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Abstract

In this thesis we study the product formula for finitely many multiple Itô-Wiener

integrals of Lévy process, option pricing formula where the stock price is modeled by

stochastic delay differential equation (SDDE) driven by Lévy process and logarithmic

Euler-Maruyama scheme for the SDDE. In the first part we derive a product formula

for finitely many multiple Itô-Wiener integrals of Lévy process, expressed in terms

of the associated Poisson random measure. The formula is compact and the proof

is short and uses the exponential vectors and polarization techniques. In the second

part of the thesis we discuss the option pricing when the underlying model follows

SDDE. In this part, we obtain the existence, uniqueness, and positivity of the solution

to SDDE with jumps. This equation is then applied to model the price movement of

the risky asset in a financial market and the Black-Scholes formula for the price of

European option is obtained together with the hedging portfolios. The option price is

evaluated analytically at the last delayed period by using the Fourier transformation

technique. However, in general, there is no analytical expression for the option price.

To evaluate the price numerically, we then use the Monte-Carlo method. To this

end, we need to simulate the delayed stochastic differential equations with jumps.

We propose a logarithmic Euler-Maruyama scheme to approximate the equation and

prove that all the approximations remain positive and the rate of convergence of the

scheme is proved to be 0.5. Finally in the last part of the thesis we discuss logarithmic

Euler-Maruyama scheme and convergence of logarithmic Euler-Maruyama scheme for

a multi-dimensional SDDE’s.
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Preface

This thesis is based on two published papers and one completed work. In

particular

• Chapter 2 of this thesis is a joint work with Prof. Yaozhong Hu, Ms.

Neha Sharma and has been published as “General Product Formula

of Multiple Integrals of Lévy Process” in the journal of Stochastic

Analysis.

• Chapter 4 of this thesis is a joint work with Prof. Yaozhong Hu and

has been published as “Jump Models with Delay-Option Pricing and

Logarithmic Euler-Maruyama Scheme” in the journal Mathematics by

MDPI.

• Chapter 5 of this thesis is a joint work with Prof. Yaozhong Hu and

is new work as per my knowledge. As of writing this thesis, the work

in chapter 5 is complete and will soon be submitted for publication.

Nishant Agrawal

(PhD Candidate)
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Chapter 0

Summary of the the work

This dissertation concerns with topics related to Poisson random measures, stochastic

differential equations, logarithmic Euler-Maruyama scheme and option pricing. It

consists of two published research articles and one completed work which will be

submitted soon. The three works are listed below.

1. General product formula of multiple Integrals of Lévy process, with Yaozhong

Hu and Neha Sharma, Journal of Stochastic Analysis: Vol. 1 : No. 3 , Article

3.

2. Jump models with delay-option pricing and logarithmic Euler-Maruyama scheme

with Yaozhong Hu, Mathematics 2020, 8(11).

3. Logarithmic Euler-Maruyama scheme for system of SDDE driven by Lévy pro-

cess with Yaozhong Hu, completed and can be found here [2].

Work related to 1 is presented in chapter 2. In this chapter we derive a product

formula for finitely many multiple Itô-Wiener integrals of Lévy process, expressed in

terms of the linear combination of n-fold iterated intergrals with respect to Poisson

random measure. The formula is compact. The proof is short and uses the exponential

vectors and polarization techniques.
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Work related to 2 is the content in chapter 4. In this chapter we obtain the existence,

uniqueness, and positivity of the solution to stochastic delayed differential equations

with jumps. This equation is then applied to model the price movement of the risky

asset in a financial market and the Black-Scholes formula for the price of European

option is obtained together with the corresponding hedging portfolios. The option

pricing formula is evaluated analytically at the last delayed period by using the Fourier

transformation technique. However in general there is no analytical expression for

the option price. To evaluate the price numerically, we then use the Monte-Carlo

method. To this end, we need to simulate the delayed stochastic differential equations

with jumps. We propose a logarithmic Euler-Maruyama scheme to approximate the

equation and prove that all the approximated solutions remain positive and the rate

of convergence of the scheme is proved to be 0.5.

Work related to 3 is in chapter 5. In this chapter we propose a logarithmic Euler-

Maruyama scheme to approximate the system of SDDE’s driven by Lévy process and

prove that all the approximations remain positive and converge in Lp sense for p ≥ 2.

