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Abstract

Processes in industry usually encounter time varying time delays as well as outliers in

measurement data. These make identification of the process a challenging problem. Thus,

a reliable estimation of the time delay and a correct estimation of the noise to include

outliers are essential to efficient process identification.

In this thesis, time-varying delay is modeled by a Markov chain in order to reflec-

t the correlation between any consecutive delay values. To deal with this problem, two

approaches are considered: off-line parameter estimation (batch estimation) and on-line

adaptive parameter estimation (recursive estimation). Two statistical frameworks, i.e., the

expectation-maximization (EM) algorithm and a full-Bayesian estimation method named

as variational Bayesian (VB), are investigated to model the time delay processes. Normally

distributed measurement noise is modeled by the Gaussian distribution in the proposed

method, while in the presence of large random noises, the robustness of the proposed algo-

rithms is enhanced by modeling the noise as t-distributions. During the iterative estimation

procedure, outlying observations are down-weighted by a latent variable of the t-distribution

automatically, and hence, minimizing their adverse influence on identification.

The proposed algorithms are verified by simulations and experiments. Finally, models

based on the proposed algorithms are identified to effectively predict the production rate

for the time-delay extraction process used in the oil sands industry.
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Chapter 1

Introduction

1.1 Motivation

Recently, advanced process control (APC) strategies have been developing rapidly to meet

the increasing requirements of complex industrial operations. Most of the APC strategies

are model-based, resulting in the prerequisite of an accurate and compact mathematical

description of the process. Hence, system identification plays an important role in industrial

process control.

Industrial processes usually have time delay, fixed or varying, which should be considered

in the modeling. Traditional methods assume the delay is a fixed value and it can be

treated as a parameter in the identification problem [1, 2]. Hence, the delay estimation is

often solved by maximum a posteriori (MAP) [3] or maximum likelihood estimation (MLE)

[4, 5] along with the model parameters. However, the delay is usually associated with some

process variable transmission (e.g. liquid flow rate). Higher flow rate results in smaller

time delay while lower flow rate results in longer time delay. Thus, varying delay is more

reasonable in most situations. When considering a varying delay, a separate distribution

or model should be used to describe it. Xie et al. [6] assumed a uniform distribution for

the delay, which means that the delay value varies randomly among some presumed values

with the same probability. In this thesis, it is proposed that the switching mechanism of

time delay follows a Markov chain. The transition of delay from one value to another is

governed by a probability.

Industrial processes are usually time varying, because of aging, switch between oper-

ating points, changes of the raw material composition or the requested product material

properties. A recursive parameter estimation algorithm is required when the process is time

varying to capture the trend of the change in model parameters [7, 8]. In this thesis, we

propose a recursive version of the EM algorithm which can update the model parameter
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estimates for the time delay problem.

Industrial data is often noisy or contaminated by outliers. Common reasons that can

cause outliers in recorded data include transmission errors, process disturbances, and in-

strument degradation [9, 10]. Data-driven modeling methods are usually sensitive to out-

liers and resulting models may lead to biased parameter estimation and plant-model mis-

match. Therefore, modeling of the noise distribution is essential to parameter estimation.

T-distribution has the capability of tuning continuously from a very heavy-tailed distribu-

tion to a Gaussian distribution by adjusting its degrees of freedom [11, 12]. The effect of

outliers on modeling can be diminished by assigning higher probability densities to the tails.

In addition, a t-distribution can be represented by an infinite mixture of scaled Gaussian

distributions, which is an important property in statistical modeling.

This thesis focuses on recursive and robust estimation of time delay processes under

two statistical frameworks (EM and VB). The proposed algorithms are validated by simu-

lation examples and pilot scale experiments. Models based on the proposed algorithms are

designed to predict the production rate in an oil sands industrial case study.

1.2 Thesis contributions

The main contribution of this thesis is the development of time delay process identification

methods with robustness. The proposed algorithms are resistant to outliers and result

in improved accuracy and reliability of process modeling and prediction. Specifically, the

contributions of this thesis are summarized as follows:

1. Modeled the time-delay processes using the Hidden Markov Model (HMM).

2. Developed a recursive EM method to update the model parameters.

3. Integrated t-distributions with the expectation-maximization (EM) algorithm and

variational Bayesian (VB) approach, and made the algorithm down-weight outlying

observations automatically.

4. The distributions of parameters were estimated by the Bayesian approach, and the

uncertainty of parameters was taken into account.

5. Used designed time delay models to estimate the model parameters to predict pro-

duction rate in an oil sands industrial case study.
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1.3 Thesis outline

This thesis is organized as follows:

In Chapter 2, we develop a batch estimation algorithm for the parameter invariant time

delay process and a recursive estimation algorithm for the parameter variant time delay

process. The identification problem is formulated and solved under the EM framework.

In Chapter 3, we deal with time delay process in the presence of noisy operational data

under the EM framework.

In Chapter 4, we still deal with robust estimation of the time delay process. A variational

Bayesian identification approach is developed in this chapter.

In Chapter 5, we construct a model with variable time delay to predict production rate

in an oil sands industrial case study.

Chapter 6 summarizes the main results of this thesis and discusses future research

directions.

3



Chapter 2

ARX Model Estimation with Time
Varying Time Delays

Output time delay is often encountered in industrial processes. In this chapter, we consider a

class of output time delays that can change at every sample. The mechanism of the varying

time delays is modeled by Markov Chain. Both time invariant and time variant model

parameters are considered. The former is solved by expectation maximization algorithm

(EM) while the latter is solved by recursive EM algorithm. The proposed identification is

demonstrated by simulation examples as well as by pilot-scale experiments.

2.1 Introduction

Time varying properties of industrial processes pose a challenge for system identification.

Both, the model structure and parameters can vary with time. Delay variation is among

well-known structural time variations in the process plants. Almost all industrial processes

involve transportation of materials. Since the transportation speed varies frequently ac-

cording to changing flow rates, varying time delay is an inherent characteristic of these

processes.

Physical processes can be modeled through first principles. However, this approach re-

quires detailed understanding and is often difficult due to the complexity of the industrial

systems. An alternative approach is to construct data-driven models, such as AutoRe-

gressive eXogenous (ARX) models [13, 14], which do not require in depth process know-

how. Maximum likelihood estimation(MLE) [15] and maximum a posteriori estimation

(MAP) [16] are commonly applied to solve parameter estimation problems. However, when

part of the data is not available (e.g. time delays), one often resorts to the expectation-

maximization (EM) algorithm [17].

4



System identification with time delay has been extensively studied. In literature, both

constant and varying, but unknown time delay have been studied [18]. Zhang and Li

proposed an identification method based on steepest descent algorithm to address varying

time delay problems in [19]. Xie et al. applied EM algorithm to identify an FIR model

with time varying delays in [6]. In this case, delay was considered as a hidden variable and

followed a uniform distribution. However, the delay was treated as a sequence of randomly

switching values with no relationship between any two consecutive values. The assumption

of a random delay sequence can result in model over estimation.

Markov chain model has been applied for estimation of time-series, identification of time

varying systems and many other applications. In [14], Jin and Huang solved a switching

system identification problem, in which they proposed that certain behaviors exhibited in

the switching dynamics followed a Markov chain. Shengyuan et al. proposed a control

method for Markov jump systems with time varying delays [20]. In [21], Kim applied an

HMM to the modeling of econometric time-series. Bar-Shalom and Li described the targets

tracking problem where the target motions switched via Markov jump systems [22].

Most of the research on time delay identification is limited to time invariant systems.

In real-world applications, such as adaptive control, filtering, and prediction, it is essential

to address the time varying properties of the processes [23, 24]. In this situation, the

batch EM algorithm for parameter estimation is suitable for time invariant systems only.

Recursive Least Squares (RLS) method [25] is suitable for modeling linear processes with

time varying coefficients, but it cannot deal with the hidden variable problem. In [26], Lang

et al. proposed a moving window EM algorithm strategy for parameter estimation in order

to reduce sensitivity to possibly unreliable initial parameter values. This method can be

used to recursively update model parameters by shifting the fixed size window one sample

forward. However, it is computationally expensive because the EM algorithm is run every

time a new observation becomes available.

In [27], Titterington proposed recursive EM (REM), which is a stochastic approximation

method to update model parameters in the presence of hidden variables. Chung et al. tested

Titterington’s recursive technique on both constant and time varying parameter models [28].

In [29], Cappe et al. proposed a novel recursive algorithm that is similar to the batch EM

algorithm. Ozkan applied this recursive version of the EM algorithm for joint state and

mixture measurement noise estimation [30]. However, Cappe’s technique is not an iterative

method, and hence, cannot make the best use of every sample.

In this chapter, we study the parameter estimation of both time variant and time in-

5



variant processes in the presence of varying time delay. Up to the authors knowledge, the

identification problem with Markov chain as the time delay switching mechanism, has not

been studied. In this study, we consider the delay to follow a HMM variation and use ARX

as the process model for system identification. Since the exact value of delay is unknown,

the parameters of the model and the HMM is estimated using EM algorithm for LTI process

and REM algorithm for LTV process. HMM assumption for the varying and unknown time

delay will be compared with the fixed delay assumption and the independent delay assump-

tion described in [6]. The proposed iterative version of the recursive EM algorithm is an

extension of Cappe’s technique with an additional iterative stage to improve the parameter

estimation. It is compared with the batch EM, moving window EM and the recursive EM

without iteration described in [29]. Comparisons between the proposed methods and the

most relevant existing algorithms for the identification of ARX models in terms of their

identification performance are conducted using pilot-scale experiments.

The remainder of this chapter is organized as follows. A detailed description of the

ARX model identification problem in the presence of time varying time delay is presented

in the Section 2. The following Section 3 and Section 4 apply EM Algorithm and recursive

EM algorithm to solve the time invariant and variant identification problems, respectively.

Section 5 gives two numerical examples to validate the proposed identification algorithm

for time invariant system identification and a recursive version of the proposed algorithm

for time variant system. In Section 6, experiments are conducted to validate the proposed

methods followed by the conclusion in Section 7.

2.2 Problem Statement

In industries, certain variables are determined by laboratory analysis. Since the lab analysis

generally has a lower frequency than the online measurement, the process is often dual-rate

with both fast and slow rate variables. Meanwhile, time delay depends on factors such as

liquid flow rate, which are not constant. Thus, delay is also time varying. Consider the

following dual rate ARX model with varying delay:

yTk = ψTk−λkθ + νTk ,

ψTk−λk =
[
yTk−1

· · · yTk−na uTk−λk · · · uTk−nb−λk
]
∈ R1×(na+nb+1),

(2.1)

where {yTk , k = 1, 2, ..., N} is the slow rate output variable, while {ut, t = 1, 2, ..., L} is

the fast rate input variable. The slow rate sampling time is ∆ times that of the fast rate

(L/N = ∆). na and nb are the output and input orders respectively. θ ∈ R(na+nb+1)×1 is
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the regression parameter vector where nb+λk < ∆. νt is associated measurement noise, and

is assumed to follow an i.i.d. Gaussian distribution with zero mean and unknown variance

σ2.

The actual value of the time delay is unknown. However, the time delay sequence

{λk, k = 1, 2, ..., N} is modeled by a hidden Markov chain. The Markov property means

that the kth instant time delay is only dependent on the (k − 1)th instant time delay:

P (λk|λk−1, ..., λ1) = P (λk|λk−1). (2.2)

The transition probability and initial distribution of time delay are denoted by the following

two parameters:

αij = P (λk = i|λk−1 = j), k = 2, 3...N, 1 ≤ i, j ≤ d,
πi = P (λ1 = i), 1 ≤ i ≤ d. (2.3)

Since the delay is unknown, the identification of the system in Equation 2.1 can be

carried out by the EM algorithm. The observed variables, missing variables and parameters

to be estimated are denoted as:

Cobs = {Y, U} =
{
yTN , yTN−1

, · · · , yT1 , uTN , uTN−1, · · · , u1

}
,

Cmis = Λ = {λN , λN−1, · · · , λ1} ,
Θ =

{
θ, σ2, αij , πi

}
, 1 ≤ i, j ≤ d.

(2.4)

2.3 Off-line estimation method for the time invariant system

2.3.1 Constructing the Q-function

The EM algorithm constructs the conditional expectation of the complete data likelihood

with respect to the missing data (Q function) and maximizes it iteratively using the past pa-

rameter estimation, resulting in Maximum Likelihood Estimation (MLE) of the parameters

of interest. The Q function is defined as:

Q
(

Θ|Θh
)

= ECmis|Cobs,Θh {logP (Cobs, Cmis|Θ)}, (2.5)

where Θh is the parameter estimate from the previous iteration step and E denotes the

expectation value. Substituting Equation 2.4 into Equation 2.5 and according to chain rule

(general product rule), the Q function is rewritten as:

Q
(
Θ|Θh

)
= EΛ|Y,U,Θh {logP (Y,U,Λ|Θ)}
= EΛ|Y,U,Θh {log [P (Y |U,Λ,Θ)P (Λ|U,Θ)C]} ,

(2.6)

where C
∆
= P (U |Θ) is a constant value because the input is deterministic. Given the

regressor vector, the output does not depend on future information and is independent of
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each other. In addition, time delay only depends on the latest delay according to the HMM

property in Equation 2.2. Hence, the log-likelihood of the complete data can be further

decomposed to

logP (Cobs, Cmis|Θ)

= log

[
N∏
k=1

P (yTk |ψTk−λk , λk,Θ)×
N∏
k=2

P (λk|λk−1,Θ)× P (λ1|Θ)× C
]

=
N∑
k=1

logP (yTk |ψTk−λk , λk,Θ) +
N∑
k=2

logP (λk|λk−1,Θ) + logP (λ1|Θ) + logC.

(2.7)

To implement the expectation for the Q function, the posterior conditional probability

of the delay is utilized. As a result, the final expression for the Q function is

Q(Θ|Θh)

=
N∑
k=1

d∑
i=1

P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)
logP (yTk |ψTk−λk , λk = i,Θ)

+
N∑
k=2

d∑
i=1

d∑
j=1

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)
logP (λk = i|λk−1 = j,Θ)

+
d∑
i=1

P
(
λ1 = i|yT1 , uT1:1,Θ

h
)
logP (λ1 = i|Θ) + logC,

(2.8)

where P (yTk |ψTk−λk , λk = i,Θ) is calculated by

P (yTk |ψTk−λk , λk = i,Θ) =
1√

2πσ2
exp−

1
2σ2 (yTk−ψTk−iθ)

2

, (2.9)

Substituting Equations 2.3 and 2.9 into Equation 2.8, the Q function can be decomposed

into three parts as follows,

Q(Θ|Θh) = Q1
(
θ, σ2

)
+Q2 (αij) +Q3 (πi) + logC, (2.10)

where each part corresponds to different parameters as shown below,

Q1
(
θ, σ2

)
=

N∑
k=1

d∑
i=1

P
(
λk = i|yTk:T1 , uTk:1,Θ

h
) [
−log

√
2πσ2 − 1

2σ2 (yTk − ψTk−iθ)
2
]
,

Q2 (αij) =
N∑
k=2

d∑
i=1

d∑
j=1

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

log (αij),

Q3 (πi) =
d∑
i=1

P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

log (πi).

(2.11)

To calculate Q(Θ|Θh), the following posterior conditional probabilities are calculated.

1. In Q3 (πi), the posterior probability for the 1st time delay

P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

=
P
(
yT1 |ψT1−λ1 , λ1 = i,Θh

)
(πi)

h

d∑
m=1

P (yT1 |ψT1−λ1 , λ1 = m,Θh) (πm)h
. (2.12)
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2. In Q2 (αij), the posterior joint probability for the kth and (k − 1)th time delay

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

=
P(yTk |ψTk−λk ,λk=i,Θh)(αij)

hP
(
λk−1=j|yTk−1:T1

,uTk−1:1,Θ
h
)

d∑
m=1

d∑
n=1

P(yTk |ψTk−λk ,λk=m,Θh)(αmn)hP
(
λk−1=n|yTk−1:T1

,uTk−1:1,Θh
) , (2.13)

where P
(
λk−1 = j|yTk−1:T1 , uTk−1:1,Θ

h
)

is obtained through the discrete valued state

propagation of Markov chain starting from the initial estimation of P
(
λ1|yT1 , uT1:1,Θ

h
)
.

3. In Q1
(
θ, σ2

)
, the posterior probability for the kth time delay

P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)

=

d∑
j=1

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)
. (2.14)

Details of derivation of Equations 2.12 and 2.13 are presented in Appendix A.

2.3.2 Maximizing the Q-function

A new estimate of the parameters Θ = {θ, σ2, αij , πi} is calculated by taking the derivative

of the Q function over the corresponding parameters and equating it to zero. Therefore, by

taking the derivative of Q1
(
θ, σ2

)
with respect to θ and σ2, we obtain

θh+1 =

{
N∑
k=1

d∑
i=1

P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)
ψTk−i

TψTk−i

}−1

{
N∑
k=1

d∑
i=1

P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)
ψTk−i

T yTk

} (2.15)

and (
σ2
)h+1

=

N∑
k=1

d∑
i=1

P(λk=i|yTk:T1
,uTk:1,Θ

h)(yTk−ψTk−iθ
h+1)

2

N∑
k=1

d∑
i=1

P(λk=i|yTk:T1
,uTk:1,Θh)

= 1
N

N∑
k=1

d∑
i=1

P
(
λk = i|yTk:T1 , uTk:1,Θ

h
) (
yTk − ψTk−iθh+1

)2
.

