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Abstract

Multivariate statistics play an important role in perfomsa analysis of wireless communi-
cation systems in correlated fading channels. This thesisepts a framework which can
be used to derive easily computable mathematical repiagsam for some multivariate sta-
tistical distributions, which are derivatives of the Gaasdistribution, and which have a
particular correlation structure. The new multivariatstidbution representations are given
as single integral solutions of familiar mathematical fiisres which can be evaluated using
common mathematical software packages. The new approadbecased to obtain single
integral representations for the multivariate probapiliensity function, cumulative distri-

bution function, and joint moments of some widely used stigtl distributions in wireless

communication theory, under an assumed correlation siteicT he remarkable advantage
of the new representation is that the computational buréemains at numerical evalua-
tion of a single integral, for a distribution with an arbityanumber of dimensions. The
new representations are used to evaluate the performardieeo$ity combining schemes
and multiple input multiple output systems, operating imrelated fading channels. The
new framework gives some insights into some long existingnggroblems in multivariate

statistical distributions.
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Chapter 1

Introduction

Over the last two decades, we experienced a rapid advantefriielecommunication tech-
nologies. Wireless communication technologies can beideresl as the main contributor
for this rapid growth. Wireless communication, which stdrtvith Marconi’s radio signals,
has now evolved into wide variety of sophisticated techgiels, and has taken over the role
played by wired networks in voice and data communicationsmBnd for both fixed and
mobile wireless services has grown exponentially over #ws few years and according to
recent surveys, there are more than four billion mobile le#® subscribers worldwide. The
popularity of mobile wireless communications was boostgthie invention of small hand-
held devices such as smart phones and palmtop computersvinitless communication
capabilities.

In the process of designing new wireless communicationegayst the designer must
make sure that the system is capable of functioning at aatdsitevel with a higher prob-
ability, under the impairments caused by the propagati@michl. Performance measures
such as average signal-to-noise ratio (SNR), averagerbit exte (BER), outage probabil-
ity and amount of fading (AF) are very popular quality indara of wireless communica-
tion systems. Therefore it is quite beneficial to have a sl understanding on how
the system performs with different configurations and défé channel conditions. The
impairments caused by the wireless propagation fall intersé categories. Two major ef-
fects can be identified as multipath fading and shadowinger@éother impairments such
as interference and jamming can also degrade the perfomadiwireless communication
systems.

Due to the importance of the role played by performance etia in the system de-
sign process, it has been a popular research topic for marefife decades. It is evident

from the large the number of research publications availall this topic. In this thesis,



we mainly focus on performance analysis of wireless compaiin systems, where the
impairments are caused by multipath fading. We provide sionpertant theoretical tools
which can greatly reduce the complexity of performancewatidn of wireless communi-
cation systems. In the remaining discussion of this chapteprovide a brief background

on the topics discussed in this thesis. From Chapter 2 orsyare present our results.

1.1 Multipath Fading

Signal (radiowave) propagation in a wireless medium is aplmaited process. A signal

propagating in a wireless medium may undergo several phenomsuch as scattering,
reflection, refraction, and diffraction. Therefore theaiged signal at the receiver may
consist of constructive and destructive combination oflcanly scattered, delayed and re-
flected versions of the transmitted signal. This may resutahdom fluctuations of the

received signal amplitude or power at the receiver. Thiseeptocess is referred to as mul-
tipath fading in wireless communications. Random varregiof received signal amplitude

and signal phase may result from multipath fading.

Depending on the type of signals used and the characterigtithe propagation chan-
nel, fading can be categorized into several forms. Theiosldietween symbol duration
and coherence time of the channel, defines two forms of fadiamely slow fading and
fast fading. Coherence time is defined as the time periodewvercan consider the fading
process is correlated. Slow fading occurs when the symbatidu is less than the channel
coherence time. And fast fading is vice versa. Similarlythaotwo forms of multipath
fading can be identified as flat fading and frequency seledtding. These two types are
defined based on the relation between channel coherencevioéiméind the transmitted
signal bandwidth. Coherence bandwidth is defined as theidrezy range over which the
fading process is correlated. If the transmitted signadbadth is much smaller than the
channel coherence bandwidth, the fading is considered ftaband otherwise it is fre-
guency selective.

In this thesis we consider the cases where the fading prasdssth slow and flat.
When the multipath fading process satisfies these propeitiess common to use statisti-
cal distributions to model the random nature of the recesigdal amplitude. The basic
and most widely used distributions include the Rayleighrithistion, Rician distribution,

Nakagamim distribution, Nakagamdt (Hoyt) distribution, and Weibull distribution.



1.1.1 Rayleigh fading

The Rayleigh distribution is often used to model the timeyway characteristics of the
received signal amplitude in a wireless channel where tisare direct line-of-sight (LOS)
path between the transmitter and the receiver. The protyathénsity function (PDF) of the
Rayleigh distribution is given by

Jote) = Sy - o ). ez (w.1)

202
where2s? is the mean square value of the received signal amplitude.
1.1.2 Rician fading

When a dominant signal component (eg: LOS component) iseptdéa addition to the
weaker multipath signals, the randomness of the receigedkamplitude is modeled using

the Rician distribution with the PDF given as

2 2
falz) = % exp <_m +2M ) Iy (%) , >0 1.2)

20 o

where Iy(-) is the modified Bessel function of first kind and zeroth ordew 1.2 is the
power of the dominant component. The mean-square valueeodigmal amplitude of a

Rician faded signal is given y? + 202.

1.1.3 Nakagamim fading

Nakagamim model, first proposed in [1] is a more versatile distributiosed to model
multipath fading in wireless channels. It has shown a bditdor empirical data than
Rayleigh and Rician distributions. The PDF of the Nakagamndiistribution is given by
2 m\™ 5. 1 ma?
falz) = W <§> 7™ exp (——) , x>0,m>0.5 1.3)
wherel'(+) is the Gamma function, ard is the mean square value of the amplitude. The
fading severity parameten is given byQ?/E[(a? — 02)], whereE|.] denotes the expec-
tation of a random variable. Fen = 1, the Nakagamin distribution simplifies to the
Rayleigh distribution andn = 0.5 represents the one-sided Gaussian distribution. As the

value of the parameter increases, the fading severity decreases.



1.1.4 Nakagamig fading

Signal envelopes which closely follow the NakagamiHoyt) distribution [1],[2] have
been observed in satellite links subject to strong scititilh [3]. The PDF of a Nakagami-
g distributed random variable (RV) can be written as

2 2)2,.2 — gh)g2
falz) = (1275) exp <—%> I (%) , x>0 (1.4)

wheregq is the Hoyt parameter which ranges from 0 to 1 &he- E[a?]. Wheng = 1, the
Hoyt distribution simplifies to the Rayleigh distribution.

1.1.5 Weibull fading

The Weibull distribution was first introduced for the purpad estimating the lifetime of
machinery. It has several other applications such as ijabngineering, failure data
analysis and weather forecasting. Several studies havensttiat the Weibull distribution
seems to be a good fit for experimentally measured fadingnghsiin both indoor and
outdoor environments [4], [5]. The PDF of the Weibull distriion can be written as [6]

falz) = gwﬁ_l exp (—%ﬁ) , >0,8>0 (1.5)

whereg is the Weibull fading parameter, which determines the s$gvef fading, andy is
a positive scale factor which is related to momenta stich thaty = E[a”].

Some recent studies [7], [8] have developed statisticatiligions with more degrees
of freedom to model the multipath fading process, hamelyitheu distribution, x — p dis-
tribution, andn — p distribution. The basic fading distributions introducdzbee represent
some special cases of these general fading distributiore @i [7], [8]. Composite fad-
ing models have been introduced that can model the combiifectseof multipath fading
and shadowing with one tractable distribution. TKedistribution [9] and the generalized

K -distribution fall in to this category.

1.2 Diversity Methods

Multipath fading and diversity methods are closely relatguics in wireless communica-
tions. The diversity concept was introduced to counternmeathe detrimental effects of
multipath fading on wireless communication system perforoe. The basic idea is to re-

ceive multiple independent versions of the transmittediaigind apply some processing
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Figure 1.1. System model for a wireless communication system with dityecombiner.

algorithm at the receiver to obtain the decision statisticdecoding. The intuition un-
der this concept is to exploit the low probability that mpie independent copies of the
transmitted signal undergo a deep fade at the same time nflepéndence of the received

signals may be achieved with several different techniques.

e In the spatial domain, using multiple receiver antennas
¢ In the frequency domain, using multiple frequency channels
¢ In the time domain, using multiple time slots

¢ Resolving multipath components at different delays (inekiahd wireless systems)

In this thesis, we focus only on the diversity in the spatiamain with multiple receiver
antennas. A basic system model for a wireless communicayistem with diversity com-
bining is given in Fig.1.1. The effect of multipath fadidg;,: € (1,2,---,N) is mod-
eled as a multiplicative effect on the transmitted signallThe additive noise is given as
ng,i € (1,2,--- ,N). The variables;,i € (1,2,--- , N) denote the received signals at
each receiver antenna. The symbalenotes the output of the diversity combiner, which is

used for symbol detection.



The four principal diversity combining techniques can keniified as follows.

1.2.1 Maximal ratio combining

Maximal ratio combining (MRC), is known as the optimal disi¢y combiner in the sense of
maximizing the SNR of the decision statistic, in the absesfaher interfering sources. In
MRC, the received signals of each antenna (branch) are segdland optimally weighted to
obtain the combiner output. It has been shown that the SNReaf@ambiner output is equal
to the summation of the SNR of all the branches. However, M&fires complete channel
state information (both channel gain amplitude and phakall the diversity branches to

perform combining, and hence it is known to be the most cornglileersity combiner.

1.2.2 Equal gain combining

In equal gain combining (EGC), the received signals of ttenbines are only cophased
and added together to obtain the combiner output. It is aoptipral scheme compared
to MRC, yet results in comparable performance with a lowenglexity since only the
knowledge of channel phase is required for combining. EG@ten limited in practice to

coherent modulations with equal energy symbols.

1.2.3 Selection combining

In selection combining (SC), the receiver selects the Wravith the highest instantaneous
SNR for symbol decoding. Since SC processes only a singlechrat has a much lower
complexity compared to MRC and EGC. However SC may not exphei full diversity

offered by the channel. SC can be used with coherent moduotafon a packet or block
basis rather than on a symbol basis), noncoherent modudatind differentially coherent

modulations.

1.2.4 Switched diversity combining

SC may not be suitable for communication systems with captis transmissions, since it
requires concurrent and continuous monitoring of all trebhes. Switched diversity (SD)
was proposed to overcome this limitation. In SD, the recaieéects a particular branch and
remains with that branch until the SNR falls below a pre-deteed threshold. Whenever
the current branch SNR falls below a specified thresholdrdheiver switches to another

branch.



In addition to these principal combining techniques, salvbybrid combining tech-
niques have been proposed. These techniques were oftelopEvesuch that they have
characteristics of two or more principal combining aldamis. The purpose of hybrid com-
bining techniques is to obtain maximum possible diversiyddfit, while maintaining a
reasonable receiver complexity. Generalized selectiambating (GSC) was introduced by
combining MRC with SC. In GSC, the receiver selects the gieshl, branches out ofV

available branches, and combines the selected branchesMEC.

1.3 Fading Correlation Models

As mentioned in Section 1.2, independence of the multigleaireplicas at the branches
is quite important to obtain the maximum benefit out of a diitgrcombiner. However
satisfying this condition may be difficult in practical sitions. In spatial diversity systems,
it is known that the multiple receiver antennas should begqaasufficiently distant from
each other to obtain independently faded signals at theaase As the wireless devices
become smaller in size, implementing sufficiently spacettiptet antennas at the receiver
may not be always possible. When this situation occurs, @dden@ conditions may be
correlated among the multiple receiver antennas.

Theoretical performance evaluation of diversity comksrigian important stage in wire-
less system design. In order to choose a suitable combimingnge, a system designer
should have a sound knowledge of the achievable performaindigersity combiners un-
der different conditions. In order to study the performanseng a realistic framework,
we must include the effects of fading correlation in our tietical analysis. To make the
task analytically tractable, different fading correlatimodels have been introduced. The
most widely used correlation models in the wireless comueatians literature include the

exponential correlation model and the constant correlatiodel.

1.3.1 Exponential correlation model

The exponential correlation model, discussed in [10], sdu® model the spatial fading
correlation of an antenna system with equally spaced aatenA uniform linear array is
an example for an equally spaced set of antennas. This mssleings that the correlation
between the pairs of received signals, decays as the spaetngen antennas increases.

The fading correlation coefficient betweéh and;*” receiver antennas is given as
pi=p" 0<p<li#] (1.6)

7



It is known that the covariance matrix of the exponentiatelation model has tri-diagonal

inverse, which makes it a tractable mathematical modelfatysis.

1.3.2 Constant correlation model

The constant correlation model [10] is considered to bedviali a set of closely placed
diversity antennas. In [11], it has been shown that a thiement circular antenna array
gives rise to constant correlation conditions. Also thestamt correlation model may be
used as a worst case performance benchmark for a set of astgt#tj. The normalized

covariance matrix for the constant correlation model cagiben as

1pp...p

p 1 p

pp 1 - p 1.7)
Lp p op L

where0 < p < 1.

1.3.3 Need for better correlation models

In addition to these models, several attempts have beentmaugude arbitrary correlation
conditions in theoretical analysis. The main difficultytthases when we are dealing with
performance evaluation of systems with fading correlatiothat we have to use the joint
fading statistics over the diversity branches. Generaliy éxtremely difficult to evaluate
the joint statistics, since we must know the mathematigalesentations for the joint sta-
tistical distributions for the prevailing correlation aitions. For an example, performance
analysis of selection diversity receivers in correlatatirfg channels generally requires the
joint cumulative distribution function (CDF) of the branBiNRs. Also the analysis of EGC
in correlated fading channels requires the joint PDF of #ueived signal envelopes. For
MRC receivers, the joint moment generating function (MGF)h& branch SNRs is pre-
ferred.

