Concordia University College of Alberta
Master of Information Systems Security Management (MISSM) Program
7128 Ada Boulevard, Edmonton, AB

Canada T5B 4E4

The Detection of Operational Malware by its Tactics of Obfuscation

by

RHODES, Don

A research paper submitted in partial fulfillment of the requirements for the degree of

Master of Information Systems Security Management

Date: August 2009

Research advisors:
Dr. Pavol Zavarsky, Director of Research & Associate Professor,

Dr. Dale Lindskog, Assistant Professor, MISSM

The Detection of Operational Malware by its Tactics of Obfuscation

RHODES, Don

Research advisors:
Dr. Pavol Zavarsky, Director of Research & Associate Professor,

Dr. Dale Lindskog, Assistant Professor, MISSM

Reviews Committee:

Dale Lindskog, Assistant Professor, MISSM
Ron Ruhl, Assistant Professor, MISSM
Pavol Zavarsky, Associate Professor, MISSM

The author reserve all rights to the work unless (a) sprecifically stated otherwise or (b) refers to referenced
material the right to which is reserved by the so referenced authors.

The author acknowledges the significant contributions to the work by Academic Advisors and Review
Committee Members and gives the right to Concordia Univeristy College to reproduce the work for the
Concordia Library, Concordia Websites and Concordia MISSM classes.

Concordia University College of Alberta
Department of Information Systems Security
7128 Ada Boulevard, Edmonton, Alberta T5SB 4E4 Canada

The Detection of Operational Malware
by its Tactics of Obfuscation

Submitted in partial completion of the requirements for the degree of
Master of Information Systems Security Management

by Don Rhodes
April, 2009

Advisors:
Dr. Pavol Zavarsky, Director of Research and Associate Professor, ISSM
Dr. Dale Lindskog, Assistant Professor, ISSM

The Detection of Operational Malware by its Tactics of Obfuscation
Don Rhodes
Department of Information Systems Security
Concordia University College of Alberta
7128 Ada Boulevard, Edmonton, Alberta T5SB 4E4 Canada

Abstract

While some percentage of new-born malware has
always evaded detection by anti-malware services, the
quantity of malware able to compromise preventive
controls is increasing. Therefore enterprise security
practitioners must confront the reality that malware will
infect their organization's computing environment. A
problem largely unaddressed by the security community is
the detection of such operational malware. One aspect of
most current malware is powerful techniques of obfuscation
which render a malicious payload inscrutable to detectors.
Consequently obfuscation serves as a major indicator of
operational malware. Various aspects of obfuscation are
analyzed with the goal of determining its relevance to the
detection process. A differential analysis of various
attributes of executables as collected from the disk and
memory instances of running malware serve as a basis for
evaluating the detective utility of the form of obfuscation
commonly called 'packing', that is designed to evade
preventive mechanisms before the execution phase. It is
is detectable by the
difference in its code sections between disk and memory;
that structural attributes of executables can aid in this
detection; and that there are auxiliary obfuscation
techniques that must be considered. A tool practicable in
the enterprise environment is proposed to remediate this
chink in the armor of defensive tactics.

established that most malware

1. Introduction

The quantity of malware able to evade anti-
malware services at the time of ingress and successfully
infect a target host has been increasing [14]. This increase
is due largely to the mechanization of polymorphic and
metamorphic obfuscation techniques, so that each instance
of malware is unique, reducing the effectiveness of
traditional anti-malware detection strategies [3]. Even if
anti-malware services have very high rates of detection, the
raw volume growth of malware means more instances are

undetected and more signatures must be downloaded more
often [28]. Commercial anti-malware services must focus
on preventing rather than merely detecting infection; must
have very low rates of false positives so as not to disrupt
legitimate operations; and must do so with a reasonable use
of time and resources — a heavy burden in the face of the
onslaught of malware variations.
rigorously test their ‘products' against detective tools, even
online (e.g. Virustotal.com, CW Sandbox), so that they can
gain assurance that new malware will bypass detection in
the general case until signatures are developed. This period
of active and unfettered infection has been variously
described to have an average duration from days to weeks,
but the variance must be large, with the trend towards
narrowly targeted payloads leading to longer durations
because the anti-malware vendors may be delayed in
collecting samples for analysis.

It is this gap in malware defense that this project
seeks to address. An enterprise security analyst must ensure
the safety of large numbers of workstations and servers,
each of which has tens to hundreds of executing processes,
any of which may be malware. While sophisticated
malware analysis and reverse engineering tools exist, their
utility in the enterprise is limited by at least two factors:
they are generally heavy weight GUI programs designed for
in-depth analysis of a single suspected malware instance;
and they offer no help in reducing the size of the set of
suspects. The goal of this project is to develop a
methodology for identifying the small subset of malware
suspects among the larger set of executing processes, so that
they can then be more thoroughly analyzed, and remediated
if found to be virulent.

Almost all modern malware is obfuscated in order
to avert detection by anti-malware services, or to delay the
analysis that will result in preventive measures. A malware
program is obfuscated if its machine code is somehow
scrambled in the image file in order to forestall matching of
code signatures at ingress time (e.g. network transfer or
installation) and thus detection; or if the program geometry
is modified in memory after execution has begun in order to
counter reverse engineering activity. Both forms of
obfuscation imply subversive intention, and its

Malware authors can

identification can lead directly to remediation. It is worth
pointing out that this project's objective is not in any sense
to replace traditional anti-malware services, but rather is
dependent on them to maintain the threat of detection that
causes malware authors to obfuscate their code. Nor is this
methodology a substitute for full intent analysis and reverse
engineering. Rather this approach bridges the gap between
initially undetected and fully analyzed malware instances by
proposing a relatively light weight procedure for identifying
suspects and escalating to analysis and remediation.

2. Related Research

In the conclusion of their paper on cryptographic
defenses of malware [2], Aycock et al. state that “full
analysis of computer viruses may be a luxury of the past”
because anti-analysis techniques raise the level of difficulty
past any economic threshold. If analysis of the intention of
suspected malware cannot feasibly be determined, still
intention can be approached via the anti-analysis techniques
themselves. The primary tactic for anti-analysis seen in
current malware populations is packing, a generic term for
several types of obfuscation. Packers are available
commercially, in open source, and in custom versions [26].
In March 2006, 92% of the malware on the Wildlist
(www.wildlist.org) were packed [5, 26]. Innovations such
as server-side polymorphism, where malware payloads are
packed individually before distribution, make it difficult for
signature-based anti-malware defenses to prevent infection
[3,5,6,7,21,29]. The alternative to signature-based systems
is heuristic analysis, but that tactic is commonly thought to
result in an unacceptable rate of false positives [5,26].
However, because this project focuses on operational
malware, the false positive bugbear is less of an issue —
preventive mechanisms cannot disallow legitimate software,
but detective mechanisms have more scope since the
installation and execution of the target software has already
occurred and because there is a much smaller analysis set.

A foundational technique required by this project is
the identification of machine code. The more generic
frequencies generated for assembly language instructions
and their machine code equivalents accord with published
studies [3,30]. The more detailed analyses of particular
patterns appear to be idiosyncratic to this project.

Analyzing the payload of potential malware and
inferring therefrom its intention, has become difficult for
automated anti-malware systems. Disassembly of machine

code is wuseful for intention analysis, as well as
normalization for signature-based detection, but anti-
disassembly techniques are problematic [12,17,22].
et al. 2007 [17] recommend dynamic code analysis
techniques (e. g. emulation) to overcome the disassembly
issues they demonstrated with opaque constants. However,
the performance of emulators has been unsatisfactory in
automatic contexts [13,19,25], and the solution proposed by
Graf [11] to overcome performance issues results in an
effective emulator but a large footprint that cannot be
executed against remote processes.
approaches to disassembly — linear sweep, a single pass
through the code, and recursive traversal, which allows in-
depth algorithmic analysis of flow control and thus the
identification of non-code areas [22]. The simpler linear
sweep will be sufficient for the pattern matching goals of
this project.

Moser

There are two broad

Rutkowska [20] discussed differential analysis of
running processes' memory and the disk image, albeit in the
context of rootkit detection. That methodology is used in
this project and the technique of identifying machine code is
expanded to reveal packing by comparing the disk and
memory images. Geometric file analysis, also called shape
heuristics, is also considered as a detection mechanism.
Many Portable Executable (PE) file attributes [15] are
required by the OS to load and execute the program. The
TinyPE project has a list of such immutable attributes
developed through experiment [24]. These attributes are
discussed either in the context of prevention
[6,10,16,21,23], or manual Reverse Code Engineering
(RCE) [1,8,9], this project's
chronologically between those two endpoints. Sheehan, et
al. (2007) [23] use a large sample set of both malware and
known goods (70,000 and 9000 respectively), parse the
executable format into measurable attributes, and record the
measurements in a database. However, the number of
attributes utilized is small, and some of the attributes are
'soft' — i.e. not required to load and execute, and therefore
highly mutable by both malware and legitimate programs —
e.g. Section Name. This project more systematically
analyzes the set of attributes, recording changes made by
packers and comparing them to any changes made by the
baseline program set. It selects only those attributes that are
immutable to reduce false positives, and those which can be
conceptualized to be useful to malware authors intent on
deterring malware analysis.

whereas context 1is

3. Methodology

One general assumption for detecting obfuscation
is that an analysis of the differences between the executable
image file on disk and the image in memory during
execution will be revelatory because disk-based code
obfuscation must be undone in memory in order for the
machine instructions to be executed. A second assumption
is that modifications made to structural attributes of an
executable image that are critical to the successful loading
and initialization of the runtime image, are indicative of
analysis obfuscation. A third assumption is that code
fragments may be unpacked (de-obfuscated) not in situ, but
may be removed to unusual locations for execution.