(2.16)

When conducting the computation of αij and πi, we need to consider the following

constraints
d∑
j=1

αij = 1,
d∑
i=1

πi = 1. (2.17)

Introducing Lagrange multipliers Lα and Lπ, and taking the derivative of

{
Q2 (αij) + Lα

(
d∑
j=1

αij − 1

)}
with respect to αij and Lα, and

{
Q3 (πi) + Lπ

(
d∑
i=1

πi − 1

)}
with respect to πi and Lπ,
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Table 2.1: Expectation and Maximization steps

Initialization. Set h = 0. Assign random values to Θh.
Do{

E-step: Evaluate P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

by Eqn.2.12;
For k = 2 : N , {

Evaluate P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

by Eqn.2.13;
Evaluate P

(
λk = i|yTk:T1 , uTk:1,Θ

h
)

by Eqn.2.14}.
M-step: Evaluate Θh+1 = {θ, σ2, αij , πi} by Eqn.s 2.15, 2.16, 2.18, 2.19;

} while
(
||Θh+1−Θh||2−||Θh||2

||Θh||2 < 0.001
)

.

we obtain

(αij)
h+1 =

N∑
k=2

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

N∑
k=2

d∑
j=1

P (λk = i, λk−1 = j|yTk:T1 , uTk:1,Θh)

(2.18)

and

(πi)
h+1 =

P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

d∑
m=1

P (λ1 = m|yT1 , uT1:1,Θh)

= P
(
λ1 = i|yT1 , uT1:1,Θ

h
)
. (2.19)

The expectation and maximization steps continue until parameter convergence, resulting

in the ML estimate of the parameters. The calculation procedure is shown in Table 2.1.

2.4 On-line estimation method for the time variant system

Industrial processes are usually time variant, and hence the model parameters are also func-

tions of time. Therefore, a recursive parameter estimation algorithm should be developed

to re-estimate parameters when new data is available.

The problem of recursive parameter estimation under missing data was first studied in

[27]. Titterington proposed the following stochastic approximation:

θ̂n+1 = θ̂n + γn+1I
−1
(
θ̂n

)
∇θlog f

(
Yn+1; θ̂n

)
, (2.20)

where {γn} is a decreasing sequence of positive step size, I (θ) is the Fisher Information

Matrix (FIM), ∇θ is the first order derivative operator over θ and θ̂n+1 is the new estimate

using the new observation Yn+1. However, I (θ) is not always guaranteed to be positive

definite [29] and makes the algorithm unreliable.

Recently, Cappe and Moulines [29] proposed a recursive EM algorithm for latent data

models with independent observations. The main advantage of this approach to recursive

10



parameter estimation in latent data models is its analogy with the standard batch EM

algorithm, which makes the recursive algorithm easy to implement. Based on this algorithm,

we propose an iterative version of the recursive EM algorithm, which makes better use of

every data point and has more accurate parameter estimation results.

2.4.1 Identification using recursive EM algorithm

The basic idea of recursive EM algorithm [29] is to replace the expectation step by a

stochastic approximation step, while keeping the maximization step unchanged. Consider

the recursive Q-function

Q̂n+1 (θ) = Q̂n (θ) + γn+1

(
Eθ̂n [log f (Xn+1; θ) |Yn+1]− Q̂n (θ)

)
, (2.21)

where Yn+1 is the observation at the (n + 1)th time instant and Xn+1 is the complete

data including both observed and unobserved data. In this formula, the expectation of log

distribution of a new data point is with respect to the hidden variables given θ̂n, where θ̂n

is the updated parameter for observation Yn. Thus, it is known and unchanged at time step

n+ 1.

Applying this algorithm to the time delay problem described in Section 2, we have

Q̂n+1 (Θ) = Q̂n (Θ) + γn+1

(
EΘ̂n

[
logP

(
yTn+1 , ψTn+1−λn+1 , λn+1, λn; Θ

) ∣∣yTn+1 , ψTn+1−λn+1

]
− Q̂n (Θ)

)
,

(2.22)

where the posterior distribution of new missing data is computed using Θ̂n, which is the

latest parameter estimate.

The Q function can be further derived as

Q̂n+1 (Θ)

= (1− γn+1) Q̂n (Θ) + γn+1EΘ̂n

[
logP

(
yTn+1 , ψTn+1−λn+1 , λn+1, λn; Θ

) ∣∣yTn+1 , ψTn+1−λn+1

]
...

=
n+1∏
p=2

(1− γp)EΘ0 [logP (yT1 , ψT1−λ1 , λ1; Θ) |yT1 , ψT1−λ1 ]

+
n∑
k=2

n+1∏
p=k+1

(1− γp)γkEΘ̂k−1
[logP (yTk , ψTk−λk , λk, λk−1; Θ) |yTk , ψTk−λk ]

+γn+1EΘ̂n

[
logP

(
yTn+1 , ψTn+1−λn+1 , λn+1, λn; Θ

) ∣∣yTn+1 , ψTn+1−λn+1

]
.

(2.23)

The three log-likelihood terms in the Q function can be decomposed by the chain rule to

be

logP (yT1 , ψT1−λ1 , λ1; Θ) = logP (yT1 |ψT1−λ1 , λ1; Θ) + logP (λ1; Θ) + C1,
logP (yTk , ψTk−λk , λk, λk−1; Θ) = logP (yTk |ψTk−λk , λk; Θ) + logP (λk|λk−1; Θ) + Ck,
logP

(
yTn+1 , ψTn+1−λn+1 , λn+1, λn; Θ

)
= logP

(
yTn+1 |ψTn+1−λn+1 , λn+1; Θ

)
+ logP (λn+1|λn; Θ) + Cn+1.

(2.24)
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where we use the property that λk−1 does not change at time k, i.e. P (λk−1; Θ) is indepen-

dent of Θ and can be considered to be constant. The final expression for the Q function is

divided into three parts, each corresponding to different parameters, as shown below,

Q̂n+1 (Θ) = Q̂4n+1

(
θ, σ2

)
+ Q̂5n+1 (αij) + Q̂6n+1 (πi) + CΘ, (2.25)

where Q̂4n+1

(
θ, σ2

)
, Q̂5n+1 (αij) , Q̂6n+1 (πi) and CΘ are as follows,

1. The term related to θ, σ2

Q̂4n+1

(
θ, σ2

)
=

n+1∏
p=2

(1− γp)
d∑
i=1

P (λ1 = i|yT1 , ψT1−λ1 ; Θ0) logP (yT1 |ψT1−λ1 , λ1 = i; Θ)

+
n∑
k=2

n+1∏
p=k+1

(1− γp) γk
d∑
i=1

P (λk = i|yTk , ψTk−λk ; Θ̂k−1) logP (yTk |ψTk−λk , λk = i; Θ)

+γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
logP

(
yTn+1 |ψTn+1−λn+1 , λn+1 = i; Θ

)
,

(2.26)

where

logP (yTk |ψTk−λk , λk = i; Θ) = −log
√

2πσ2 − 1

2σ2
[yTk − ψTk−iθ]

2

2. The term related to αij

Q̂5n+1 (αij)

=
n∑
k=2

n+1∏
p=k+1

(1− γp) γk
d∑
i=1

d∑
j=1

P
(
λk = i, λk−1 = j|yTk , ψTk−λk ; Θ̂k−1

)
logP (λk = i|λk−1 = j; Θ)

+γn+1

d∑
i=1

d∑
j=1

P
(
λn+1 = i, λn = j|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
logP (λn+1 = i|λn = j; Θ),

(2.27)

where

logP (λk = i|λk−1 = j; Θ) = logαij

3. The term related to πi

Q̂6n+1 (πi) =

n+1∏
p=2

(1− γp)
d∑
i=1

P (λ1 = i|yT1 , ψT1−λ1 ; Θ0) logP (λ1 = i; Θ), (2.28)

where

logP (λ1 = i; Θ) = logπi

4. CΘ is a constant
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For each parameter in Θ̂n+1, the derivative can be formulated separately and set equal

to zero. The detailed derivation is provided in Appendix B and the estimation results are

as follows,

1. For the regressor parameter, by solving the first order derivative of Q̂4n+1

(
θ, σ2

)
with

respect to θ, we can write the regression parameter estimate, as follows

θ̂n+1 =
(
θ̂n+1

)
.den

−1(
θ̂n+1

)
.num

, (2.29)

where the numerator vector and denominator matrix are(
θ̂n+1

)
.den

= (1− γn+1)
(
θ̂n

)
.den

+ γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
ψTn+1−i

TψTn+1−i,(
θ̂n+1

)
.num

= (1− γn+1)
(
θ̂n

)
.num

+ γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
ψTn+1−i

T yTn+1 .

(2.30)

The
(
θ̂n

)
.num

and
(
θ̂n

)
.den

are the numerator and denominator used to obtain θ̂n in

the previous step.

2. For the noise variance, by solving the first order derivative of Q̂4n+1

(
θ, σ2

)
with

respect to σ2, we obtain

σ̂2
n+1 = (1− γn+1) σ̂2

n+γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

) [
yTn+1 − ψTn+1−iθ̂n+1

]2
.

(2.31)

3. For the transition probability, by solving the first order derivative of Q̂5n+1 (αij) with

respect to αij and considering the constraint

{
d∑
j=1

αij = 1

}
, we obtain

(α̂ij)n+1 =
(α̂ij)n+1.num

(α̂ij)n+1.den

, (2.32)

where the numerator and denominator are

(α̂ij)n+1.num = (1− γn+1) (α̂ij)n.num + γn+1P
(
λn+1 = i, λn = j|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
,

(α̂ij)n+1.den = (1− γn+1) (α̂ij)n.den + γn+1

d∑
j=1

(
λn+1 = i, λn = j|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
.

(2.33)

The (α̂ij)n.num and (α̂ij)n.den are the numerator and denominator used to obtain

(α̂ij)n.

4. Since the estimate for πi plays no role in the recursive algorithm, there is no need to

derive the recursive formula for this parameter.
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To evaluate the above parameter estimation, the following two posterior terms should

be determined,

1. The joint posterior distribution required to estimate αij in Equation 2.32 is calculated

as follows,

P
(
λn+1 = i, λn = j|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
=

P
(
yTn+1 |ψTn+1−λn+1 , λn+1 = i; Θ̂n

)
(α̂ij)nπ

n
j

d∑
m=1

d∑
l=1

P
(
yTn+1 |ψTn+1−λn+1 , λn+1 = m; Θ̂n

)
(α̂ml)nπ

n
l

,

(2.34)

where

πnj = P
(
λn = j; Θ̂n

)
= P

(
λn = j|yTn , ψTn−λn ; Θ̂n−1

)
is the posterior distribution of missing time delay λn, calculated in the previous re-

cursion. The parameters of this distribution do not change at time n + 1, so πnj is

fixed for the current time instant.

2. The posterior distribution required to estimate θ, σ2 in Equations 2.29, 2.31 is calcu-

lated as follows,

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
=

d∑
j=1

P
(
λn+1 = i, λn = j|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
.

(2.35)

From the overall derivation, it is noticed that the recursive estimation of parameters

can decrease the computational complexity. This is because, in the E step, we do not need

to evaluate the Q function using historical data, and in the M step, the obtained estimator

is a simple updating of the previous estimate. Another advantage is that, while parameters

change, REM responds faster because it ”forgets” the effect of old information by a factor

of γn+1.

2.4.2 Iterative recursive EM algorithm

In Cappe & Moulines’ recursive formula [29], the Q function is an approximate lower bound

of the log-likelihood, and maximizing it with respect to the parameters can achieve param-

eter estimate. We can set Θn+1
0 = Θ̂n, and iteratively maximize Q̂n+1 (Θ) to have better

parameter estimation. That is, at each sample time, we iteratively update the conditional

expectation to obtain a better parameter estimation. Applying this algorithm to the time
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delay problem described in Section 2, we have

Q̂n+1

(
Θ|Θn+1

h
)

= (1− γn+1) Q̂n (Θ) + γn+1EΘn+1
h

[
logP

(
yTn+1 , ψTn+1−λn+1 , λn+1, λn; Θ

) ∣∣yTn+1 , ψTn+1−λn+1

]
...

=
n+1∏
p=2

(1− γp)EΘ0 [logP (yT1 , ψT1−λ1 , λ1; Θ) |yT1 , ψT1−λ1 ]

+
n∑
k=2

n+1∏
p=k+1

(1− γp)γkEΘ̂k−1
[logP (yTk , ψTk−λk , λk, λk−1; Θ) |yTk , ψTk−λk ]

+γn+1EΘn+1
h

[
logP

(
yTn+1 , ψTn+1−λn+1 , λn+1, λn; Θ

) ∣∣yTn+1 , ψTn+1−λn+1

]
.

(2.36)

For each parameter in Θn+1, the same procedure as given in Section 4.1 can be used to

find the new estimate. As a result, we can obtain the following formulas for each parameter:

1. The regressor parameter at (h+ 1)th iteration for the (n+ 1)th sample,

θn+1
h+1 =

(
θn+1

h+1
)
.den

−1(
θn+1

h+1
)
.num

, (2.37)

where(
θn+1

h+1
)
.den

= (1− γn+1)
(
θ̂n

)
.den

+ γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θn+1

h
)
ψTn+1−i

TψTn+1−i,(
θn+1

h+1
)
.num

= (1− γn+1)
(
θ̂n

)
.num

+ γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θn+1

h
)
ψTn+1−i

T yTn+1 .

(2.38)

2. The noise variance at (h+ 1)th iteration for the (n+ 1)th sample,

σ2h+1
n+1 = (1− γn+1) σ̂2

n+γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θn+1

h
) [
yTn+1 − ψTn+1−iθn+1

h+1
]2
.

(2.39)

3. The transition probability at (h+ 1)th iteration for the (n+ 1)th sample,

(αij)
h+1
n+1 =

(αij)
h+1
n+1.num

(αij)
h+1
n+1.den

, (2.40)

where

(αij)
h+1
n+1.num = (1− γn+1) (α̂ij)n.num + γn+1P

(
λn+1 = i, λn = j|yTn+1 , ψTn+1−λn+1 ; Θn+1

h
)
,

(αij)
h+1
n+1.den = (1− γn+1) (α̂ij)n.den + γn+1

d∑
j=1

(
λn+1 = i, λn = j|yTn+1 , ψTn+1−λn+1 ; Θn+1

h
)
.

(2.41)
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Similarly, the posterior distribution of delay is calculated based on the parameter esti-

mate and delay distribution at the previous hth iteration:

P
(
λn+1 = i, λn = j|yTn+1 , ψTn+1−λn+1 ; Θn+1

h
)

=
P
(
yTn+1 |ψTn+1−λn+1 , λn+1 = i; Θn+1

h
)

(αij)
h+1
n+1 π

n
j

d∑
m=1

d∑
l=1

P
(
yTn+1 |ψTn+1−λn+1 , λn+1 = m; Θ̂n

)
(αml)

h+1
n+1 π

n
l

,

(2.42)

and

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θn+1

h
)

=

d∑
j=1

P
(
λn+1 = i, λn = j|yTn+1 , ψTn+1−λn+1 ; Θn+1

h
)
.

(2.43)

At the (n+ 1)th recursion, there is iteration between delay distribution calculation and

parameter estimation. After convergence of the iterative parameter estimation, we denote

their values as Θ̂n+1 =
{
θ̂n+1, σ̂

2
n+1, (α̂ij)n+1

}
. Moreover, the following values are stored:{(

θ̂n+1

)
.num

,
(
θ̂n+1

)
.den

, σ̂2
n+1, (α̂ij)n+1.num

, (α̂ij)n+1.den
, πn+1
i

}
.

When the next data point is available, the proposed iterative algorithm is applied to update

the parameters. It is noted that the proposed iterative recursive estimation algorithm is

an iterative process under the EM framework. Therefore, it is more similar to the batch

EM algorithm than the original recursive EM algorithm. Because of the iteration at every

recursion, the best use of each data point is made.

2.5 Simulation Studies

In this section, numerical examples are given to show the advantages of the proposed algo-

rithm for both time invariant and time variant cases.

2.5.1 Identification of time invariant system

Consider the following first order system:

yTk = 0.95yTk−1
+ 0.4uTk−λk + υTk

u ∼ N (0, 1)

υ ∼ N (0, 0.01)

λk ∈ {1, 2, 3, 4}

(2.44)

Input signal u is a normally distributed random variable with zero mean and unit variance.

Measurement noise v is a normally distributed random variable with zero mean and 0.01
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Figure 2.1: Simulation data for the time invariant process

variance. Delay varies among {1,2,3,4}, in the form of a Markov chain. The true transition

matrix governing the delay switching mechanism is

A = {αij} =


0.90 0.06 0.03 0.01
0.02 0.90 0.06 0.02
0.01 0.06 0.90 0.02
0.01 0.03 0.06 0.90

. (2.45)

In simulation, ∆ = 5, therefore, L = 500 fast-rate input data points and N = 100

slow-rate output data points are collected for system identification. Figure 2.1 contains

the fast-rate input data, true delay generated by the transition probability, measurement

noise, and output data. As illustrated, the delay does not change frequently and may

remain constant for some prolonged periods of time. This agrees with the high probability

of diagonal elements in transition matrix A.

The first 50 slow rate output samples and 250 fast rate input samples are selected as the

training data set and the rest form the test data set. Applying the proposed algorithm of

Section 3, parameter estimation converges within 10 iterations of the EM algorithm (Figure

2.2). The HMM transition probability is estimated as:

Â = {α̂ij} =


0.8660 0.0685 0.0427 0.0228
0.0552 0.9221 0.0223 0.0003
0.0003 0.0275 0.9513 0.0208
0.0011 0.0243 0.0454 0.9291

, (2.46)

which is close to the real one given in Equation 2.45. Using this transition matrix, the

estimated delay of the training data set can be obtained by

λ̂k = argmax
i

P
(
λk = i|yTk:T1 , uTk:1, Θ̂

)
, (2.47)
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Figure 2.2: Parameters estimation for the time invariant process

Figure 2.3: Delay estimation for the time invariant process

where Θ̂ = {θ̂, σ̂2, α̂ij , π̂i} are the estimated parameters. The delay estimation result is

illustrated in Figure 2.3, which agrees with the true delay value with an accuracy of 92%.