Since the performance evaluation of diversity receptiothépresence of fading corre-
lation became an important research area in wireless coticatioms, several researchers
focused their attention on the problem of finding mathenadilfidractable forms for the
multivariate PDF, CDF and MGF of the widely used statistiliatributions such as Rayleigh,

Rician, Nakagamim and Weibull. In the following section, we present a summdrthe

8



existing results on the multivariate PDF, CDF and MGF regméstions of these distribu-

tions.

1.4 Related Previous Results

In this section, we present some previous results avaifableepresenting the multivariate
PDFs and CDFs of statistical distributions considered isttresis.

A thorough analysis of multivariate PDFs and CDFs of stiaédistributions derived
from the Gaussian distribution is found in [13]. Using thethoelology given in [13],
multivariate probability distributions for the Rayleigfsttibution were investigated in [14].
Special cases of the constant correlation model and thenexial correlation model were
considered in the analysis of [14]. A closed-form multiaéei PDF expression was derived
for the exponential correlation case and the joint PDF ferdbnstant correlation case was
given in terms of a multidimensional integration requiriNglevels of integration for dv
dimensional distribution. An infinite series represeoiat{lSR) for the bivariate Rayleigh
CDF was first given in [15]. A finite range single integral repentation for the bivariate
Rayleigh distribution was given in [16].

There are limited results on multivariate PDF and CDF remregions for the Rician
distribution. The bivariate Rician PDF is given as an inénummation in [17]—[19].
Extending Miller's approach [13], an infinite series re@msitions of the PDF and CDF of
the tri-variate Rician distribution, when the underlyingu@sian RVs have a tri-diagonal
inverse covariance matrix, are given in [20] where the Rid?DF is expressed using 2
nested infinite summations while the CDF is given using 7awesifinite summations. A
useful single integral representation for the bivariateidi PDF was given in [21], which
was readily obtained from the results of [22].

Certain forms of multivariate probability distributionsrfthe Nakagamin distribution
are found in the literature [1], [15], [23]—[28]. A closedr representation of the bivari-
ate Nakagamim PDF was given in [1] for identical fading severity paramatefor both
random variables (RVs). An infinite series representatibthe bivariate Nakagami CDF,
when the two RVs have identical values was first published in [15]. The bivariate Nak-
agami PDF, with arbitrary fading parameters for the RVs,lmafound in [23]. The authors
of [26], generalized the results in [23], to represent maraegal correlation that may ex-
ist in real propagation channels. Infinite series repredems for the joint characteristic
function (CHF), PDF, and CDF were given for the bivariate &ig&mim distribution using



generalized Laguerre polynomials. The trivariate Nakagamnd Rayleigh distributions
are known for arbitrary covariance matrices of the undegyGaussian RVs [25], [27], [29]
in forms where the PDF and CDF are represented using a simgiieé summation. Also,
guadri-variate Nakagammand Rayleigh distributions are given in [25], [29] for the sho
general case of covariance matrix for the underlying GansBVs. The PDF and CDF are
expressed as multiple nested infinite summations. A muiéiteaNakagamin distribution
with exponential correlation among the underlying Gaus&&'s was presented in [24].
Reference [30] presented an efficient approach to obtaitivartate PDF and CDF repre-
sentations for the Nakagami-distribution, by approximating the covariance matrix o th
RVs with a suitable Green’s matrix. Since Green’s matrixiarganteed to have its inverse
in tri-diagonal form, Miller's approach [13] can then be dde obtain the multivariate PDF
and CDF. The multivariate Nakagami CDF was given using iplelthested infinite sum-
mations. An infinite series representation of a multivarisekagamin PDF for arbitrary
correlation matrix and arbitrary fading severity paramgetwas given in [28]. The PDF
was given using a single infinite summation of Laguerre pofgials. The multivariate
Nakagamim CDF was given using a multidimensional integration of theFRD[28]. A
union upper bound for multivariate Nakagamifading model is given in [31].

The Rician distribution is a special case of the non-ceminaly) distribution® where
the number of degrees of freedom is equal to 2. An ISR for tharisite generalized Ri-
cian distribution was given in [13]. Royen [32] gives intebgrepresentations for central
and non-central multivariate chi-squarg?®) distributions with specific correlation struc-
tures. An ISR for the PDF and CDF of the trivariate non-céngradistribution is given
in [33], where the inverse covariance matrix of the undedyGaussian random variables
(RVs) is in tri-diagonal form. Both the PDF and CDF are expessusing nested infinite
summations. Reference [34] gives a new representatiorhéotrivariate non-centray?
distribution derived from the diagonal elements of a compien-central Wishart matrix.

Special forms of the multivariate Weibull fading process@mated from correlated
Gaussian processes were studied in [6]. A closed-form exjme for the multivariate
Weibull PDF with exponential correlation among the undedyRayleigh RVs is given
in [6]. A nested integral form of the multivariate PDF for tbenstant correlation model
is also given in [6] for identically distributed Weibull RVA multivariate CDF is given

for the exponential correlation case using multiple nestédite summations. A CDF ex-

1If RV X is distributed as non-centrgf then the RVA/X is a non-centraj distributed RV.
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pression for the constant correlation case was not givel]in The results of [6] were
extended to arbitrary correlation conditions using a Geesratrix approximation in [35].
However the results are given in terms of multiple nesteditgfisummations and are not
exact. Infinite series representations for the trivariatbill PDF and CDF with arbitrary
correlations are given in [36] for the general case of nawiitally distributed Weibull
RVs. Reference [36] gives ISRs for the quadri-variate WeBDF and CDF with a very
general correlation matrix. However, neither the PDF ner @DF given in [36] for the
guadri-variate Weibull distribution is valid for the coast correlation case. A general and
exact multivariate PDF expression for the— y distribution with arbitrary correlation is
given in [37] where the Weibull distribution is consideresl aspecial case of the —

distribution. However, only an approximate solution isegivfor the multivariate CDF.

1.5 Motivation

Reviewing the existing literature on multivariate PDF aridFIepresentations of Rayleigh,

Rician, Nakagamin, non-centraly? and Weibull distributions, we notice the following.

e Despite their usefulness, there exist a limited number dfivaniate PDF and CDF
representations for Rayleigh, Rician, Nakagamiweibull and non-centra? dis-

tributions.

e When the multivariate PDF and CDF representations areadlajl their mathemati-

cal complexity precludes their use in certain applications

e In some cases where the multivariate PDF is known, still weeHa use multi-

dimensional integration to evaluate the multivariate CDF.

e The majority of the known results on multivariate distribas are given in terms of
infinite series solutions or multi-dimensional integrapeessions, which are difficult

and time consuming to evaluate using mathematical software

e The number of infinite series computations or integral com@pans increases with

the dimensionality of the distribution.

e The approximation methods used to obtain multivariate PBdF @DF representa-

tions become less accurate as the number of dimensionsgsse

11



e The tightness of the known bounds for multivariate PDF and-C&presentations

tend to deteriorate as the distribution grows to higher disians.

Due to the availability of multivariate Gamma type MGFs fdvirary correlation con-
ditions, the performance of MRC receivers under arbitragirfg correlation conditions
have been studied extensively for correlated RayleighigRiand Nakagaminfading chan-
nels. However, exact performance results available for &@ivers in correlated fading
channels appear to be limited. Motivated by this fact andithiéations we identified ear-
lier, in this thesis, we present a framework to derive coraty computable mathematical
representations for multivariate Rayleigh, Rician, Nakagm, non-centraly? and Weibull
distributions. Special types of correlation models areduseour analysis. Although per-
formance evaluation of SC receivers is a motivation for thesis, it will be shown that
the new results developed in this thesis can also be usea iantalysis of multiple input
multiple output (MIMO) systems with antenna selection amthie analysis of output SNR
moments of EGC.

In addition to the new representations for the multivaridiggributions, motivated by
the fact that the available solutions for the performancalyais of a dual branch MRC
receiver operating in correlated Hoyt fading channels ar@gomplicated in mathematical

evaluation, we present a hew simple methodology to tackdepttoblem as well.

1.6 Thesis Outline and Contributions

This thesis develops a simplified framework to derive matiste PDF and CDF expres-
sions for some popular statistical distributions used ineless communications theory.
Specific types of correlation matrices are used in our aigly&e focus our attention on
deriving easily computable mathematical representationsnultivariate distributions in-
cluding Rayleigh, Rician, Nakagami; Weibull and non-central chi-square distributiéns
This thesis consists of four main chapters. Each chapteesjponds to a major contribu-
tion.

Chapter 2 presents a framework to derive novel single iategpiutions for multivari-
ate PDFs and CDFs of Rayleigh, Rician and Nakagamndiistributions with generalized
correlation structure. We show that our new methodologylkesaderivation of single in-

tegral expressions for multivariate PDFs and CDFs of RghleRician and Nakaganmi

2For each case, with the aid of mathematical software such/ABLM, we can show that the marginal
distributions follow the appropriate forms
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distributions with a generalized correlation matrix. ThewvPDF expressions are used to
derive single integral expressions for joint moments. We e new multivariate CDF
representations to evaluate performance of SC divergigtating in correlated Rayleigh,
Rician and Nakaganmia fading channels.

In Chapter 3, we consider the special case of constant (eqoaklation model for
our analysis. We derive new single integral representationthe multivariate non-central
chi-square distribution with equally correlated compdn@aussian RVs. The new repre-
sentations are derived for the multivariate PDF, CDF, j@htF and joint moments. Also
we discuss the applicability of the new representationefrton-central chi-square dis-
tribution to study of MIMO systems with antenna selectioperating in correlated Rician
fading channels.

Chapter 4 presents new single integral expressions for thvariate Weibull distri-
bution with constant correlation. New single integral egsions for the multivariate PDF,
CDF and joint moments are derived. We use the new CDF regeggento evaluate the
performance of SC diversity operating in correlated Weifading channels. New expres-
sions for the outage probability, average symbol error aaie average SNR are derived.
Furthermore, the new PDF is used to obtain new expressioriidamutput SNR moments
of EGC operating in equally correlated Weibull fading.

Chapter 5 presents a new framework to analyze the perfoenaha dual MRC re-
ceiver operating in identically distributed, correlatedKdgamig (Hoyt) fading channels.
The new method allows computing the SER of a large nhumber lnéremt and noncoher-
ent modulation formats with dual MRC in correlated Hoyt faglusing finite range single
integrals of elementary mathematical functions. Also wemsthat this method allows com-
puting other performance measures such as outage prapaibithe MRC receiver, using
efficient numerical techniques developed for independading branches.

Chapter 6 concludes this thesis while giving some suggesfior potential future re-
search based on the contributions of this thesis. It is itaporto note that although we
discuss the applicability of the new representations ofthéivariate distributions in wire-

less communications, the new distributions can be usecgr @reas of statistics as well.

13



Chapter 2

New Representations for
Multivariate Rayleigh, Rician and
Nakagami-m Distributions With
Generalized Correlation

2.1 Introduction

In this chaptet, we present a framework to obtain single integral represiems for multi-
variate Rayleigh, Rician and Nakagamidistributions with a generalized correlation struc-
ture. The multivariate PDFs and CDFs are expressed expliniterms of single integral
solutions. A remarkable feature of these representati®nbat the computational com-
plexity is limited to a single integral computation for arbiéirary number of dimensions.
Correlated RVs are generated using a special transformatimdependent Gaussian RVs.
A similar approach was used in [12] to obtain distributiondtions of the output signal-to-
noise ratio (SNR) of a selection diversity combiner exaslelsi for equally correlated fad-
ing. In [40], this approach was used to evaluate performafciversity combiners with
positively correlated branches. Prior to the publicatibfil@] and [40], the basic idea for
the approach was found in [41]. Our model is two-dimensi@asdk the model in [12], [40],
and admits some negative values of correlation as does theganeral model in [41].

The remainder of this chapter is organized as follows. IntiSec.2, we present
models used to generate correlated Rayleigh, Rician ancddahkim distributed RVs
from independent Gaussian RVs. Detailed derivations oftivauiate Rayleigh, Rician

and Nakagamin distributions are presented in Section 2.3. Section 2.dgmts applica-

This chapter has been presented in part at the IEEE Wirelmssrinications and Networking Conference
(WCNC) 2010, held in Sydney, Australia [38], [39].
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tions of the new representations, while some numerical piesrand simulation results are

presented in Section 2.5.

2.2 Representation of Correlated RVs

The following notations will be used throughout this chamed the remainder of this
thesis. We denote a Gaussian distribution with meand variance? by N (i1, 0%), and a
complex Gaussian distribution with mearand variance? is denoted a®V,(u, o). Var(-)
denotes the variance of a RV, and the magnitude and compigugate ofX are denoted
as|X| and X*, respectively. We uséx (z) and F'x (x) to denote the PDF and CDF of RV
X.

2.2.1 Correlated Rayleigh RVs

Similar to [40, eq.(6)], the complex channel gain can beespnted by extending the cor-
relation model used in [41, eq.(8.1.6)] to the complex plase

Gk:( 1—)\iXk—F)\kXo)—{—i(\/l—)\zYk—F)\kYb), k=1,---,N (2.1)

wherei = -1, Ay € (—1,1) ~ {0} and X}, Yy (k = 0,--- , N) are independent and
1

N(0, 3). Then foranyk, j € {0,--- , N}, E[X};Y;] = 0, andE[X;, X;] = E[Y}, Y]] = §6kj
wheredy; is the Kronecker delta function definedd@g = 1 andd,; = 0 for k # ;.