The general methodology is to analyze programs
that have been obfuscated or packed by tools that are in
common use among authors of both malware and legitimate
software protecting intellectual property. The analysis
consists of distinguishing attributes that are strong
indicators of obfuscation, including those involved in the
three assumptions above: the appearance in memory of code
fragments not found on disk; changes in geometrical
attributes from disk to memory that can be construed as
inhibiting analysis/reverse engineering; and the existence of
abnormal execution locations. Once the attributes of
obfuscation are identified metrics are developed to aid a
security practitioner's decision to escalate to full analysis or
remediation.

Scope and Constraints

The project was limited to modern Windows 32-bit
executables — i.e. the Portable Executable (PE) format; no
DOS programs or .NET objects were analyzed. The
proposed tool must have a small footprint in order to be
useful for bulk operation in an enterprise environment,
whether as an installed service, or run ad hoc across the
network. This constraint governed some project design
decisions.

Data Sources

32 executables were collected for disassembly in
order to establish an algorithm for identifying code
fragments. Some of these programs were chosen for their
supposed similarity to malware — not GUI-based, accessing
a wide variety of system resources. Others were chosen in

order to round out the sample population and ensure valid
statistics for machine code frequencies.

36 programs were collected to serve as a baseline,
a sort of control population, for the analysis of what
constitutes a normal distribution of structural attributes.
This set of programs intersected strongly with the set
described above, but was not identical, as a wider range of
design paradigms was desired in order to observe as many
architectural possible. For example,
GoogleEarth was included in this set because it is a huge
program that does some interesting things with its code
sections.

37 packers were collected for analysis of
obfuscation techniques. A single program (CMD.EXE) was
packed with these programs — only this one in order to be
able to compare techniques among the various packers.
CMD.EXE was also chosen for its assumed similarity to
console-based malware, and for its ability to remain running
while analyzed — many console-based utilities execute a
certain function and terminate. One packer would not run a
packed cmd.exe (because it did not handle delayed imports
correctly), so NOTEPAD.EXE was substituted in that case.

variations as

Statistical Analysis of Machine Language

A primary goal of this project was to identify code
fragments in memory that did not appear on disk. It follows
that code must be identifiable in the general case, and this is
not as straightforward as it first appeared, because Intel
machine code has a very high entropy — the single byte
opcodes cover all 256 possibilities, and the second byte,
when an operand, is very dense as well, so that random bits
can often be interpreted as opcodes and operands. A
frequency analysis identified those opcodes and operands
that were far enough from random to be useful in
identifying machine code fragments.

There are numerous obstacles to achieving accurate
and complete disassembly of machine code [13,17,28] :

« variable length instructions

+ indirect addressing mode (requires emulation to
know data values)

* opaque constants

* data and code inter-mingled

+ strong disassembly requires 2 pass (recursive

traversal)

Thus it was decided to avoid dependence on strong
disassembly, and focus on purer pattern matching
algorithms.

The 32 programs described above were run

through a disassembler that generated both machine code

and the corresponding assembly language:

IAddress Machine Code Assembler
:4ADO701E 33C0O
:4AD07020 66A18C3BD34A
:4AD07026 50

:4ADO7027 8BO6
:4ADO7029 FF700C
:4ADO702C E836AAFFFF
:4ADO7031 85CO
:4ADO7033 7505

Xor eax, eax
mov ax, word[4AD33B8C]
push eax

mov eax, dword[esi]
push dword[eax+0C]
call 4ADO1A67

test eax, eax

jne 4ADO703A

This allowed frequencies to be calculated for multiple
patterns at both the assembly language and machine code
levels, using the assembly frequencies to focus on likely
candidates in the machine language where the actual
identification must occur. For example, the 10 most
prevalent assembly constructs:

Count Instr %inst %bytes %cum
369709 mov 27.68 9.06 9.06
241667 push 18.09 5.92 14.98
120441 call 9.02 2.95 17.93
071874 pop 5.38 1.76 19.69
060832 cmp 4.55 1.49 21.18
058132 lea 4.35 1.42 22.60
051245 je 3.84 1.26 23.86
047635 jmp 3.57 1.17 25.02
044987 add 3.37 1.10 26.12
043455 test 3.25 1.06 27.19

led to a more detailed analysis of transfer of control
instructions (JUMP, CALL), and test and compare
instructions (TEST, CMP). JUMP and CALL are
interesting because they include addresses that can
drastically reduce the uncertainty (entropy) since the 32bit
target address is a small subset of the 2** possibilities of
random data, so that e.g. for a FAR CALL there are 6 bytes
that are highly unlikely to be seen in a random data set (e.g.
FF15 5634AD40):

Count Instr $inst %bytes %cum
085558 call XX 6.40 2.10 2.10
019080 jmp XX 1.43 0.47 2.56
008949 je XX 0.67 0.22 2.78
008021 push XX 0.60 0.20 2.98
005810 jne XX 0.43 0.14 3.12
003218 call dword[XX] 0.24 0.08 3.20
001439 mov edi, XX 0.11 0.04 3.24
000977 mov eax, XX 0.07 0.02 3.26
000634 ja XX 0.05 0.02 3.27
000586 jl XX 0.04 0.01 3.29
and so also on the machine code side:
Count 1Instr Opcode %inst %bytes S%Scum
042150 Jje 74 3.16 1.03 1.03
032782 jne 75 2.45 0.80 1.84
024413 jmp EB 1.83 0.60 2.43
019243 jmp E9 1.44 0.47 2.90
009089 je 0F84 0.68 0.22 3.13

005853 7jne 0F85 0.44 0.14 3.27
003977 3mp FF 0.30 0.10 3.37

The entropy of JUMP instructions can be further reduced
because logic dictates and analysis showed that they are
generally preceded by a comparison statement:

:4AD02BID 85C0
:4AD02BI9F 59
:4AD02BA0 0F852D5E0000

test eax, eax

pop ecx
jne 4AD089D3

:4AD06F61 83F801
:4AD06F64 8BS8DFOFDFFFF
:4AD06F6A 8901
:4AD06F6C 0F8449C60000

cmp eax, 001

mov ecx, dword[ebp+FFFFFDFO]
mov dword[ecx], eax

je 4AD135BB

So, analyze the frequency of comparison statements directly
preceding transfers:

Count Instr-Pairs %inst S%bytes S%cum
022503 test je 1.68 0.55 0.55
018580 cmp je 1.39 0.46 1.01
018571 cmp jne 1.39 0.45 1.46
012043 test jne 0.90 0.29 1.76
003573 mov je 0.27 0.09 1.84
002698 mov jne 0.20 0.07 1.91

and comparisons one or two instructions removed:

Comparison Instructions Preceding Transfer

Jump O-remove l-remove 2-remove
160091 90112 11048 25331
100% 56% 6.9% 15.8%

These and similar analyses led directly to the machine code
identifier algorithm, which is discussed next.

Machine Code Identifier Algorithm

Image sections, formally defined in the PE Format,
are searched, both on disk and in memory, for patterns far
from random that match machine language. Three
stratagems are employed:

1. high frequency 16-bit strings in single instructions, e.g.:
. 83C4 (ADD ESP); 8B45 (MOV EAX); FF15 (CALL)

2. sequences of instructions within a necessary proximity, e.g.:
. compare ... jump; push ... call

3. instructions with 32-bit addresses that are relative to the image
address space, e.g.:

. E9 08000000 (Jump forward 8 bytes)

The high frequencyl6-bit strings are very far from
random : for example the two bytes 83C4 constitute .57%
of 16-bit strings in code samples, but the expected
occurrence for random data would be (1/256)%, or

0.000015%, thus making the most frequent byte pairs
excellent signifiers of machine code. Instruction sequences
or logical pairs that often occur together, such as TEST ...
JE (.55%) and CMP ... JNE (.45%) are counted as signifiers
if the comparison instruction is within 20 bytes of the jump
instruction. Instructions that use direct 32-bit relative
addresses are a rich set of signifiers because they are
liberally used by compilers for intersegment references. For
example, 2.1% of bytes in a code segment are involved in
local procedure calls (FF15 <32-bit addr>). Relative
address values are limited to the size of the program image,
so that a 1 MB image would have address values that are a
tiny fraction of the possible 4 GB range (1/4000 or
0.00025%) making them good signifiers with a low entropy.
All 32-bit relative direct addressed jump instructions were
matched in order to limit the options of malware authors —
so that hand-coded assembly or a modified compiler would
be required to avoid such signatures.

These categories of
accumulated when matched so that a total count of
signifiers is available for each chunk of data (on disk or in
memory) analyzed. A chunk size of 4096 bytes was chosen,
though the granularity is easily adjusted, and may need to
be, as will be discussed below.

three signifiers are

Metrics to Identify Code from Signifier Counts

The goal of the project is to identify the appearance
of code in the running instance of a program (the process in
memory) that does not appear in the storage instance (the
file on disk), and thence to infer obfuscation and subversive
intent. Although several measurements were tried, the most
successful was one of the simplest. For each 4K chunk (or
page) in a target data segment, increment a code page index
(CPI) if the signifier count exceeded a threshold value.
Divide the memory CPI by the file CPI for a target segment
to generate a code page delta index (CPDI) whose value
will be 1.0 if there is no change in a code segment between
disk and memory, and, as experience will show, far greater
than 1 (e.g. 28 or 31) when code is unpacked.

Where ¢ = file and ¢ = memory:

If ¥ ¢Sig; > 100 then @QCPI += 1
If ¥ uSig; > 100 then uCPI += 1
if @CPI == 0 then @QCPI++; uCPI++
CPDI = uCPI / (CPI

In order to arrive at this metric, the arrays of code pages
were visualized as 'heat maps', with a darker shade of blue

indicating more code signifiers, so that large patterns of
code segments could be seen, and the accuracy of the
metrics verified. In the example below the first program
visualized is the standard cmd.exe. It has 3 program
sections, each of which is represented in pairs — both its file
and memory instances. The first section is quite obviously
the code segment, and it can be seen to undergo no changes
at run time; nor do the other sections transform at all. This
is the standard and expected behavior of legitimate
programs. The metrics associated with this program are:

Section uCPI @CPI CPDI
0 30 30 1.00
1 0 0 1.00
2 0 0 1.00

Hen Sect 1: 29 pp; delta: 0.00/0.00 = 1.00

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Hen Sect. 2: 35 pp; delta: 0.00/0.00 = 1,00

The same program packed by a common obfuscator appears
below. There are now only two sections and the first
changes significantly (CPDI=28) from file to memory,
becoming recognizable code.

