in (4.21) for our analysis.In EGC, the received

signals are cophased and added to obtain the combiner output. The instantaneous SNR for

the EGC output can be written as [47]

γegc =
(z1 + z2 + · · · + zL)2Es

LN0
. (4.35)
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With the aid of the multinomial identity, the moments of the combiner output SNR can be

evaluated as [59]

mn = E[γn
egc] = E

[(
(z1 + z2 + · · · + zL)2Es

LN0

)n]

=
(2n)!En

s

(LN0)n

2n∑

n1,··· ,nL=0
n1+···+nL=2n

(

E[zn1
1 · · · znL

L ]
∏L

j=1 nj!

)

. (4.36)

In order to evaluate the moments of the combiner output SNR, we need to evaluate the joint

moments of channel gainsE(zn1
1 , · · · , znL

n ). The joint moments can be evaluated using the

new representation of the multivariate Weibull PDF obtained in (4.15) as,

E[zn1
1 , · · · , znL

n ] =

∫∫

· · ·
∫

︸ ︷︷ ︸

L−fold

(zn1
1 , · · · , znL

n )fZ(z1, z2, · · · , zL) dz1dz2 · · · dzL. (4.37)

Note that the L-fold integral in (4.37) is separable, and canbe written as a product, namely

E[zn1
1 , · · · , znL

n ] =

∫ ∞

0
exp(−t)

L∏

k=1

∫ ∞

0
znk

k

βzβ−1
k

2Ω2
k

exp

(

−zβ
k + σ2

kλ
2t

2Ω2
k

)

I0






z
β

2
k

√

tσ2
kλ

2

Ω2
k




 dzkdt.

(4.38)

We denote the integral inside the product asJ(k) such that

J(k) =

∫ ∞

0
znk

k

βzβ−1
k

2Ω2
k

exp

(

−zβ
k + σ2

kλ
2t

2Ω2
k

)

I0






z
β

2
k

√

tσ2
kλ

2

Ω2
k




 dzk. (4.39)

Using [60, eqs. (6.643.2) and (9.220.2)] , (4.39) can be solved in closed-form as

J(k) = Γ(1 +
nk

β
)(2Ω2)

nk
β 1F1

(

−nk

β
; 1;− λ2t

1 − λ2

)

(4.40)

where1F1(a; b; z) is the the confluent hypergeometric function given in [60, eq. (9.210.1)].

Now the joint moments can be written in single integral form as

E[zn1
1 , · · · , znL

n ] =

∫ ∞

0
exp(−t)

L∏

k=1

Γ(1 +
nk

β
)(2Ω2)

nk
β

1F1

(

−nk

β
; 1;− λ2t

1 − λ2

)

dt.

(4.41)

Then, the single integral representation for the EGC outputSNR can be expressed as

mn =
(2n)!En

s (2Ω2)
2n
β

(LN0)n

∑

n1,··· ,nL=0
n1+···+nL=2n

∫ ∞

0
exp(−t)

L∏

k=1

1F1

(

−nk

β
; 1;− λ2t

1 − λ2

)

A(k)dt

(4.42)
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whereA(k) =
Γ(1 + nk

β )

nk!
. The integral part of (4.42) can be identified as the Laplace trans-

form of the product ofL confluent hypergeometric functions where the Laplace transform

variables has the specific value of 1. Using the result [57, eq. (3.35.7.4)], the solution for

the integral can be found in terms of theLth-order Appell hypergeometric function [60, eq

(9.19)], namely

∫ ∞

0
exp(−t)

L∏

k=1

1F1

(

−nk

β
; 1;− λ2t

1 − λ2

)

=

FA

(

1;−n1

β
, · · · ,−nL

β
; 1, · · · , 1;x1, · · · , xL

)

(4.43)

wherexi = − λ2

1 − λ2
for i ∈ {1, · · · , L}. The region of convergence of the Appell hy-

pergeometric function in (4.43) is constrained by|x1| + |x2| + · · · + |xL| < 1, [61, eq.

xxxvii.10]. Therefore the convergence is limited to values ofλ2 ranging from
−1

L − 1
to

1

L + 1
, and does not cover the full range ofλ2. However a transformation operation on the