Then G, has a zero-mean complex Gaussian distributionVag0, 1), and |G| is
Rayleigh distributed with mean square valBBG|?] = 1. The cross-correlation coef-
ficient between anys;,, G; can be calculated as

oy — E[GyG}] — E[G,]E[G] WY 2.2)
VEIGPIE[G;[?]

Observe that (2.1) can generate correlated Rayleigh R\stivit underlying complex

Gaussian RVs having the cross-correlation structure givéh2). The corresponding enve-
lope correlations can be found using [42, eq. (1.5-26)]. WN&e\, = A\, (k=1,--- ,N),

this model simplifies to the equal correlation case.

2.2.2 Correlated Rician RVs

We can denote a set of correlated Rician RVs by modifying treetation model used in

(2.1), namely
Hk:( 1—)\%Xk—k)\kXo)—{—i(\/l—)\%Yk—F)\kYb), k=1,---,N (2.3)
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wherei = /—1, A\, € (—=1,1) ~ {0} and X}, Yx(k = 1,---, N) are independent and
N(0, 3). The RVsX, andY; are independent and distributed/&m 1, 2) and A/ (ma, 1).
Then for anyk, j € {1, , N}, E[X};Y;] = 0, andE[X; X;] = E[Y,Y;] = 265

Note thatH, is a non-zero mean complex Gaussian distributed RV, &hlis Rician
distributed with Rician factod<;, = \2(m? + m3) and mean square valdgl|H|*] =
1 + K. The cross-correlation coefficient between dhy, H; can be calculated as
B E[H,H}] — E[H|E[H]]
~ VE[H; ~ E[HJPIE[H; - E[H;]P)
Therefore, (2.3) can represent correlated Rician RVs withunderlying complex Gaussian

RVs having the cross-correlation structure given in 2When all\, = A(k=1,--- | N),

this model simplifies to the equal correlation case.

2.2.3 Correlated Nakagamim RVs

Modifying the model described in [41], we can dendfecorrelated Nakagami (for posi-
tive integerm) random variables wittvm number of zero-mean complex Gaussian random

variables. Using a similar approach as [40],

Gri = or(\/1 = M X + M Xor) + i ok (y/1 = A\ Vi + iYoo)
k=1, . Nl=1,--.m (25)

wherei = /—1, \; € (—1,1)\{0} andXy,, Vi, (k = 0,1,--- ,N I =1,--- ,m) areinde-
pendent andV' (0, 3). Then foranyk, j € {1,--- ,N},l,n € {1,--- ,m}, E[X}Y}n] =0,
andE[ Xy X,] = E[XyY),] = %5@-5“1. The cross-correlation coefficient between any
G andGj, (k # j) can be calculated as
E[GuGj,] — E[GLE[G,]

VEIGuY] E[lGjnl?]

MAj (BE#jandl=n)

Pkl jn =

_ (2.6)
0 (Il #mn).
DenoteRy, as the summation of squared magnitude& gf, then
Ry =) |Gul (2.7)
=1
Ri(k = 1,---,N) is sum of squares ofm independent Gaussian RVs. The cross-
correlation coefficient betweeR;, and R; can be calculated as [1]
E[R1 R3] — E[R1]E[R;
ka,Rj _ [ 1 2] [ 1] [ 2] _ )\%)\? (28)

Var[R;|Var[R;]
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We identify that\/(Ry)(k = 1,--- , N) are a set ofV correlated Nakagamit RVs with
mean square valuao—,%, identical fading severity parameter and cross-correlation of the

underlying complex Gaussian RVs having the structure gn€g.6).

2.3 Multivariate Rayleigh, Rician and Nakagamiin Distribu-
tions

2.3.1 Multivariate Rayleigh distribution

In Section 2.2.1, it was shown that th@&|s are Rayleigh distributed. We condition the
RVs |Gj|s on the RVsX, andYy. Then we identify that théG|s become conditionally
Rician distributed since the inphase and quadrature coergsrhave equal variances and

non-zero means. The PDF |af| conditioned onX, andY; can be written as [43]

ficlxo0,v0 (7% X0, Yo) = ;—%exp (—%) I <m;_/£k> (2.9a)
pi = 1 + (2.9b)

pz = A Xo (2.9¢c)

ty = kYo (2.9d)

a,%:l_;z, k=1,---,N. (2.9¢)

One can compute the conditional cross-correlation coefftdietweert:;, andG; using

s = E[GG;| X0, Yo] — E[G| X0, Yo]E[G}| X0, Yo]
"= JE[IGx — E[GA][Xo, Yol E[|G; — E[G;]?| X0, Yo)

=0. (2.10)

The conditionalG,s are uncorrelated. Since they are Gaussian distributeg,ate con-
ditionally independent. Therefore, th@';|s are conditionally independent, and the joint

conditional PDF of theGy|s can be written as

N
faixovo (11,72, -+, N[ X0, Y0) = H fiGal1x0,0 (k] X0, Y0) (2.11)
k=1
wherefiq, | (71| Xo, Yo) is given in (2.9) ands = [|G1l,-- - , |G-

From the laws of probability we know that [44]

fG(r17T27r37"' 7TN) == / fG,Xo,Yo(r17r27"' 774N7X07}/E)) dXOdYO (212)
Yo J Xo
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Also we have

fG,Xo,YQ(Tla r2, -+ ,TN, XOa Yb) = fG|XQ,Y0(T17 T, 7TN|X0, }/0) on,YQ(X(]a Yb)
(2.13)
Then we can write the unconditional joint PDF as

fa(ri,ra,rs, - ,ry) =
/ / faixo,vo(r1,72, -+, 7N X0, Y0) fxo,v0(Xo,Yo) dXodYp. (2.14)
Yo v Xo
Since Xy, Y, are independent antl'(0, 1), the joint PDF is given by
1
Fxo.v5 (X0, Yo) = — exp(—(X§ + 1)), (2.15)
Then we can write the joint unconditional PDF of correlateyRigh RVs as
N
1 2 2
fa(ri,ra, -, rn) = H fic) (rk] X0, Yo) —exp(—(Xg +Yy)) dXodYo.
Yo J Xo 24 ™
(2.16)

Substituting (2.9) in (2.16), and using some straightfedvaariable transformations, we

simplify the double integral in (2.16) to a single integramely

oo N 2 12 oYL
T i+ Ait L AVEQ™
fa(ri,ra, - ,rn) = / exp(—t) H J—];exp <—k72k> Iy 5 dt.
0 k=1"k

20’k o

(2.17)

Eq. (2.17) is a new single integral form of a class of muliste Rayleigh distributions,
the class admitted by the correlation structure given iR)(2n comparison to other special
forms of the multivariate Rayleigh distribution, we make thllowing remarks. Only a sin-
gle integral calculation is needed to compute Aelimensional multivariate Rayleigh PDF
(2.17) having the correlation structure given in (2.2). Ndtiple nested infinite series com-
putations are required, in sharp contrast to previousljigiutd forms of the PDF [15], [29].
In comparison to the result in [14]y-fold integration is required in [14], but the solution
is valid for arbitrary correlation.

The bivariate Rayleigh PDF is well known [45]. One can shoat {2.17) specializes
to this known form using [46, eq. (3.15.17.1)] as

(r? + r%)) Iy <L1T2ﬁ> (2.18)

4rire
f\G1|7|G2|(r17T2) = exp <—

1—A 1—A 1—A

where the correlation coefficiept= A\?\3, can have arbitrary valug < p < 1.
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We obtain a single integral representation for the muliatarRayleigh CDF using the

same approach. We write

Fg(ri,ro,r3, -+ ,TN) =

// Faixov, (r1,72, 57| X0, Y0) fxo,v0(Xo0,Y0) dXodYo (2.19)
Yo J X0

wherergx, v, (1,72, -+ ,7n|Xo, Yo) is given by [43]
N i v
Faixov, (r1,72, - ;7| X0, Yo) = H [1 -Q (—k, —kﬂ (2.20)
k=1 % Ok

andQ@(a, b) is the 1st order Marcun-function [43] andu;, andoy, are as defined in 2.9.
Then we can write the joint CDF as a single integral, namely
o0 N NRY:
Fa(riraeorw) = [ e ]] [1-@ Eo) g o
0

g ag
=1 k k

Eq. (2.21) for the multivariate Rayleigh CDF was publishedvppusly in [40], with the
difference that in [40], it was specified that thg, k = 1, --- , NV must be positive whereas

the derivation given here allows negative and positive esfior ..

2.3.2 Multivariate Rician distribution

In Section 2.2.2, a model for Rician distributeély| was given. Now we conditior,

on random variableXy, andY;. Then we can identify that| is still Rician distributed
since the inphase and quadrature components have equahaesiand non-zero means.
The PDF of| H| conditioned onX, andY, can be written as [43]

oo 06 X0, 0) = % exp(= WL 50 1y 5y (g 29
k k k

Sk =2+ pe (2.22b)

pz = A Xo, fhy = A Yo (2.22¢)

U,%:1_2)\z, k=1,---,N. (2.22d)

One can compute the conditional cross-correlation coefftdbetweent?;, and H; using

. E[HyH}|Xo, Yo] — E[Hg|Xo, Yo|E[H} | X0, Yo

- =0. 2.23
Phi = JEH, — B P15 Yo ENH, — B P1 %0, i) (223)
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The conditionalH}’s are uncorrelated. Since they are jointly Gaussian, theyandition-

N
fH‘Xo,Yo (/Ula V2, 7/UN|X07 Yb) = H f|HkHX0,YQ(Uk?|XO7 }/0) (224)
k=1
where fim, |1 xo,v, (Vk| Xo, Yo) is given in (2.22) andl = [|H,|,--- , [HN]].

Reasoning as the Rayleigh case, we can write the uncondalifiint PDF as

Ju(vi,v2,v3,- - ,uN) =

/ / Frtixow (01,02, x| X0, Y0) fxows (X0, Y0) dXodYo. (2.25)
Yo Y Xo
Since X, Yy are independent and distributed/&$m,, ) and N (m1, 1), the joint PDF is
1
fxo0.v0(Xo, Yo) = = exp(—((Xo — m1)? + (Yo — m2)?)). (2.26)

Then we can write the joint unconditional PDF of correlatedid RVs as

Ju(vi, v, - / / — exp(—((Xo — m1)* + (Yo — m2)?))

XodYy. (2.27
P dXodYy. ( )

ST Uk vp + M(XG +Y5) P N (XE+YE)
H _2 B 202 0
i1 Ok i

Using the variable transformatiaoki, = Rcos(f) andY;, = Rsin(#), we can simplify

(2.27) to a single integral, namely

fu(vi,va, -+ ,oN) = /000 exp(—t) exp(—(m3 4+ m3))Io(2y/ (m? + m3)t)

N 2 1 \2 Ve A2t

A2t K/
[] %exp <—”k + A )10 " a .28
k=1 Fk

2 2
20’k o

Eqg. (2.28) is a new representation of a class of multivaRRatéan PDF with the correla-
tion structure given in (2.3). Only a single integral is ne@&tb compute thé/-dimensional
Rician PDF (2.28) having the correlation structure giveii2md). Multiple nested infinite
summations are not required to compute ffiedimensional Rician PDF. Also, we will
show that the CDF can be obtained in single integral form dk we

We obtain a single integral representation of the multatarRician CDF using a similar
approach by repIaCingH‘Xo’YO (v1,v2,- -+ ,un|Xo, Yo) byFH\Xo,YO(UlaU% -+, oN|Xo, Y0),
which is given by

N
Sp v
FH‘X(),Y()(U17,U27 e 7UN‘X07YO) = H |:1 - Q <O__:7 O__Z>:| . (229)
k=1
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Then we can represent the multivariate Rician CDF as
o
Fa(v1, v, ,0n) = / exp(—t) exp(—(mi + m3))Iy <M mi + m%)
0

N \/g 22
<[ 1-o| L% dt. (2.30
k=1

Ok Ok

Eqg. (2.30) is a new representation for a multivariate RicpF. Only a single integral
computation is required to evaluate thedimensional Rician CDF with correlation struc-
ture given in (2.3). No multiple nested infinite summatiors rquired for computation, in

contrast to the forms given in [17] and [25].