For the test data set, we can predict the most probable value of time delay, predict

the simulation output, and then compare the output prediction with the measurement. To

predict the time delay, the prior distribution of the delay λk = i up to the observation at

time k − 1 in the test data set is calculated by Equation 2.48

P
(
λk = i|yTk−1:T1 , uTk−1:1, Θ̂

)
=

d∑
j=1

P
(
λk = i, λk−1 = j|yTk−1:T1 , uTk−1:1, Θ̂

)

=
d∑

j=1
α̂ijP

(
λk−1 = j|yTk−1:T1 , uTk−1:1, Θ̂

)
,

(2.48)

where the posterior delay distribution λk−1 = j up to the observation at time k − 1 is

18



calculated by

P
(
λk−1 = j|yTk−1:T1 , uTk−1:1, Θ̂

)
=

d∑
l=1

P
(
λk−1 = j, λk−2 = l|yTk−1:T1 , uTk−1:1, Θ̂

)
=

d∑
l=1

P
(
yTk−1

|λk−1=j,ψTk−1−λk−1
,Θ̂
)
α̂jlP

(
λk−2=l|yTk−2:T1

,uTk−2:1,Θ̂
)

d∑
m=1

d∑
n=1

P
(
yTk−1

|λk−1=m,ψTk−1−λk−1
,Θ̂
)
α̂mnP

(
λk−2=n|yTk−2:T1

,uTk−2:1,Θ̂
) .

(2.49)

Equation 2.49 is the discrete state propagation of Markov chain starting from the posterior

distribution of last delay in the training data set. This is because the test data set is

continuous with the training data set. Delay value prediction can be obtained by the

calculated prior delay distribution in Equation 2.48. Therefore, simulation prediction of

test data set is computed based on Equation 2.1, given θ̂ and

λ̂k = argmax
i

P
(
λk = i|yTk−1:T1 , uTk−1:1, Θ̂

)
. (2.50)

In order to further test effectiveness of using Markov chain to model delay correlation,

we consider a more realistic way to generate the time delays in the simulation. Consider

delay is caused by transportation of materials in a pipe. The output measurement has

varying time delay because of the varying flow rate. The flow rate is generated by passing

a white noise sequence through a low-pass filter. The values of the transportation time

delay are inversely proportional to the flow rates because of the fixed intersection area of

the pipe. The delay values are rounded to the nearest integers {1,2,3,4} for discrete time

system simulation. Using new simulated data, we apply the proposed method and compare

it with two other alternatives. In the first method, which is called the independent delay

estimation, delay is considered to change randomly with a uniform distribution instead of

a Markov chain. In the second method, which is called the fixed delay estimation, delay is

considered to be constant. In the implementation of independent delay estimation, prior

distribution of delay is considered to follow a uniform distribution among {1,2,3,4}, while

the parameters are estimated using EM algorithm. In the fixed delay estimation, time delay

is considered to be the same for all samples. The unknown value is uniformly distributed

among {1,2,3,4}, and the identification uses the EM algorithm as well.

The performance of the three different methods for both training and test data sets is

listed in Table 4.2. In all cases, the accuracy of the proposed hidden Markov model based

delay estimation is higher than both the independent delay and the fixed delay estimation

methods and its RMSE is smallest. This simulation result demonstrates the effectiveness of

using the Markov chain model to describe practical correlated delays caused by transporta-

tions.
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Table 2.2: A Summary of the RMSE for the Time Invariant Process

Self validation Cross validation
Accuracy* RMSE Accuracy* RMSE

Markov delay 92% 0.0821 90% 0.0983
Independent delay 85% 0.1226 79% 0.1630
Fixed delay 55% 0.3672 42% 0.4313

* Rate of accuracy of delay estimation.
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Figure 2.4: Simulation data for the time variant process

2.5.2 Identification of time variant system

Consider the following time variant process:

yTk = 0.90yTk−1
+ 0.5uTk−λk + νTk , k = 1, . . . , 200

yTk = 0.94yTk−1
+ 0.4uTk−λk + νTk , k = 201, . . . , 400

yTk = 0.98yTk−1
+ 0.3uTk−λk + νTk , k = 401, . . . , 600

u ∼ N (0, 1)

υ ∼ N (0, 0.01)

λk ∈ {1, 2, 3, 4}

(2.51)

This process is an extension of the previous time invariant process because it contains three

different stages, with 200 output data points for each stage. The regression parameters for

the three stages are different, while all other parameters are the same as the previous one.

Figure 2.4 contains input data, true delay, measurement noise, and output data.

From a practical point of view, we start iterative recursive EM after several data points

are available [29]. Batch EM (Section 3) is applied when 20 slow rate output data and 100
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Figure 2.5: Parameter estimation by batch EM for the first 20 sample data of output

θ
θ

Figure 2.6: Parameter estimation for the time variant process by iterative REM

fast rate input data are available. Next, the iterative recursive EM (Section 4.2) is applied,

so that parameters can be updated at each data point. Moreover, we select γn+1 = 5% as

a fixed step size for this time variant process.

Figure 2.5 shows the parameter estimation of batch EM on 20 slow rate data points,

which converges within 15 iterations. Figure 2.6 shows the parameter estimation for the re-

maining 580 slow rate data points sequentially. As shown in the figure, recursive estimation

converges to the true parameter value within around 39 data points.

The delay estimation result in Figure 2.7 agrees with the true delay value with an

accuracy of 93%. The comparison of the real and the predicted value of the output shows

the estimation matches the real output with an RMSE value of 0.1023.

In order to illustrate the advantage of dealing with time variant property using the
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Figure 2.7: Delay estimation for the time variant process

Table 2.3: A Summary of the RMSE for the Time Variant Process

RMSE Accuracy* Computation time Convergence time

Iterative REM 0.1023 93% 8.0 s 39 samples
REM without iteration 0.1264 89% 6.4 s 46 samples
Batch EM 0.2369 82% 4.9 s N/A
Moving window EM** 0.1048 85% 300.2 s 78 samples

* Rate of accuracy of delay estimation.
** 100 sample window based.

method in Section 4.2, we compare it with three other methods. In the first method, batch

EM estimation is applied (Section 3). In the second method, we apply moving window EM

while the third method is the recursive version without iteration (Section 4.1).

In the implementation of batch estimation, first half of data is used for training while

the second half is used for testing. In the implementation of moving window EM, a fixed

window of 100 past data points is sequentially used to estimate parameters. Therefore, we

do not have an estimate for the first 99 samples.

As listed in Table 2.3, the proposed iterative recursive EM algorithm has the smallest

RMSE and the rate of accuracy of the delay estimation is the highest. It is noted that

moving window EM and the proposed method have similar RMSE. However, the moving

window EM has more computational cost and requires more sample time to converge to the

new parameters. The convergence time is the time taken for the estimate to reach within

5% of the true value after a parameter change occurs.

22



Figure 2.8: Schematic diagram of the hybrid tank system

2.6 Experimental Evaluation

In this section, experimental examples are given to show the advantage of the proposed

algorithm for both time invariant and time variant cases. The system identification ex-

periment is designed and performed on a pilot-scale hybrid tank system. The schematic

diagram is displayed in Figure 4.7.

2.6.1 Identification of time invariant system

In this experiment, only the right tank, Tank3 and the middle tank, Tank2 are used. There-

fore, the valves V7-V9 are open, and valves V1-V6 are closed. The inlet flow from right

pump 2 and Tank3 level are considered as input and output, respectively. Initially, a con-

stant input value of 5.5 is introduced to the process. As a result, the output turns to

steady state after a period of time. Next, a filtered random binary signal (RBS) with level

[−0.7, 0.7] is added to the input signal to stimulate the system and generate experimental

data. Input and output data are shown in Figure 2.9. The input is measured every 16

seconds, while the output is measured every 48 seconds. The Markov chain time delay

sequence is manually imposed with two values, 16 seconds and 32 seconds, with following

transition probability:

A = {αij} =

(
0.95 0.05
0.05 0.95

)
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Figure 2.9: Input and output data for the time invariant process
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Figure 2.10: Self validation and cross validation for the time invariant process

The data is divided into two halves; the first half forms the training set, and the second

half forms the test set. Consider the model structure for this plant is a first order ARX

model given as

yTk = ayTk−1
+ buTk−λk .

Applying the proposed EM algorithm of Section 3 to the normalized training set, we obtain

the estimates a = 0.6271, b = 0.4445. The transition probability matrix is

Â = {α̂ij} =

(
0.9656 0.0344
0.0575 0.9425

)
.

From the self and cross validation results of the infinite step ahead prediction in Figure

2.10, we can see that the proposed method gives good estimation results.

Next, we regenerate time delays through transportation delay and compare the proposed

method with the two alternatives described in Section 5.1. The performances of the three
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Table 2.4: A Summary of the RMSE for the Time Invariant Experiment

Self validation Cross validation

Markov delay 0.5935 0.6478
Independent delay 1.1256 1.3652
Fixed delay 3.6352 4.6298
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Figure 2.11: Input and output data for the time variant process

different methods are listed in Table 4.4. We can see that the RMSE of Markov delay based

method is the smallest.

2.6.2 Identification of time variant system

In this experiment, the valves V2, V4, V7, V8 and V9 are open, and valves V1, V3, V5

and V6 are closed. The operating point of the plant is changed at different points in

time. Figure 2.11 contains 1854 fast rate input and 618 slow rate output data for all three

operating points, where the output is also generated with manually imposed time delay.

The first 20 slow rate data points are used to estimate the parameters together with time

delay and transition probability using batch EM (Section 3). Next, the proposed iterative

recursive algorithm (Section 4.2) is applied to deal with the time varying issue. Figure 2.12

shows the plot of the target and of the prediction value of water level. It is clear that they

are adequately matched with an RMSE equal to 1.0217. Similarly, we can compare the

result of the proposed recursive estimation with the three methods introduced in Section

5.2, as listed in Table 2.5. Based on the RMSE values, it is clear that the proposed recursive

estimation algorithm has the best performance.
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Figure 2.12: Validation result for the time variant process by iterative REM

Table 2.5: A Summary of the RMSE for the Time Variant Experiment

RMSE

Iterative REM 1.0217
REM without iteration 1.6528
Batch EM 3.2365
Moving window EM** 1.9239

** 100 sample window based.
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2.7 Conclusions

This chapter considers identification of both time invariant and time variant ARX models

with time-varying time delays. The proposed algorithms can simultaneously estimate the

distribution of time delay along with the parameters. Moreover, given the estimated tran-

sition probability of time delay, we can estimate the most probable value of the delay for

every sampling instant.

For the time invariant system, it is shown by a numerical simulation example and a

multitank system that assuming a Markov chain for the delay sequence is an effective

approach to capture correlation of time delays.

For the time variant system, the proposed iterative recursive algorithm also achieves

better performance and is computationally more efficient, compared with the recursive EM

without iteration, the moving window EM and the batch EM algorithms. The performance

is validated by a numerical simulation example and an experimental hybrid tank system.

2.A Appendix A

The posterior distribution P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

in Q3 (πi) and Equation 2.12 is calcu-

lated by Bayesian rules as follows:

P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

=
P(yT1

,λ1=i|uT1:1,Θ
h)

d∑
m=1

P(yT1
,λ1=m|uT1:1,Θh)

=
P(yT1

|uT1:1,λ1=i,Θh)P(λ1=i|uT1:1,Θ
h)

d∑
m=1

P(yT1
|uT1:1,λ1=m,Θh)P(λ1=m|uT1:1,Θh)

,

(2.52)

where
P
(
yT1 |uT1:1, λ1 = i,Θh

)
= P

(
yT1 |ψT1−λ1 , λ1 = i,Θh

)
,

P
(
λ1 = i|uT1:1,Θ

h
)

= (πi)
h,

(2.53)

and therefore Equation 2.12 is obtained.

The posterior distribution P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

in Q1
(
θ, σ2

)
and Equa-

tion 2.13 is calculated as follows:

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

=
P
(
yTk ,λk=i,λk−1=j|yTk−1:T1

,uTk:1,Θ
h
)

P
(
yTk |yTk−1:T1

,uTk:1,Θh
)

=
P
(
yTk ,λk=i,λk−1=j|yTk−1:T1

,uTk:1,Θ
h
)

d∑
m=1

d∑
n=1

P
(
yTk ,λk=m,λk−1=n|yTk−1:T1

,uTk:1,Θh
)

=
P
(
yTk |yTk−1:T1

,uTk:1,λk=i,λk−1=j,Θh
)
P
(
λk=i|yTk−1:T1

,uTk:1,λk−1=j,Θh
)
P
(
λk−1=j|yTk−1:T1

,uTk:1,Θ
h
)

d∑
m=1

d∑
n=1

P
(
yTk |yTk−1:T1

,uTk:1,λk=m,λk−1=j,Θh
)
P
(
λk=m|yTk−1:T1

,uTk:1,λk−1=n,Θh
)
P
(
λk−1=n|yTk−1:T1

,uTk:1,Θh
) ,

(2.54)

27



where the three terms in both numerator and denominator can be simplified by omitting

irrelevant variables

P
(
yTk |yTk−1:T1 , uTk:1, λk = i, λk−1 = j,Θh

)
= P

(
yTk |ψTk−λk , λk = i,Θh

)
,

P
(
λk = i|yTk−1:T1 , uTk:1, λk−1 = j,Θh

)
= (αij)

h,
P
(
λk−1 = j|yTk−1:T1 , uTk:1,Θ

h
)

= P
(
λk−1 = j|yTk−1:T1 , uTk−1:1,Θ

h
)
,

(2.55)

and finally Equation 2.13 is obtained.

2.B Appendix B

For the regressor parameter estimation obtained in Equation 2.29, the derivations for(
θ̂n+1

)
.den

and
(
θ̂n+1

)
.num

are as follows,(
θ̂n+1

)
.den

=
n+1∏
p=2

(1− γp)
d∑
i=1

P (λ1 = i|yT1 , ψT1−λ1 ; Θ0)ψT1−i
TψT1−i

+
n∑
k=2

n+1∏
p=k+1

(1− γp) γk
d∑
i=1

P (λk = i|yTk , ψTk−λk ; Θ̂k−1)ψTk−i
TψTk−i

+γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
ψTn+1−i

TψTn+1−i,

(2.56)

and (
θ̂n+1

)
.num

=
n+1∏
p=2

(1− γp)
d∑
i=1

P (λ1 = i|yT1 , ψT1−λ1 ; Θ0)ψT1−i
T yT1

+
n∑
k=2

n+1∏
p=k+1

(1− γp) γk
d∑
i=1

P (λk = i|yTk , ψTk−λk ; Θ̂k−1)ψTk−i
T yTk

+γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
ψTn+1−i

T yTn+1 .

(2.57)

Similarly, the formulas for
(
θ̂n

)
.den

and
(
θ̂n

)
.num

in

θ̂n =
(
θ̂n

)
.den

−1(
θ̂n

)
.num

(2.58)

are as follows,(
θ̂n

)
.den

=
n∏
p=2

(1− γp)
d∑
i=1

P (λ1 = i|yT1 , ψT1−λ1 ; Θ0)ψT1−i
TψT1−i

+
n−1∑
k=2

n∏
p=k+1

(1− γp) γk
d∑
i=1

P (λk = i|yTk , ψTk−λk ; Θ̂k−1)ψTk−i
TψTk−i

+γn
d∑
i=1

P
(
λn = i|yTn , ψTn−λn ; Θ̂n

)
ψTn−i

TψTn−i,

(2.59)
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and (
θ̂n

)
.num

=
n∏
p=2

(1− γp)
d∑
i=1

P (λ1 = i|yT1 , ψT1−λ1 ; Θ0)ψT1−i
T yT1

+
n−1∑
k=2

n∏
p=k+1

(1− γp) γk
d∑
i=1

P (λk = i|yTk , ψTk−λk ; Θ̂k−1)ψTk−i
T yTk

+γn
d∑
i=1

P
(
λn = i|yTn , ψTn−λn ; Θ̂n

)
ψTn−i

T yTn .

(2.60)

Next, substitute Equations 2.59 and 2.60, which form the parameter estimate for θ̂n at

previous data point, to Equations 2.56 and 2.57, and it provides the following recursive

parameter updating equation:

θ̂n+1 =
(
θ̂n+1

)
.den

−1(
θ̂n+1

)
.num

=

{
(1− γn+1)

(
θ̂n

)
.den

+ γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
ψTn+1−i

TψTn+1−i

}−1

{
(1− γn+1)

(
θ̂n

)
.num

+ γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
ψTn+1−i

T yTn+1

}
.

(2.61)

For the noise variance estimation obtained in Equation 2.31, by solving
∂Q̂4n+1(θ,σ2)

∂σ2 = 0

and substituting previous estimate, we can obtain the updated noise variance from previous

estimation,

σ̂2
n+1 =

(1− γn+1)
(
σ̂2
n

)
.num

+ γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

) [
yTn+1 − ψTn+1−iθ̂n+1

]2

(1− γn+1) (σ̂2
n).den + γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

) ,

(2.62)

where
(
σ̂2
n

)
.num

and
(
σ̂2
n

)
.den

are the numerator and denominator of the formula used to

obtain σ̂2
n. Since that the value of denominator can be simplified to be 1, as shown below,(
σ̂2
n+1

)
.den

= (1− γn+1)
(
σ̂2
n

)
.den

+ γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

)
= (1− γn+1)

(
σ̂2
n

)
.den

+ γn+1

= (1− γn+1)
(
(1− γn)

(
σ̂2
n−1

)
.den

+ γn
)

+ γn+1
...
= (1− γn+1) ((1− γn) (· · · (1− γ3) ((1− γ2) + γ2) + γ3 · · ·) + γn) + γn+1

= 1,

(2.63)

the estimate for noise variance is simplified to

σ̂2
n+1 = (1− γn+1) σ̂2

n+γn+1

d∑
i=1

P
(
λn+1 = i|yTn+1 , ψTn+1−λn+1 ; Θ̂n

) [
yTn+1 − ψTn+1−iθ̂n+1

]2
.

(2.64)

29



For the noise variance estimation obtained in Equation 2.32, similarly substituting

previous estimate of (α̂ij)n.num and (α̂ij)n.den into current estimate of (α̂ij)n+1.num and

(α̂ij)n+1.den, we can obtain the updated noise variance from previous estimation, as shown

in Equation 2.32.
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Chapter 3

Robust Estimation of ARX Models
with Time Varying Delays Using
EM Algorithm

This chapter is concerned with the identification of time-delay processes. Time delay occurs

in almost all industrial processes and can vary in various fashions, for example, continuous

changing or switching. The switching mechanism is not purely random but often gov-

erned by some switching mechanism that may be described by stochastic models such as

Markov chain. Measured data are often contaminated by outliers. Gaussian distribution is

not sufficient to describe the actual disturbance contaminated by outliers. Instead, other

probabilistic distributions such as t-distribution should be considered, thus diminishing the

effect of outliers. In the presence of unknown time delay, the Expectation Maximization

(EM) algorithm is applied to estimate both the parameter and time delay. The proposed

algorithms are verified by numerical examples and a pilot-scale tank experiment.