Appell hypergeometric function can be used to obtain a converging series for the hyperge-

ometric function. Similar to [58], we use the transformation given in [61, eq. xxxviii92n]

and obtain

FA

(

1;−n1

β
, · · · ,−nL

β
; 1, · · · , 1;x1, · · · , xL

)

=
1 − λ2

1 + λ2(L − 1)
FA (1; θ1, · · · , θL; 1, · · · , 1; y1, · · · , yL) (4.44a)

θi = 1 + −ni

β
, i ∈ {1, · · · , L} (4.44b)

yi =
λ2

1 + λ2(L − 1)
, i ∈ {1, · · · , L} . (4.44c)

Since |y1| + |y2| + · · · + |yL| =
Lλ2

Lλ2 + (1 − λ2)
< 1, the Appell hypergeometric

function in (4.44a) converges for the entire range ofλ2 such that0 < λ2 < 1. Therefore

the output SNR moments of EGC operating in equally correlated Weibull fading can be

evaluated using

mn =
(2n)!En

s (2Ω2)
2n
β

(LN0)n

×
∑

n1,··· ,nL=0
n1+···+nL=2n

1 − λ2

1 + λ2(L − 1)
FA (1; θ1, · · · , θL; 1, · · · , 1; y1, · · · , yL)

L∏

k=1

A(k). (4.45)

In the following discussion, we consider some special casesof (4.45).
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4.5.1 Average output SNR of the EGC

With the aid of [57, eq. (3.35.7.1)] and the relationship between the second order Appell

hypergeometric function and the Gauss hypergeometric function given in [62, eq. (C.4)],

the average output SNR for the EGC can be simplified as

γ̄egc =
γ̄

Γ
(

2
β + 1

)

[

(1 − λ2)
2
β

+1Γ

(
2

β
+ 1

)

2F1

(

1 +
2

β
, 1; 1;λ2

)

+ (L − 1)

(

Γ

(
1

β
+ 1

))2

2F1

(

− 1

β
,− 1

β
; 1;λ4

)]

.

(4.46)

For the special case of Rayleigh fading whereβ = 2, it can be shown that (4.46) simplifies

to the previously known result in [58, eq. (19)], namely

γ̄egc = γ̄

[

1 +
(L − 1)π

4
2F1

(

−1

2
,−1

2
; 1;λ4

)]

. (4.47)

For uncorrelated branches whereλ = 0, the average output SNR simplifies to

γ̄uncorrelated = γ̄








1 + (L − 1)

(

Γ

(
1

β
+ 1

))2

Γ
(

2
β + 1

)








. (4.48)

4.5.2 Second moment of EGC output SNR

The second moment of the EGC output SNR can be obtained as

m2 =
4!γ̄2

L2

[(
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1 + 4
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) 2F1
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(
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(
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)
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(

1 + 2
β

)

(1 + 2λ2)
FA

(

1; 1 +
1

β
, 1 +

1

β
, 1 +

2

β
; 1, 1, 1; θ1, θ2, θ3

)

+

(
L

4

)Γ4
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4
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(

1 + 2
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(

1; 1 +
1
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, · · · , 1 +

1

β
; 1, 1, 1, 1;α1 , α2, α3, α4
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(4.49a)
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θk = λ2/(1 + 2λ2), k ∈ {1, 2, 3} (4.49b)

αk = λ2/(1 + 3λ2), k ∈ {1, 2, 3, 4}. (4.49c)

For the special case of dual branch diversity, (4.49a) simplifies to

m2 = 3!γ̄2

[
1

4
2F1

(

− 2

β
,− 2

β
; 1;λ4
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+
Γ
(
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β
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Γ
(
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3Γ2
(
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) 2F1
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β
; 1;λ4
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+
Γ
(
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1+ 4

β

12Γ2
(

1 + 2
β

) 2F1

(

1 +
4

β
, 1; 1;λ2

)]
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(4.50)

4.5.3 Other moment based performance measures for EGC

Reference [58] presented an approach to compute the EGC output SNR CDF using the

output SNR moments. Further in [58], moments of the EGC output SNR were used to

evaluate the approximate average SER of EGC. The same approaches can be used for the

case of equally correlated Weibull fading channels.

Also, the output SNR moments can be used to compute other moment based perfor-

mance measures for the EGC such as central moments, kurtosisand amount of fading (AF),

using the standard methodologies.