2.3.3 Multivariate Nakagami-m distribution

A model to generate correlated NakagamRVs was given in (2.5). Now we condition

the RV's Gi; on X and Yy, for Il = 1,--- ,m. Then the real and imaginary parts of

22
G, have equal variance 01% <1 ;k’) and means ;A\, Xo; ando A\, Yo, respectively. We

can identify thatR, has a noncentral chi-square distributign,, (S, 2%) where S; =

iai)\i(Xgl +Y3) and Q2 = o2 (1_;%). We can write the conditional PDF dg;,
as [43]
L (AT (83+) S
fr(Y[Xo, Yor) = 202 <5_;3> eXP(—W) Tam (ﬁ@) - (2.31)
We can find the conditional PDF gf R, using a variable transformation; it is given by
f (Wi Xor, Yor) = Qiiszj{z: exp(—%ﬁéﬂz)) It (wkg—%> . (2.32)

Since the components,; are conditionally independent oxy,; andYjy,;, the resultingR,.’s
are independent fok = 1,--- , N. Then the conditional joint PDF of the resultiRgR;’s

can be written as a product of individual conditional PDRz, v

Twixo, Yo (W1, s wn| Xoy, Yor) =
N
1wk (SZ +w?) < Sk>
5T xp(——) Iy (wkeg |, 1=1,--- ,m (2.33)
kHlaz g1 202 02

whereW = [VRy, - ,v/Rn], Xo = [Xo1, -+, Xom] @nd Yo = [Yo1,- -+, Yo
From the laws of probability we know that [44]

fw(wi, -, wy) =

/ W Xove (W1, s wns Xo Yo) dXordYor,l = 1, ,m. (2.34)
Yor Y Xoi
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Also, we have

W X0, Yo (W1, s 0N, Xoi, Yor) = fwxo,vo (W1, s wN[Xot, Yor) [Xo,vo(Xot, Yor)-
(2.35)

Then we can write the unconditional joint PDF as

fw(wi, -, wy) =

// Fwixo,Yo (W1, s wn|Xor, Yor) [Xo,vo(Xor, Yor)dXoid Yo,
XOl7YOlvl:17"'7m

I=1,---,m. (2.36)

Since X, Yy, are independent and Gaussian distributed\Vds, %), the joint PDF
IXo.Y0(Xor, Yor) is given by

1 m
Ixo,¥o (Xor, Yor) = — exp(— > X5+ Y. (2.37)
=1

Substituting (2.37) in (2.36), we get

(52+w2) Sk

XOl7Y0l7 1,

1
— exp(— ZXO% +Y3)dXodYy 1 =1, ,m. (2.38)
=1

We can simplify them-fold integral in (2.38) using a hyperspherical coordirgtstem

transformation, where we substitute

Xo1 = Rcos(¢q)
Yo1 = Rsin(¢1)cos(p2)
Xo2 = Rsin(¢py)sin(pa)cos(¢ps3)

Xom = Rsin(¢py)sin(pa) - - - cos(dam)
Yom = Rsin(¢1)sin(gz) - - sin(pam). (2.39)

Then we have » (Xg + ¥) = R” and S} = 07A?R?. The Jacobian of the

=1
transformation can be found as

|J| = R*™L 5in®™72(¢y) sin®™ 3 (¢ha) -+ - sin(pam-_2) (2.40)

22



and the joint PDF of the Nakagami-RVs can be written as

fW wi, Wz, - , W

/R 0/(;51 o/qsg -0 /: 1R2m b sin®" 7 (1) sin®™ 7 () -+ sin(Pam—2)
N

52 N S,
(R exp(— Y o) T] o (wkg—)
k=1 k p=1 k

1 2
Ik 1H o i (- 292>d¢1d¢2 < dpom 1dR. (2.41)
k

=

To simplify the2m-fold integral in (2.41) to a single integral, we take thetpafrthe

integral which contains anglef - - - ¢om,

/ROOO /¢71T0 /qb: /¢2m 1 R¥™ 1 sin®™ 2 (¢1)sin®" % (¢2) - -+ sin(dam—2)

1
— exp(—R»)dp1dey - - - dpom_1dR. (2.42)

The problem of integrating out all the angles can be coneitlas deriving the envelope
PDF of2m independent Gaussian variables with zero mean and eqlimhuaé. This PDF
can be found as a central chi-distribution w2t degrees of freedom [43]. Therefore, we

can simplify the2m-fold integral in (2.42) to a single integral, namely

e’} 2m—1
/O 2W exp(—R*)dR. (2.43)

Then the joint PDF of Nakagami RVs can be written as
N
i ! o=

m 2 L 5232y Wi/ O2N2\/t
Wi exp <_M> In1 VIRTET ) g (2.44)

ootml

fw(wi, - ,wn) :/o

20 Q2

Eq. (2.44) can be rearranged and represented as a Laplasfotra integral

fW(w17”' ,’LUN) ==
N 1 w™ w2 o0 ZL/mfl
H — e p( kg) /
i (o2 202°| Jy T(m)
N 9y2 N A2/t
oiP A

—t(1 kk L dt (2.45

x exp(—t( +;2Qz)),£[1 1( Qi ) ( )



N 52)2
where the usual Laplace transform parameteas the particular value= 1 + Z Tk
k=1 k

Eqg. (2.45) is a new single integral representation of a @éssultivariate Nakagamin

PDF for integer order and identical fading severity paramnet. The solution is given in
terms of well known mathematical functions available in coom mathematical software
packages such as MATLAB. No multiple nested infinite sumaretiare required for the
computation of theV-dimensional Nakagamm PDF with the underlying complex Gaus-
sian components having the correlation structure (2.6).earkable advantage of this
representation is that the computational complexity istéthto a single integral compu-
tation for a/N-dimensional PDF. Also as we show in the next section,/{hdimensional
Nakagamim CDF can be obtained directly without additional integnatiperations on the
N-dimensional PDF.

We obtain a single integral representation of the multatarNakagamin CDF using a

similar approach by integrating (2.36) with respectitQws, - - - ,wn

FW(wlv"'7wN):
/ / Fyw xo,v0 (W1, wn | Xor, Yor) fxo, Yo (Xor, Yor)  dXodYo
Yo 7 Xog

I=1,---,m. (2.46)

Sincews, - - - ,wy conditioned onXy andY; are independent, the joint conditional CDF of
wi, -+ ,wy can be written as
N
Fw|xo,v0 (w1, wn|Xo, Yor) = H F %o, vo (Wl Xon, Yor), k=1,--- N
= (2.47)

WhereF\/R—k‘XmYo (wi|Xor, Yor), k= 1,--- , N is given by [43]
Sk Wi
F /Ry %o, Yo (WelXor, Yor) = [1 —Qm (Q_k’ Q—k>] (2.48)

andQ,,(a, b) is them!" order generalized Marcui®-function [43], which is available in
common mathematical software packages such as MATLABaNd ), are as defined in
Section (2.3.3).

Following the same methodology as in (2.39) and (2.43), weinlthe single integral
representation of the multivariate Nakagami CDF, namely

oo gm—1 N Vi U/%)‘% W

Fw(uwn, - wy) = /0 r o0 1L 1= en | =g gt | | @49

24



Eq. (2.49) is a new representation for the CDF of a class otivadlate Nakagamm
distributions with identical and integer order fading séyeparameters among the corre-
lated RVs. Only a single integral computation is require@valuate theV-dimensional
Nakagamim CDF with the correlation structure (2.6) among the correspmy complex
Gaussian components. No multiple nested infinite summ&@ma required for computa-
tion of the multivariate Nakaganmt CDF form given in (2.49). To the best of our knowl-
edge, this single integral representation of the multatarCDF is new. In [12], the CDF of
the output SNR of a selection combiner was obtained for éguaalrelated Nakaganmia
fading channels. Also reference [40] gives the output SNRE@®D a N-branch selection
combiner operating in generalized correlated Nakagarfading, but the analysis is lim-
ited to positive values oh;. The results in this chapter are more general than the cases
considered in [12] and [40]. We are unaware of any other studigh provides simple
forms for the multivariate NakagamirCDF with integer order fading severity parameter
m. Ifweleto; = o9 = o, we get the case where the correlated NakagarRVs are

identically distributed.

2.4 Applications to Performance Analysis of Selection Divsity
Combining

Here we use our new representations of multivariate RdyjdRician and Nakagamit
distributions to analyze the performanceldfbranch selection diversity combining (SC) in
generalized correlated Rayleigh, Rician and Nakagarfading channels.

In SC, the combiner selects the branch with the largestnitmt@ous SNR. Then, the

output SNR of the selection combiner is [47]

vsc = max(y1,72, s YN)- (2.50)

The instantaneous SNR of ti&" branch can be given as

_ ’Gk"zEs
Yk No

(2.51)

where E; is the transmitted symbol energy ang is the additive white Gaussian noise
(AWGN) power spectral density (PSD) at each branch. We assdaentically distributed
correlated fadings on the branches. Then, the average gBgHy;, is given by

E(|Gy[*|Es

N (2.52)

Te=7=
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We denoteﬁ—z by T, then¥ equalsI" for the Rayleigh fading model assumed in (2.1). For
the Rician fading case, the average SNR per branch is not aguess the branches. This
is due to the correlation model (2.3) used in the analysieenHj for a Rician branch is
equal to(1 + Kj)T'.

2.4.1 Rayleigh fading

The CDF of the output SNR of the selection combiner for Rayldading can be obtained
as [47]

Fioo) =Primi <y,72 <y, -, 7N <Y)

:/0 exp(—t k1[1_ <\/K F)]dt (2.53)

We can calculate the outage probability/éfbranch selection diversity in generalized cor-
related Rayleigh fading by replacingby ~;;, , the outage threshold SNR of the system.

One has

Proutage — Pr <|G | < / fYth |G2 'Yth |GN| < / Vth >
tAL Vth
= 1-— — dt. 2.54
Jy e 13[ oy era)] o9

2.4.2 Rician fading

The CDF of the output SNR of the selection combiner for Ridiating can be found

similarly as

Frso(y) = Pr(\G1\<\f\G2\<\[ --,rGN\<\/¥>

:/0 exp(—t) exp(—(m{ +m3))Io <2\/E m%+m%>

N
<1 [1 —Q ( % /%)] dt. (2.55)
pie o Loy

Then we can similarly calculate the outage probabilitpvebranch selection combining

in generalized correlated Rician fading by replacingy ., the outage threshold SNR of
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the system, giving

Proutage = Pr <\G1\ < %h |G| < ,/ LGN < ,/%h>

:/0 exp(—t) exp(—(mi +m3))Io (2\/% m%+m%>

N
<1 [1 —Q (1 /%, /%’%)] dt. (2.56)
=1

In [12], N-branch selection diversity combining was analyzed forrttoee restrictive
case of equicorrelated Rayleigh and Rician fading usinghgleiintegral representation
of the multivariate CDF, while in [40], a similar result foorelated Rayleigh fading was
obtained, but which admits only positive values)af As an additional minor point, we
are not aware of any literature dealing wit+branch selection combining in correlated
Rician fading channels with a generalized correlation rhadiéch admits negative as well
as positive correlations among the underlying complex GandfkVs. Examples of wireless

channels with negative correlation can be found in [48].

2.4.3 Nakagamim fading

The CDF of the output SNR of the selection combiner can beardxdeas [47]

Fyoo(y) =Primi <y,72 <y, -, I~ <)

= P’I“(Rl < R2 < RN <

wwfmfrf>
_ /t OZ " (= \[\/0’3? \/; dt.  (2.57)

y

,':12

The outage probability aV-branch selection diversity operating in correlated Nakaig
mfading can now be calculated by substituting , the outage threshold SNR of the system,
in (2.57). One has

Proutage

e [r < )

oo ¢m—1 tak)\k Yih
= exp Qm dt
/t ol ( "\ T2

as the final solution.

(2.58)
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Figure 2.1. The outage probability in Rayleigh fading for N=3, 4 and 5rintzes.

2.5 Numerical Results and Discussion

In this section, we present some numerical examples andaionresults for the outage
probability of selection diversity combining operatingdarrelated Rayleigh, Rician and
Nakagamim fading. We us€p’ = [\, A2, --- , Ay] to denote the set of;, values used in
the theoretical and simulation results.

Fig.2.1 shows the outage performanceNofbranch selection combining in correlated
Rayleigh fading forN = 3,4 and5. For N = 3, we have usedy = [0.8,—0.4,0.7],
for N =4, p =[0.8,-0.4,0.7,—0.6], andp = [0.8,-0.4,0.7, —0.6,0.5] for N = 5.
The normalized thresholg*is calculated as;;, /T". One can see that the theoretical results
are in excellent agreement with simulation results. As endhse with independent fading,
the outage performance improves with an increasing nunmfd@raaches but the marginal
benefit diminishes with an increasing number of branches.

Fig. 2.2 shows the outage performanceNobranch selection combining in correlated
Rician fading forN = 3,4 and5. We use the same respective setspohs for Rayleigh
fading for N = 3,4 and5, and we seini, mo = 2 in our theoretical computations and

simulations. The normalized thresholdis calculated as;;, /T". Note that in the Rician
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Figure 2.2. The outage probability in Rician fading for N=3, 4 and 5 bitzex:
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Figure 2.3. The effect of correlation on the outage probability for 4utch selection combining in
correlated Rayleigh fading.
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Figure 2.4. The outage probability foiv-branch selection combining in correlated Nakagami-
fading for N=3, 4 and 5 with m=2.
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Figure 2.5. The effect of the magnitudes of thg, values on the outage probability for 3-branch
selection diversity in Nakaganmfading with m=2.
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Figure 2.6. The outage probability for 3-branch selection diversitgamrelated Nakagamiifading
form =2, 3and 4.

case, the branch fadings are not identically distributete €an see the excellent agreement
between the theoretical results and simulation resultf cases.

Fig. 2.3 shows the effect of the values xf on the outage performance in correlated
Rayleigh fading. We have used sets)gf with values ranging from low to high. Since
correlation betweefir;, andG; is given as\;\;, by changing the values of;, we change
the magnitude of the correlation between fhgs. We observe that the outage performance
deteriorates as the magnitudes of Mevalues increase, as expected.

Note that we have used both negative and positive value®s$-@orrelations between
the G.s in our examples. The results obtained with the new PDF arfd @presentations
derived in this chapter are more general than the resulfijgnd [40], which do not allow
negative values of correlation in the underlying Gaussién.R

Fig. 2.4 shows the outage probability &f-branch selection diversity in correlated
Nakagamim fading for N=3, 4 and 5. The\; values used in theoretical computations and
simulation are denoted as= [A1, A2, -+ , Ax]. We have assumed = 3 for the results
in Fig. 2.4. We have used = [0.8, —0.86,0.88] for N = 3, p = [0.8, —0.86,0.88,0.9]
for N =4 andp = [0.8,—0.86,0.88,0.9,0.92] for N = 5 in the theoretical calculations
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and simulations. For simplicity, we useqq = ¢ = 1,k = 1,--- , N in our results. The
normalized thresholg* is calculated asy;, /T

Fig. 2.5 shows the effect of the magnitude of thevalues on the outage probability of
3-branch selection combining operating in generalizedetated Nakagamin fading. We
usedm = 2 in our simulations and theoretical calculations. The povegrelation between
R;, andR; is given by)\i)g. Therefore by increasing values »f, we increase the power
correlation across branches. We can observe that the gueafgemance deteriorates as the
magnitudes of the;, values increase.