Section uCPI @CPI CPDI
0 27 0 28.00
1 0 0 1.00

PEConpact-cnd.exe

75 2 4.3 7 4

File Sect 0: 16 pp {.text)

[R T B I B A

236 552 549 M0 44 260 252 240 237 G4 241 246 330 344 206 395 350 412 304 356 231 235 236 246 21 378 246 30 4
Hen Sect 0: 93 pps delta: 0.41/0.08 = 8.28

OO TR I T T T T T T T T T T T T O T S R T4

File Sect 13 36 pp {,rsrc)
R I A R R R B T T A I TR R B R Y

Men Sect 13 36 pp; delta: 0,01/0,01 = 0,99

With the intuitive aid of the visual maps the validity of the
metric was confirmed, so that large CPDI values were seen
exclusively when non-code data on disk became code in
memory. It is theoretically possible that a data segment
could be transformed from disk to memory, which would
require the metrics to distinguish code from data, rather
than merely a radical change. The memory CPI metric can
be used for this function — if above a certain threshold, the
bits in question are code. Because this transformation was
not observed, the threshold was not formalized, but a
useable value would likely be about 0.33.

Metrics to Identify Geometric Attribute Differences

Most of the geometrical (structural) attributes of
the program are utilized by the operating system during the
loading and execution of the program image. These
attributes must therefore have values reasonable to the OS,
and should not change from disk to memory. When
changes are observed, it is likely the result of an attempt to
deter analysis of the executable. Below are the attributes
analyzed, along with some reasonable sample values. These
values describe such attributes as the size and location of
program data (including code) both on disk and in memory,
so that the OS loader can correctly install the program in
memory, and the OS resource management functions (e.g.
execution scheduler, memory manager) can manipulate the
executable as required during its execution phase.

Global Attribute Name YValue

e _lfanew 00EO
AddressOfEntryPoint 5056

BaseOfCode 1000

BaseOfData 1£000

ImageBase 4ad00000
SectionAlignment 1000
FileAlignment 0200
SizeOfImage 61000
SizeOfHeaders 0400
LoaderFlags 0000
NumberOfRvaAndSizes 0010

Section Attributes

Name 3 Value Sets

Name .text .data .rsrc
VAddr 1000 21000 3e000
vsize 0001£f5e0 0001lca24 000228b0
RAddr 00000400 0001fa00 0003c400
RSize 0001£f600 0001cal0 00022a00
Char 0000020 c000004 40000040

These values are compared for each program in the sample
set and changes from disk to memory are recorded.
Changes are analyzed for intent. The intent of many of the
changes was actually experienced — the research tool was

unable to analyze the program in memory until the changes
were accounted for, protected against. For example, the
Vaddr (Virtual Address) attribute indicates the starting
location in memory of a section, and should have a 4 to 6
digit hexadecimal value — when the value is something like
454E5245, and the Vsize attribute has a value of 4B006C6C
(over 1 GB section size) there is a deliberate attempt to
make the analysis program unusable. Another example is
the creation of 65,000 bogus sections, which a naive
analysis program would attempt to process, resulting in a
denial of service situation.

4. Findings

Results are enumerated below and discussed
thereafter:

1. None of 36 baseline programs showed any change
in their code sections from disk to memory

2. None of 36 baseline programs showed any change
in their geometrical attributes from disk to memory

3. 35 of 37 packed samples were unequivocally
identifiable as packed by noting a CPDI greater
than a threshold value of 10

4. 2 of 37 packed samples did not show significant
code changes from disk to memory in their image
sections, but further investigation revealed that
they were executing their unpacked code from
alternate locations and were thus amenable to
identification

5. 22 of 37 packed samples modified their geometry
with the intent to obfuscate

The confirmation that the baseline programs do not
change their code or attributes is important to have a chance
to distinguish packed from unpacked, obfuscated from
legitimate programs. From this result it is extrapolated that
only a very small percentage of legitimate programs
obfuscate their code. Such programs are protecting
intellectual property or preventing theft, such as computer
games, and high-end applications that suppose they have
algorithms to keep secret. Both these categories of false
positives ought to be easily distinguishable to an enterprise
security analyst — the high end applications should be few
and known, and games are likely a contravention of policy.

Most (35 of 37) packed samples were clearly
identifiable from the appearance in memory of code
segments not seen in the disk image. No direct attempt was

made by these programs to hide the unpacked code — and
indeed, it is difficult to do so, and therein lies the easy
success of the detection algorithm. Some sample statistics
are listed below with the unpacked code segments in bold
italics with asterisks:

Sect uCPI @CPI CPDI Packer

0 ***x 27 /] 28 Armadillo
1 0 0 1 Armadillo
2 **% 29 [30 Armadillo
3 0 0 1 Armadillo
4 0 0 1 Armadillo
5 0 0 1 Armadillo
6 0 0 1 Armadillo
0 *** 30 /] 31 AsPack

1 0 0 1 AsPack

2 0 0 1 AsPack

3 0 0 1 AsPack

4 0 0 1 AsPack

4 ***x 11 [12 ExeCryptor
5 3 0 4 ExeCryptor
6 0 0 1 ExeCryptor
0 0 0 1 ExeStealth
1 0 0 1 ExeStealth
0 ***x 27 o 28 PrivateExe
1 0 0 1 PrivateExe
2 **% 24 [25 PrivateExe
3 45 45 1 PrivateExe
4 0 0 1 PrivateExe
0 *** 30 (o] 31 RLPAck

1 0 0 1 RLPAck

Two packed programs did not show code changes
upon execution:

Sect uCPI @CPI CPDI Packer
0 0 0 1 ExeStealth
1 0 0 1 ExeStealth
0 23 23 1 nBinder
1 0 0 1 nBinder
2 0 0 1 nBinder
3 0 0 1 nBinder

In fact, exestealth does not show much code at all, which in
itself is highly suspicious, albeit difficult to measure:

ExeStealth-cnd.exe

LT L T LT ETLELTEL ETEELL AL

Hon Sect. 02168 pos delia: 0.03/0.08 = €.62

nnnnnnn

File Sect 1: 7 pp C.rsrc) R:00030600:60006400 ¥:00029000:0007000

Hen Sect 1z 7 pps delta: 0,02/0,02 = .89

=

When detection code was added to the research tool that
scanned the executing program's data heaps, executable
code was found. Text from the raw analysis file with code
page count, location, and size:

~Heap: 30 Code Pages Found @00140000->000cb000
~Heap: 18 Code Pages Found @00390000->00047000
~Heap: 30 Code Pages Found @00953000->00020000

The nbinder program was found to have a child process
executing from a temporary location on disk. The detection
logic was modified to flag child processes as suspicious if
the time of execution is within 3 seconds of the create date
of the file, indicating that the program may have unpacked
its original disk image into the temporary file rather than its
own memory area, thus avoiding the differential analysis of
the original algorithm:

1 HiddenChild: C:\Temp\cmd.exe nBinder
This modification assumes that legitimate programs will run
legitimate children from their original disk locations, and

that new locations indicate an attempt to hide the code.

The above findings were entirely adequate to
identify all packers in the sample, so less attention was paid
to the geometrical changes. These structural changes were
not universal, but highly indicative when present, and could
be assigned a weight and factored in to a comprehensive
obfuscation index, along with the more pervasive code
change metric (CPDI). The intent of these obfuscations is
to deter the automated (e.g. by anti-malware services) or
manual analysis of the program, thus improving the
malware's chances of evading detection. The examples
below are extracted from the analysis report, and represent
good candidates for detection parameters. The first field
shows the number of programs demonstrating the
anomalous attribute, the third the name of the modified
attribute, and the subsequent fields are actual data values,
often expressed as file~mem pairs:

« the code at the entry point differs from disk to mem
indicating code manipulation:

15 Attr AEP Modified

« the entry point is outside the image sections, a serious
flouting of convention at least. In this particular case,
the image header was collapsed so that code was
actually in the header. Probably an attempt to prevent
reverse engineering:

1 Attr AEP=-1

+ the entry point field was modified by the program.
Since this is used by the loader to pass control to the
program, the modification indicates that it was overlaid
after execution began:

4 Attr
1625~a596

AddressOfEntryPoint
1501~a596

+ the section count changed in memory, a structural

violation:
6 Attr NumberOfSections 2~3
4~255 4~154 1-3 1~-3 4~65444

+ the pointer in the DOS header to the PE header
changed. This indicates serious tampering with the
image header, for which there can be no legitimate

reason:
4 Attr e lfanew 00e0~10248f
0100~00e0 0090~00e0 0090~00d8

+ the program had an inordinate number of sections — a
clear attempt to disrupt reverse-engineering and
malware analysis:

1 !Mem+ ExcessiveMemorySections(154)
1 !Mem+ ExcessiveMemorySections (255)
1 !Memt+ ExcessiveMemorySections (65444)

« the program has more sections in memory than on disk,
indicating significant post-load changes:
8 {Mem+

NocorrespondingFileSection

* section pointers were either zeroed out or made
excessively large in order to disrupt reverse

engineering:
10 |Ptr huge
10 !Ptr zero

A standard section might look like this:

~Mem-0-Name *.text
~Mem-0-VAddr 1000
~Mem-0-VSize 0001£f5e0
~Mem-0-RAddr 00000400
~Mem-0-RSize 0001£600
~Mem-0-Char 60000020

whereas a heavily obfuscated section geometry is recorded
below, with the 3 anomalies found listed following the

attributes:

~Mem-4-Name msvcrt.d

~Mem-4-VAddr 454e5245
~Mem-4-VSize 4b006c6c
~Mem-4-RAddr 006c6c64
~Mem-4-RSize 2e32334c
~Mem-4-Char 32335245

~Mem-4-!Mem+
~Mem-4-!Ptr
~Mem-4-!Mem+
(65444)

No corresponding File Section
huge 454e5245-4b006c6c > ?-7
Excessive Memory Sections

All six of the attributes, from Name through Char, have
anomalous values — this program could not have loaded and
executed with such values, so the net effect of these
obfuscations is to more clearly reveal subversive intent.