3.1 Introduction

Time delay is a common phenomena in almost all processes, and it makes the system iden-

tification challenging when the delay is time varying [31]. The existence of measurement

outliers is an issue as well, especially when the outliers have no fixed distribution. The

combination of these two issues can deteriorate the identification significantly and the re-

sulting estimation becomes unreliable. Thus, they should be paid attention to during system

identification.

Most researches deal with constant time delays [32, 33, 34, 35]. However, time delay is

often introduced in the plant due to the transportation speed. Thus, when the transporta-

tion speed changes, for instance, due to the change in the flow of the liquid in a pipe, the
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delay is also changed. As a result, the delay in each sample time follows a dynamic behavior

which can be expressed by dynamic correlation models such as Markov chain [18].

The property of Markov chain says that the switching delay value evolves in a Markovian

fashion. This means that the delay value at the current time only depends on its imme-

diate past and it has only finite number of discrete values. It may or may not switch to

another value. In the formulation of Markov chain, the switching mechanism of time delay

is governed by a transition probability. The transition matrix may assign larger probability

for delay to stay unchanged and assigns lower probability to switch current delay value to

distant values, which is representative of the real situation. When the switching delay value

is unknown and cannot be measured directly, the switching dynamics described by a latent

variable is normally referred to as a Hidden Markov Model (HMM). As one of the most

important statistical models, HMM has been applied to various areas like fault diagnosis

for gearbox [36], Bayesian model selection [37], model reduction [38], anomaly detection in

electronic systems [39], and blind categorical de-convolution [40].

Outliers happen in industry as well, which are usually caused by occasional interruption

and disturbance. Conventional approaches make use of Gaussian models to approximate

the noise in the complex processes [41]. The major limitation of this method is the lack

of robustness in the presence of outliers. This is because under the assumed Gaussian

distribution, maximizing the likelihood function is equivalent to finding the least square

solution, which is well known for the lack of robustness [42]. Thus, models identified by this

approach may be unreliable in the presence of outliers.

A more general approach to model the measurement noise with outliers is to use the

t-distribution [43]. The t-distribution can have long tails through adjustable degrees of

freedom. This gives the ability to adjust in order to improve the modeling of noise and

outliers simultaneously. A a result, the affect of outliers on modeling can be diminished

by assigning proper probability densities to outliers. Christmas et al. [44] assumed a

Student-t distributed excitation noise in the Bayesian AR model, where the parameter

estimation performs well against Gaussian data and modeling with Student-t assumption

is much more robust to outliers than both Gaussian and Gaussian mixture models. Lange

et al. [45] used the Student-t distribution for robust statistical inference in both linear

and nonlinear regression, and they also show how this distribution allows them to achieve

more robust models by controlling the degree to down weigh the outliers. Moreover, many

other researchers have employed the Student-t distribution for robust parameter estimation,

like generalized component analysis [46], signal filtering and prediction [47], and image
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segmentation [48, 49].

In this chapter, we will develop a novel identification approach which is robust to outliers

using the t-distribution for processes with time varying time delays. The delay is supposed

to follow a hidden Markov model (HMM) and its parameters are also estimated together

with the parameters of the process model. A simulation example and an experimental

implementation verify that the proposed method can provide more reliable identification

results.

The remainder of this chapter is organized as follows. A detailed problem description

of the ARX model identification in the presence of outliers and time varying time delays

is presented in the next section. The following section applies EM Algorithm to solve this

robust estimation problem. Then Section 4 gives a numerical example to demonstrate the

proposed method. Then in Section 5, a pilot-scale experiment is conducted to further verify

the proposed method. Finally, the conclusion is given in the last section.

3.2 Problem Statement

Consider the following dual rate ARX model:

yTk = ψTk−λkθ + eTk

ψTk−λk =
[
yTk−1

· · · yTk−na uTk−λk · · · uTk−nb−λk
]
∈ R1×(na+nb+1).

(3.1)

where {yTk , k = 1, 2, ..., N} is the slow rate output variable. {ut, t = 1, 2, ..., L} is the fast

rate input variable. The slow rate sampling time is ∆ times that of the fast rate (L = ∆∗N).

{λk, k = 1, 2, ..., N} is time varying delay. θ ∈ R(na+nb+1)×1 is the regression parameter

vector where nb+λk < ∆. et is associated measurement noise, which is considered to follow

a t-distribution, i.e. et ∼ t(0, σ2, v) with unknown scaling parameter σ2 and degrees of

freedom v.

From the distribution of measurement noise, yTk ∼ t(ψTk−λkθ, σ2, v) is calculated by

P
(
yTk |ψTk−λkθ, σ

2, v
)

=
Γ
(
v+1

2

)
Γ
(
v
2

)√
πvσ2

{
1 +

[yTk − ψTk−λkθ]
2

σ2v

}− v+1
2

. (3.2)

Essentially, the t-distribution can be decomposed into scaled Gaussian distributions,

where the variance scale rk is a Gamma distributed latent variable which depends on the

degree of freedom v:

f
(
yTk |ψTk−λkθ, σ

2, v
)

=

∫
f
(
yTk |ψTk−λkθ, σ

2, v, rk
)
f
(
rk|ψTk−λkθ, σ

2, v
)
drk, (3.3)
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where

yTk |
(
ψTk−λkθ, σ

2, v, rk
)

= yTk |
(
ψTk−λkθ, σ

2, rk
)
∼ N

(
ψTk−λkθ,

σ2

rk

)
,

rk|
(
ψTk−λkθ, σ

2, v
)

= rk|v ∼ gamma
(

1
2v,

1
2v
)
.

(3.4)

The time delay sequence is described by a Markov chain. The Markov property means

that the kth instant time delay is only dependent on the (k − 1)th instant time delay:

P (λk|λk−1, ..., λ1) = P (λk|λk−1). (3.5)

The hidden Markov chain is governed by a transition probability,

αij = P (λk = i|λk−1 = j), k = 2, 3...N, 1 ≤ i, j ≤ d, (3.6)

while the distribution of the initial time delay is

πi = P (λ1 = i), 1 ≤ i ≤ d. (3.7)

3.3 Time-varying time delayed ARX Model Identification us-
ing the EM Algorithm

3.3.1 Formulation under EM algorithm

The actual value of the time delay λk, and variance scale rk, are unknown. Hence, the

EM algorithm [17] is employed to identify the system in Equation 1. For this purpose, the

observed variables, missing variables and the parameters to be estimated are denoted as:

Cobs = {Y, U} =
{
yTN , yTN−1

, · · · , yT1 , uTN , uTN−1, · · · , u1

}
,

Cmis = {Λ, R} = {λN , λN−1, · · · , λ1, rN , rN−1, · · · , r1},
Θ = {θ, σ2, v, αij , πi}.

(3.8)

The EM algorithm calculates the conditional expectation of the complete data likelihood

and maximizes the expectation (Q function) with respect to the parameters iteratively,

resulting in maximum likelihood estimation (MLE) of the parameters of interest. The

mathematical formulation of the Q function can be derived as:

Q
(

Θ|Θh
)

= EΛ,R|Y,U,Θh {logP (Y,U,Λ, R|Θ)} , (3.9)

where Θh is the previous estimate of the parameters from the earlier iteration step and E

denotes the expectation value. Using the chain rule, the complete data likelihood can be

separated as follows:

Q(Θ|Θh) = EΛ,R|Y,U,Θh {log [P (Y |Λ, R, U,Θ)P (R|Λ, U,Θ)P (Λ|U,Θ)P (U |Θ)]} . (3.10)
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Observations do not depend on future information and are conditionally independent of each

other given the historical data. Time delay only depends on the latest delay. In addition,

the input is deterministic. Therefore, the four probability terms in Equation 3.10 cab be

simplified as:

P (Y |Λ, R, U,Θ) = P (yTN :T1 |λN :1, rN :1, uN :1,Θ)

=
N∏
k=1

P
(
yTk |yTk−1:T1 , uTk:1, rk, λk,Θ

)
=

N∏
k=1

P (yTk |ψTk−λk , rk, λk,Θ),

P (R|Λ, U,Θ) = P (rN :1|λN :1, uN :1,Θ) =
N∏
k=1

P (rk|Θ) ,

P (Λ|U,Θ) = P (λN :1|uN :1,Θ) =
N∏
k=2

P (λk|λk−1,Θ)× P (λ1|Θ) ,

P (U |Θ) = C.
(3.11)

Thus, the joint probability can be replaced by the multiplication of separate conditional

probabilities:

Q
(

Θ|Θh
)

= EΛ,R|Y,U,Θh log


N∏
k=1

P (yTk |ψTk−λk , rk, λk,Θ)×
N∏
k=1

P (rk|Θ)

×
N∏
k=2

P (λk|λk−1,Θ)× P (λ1|Θ)× C

 . (3.12)

Logarithm helps multiplication to be simplified into summation,

Q
(

Θ|Θh
)

= EΛ,R|Cobs,Θh


N∑
k=1

logP (yTk |ψTk−λk , rk, λk,Θ) +
N∑
k=1

logP (rk|Θ)

+
N∑
k=2

logP (λk|λk−1,Θ) + logP (λ1|Θ) + logC

 . (3.13)

The expectation can be replaced by the multiplication of the conditional probability of

the missing variables to the corresponding likelihood functions. Then the final Q function

expression is composed of four terms corresponding to different parameters

Q(Θ|Θh) = Q1(θ, σ2) +Q2(v) +Q3(αij) +Q4(πi) + logC. (3.14)

where

Q1(θ, σ2) =
N∑
k=1

∫∞
0

d∑
i=1

{
P
(
rk|yTk:T1 , uTk:1, λk = i,Θh

)
P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)

logP (yTk |ψTk−λk , rk, λk = i,Θ)

}
drk,

Q2(v) =
N∑
k=1

∫∞
0

d∑
i=1

{
P
(
rk|yTk:T1 , uTk:1, λk = i,Θh

)
P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)

logP (rk|Θ)

}
drk,

Q3(αij) =
N∑
k=2

d∑
i=1

d∑
j=1

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)
logP (λk = i|λk−1 = j,Θ),

Q4(πi) =
d∑
i=1

P
(
λ1 = i|yT1 , uT1:1,Θ

h
)
logP (λ1 = i|Θ).

(3.15)
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In Q1(θ, σ2) and Q2(v), the P (yTk |ψTk−λk , rk, λk = i,Θ) and P (rk|Θ) are calculated by

P (yTk |ψTk−λk , rk, λk = i,Θ) = 1√
2πσ2/rk

exp

(
− [yTk−ψTk−iθ]

2

2σ2/rk

)
,

P (rk|Θ) = (v/2)
v
2 (rk)

v
2−1

Γ(v/2) exp
(
−v

2rk
)
.

(3.16)

Accordingly,

logP (yTk |ψTk−λk , rk, λk = i,Θ) = −1
2 log

(
2πσ2

)
+ 1

2 log rk − rk
2σ2 (yTk − ψTk−iθ)

2,
logP (rk|Θ) = − log Γ (v/2) + v

2 log (v/2) +
(
v
2 − 1

)
log rk − v

2rk.
(3.17)

In Q3(αij) and Q4(πi), P (λk = i|λk−1 = j,Θ) and P (λ1 = i|Θ) are the transition probability

and delay distribution at the initial time instant:

P (λk = i|λk−1 = j,Θ) = αij ,

P (λ1 = i|Θ) = πi.
(3.18)

3.3.2 Expectation step

To conduct the expectation calculation for the four Q function terms in Eqn.3.15, the

following posteriors should be determined,

1. P
(
rk|yTk:T1 , uTk:1, λk = i,Θh

)
, 1 ≤ k ≤ N

2. P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)
, 2 ≤ k ≤ N

3. P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)
, 2 ≤ k ≤ N

4. P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

Considering Equation 3.17, logP (yTk |ψTk−λk , rk, λk = i,Θ) is a linear function of rk

and logrk. Therefore, the integration with respect to rk in Eqn.3.15 can be implemented

by taking the expectation over rk and logrk. This means that the integration computation

converts to terms including E
(
rk|yTk:T1 , uTk:1, λk = i,Θh

)
and E(logrk|yTk:T1 , uTk:1, λk =

i,Θh).

The Gamma distribution is the conjugate prior distribution over rk, and hence the

conditional posterior distribution of rk follows a Gamma distribution as well,

rk|
(
yTk:T1 , uTk:1, λk = i,Θh

)
∼ gamma

vh + 1

2
,
vh + 1

(σ2)h

(
yTk − ψTk−iθh

)2
2

 . (3.19)

Detailed derivation is explained in Appendix A. Therefore, we can get the expectation of

the conditional posterior distribution over rk and logrk according to the property of Gamma
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distributions

E
(
rk|yTk:T1 , uTk:1, λk = i,Θh

)
= vh+1

vh+ 1

(σ2)h
(yTk−ψTk−iθ

h)
2

∆
= r̄hki

E
(
log rk|yTk:T1 , uTk:1, λk = i,Θh

)
= Ψ

(
vh+1

2

)
− log

(
vh+ 1

(σ2)h
(yTk−ψTk−iθ

h)
2

2

)
= Ψ

(
vh+1

2

)
− log

(
vh+1
2r̄hki

)
,

(3.20)

where Ψ (v) is the derivative of the logarithm of the gamma function., i.e., Ψ (v) = ∂Γ(v)
∂v

1
Γ(v) .

The joint probability, P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

when k ≥ 2, can be obtained

by
P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

=

 P
(
yTk |λk = i, ψTk−λk ,Θ

h
)
× αijh

×P
(
λk−1 = j|yTk−1:T1 , uTk−1:1,Θ

h
) 

d∑
m=1

d∑
n=1

 P
(
yTk |λk = m,ψTk−λk ,Θ

h
)
× αmnh

×P
(
λk−1 = n|yTk−1:T1 , uTk−1:1,Θ

h
) 

,
(3.21)

Therefore, the conditional probability of λk when k ≥ 2 is obtained as:

P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)

=
d∑
j=1

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

(3.22)

and the conditional probability of λk when k = 1 is obtained as:

P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

=
P
(
yT1 |λ1 = i, ψT1−λ1 ,Θ

h
)
πi
h

d∑
m=1

P (Z1|λ1 = m,ψT1−λ1 ,Θ
h)πmh

. (3.23)

Detailed derivations of P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

when k ≥ 2 and P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

are presented in Appendix B.

Considering the above derivations, the four terms Q1(θ, σ2), Q2(v), Q3(αij) and Q4(πi)

can be written as:

1. The term corresponding to the estimation of θ, σ2

Q1(θ, σ2) =

N∑
k=1

d∑
i=1


P
(
λk = i|yTk:T1 , uTk:1,Θ

h
) − log

√
2π − 1

2 log σ2 + 1
2Ψ
(
vh+1

2

)
−1

2 log
(
vh+1
2r̄hki

)
− r̄hki

2σ2 (yTk − ψTk−iθ)
2


 (3.24)

2. The term corresponding to the estimation of v

Q2(v) =
N∑
k=1

d∑
i=1


P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)[

− log Γ (v/2) + v
2 log (v/2)− v

2 r̄
h
ki

+
(
v
2 − 1

){
Ψ
(
vh+1

2

)
− log vh+1

2r̄hki

} ]
 (3.25)
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3. The term corresponding to the estimation of αij

Q3 (αij) =
N∑
k=2

d∑
i=1

d∑
j=1

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

(3.26)

4. The term corresponding to the estimation of πi

Q4 (πi) =
d∑
i=1

P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

log (πi) (3.27)

3.3.3 Maximization step

A new estimate of the parameters is obtained by taking the derivative of the Q function

over the parameters and equating them to zero. The Q function is divided into terms such

that each consists of one set of the parameters. Therefore, the derivative can be taken in

each individual term with respect to that set of parameters.

1. Model parameters:

∂Q1(θ,σ2)
∂θ = 0

⇒ θh+1 =

{
N∑
k=1

d∑
i=1

P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)
r̄hkiψTk−i

TψTk−i

}−1

{
N∑
k=1

d∑
i=1

P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)
r̄hkiψTk−i

T yTk

} (3.28)

2. Scaling parameter:

∂Q1(θ,σ2)
∂σ2 = 0

⇒
(
σ2
)h+1

=

N∑
k=1

d∑
i=1

P(λk=i|yTk:T1
,uTk:1,Θ

h)r̄hki[yTk−ψTk−iθ]
2

N∑
k=1

d∑
i=1

P(λk=i|yTk:T1
,uTk:1,Θh)

= 1
N

N∑
k=1

d∑
i=1

P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)
r̄hki
[
yTk − ψTk−iθh+1

]2
(3.29)

3. Degree of freedom

∂Q2(v)
∂v = 0

⇒
N∑
k=1

d∑
i=1


P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)[

−Ψ (v/2) + log (v/2) + 1− r̄hki
+Ψ

(
vh+1

2

)
− log vh+1

2r̄hki

]  = 0
(3.30)

4. Transition probability of HMM:

When conducting the computation of αij , we need to consider the constraint that
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Table 3.1: Procedure of expectation and maximization steps

Initialization. Set h = 0. Assign random values to Θh.
Do

E-step: Calculate r̄h1i and P
(
λ1 = i|yT1 , uT1:1,Θ

h
)
;

for k = 2 : N
Calculate r̄hki
and P

(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

and P
(
λk = i|yTk:T1 , uTk:1,Θ

h
)
;

M-step: Calculate
{
θ, σ2, v, αij , πi

} ∆
= Θh+1;

until ||Θ
h+1−Θh||2−||Θh||2

||Θh||2 < 0.001.

d∑
j=1

αij = 1, thus we need to introduce Lagrange multiplier Lα,

∂
∂αij

{
Q3 (αij) + Lα

(
d∑
j=1

αij − 1

)}
= 0

⇒ (αij)
h+1 =

N∑
k=2

P(λk=i,λk−1=j|yTk:T1
,uTk:1,Θ

h)

N∑
k=2

d∑
j=1

P(λk=i,λk−1=j|yTk:T1
,uTk:1,Θh)

(3.31)

5. Initial probability of hidden delay:

Considering the constraint that
d∑
i=1

πi = 1 , we introduce Lagrange multiplier Lπ,

∂
∂πi

{
Q4 (πi) + Lπ

(
q∑
i=1

πi − 1

)}
= 0

⇒ (πi)
h+1 =

P(λ1=i|yT1
,uT1:1,Θ

h)
d∑
i=1

P(λ1=i|yT1
,uT1:1,Θh)

= P
(
λ1 = i|yT1 , uT1:1,Θ

h
) (3.32)

Using Equations 3.28 to 3.32, the new estimate of the parameters is obtained and replaced

as the initial parameter estimate in the next iteration of the EM algorithm. This procedure

is continued until the parameters estimation converges to the ML solution. The calculation

procedure is carried out as shown in Table 3.1.