Fig. 2.6 shows the outage probability &branch selection diversity operating in gen-
eralized correlated Nakagammifading for different values of fading severity parameter
We used)\;, valuesp = [0.8, —0.86, 0.88] for the results in Fig. 2.6. The outage perfor-
mance improves as the fading severity parameter valueadgesefrom 2 to 4. One can
see the excellent agreement between the theoretical andasion results in all the cases

considered.

2.6 Summary

In this chapter, we presented novel single integral reptasiens for the PDF and the CDF
of a class of multivariate Rayleigh, Rician and Nakagamdistributions with a generalized
correlation structure. An important feature of this salos is that the numerical evaluation
complexity is limited to a single integral computation faor arbitrary number of correlated
RVs. Another benefit of the new solution is that the CDF is coteg directly, and with a
single integration, not requiring multipléV( for N-dimensional distributions) integrations
to calculate the CDF from the PDF. Also we used the new fornth@fCDF to evaluate
the outage probability aV-branch selection combining in correlated Rayleigh, Ricad
Nakagamim fadings. Simulation results were used to verify the acguod¢he theoretical

results.

32



Chapter 3

New Representations for the
Multivariate Non-Central
Chi-Square Distribution With
Constant Correlation

3.1 Introduction

In this chaptet, motivated by the limited availability of mathematical repentations for
the multivariate non-centra}? distributions, we derive new single integral represeoteti
for the PDF and CDF of the multivariate non-cent§&l distribution when the underlying
Gaussian RVs follow the equal correlation model. The acgebf the new representation
is that thelN-dimensional distribution can be computed by evaluating@ls integral. The
new expressions for the PDF and CDF are given in-terms of kallvn mathematical
functions which are readily available in common mathenahgoftware packages such as
MATLAB. The basic idea for the methodology used in this stiglfound in [41].

The remainder of this chapter is organized as follows. IrtiGed.2, we present the
model used to generate correlated RVs using a special lamrabination of independent
Gaussian RVs. Detailed derivation of the multivariate weniral y> PDF and CDF is
presented in Section 3.3. Section 3.4 presents an applicatihe new CDF representation
to a multiple antenna system with receiver antenna sefeoferating in correlated Rician
fading channels. Some numerical examples and simulatiguitseare presented in Section
3.5.

1A version of this chapter has been submitted tolFEE Transactions on Communications
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3.2 Representation of Equicorrelated RVs

We use uppercase bold letters to denote matrices and loseetrad letters for vectors.
We use(-)T and (-)# to denote the transpose and the Hermitian transpose of amatr
respectively.

Using the method described in [41, eq.(8.1.6)] we define as€lan RV as

G =(V1-XNXy+XXg)+mg k=1,---,N, Il=1,---,m (3.1)

whereX € (—1,1) \ {0} and Xy;(k = 0,1,--- ,N [ = 1,--- ,m) are independent and
N(0,3). Thenforanyk,j € {1,--- ,N},l,n € {1,--- ,m}, E[XX;»] = 0k;j01,, Where
dxr = L andéy; = 0 for k # j. The cross-correlation coefficient between &hy andG ),
(k # j) is given by

E[GnG;,] — E[GHIE[GS,]

Phljn = \/Var[le] Var[Gjn]
A2 k+#jandl =
_ (k# j and = n) 52)
0 (I #n).
DenoteR;, as the summation of squared valuesf forl =1,--- ,m, then
Ry =) G (3.3)
1=1
Note thatRy(k = 1,--- , N) is a summation of squares of independent Gaussian RVs
with non-zero means and identical variances. Then it isestithatRy(k = 1,--- , N)

is a set of correlated non-centrgt distributed RVs withm degrees of freedom and non-
centrality parametef, where¢ is equal toy ;" , mgl. The component Gaussian RVs follow

the equal correlation model.

3.3 Derivation of PDF and CDF of Multivariate Non-Central y?
Distribution

In this section, we present the derivation of the PDF and Cireomultivariate non-central
x? distribution with equal correlation among the componentisd@an RVs. We introduce

anew RVUy = X + . Define another new R such that
m
T=> Uy (3.4)
=1
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We identify thatT" is non-centraly? distributed withm degrees of freedom and non-

2
centrality paramete$? = oy (mOl ) . The PDF ofT" is given by [43]

By
m—2
t 4 9
frt)= exp(— (5% + ) Im (25\/z> . (3.5)
Now assume the values of RV, are fixed atug, forl = 1,--- ,m. Then the value

of T also becomes fixed at Now we consider the conditional R\$;;s. Note that the
RVs G},;s conditioned on RV&/ys have equal variancgs — A\?)/2 and means\ug;. We
identify that the RVsR;,s conditioned ori/y; are also non-centra}? distributed withm
degrees of freedom and non-centrality paramétere= A2 3", w2, = A\%t. We can write
the conditional PDF oR?;, as [43]

fRy o (TE|Uot1, -+, Uom) =
1 Tk mT72 < ()\215 + Tk)> vV A2t
— | —= exp| —————=| Im_1 | /7% (3.6)
202 (5e1) 202 : 02

whereQ? = (1 — A\?)/2 andUg = [Up1, - -+, Uom)-

One can compute the conditional cross-correlation coefftcbetweerG,; and G,
using

E[GiGjn| X0, Yo] — E[Gri| Xo, Yo]E[G 1| Xo, Yo]
VE(Gr — E[Gr))?[ X0, Yo] E[(Gjn — E[G;n])? X0, Yo]

C
Pkl jn =

=0. (3.7)

The Gy;s are conditionally uncorrelated. Since they are jointiyu&ian distributed, they
are conditionally independent. Since the componéhisare independent once conditioned
on Uy, the resultingRy's become conditionally independent for= 1,--- , N. Then the
conditional joint PDF of the resultinge;’s can be written as a product of the individual
PDFs,

N m—2 2 2
1 Tk 4 A t"‘rk VA%t
frip(ri,re, - rnlt) = H 202 2 (_A2t> €xp <— 207 > [%71 (W“k )

k=1
(3.8)
whereR = [Ry,--- , Ry].
From the basic laws of probability we have [44]
IRr(r1,72,73,+ ,TN) :/ frr(ri,r2, -+ ,ry,t) dt. (3.9)
0
Also we have
frRr(ri,re, -+ v, t) = fryp(ri,re, -+ srwlt) fr(t). (3.10)
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Then we can write the unconditional joint PDF as

fm(ri,ro,r3, -+ ,ry) = /000 fryr(r1,72,- -+ ,rNlt) fr(t) dt. (3.11)

Substituting (3.5) and (3.8) into eq. (3.11), we get

m—2

atrirec o) = [T (g2) T ew (-84 )15 5V

N m—2 2
L orrpg "7 At + 1y, V2t
H 29% (E) €exp <—W> I%—l (\/Tk; 02 dt. (312)

k=1 k

Eq. (3.12) is the new single integral representation for rthétivariate non-central
x? distribution with the component Gaussian RVs having an kegoaelation structure.
The solution is given in terms of well known mathematicaldiions available in common
mathematical software packages such as MATLAB. No multiglsted infinite summations
are required for the computation of tiié-dimensional PDF. The computational burden is
limited to a numerical evaluation of a single integral faWadimensional distribution.

The multivariate CDF for the non-central chi-square disttion can be obtained using

a similar methodology.

FR(Tla"' ,TN) =
/"'/FRUO(Tla“‘ ;"N |Uo1, -+, Uom) fue(Uot, -+ s Uom) dUot -+ dUop,.
(3.13)
Since the RVsR,s are conditionally independent @fy, - - - , U, the joint conditional
CDF can be written as the product of individual condition8IF3 as
N
Friuo (1,72, s |Uot, -+, Uom) = HFRk\UO(Tk|U01a“‘ s Uom) (3.14)
k=1
whereF'g, ju, (rk|Uot, - - - , Uom) €an be obtained using [43]
o~ a2 (A%/2)0 5(j + (m/2), (1 = \)re/2)
Fp, relUo1,+ , Uom) = e 2 . — (3.15)
Rk|U0( | 01 0 ) jzo ]l 1—\(] + (m/2))
whereA? = 12_0;, Jj = v—1, v(a,b) is the lower incomplete gamma function [49] and

I'(+) is the gamma function [49] . For even valuesofwe can write this CDF in terms of

generalized Marcungy function [43], namely

c Jr
FRk|U0(rk’U017' < ,Uom) =1- Qm/Q <Q—k, \f/z—_:> . (316)
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Using the same approach used for the multivariate PDF denivawve derive the single-
integral representation for the CDF of the multivariate Hsentral chi-square distribution

as

FR(Tl,’I“Q,- .. a""N) = /OOO (%) ! exp(—(52 +t))[%,1 (25\/@)

N oo ; .
22 (A2/2)1 3 + (m/2), (1= 3)ri/2)
1125 G+ o 8

and for the special case of even

Fr(ri, - ,rn) =

m—2

/" N VNI TR
/ (S—> xp(=(* + 1)1 25V [ [1—%( N ,Q—k>

dt.

(3.18)

Egs. (3.17) and (3.18) are the new single-integral reptatiens for a multivariate non-
centraly? distribution with the component Gaussian RVs having theabcprrelation struc-
ture (3.2). Contrary to the representations given in [133],[[34], the computational time
required does not grow exponentially with the dimensidpalf the distribution. Note that
the infinite series in (3.17) can be computed easily with theefion NCX2CDF available
in MATLAB.
Using the single integral representation of the multiierRDF, the joint CHF oR. can

be found in single integral form as

m—2

UR(wi, - ,wN) = /000 <%>4 exp (—(S% +1)) Im (25\/5)

N .
1 ( JwpS? )
[[———5op (252 ar. (3.19)
oo (1— Jwrs)1/2 1 — j2w Q2

3.4 Applications of the New Representations

The new representation derived for the CDF of the multivarimn-central? distribution

can be used to evaluate the outage probability of a singleM&VO system with receiver
antenna selection. MIMO systems, which marked a remarkatbrancement in wireless
communication technologies, were introduced to providen lafiversity and capacity en-
hancement in a wireless system, subject to a fundamentiddffa The implementation

of MIMO technology requires the availability of multipled® frequency (RF) chains in
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wireless devices, leading to higher implementation corigleln order to achieve the ben-
efit of having multiple antennas while maintaining a reasbmaystem complexity, several
antenna selection schemes have been proposed for MIMOvsy§5€], [51].

Independent fading channels are assumed in the majoritjudies that deal with the
performance of antenna selection in MIMO systems. Howemguractical scenarios, the
fading experienced by different antenna elements can brelated. The performance of
MIMO systems with antenna selection, operating in Rayldégting channels in the pres-
ence of fading correlation was investigated in [52], [53jeTexponential correlation model
is used in [52] for the case when the number of receiver aateis greater than 3. In
this section, we examine the performance of a single-us&i®isystem which employs
receiver antenna selection, operating in correlated Rifdding channels. We consider a
MIMO system model withV, transmitter antennas ard. receiver antennas. The received

signal after the matched filter can be written in vector foan a
y=Hx+n (3.20)

wheren denotes théV,.-dimensional noise vector and th&-dimensional independent and
identically distributed (i.i.d.) signal vector is denotadx. The N, x N;-dimensional

channel matriXH is modeled using
hi = (V1= XXy + AXoj +m1 ) + V7T (VI 02V + 0oy +ma ) (3:20)

whereh;; denotes the channel coefficient from tj{& transmit antenna to thé" receive
antenna € (—1,1)~ {0} andX;;,Y;;(i =0,1,--- ,N, j=1,---,N;) are independent
andN'(0, 3). The RVh;; is No((m1 + +/—1ms), 1), and|h,;| is Rician distributed with
Rician factorK = (m? + m3) and mean-square valig|h;;|?] = 1 + K. The cross-
correlation coefficient between any; andh;,, (k # j) is given by
Elhuh},] — Elhu]E[R],]

v/ Varlhy| Varlhj,]
_ A (k#jandl=n) (3.22)

0 (I #n).

Therefore, the model given in (3.21) can represent cog@lRician RVs with the underly-

Pkljn =

ing complex Gaussian RVs following the equal correlatiordei@3.22).

The channel matri¥ can be written as
H = [h17"' 7hNt] = [p17"' 7er]T (323)
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whereh; and p; denote the columns and rows B respectively. From the correlation
model (3.22) we identify that thl; (: = 1,---,N;) are mutually independent and the
elements of each; are equally correlated. The equal correlation model [118],[[54] is
considered to be valid for a closely placed set of antenndsray be used as a worst case
performance benchmark [12]. We assume perfect channelistarmation (CSI) only at
the receiver. The transmitter uses equal power allocatitong the all transmitter antennas.

The instantaneous capacity of the MIMO system can be oluitaine
_ P H
Cinst = 1Og2 det <INr + ﬁHH ) (324)
t

wherep is the average unfaded SNR which is equa(IT%oE = x'Ix ando? is the variance
of the noise.

Similar to the system model used in [52], we assume that oné/receiver antenna
which maximizes the instantaneous capacity is selectdueaieceiver. Let’; denote the
instantaneous capacity if thi€ receiver antenna is selected. Then the achievable capacity

with the antenna selection scheme can be written as [52]
Csys = max {01702,--- 7CNT} (325)

where(; is given as

C; = log, (1 n ﬁm) (3.26)
Ny

and whereW; = pfp, = Z],f;l |hi;|?. We identify thatW; is non-central chi-square

distributed witr2 V; degrees of freedom. Note th@j is maximized wheV; is maximized.