S. Implementation Considerations
Detection Evasion and Countermeasures

This project was very successful in detecting
obfuscated processes because in general no defense against
such detection is attempted — because the detection method
is not deployed. If it were a factor in computing
environments, how might malware authors actively defend
against this class of detection, and how might the
methodology counteract these defenses to raise the bar
against malfeasance?

If an installed program is protected by a rootkit, it
would likely not be visible to the research tool. The scope
of this project was to determine obfuscation in otherwise
visible processes, so the tool uses standard operating system
functions to gather its information, and those functions are
compromisable. It would nevertheless be an imposition on
attackers to have to include rootkit technology in their
deployment package.

A primary avoidance tactic would be to preserve
the similarity of the disk and memory images. Two packers
in the sample set attempted to do just that — one by running
code from the program heap, the other by writing the
unpacked code to a temporary file, and executing it from
there. The tool already compensates for these evasions.
However, there is a technique commonly seen in malware
that would be very difficult to mitigate. If a malicious
process has sufficient privileges, it can use the Windows
API calls WriteProcessMemory and CreateRemoteThread
to inject unpacked code into the execution space (either the

process image itself or any of its associated DLLs) of an
otherwise innocent process, and thereby preserve its own
image similarity. The mitigation of this stratagem would
involve expanding the capability of the tool to include
scanning of DLLs, and actually scanning all currently
executing objects — greatly increasing the load on the tool
and reducing its effectiveness. Perhaps it would be more
cost effective to search for signs of this technique (e.g. the
usage of the two API calls) than to scan all processes in
memory. It is still a partial victory to force attackers to
employ the injection technique. Security practitioners
seldom have the option to avoid an arms race.

Malware authors have adopted sophisticated test
strategies in order to ensure that their products will be
effective against malware defenses — and this tool, if widely
deployed, would undergo such scrutiny.
assumed that the detection algorithm is known to attackers.
A second possible tactic would be to create a counterfeit
code segment in the disk image with statistically equivalent
but semantically meaningless machine instructions, which
would be over-written in memory by the desired and
unpacked code. This stratagem is possible because the tool
currently merely counts signifiers per 4K page, and does not
evaluate whether those counts represent the same signifiers
in each context (disk and memory). The counteraction
would be to refine the pattern matching of the detection
algorithm so that it can recognize the order and location of
the signifiers in a page. The challenge would be to preserve
the algorithm's efficiency.

A third tactic, also depending on knowledge by the
attacker, would be the avoidance of the actual signifiers
currently used by the detection algorithm.
language is rich in semantically equivalent instruction sets —
indeed, this feature is widely exploited by malware
metamorphic techniques. Such evasion is already difficult
to do, as the tool employs the top 42 high-frequency 16-bit
patterns, 28 test/compare patterns, and many of the 32-bit
relative address instructions, including all such jumps.
These pattern matching sets can be increased at will, and
even including all relative 16-bit jumps is feasible. The
malware author would then face a daunting prospect — to
code all jumps indirectly (e.g. load the address into a
register) or use only short (8-bit) jumps, which allow a
range of only +/- 128 bytes. The effective avoidance of all
feasible search patterns would reduce a malware author to
semantic poverty, depending on a few obscure instructions
that must be either hand-coded in assembly language, or
generated by a heavily modified compiler. If such a tactic
proved to be successful, the very obscurity of the machine
code could then be employed in detection.

So it must be

Intel machine

10

Deployment

A practical implementation of the tool was
envisioned from the start of the project. Although the code
was written in Python in order to use the proto-typing
features of a high-level language, no object-oriented
techniques were used, so that translation to ANSII C would
be a straight forward task. A compact executable is
required if remote execution is desired — as it may be in an
enterprise scenario where a security analyst wishes to
investigate suspicious processes in an ad hoc manner. So
the tool could be re-coded to have a small footprint,
dependent on no resources other than standard Windows
components. It should be a console-mode program,
eschewing the added weight of a GUI, and should write its
parsimonious output to stdout. Thus it will be remotely
executable on demand with auxiliary tools such as psexec.

The tool's output should be condensed and refined
to reach a conclusion about the degree of obfuscation and
level of suspicion of the target executable — it should
calculate a sort of 'malware quotient', using both the code
change and geometrical metrics. Additional features should
be considered, such as resource usage enumeration — listing
open network ports, disk files, and child processes would
sometimes enhance an analyst's decision. There exist other
tools that perform this function, but having a single tool that
gathers all relevant information reduces the network traffic
in the remote execution scenario. Finally, the tool could be
installed as a service, and designed to perform its evaluation
periodically or at process startup, and communicate to a
central server, thus furnishing full-time protection against
malware that has evaded prevention systems.

6. Conclusion and Future Research

It is a safe assumption that a substantial fraction of
new malware evades anti-malware services that depend
primarily on signature-based detection methodologies, so
that any given organization will have operational malware
in their environment with a lifespan long enough to do some
damage. This project has demonstrated the feasibility of a
heuristic methodology for detecting program obfuscation, a
function which is very difficult for preventive systems to

do. The tool designed in this project can supply a light
weight and effective host intrusion detection service that
adds a dimension to an organization's defense in depth
strategy — a modest but real improvement.

There are several avenues that might be explored to
extend this research. The testing of the methodology could
be improved in two ways: by analyzing actual malware
samples rather than just the packers that obfuscate them;
and by conducting a scan against a substantial number of
computers in an environment protected by
enterprise security controls. Packers were analyzed rather
than actual malware samples mostly in the interest of time —
to collect and safely execute real malware would be an
intricate project. A major assumption of this project was
that the packers analyzed represent the majority of
obfuscation techniques that are currently utilized by
malware. A second major assumption is that there is
operational malware in computing environments. A scan of
a substantial number of computers might provide eye-
opening evidence.

The technical reach of the methodology could
likewise be extended in at least two ways: an analysis of
API calls, and an enumeration of reverse-engineering
deterrents.

API calls are a primary indicator of intention — the
example used earlier is a good case in point: if the functions
CreateRemoteThread and WriteProcessMemory are present,
it indicates an intention to inject code into a foreign process.
API calls that are utilized more often by malware than
legitimate programs could be identified, and add to the
weight of a remediation decision. Even more pertinent to
the methodology developed in this project is the deliberate
obfuscation of the API calls, precisely because they declare
intention so clearly. The various techniques employed to
hide the calls could be explored and possibly added to the
obfuscation decision factors. A common tactic is to destroy
the import table (a cross reference between local addresses
and API function pointers in DLLs) and to insert code that
dynamically invokes the APIs (using a function such as
GetProcAddress). There are several levels of indirection
that can be applied in machine code addressing modes, and
these lend themselves to obfuscation.
static analysis difficult [17] without rigorous emulation
which is very resource-intensive. Nevertheless, there may
be signifiers that can be statically analyzed to illuminate this
class of obfuscation attempts.

Protection against reverse-engineering is a tactic
employed by some malware authors. Some of the more
common and simpler techniques should be good indications

standard

Indirection makes

11

of the intent to obfuscate. In addition to the geometrical
modifications already discussed and included in the
methodology, code that detects debuggers and virtual
machines (e.g. SIDT and LDT) should prove to be good
signifiers.

References

1. Amini, P. & Carrera, E. (2006). Reverse Engineering on
Windows. BlackHat USA Conference, 2006

2. Aycock, J. et al (2005). Anti-Disassembly using
Cryptographic Hash Functions. 15th Annual EICAR
Conference 2005

3. Baumgartner, K. (2007). Storm 2007 — Malware 2.0 Has
Arrived. Virus Bulletin Conference, 2007

4. Bilar, Daniel (2007). Fingerprinting Malicious Code
Through Statistical Opcode Analysis. International Journal
of Electronic Security and Digital Forensics

5. Brosch, T. & Morgenstern, M. (2006). Runtime Packers:
The Hidden Problem? BlackHat USA Conference 2006

6. Craig, P. (2006). Unpacking Malware, Trojans and
Worms. Ruxcon, 2006

7. Christodorescu, M. & Jha, S. (2004). Testing Malware
Detectors. Proceedings of the International Symposium on
Software Testing and Analysis (2004)

8. Eilam, E. (2005). Reversing — Secrets of Reverse
Engineering. Wiley, 2005

9. Falliere, N. (2007). Windows Anti-Debug Reference.
http:/fwww.securityfocus.com/infocus/1893

10. Fifiones, R. & Fernandez, R. (2006) Solving the
metamorphic puzzle. Virus Bulletin, March 2006

11. Graf, T. (2005). Generic Unpacking. Virus Bulletin
Conference, 2005

12. Kruegel, C., Robertson, W., et al. (2004). Static
Disassembly of Obfuscated Binaries. Proceedings of the
13th USENIX Security Symposium, 2004

13. Martignoni, L., Christodorescu, M. et al. (2007).
OmniUnpack: Fast, Generic, and Safe Unpacking of

Malware. Proceedings of 23" Annual Computer Security
Applications Conference, 2007

14. Marx, Andreas (2008). Malware vs. Anti-Malware:
(How) Can We Still Survive? http://www.av-test.org/down/
papers/2008-02_vb_comment.pdf

15. Microsoft (2006). Microsoft Portable Executable and
Common Object File Format Specification.
http://www.microsoft.com/whdc/system/platform/firmware/
PECOFF.mspx

16. Mirasw, L. & Steele, K. (2005). Static Malware
Detection. ToorCon, 2005

17. Moser, A., Kruegel, C., et al. (2007). Limits of Static
Analysis for Malware Detection. Proceedings of 23™
Annual Computer Security Applications Conference, 2007