4.6 Numerical Results and Discussion

In this section, we present some example results obtained bynumerically evaluating the

expressions presented in Section 4.4.3. For simplicity, weconsider the case when branch

fadings are equally correlated and identically distributed. Also it is assumed that the sym-

bols have unit power, i.eEs = 1 and the additive Gaussian noise in all the branches have

variance of unity, i.e. (N0 = 1) in numerical evaluations and simulation results. Fig. 4.1

shows the outage probability of the system for different values ofβ, when the power cor-

relation coefficientρ = ̺2 of the underlying Rayleigh RVs is equal to 0.4. We observe the

performance improvement with increasingβ values and diversity orderL. Fig. 4.2 shows

the outage probability for different values ofρ and diversity orderL, whenβ = 2.5. The

performance loss due to branch correlation and the possiblegains using additional antennas

can be quantified from the figures. For example, whenβ = 2.5 andρ = 0.4, a normalized

SNR gain of 1.6 dB can be obtained by increasing the number of receiver antennas to 5
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from 4, while the gain is 1.1 dB for an increase from 5 to 6. The normalized threshold

γ∗ is calculated asγth/γ̄. Fig. 4.3 shows the average BER of BPSK signaling for the se-

lection combiner operating in equally correlated Weibull fading atβ = 2.5. We observe

that the marginal SNR gain of an additional receiver antennadiminishes as the branch cor-

relation increases, as expected. Fig. 4.4 shows the normalized average output SNR for a

4-branch selection combiner. We observe the negative impact of branch correlation on the

output SNR. However, the average output SNR degrades with increasing fading parameter

β, which is similar to the results observed for uncorrelated branch SC in Weibull fading

channels [63].

Fig. 4.5 shows the effect of branch correlation on normalized average output SNR

γ̄egc/γ̄ for EGC in equally correlated Weibull fading. The average SNR increases as the

branch correlation increases, which is opposite behaviourto the behaviour we observed for

the SC case. An explanation for this phenomena was given in [56]. Also, it is interesting to

note that the average SNR for EGC improves with the fading severity parameterβ, while

we observed the opposite for the selection combiner. Fig. 4.6 shows the effects of branch

correlation and fading severity on the amount of fading for EGC. The AF improves with

increasing fading parameter and decreasing branch correlation.

4.7 Summary

New single integral representations for the PDF and CDF of the multivariate Weibull dis-

tribution with constant correlation were derived. The new results were expressed using

mathematical functions available in common mathematical software such as MATLAB.

The new representation for the multivariate CDF was used to evaluate performance mea-

sures for a selection combining diversity receiver operating in equally correlated Weibull

fading. New results for performance measures such as average SER, outage probability

and average SNR were evaluated using single or double integrals for an arbitrary diversity

order. Furthermore, the new multivariate PDF expression was used to evaluate the output

SNR moments of an EGC operating in equally correlated Weibull fading channels. The

output moments were expressed using single integrals or infinite series solutions. Numer-

ical results for the performance indicators were obtained and simulation results were used

to verify the accuracy of the theoretical analysis.
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Figure 4.1. The effect ofβ on the outage probability of the selection combiner for the case when
ρ = 0.4. The markers on the lines denote simulation results.
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Figure 4.2. The effect of power correlationρ on the outage probability of the selection combiner
for the case whenβ = 2.5. The markers on the lines denote simulation results.
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Figure 4.3. The effect of power correlationρ on the average BER of BPSK in equally correlated
Weibull fading.
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Figure 4.5.The average output SNR of EGC operating in equally correlated Weibull fading.
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Chapter 5

Simple SER Expressions for Dual
Branch MRC in Correlated
Nakagami-q Fading

5.1 Introduction

The Hoyt distribution [2] (also known as Nakagami-q [1]) is used to model wireless chan-

nels where the in-phase and quadrature signal components have zero means and arbi-

trary variances. Some results on performance evaluation ofwireless communication sys-

tems with diversity reception, operating in independent Hoyt fading channels are found

in [64], [65]. However, only a limited number of performanceresults are available for di-

versity in correlated Hoyt fading channels.

In reference [66], the outage probability of a dual MRC system operating in correlated

Hoyt fading was studied for the general case of non-identically distributed branches. The

results are given as a double integral of an infinite summation. The authors of [67] derived

an infinite series solution for the average BER of binary coherent and noncoherent mod-

ulations with dual MRC in correlated Hoyt fading for the caseof identically distributed

branches. An infinite series solution for the outage probability of the system was also given

in [67].