3.4 Simulation Study

In this section, a numerical example is given to show the effectiveness of the proposed

algorithm.
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Consider the following dual rate system:

yTk = 0.9yTk−1
+ 0.4uTk−λk + υTk

u ∼ N (0, 1)

υ ∼ N
(
0, σ2

)
λk ∈ {1, 2, 3, 4}

(3.33)

where u, y and v are the input, output and measurement noise, respectively. Tk = k∆ is the

sample time of output which is ∆ times slower than the sample time of the input signal, u.

In this example ∆ = 5. The input signal u is a normally distributed random variable with

zero mean and unit variance. Measurement noise v follows a normal distribution with zero

mean and σ2 variance. Then we substitute part of the measurement noise by drift values

between -5 and 5 in order to simulate the outliers. Delay is varying among {1,2,3,4}, in the

form of a Markov chain. The true transition matrix governing the switching of delay is

A = {αij} =


0.90 0.06 0.03 0.01
0.02 0.90 0.06 0.02
0.01 0.06 0.90 0.02
0.01 0.03 0.06 0.90

 (3.34)

In simulation, L = 500 fast-rate inputs and N = 100 slow-rate outputs are collected for

system identification. Figure 3.1 contains the fast-rate input data, true delay generated

according to the transition probability, measurement noise, and output data. As we can

see, the measurement noise has some drifting values, which introduces some outliers into

the output measurement. The first 50 slow rate output samples and 250 fast rate input

samples are used as the training data to estimate the parameters of the model and the rest

are used to test the estimation.

Applying the proposed algorithm of Section 3 to the training data set for σ2 = 0.01, the

estimated parameters converge within 5 iterations of the EM algorithm as shown in Figure

3.2. The HMM transition probability is estimated as:

Â = {α̂ij} =


0.8741 0.0634 0.0625 0.0001
0.0639 0.8176 0.0845 0.0340
0.0104 0.0849 0.8514 0.0533
0.0035 0.0606 0.1627 0.7732

. (3.35)

Using this transition matrix, the estimated delay of the training data set can be obtained

by

λ̂k = argmax
i

P
(
λk = i|yTk−1:T1 , uTk−1:1, Θ̂

)
, N

2 + 1 ≤ k ≤ N . (3.36)

where Θ̂ = {θ̂, σ̂2, v̂, α̂ij , π̂i}. The estimated delays from training data are illustrated by the

first half of Figure 3.3, which also coincide with the true delay with an accuracy of 91%.
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Figure 3.1: Simulation data

θ
θ
θ
θ

Figure 3.2: Parameters estimation
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Figure 3.3: Delay estimation for the simulation system 3.33 (First 50 data points of the
figure is from training data set, while last 50 data points is test data set)
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Figure 3.4: Output prediction of the system 3.33 (First 50 data points of the figure are from
training data set, while last 50 data points are from the test data set)

The self validation result is illustrated in Figure 3.4, from which we can see that the outliers

are successfully rejected.

The test data set is used to validate the performance of the estimation by predicting

λ̂k = argmax
i

P
(
λk = i|yTk:T1 , uTk:1, Θ̂

)
, 1 ≤ k ≤ N

2 , (3.37)

given θ̂ and λ̂k. In order to have the prediction of time delay value, we need to calculate

42



the prior distribution of λk = i up to the observation at time k − 1,

P
(
λk = i|yTk−1:T1 , uTk−1:1, Θ̂

)
=

d∑
j=1

P
(
λk = i, λk−1 = j|yTk−1:T1 , uTk−1:1, Θ̂

)
=

d∑
j=1

α̂ijP
(
λk−1 = j|yTk−1:T1 , uTk−1:1, Θ̂

)
.

(3.38)

The prior distribution is used to estimate the delay value at the kth time instant,

λ̂k = argmax
i

P
(
λk = i|yTk−1:T1 , uTk−1:1, Θ̂

)
, N

2 + 1 ≤ k ≤ N . (3.39)

and then the prediction of ŷTk is computed. The prediction of the next observation needs

the prior distribution of λk+1. It is computed based on the posterior distribution of λk = i

and expectation value of rk given λk = i,

P
(
λk = i|yTk:T1 , uTk:1, Θ̂

)
=

d∑
j=1

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1, Θ̂

)
=

d∑
j=1

P
(
yTk |λk=i,yTk−1:T1

,uTk:1,Θ̂
)
α̂ijP

(
λk−1=j|yTk−1:T1

,uTk−1:1,Θ̂
)

d∑
m=1

d∑
n=1

P
(
yTk |λk=m,yTk−1:T1

,uTk:1k
,Θ̂
)
α̂mnP

(
λk−1=n|yTk−1:T1

,uTk−1:1,Θ̂
)

(3.40)

where the mean value of rk given λk = i is as follows,

E
(
rk|yTk:T1 , uTk:1, λk = i, Θ̂

)
=

v̂ + 1

v̂ + 1
σ̂2

[
yTk − ψTk−iθ̂

]2

∆
= r̄ki (3.41)

The estimated time delay for the test data set is displayed in the second half of Figure

3.3. The cross validation result is illustrated in the second half of Figure 3.4.

In order to further test effectiveness of using Markov chain to model delay correlation, we

consider a more realistic way to generate the time delays in the simulation. Consider delay

is caused by transportation of materials in a pipe. The output measurement has varying

time delay because of the varying flow rate. The flow rate is generated by passing a white

noise sequence through a low-pass filter. The values of the transportation time delay are

inversely proportional to the flow rates because of the fixed intersection area of the pipe.

The delay values are rounded to the nearest integers {1,2,3,4} for discrete time system

simulation. Using new simulated data, we apply the proposed method and compare it with

three alternative methods. In the first method, the delay is supposed to follow a Markov

chain but the measurement noise is considered to follow a Gaussian distribution, which

is called regular Markov delay estimation. In the second method, the delay is supposed

to change randomly but not follow a Markov chain, which is called independent delay
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Table 3.2: A Summary of the Robust EM Estimation Performance (training set)

σ2 = 0.01 σ2 = 0.04 σ2 = 0.09
Accuracy* RMSE Accuracy* RMSE Accuracy* RMSE

Markov delay (Robust) 91% 0.060 80% 0.153 68% 0.223
Markov delay (Regular) 80% 0.086 70% 0.192 58% 0.420

Independent delay (Regular) 70% 0.102 55% 0.318 47% 0.451
Fixed delay (Regular) N/A 0.302 N/A 0.420 N/A 0.537

* Accuracy of delay estimation.

Table 3.3: A Summary of the Robust EM Estimation Performance (test set)

σ2 = 0.01 σ2 = 0.04 σ2 = 0.09
Accuracy* RMSE Accuracy* RMSE Accuracy* RMSE

Markov delay (Robust) 90% 0.076 75% 0.189 65% 0.264
Markov delay (Regular) 76% 0.096 65% 0.226 55% 0.480

Independent delay (Regular) 68% 0.126 50% 0.360 40% 0.491
Fixed delay (Regular) N/A 0.362 N/A 0.433 N/A 0.590

* Accuracy of delay estimation.

estimation. In the third method, the delay is supposed to be constant, which is called

fixed delay estimation. In the implementation of independent delay estimation, the prior

distribution of delay is considered to be uniformly distributed among {1,2,3,4} for each

sample, while the EM algorithm is used for identification. In the fixed delay estimation, we

consider that the delay for all samples is the same, and that the unknown value is uniformly

distributed among {1,2,3,4}, and the identification is still by EM algorithm as well.

The performance of the three different methods for the training data set is given in Table

3.2, and for the test data set is listed in Table 3.3. The performance is compared under

three different noise levels. In each level, the accuracy of the proposed hidden Markov

model delay estimation is higher than both the independent delay and the fixed delay

estimation methods, and the RMSE is the smallest. When noise variance becomes large,

the performance of all three methods degrades, however, the performance of the proposed

robust HMM method is always better than the others.
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Figure 3.5: Schematic diagram of the hybrid tank system

3.5 Experimental Evaluation

A system identification experiment is designed and performed on a pilot-scale hybrid tank

system. The schematic diagram of the plant is displayed in Figure 4.7. In the experiment,

the right hand side tank, Tank3, and the middle tank, Tank2, are used. Therefore, the

valves V1, V3, V5, V6 are close, and valves V2, V4, V7, V8, V9 are open. A basis input

with amplitude u = 5.5 is introduced to the right hand side pump, PMP2. As a result,

Tank3 water level turns to steady state at y = 46 after a period of time. Then a filtered

random binary signal (RBS) with level [−0.7, 0.7] is added to the input to stimulate the

system and generate experimental data.

Input and output data are shown in Figure 3.6. The input is measured with a sampling

rate of 16 seconds, while the output is measured with a sampling rate of 48 seconds associat-

ed with a manually imposed time delay, which is randomly varying between 16 seconds and

32 seconds. The switching of time delay follows a Markov chain with transition probability:

A = {αij} =

(
0.85 0.15
0.15 0.85

)
.

As shown in Figure 3.6, we also manually imposed some outliers to the output.

Considering that the delay follows a sequence of Markov chain, to validate the proposed

algorithm in the identification of time invariant system, the data are normalized and divided

into two halves; the first half being the training data set, and the second half being the test

data set.
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Figure 3.6: Input and output data

θ
θ

Figure 3.7: Iteration of parameter estimation

Consider the model structure for this plant to be a first order ARX model,

yTk
= ayTk−1

+ buTk−λk

Applying the proposed EM algorithm of Section 3, the regression parameters converge to

a = 0.6372, b = 0.2817 after 10 iterations as shown in Figure 3.7, and the transition

probability matrix is estimated as

Â = {α̂ij} =

(
0.8560 0.1440
0.1550 0.8450

)

Using the procedure explained in Section 4, the delay sequence can be obtained. The

delay estimation results are shown in Figure 3.8. The self and cross validation results are

illustrated in Figure 3.9, which shows better accuracy of the estimation. It also shows that

the model can reject the outliers.
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Figure 3.9: Self validation and cross validation

47



Table 3.4: A Summary of the RMSE in the Robust EM Estimation Experiment

Self validation Cross validation

Markov delay (Robust) 4.2592 5.5362
Markov delay (Regular) 7.6352 9.8651

Independent delay(Regular) 11.5352 13.5632
Fixed delay(Regular) 15.1253 17.7892

In order to show the advantages of modeling delay by a Markov chain and noise by the

t-distribution, we compare the proposed method with the regular Markov delay estimation,

the independent delay assumption method and fixed delay estimation method. Implemen-

tation details of these methods are illustrated in Section 4, where we regenerate time delays

through correlated flow rates. The performance of the three different methods is listed in

Table 4.4. We can see that the RMSE of the proposed method is the smallest compared to

the other methods. This is because the structure of delay transition and noise distribution

agree with the actual ones.

3.6 Conclusions

This chapter considers identification of ARX models with time varying delay in the presence

of measurement outliers. Time varying delay is modeled by HMM and the measurement

noise is modeled by t-distribution. In the framework of EM algorithm, the problem is solved

by the proposed method. The parameters and unknown time delay are estimated, and the

improved performance is demonstrated by both the numerical and experimental examples.

Through comparison with three alternatives, the proposed method achieves the smallest

RMSE for both the training and test data sets.

3.A Appendix A

The derivation of the conditional posterior distribution over rk is as follows,

P
(
rk|yTk:T1 , uTk:1, λk = i,Θh

)
=

P
(
yTk ,rk|yTk−1:T1

,uTk:1,λk=i,Θh
)

P
(
yTk |yTk−1:T1

,uTk:1,λk=i,Θh
)

=
P
(
yTk |yTk−1:T1

,uTk:1,λk=i,rk,Θ
h
)
P
(
rk|yTk−1:T1

,uTk:1,λk=i,Θh
)

∫∞
0 P

(
yTk |yTk−1:T1

,uTk:1,λk=i,rk,Θh
)
P
(
rk|yTk−1:T1

,uTk:1,λk=i,Θh
)
drk

=
P
(
yTk |yTk−1:T1

,uTk:1,λk=i,rk,Θ
h
)
P(rk|Θh)∫∞

0 P
(
yTk |yTk−1:T1

,uTk:1,λk=i,rk,Θh
)
P(rk|Θh)drk

.

(3.42)
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Substituting Equation 3.16 into the above equation, we have

P
(
rk|yTk:T1 , uTk:1, λk = i,Θh

)
=

1√
2πσ2/rk

exp

(
−(yTk−ψTk−iθ

h)
2

2(σ2)h/rk

)
∗(
vh/2)

vh

2 (rk)
vh

2 −1

Γ(vh/2)
exp
(
− v

h

2
rk

)
∫∞
0

1√
2πσ2/rk

exp

(
−(yTk−ψTk−iθ

h)
2

2(σ2)h/rk

)
∗ (v/2)

vh
2 (rk)

vh
2 −1

Γ(vh/2)
exp
(
− vh

2
rk

)
drk

.
(3.43)

To calculate the denominator, we refer to the following method,∫ ∞
0

(x)a−1 exp (−bx) dx =
1

ba

∫ ∞
0

(bx)a−1 exp (−bx) d (bx) =
Γ (a)

ba
, (3.44)

so we can have∫∞
0 P

(
yTk |yTk−1:T1 , uTk:1, λk = i, rk,Θ

h
)
P
(
rk|Θh

)
drk

= 1√
2πσ2

(vh/2)
vh

2

Γ(vh/2)
×
∫∞

0 (rk)
vh+1

2
−1 exp

(
−rk

vh+ 1

(σ2)h
(yTk−ψTk−iθ

h)
2

2

)
drk

= 1√
2πσ2

(vh/2)
vh

2

Γ(vh/2)
× Γ

(
vh+1

2

)(vh+ 1

(σ2)h
(yTk−ψTk−iθ

h)
2

2

)− vh+1
2

,

(3.45)

and finally,

P
(
rk|yTk:T1 , uTk:1, λk = i,Θh

)
= 1

Γ
(
vh+1

2

)(vh+ 1
σ2 [yTk−ψTk−iθ]

2

2

) vh+1
2

(rk)
v+1

2
−1 exp

(
−rk

vh+ 1
σ2 [yTk−ψTk−iθ]

2

2

)
,

(3.46)

which is exactly

rk|
(
yTk:T1 , uTk:1, λk = i,Θh

)
∼ gamma

vh + 1

2
,
vh + 1

(σ2)h

(
yTk − ψTk−iθh

)2
2

 . (3.47)

3.B Appendix B

The derivation of P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

is as follows,

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

=
P
(
yTk ,λk=i,λk−1=j|yTk−1:T1

,uTk:1,Θ
h
)

d∑
m=1

d∑
n=1

P
(
yTk ,λk=m,λk−1=n|yTk−1:T1

,uTk:1,Θh
)

=
Bkij

d∑
m=1

d∑
n=1

Bkmn

,

(3.48)

where, for notation simplicity,

Bkij =


P
(
yTk |λk = i, yTk−1:T1 , uTk:1,Θ

h
)

P
(
λk = i|λk−1 = j, yTk−1:T1 , uTk:1,Θ

h
)

P
(
λk−1 = j|yTk−1:T1 , uTk:1,Θ

h
)

 . (3.49)
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The first term in Bkij can be further derived as

P
(
yTk |λk = i, yTk−1:T1 , uTk:1,Θ

h
)

= P
(
yTk |λk = i, ψTk−λk ,Θ

h
)

=
∫∞

0 P
(
yTk , rk|λk = i, ψTk−λk ,Θ

h
)
drk

=
∫∞

0 P
(
yTk |λk = i, rk, ψTk−λk ,Θ

h
)
P
(
rk|Θh

)
drk,

(3.50)

which is exactly the Equation 3.45 in Appendicx B. The second term in Bkij is

P
(
λk = i|λk−1 = j, yTk−1:T1 , uTk:1,Θ

h
)

= αij
h. (3.51)

Therefore, the joint posterior can be computed by

P
(
λk = i, λk−1 = j|yTk:T1 , uTk:1,Θ

h
)

=

 P
(
yTk |λk = i, ψTk−λk ,Θ

h
)
× αijh

×P
(
λk−1 = j|yTk−1:T1 , uTk−1:1,Θ

h
) 

d∑
m=1

d∑
n=1

 P
(
yTk |λk = m,ψTk−λk ,Θ

h
)
× αmnh

×P
(
λk−1 = n|yTk−1:T1 , uTk−1:1,Θ

h
) 

.
(3.52)

The derivation of P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

is as follows,

P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

=
P(yT1

,λ1=i|uT1:1,Θ
h)

d∑
m=1

P(yT1
|uT1:1,Θh)

=
P(yT1

|uT1:1,λ1=i,Θh)P(λ1=i|Θh)
d∑

m=1
P(yT1

,λ1=m|uT1:1,Θh)P(λ1=m|Θh)
,

(3.53)

where
P
(
yT1 |uT1:1, λ1 = i,Θh

)
= P

(
yT1 |ψT1−λ1 , λ1 = i,Θh

)
=
∫∞

0 P
(
yT1 |ψT1−λ1 , λ1 = i, r1,Θ

h
)
P
(
r1|Θh

)
dr1

= 1√
2πσ2

(v/2)
vh

2

Γ(vh/2)
× Γ

(
vh+1

2

)(vh+ 1

(σ2)h
(yT1

−ψT1−iθ
h)

2

2

)− vh+1
2

,

(3.54)

and

P
(
λ1 = i|Θh

)
= πi

h. (3.55)

Finally the posterior distribution of the initial time delay is computed by

P
(
λ1 = i|yT1 , uT1:1,Θ

h
)

=
P
(
yT1 |ψT1−λ1 , λ1 = i,Θh

)
πi
h

d∑
m=1

P (yT1 |ψT1−λ1 , λ1 = m,Θh)πmh
. (3.56)
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Chapter 4

Robust Estimation of ARX Models
with Time Varying Time Delays
Using Variational Bayesian
Approach

This work is concerned with robust identification of processes with time-varying time delays.