18. Quist, D. & Valsmith (2007). Covert Debugging:
Circumventing Software Armoring Techniques. BlackHat
USA Conference, 2007

19. Royal, P., Halpin, M. et al. (2006). PolyUnpack:
Automating the Hidden-Code Extraction of Unpack-
Executing Malware. Proceedings of 22"* Annual Computer
Security Applications Conference, 2006

20. Rutkowska, J. (2005). System Virginity Verifier.
http://invisiblethings.org/code.html

21. Schultz, M., Eskin, E. et al. (2001). Data Mining

12

Methods for Detection of New Malicious Executables.
IEEE Symposium on Security and Privacy, 2001

22. Schwartz, B, et al. 2002. Disassembly of executable
code revisited (2002). Proceedings of the ninth working
conference on reverse engineering

23. Sheehan, C. et al. (2007). Pimp My PE: Parsing
Malicious and Malformed Executables. Virus Bulletin
Conference, 2007

24. Solar Eclipse. Tiny PE. http://www.phreedom.org/solar/
code/tinype/

25. Stepan, A. (2006). Improving proactive detection of
packed malware. Virus Bulletin, March 2006

26. Szappanos, Gabor (2007). Exepacker Blacklisting.
Virus Bulletin, October, 2007

27. Szor, P. (2005). The Art of Computer Virus Research
and Defense. Addison Wesley, 2005

28. Trend Micro (2009) Smart Protection Network.
http://itw.trendmicro.com/smart-protection-
network/pdfs/SmartProtectionNetwork_WhitePaper.pdf

29. Yason, M. V.(2007). The Art of Unpacking. BlackHat
USA Conference, 2007

30. ZOmbie (Year Unknown). Opcode Frequency Statistics.
http://vx.netlux.org/lib/vzol 5. html

Appendices

Appendix 1 — Assembly and Machine Language Statistics

Assembly Instruction Frequency — Percentage of Machine Code Frequency — there is a many to many
instructions, of bytes in code segment, and running total relationship between assembly and machine code
by bytes instructions. The asterisks represent multiple assembly

codes or partial instructions, such as prefixes

Instr Instr% Byte% CumByte3 Instr Asmbl Instr% Byte% CumByte%
mov 27.68 9.06 9.06 8B mov 15.77 5.16 5.16
push 18.09 5.92 14.98 E8 call 6.64 2.17 7.33
call 9.02 2.95 17.93 83 arith* 5.44 1.78 9.11
pop 5.38 1.76 19.69 FF call* 4.62 1.51 10.63
cmp 4.55 1.49 21.18 89 mov 4.43 1.45 12.08
lea 4.35 1.42 22.60 8D lea 4.35 1.42 13.50
je 3.84 1.26 23.86 50 push 3.41 1.12 14.62
jmp 3.57 1.17 25.02 74 je 3.16 1.03 15.65
add 3.37 1.10 26.12 6A push 2.67 0.87 16.52
test 3.25 1.06 27.19 75 jne 2.45 0.80 17.33
jne 2.89 0.95 28.13 68 push 2.38 0.78 18.11
ret 2.26 0.74 28.88 OF *k ok 2.12 0.69 18.80
Xor 1.98 0.65 29.52 85 test 2.05 0.67 19.47
sub 1.15 0.38 29.90 33 xXor 1.89 0.62 20.09
inc 1.11 0.36 30.26 56 push 1.86 0.61 20.70
and 1.07 0.35 30.61 EB jmp 1.83 0.60 21.30
or 0.87 0.28 30.90 C3 ret 1.66 0.54 21.84
dec 0.72 0.23 31.13 51 push 1.61 0.53 22.36
movzx 0.36 0.12 31.25 E9 jmp 1.44 0.47 22.84
jle 0.27 0.09 31.34 59 pop 1.40 0.46 23.29
shr 0.26 0.08 31.42 53 push 1.32 0.43 23.73
jl 0.25 0.08 31.50 57 push 1.30 0.43 24.15
jc 0.23 0.07 31.57 5E pop 1.29 0.42 24.58
jae 0.22 0.07 31.65 66 * 1.22 0.40 24.98
leave 0.22 0.07 31.72 3B cmp 1.21 0.40 25.37
rep 0.22 0.07 31.79 c7 mov 1.15 0.38 25.75
jge 0.19 0.06 31.85 52 push 1.07 0.35 26.10
jbe 0.17 0.06 31.91 8A mov 1.00 0.33 26.43
neg 0.16 0.05 31.96 55 push 0.90 0.29 26.72
shl 0.16 0.05 32.01 5B pop 0.89 0.29 27.01
movsx 0.16 0.05 32.07 5F pop 0.89 0.29 27.30
ja 0.15 0.05 32.12 Ccé6 mov 0.87 0.29 27.59
sbb 0.14 0.04 32.16 80 add 0.79 0.26 27.85
sar 0.13 0.04 32.21 Al mov 0.66 0.22 28.06
jg 0.13 0.04 32.25 5D pop 0.66 0.22 28.28
repe 0.11 0.04 32.28 81 arith* 0.65 0.21 28.49
not 0.10 0.03 32.32 c2 ret 0.61 0.20 28.69
imul 0.10 0.03 32.35 64 * 0.60 0.20 28.89
sete 0.08 0.03 32.38 88 mov 0.59 0.19 29.08
cdg 0.08 0.03 32.40 B8 mov 0.56 0.18 29.26
movsd 0.08 0.03 32.43 84 test 0.55 0.18 29.44
repne 0.07 0.02 32.45 2B sub 0.52 0.17 29.61
fld 0.07 0.02 32.47 03 add 0.49 0.16 29.77
setne 0.06 0.02 32.49 F6 arith* 0.43 0.14 29.91
fstp 0.06 0.02 32.51 F7 arith* 0.42 0.14 30.05
lodsb 0.05 0.01 32.53 Ccl shift* 0.39 0.13 30.18
idiv 0.04 0.01 32.54 39 cmp 0.37 0.12 30.30
jb 0.04 0.01 32.55 F3 rep 0.33 0.11 30.41
stosd 0.03 0.01 32.56 A3 mov 0.26 0.09 30.49
adc 0.03 0.01 32.57 40 inc 0.26 0.08 30.58
div 0.03 0.01 32.58 BA mov 0.24 0.08 30.66
jns 0.03 0.01 32.59 7E jg 0.24 0.08 30.73
xchg 0.02 0.01 32.60 72 jc 0.23 0.07 30.81
stosb 0.02 0.01 32.61 c9 leave 0.22 0.07 30.88

13

16-bit machine code frequencies

Instr Instr% Byte?
83C4 1.74 0.57
8B45 1.70 0.56
FF15 1.42 0.46
85C0 1.28 0.42
8B4D 1.11 0.36
6A00 0.97 0.32
33C0 0.97 0.32
FF75 0.81 0.26
8D45 0.75 0.24
8B55 0.72 0.23
8945 0.70 0.23
0F84 0.68 0.22
8B44 0.63 0.20
8D4D 0.61 0.20
8BEC 0.52 0.17
6A01 0.45 0.15
0F85 0.44 0.14
8B4C 0.44 0.14
8D4C 0.42 0.14
8BC3 0.41 0.13
6489 0.40 0.13
C745 0.37 0.12
8944 0.35 0.12
8BC6 0.35 0.11
8BCE 0.34 0.11
8D85 0.33 0.11
83F8 0.33 0.11
C645 0.32 0.11

CumByte%

OO NI LUTULUTULIUIOEE DR DWWWWWNNNREREO

.57
.12
.59
.01
.37
.69
.01
.27
.52
.75
.98
.20
.41
.61
.78
.92
.07
.21
.35
.48
.61
.73
.85
.96
.07
.18
.29
.40

Frequency of Asssemble Instructions with 32-bit

operands

Instr

call XX

jmp XX

je XX

push XX

jne XX

call dword[XX]

mov edi, XX

mov eax, XX

ja XX

1 XX

jmp dword[9*edx+XX]
jb XX

mov eax, dword[XX]
jg XX

jle XX

jae XX

jmp dword[XX]

jge XX

mov edx, dword[XX]
jmp dword[9*eax+XX]
jbe XX

mov esi, dword[XX]
jmp dword[9*ecx+XX]
mov edi, dword[XX]
mov edx, XX

Instr% Byte%
.40
.43
.67
.60
.43
.24
.11
.07
.05
.04
.04
.04
.03
.03
.03
.03
.03
.03
.02
.02
.02
.02
.01
.01
.01

OO OO0 O0OODO0OODO0ODODO0ODODODODODODODOODOOO KO,

2.10
0.47
0.22
0.20
0.14
0.08
0.04
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00

CumByte$%
2.10
2.56
2.78
2.98
3.12
3.20
3.24
3.26
3.27
3.29
3.30
3.31
3.32
3.33
3.35
3.35
3.36
3.37
3.38
3.39
3.40
3.40
3.41
3.41
3.42

14

Most Common Assembly Pairs

Instr Pairs

mov
push
push
push
mov
call
mov
pop
lea
test
mov
jmp
cmp
cmp
je
call
push
mov
mov
pop
mov
ret
mov
jne
mov
call
add
call

mov
push
call
mov
push
mov
call
pop
push
je
cmp
mov
je
jne
mov
add
lea
Jmp
lea
ret
test
push
add
mov
pop
push
mov
pop

Instr% Byte%
10.10
.02
.89
.98
.66
.94
.70
.13
.88
.68
.46
.39
.39
.39
.34
.28
.19
.18
.17
.16
.12
.07
.06
.05
.05
.98
.97
.96

~

COORKRRRERREREHERRERERRHERBRERERRERERRENDNDNDNWWD

3.30
2.30
1.60
1.30
1.20
0.96
0.88
0.70
0.62
0.55
0.48
0.46
0.46
0.45
0.44
0.42
0.39
0.39
0.38
0.38
0.37
0.35
0.35
0.34
0.34
0.32
0.32
0.32