In this chapter1, we present simple expressions for the SER of dual MRC in identi-

cally distributed correlated Hoyt fading channels. We use adecorrelation transformation,

which was used on correlated branches in [69] for Rayleigh and Rician fading channels,

to make the transformed branches independent of each other.Then we can easily com-

pute the SER of coherent and noncoherent modulations using the decorrelated branches.

1A version of this chapter has been accepted for publication in theIEEE Communications Letters[68].
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Other performance parameters such as the outage probability can also be evaluated using

methodologies developed for independent fading branches.

The remainder of this chapter is organized as follows. In Section 5.2, we present the

correlated Hoyt fading channel model and the decorrelationtransformation on the corre-

lated fading branches. New simple representations for average SER are given Section 5.3.

Section 5.4 presents some numerical and simulation results.

5.2 Channel Model and Decorrelation Transformation

Let r1 andr2 denote the complex baseband equivalent signal samples at the two branches.

We write

r1 = g1x + n1 (5.1)

r2 = g2x + n2 (5.2)

wherex is the data symbol with energyE, gi, i = 1, 2 are zero-mean complex Gaussian

channel gains andni, i = 1, 2 are zero-mean Gaussian noise samples with varianceN0.

The branch fadings are assumed to be identically distributed with average SNR,̄γ.

Assuming slow, flat fading channels, we model the channel gains using the technique

given in [41, eq. (8.1.6)] as

gk = (
√

1 − λ2Xk + λX0) + j(
√

1 − λ2Yk + λY0), k = 1, 2 (5.3)

wherej =
√
−1, λ ∈ (−1, 1), Xk(k = 0, 1, 2) are independent zero-mean Gaussian RVs

with varianceσ2
x/2 andYk(k = 0, 1, 2) are independent zero-mean Gaussian RVs with

varianceσ2
y/2. Thengk is a zero-mean complex Gaussian RV with real and imaginary parts

having unequal variances forσx 6= σy. Therefore|gk| is Hoyt distributed with mean-square

valueE[|gk|2] =
σ2

x+σ2
y

2 and Hoyt parameterq = σx

σy
, 0 < q ≤ 1. It can be shown that the

correlation coefficient betweeng1, g2 is given by

ρ =
E[g1g

∗
2 ] − E[g1]E[g∗2 ]

√

E[|g1|2]E[|g2|2]
= λ2. (5.4)

The power correlation of the two fading gains can be computedusing [70, eq. (11)].

Now we apply the decorrelation transformation used in [69] on r1 andr2 and obtain the

transformed branches as

w1 =
r1 + r2√

2
=

g1 + g2√
2

x +
n1 + n2√

2
= G1x + v1 (5.5)
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and

w2 =
r1 − r2√

2
=

g1 − g2√
2

x +
n1 − n2√

2
= G2x + v2. (5.6)

It can be easily shown thatG1 andG2 are uncorrelated, and since they are complex jointly

Gaussian RVs, they are independent. Similarly we can show that the additive noise terms

v1 andv2 are independent Gaussian RVs with varianceN0. Also we note that|G1| and

|G2| are Hoyt distributed with Hoyt parameterq and mean-square values
(1+λ2)(σ2

x+σ2
y)

2 and
(1−λ2)(σ2

x+σ2
y)

2 , respectively.

The output of the dual MRC receiver is computed as

yc = g∗1 × r1 + g∗2 × r2. (5.7)

Then the decision statistic is given by

zo = (|g1|2 + |g2|2)x + g∗1n1 + g∗2n2. (5.8)

We can easily show that an identical decision statistic can be achieved with the transformed

branches by computing

yd = G∗
1 × w1 + G∗

2 × w2. (5.9)

Therefore, the decorrelation does not alter the performance of the MRC receiver operating

in Hoyt channels. In [71], a similar result was proved for Rayleigh and Rician channels.