Then we definégZ = max {W;, Wy, --- , Wk, }, and the achievable capacity with antenna
selection can be written as
Cuys = log, <1 n iz) . (3.27)
Ny

3.4.1 Outage probability of the system

Following the same outage probability definition used in[%& consider an outage event

to occur when the instantaneous capacity of the systembfalésv a threshold information
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rate. Then the system outage probability can be calculated a

Proutage = Pr {Csys < Cth}

= Pr {log2 (1 + %Z) < Cth}

Cth_
P

e (%) . (3.29)

Also we have

Fy(z)=Pr{Z <z}
=Pr{W1 <z Wn, <z}

= Frw ey, y (250, 2) (3.29)
The single integral expression for outage can be given as

Pr {Csys < Cth}

= Fiw, o w <_Nt(2q—h_1) LQCW—U)
{ 1y Nr} D ’ ) P
oo 422 U EAACEIE NT
o 2
:/0 T Sy SV [1- O [ (e | —— dt
(3.30)

whereS? = Ny(m2+m3)/A\2. To the best of our knowledge, this result is novel. Compared
to previous results, we are unaware of outage analysis onidteiver antenna selection

in correlated Rician fading that do not place restrictionghe dimensions of the system.

3.5 Numerical Results

In Fig. 3.1, the outage probability is plotted for the caselv; = 3 and N, = 3,4,5
and6 with A = 0.7, and Rice factolX = 3 dB. A threshold information rate of 2 bits/s/Hz
is assumed for the numerical and simulation results. It @olserved that the outage
probability improves with additional receiver antennasegpected. However, the marginal
benefit with each additional receiver antenna is decreabiogexample, wheiV, increases
from 3 to 4, we obtain a SNR gain of 1.2 dB while the gain is 0.6fdiBthe case whew,

increase from 5 to 6. Fig. 3.1 also shows the outages for ueleted antennas. Observe

40



that the marginal benefit of an additional receiver antesrsamialler in the correlated case.
Fig. 3.2 shows the outage probability variation with the bemof transmitter antennas
when N, = 3, A = 0.7 and the Rice factoi = 3 dB. We observe SNR gains of 1.7
dB whenN; changes from 3 to 4 and 1.1 dB whéh changes from 4 to 5 at an outage
probability of10~5. The new representation of the CDF permits accurate cosgadf the
correlated system with the uncorrelated antenna systera.olitage probability behavior
for the case ofVy, N,. = 3 with different A values is plotted in Fig. 3.3. The SNR loss due to
fading correlation can be clearly quantified from Fig. 3.8y &4 shows the system outage
probability for different/ values. A SNR gain of 7.5 dB can be observed for the correlated
system wherk varies from 1 dB to 7 dB with outage probability d—6, demonstrating
clearly the benefit of increased power in the line-of-sighthponent. The single integral
expressions are evaluated using numerical integration ATIM\B, while one may use

other numerical integration techniques to evaluate thglesiimtegral to a desired accuracy.

3.6 Summary

Novel single-integral representations were derived fer BDF and the CDF of a multi-
variate non-centrak? distribution with the underlying Gaussian RVs followingetequal
correlation model. The solutions were given in terms of raathtical functions which
are available in common mathematical software packagésasIMATLAB. An important
feature of these solutions is that the computational burdemains at the level of a sin-
gle integral computation for & -dimensional distribution. We used the new form of the
multivariate CDF to numerically evaluate the outage prdigtnf MIMO systems with
receiver antenna selection, operating in equally coedl&ician fading channels. Finally
numerical examples and simulation results were given tootsinate the accuracy of the

new solutions.
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Figure 3.1. The outage probability foN, = 3 with different values ofV, with A = 0.7 andK = 3
dB.
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Figure 3.2. The outage probability foN,. = 3 with different values ofV; with A = 0.7 andK = 3
dB.
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Figure 3.4. The outage probability foN,. = N, = 3 at A = 0.7 with different K values.
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Chapter 4

New Representations for the
Multivariate Weibull Distribution
With Constant Correlation

4.1 Introduction

In this chaptet, we derive single integral representations for the PDF ab# 6f the joint
multivariate Weibull distribution with constant corratai. We use the new representations
to evaluate the performance of a selection diversity systparating in equally correlated
Weibull fading channels. The advantage of this approaclnas the complexity of the
numerical evaluation of the distributions does not growomantially with the number of
dimensions of the distribution, as is the case for some pusly known results. The new
representations are given in terms of well known mathemldtimctions which can be eas-
ily and rapidly evaluated with commonly available mathaoadtsoftware packages such
as MATLAB. Thus the performance measures of a selectiorrgltyescheme can be com-
puted conveniently. References [12],[40] used this apgirdar performance evaluation
of correlated Rayleigh, Rician and Nakagamifading channels. The basic idea for this
approach is found in [41]. Furthermore, we show how to usenewr representations to ex-
ecute moment analysis of the output SNR of EGC diversity atp@y in equally correlated
Weibull fading channels. Previously, only the average ou§NR (first moment) of EGC
in correlated Weibull fading has been studied [56].

The remainder of this chapter is organized as follows. IrtiBeet.2, we present the

model used to generate equally correlated Weibull RVs frodependent Gaussian RVs.

This chapter will be presented in part at the IEEE Global Camications Conference (GLOBECOM)
2010 [55].
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The approach used to derive the multivariate Weibull PDF@DE is presented in Section
4.3. In Section 4.4, we use the new representation of mritikea\Weibull CDF for per-
formance evaluation of a selection diversity system opegah correlated Weibull fading.
Section 4.5 presents the output SNR moment analysis of E@Quially correlated Weibull
fading using the new multivariate PDF representation. Nigakexamples and simulation

results are presented in Section 4.6.

4.2 Representation of Correlated Weibull RVs

The Weibull fading model has several definitions. In [6], &swshown that Weibull dis-
tributed RVs can be generated by a power transformation gfelga distributed RVs.
Therefore we denote a set of correlated Rayleigh distribRés using the approach given
in [41, eq. (8.1.6)],

Gy, :O’k(\/l—)\QXk—i-)\Xo)-i-iO'k(\/l—)\QYk-i-)\Yb) 4.2)

wherei = /-1, A € (—=1,1) \ {0} and X}, Yx(k = 0,---, L) are independent and
N(0,3). Then for anyk, j € {0,--- , L}, E[X,Y;] = 0, andE[X; X;] = E[Y},Y;] = %5@'
wheredy, = 1 andd,; = 0 for £ # j. ThenGy, is a zero-mean complex Gaussian distri-
bution with N, (0, o7), and| G| is Rayleigh distributed with mean square valij¢Gy|?] =

a,%. It can be shown that the correlation coefficient betweenG@nyG; for k # j is given

by
E[GrG}] - E[GKEIG]]
- = \°. 4.2
i = ElGrPIENG, “2)

According to [6, eq. (1)], we denote the complex enveldigeof the Weibull fading model

as

@

Wi = (o (V1 = N2 Xk + AX0) + iok (V1 — N2Y, + A\Y))) 4.3)

where the Weibull power parametér> 0.
Let Z, = |Wx|. Then we can writeZ;, as a power transformation of a Rayleigh dis-
tributed RV|Gy|, namely
Zi = |Gyl (4.4)

where|Gy| is determined by (4.1) with the correlation structure (4 2he corresponding
correlations between the resulting Weibull RVs can be daled using [6, eq. (15)]. Using

this power transformation on correlated Rayleigh RVs, we @btain correlated Weibull
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RVs with identical power parametgrand them!* moment given by

E[Z"] = o2™/fr (1 + %) . (4.5)

By changing the value g#, we can obtain RVs with other distributions such as the Ralyle

and the negative exponential.

4.3 Derivation of the PDF and CDF of the Multivariate Weibull
Distribution

In this section, we present the derivation of the new reptesiens for multivariate Weibull
distributions with constant correlation. As the first stee, condition the RV€7;s on the
RVs X, andY;. The PDF and CDF dfGy| conditioned onX, andYjy, can be written as

et o ¥6) = s oxp (- T ) 1y (e (4.62)
Figo (k1 X0, Yo) = [1 -Q (g—’; Q—m (4.6b)

pi = i+ (4.60)

1 = oA X0 (4.6d)

1y = OpAY, (4.6€)
Qizai(l_QAQ), k=1,---,L. (4.6f)

One can compute the conditional cross-correlation coefftdetweertr;, andG; using

E[GrG5| Xo, Yo] — E[G|Xo, Yo]E[G}| X, Y]

% = JElIGr - ElGA X0, ToIB0G, —EG Pl )
The conditional PDF and CDF of th&,'s can be written as
1 8
[z, (21 X0, Y0) = % exp (- (Z%;;i)) Iy (Zlgzgk) (4.8a)
g
Fyz, (2| Xo,Y0) = |1 -Q (g’; ;’“k) . (4.8b)

The RVsG}'s become uncorrelated when they are conditioned on theX RMndYj. Since
the G.s are jointly Gaussian distributed, they are conditionaltlependent. Therefore, the

resulting RVs, theéGy|s are independent. Since we obt&jpusing a power transformation
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on |Gy|, the resultingZ;s also become conditionally independent. Then the comditio
joint PDF of theZ,s can be written as the product of the individual conditioR8IFs,

namely
L
fz1x0,v0 (21, 22, -+, 20| X0, Yo) = H [z, (2] X0, Yo) (4.9)
k=1
whereZ = [Z, Zs, - -+ , Z1]. From the laws of probability, we know that [44]
fz(21,-++ ,21) :/ fz.x0,0(21, 22, -+, 21, X0, Y0) dXodYp. (4.10)
Yo J Xo

Also we have
fZ,X(),Yo (217 R X07 }/0) = fZ‘Xo,Yo (Zl7 22y, ZL‘X()v YO) on,Y()(X07 YO) (411)
Then we can write the unconditional joint PDF as

fZ(Z17 R 7ZL) =

/ fzix0,v0 (215 22, -+, 201 X0, Y0)  fxo,v0 (X0, Yo) dXodYp. (4.12)
Yo 7 Xo
SinceX), Yy are independent antl’(0, 1), the joint PDF is given by
1
Fxo.¥0 (X0, Yo) = — exp(—(X§ +17). (4.13)

Then we can write the joint unconditional PDF of the coreiitVeibull RVs as

fZ(Zlv T 7ZL)
L 1
|| Lz (oo, Yo) —ep(-(XF +Y8)) dXod¥o. (4.14)
Yo J Xo 14 ™
Substituting (4.8) in (4.14), and after some straightfaduaanipulations, we can simplify
the double integral in (4.14) to obtain a single integralrespntation for the PDF of the

multivariate Weibull distribution as

fZ(Zlv"' 7ZL) ==
s
00 L 5 B-1 B 242 2.\ [to2 )2
Bz, zp + o\t %k \/ 1%
exp(—t) exp | — Iy dt. (4.15)
/tzo kHl 202 202 037

Eqg. (4.15) is the new single integral representation forRBE- of a Gaussian class mul-

tivariate Weibull distribution with constant correlationThe L-dimensional PDF can be
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computed by numerically evaluating the single integratespntation. An interesting ob-
servation regarding this representation compared toqusly available forms [6, eq. (29)],
is that the numerical implementation and evaluation corileloes not increase exponen-
tially with the number of dimensions in the distribution.

For the special case df = 2, eq. (4.15) can be solved in closed-form using [57, eq.
(3.15.17.1)] to obtain

f71.2,(21, 22) =

B1—1_pa—1 B1 B2 1.01/2_B=2/2
1 2
B2zt 2 eXp[ <Z1 +22 )] I()( VA2 ) (4.16)

0203(1—\4) 1= \o2 " o2 o102(1 =A%)

which was previously given in [6, eq. (11)].
In order to obtain a new representation for the multivari&esbull CDF, we integrate

(4.12) with respect to variables, zo, - - - , z,, and we get

Fz(z1,--- ,21) =/ / Fzix0,v0 (215 22, 5 21| X0, Y0)  fxo,v5(Xo,Y0) dXodYp
Yo J X0

(4.17)
whereryz, x, v, (21,22, - , 20| Xo, Yo) is given by
L
Faixono (21, 22, -+, 221 X0, Y0) = [ [ Fzyx0.v0 (261 X0, Y0) (4.18)
k=1

and wherel'; | x, v, (2x| X0, Yo) is defined in (4.8).
Substituting (4.8) and (4.13) in (4.17), we get

B

L 2

z 1

Fz(z1,- - ,zL)://H 1-Q S—’;Q—i %exp(—(Xg—kYOQ))dXodYo. (4.19)
k=1

Using the same manipulations we used for the multivariat& EBrivation, we get the

single integral form for the multivariate Weibull CDF witlgeally correlated RVs as

2y2 4
Fz(z,- - ,ZL):/t:etﬁ 1-Q \/Egizk)\,% dt. (4.20)
k=1
Eq. (4.20) is the new representation for the CDF of a Gausd&ss multivariate Weibull
distribution with constant correlation. Thie-dimensional CDF can be computed by nu-
merically evaluating the single integral representatidote that once again the numerical
implementation and evaluation complexity does not growoesmntially with the number of

dimensions in the distribution.
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Also note that if we consider that only the underlying Ragtte{or complex Gaussian)
RVs are equally correlated (but not the resulting WeibulbRg in [36]), we can modify our
new representations to include non-identical values ofgg@arametef; > 0 by replacing
B with g,k =1,---, L. Therefore, the results presented in this chapter are nearerg|

than the results given in [6].