CumByte%
3.30
5.60
7.20
8.51
9.70
10.66
11.55
12.24
12.86
13.41
13.89
14.35
14.80
15.26
15.69
16.11
16.50
16.89
17.27
17.65
18.01
18.36
18.71
19.05
19.40
19.71
20.03
20.35

Frequency of Test & Jump Instruction Pairs

Instr Pairs

test
cmp
cmp
test
mov
mov
cmp
cmp
cmp
cmp
cmp
cmp
cmp
sub
dec
repe

je
je
jne
jne
je
jne
jc
jae
jl
jle
ja
jbe
joe
je
jne
jne

Instr% Byte%

1
1
1
0
0
0
0
0
0.
0
0
0
0
0
0
0

0.55
0.46
0.45
0.29
0.09
0.07
0.06
0.05
0.05
0.05
0.04
0.04
0.04
0.04
0.03
0.03

CumByte%
0.55
1.01
1.46
1.76
1.84
1.91
1.97
2.02
2.07
2.13
2.17
2.21
2.25
2.29
2.33
2.36

Appendix 2 — Machine Code Identifier Algorithm

Count various patterns in the data - there are three basic methods:
1. high frequency bit strings in single instructions
2. sequences of instructions (e.g. compare+jump; push-+call)
3. instructions with 32-bit addresses that are relative to the image address space, e.g.:
o E9 08000000 (Jump forward 8 bytes)

Set up some lookup tables of common bit patterns:

H2[0x83C4]1=1; H2[0x8B45]=1; H2[0OxFF15]=1; H2[0x85C0]1=1; H2[0x8B4D]=1;
H2[0x6A00]=1; H2[0x33CO]=1; H2[OxFF75]=1; H2[0x8D45]=1; H2[0x8B55]=1;
H2[0x8945]=1; H2[OxOF84]=1; H2[0x8B44]=1; H2[0x8D4D]=1; H2[Ox8BEC]=1;
CC[Ox85C0O]=1; CC[OxB84CO]=1; CC[Ox85F6]=1; CC[OXx85C9]=1; CC[Ox85FF]=1;
CC[Ox85DB]=1; CC[Ox84C9]=1; CC[0x85D2]=1; CC[OXxF645]=1; CC[OxF644]1=1;
CC[0x833D]=1; CC[Ox837C]=1; CC[Ox837D]=1; CC[Ox837E]=1; CC[Ox83BD]=1;
AD[OxFF]=1; AD[0Ox8B]=1; AD[0Ox3B]=1; AD[0x39]=1; AD[0x83]=1; AD[0x80]=1;
AD[OXC6]=1; AD[OXC7]=1; AD[Ox3A]=1; AD[0Ox8A]=1; AD[0x3B]=1

1. High Frequency double byte patterns:
if H2[buf.W[i/2]]==1: hcnt+=1
2. Comparison operators within 20 bytes before a jump instruction:

if buf.B[i] & Ox70 == 0x70:
jcnt+=getCompare(i, buf)
def getCompare (q, buf):
q-=3
if g% 2==1: g-=1
q/=2
p=q-20
if p<0:p=0
for i in range(q,p,-2):
if CC[buf.W[i]]==1:
return 1
return 0

3. Calls (E8) and jumps (E9) with 4-byte relative target addresses

if buf.B[i]==0xe8 or buf.B[i]==0xe9:
memmove (addressof(dw.B) ,addressof (buf.B)+i+1,4)
if abs(dw.SL)<size:
ecnt+=1;

4. All jumps that have nearby comparison operators, or use 4-byte relative addresses:
if buf.B[i]==0x0f and buf.B[i+1l] & 0x80 == 0x80:
jcnt+=getCompare (i, buf)

memmove (addressof(dw.B) ,addressof (buf.B)+i+2,4)
if abs(dw.SL)<size: fcnt+=1; i+=6;

5. 1-Byte Move and Push instructions that use 4-byte relative addresses:
if buf.B[i]==0xAl or buf.B[i]==0xA3 or buf.B[i]==0x68:

memmove (addressof(dw.B),addressof (buf.B)+i+1,4)
if (startAddr <= dw.UL < endAddr): dcnt+=1; i+=5;continue

6. Various 2-byte instructions that use 4-byte relative addresses:
if (AD[buf.B[i]]==1) and (buf.B[i+1] & OxCF == 0x05 or buf.B[i+1l] & OxCF == 0x0D):

memmove (addressof(dw.B) ,addressof (buf.B)+i+2,4)
if (startAddr <= dw.UL < endAddr): dcnt+=1; i+=6; continue

15

Appendix 3 — Raw Output of Research Tool (per program)

Geometrical Attributes — a heavily packed program; suspect changes marked with asterisks ***

---------------- Morphine-cmd.exe 2009-02-16

Attrbute

~e _magic

~e lfanew

~Signature

~Machine
~NumberofSections
~TimeDateStamp
~PointerToSymbolTable
~Number0fSymbols
~SizeOfOptionalHeader
~Characteristics
~Magic
~MajorLinkerVersion
~MinorLinkerVersion
~SizeOfCode
~SizeOfInitializedData

~SizeOfUninitializedData

~AddressOfEntryPoint
~BaseOfCode
~BaseOfData
~ImageBase
~SectionAlignment
~FileAlignment
~MajorQOSVersion
~MinorOSVersion
~MajorImageVersion
~MinorImageVersion
~MajorSubsystemVersion
~MinorSubsystemVersion
~Win32VersionValue
~SizeOfImage
~SizeOfHeaders
~CheckSum

~Subsystem
~Dl1Characteristics
~SizeOfStackReserve
~SizeOfStackCommit
~SizeOfHeapReserve
~SizeOfHeapCommit
~LoaderFlags
~NumberOfRvaAndSizes
~DataDirectory[0]
~DataDirectory[1]
~DataDirectory[11]
~DataDirectory[12]
~DataDirectory[13]

Horphine-cnd.exe

o

File Memory

3b7de326

A new section appears in memory — where
did it come from?

kok ok
koK ok

5a4d 5a4d
0100 00e0
4550 4550
14c 14c

2 3
36881bfc
0000 0000
0000 0000
e e
10f 10f
10b 10b
06 07

53 00
5c600 1c800
0000 3400
0000 0000
1625 a596
1000 1000
0000 1c000
400000 4ad00000
1000 1000
0200 0200
04 05

00 01

00 05

00 01

04 04

00 00
0000 0000
60000 5e000
0400 0400
0000 5cbfc
03 03

00 8000

100000 100000
10000 1000
0000 0000
0010 0010
00000000
00057000
00000000
00000000
00000000

00000000
00000200
00000000
00000000
00000000

Change of AEP a major red flag indicating
code rewrite and/or entry point obfuscation

* k%
* k%

* k%
* Kk
kK
kK

koK ok

* Kk

koK ok

00000000 00000000

0001c8cO 00000050 Rk
00000250 00000058 HAkK
00001000 000002e4 Hok
0001c564 00000080 Hok

LU LLLLLLL L LU L 1]

16

Visually, the difference between the file section
(top) and memory section (bottom) is clear

Code and Section Modifications

J=273 N=7.95

~Fil-0-Name *.text

~Fil-0-VAddr 1000

~Fil-0-VSize 0005e000

~Fil-0-RAddr 00000400

~Fil-0-RSize 0005¢c600

~Fil-0-Char e0000020

~Fil-0-stat E=7 F=2 D=0 H=138
~Fil-1-Name .idata

~Fil-1-VAddr 5£000

~Fil-1-VSize 00001000

~Fil-1-RAddr 0005ca00

~Fil-1-RSize 00000200

~Fil-1-Char c0000060

~Fil-l-stat E=0 F=0 D=0 H=0
~Mem-0-Name *.text

~Mem-0-VAddr 1000

~Mem-0-VSize 0001c7b8

~Mem-0-RAddr 00000400

~Mem-0-RSize 0001c800

~Mem-0-Char e0000060

~Mem-0-stat

File Sect 0

Mem Sect 0

E=3197 F=1884 D=1719 H=217

@eeeEeeeQeQeQeQAEEeeQeQeQAQeR@EQEQ@Ee~_

J=1010 N=6.38

N=0.19

CP=0

Cp=27

Code page count of first section: 0 for file, 27
for memory. This will result in a CPDI of 28
below, confirming new code in the section
(27+1)/(0+1)

CP=0

New memory section detected

~Mem-1-Name data

~Mem-1-VAddr 1e000

~Mem-1-VSize 0001c910

~Mem-1-RAddr 0001cc00

~Mem-1-RSize 0001c600

~Mem-1-Char e0000060

~Mem-1l-stat E=0 F=0 D=0 H=0
File Sect 1

Mem Sect 1

~Mem-2-Name .rsrc

~Mem-2-VAddr 3b000

~Mem-2-VSize 00022898

~Mem-2-RAddr 00039200

~Mem-2-RSize 00022a00

~Mem-2-Char e0000060

~Mem-2-stat E=2 F=1 D=0 H=4

~Mem-2- ! Mem+
File Sect 2

Mem Sect 2

No corresponding File Section

~Sec-0 DIF=0.99 CI=0.29/0.00 FI=0.19/0.04
~Sec-1 DIF=0.97 CI=0.00/0.00 FI=0.00/0.00
~Sec-2 DIF=0.97 CI=0.00/0.00 FI=0.00/0.00
~AEP=0

~AEP Modified 71087a0679046683fc285151

JI1=0.87/0.07
JI=0.00/0.00
JI=0.00/0.00

508d45e850e8b5fcff££85cQ

~Heap: 27 Code Pages Found @4ad00000->0005e000

17

Delta: 1.34/0.11=9.18 CP=28.00
Delta: 0.00/0.01=0.00 CP=1.00
Delta: 0.00/0.01=1_20 cp=1_00

Code change at original entry
point. Code also found on the
dynamic data heap.