In reality, the delay values do not simply change randomly, but there is a correlation between

consecutive delays. In this work, the correlation of time delay is modeled by the transition

probability of a Markov chain. Considering that the measured data are often contaminated

by outliers, t-distribution is adopted to model the measurement noise. Furthermore, the

variational Bayesian (VB) approach is applied to estimate the model parameters along with

time delays. Compared with the classical expectation-maximization (EM) algorithm, VB

approach has the advantage of capturing the uncertainty of the estimated parameter sand

time delays by providing their full probabilities. The effectiveness of the proposed method

is demonstrated by both a numerical example and a pilot-scale tank experiment.

4.1 Introduction

Time delay frequently occurs in many practical systems including chemical processes, trans-

mission lines, and telecommunication. System identification in the presence of time delay

has received much attention and has become one of the most active research subjects in

many engineering fields. Moreover, in industrial processes, besides usual measurement noise,

some collected data points may be distorted because of sensor fault or large disturbance in

the data measurement. Thus, to ensure the reliability of the estimated model parameters,

robust parameter estimation is essential.
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Outliers occur in real process data and would affect the process identification signifi-

cantly because they are different from typical process data [50]. A conventional approach

to cope with potential outliers is to use the contaminated Gaussian distribution [51]. The

outliers are taken into account when modeling the noise, where a Gaussian component with

large variance is utilized to model the outliers. Jin et al. have used the contaminated Gaus-

sian distribution to make their algorithm robust to outliers [52]. This solution is limited to

a special type of outliers. A more general approach to model the effect of outliers is to use

the t-distribution [43], which has longer tails than a Gaussian distribution. In Lu et. al’s

work [13], they considered the measurement noise modeled by a t-distribution, and the per-

formance is improved compared with the noise that is modeled by a Gaussian distribution

in the presence of outliers. However, their models have a single sampling rate and do not

consider time-varying time delays. Time varying time delays pose a considerable challenges

to identification as they introduce a hybrid identification problem.

Time delays are often due to transportation of materials in industrial processes. The es-

timation of time delay is an important topic in system identification. In chemical processes,

time-varying delay estimation might be a more changeling problem. Techniques for time-

varying delay estimation have been theoretically developed using adaptive filtering [53, 54]

and quadratic convex approach [55, 56], where the delays were considered to vary between

some known lower and upper bounds. Furthermore, the probability of the occurrence of

time delay can be described by statistical models, such as hidden Markov model (HMM).

Multi-rate (MR) systems arise often in typical chemical processes due to the absence of

online measurements for certain variables, which are usually sampled infrequently through

off-line laboratory analysis, while other variables are readily measured at fast rate. The

identification of MR systems with irregular output sampling in the presence of varying time

delay has received increasing attention in recent years. The most frequently used technique

to model MR sampled data is to down-sample the fast rate variables in accordance with

the slow rate variables. However, the down-sampling technique has a critical drawback of

information loss, in spite of being straightforward to implement in practice. Moreover, it

leads to inaccurate models due to uncertain delay at every sampling point.

Expectation maximization (EM) algorithm [17] finds maximum likelihood (ML) esti-

mates of parameters in an iterative method for data-driven models, where the model de-

pends on some missing variables. A more advanced method for ML estimation in the

presence of missing variable is variational Bayesian (VB). Compared with EM algorithm,

the variational Bayesian (VB) approach can provide estimation of a posterior distribution
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of parameters as well as the posterior distribution of latent variables [57]. Zhang et al. [58]

derived a hierarchical Bayesian estimation using a variational Bayesian inference. Ma et

al. [59] introduced a Bayesian estimation strategy to estimate the posterior distribution

of the parameters in Dirichlet mixture model. The problem of parameter estimation in

the Dirichlet mixture model is analytically intractable, due to the integral expressions of

the gamma function and its corresponding derivatives. The variational Bayesian method is

also widely used in many other research areas like continuous-discrete stochastic dynamic

systems [60], nonlinear dynamical systems [61], and blind image de-convolution [62, 63].

In this chapter, the process is modeled by ARX model structure and the time delay

is modeled by a hidden Markov model. To improve the robustness to outliers, the noise

is modeled by t-distribution. The overall identification problem is formulated under the

VB framework. A simulation example and an experiment verification demonstrate that the

proposed method can provide more reliable identification results.

The remainder of this chapter is organized as follows. A detailed problem description

on the ARX model identification in the presence of HMM for time delay is presented in the

next section. Section 3 is dedicated to applying VB approach to solve this robust estimation

problem. Then Section 4 gives a numerical example to validate the proposed method. In

Section 5, a pilot-scale experiment is conducted to further validate the proposed method.

The conclusion is given in the last section.

4.2 Problem Statement

Following is a dual rate ARX model with time varying time delays:

yTk = ψTk−λkθ + eTk
ψTk−λk =

[
yTk−1

· · · yTk−na uTk−λk · · ·uTk−nb−λk
]
.

(4.1)

where {yTk , k = 1, 2, ..., N} is the slow rate output variable, {ut, t = 1, 2, ..., L} is the

fast rate input variable, and the slow rate sampling time is ∆ times that of the fast rate

(L = ∆ ∗ N). Time delay {λk, k = 1, 2, ..., N} is varying at every sampling instant. θ ∈

R(na+nb+1)×1 is the parameter vector and ψTk−λk ∈ R1×(na+nb+1) forms the regressor vector.

et is associated measurement noise, and it is considered to follow a zero mean t-distribution,

i.e. et ∼ t(0, δ, v) with unknown variance precision, δ, and degrees of freedom, v.

The distribution of measurement noise indicates that the measured output also follows a

t-distribution yTk ∼ t(ψTk−λkθ, δ, v), which can be decomposed into scaled Gaussian distri-

butions N
(
ψTk−λkθ,

1
δrk

)
, where rk is an introduced latent variable that follows the Gamma
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distribution g
(

1
2v,

1
2v
)
, which is dependent on the degree of freedom v:

t (yTk |ψTk−λk , θ, δ, v) =∫
N (yTk |ψTk−λk , θ, δ, rk) g (rk|v) drk.

(4.2)

The time delay sequence is modeled by a Markov chain governed by a transition prob-

ability and a distribution of the initial time delay,

πi = P (λ1 = i), 1 ≤ i ≤ d,
αij = P (λk = i|λk−1 = j), k = 2, 3, ..., N, 1 ≤ i, j ≤ d. (4.3)

Considering the above model, the identification problem is to estimate its parameters

while the time delays are unknown. This problem is an ML problem under missing variables.

The observed and missing variables are denoted as:

Cobs = {ZN , ZN−1, · · · , Z1},
Cmis = {Λ, R} = {λN , λN−1, · · · , λ1, rN , rN−1, · · · , r1},

(4.4)

where Z includes output and input for every time instant. The parameters to be estimated

can be denoted as Φ = {Θ, v, αij , πi}, where the system parameters Θ = {θ, δ} are treated

separately, because the uncertainty in these two parameters can be considered by directly

assigning conjugate prior distributions and thus finding their posterior distributions. How-

ever for the hyper-parameters {v, αij , πi} of hidden variables {Λ, R}, we will directly find

the point estimates for them.

4.3 Time-varying time delayed ARX Model Identification us-
ing the VB Approach

4.3.1 Prior for the parameters

The joint prior distribution over all the model parameters Θ can be expressed as

P (Θ) = P (θ|b)P (δ|c, d) , (4.5)

where b, c, d are constant values. The prior of regressor parameter θ is selected as a zero-

mean Gaussian distribution, and we specify a Gamma prior over the precision δ:

P (θ|b) = N
(
0, bIna+nb+1)

)
,

P (δ|c, d) = gamma (c, d),
(4.6)

where Ina+nb+1 is an identity matrix, which has the same dimension as θ. The optimization

of {v, αij , πi} is treated separately from the model parameters.
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4.3.2 Formulation under VB approach

The VB approach introduces free joint distributions q (R,Λ) and q (Θ), also named as

variational posterior, as an approximation of the distribution of the missing variables and

parameters, to calculate the following log-likelihood:

logP (Cobs) =

log
∑
Λ

∫
q (R,Λ) q (Θ)

P (Cobs,R,Λ,Θ|v,αij ,πi)
q(R,Λ)q(Θ) dRdΘ. (4.7)

Applying Jensen’s inequality,

logP (Cobs)

≥
∑
Λ

∫
q (R,Λ) q (Θ) log

P (Cobs,R,Λ,Θ|v,αij ,πi)
q(R,Λ)q(Θ) dRdΘ

∆
= F [q (R,Λ) , q (Θ)] .

(4.8)

Hence, we maximize the lower bound F [q (R,Λ) , q (Θ)] instead of the original log-likelihood.

Similar to regular EM algorithm, we also have VB expectation step or E-step and VB

maximization step or M-step in the variational Bayesian approach. In the VB E-step, we

maximize the lower bound with respect to the missing variable distribution q (R,Λ) by fixing

the parameter distribution q (Θ). In the VB M-step, we maximize the lower bound with

respect to parameter distribution q (Θ) by fixing the missing variable distribution q (R,Λ).

This is an iterative procedure until the algorithm converges.

For the convenience of derivations in both VB E-step and M-step, the lower bound

F [q (R,Λ) , q (Θ)] can be further decomposed by the chain rule as follows:

F [q (R,Λ) , q (Θ)]
=
∑
Λ

∫
q (R,Λ) q (Θ) logP (Cobs|R,Λ,Θ) dRdΘ

+
∑
Λ

∫
q (R,Λ) logP (R|v) dR

+
∑
Λ

∫
q (R,Λ) logP (Λ|αij , πi) dR

+
∫
q (Θ) logP (Θ) dΘ

−
∑
Λ

∫
q (R,Λ) log q (R,Λ) dR

−
∫
q (Θ) log q (Θ) dΘ.

(4.9)

The likelihood terms can be then decomposed into every time instant as

P (Cobs|R,Λ,Θ) =
N∏
k=1

P (Zk|Zk−1, · · · , Z1, rk, λk = i,Θ), (4.10a)

P (R|v) =

N∏
k=1

P (rk|v), (4.10b)

P (Λ|αij , πi) =

N∏
k=1

P (λk|λk−1, αij , πi), (4.10c)
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where the simplification on the condition is owing to independence of the relevant variables.

The likelihood at the kth instant is:

P (Zk|Zk−1, · · · , Z1, rk, λk = i,Θ) =
√
δrk√
2π

exp
(
− δrk

2 [yTk − ψTk−iθ]
2
)
× CU ,

(4.11a)

P (rk|v) =
(v/2)

v
2 (rk)

v
2
−1

Γ (v/2)
exp

(
−v

2
rk

)
, (4.11b)

P (λk|λk−1, αij , πi) =

{
αij , k ≥ 2
πi, k = 1

, (4.11c)

where CU is the profitability of the input, and it is treated as a constant value.

4.3.3 VB E-step

VB E-step maximizes the lower bound F [q (R,Λ) , q (Θ)] with respect to q (R,Λ) while q (Θ)

is fixed in this step. The lower bound can be formulated as a function of q (R,Λ) assuming

q (Θ) is known.

The two terms
∫
q (Θ) logP (Θ) dΘ and

∫
q (Θ) log q (Θ) dΘ of the lower bound in Eqn.

4.9 are independent of R and Λ, so can be considered as a constant value, CR,Λ, as shown

F [q (R,Λ) q (Θ)]
=
∑
Λ

∫
q (R,Λ) 〈logP (Cobs|R,Λ,Θ)〉q(Θ)dR

+
∑
Λ

∫
q (R,Λ) logP (R|v) dR

+
∑
Λ

∫
q (R,Λ) logP (Λ|αij , πi) dR

−
∑
Λ

∫
q (R,Λ) log q (R,Λ) dR+ CR,Λ,

(4.12)

where 〈.〉q(Θ) means the expectation operation over Θ. By solving maxF [q (Λ, R) , q (Θ)]

with respect to q(R,Λ), such that
∑
Λ

∫
q (R,Λ) dR = 1, we obtain:

q (R,Λ) =
P (R|v)P (Λ|αij , πi)× eB∑

Λ

∫
P (R|v)P (Λ|αij , πi)× eBdR

, (4.13)

where, for notation simplicity, B is defined as

B = 〈logP (Cobs|R,Λ,Θ)〉q(Θ). (4.14)

By integrating R out of the joint density q (R,Λ), we obtain the marginal density of

time delay Λ,

q (Λ) =

∫
P (R|v)P (Λ|αij , πi)× eBdR∑

Λ

∫
P (R|v)P (Λ|αij , πi)× eBdR

. (4.15)
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Then the conditional density q (R|Λ) is obtained as

q (R|Λ) =
q (R,Λ)

q (Λ)
=

P (R|v)× eB∫
P (R|v)× eBdR

. (4.16)

It is obvious that the variational posteriors depend on the log-likelihood of the observed

data log-likelihood logP (Cobs|R,Λ,Θ) in Eqn. 4.10a. Thus, eB can be expressed as

eB

= e〈logP (Cobs|R,Λ,Θ)〉q(Θ)

= e

〈
N∑
k=1

logP (Zk|Zk−1,··· ,Z1,rk,λk=i,Θ)

〉
q(Θ)

=
N∏
k=1

e〈logP (Zk|Zk−1,··· ,Z1,rk,λk=i,Θ)〉q(Θ) .

(4.17)

To simplify the expression, we again define

Bk = 〈logP (Zk|Zk−1, · · · , Z1, rk, λk = i,Θ)〉q(Θ). (4.18)

Variational posterior of R given Λ

As in Eqn. 4.16, the variational posterior of R given Λ depends on P (R|v)× eB and∫
P (R|v)× eBdR, which are expressed as

P (R|v)× eB =

N∏
k=1

P (rk|v)× eBk , (4.19a)

∫
P (R|v)× eBdR =

∫ N∏
k=1

P (rk|v)× eBkdR

=
N∏
k=1

∫
P (rk|v)× eBkdrk,

(4.19b)

and therefore

q (R|Λ) =
P (R|v)× eB∫
P (R|v)× eBdR

=
N∏
k=1

P (rk|v)× eBk∫
P (rk|v)× eBkdrk

. (4.20)

On the other hand, with the i.i.d. assumption of R at each sampling time k, q (R|Λ)

can be decomposed as follows,

q(R|Λ) =

N∏
k=1

q(rk|λk). (4.21)

Now, considering the two kinds of decomposition in Eqn. 4.20 and Eqn. 4.21, we obtain

q (rk|λk) =
P (rk|v)× eBk∫
P (rk|v)× eBkdrk

, (4.22)
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which means that the variational posterior q (rk|λk) depends on the prior distribution of rk

and log-likelihood of the observed data at the kth instant:

logP (Zk|Zk−1, · · · , Z1, rk, λk = i,Θ) = − log
√

2π

+ log
√
δ + log

√
rk − δrk

2 [yTk − ψTk−iθ]
2 + logCU ,

(4.23)

and then the expectation of the log-likelihood at the kth instant with respect to the model

parameter Θ = {θ, δ} is

Bk = − log
√

2π + 1
2 δ̃ + log

√
rk − δ̄rk

2 gki + logCU , (4.24)

where δ̃ = 〈log δ〉q(δ), δ̄ = 〈δ〉q(δ), gki = y2
Tk
− 2yTkψkiθ̄ + ψki〈θθ′〉q(θ)ψki

′ is the expectation

of the quadratic term. In the expression of gki, θ̄ = 〈θ〉q(θ), and ψki stands for ψTk−i.

Therefore, the variational posterior of rk given λk = i is calculated using Eqn. 4.11b

and Eqn. 4.24, as shown,

q (rk|λk = i)

= P (rk|v)×exp(Bk)∫
P (rk|v)×exp(Bk)drk

=
exp
{
−rk

v+δ̄gki
2

}
(rk)(

v+1
2 −1)

∫
exp
{
−rk

v+δ̄gki
2

}
(rk)(

v+1
2 −1)drk

,

(4.25)

where the terms that are irrelevant to the integration over rk are extracted from Bk and

canceled out over both the numerator and the denominator. After the computation of the

integration,

q (rk|λk = i)= 1
Γ( v+1

2 )

(
v+δ̄gki

2

) v+1
2

(rk)
v+1

2
−1 exp

(
−rk v+δ̄gki

2

)
. (4.26)

Clearly, the expression is in the form of a Gamma distribution,

rk|λk = i ∼ gamma
(
v + 1

2
,
v + δ̄gki

2

)
. (4.27)

We can get the expectation of the conditional posterior distribution over rk and logrk

according to the property of Gamma distributions,

r̄ki = 〈rk〉q(rk|λk=i) =
v + 1

v + δ̄gki
, (4.28a)

r̃ki = 〈log rk〉q(rk|λk=i) = Ψ

(
v + 1

2

)
− log

(
v + δ̄gki

2

)
, (4.28b)

where Ψ (v) is the derivative of the logarithm of the gamma function, i.e., Ψ (v) = ∂Γ(v)
∂v

1
Γ(v) .
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Variational posterior of time delay Λ

Regarding the variational posterior distribution of time delay in Eqn. 4.15, different from

the decomposition of q(R|Λ) =
N∏
k=1

q(rk|λk) in Eqn. 4.21, for the time delay Λ, because

of the Markov property, the two consecutive time delays are dependent. In order to find

the relationship between any two consecutive delay distributions, we need to investigate

q (λk = i, λk−1 = j) and q (λk−1 = j) for k ≥ 2 by analyzing Eqn. 4.15 as follows,

q (λk = i, λk−1 = j)
=

∑
λk−2:1

q (λk:1)

∝
∑

λk−2:1

∫
P (rk:1|v)P (λk:1) eBdrk:1

∝
∫
rk

P (rk|v)P (λk = i|λk−1 = j) eBkdrk

×
∑

λk−2:1

∫
P (rk−1:1|v)P (λk−1:1) eB−Bkdrk−1:1

∝
∫
rk

P (rk|v) eBkdrk × αij×∑
λk−2:1

∫
P (rk−1:1|v)P (λk−1:1) eB−Bkdrk−1:1,

(4.29a)

q (λk−1 = j)
=

∑
λk−2:1

q (λk−1:1)

∝
∑

λk−2:1

∫
P (rk−1:1|v)P (λk−1:1) eB−Bkdrk−1:1.