5.3 Simple Expressions for Average SER

Letγ1 andγ2 denote the instantaneous SNRs ofw1 andw2, respectively. The average SNRs

γ̄1 andγ̄2 are

γ̄1 =
E[|G1|2]E

N0
= (1 + λ2)γ̄ (5.10)

γ̄2 =
E[|G2|2]E

N0
= (1 − λ2)γ̄. (5.11)

Then the MGFMγi
(s) of γi, i = 1, 2 can be written as [3]

Mγi
(s) =

(

1 − 2sγ̄i +
(2sγ̄i)

2q2

(1 + q2)2

)− 1
2

. (5.12)

Since the SNRs of the decorrelated branches are independent, we obtain the MGF of the

output SNR for dual MRC in correlated Hoyt fading as

MγMRC
(s) = Mγ1(s).Mγ2(s) (5.13a)
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and

MγMRC
(s) =

(

1 − 2sγ̄1 +
(2sγ̄1)

2q2

(1 + q2)2

)− 1
2
(

1 − 2sγ̄2 +
(2sγ̄2)

2q2

(1 + q2)2

)− 1
2

. (5.13b)

Now we can easily compute some performance measures for dualMRC using standard

procedures available for independent non-identically distributed fading channels [3]. The

well known MGF based approach can be used to obtain simple expressions for average SER

of dual MRC in identically distributed correlated Hoyt fading for a large family of coherent

and noncoherent modulation schemes.

SER of M-AM

The average SER for M-ary amplitude modulation (M-AM) signals can be computed using

P̄s =
2(M − 1)

Mπ

∫ π/2

0
MγMRC

(

− gAM

sin2(φ)

)

dφ (5.14)

wheregAM = 3/(M2 − 1).

SER of M-PSK

The average SER for M-ary phase shift keying (M-PSK) signalscan be evaluated using

P̄s =
1

π

∫ (M−1)π
M

0
MγMRC

(

− gPSK

sin2(φ)

)

dφ (5.15)

wheregPSK is given bysin2(π/M).

SER of M-QAM

The average SER for square M-ary quadrature amplitude modulation (M-QAM) signals can

be calculated using

P̄s =
4

π

(

1 − 1√
M

)∫ π/2

0
MγMRC

(

− gQAM

sin2(φ)

)

dφ

− 4

π

(

1 − 1√
M

)2 ∫ π/4

0
MγMRC

(

− gQAM

sin2(φ)

)

dφ (5.16)

wheregQAM is equal to3/(2(M − 1)).
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SER of M-FSK

The MGF approach can be used to evaluate the average SER of M-ary frequency shift

keying (MFSK) as

P̄s =

M−1∑

n=1

(−1)n+1
(M−1

n

)

n + 1
MγMRC

(
n

n + 1

)

. (5.17)

BER of noncoherent BFSK

The average BER of noncoherent binary frequency shift keying (BFSK) and differential

BPSK can be calculated according to

P̄b = aMγMRC
(b) (5.18)

where (a, b) = (0.5, 0.5) for noncoherent BFSK and(a, b) = (0.5, 1) for differential

BPSK.

It is important to note that the new expressions for SER are given as finite range single

integrals of elementary mathematical functions. All the expressions can be easily evaluated

numerically using mathematical software packages such as MATLAB and MATHEMAT-

ICA. The time required to compute the new solutions is significantly lower than the time

required to compute the infinite summation solutions given in [67]. Also note that the use

of the decorrelation transformation enables the use of efficient numerical techniques [3, eq.

9.186] to compute the outage probability of the dual MRC receiver in correlated Hoyt fad-

ing.

5.4 Numerical Results and Discussion

In this section, we present some example results obtained bynumerically evaluating the

SER expressions presented in Section 5.3. Fig. 5.1 shows theaverage BER for coherent

BPSK with dual MRC in correlated Hoyt fading for different values ofρ andq. We can

clearly quantify the performance degradation with increasing correlation coefficient and

decreasingq values. Fig. 5.2 shows the average SER for 8-PSK signaling incorrelated

Hoyt fading. We observe an SNR loss of 1.5 dB whenρ changes from 0 to 0.7 withq = 0.5

and the loss is 1 dB whenq = 0.1. Also, the SNR losses for the case whenρ changes

from 0.7 to 0.9 can be quantified as 2 dB forq = 0.5 and 1.5 dB forq = 0.1. Fig. 5.3
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Figure 5.1. The average BER of coherent BPSK with Hoyt parameterq and correlation coefficient
ρ.

shows the average SER for 16-QAM signaling with dual MRC in correlated Hoyt fading.