Appendix 4 — Statistical Analysis of Raw Data

Geometrical Attributes — 37 Packed Programs

PgmCnt Attribute Programs & Values

15 Attr AEP Modified ASProtect-cmd.exe FSG-cmd.exe Morphine-cmd.exe

1 Attr AEP=-1 FSG-cmd.exe

12 Attr AEP=0 ASProtect-cmd.exe ExeStealth-cmd.exe Morphine-cmd.exe
4 Attr AEP=1 bep-cmd.exe Mew-cmd.exe RLPAck-cmd.exe upx310-cmd.exe

5 Attr AEP=2 Expressor-cmd.exe PESpin-cmd.exe Petite-cmd.exe

15 Attr AEP=3 Armadillo-cmd.exe AsPack-cmd.exe MoleBox-cmd.exe

1 Attr AEP=4 YodaProtector-cmd.exe

1 Attr AEP=5 ExeCryptor-cmd.exe

4 Attr AddressOfEntryPoint 1625~a596 1501~a596 1501~5056 5£014~0000
4 Attr BaseOfData 0000~1c000 64000~69000 2000~1c000 2000~1£000 .
3 Attr CheckSum 0000~5cbfc 0000~5cbfc 0000~62494 Morphine-cmd.exe
3 Attr DataDirectory[11]-Size00000250~00000058 00000250~00000058 .

3 Attr DataDirectory[12]-Size00001000~000002e4 00001000~000002e4 e

3 Attr DataDirectory[13]-Size0001c564~00000080 0001c564~00000080 .

3 Attr DataDirectory[l]-Size 0001c8c0~00000050 0001c8c0~00000050 e

3 Attr DllCharacteristics 00~8000 00~8000 00~8000 Morphine-cmd.exe

51 Attr Heap 93 Armadillo-cmd.exe 1 Armadillo-cmd.exe 11 ASProtect-cmd.exe

1 Attr HiddenChild: C:\Temp\cmd.exe nBinder-cmd.exe

4 Attr ImageBase 400000~4ad00000 4ad00000~0000 1000000~4ad00000 ...

3 Attr MajorImageVersion 00~05 00~05 00~05 Morphine-cmd.exe

3 Attr MajorLinkerVersion 06~07 06~07 06~07 Morphine-cmd.exe e
3 Attr MajorOSVersion 04~05 04~05 04-~05 Morphine-cmd.exe SKD-cmd . exe
3 Attr MinorImageVersion 00~01 00~01 00-~01 Morphine-cmd.exe

2 Attr MinorLinkerVersion 53~00 00~0a Morphine-cmd.exe .

3 Attr MinorOSVersion 00~01 00~01 00~01 Morphine-cmd.exe .

6 Attr NumberOfSections 2~3 4~255 4~154 1~-3 1~3 4~65444

3 Attr SizeOfCode 5¢600~1c800 0a00~1c800 0a00~1£f600

2 Attr SizeOfHeaders 0200~0400 0200~0400 SKD-cmd . exe

1 Attr SizeOfHeapCommit 10000~1000 Morphine-cmd.exe

4 Attr SizeOfImage 60000~5e000 7e000~183000 2000~5e000 .

3 Attr SizeOfStackCommit 10000~100000 1000~100000 1000~100000 .
2 Attr Subsystem 02~03 02~03 SKD-cmd . exe SkD-Undetectabler-cmd.exe
3 Attr TimeDateStamp 36881bfc~3b7de326 4683034c~3b7de326

4 Attr e lfanew 00e0~10248f 0100~00e0 0090~00e0

--- Sections:

1 !Mem+ ExcessiveMemorySections(154)

1 !Mem+ ExcessiveMemorySections(255)

1 !Mem+ ExcessiveMemorySections(65444)

8 !Mem+ NocorrespondingFileSection

10 !Ptr huge

10 !Ptr zero

Code and Section Changes — 37 Packed Programs

Sect Diff MCode FCode Delta PI CPDI Program

0 1.00 1.34 0.01 452.29 452.29 28.00 Armadillo-cmd.exe
1 0.97 0.00 0.01 0.00 0.00 1.00 Armadillo-cmd.exe
2 1.00 0.98 0.13 7.93 7.93 30.00 Armadillo-cmd.exe
3 0.81 0.12 0.09 1.53 1.24 1.00 Armadillo-cmd.exe
4 0.66 0.00 0.00 0.50 0.33 1.00 Armadillo-cmd.exe
5 0.05 0.09 0.10 0.93 0.05 1.00 Armadillo-cmd.exe
6 0.00 0.00 0.00 1.00 0.01 1.00 Armadillo-cmd.exe
0 1.00 1.60 0.09 22.25 22.25 31.00 AsPack-cmd.exe

1 0.97 0.00 0.10 0.00 0.00 1.00 AsPack-cmd.exe

2 0.89 0.00 0.10 0.00 0.00 1.00 AsPack-cmd.exe

3 0.00 0.09 0.09 1.00 0.01 1.00 AsPack-cmd.exe

4 0.00 0.00 0.01 0.00 0.00 1.00 AsPack-cmd.exe

0 1.00 1.32 0.11 14.04 14.04 28.00 ASProtect-cmd.exe
1 0.97 0.00 0.05 0.00 0.00 1.00 ASProtect-cmd.exe
2 0.00 0.00 0.00 0.99 0.01 1.00 ASProtect-cmd.exe
3 0.08 0.13 0.14 0.97 0.08 1.00 ASProtect-cmd.exe
4 0.00 0.00 0.01 0.00 0.00 1.00 ASProtect-cmd.exe
0 1.00 0.41 0.01 188.02 188.02 28.00 bep-cmd.exe

18

HFOWNRFOWMNMRFOWNRFRFOFOWNMRFOWNMNRFOWNRFONRFFOWNRFONRPFOWNRONMNRPFOUBB WNROFFOFOWNRORFROOOUIE® WNEFEFONNRF

OHOOOHOOOHOOOOOHOOOHFFOOOFFOOOFOOHOOOHOODODODOODODOOOOOOOOHFHFOFOFOOOHFHFOOOOHOOOOOO

OHOOOHOOOHOOOHOOOOOHFFOOODODOODOODOODODODOOHOOHFOOOHOOFOOHOOFOOOOOHFHFOOOOOOOOOOHrHOO

0.12
0.00
1.33
0.01
0.00
0.01
0.01
0.08
0.01
0.08
0.02
0.01
0.12
1.34
0.00
0.01
0.08
0.01
0.04
0.08
0.02
0.00
0.25
0.01
0.09
0.11
0.01
0.01
1.44
0.01
0.10
0.02
1.33
0.01
0.00
0.05
0.01
0.04
0.52
0.01
0.00
0.11
0.01
0.01
0.03
0.12
0.01
0.10
0.04
0.06
0.13
0.05
0.04
0.03
0.08
0.01
0.10
0.43
0.00
0.44
0.06
0.07
0.08
0.20
0.10
0.01
0.00
0.12
0.08
0.02

1.01
0.24
0.99
0.00
0.99
0.00
157.37
2.33
0.00
0.62
0.89
186.48
1.00
1.00
1.00
184.93
0.97
184.93
1.21
22.75
0.01
1.00
6.65
0.00
0.00
9.18
0.00
1.29
1.00
1.02
0.83
1.01
1.01
0.00
1.00
29.77
0.00
0.13
0.00
267.84
0.97
0.93
175.13
0.00
0.18
2.49
184.93
0.85
0.08
6.17
12.40
0.00
0.00
0.90
8.28
0.99
16.86
0.00
1.00
0.64
27.56
0.00
0.06
1.21
15.46
0.00
0.99
0.37
18.86
0.00

.01
.22
.01

.01
.00
157.37
0.58
0.00
0.45
0.01
186.48
0.01
0.01
0.01
184.93
0.01
184.93
0.28
22.75

[=NeNeNeNe Nl

o
o
=

Coo0o0oO00CcOoOrROWVWOOUO
o
=

0.00
267.84
0.03
0.05
175.13
0.00
0.12
1.87
184.93
0.05
0.00
5.14
12.40
0.00
.00
.01
.28
.01
16.34
0.00
0.01
0.56
27.56
0.00
0.04
0.24
15.46
0.00
0.01
0.24
18.86
0.00

o 0 O O

bep-cmd.exe
bep-cmd.exe
ExeCryptor-cmd.
ExeCryptor-cmd.
ExeCryptor-cmd.
ExeCryptor-cmd.
ExeCryptor-cmd.
ExeCryptor-cmd.
ExeCryptor-cmd.
ExeStealth-cmd.
ExeStealth-cmd.
Expressor-cmd.e
Expressor-cmd.e
Expressor-cmd.e
Expressor-cmd.e
FSG-cmd.exe
FSG-cmd.exe
Mew-cmd.exe
Mew-cmd.exe
MoleBox-cmd.exe
MoleBox-cmd.exe
MoleBox-cmd.exe
MoleBox-cmd.exe
MoleBox-cmd.exe
MoleBox-cmd.exe
Morphine-cmd.ex
Morphine-cmd.ex
Morphine-cmd.ex
nBinder-cmd.exe
nBinder-cmd.exe
nBinder-cmd.exe
nBinder-cmd.exe
nBinder-HiddenC
nBinder-HiddenC
nBinder-HiddenC
NPack-cmd.exe
NPack-cmd.exe
NPack-cmd.exe
NPack-cmd.exe
NsPack-cmd.exe
NsPack-cmd.exe
NsPack-cmd.exe
Obsidium-cmd.ex
Obsidium-cmd.ex
Obsidium-cmd.ex
Obsidium-cmd.ex
Orien-cmd.exe
Orien-cmd.exe
Orien-cmd.exe
Orien-cmd.exe
Packman-cmd.exe
Packman-cmd.exe
Packman-cmd.exe
Packman-cmd.exe
PECompact-cmd.e
PECompact-cmd.e
PECrypt-cmd.exe
PECrypt-cmd.exe
PECrypt-cmd.exe
PECrypt-cmd.exe
PELock-cmd.exe
PELock-cmd.exe
PELock-cmd.exe
PELock-cmd.exe
PEPack-cmd.exe
PEPack-cmd.exe
PEPack-cmd.exe
PEPack-cmd.exe
PESpin-cmd.exe
PESpin-cmd.exe