(4.29b)

By substituting the second expression into the first one, the relation is constructed by

q (λk = i, λk−1 = j)
∝
∫
rk

P (rk|v) eBkdrk × αij × q (λk−1 = j) . (4.30)

The distribution of the above equation is obtained by adding a normalizing term in the

denominator, and thus,

q (λk = i, λk−1 = j)

=

∫
rk

P (rk|v)eBkdrk×αij×q(λk−1=j)

d∑
i=1

d∑
j=1

∫
rk

P (rk|v)eBkdrk×αij×q(λk−1=j)

. (4.31)

Therefore, the delay distribution q (λk = i) for k ≥ 2 is obtained by

q (λk = i) =

d∑
j=1

q (λk = i, λk−1 = j). (4.32)

Specifically, for the initial time delay distribution,

q (λ1 = i)

=
∫
P (r1|v)P (λ1=i)eB1dr1∑

λ1

∫
P (r1|v)P (λ1=i)eB1dr1

=
∫
P (r1|v)eB1dr1×πi

d∑
i=1

∫
P (r1|v)eB1dr1×πi

(4.33)
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where for any time instant k,∫
P (rk|v) eBkdrk

= Crk
∫ {
−rk v+δ̄gki

2

}
(rk)

v−1
2 drk

= Crk

(
v+δ̄gki

2

)− v+1
2
.

(4.34)

4.3.4 VB M-step

VB M-step maximizes the lower bound F [q (R,Λ) , q (Θ)] with respect to q (Θ) by fixing

q (R,Λ). The lower bound can be formulated as a function of q (Θ) assuming q (R,Λ) is

known a prior in this step. The lower bound in Eqn. 4.9 is rewritten as follows,

F [q (R,Λ) q (Θ)]
=
∫
q (Θ) 〈logP (Cobs|R,Λ,Θ)〉q(R,Λ)dΘ

+
∫
q (Θ) logP (Θ) dΘ−

∫
q (Θ) log q (Θ) dΘ + CΘ,

(4.35)

where CΘ represents the terms irrelevant to the calculation of q (Θ) and can be treated as a

constant value. Again, for notation simplicity, in the first term of above equation, we define

D = 〈logP (Cobs|R,Λ,Θ)〉q(R,Λ). (4.36)

By solving maxF [q (Λ, R) , q (Θ)] with respect to q(Θ), such that
∫
q (Θ) dΘ = 1, we

obtain:

q (Θ) =
P (Θ) eD∫
P (Θ) eDdΘ

, (4.37)

where D can be computed as

D=
N∑
k=1

d∑
i=1

q (λk = i)

[
− log

√
2π + log

√
δ + 1

2 r̃ki
− δr̄ki

2 (yTk − ψkiθ)
2 + logCU

]
. (4.38)

In order to obtain q (θ), specifically, we take first order functional derivative of F [q (R,Λ) , q (Θ)]

with respect to q (θ), with the constraint
∫
q (θ)dθ = 1, and then get

q (θ) =
1

Cθ
P (θ|b) e〈D〉q(δ) , (4.39)

where Cθ is a constant normalizing term, the prior distribution P (θ|b) and the hyper-

parameter b is defined in Equation 4.6, and 〈D〉q(δ) is the expectation of D in Eqn. 4.38
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with respect to δ. Thus, we obtain the expression of q (θ),

q (θ)
= 1

Cθ
P (θ|b)×

exp

{
N∑
k=1

d∑
i=1

q (λk = i)
(
− δ̄r̄ki

2

)
(yTk − ψkiθ)

2

}
= 1

Cθ
exp

{
− 1

2bθ
′Iθ
}
×

exp

{
N∑
k=1

d∑
i=1

q (λk = i)
(
− δ̄r̄ki

2

)
(yTk − ψkiθ)

2

}
= 1

Cθ
exp{−1

2θ
′[b−1I +

N∑
k=1

d∑
i=1

q (λk = i)×

δ̄r̄kiψki
′ψki]θ +

N∑
k=1

d∑
i=1

q (λk = i) δ̄r̄kiyTkθ
′ψki

′}.

(4.40)

This expression indicates that q (θ) is a Gaussian density function with mean and variance,

θ̄ = var (θ)×
N∑
k=1

d∑
i=1

q (λk = i) δ̄r̄kiyTkψki
′, (4.41a)

var (θ) =

[
b−1I +

N∑
k=1

d∑
i=1

q (λk = i) δ̄r̄kiψki
′ψki

]−1

. (4.41b)

Therefore, 〈
θθ′
〉
q(θ)

= var (θ) + θ̄θ̄′. (4.42)

Same procedure is followed to maximize F [q (R,Λ) , q (Θ)] with respect to q (δ), with the

constraint
∫
q (δ)dδ = 1. We obtain the expression of q (δ),

q (δ) = 1
Cδ
P (δ|c, d) e〈D〉q(θ)

= 1
Cδ
P (δ|c, d) exp

{
N∑
k=1

d∑
i=1

q (λk = i)
[

1
2 log δ − δr̄kigki

2

]}
= 1

Cδ

dcδc−1 exp{−dδ}
Γ(c) δN/2 exp

{
N∑
k=1

d∑
i=1

q (λk = i)−δr̄kigki2

}
= 1

Cδ
δc+

1
2
N−1 exp

{
−
[
d+ 1

2

N∑
k=1

d∑
i=1

q (λk = i) r̄kigki

]
δ

}
,

(4.43)

where Cδ is a constant normalizing term and the prior distribution P (δ|c, d) and c, d are

defined in Equation 4.6. The expression obtained indicates that q (δ) is a Gamma density

function with the following expected value,

δ̄ =
2c+N

2d+
N∑
k=1

d∑
i=1

q (λk = i) r̄kigki

. (4.44)

In order to obtain the estimate of the hyper-parameters {v, αij , πi} for hidden variables
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{Λ, R}, we rewrite the lower bound in Eqn. 4.9 as follows,

F [q (R,Λ) q (Θ)]
= 〈logP (R|v)〉q(R|Λ)q(Λ)

+〈logP (Λ|αij , πi)〉q(Λ) + Cv,αij ,πi

=
N∑
k=1

d∑
i=1

q (λk = i)

{
− log Γ (v/2) + v

2 log (v/2)
+
(
v
2 − 1

)
r̃ki − v

2 r̄ki

}
+

N∑
k=2

d∑
i=1

d∑
j=1

q (λk = i, λk−1 = j) logαij

+
d∑
i=1

q (λ1 = i) logπi + Cv,αij ,πi .

(4.45)

For the degree of freedom v, solving the derivative of the lower bound F [q (R,Λ) q (Θ)]

in Eqn. 4.45 with respect to v, we obtain,

N∑
k=1

d∑
i=1

q (λk = i)

[
−Ψ (v/2) + log (v/2)
+1 + r̃ki − r̄ki

]
= 0. (4.46)

From the above equation and using Matlab function, we can compute the value of v at the

new iteration.

When conducting the computation of αij and πi, we need to consider the constraint

that
d∑
j=1

αij = 1 and
d∑
i=1

πi = 1, and then Lagrange multipliers Lα and Lπ are introduced.

Therefore, we obtain,

∂
∂αij


N∑
k=2

d∑
i=1

d∑
j=1

q (λk = i, λk−1 = j) log (αij)

+Lα

(
d∑
j=1

αij − 1

)
 = 0

⇒ αij =

N∑
k=2

q(λk=i,λk−1=j)

N∑
k=2

d∑
j=1

q(λk=i,λk−1=j)

,

(4.47)

and

∂
∂πi

{
d∑
i=1

q (λ1 = i) log (πi) + Lπ

(
q∑
i=1

πi − 1

)}
= 0

⇒ πi = q(λ1=i)
d∑
i=1

q(λ1=i)

= q (λ1 = i).

(4.48)

The VB E-step and VB M-step are iterated until the parameter estimation converges.

To summarize, the algorithm is presented in Table 4.1.
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Table 4.1: Procedure of VB E and VB M-steps

Initialization Assign random values to b, c, d.

Compute Equation

VB E-step q (rk|λk = i)⇒ r̄ki, r̃ki Eqn.4.26 ⇒ Eqn.4.28a
q (λk)→← q (λk, λk−1) Eqn.4.32 →← Eqn.4.31

q (θ)⇒ θ̄ Eqn.4.40⇒ Eqn.4.41a
q (δ)⇒ δ̄ Eqn.4.43⇒ Eqn.4.44

VB M-step v Eqn.4.46
αij Eqn.4.47
πi Eqn.4.48

4.4 Simulation Study

In this section, a numerical example is given to show the effectiveness of the proposed

algorithm. Consider the following ARX process:

yTk = 0.5yTk−1
+ 2uTk−λk + 1.5uTk−1−λk + υTk

u ∼ N (0, 1)

υ ∼ N
(
0, σ2

)
λk ∈ {1, 2, 3, 4}

(4.49)

where u, y and v are the input, output and measurement noise, respectively. The ratio

of the sampling time is ∆ = 5. Input signal u is a normally distributed random variable

with zero mean and unit variance. Measurement noise v follows a normal distribution with

zero mean and σ2 variance. We substitute part of the measurement noise by large values

between [−20,−15] ∪ [15, 20]. Delay is varying in the form of a Markov chain. The true

transition matrix governing the switching of delay is

A = {αij} =


0.90 0.06 0.03 0.01
0.02 0.90 0.06 0.02
0.01 0.06 0.90 0.02
0.01 0.03 0.06 0.90

 (4.50)

For the system identification, L = 1000 fast-rate inputs and N = 200 slow-rate outputs are

collected, which are shown in Figure 4.1. It contains the fast-rate input data, true delay

generated by the transition probability, measurement noise, and output data. As shown,

output measurement has some drift values imposed intentionally to simulate outliers.

The algorithm proposed in Section 3 is applied while σ2 = 0.01 and the constant values

for b, c, d are randomly set to be positive, where b is a large value. Figure 4.2 shows the
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Figure 4.1: Simulation data

convergence of parameters to the true values. According to this figure, the parameters

converge to their true values in around 15 iterations.

θ
θ
θ
θ
θ
θ

Figure 4.2: Parameters estimation

The estimated transition probability for the HMM is

Â = {α̂ij} =

⎛
⎜⎜⎝
0.9280 0.0619 0.0100 0.0001
0.0271 0.9044 0.0207 0.0478
0.0640 0.1545 0.7806 0.0009
0.0004 0.0037 0.0439 0.9520

⎞
⎟⎟⎠ , (4.51)

which is very close to the real transition matrix. With the estimated probability distribution

of time delay, the estimated time delay can be obtained through

λ̂k = argmax
i

q(λk = i), (4.52)
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Figure 4.4: estimation of degree of freedom

The estimated delays are illustrated in Figure 4.3, which agree with the true delay with an

accuracy of 92%.
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Figure 4.3: Delay estimation

The degree of freedom reflects the quality of data. If there are no outliers in the data,

the degree of freedom is infinity, which means the measurement noise follows a Gaussian

distribution. If there exist outliers, the more outliers there are, the smaller the degree of

freedom becomes. The estimated degree of freedom is illustrated in Figure 4.4, in which

the df converges to around 0.5893.

To show the advantage of adopting t-distribution to model the measurement noise, we

compare the result with the approach of using Gaussian distribution to model measurement

noise. In Figure 4.5, the noise data is not contaminated by outliers, thus a Gaussian

distribution is sufficient to fit the noise data. It is noted that the Gaussian distribution
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Figure 4.6: Fitting of noise with outliers

has short tails, and in this figure, the density is close to zero beyond the range [−0.5, 0.5].

However, if the noise contains outliers, as shown in Figure 4.6, a Gaussian distribution

cannot fit the noise data while a t-distribution does very well.

In order to further test effectiveness of using Markov chain to model delay correlation,

we consider a more realistic way to generate the time delays in the simulation. Consider

delay is caused by transportation of materials in a pipe. The output measurement has

varying time delay because of the varying flow rate. The flow rate is generated by passing

a white noise sequence through a low-pass filter. The values of the transportation time

delay are inversely proportional to the flow rates because of the fixed intersection area of

the pipe. The delay values are rounded to the nearest integers {1,2,3,4} for discrete time

system simulation. Using new simulated data, we apply the proposed method and compare
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Table 4.2: A Summary of the Robust VB Estimation Performance

σ2 = 0.01 σ2 = 0.04 σ2 = 0.09
Accuracy* RMSE Accuracy* RMSE Accuracy* RMSE

Markov delay (Robust) 92% 0.328 89% 0.650 85% 0.891
Markov delay (Regular) 83% 0.453 72% 0.853 61% 1.193

Independent delay (Regular) 72% 0.865 59% 1.128 46% 1.659
Fixed delay (Regular) 61% 1.023 52% 1.962 40% 2.641

* Accuracy of delay estimation.

it with three alternative methods, which are described in Section 4 of Chapter 3 (regular

Markov delay estimation, independent delay estimation, and fixed delay estimation). In the

implementation of independent delay estimation, the prior distribution of delay is uniformly

distributed for each sample. In the fixed delay estimation, we consider that the delay for all

samples is equal, and that the unknown value is uniformly distributed. The identifications

are all carried out through VB approach as well.

Table 4.2 shows the performance of the three different methods, which is compared under

three different noise levels. The root mean square error (RMSE) of the output prediction

and the accuracy of time delay estimation of the proposed method are compared with the

other methods. At each level, the accuracy of the proposed hidden Markov model delay

estimation is highest, and the RMSE is consequently smaller than both the independent and

fixed delay estimation methods. At larger noise levels, the performance of all three methods

degrade, however, the performance of the proposed robust HMM method is always better

than the other three.

The VB approach is an improvement of the EM algorithm by providing the parameter

distribution instead of single point estimation. In order to show the difference of EM and

VB, Table 4.3 displays the parameter estimation results and the RMSE of validation results.

As the simulation results suggest, the VB has better parameter estimation accuracy than

the EM, and the RMSE result of VB is smaller than that of EM. From the derivation of VB

and EM, it is clear that VB can provide the posterior parameter distribution q (θ), while

the EM only gives a point estimation θ̂ for parameter. This difference plays important role

in the computation of the hidden variable (X) posteriors. In the EM-E step, we simply

substitute the parameter point estimation θ̂ into the computation of posterior probability
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Table 4.3: The Performance Comparison between EM and VB

point estimation/mean value RMSE

EM (Robust)

 0.5056
2.1052
1.4752

 0.395

VB (Robust)

 0.5033
2.0058
1.4938

 0.328

of hidden variable X.

P
(
X|Cobs, θ̂

)
=

P
(
Cobs|X, θ̂

)
P (X)∫

X

P
(
Cobs|X, θ̂

)
P (X) dX

. (4.53)

The observation is often a quadratic form,

P (Cobs|X, θ) =
1√

2πσ2
exp

(
−(y − ϕθ)2

2σ2

)
, (4.54)

which includes θθT , and it is calculated as θ̂θ̂T . In the VB-E step, we use the parameter

distribution q (θ) to evaluate the posterior probability of hidden variables X. That is

q (X) =

P (X) exp

{∫
θ

q (θ) logP (Cobs|X, θ) dθ
}

∫
X

P (X) exp

{∫
θ

q (θ) logP (Cobs|X, θ) dθ
}
dX

. (4.55)

Here, in this computation, the mean value of the quadratic form θθT is computed as

E
(
θθT

)
= θ̄θ̄T + var (θ), instead of simple θ̂θ̂T as in the EM. The θ̂ in the EM is not

same as θ̄ in VB, and even though θ̄ ≈ θ̂, the EM cannot provide the variance of parameter

estimation, var (θ), so θ̂θ̂T 6= θ̄θ̄T + var (θ). To summarize, the parameter estimation and

missing variable estimation of VB are better than EM, and the reason is the parameter

distribution obtained in VB rather than a point estimation as in EM.

4.5 Experimental Evaluation

The hybrid tank experiment is designed and performed in this section. The schematic

diagram of the facility is displayed in Figure 4.7. In the experiment, the valves V1, V3, V5,

V6 are close, and the valves V2, V4, V7, V8, V9 are open. Therefore, only the right hand

side tank, Tank3, and the middle tank, Tank2, are used. A basis input with amplitude is
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Figure 4.7: Schematic diagram of the hybrid tank system

introduced to the right hand side pump PMP2, and as a result, Tank3 water level becomes

steady after a period of time. Then a filtered random binary signal (RBS) is added to the

input to stimulate the system and generate experimental data.

The input and output data are shown in Figure 4.8. The input is measured with a

sampling rate of 16 seconds, while the output is measured with a sample rate of 48 seconds

associated with a manually imposed time delay, which is randomly varying between 16

seconds and 32 seconds. The switching of time delay follows a Markov chain with transition

probability:

A = {αij} =

(
0.85 0.15
0.15 0.85

)
.

As shown in the Figure 4.8, we also imposed some outliers to the measurement of the output.