4.4 Performance of a L-branch Selection Diversity Combiner
Operating in Equally Correlated Weibull Fading Channels

In this section, we use the new representations of the raulite Weibull CDF for perfor-
mance evaluation of a selection diversity combiner opegéti equally correlated Weibull
fading channels. We show that the outage probability fbri@anch selection combiner can
be obtained in single integral form using the new represientaf the multivariate Weibull
CDF. Also, the average symbol error rate (SER) of some cabarel non-coherent modu-

lation schemes can be evaluated in double integral form.

4.4.1 CDF of the output SNR

The complex baseband representation of the received sigtia k" branch is given by

L = 2T + N (4.21)
wherez is the data symbol with energy,, z;, k = 1, - - - , L are the channel gains modeled
as Weibull RVs andh, k = 1,--- ,L are zero-mean Gaussian noise samples with variance

Ny, assumed to be equal across all the branches. The instanta88IR of the:!" branch

can be given as

2
_ ks
Ve = No (4.22)
The average faded SNR, is given by
_ E[zz]Es

We denote% by E. Then,7, = Ea:/ﬁ"’l“ (1 + %) Using the interesting property

0 k
that then!” power of a Weibull distributed RV with parameters, o2) is another Weibull
RV with parameterg3/n, o) [6], the joint CDF of the branch SNRs can be obtained by

replacingB with 3;/2 ando? with (a7 )%/2, whereay, = 1/T'(1 + -
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The joint CDF of the branch SNRs is given by

B

L K

o0 2t\? 27,2
F. = —t|| 1— \/ \ k dt 4.24
"/(717 77L) loe P Q 1 _)\27 1_)\2 ( )

whereY;, = <i> andy = [y1,72, -+ ,7L]. The SC selects the branch with the largest

ak Yk
instantaneous SNR. The output SNR of SC is given by

Ysc = max(vyi,Y2, VL) (4.25)

The CDF ofygc can be expressed as

Foo()=Pr(vi <y,v2 <y, ,7 <)

Then one has

Bk
L —r
>~ 2t\? 272
F’ysc(y):/o I -e Vi i || ¢ (4.27)
k=1

For the case of identically distributed fading with = o, andg, = 6,k =1,--- , L, the

CDF can be written as

L
00 2 g
Frse(y) :/0 et {1 -Q (\/ IQfAAQ,\/ 12T)\2>} dt. (4.28)

4.4.2 PDF of output SNR

A single integral expression for the PDF of the output SNRhef $election combiner can
be obtained by differentiating egs. (4.27) and (4.28), igme

o L Br/2—1 (FL )%k 2 +
—t ﬁky AkTk tA v
_ ot A — k%1 [y |2
fvsc(y) /tO € kZ:l Z(a’fk)ﬁk/Q xp ( (1- )\2) 0 1— A2 <ak’Yk>
5 5
2
Il-o|var. i <L> at (4.29)
ik 1—A aj’yj
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and

> LpyP! /o2 2 Y :
fvsc(y) = /t e ———=5 [1-Q 2t\2, <—_>

—o  2(a¥)8/? 1— X2 \ay

(L)%

B
tA\2 y\2
- I |2y —2— (2 4.
(1-x2) ) JIAQ (m) 439

exp

for the identically distributed case.
The MGFs for each case can be obtained in double integral igrtaking the Laplace
transform of the PDFs in (4.29), (4.30).

4.4.3 Performance measures for selection combining

The expressions we derived for the PDF, CDF and MGF of theub@pIR can be used to
evaluate some performance measures of a selection dyeesitbiner operating in corre-
lated Weibull fading.

Average Symbol Error Rate

The average symbol error rate (SER) of some coherent an@herent modulation formats
can be evaluated by averaging the conditional error préibafCEP) P(e|vy) over the PDF

of the output SNR. Therefore, we can evaluate the averageuSERB

P / P(ely) frser (7). (4.31)
0

Alternatively, one can use the CDF approach which is givefi¥) eq. (32)] to evaluate
error rates using the CDF of the output SNR. In both casesatbeage SER for a large
family of modulations can be computed by numerically eviiigea double integral for an
arbitrary number of diversity branches. The expression#hi® CEP of some coherent and

noncoherent modulation formats are given in [43].
Outage Proability
The outage probability of the system is found using
Poutage = Pr(0 < vsc < vin) = Fyge (vin) (4.32)

where~y, is the threshold SNR of the system. The system outage camsheéd using a

single integral computation for an arbitrary number of déty branches.
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Average SNR

Average SNR is another output quality measure of a wirelessntunication system. The

average output SNR for the selection combiner can be eealusting

Ysc = Elysc]
_ dM“/sc(S)
s=0
Br/2 Y %" 2 &k
/ / _tz LY ey G DR B P IS ORI
afyk; /Bk/z (1 — )\2) 0 1-— )\2 CLk-’Yk
5 ]
2
IT11-a|vae - <L> dtdy.
itk 1-— )\ a,j'yj
(4.33)
More generally, thes’” moment of the SC output SNR can be found using
_d"Myys0(5)
p=——"2 " . 4.34
m ds™ s=0 ( )

4.5 Output SNR Moment Analysis of a L-branch Equal Gain
Combiner

The new representation derived for the multivariate WéiBDIF can be used to examine the
performance of an equal gain receiver operating in equaligetated Weibull fading chan-
nels. We mainly focus on deriving expressions for the momehthe EGC output SNR.
The output SNR moments can be used to gain insight into theraygerformance in cor-
related fading channels. Furthermore, they can be usechtoate performance measures
such as average SER and outage probability using the sthagproximation procedures
developed in previous studies [58]. Reference [58] analyhe output SNR moments for
an equal gain receiver operating in equally correlated &gl Rician and Nakaganni+
fading channels.

We use the same signal model given in (4.21) for our analysi€GC, the received
signals are cophased and added to obtain the combiner odipeiinstantaneous SNR for

the EGC output can be written as [47]

21+ 24+ 20)°E
VYege = ( ! 2 LN, L) 2. (4.35)
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With the aid of the multinomial identity, the moments of thambiner output SNR can be
evaluated as [59]

(214 20+ +20)°Es\ "
mnp = Eh/ggc] =E |:< LN, .

2
_ (2n)'EY -

E[z71 - 27F
LSS ([ u)_

L
ni,,nL=0 Hj:l g
ni+-+nr=2n

(4.36)

In order to evaluate the moments of the combiner output SNRyered to evaluate the joint
moments of channel gairfi& 27", -

, z'F). The joint moments can be evaluated using the
new representation of the multivariate Weibull PDF obtdiire(4.15) as

E[z1", -, 2, // /21 v 2 E) fz(z1, 20,0+ 21) dzidze - - dzp. (4.37)

L— fold

Note that the L-fold integral in (4.37) is separable, andloanvritten as a product, namely
E[Zl [ >ZnL]

B8
B 242 2\ Jto? )2
2y + oc )\t 2 k
/eXp H/ Zkzm p<_k k >[0

—_— dzydt.
202 Q2

(4.38)
We denote the integral inside the product/as) such that

B
o0 -1 224 22 \[toEA?
J(k) :/ ngﬂggQ exp( Zk; + 0y )IO k k
0 k

dzg,. (4.39)
2002 Q2
Using [60, egs. (6.643.2) and (9.220.2)] , (4.39) can beegbim closed-form as

J(k) =T(1 + ﬁ)(zm)@ 1F1< I

2t

L —— 4.40
it ) (4.40
where; Fi (a; b; z) is the the confluent hypergeometric function given in [60,(@R210.1)]

Now the joint moments can be written in single integral forsn a

E[Z?lf o 7ZnL] =

> Nk 2 Nk At
= (1 20 5 F —: 1, —— | dt.
A eXP H + — B )( ) 141 < ﬂ ) Ly 1 _ )\2>

(4.41)
Then, the single integral representation for the EGC ouBNR can be expressed as
2n
2n) B (20%) 7
. )L 9?)

(LNo)" m,z /eXP H1F1< ;1A_—2§2>A(k)dt

ni+-+np= 2n

(4.42)
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I+ 2
whereA(k) = (7'5) The integral part of (4.42) can be identified as the Lapleaest
ng

form of the product 6TL confluent hypergeometric functions where the Laplace toams
variables has the specific value of 1. Using the result [57, eq. (3.8%,the solution for
the integral can be found in terms of théh-order Appell hypergeometric function [60, eq
(9.19)], namely

[e%e) L 2
ng At
O] 1A (-2 ) =
e “( 5 1—A2>

k=1
n n
FA <1;_E17"'7_?L;17"'71;1.17"'7mL> (443)
2
wherex; = Y fori € {1,---,L}. The region of convergence of the Appell hy-

pergeometric function in (4.43) is constrained |oy| + |z2| + --- + |zz| < 1, [61, eq.

xxxvii.1Y]. Therefore the convergence is limited to values\éfranging from 7] to

1 . .
1 and does not cover the full range Xf. However a transformation operation on the
Appell hypergeometric function can be used to obtain a cging series for the hyperge-

ometric function. Similar to [58], we use the transformatigiven in [61, eq. XXxViii9s,,]

and obtain
n n
FA<1;_E17"'7_%;17”'71;1’17"'71’[/)
—1_—)‘2F (1;0 ;1 1; ) (4.44a)
- 1+)\2(L—1) A s Ul sy ULy Ly , L3 Y1, y YL .
ai:1+—%, ie {1, L} (4.44b)
)\2
i =——0 e {l,---,L}. 4.44c
Yi=ire@on el } (4.440)
Since|yi| + |y2| + - + |yr| = e < 1, the Appell hypergeometric
Y1 Y2 yr| = I+ (1)) ) pPp yperg

function in (4.44a) converges for the entire range\dfuch that) < \? < 1. Therefore
the output SNR moments of EGC operating in equally corrdldeibull fading can be

evaluated using

(2n)1E7(202) 5

My, =
(LNQ)"
1— A2 L
AN AE T R TP PO A(k). (4.4
X Z 1—|—)\2(L—1) A( 7017 70L7 ) , L1, 7yL)H (k) ( 5)

ni,--,np=0
ni+--+nr=2n

k=1

In the following discussion, we consider some special cab6$.45).
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4.5.1 Average output SNR of the EGC

With the aid of [57, eq. (3.35.7.1)] and the relationshipwestn the second order Appell
hypergeometric function and the Gauss hypergeometrictitamgiven in [62, eq. (C.4)],
the average output SNR for the EGC can be simplified as

Vege = #) [(1 — X35t <% - 1> oF) (1 + % 1; 1;)\2>

r (%H
e () ()

(4.46)

For the special case of Rayleigh fading whgre- 2, it can be shown that (4.46) simplifies

to the previously known result in [58, eq. (19)], namely

L—-1 1 1
oo = 7|1+ T 0 (it | (@.47)

For uncorrelated branches where= 0, the average output SNR simplifies to

G,

Yuncorrelated = 7Y 1+ (
r(3+1)

4.5.2 Second moment of EGC output SNR

The second moment of the EGC output SNR can be obtained as

1+4

a2 T (1+4) (=3t A )

my = —5 |:( > o <1—|——,1;1;)\>
L2 [\1 are (1+2) B

G5

+2<L>F(1+% r(i+3) - (Hg,l;l;AQ)
+3) B

1— )\2)14*% (

1 1 2
1;1+_71+_a1+_;1,171;91792793>
B B B

_)\2)14-% 1 1
FA <171+ Bv 71+ 3;1717171;(11704270437044)]

(4.49a)
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0 = N2/(14+2)X?), ke{l,23} (4.49b)
ar =M/(1+3)%), ke{l,23,4}. (4.49¢)

For the special case of dual branch diversity, (4.49a) sfiaplto

r(1+3)r(1+3)

1 2 2 1

m2=3!72[—2F1 (——,——;1;A4>+ - ° R <—§ ——-1;)\4>
4 BB 312 (1+ 4)

. r(1+%) (1—22)i+3 . <1+£,1;1;A2>].
1212 (1+2) B

(4.50)

4.5.3 Other moment based performance measures for EGC

Reference [58] presented an approach to compute the EGQtdBNR CDF using the
output SNR moments. Further in [58], moments of the EGC du§NR were used to
evaluate the approximate average SER of EGC. The same apprsoaan be used for the
case of equally correlated Weibull fading channels.

Also, the output SNR moments can be used to compute other ntdmsed perfor-
mance measures for the EGC such as central moments, kuntmsamount of fading (AF),

using the standard methodologies.

4.6 Numerical Results and Discussion

In this section, we present some example results obtainaauinerically evaluating the
expressions presented in Section 4.4.3. For simplicitycevesider the case when branch
fadings are equally correlated and identically distridutdlso it is assumed that the sym-
bols have unit power, i.&; = 1 and the additive Gaussian noise in all the branches have
variance of unity, i.e. {y = 1) in numerical evaluations and simulation results. Fig. 4.1
shows the outage probability of the system for differentgalof 3, when the power cor-
relation coefficienp = o? of the underlying Rayleigh RVs is equal to 0.4. We observe the
performance improvement with increasifigralues and diversity order. Fig. 4.2 shows
the outage probability for different values pfand diversity orded., whens = 2.5. The
performance loss due to branch correlation and the pogsilites using additional antennas
can be quantified from the figures. For example, whea 2.5 andp = 0.4, a normalized

SNR gain of 1.6 dB can be obtained by increasing the numbeea#fiver antennas to 5
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from 4, while the gain is 1.1 dB for an increase from 5 to 6. Themalized threshold

~* is calculated asy, /7. Fig. 4.3 shows the average BER of BPSK signaling for the se-
lection combiner operating in equally correlated Weiballihg at3 = 2.5. We observe
that the marginal SNR gain of an additional receiver antetimanishes as the branch cor-
relation increases, as expected. Fig. 4.4 shows the naedadiverage output SNR for a
4-branch selection combiner. We observe the negative ingédranch correlation on the
output SNR. However, the average output SNR degrades withasing fading parameter
(3, which is similar to the results observed for uncorrelateahbh SC in Weibull fading
channels [63].