exe
exe
exe
exe
exe
exe
exe
exe
exe
xXe
xXe
xXe
xXe

e
e
e

hild-cmd.exe
hild-cmd.exe
hild-cmd.exe

e
e
e
e

xXe
xXe

B WNFOWNRFONRFONMRPEFONREFOWNROWNRFRO® WNEFONMRPFEFONRFOWNRORFOPRPWNMEFOWNMNREFONRERFOWN

OO O0OOHOOOOOOHFHOOHOOFOOOFFOOOHFOOOOHOOHFHOOHOOOHOFFOOOFRHOOORREFOR OO

OO O0OOHFHOOOHOODOODODODODODODODODODODODODOHOODOOHOOHFHFOOHOOOODOODOOOODOOOOHOOOOO

0.00
0.04
0.09
0.00
0.06
0.06
0.01
0.08
0.02
0.01
0.01
0.01
0.17
0.00
0.01
0.08
0.01
0.17
0.17
0.08
0.68
0.01
0.01
0.68
0.01
0.01
0.09
0.05
0.00
0.04
0.01
0.06
0.07
0.06
0.03
0.09
0.09
0.01
0.08
0.00
0.06
0.00
0.01
0.12
0.02
0.06
0.00
0.29
0.05
0.01
0.00
0.00
0.08
0.01
0.02
0.04
0.17

0.99 0.01 1.00
11.66 9.72 2.00
10.31 10.31 28.00
0.99 0.01 1.00
0.00 0.00 1.00
24.13 24.13 28.00
0.00 0.00 1.00
0.06 0.04 1.00
0.00 0.00 1.00
218.95 218.95 28.00
0.00 0.00 1.00
131.40 130.15 25.00
0.95 0.03 1.00
0.99 0.01 1.00
241.89 241.89 31.00
1.00 0.01 1.00
21.00 21.00 5.00
0.61 0.01 1.00
0.93 0.21 1.00
7.29 5.15 11.00
6.69 6.69 28.00
0.00 0.00 1.00
0.00 0.00 1.00
8.37 8.37 31.00
0.01 0.01 1.00
0.00 0.00 1.00
17.15 17.15 28.00
0.00 0.00 1.00
0.99 0.01 1.00
0.00 0.00 1.00
0.00 0.00 1.00
24.13 24.13 28.00
0.00 0.00 1.00
0.00 0.00 1.00
0.82 0.01 1.00
10.65 10.65 28.00
0.08 0.06 1.00
0.00 0.00 1.00
2.19 1.21 95.00
1514.951514.9528.00
0.82 0.17 1.00
0.00 0.00 1.00
224.88 224.88 28.00
0.05 0.00 1.00
0.89 0.01 1.00
15.45 15.45 28.00
0.99 0.01 1.00
0.00 0.00 1.00
25.13 24.26 28.00
0.00 0.00 1.00
1.00 0.01 1.00
6.93 3.47 1.00
18.40 18.40 28.00
0.00 0.00 1.00
0.34 0.28 1.00
0.18 0.15 1.00
0.16 0.09 1.00

20

PESpin-cmd.exe
PESpin-cmd.exe
Petite-cmd.exe
Petite-cmd.exe
Petite-cmd.exe
PolyEnE-cmd.exe
PolyEnE-cmd.exe
PolyEnE-cmd.exe
PolyEnE-cmd.exe
PrivateExe-cmd.exe
PrivateExe-cmd.exe
PrivateExe-cmd.exe
PrivateExe-cmd.exe
PrivateExe-cmd.exe
RLPAck-cmd.exe
RLPAck-cmd.exe
sdProtectorl-notepad.exe
sdProtectorl-notepad.exe
sdProtectorl-notepad.exe
sdProtectorl-notepad.exe
SKD-cmd.exe

SKD-cmd.exe

SKD-cmd.exe
SkD-Undetectabler-cmd.exe
SkD-Undetectabler-cmd.exe
SkD-Undetectabler-cmd.exe
swcompress-cmd.exe
swcompress-cmd.exe
swcompress-cmd.exe
swcompress-cmd.exe
swcompress-cmd.exe
teLock-cmd.exe
teLock-cmd.exe
teLock-cmd.exe
teLock-cmd.exe
Themida-cmd.exe
Themida-cmd.exe
Themida-cmd.exe
Themida-cmd.exe
UPack-cmd.exe
UPack-cmd.exe
UPack-cmd.exe
upx310-cmd.exe
upx310-cmd.exe
upx310-cmd.exe
XComp-cmd.exe
XComp-cmd. exe
XComp-cmd.exe
YodaCryptor-cmd.exe
YodaCryptor-cmd.exe
YodaCryptor-cmd.exe
YodaCryptor-cmd.exe
YodaProtector-cmd.exe
YodaProtector-cmd.exe
YodaProtector-cmd.exe
YodaProtector-cmd.exe
YodaProtector-cmd.exe

Geometrical Attributes — 36 Baseline Programs

PgmCnt Attribute Programs & Values

36 Attr AEP=0 AcroRd32.exe autoruns.exe calc.exe .
18 Attr Heap 2 AcroRd32.exe 3 googleearth.exe 1 googleearth.exe
--- Sections:

<no data — no anomalies>

Code and Section Changes — 36 Baseline Programs

Sect Diff MCode FCode Delta PI CPDI Program

0 0.00 0.98 0.87 1.13 0.01 1.00 AcroRd32.exe

1 0.00 0.01 0.01 0.61 0.01 1.00 AcroRd32.exe

2 0.00 0.02 0.02 0.00 0.00 1.00 AcroRd32.exe

3 0.00 0.14 0.14 1.00 0.01 1.00 AcroRd32.exe

0 0.00 2.31 2.27 1.02 0.01 1.00 autoruns.exe

1 0.00 0.00 0.00 1.03 0.01 1.00 autoruns.exe

2 0.50 0.00 0.01 0.06 0.03 1.00 autoruns.exe

3 0.00 0.04 0.04 1.01 0.01 1.00 autoruns.exe

0 0.00 0.88 0.87 1.00 0.01 1.00 calc.exe

1 0.50 0.00 0.00 0.69 0.34 1.00 calc.exe

2 0.00 0.21 0.21 1.00 0.01 1.00 calc.exe

0 0.00 0.81 0.81 1.00 0.01 1.00 charmap.exe

1 0.97 0.06 0.01 21.12 20.50 1.00 charmap.exe

2 0.00 0.01 0.01 1.00 0.01 1.00 charmap.exe

0 0.00 0.75 0.74 1.00 0.01 1.00 clipbrd.exe

1 0.50 0.02 0.01 1.45 0.72 1.00 clipbrd.exe

2 0.00 0.01 0.01 1.01 0.01 1.00 clipbrd.exe

0 0.00 1.63 1.62 1.01 0.01 1.00 cmd. exe

1 0.00 0.00 0.00 1.00 0.01 1.00 cmd. exe

2 0.00 0.00 0.00 1.00 0.01 1.00 cmd. exe

0 0.00 1.08 1.07 1.01 0.01 1.00 DUMPSEC.exe

1 0.00 0.01 0.01 1.22 0.01 1.00 DUMPSEC.exe

2 0.33 0.00 0.00 1.54 0.51 1.00 DUMPSEC.exe

3 0.00 0.12 0.12 1.01 0.01 1.00 DUMPSEC.exe

0 0.00 1.49 1.49 1.00 0.00 1.00 EXCEL.EXE

1 0.25 0.01 0.01 0.98 0.25 1.00 EXCEL.EXE

2 0.00 0.01 0.01 1.00 0.01 1.00 EXCEL.EXE

0 0.00 1.01 0.98 1.03 0.01 1.00 filemon.exe

1 0.00 0.01 0.01 1.14 0.01 1.00 filemon.exe

2 0.89 0.00 0.01 0.05 0.05 1.00 filemon.exe

3 0.00 0.67 0.67 1.01 0.01 1.00 filemon.exe

0 0.00 0.67 0.67 0.00 0.00 1.00 firefox.exe

1 0.00 0.00 0.01 0.00 0.00 1.00 firefox.exe

2 0.00 0.00 0.01 0.00 0.00 1.00 firefox.exe

3 0.00 0.06 0.06 1.00 0.01 1.00 firefox.exe

4 0.00 0.00 0.01 0.00 0.00 1.00 firefox.exe

0 0.00 1.42 1.42 1.00 0.01 1.00 frhed.exe

1 0.00 0.00 0.00 1.00 0.01 1.00 frhed.exe

2 0.23 0.00 0.00 0.81 0.19 1.00 frhed.exe

3 0.00 0.00 0.00 1.00 0.01 1.00 frhed.exe

0 0.00 0.99 0.99 1.00 0.01 1.00 ftp.exe

1 0.80 0.00 0.01 0.04 0.03 1.00 ftp.exe

2 0.00 0.00 0.01 0.00 0.00 1.00 ftp.exe

0 0.00 1.09 1.09 1.00 0.01 1.00 googleearth.exe

1 0.00 0.01 0.01 1.00 0.01 1.00 googleearth.exe

2 0.21 0.06 0.07 0.88 0.18 1.00 googleearth.exe

3 0.00 0.06 0.06 1.01 0.01 1.00 googleearth.exe

0 0.00 1.07 1.07 1.00 0.01 1.00 iexplore.exe

1 0.00 0.00 0.01 0.00 0.00 1.00 iexplore.exe

2 0.00 0.09 0.09 1.00 0.01 1.00 iexplore.exe

3 0.00 0.02 0.03 0.00 0.00 1.00 iexplore.exe
<etc. - no code changes (CPDI always 1.00)>

21