The SNR losses observed in 16-QAM show similar behavior to those observed in 8-PSK.

In the figures, lines are used to denote the numerical values obtained from the theory. The

markers denote the corresponding SER result obtained from Monte-Carlo simulation, where

the MRC receiver does not employ decorrelation before decoding. We note the excellent

agreement of numerical results and simulation results in all the cases. This confirms that

the decorrelation does not alter the MRC performance and that the new SER results are

accurate.

5.5 Summary

It was shown that using a decorrelation transformation on the correlated branches, we can

obtain simple expressions for the average SER of several coherent and noncoherent signal-

ing formats with dual MRC in identically distributed correlated Hoyt fading. The expres-

sions were obtained as finite range single integrals of basicmathematical functions, which

can be easily and rapidly evaluated with common mathematical software. Simulation re-

sults were given to verify the accuracy of the analytical solutions proposed in this chapter.
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Figure 5.2. The average SER of 8-PSK with different values of Hoyt parameter q and correlation
coefficientρ.
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Figure 5.3.The average SER of 16-QAM with different values of Hoyt parameterq and correlation
coefficientρ.

67



Chapter 6

Conclusions and Future Research
Directions

In this chapter, we conclude this thesis while providing some insights into future research

directions based on the results of this thesis.

6.1 Conclusions

This thesis presented a framework to derive new mathematical representations for the mul-

tivariate PDF and CDF of some popular statistical distributions used in wireless communi-

cation theory. The constant correlation model and a generalized correlation structure was

used in our analysis.

• Chapter 2 presented new representations for multivariate PDF and CDF of Rayleigh,

Rician and Nakagami-m distributions with a generalized correlation structure. The

new representations were given as single integral solutions, which can be readily

evaluated with common mathematical software such as MATLAB. The new repre-

sentations were used to evaluate the performance of selection diversity combiners

operating in correlated Rayleigh, Rician and Nakagami-m fading channels.

• New representations for the multivariate non-centralχ2 distribution with constant

correlation were presented in Chapter 3. The new multivariate PDF and CDF ex-

pressions were given as single integral solutions, which can be easily and rapidly

evaluated with MATLAB. The new distribution representations were shown to be

useful in analyzing MIMO systems operating in correlated Rician fading channels.

• Chapter 4 presented new multivariate PDF and CDF expressions for the Weibull dis-

tribution with constant correlation. Similar to the results of Chapters 2 and 3, the new
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multivariate Weibull PDF and CDF were given as single integral solutions, which

can be easily evaluated with MATLAB. The new Weibull CDF expression was used

to analyze the performance of a selection diversity combiner operating in correlated

Weibull fading channels, while the new PDF expression was used to analyze the out-

put SNR moments of EGC operating in correlated Weibull fading channels.

• In Chapter 5, we presented a new technique to analyze performance of a dual MRC re-

ceiver operating in identically distributed Nakagami-q fading channels. It was shown

that by using a decorrelation transformation on the correlated diversity branches, they

can be made independent. Then we used the standard performance analysis method-

ologies available for independent fading channels to obtain new simple and rapidly

computable expressions for performance measures of the dual-branch MRC receiver

operating in Hoyt fading.

6.2 Future Research Directions

The following may be considered as possible future researchdirections based on this thesis.

• This foundation may be used as a starting point to derive new multivariate PDF and

CDF representations for several other interesting distributions such as the log-normal

distribution,κ − µ distribution and other general fading distributions.

• One can consider about methodologies which can be used to widen the number of

classes of correlation matrices which can be included in theframework presented in

Chapter 2.

• The framework presented in this thesis may be useful for study of relay networks

with nodes consisting of multiple antennas.

• Another possible research direction will be to consider theapplicability of the frame-

work proposed in this thesis for wireless communication systems with imperfect

channel state information.

• Furthermore, one can apply the multivariate distribution expressions introduced in

this thesis to several other areas other than wireless communication system perfor-

mance analysis. For an example, the Weibull distribution isused in other interesting

applications such as weather forecasting, reliability engineering and failure data anal-

ysis. The new representations of multivariate Weibull PDF and CDF may useful in
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the above mentioned areas. Also the non-central chi-squaredistribution is widely

used in other areas of statistics such as hypothesis testing. Therefore the derived new

representations may be used to develop new results.
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