Modeling the delay by a Markov chain, we normalize and divide the data into two

halves, the first half being the training data set, and the second half being the test data

set. Consider the model structure for this plant is a first order ARX model,

yTk = ayTk−1
+ buTk−λk

Applying the proposed VB approach of Section 3, the parameters of the model and delay

transition are estimated. Figure 4.9 illustrates the convergence of the model parameters in

around 15 iterations.
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Figure 4.8: Input and output data

θ
θ

Figure 4.9: Parameters estimation for the experiment

The final estimated parameters are a = 0.6379, b = 0.2963, and the transition probability

matrix is estimated as

Â = {α̂ij} =

(
0.8513 0.1487
0.1452 0.8548

)
The estimated degree of freedom is illustrated in Figure 4.10, in which the df converges to

around 0.7525.

Denoting the parameters estimated by the training data set as Φ̂ =
{
θ̂, δ̂, v̂, α̂ij , π̂i

}
, we

can also estimate the time delay of the test data set, predict the output of test data, and

then compare it with the actual measurement. Firstly, the prior delay distribution of test

data set is calculated by

q (λk = i) =

d∑
j=1

α̂ij × q (λk−1 = j). (4.56)
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Figure 4.10: estimation of degree of freedom for the experiment
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Figure 4.11: Delay estimation

This prior distribution is used to predict the delay value at the kth time instant by Eqn.

4.52. The delay sequence estimation results are shown in Figure 4.11.

In order to consider the uncertainty of time delay, the prediction of yTk is computed

based on following expected prediction,

ŷTk =
d∑
i=1

q (λk = i)×
[
ŷTk−1

uTk−i
]
θ̂. (4.57)

The self and cross validation results are illustrated in Figure 4.12, which show good perfor-

mance of the estimation.

We also compare the proposed method with the regular Markov delay estimation, the

independent delay assumption method and the fixed delay estimation method. The im-

plementation of these three methods is illustrated in Section 4, where we regenerate time

delays through correlated flow rates. The performance of the three different methods is

listed in Table 4.4. We can see that the RMSE of the proposed method is the smallest.

71



0 50 100 150
−50

0

50

100

150

ou
tp

ut
 v

al
ue

self validation

 

 
measurement
prediction

0 50 100 150
0

50

100

150

data points

ou
tp

ut
 v

al
ue

cross validation

 

 
measurement
prediction

Figure 4.12: Self validation and cross validation

Table 4.4: A Summary of the RMSE in the Robust VB Estimation Experiment

Self validation Cross validation

Markov delay (Robust) 4.3203 5.4190
Markov delay (Regular) 7.8523 9.6985

Independent delay(Regular) 11.5284 13.1235
Fixed delay(Regular) 15.4258 17.6528

4.6 Conclusions

This chapter applies variational Bayesian approach for the identification problem with time

varying delay in the presence of outliers. In the proposed method, time varying delay is

modeled by HMM and the measurement noise is handled by using t-distribution. Owing

to the flexibility of degrees of freedom of the t-distribution, the proposed method shows

good resistance to the influence of outliers. In the framework of VB approach, an effective

algorithm when identifying the ARX model was derived to estimate both distribution of time

delay and model parameters. Compared with EM algorithm, the VB approach can provide

parameter distribution instead of only the point estimation of the parameters. With the

complete parameter distribution, we can obtain better estimation of the hidden variables’

distributions. The advantage of the proposed method is demonstrated and verified by both

numerical and experimental examples.
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Chapter 5

Modeling of An Oil Sands
Extraction Process with Time
Delay

This chapter is concerned with constructing an input-output model for an oil sands extrac-

tion process. Time delay is studied in the chapter, which can be fixed or time varying.

When it is fixed, we can estimate a constant value for the delay. However, when it is

time varying and unknown at every sampling instant, we apply the methods developed in

previous chapters to solve the hidden variable problem. The methods include Expectation

Maximization (EM) algorithm, Variational Bayesian (VB) approach, and robust estimation

using t-distribution.

5.1 Introduction

Knowing production rates including froth and bitumen production rates is important in

the oil sands industry. Online measurements of these variables are available through hard

sensors. However, it is desirable to have a process model which can compute the production

rate (output) when given the input flow rate. The overall purpose of this work is to predict

the froth production rate by the breaker feed rate, and then predict the bitumen production

rate by the froth rate.

Simple linear regression is a common method to construct data-driven models. Using

this method, time delay can only be considered as a constant value. Although unknown,

it may be figured out by trying different values and selecting the one that gives the best

fit. However, the real time delay could be varying, hence, other advanced methods should

be considered. As in chapters 2, 3, and 4, we developed different algorithms to solve the

time varying and unknown time delay problem. Chapter 2 considers that the time delay is
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time varying and uses a Markov chain model to present the time delay correlation. Chapter

3 further considers the presence of measurement outliers, which is common in industrial

data. Using t-distribution to model measurement noise, we add robustness in the parameter

estimation. Both chapters 2 and 3 are based on the EM algorithm, which is well known

for the sensitivity to initialization of parameters. When the initial guess of parameters

is far from the true value, the algorithm can converge to some other local optimal value.

In Chapter 4, the robust estimation algorithm is based on VB approach. VB initializes a

prior distribution for the parameters, iteratively computes the posterior distribution and

ultimately finds the global optimal value for the parameters. Besides, compared with EM

algorithm, the VB approach can provide parameter distribution in addition to the hidden

variable distribution, while in the EM algorithm, only an point estimation of the model

parameter can be obtained while the estimation error or the estimation variance cannot

be obtained automatically. Therefore, the VB approach considers the uncertainty of the

parameter estimation.

The remainder of this chapter is organized as follows. A simplified process description for

the oil sands extraction and data analysis are presented in the next section. The following

section will apply algorithms developed in chapters 2, 3, and 4 to solve this process modeling

problem. The conclusion is given in the final section.

5.2 Process description and data analysis

5.2.1 Process description

The main objective of the oil sands recovery process is to separate bitumen from other

components, which are mainly water and solids, through a chain of extraction processes.

The oil sands are first mixed with hot water in breakers and the resulting slurry is then fed

into a Primary Separation Vessel (PSV) to facilitate bitumen flotation and sand settling

(upper part of Figure 5.1). The impure bitumen froth floats to the top of the PSV and is

further treated in the froth treatment plant to remove residual water and fine solids, after

which bitumen production is obtained (lower part of Figure 5.1).

The oil sands extraction models contain the following two sub-models:

1. Predicting froth production using breaker feed rates.

2. Predicting diluted bitumen rate using froth rate.

Here, we only choose the first one as an example because another sub-model can be con-

structed similarly. Since that the extraction process involves long pipes, there is time delay
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Figure 5.1: Diagram of the oil sands extraction process

Figure 5.2: Simplified diagram of the oil sands primary extraction

from the input and output, which is shown as a simplified diagram in Figure 5.2.

5.2.2 Process Data Analysis

A list of the influential process variables for the plant is presented in Table 5.1. These

variables have been identified by exploiting analytic knowledge as well as considering the

availability of measuring devices. The real-time measurements are recorded every minute.

For proprietary reasons, the data appearing in this chapter is normalized. The data in hand

is from the first week of January, 2015, which contains 10,080 data points.

Since the three inputs x1, x2, x3 are not independent but processed together in sepa-

ration cells, they are added together, and so are the three outputs y1, y2, y3. Figure 5.3

illustrates the added input x and added output y.
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Table 5.1: A Summary of the Influential Process Variables

Process Variable Symbol

x1 Ore feed rate to Plant
x2 Ore feed rate to Plant
x3 Ore feed rate to Plant
y1 Froth production rate from Plant
y2 Froth production rate from Plant
y3 Froth production rate from Plant
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Figure 5.3: Process data (every 1 minute)
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5.2.3 Performance evaluation

Generally, the model validation is executed by evaluating the accuracy of the proposed

method using a separate evaluation data set. The accuracy means agreement between the

predicted and target values. The prediction errors between the predicted and target values

are also referred to as residuals. The graphical techniques used in analysis of residuals are

listed as:

• Scatter plot of predicted values v.s. measurement : The ideal case would be for all

the data points to lie on the y = x line, indicating perfect agreement between the

predicted and measured values.

• Run-sequence plot of predicted and measured values: The time trends of the predicted

and measured values are plotted together to visually assess the accuracy and reliability

of the constructed model.

The prediction can be evaluated quantitatively using root mean square error (RMSE) cri-

teria, which indicates the overall prediction performance in terms of both accuracy and

reliability:
RMSE

=

√
1
N

N∑
k=1

(yTk − ŷTk)2

=

√
1
N

N∑
k=1

ε2
k.

(5.1)

5.3 Process modeling under different methods

The modeling of the oil sands extraction process is carried out by four different methods:

the least squares regression (LSR), the regular EM proposed in Chapter 2, the robust EM

proposed in Chapter 3 and the robust VB proposed in Chapter 4. The process model is

selected as the first order ARX model:

yTk = ayTk−1
+ buTk−λk . (5.2)

Since that the least squares regression cannot consider the probability for time delay

taking different values, the time delay is estimated by a constant value λ̂k through the

process. Therefore, the prediction is computed as given below,

ŷTk =
b

1− az−1
uTk−λ̂k . (5.3)

77



0 2000 4000 6000 8000 10000 12000
−4

−3

−2

−1

0

1

2

3

4

5

6
validation

data points

ou
tp

ut

 

 
measurement
prediction

Figure 5.4: Validation results using LSR

However, in the three offline estimation methods proposed in previous chapters, we consider

that time delay can take several discrete values with probability P (λk = i), where k repre-

sents kth sampling instant and i is the value of delay. Therefore, for these three methods,

we consider an expected prediction as shown below,

ŷTk =
b

1− az−1

d∑
i=1

P (λk = i)uTk−i. (5.4)

5.3.1 Modeling using LSR

The least squares regression (LSR) is a well known modeling method. With the infor-

mation vector x and output y, the parameter θ of the model y = θx, is calculated by

θ =
(
xTx

)−1
xT y. In this method, time delay is considered to be a constant value. It is

calculated by the Matlab function delayest and the value is 34 samples, which equals 34

minutes.

The validation result in Figure 5.4 shows the predicted output based on the estimated

model can capture the overall trend of the measured output. The scatter plot of predict-

ed values versus measurement (Figure 5.5) indicates that some drifting values cannot be

predicted.
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Figure 5.5: Scatter plot of predicted values v.s. measurement using LSR

5.3.2 Modeling using EM

Expectation maximization (EM) algorithm is an iterative method for finding parameter

estimates in statistical models, where the model depends on unobserved latent variables.

The EM iteration alternates between performing an expectation (E) step, which creates a

function for the expectation of the log-likelihood (Q function), and a maximization (M)

step, which computes parameters maximizing the Q function. These parameters estimates

are then used to determine the distribution of the latent variables in the next E step. With

respect to the unknown time delay problem, the corresponding algorithm is developed in

chapter 2.

Since an initial estimation of the time delay is around 34 minutes, we consider four

discrete values {10,20,30,40} as the possible values for the delay. The data is processed

to better fit the selected model, where both input and output are summed up every 10

minutes and then the output is downsampled every 5 samples. Figure 5.6 shows the data

after processing.

Applying the algorithm of Chapter 2, the model parameters converge within 5 EM

iterations (Figure 5.7) and we obtain the model parameters a = 0.1596, b = 0.5837. The

time delay sequence is estimated in Figure 5.8 while the estimated transition probability
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Figure 5.6: Process data (every 10 minutes)
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Figure 5.7: Parameter estimation using EM
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Figure 5.8: Delay estimation using EM

matrix of the HMM is

Â = {α̂ij} =


0.2096 0.1980 0.2145 0.3779
0.1822 0.1698 0.2258 0.4222
0.1629 0.1677 0.2312 0.4383
0.1274 0.1256 0.1773 0.5696

 (5.5)

The validation result in Figure 5.9 shows great match between prediction and target

values. The scatter plot (Figure 5.10) agrees with this result.

5.3.3 Robust modeling using EM

Robust estimators are useful when observations contain large values or are sampled from

a heavy-tailed distribution. Student’s t-distributions with small degrees of freedom have

heavy tails. Therefore, maximum likelihood estimation using these distributions provides

simultaneous robust estimates of location and scale. In addition, the likelihood values can

be used to choose among the available t-distributions, avoiding subjective choice of an

estimator. The robust estimation of unknown time delay problem using EM algorithm has

been developed in chapter 3.

Applying the algorithm in chapter 3, the model parameters converge within 10 EM

iterations (Figure 5.11) and we obtain a = 0.1633, b = 0.6099. The time delay sequence is
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Figure 5.9: Validation results using EM
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Figure 5.10: Scatter plot of predicted values v.s. measurement using EM
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Figure 5.11: Parameter estimation using robust EM

estimated in Figure 5.12. The transition probability estimate is

Â = {α̂ij} =

⎡
⎢⎢⎣

0.2963 0.2362 0.1227 0.3448
0.1924 0.1200 0.1515 0.5361
0.1208 0.1060 0.1615 0.6117
0.0861 0.0735 0.1084 0.7320

⎤
⎥⎥⎦ (5.6)

The validation result in Figure 5.13 shows a good match between prediction and target

value. The scatter plot (Figure 5.14) agrees with the results given in the figures.

5.3.4 Robust modeling using VB

Variational Bayesian methods are for approximating intractable posterior distributions.

They are typically used in complex statistical models consisting of observed variables as

well as unknown parameters and latent variables. As is typical in Bayesian inference, the

parameters and latent variables are grouped together as unobserved variables, which is a

slightly different from EM. Another difference from EM is that VB considers the uncertainty

of parameter estimations by estimating the distribution of parameters, while EM can only

have point estimation. The robust estimation of unknown time delay problem using VB

approach has been developed in Chapter 4.

Applying the algorithm in Chapter 4, the model parameters converge within 20 iterations

(Figure 5.15) and we obtain a = 0.1767, b = 0.5871. The time delay sequence is estimated
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Figure 5.12: Delay estimation using robust EM
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Figure 5.13: Validation results using robust EM
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Figure 5.14: Scatter plot of predicted values v.s. measurement using robust EM

θ
θ

Figure 5.15: Parameter estimation using robust VB
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Figure 5.16: Delay estimation using robust VB

and is shown in Figure 5.16. The estimation result for the HMM transition matrix is

Â = {α̂ij} =


0.1545 0.2122 0.1738 0.4595
0.1171 0.1580 0.1800 0.5450
0.0864 0.1410 0.1860 0.5866
0.0604 0.0929 0.1195 0.7272

 (5.7)

The validation result in Figure 5.17 shows a good match between prediction and target

value. The scatter plot (Figure 5.18) agrees with the above figure and conclusion.

5.3.5 Discussion

Table 5.2 presents a summary of the performance of the four different methods applied

above. It is clear that the Markov chain based method achieves smaller RMSE than the

constant delay based method. Among the three proposed methods, the robust estimation

has smaller RMSE than the regular estimation due to the existence of outliers. The VB

approach has smaller RMSE than the EM algorithm based method. This is because EM

algorithm only uses the point estimation of the model parameter to obtain time delay dis-

tribution, while VB approach uses the full parameter distribution to obtain improved time

delay distribution. The time delay distribution is adopted to have an expected prediction

of the output, so the VB approach achieves better performance than the EM algorithm.
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Figure 5.17: Validation results using robust VB
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Figure 5.18: Scatter plot of predicted values v.s. measurement using robust VB

Table 5.2: A Summary on the Performance of Oil Sands Extraction Process Modeling

Delay or delay range (minutes) RMSE

Least Squares Regression λ = 34 2.7985
Chapter 2: regular EM λt ∈ {10, 20, 30, 40} 1.8143
Chapter 3: robust EM λt ∈ {10, 20, 30, 40} 1.4659
Chapter 4: robust VB λt ∈ {10, 20, 30, 40} 1.2692

87



5.4 Conclusion

This chapter applies the proposed methods that were developed in previous chapters to

an industrial process. Considering time varying time delay and t-distributed measurement

noise, the proposed methods can better fit the real industrial data. It is validated in

this chapter that all the proposed methods can be useful to solve this industrial modeling

problem.
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Chapter 6

Conclusions

6.1 Summary of thesis

In this thesis, we have focused on system identification of dual rate processes with vary-

ing time delay. Process modeling based on proposed algorithms was tested on a product

estimation for oil sands extraction process.

Chapter 1 presented the background and motivation of the system identification of dual

rate industrial processes with varying time delay.

Chapter 2 proposed a batch mode EM algorithm for the parameter invariant process

and a recursive version of the EM algorithm for the parameter variant process. The process

was modeled as ARX and time delay was modeled as HMM. In both situations, ARX

parameters, HMM parameters and the value of varying delays at every sampling time were

estimated using the developed algorithms.

Chapter 3 proposed a robust approach to identify the varying delay process subject to

outliers using t-distribution. The basic idea of using t distributions is to have the outliers

weighted automatically during the iterative optimization process. Meanwhile, ARX model

for the process and HMM model for the delay was adopted.

Chapter 4 proposed a variational Bayesian approach for the identification of the dual

rate process with HMM time delay variation. Practical issues such as robustness, estimation

of model parameter uncertainty and switching mechanism of time delays were addressed in

this chapter.

The advantage of using hidden Markov model for time delay in process modeling was

shown in simulations and experimental studies.

Chapter 5 designed models for the real-time prediction of production for oil sands ex-

traction process based on the algorithms developed in the previous chapters.
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6.2 Directions for future work

Based on the work presented in the previous chapters, it can be extended in the following

aspects:

The determination of model order. Through Chapters 2-4, we considered the order of

process model is known. This restricts the flexibility and accuracy of modeling because the

identified model might not be suitable for the real process. A model order determination

method should be developed which can find the optimal value for the process order.

The determination of delay range. The range of delay of the dimension of HMM is

also considered to be known, however, in real industrial processes, the varying delay has

unknown range. A faulty assumption of the delay range will lead to inaccurate delay

estimation and result in failure of modeling. Thus a method to estimate the delay range

should be developed.

Uncertainty of HMM parameters. In Chapter 4, the uncertainty of the ARX model

parameters was considered while the HMM parameters were estimated as constant values.

To obtain more accurate estimation results, the uncertainty of HMM parameters should

also be considered.
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