Fig. 4.5 shows the effect of branch correlation on normdliagerage output SNR
Yege/7 for EGC in equally correlated Weibull fading. The averageRSiNcreases as the
branch correlation increases, which is opposite behavtire behaviour we observed for
the SC case. An explanation for this phenomena was givergjn f8so, it is interesting to
note that the average SNR for EGC improves with the fadingritgvparametei3, while
we observed the opposite for the selection combiner. Figskdows the effects of branch
correlation and fading severity on the amount of fading f&@& The AF improves with

increasing fading parameter and decreasing branch ciorela

4.7 Summary

New single integral representations for the PDF and CDF efhtlultivariate Weibull dis-
tribution with constant correlation were derived. The n@sults were expressed using
mathematical functions available in common mathematioftivere such as MATLAB.
The new representation for the multivariate CDF was usedidatuate performance mea-
sures for a selection combining diversity receiver opegatn equally correlated Weibull
fading. New results for performance measures such as av&B&, outage probability
and average SNR were evaluated using single or double @tsefgr an arbitrary diversity
order. Furthermore, the new multivariate PDF expressios weed to evaluate the output
SNR moments of an EGC operating in equally correlated Wefading channels. The
output moments were expressed using single integrals oitnferies solutions. Numer-
ical results for the performance indicators were obtainsdi mulation results were used

to verify the accuracy of the theoretical analysis.
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Figure 4.1. The effect of3 on the outage probability of the selection combiner for tagecwhen
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Chapter 5

Simple SER Expressions for Dual
Branch MRC in Correlated
Nakagami-q Fading

5.1 Introduction

The Hoyt distribution [2] (also known as Nakagamfi]) is used to model wireless chan-
nels where the in-phase and quadrature signal componews zZeso means and arbi-
trary variances. Some results on performance evaluationirefess communication sys-
tems with diversity reception, operating in independenytfading channels are found
in [64], [65]. However, only a limited number of performanasults are available for di-
versity in correlated Hoyt fading channels.

In reference [66], the outage probability of a dual MRC systgperating in correlated
Hoyt fading was studied for the general case of non-idelhichstributed branches. The
results are given as a double integral of an infinite summafite authors of [67] derived
an infinite series solution for the average BER of binary eeheand noncoherent mod-
ulations with dual MRC in correlated Hoyt fading for the cadddentically distributed
branches. An infinite series solution for the outage prdivaloif the system was also given
in [67].

In this chaptet, we present simple expressions for the SER of dual MRC intiden
cally distributed correlated Hoyt fading channels. We uskeeorrelation transformation,
which was used on correlated branches in [69] for Rayleigh Ritian fading channels,
to make the transformed branches independent of each oftmem we can easily com-

pute the SER of coherent and noncoherent modulations usaddcorrelated branches.

A version of this chapter has been accepted for publicatiaghéIEEE Communications Lettefg8].

61



Other performance parameters such as the outage propaailitalso be evaluated using
methodologies developed for independent fading branches.

The remainder of this chapter is organized as follows. IntiGed&.2, we present the
correlated Hoyt fading channel model and the decorrelatiansformation on the corre-
lated fading branches. New simple representations fomgeeSER are given Section 5.3.

Section 5.4 presents some numerical and simulation results

5.2 Channel Model and Decorrelation Transformation

Letr; andr, denote the complex baseband equivalent signal samples atédhbranches.
We write

rL=g1¢ +n (5.1)
ro = go& + No (5.2)

wherez is the data symbol with energl, ¢;,7 = 1,2 are zero-mean complex Gaussian
channel gains and;,i = 1,2 are zero-mean Gaussian noise samples with variafce
The branch fadings are assumed to be identically distribwith average SNRy.

Assuming slow, flat fading channels, we model the channelsgasing the technique

givenin [41, eq. (8.1.6)] as

gk = (V1= A2Xp + AX0) + j(V1 = A2V, + AYy), k=12 (5.3)

wherej = /=1, A € (—=1,1), Xx(k = 0,1,2) are independent zero-mean Gaussian RVs
with variances?/2 and Yy (k = 0,1,2) are independent zero-mean Gaussian RVs with
varianceag/z Theng, is a zero-mean complex Gaussian RV with real and imaginaitg pa
having unequal variances for, # o,. Therefordg;| is Hoyt distributed with mean-square
valueE[|gx|?] = @ and Hoyt parametey = g—j/ 0 < g < 1. It can be shown that the
correlation coefficient between, g is given by

Elg195] — Elg1]E[g5] 2 (5.4)
Eflg1*]E[|g2|?]

The power correlation of the two fading gains can be compusaadg [70, eq. (11)].

Now we apply the decorrelation transformation used in [68}0andr, and obtain the

transformed branches as

_ri4re g1+ g2 +n1+n2

Y R B

=Gz + v (5.5)
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and
r —T2 g1 — g2 ny —n2
= x—'—
V2 V2 V2

It can be easily shown th&t; andG, are uncorrelated, and since they are complex jointly

= Gaox + vg. (56)

wo =

Gaussian RVs, they are independent. Similarly we can shattlie additive noise terms
v andwy are independent Gaussian RVs with variadée Also we note thatG;| and

2 2 2
|G4| are Hoyt distributed with Hoyt parameteand mean-square valuélsw and
(1-X*)(0Z+07) :
———5—"=, respectively.

The output of the dual MRC receiver is computed as
Ye = g X 11+ g5 X To. (5.7)
Then the decision statistic is given by
2o = (|g11* + lg2*)x + gin1 + g3na. (5.8)

We can easily show that an identical decision statistic eaadhieved with the transformed
branches by computing

Yd = GT X wy + G; X wWso. (59)

Therefore, the decorrelation does not alter the performafthe MRC receiver operating

in Hoyt channels. In [71], a similar result was proved for R&gh and Rician channels.

5.3 Simple Expressions for Average SER

Let~; and~, denote the instantaneous SNRegfandws, respectively. The average SNRs

1 andy; are

2
7= W = (1+ %)y (5.10)
T2 = W = (1= (5.11)

Then the MGFM,, (s) of 4;,47 = 1,2 can be written as [3]

<1202\ "2
M., (s) = (1 — 25 + %) . (5.12)

Since the SNRs of the decorrelated branches are independembtain the MGF of the
output SNR for dual MRC in correlated Hoyt fading as

M'YMR,C (3) - M% (3)'M72 (3) (5.13&)
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and

1 1
o (2s)%¢*\ 2 o (2572)2%\ 2
MVMRC (8) = <1 — 2571 + m 1 —2s% + m . (513b)

Now we can easily compute some performance measures foMR@lusing standard
procedures available for independent non-identicallyribisted fading channels [3]. The
well known MGF based approach can be used to obtain simplessipns for average SER
of dual MRC in identically distributed correlated Hoyt fadifor a large family of coherent

and noncoherent modulation schemes.

SER of M-AM

The average SER for M-ary amplitude modulation (M-AM) silgnzan be computed using

S 2(M 1) [ gam
Py= = /0 Moo <_W> d¢ (5.14)

wheregay = 3/(M? —1).

SER of M-PSK

The average SER for M-ary phase shift keying (M-PSK) signatsbe evaluated using

(M-1)=
5 _ 1 M gPSK
Py =— M - d 5.15
T e (i) 0 619

wheregpsk is given bysin?(mw/M).

SER of M-QAM

The average SER for square M-ary quadrature amplitude ratdinl(M-QAM) signals can

be calculated using

4 1 \? /A 9QAM
(- 7m) [ e (525 ) 0 639
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SER of M-FSK

The MGF approach can be used to evaluate the average SER of fWeguency shift
keying (MFSK) as

M— n+1 (M 1) n
Z:: e Mo (n—+1> : (5.17)

BER of noncoherent BFSK

The average BER of noncoherent binary frequency shift kpyBFSK) and differential

BPSK can be calculated according to

Py = aM,. (b) (5.18)

where (a,b) = (0.5,0.5) for noncoherent BFSK an¢,b) = (0.5,1) for differential
BPSK.

It is important to note that the new expressions for SER arengas finite range single
integrals of elementary mathematical functions. All thpressions can be easily evaluated
numerically using mathematical software packages suchAELMB and MATHEMAT-
ICA. The time required to compute the new solutions is sigaiftly lower than the time
required to compute the infinite summation solutions givef6i7]. Also note that the use
of the decorrelation transformation enables the use ofifficiumerical techniques [3, eq.

9.186] to compute the outage probability of the dual MRC iremein correlated Hoyt fad-
ing.

5.4 Numerical Results and Discussion

In this section, we present some example results obtainaauinerically evaluating the
SER expressions presented in Section 5.3. Fig. 5.1 showsvdrage BER for coherent
BPSK with dual MRC in correlated Hoyt fading for differentlwas ofp andq. We can
clearly quantify the performance degradation with incirgaorrelation coefficient and
decreasingy values. Fig. 5.2 shows the average SER for 8-PSK signalirgpiirelated
Hoyt fading. We observe an SNR loss of 1.5 dB whearhanges from 0to 0.7 with = 0.5
and the loss is 1 dB whesp = 0.1. Also, the SNR losses for the case whechanges
from 0.7 to 0.9 can be quantified as 2 dB fpe= 0.5 and 1.5 dB forg = 0.1. Fig. 5.3
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Figure 5.1. The average BER of coherent BPSK with Hoyt paramet@nd correlation coefficient
p.

shows the average SER for 16-QAM signaling with dual MRC irre@lated Hoyt fading.

The SNR losses observed in 16-QAM show similar behavior égdtobserved in 8-PSK.
In the figures, lines are used to denote the numerical valbisned from the theory. The
markers denote the corresponding SER result obtained froméACarlo simulation, where
the MRC receiver does not employ decorrelation before dagodiVe note the excellent
agreement of numerical results and simulation resultslithalcases. This confirms that
the decorrelation does not alter the MRC performance andthieanew SER results are

accurate.

5.5 Summary

It was shown that using a decorrelation transformation ernctirrelated branches, we can
obtain simple expressions for the average SER of severakenhand noncoherent signal-
ing formats with dual MRC in identically distributed coragtd Hoyt fading. The expres-
sions were obtained as finite range single integrals of bmathematical functions, which
can be easily and rapidly evaluated with common mathenatafaware. Simulation re-

sults were given to verify the accuracy of the analyticalisohs proposed in this chapter.
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Chapter 6

Conclusions and Future Research
Directions

In this chapter, we conclude this thesis while providing eansights into future research

directions based on the results of this thesis.

6.1 Conclusions

This thesis presented a framework to derive new mathenhatigeesentations for the mul-
tivariate PDF and CDF of some popular statistical distidng used in wireless communi-
cation theory. The constant correlation model and a gemedatorrelation structure was

used in our analysis.

e Chapter 2 presented new representations for multivariate ahd CDF of Rayleigh,
Rician and Nakaganma distributions with a generalized correlation structuréneT
new representations were given as single integral sokitiamich can be readily
evaluated with common mathematical software such as MATLRAR: new repre-
sentations were used to evaluate the performance of selediversity combiners

operating in correlated Rayleigh, Rician and Nakagamfizding channels.

e New representations for the multivariate non-cengraldistribution with constant
correlation were presented in Chapter 3. The new multit@®DF and CDF ex-
pressions were given as single integral solutions, whichlm easily and rapidly
evaluated with MATLAB. The new distribution representasowere shown to be

useful in analyzing MIMO systems operating in correlatedi&i fading channels.

e Chapter 4 presented new multivariate PDF and CDF expres$fiothe Weibull dis-

tribution with constant correlation. Similar to the reswf Chapters 2 and 3, the new
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6.2

multivariate Weibull PDF and CDF were given as single ingé¢golutions, which
can be easily evaluated with MATLAB. The new Weibull CDF eegsion was used
to analyze the performance of a selection diversity contboperating in correlated
Weibull fading channels, while the new PDF expression was tis analyze the out-

put SNR moments of EGC operating in correlated Weibull fgdihannels.

In Chapter 5, we presented a new technique to analyze pexfamarof a dual MRC re-
ceiver operating in identically distributed Nakagagfading channels. It was shown
that by using a decorrelation transformation on the cardldiversity branches, they
can be made independent. Then we used the standard pert@rmaalysis method-
ologies available for independent fading channels to aliew simple and rapidly
computable expressions for performance measures of thdocarech MRC receiver

operating in Hoyt fading.

Future Research Directions

The following may be considered as possible future resedirehtions based on this thesis.

This foundation may be used as a starting point to derive neltivariate PDF and
CDF representations for several other interesting digiohs such as the log-normal

distribution, x — p distribution and other general fading distributions.

One can consider about methodologies which can be used nwidg number of
classes of correlation matrices which can be included irirdraework presented in
Chapter 2.

The framework presented in this thesis may be useful forystidelay networks

with nodes consisting of multiple antennas.

Another possible research direction will be to consideraglicability of the frame-
work proposed in this thesis for wireless communicationtesys with imperfect

channel state information.

Furthermore, one can apply the multivariate distributiapressions introduced in
this thesis to several other areas other than wireless coication system perfor-
mance analysis. For an example, the Weibull distributiamsisd in other interesting
applications such as weather forecasting, reliabilityimegring and failure data anal-

ysis. The new representations of multivariate Weibull PDE €DF may useful in
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the above mentioned areas. Also the non-central chi-sgliamgbution is widely
used in other areas of statistics such as hypothesis tetimegefore the derived new

representations may be used to develop new results.
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