The following three subsections provide brief summary of each of the works.

0.1 Summary of work on General Product Formula

For any f ∈ L̂
2,n

, the finitely many multiple Wiener-Itô integral of Lévy process

(multiple n-fold iterated integrals) is

In(f) :=

∫︂
Tn

f(t1, z1, · · · , tn, zn)Ñ(dt1, dz1) · · · Ñ(dtn, dzn) (1.1)

where

L̂
2,n

:=
(︁
L2(T, λ× ν)

)︁⊗n ⊆ L2 (Tn, (λ× ν)n)

2



be the space of symmetric, deterministic real functions f and Ñ is the compensated

Poisson random measure. We discuss
∏︁m

k=1 Iqk(fk) and try to express this product of

multiple integrals as linear combinations of some other multiple integrals. Our main

result of this work can be summed up in the following theorem,

Theorem Let qk be a positive integer, let fk ∈ (L2([0, T ]× R0, dt⊗ ν(dz)))
⊗̂qk ,

k = 1, · · · ,m. Then

m∏︂
k=1

Iqk(fk) =
∑︂
l⃗,n⃗∈Ω

χ(1,l⃗,n⃗)≤q1···
χ(m,l⃗,n⃗)≤qm

∏︁m
k=1 qk!∏︁κm

α=1 liα !
∏︁κm

β=1 µjβ !
∏︁m

k=1(qk − χ(k, l⃗, n⃗))!

I|q|+|n⃗|−|χ(l⃗,n⃗)|(⊗̂
li1 ,··· ,liκm
i1,··· ,iκm ⊗̂ V

µj1 ,··· ,njκm
j1,··· ,jκm (f1, · · · , fm)) , (1.2)

where we recall |q| = q1 + · · · + qm and |χ(l⃗, n⃗)| = χ(1, l⃗, n⃗) + · · · + χ(m, l⃗, n⃗). For

notations and further details please refer chapter 2.

0.2 Summary of work on Option pricing formula

and Euler-Maruyama Convergence

We consider the following delayed stochastic differential equation driven by compound

Poisson process Z(t):

⎧⎪⎪⎨⎪⎪⎩
dS(t) = f(S(t− b))S(t)dt+ g(S(t− b))S(t−)dZ(t), t ≥ 0 ,

S(t) = ϕ(t) , t ∈ [−b, 0] .
(2.3)

To study the above stochastic differential equation, we introduce the Poisson ran-

dom measure associated with Lévy process Z(t) and write

Z(t) =

∫︂
[0,t]×J

zN(ds, dz) or dZ(t) =

∫︂
J
zN(dt, dz)

3



and hence write (2.3) as

dS(t) =

[︃
f(S(t− b)) + g(S(t− b))

∫︂
J
zν(dz)

]︃
S(t)dt

+g(S(t− b))S(t−)

∫︂
J
zÑ(dt, dz) .

Then for the above equation we show that the stochastic differential delay equation

(2.3) admits a unique pathwise solution with the property that if ϕ(0) > 0, then for

all t > 0, S(t) > 0 almost surely.

We then also discuss the logarthmic Euler-Maruyama scheme in which we consider

Zt as a compound Poisson process i.e Zt =
∑︁Nt

i=1 Yi and for the process

S(t) = ϕ(0) exp
(︂∫︂ t

0

f(X(u− b))du+
∑︂

0≤u≤t,∆Z(u) ̸=0

ln(1 + g(X(u− b))YN(u))
)︂

(2.4)

we propose a logarithmic Euler-Maruyama scheme to approximate (2.3) as follows:

Sπ(tk+1) = Sπ(tk) exp
(︂
f(Sπ(tk − b))∆

)︂
· exp

(︂
ln(1 + g(Sπ(tk − b))∆Zk)

)︂
, k = 0, 1, 2, ..., n− 1

with Sπ(t) = ϕ(t) for all t ∈ [−b, 0]. Where π is a partition of the time interval

[0, T ]. We assume Lipschitz continuity of f, g, ϕ and show that for some constant

Kp,T , independent of π we will have

E
[︂

sup
0≤t≤T

|S(t)− Sπ(t)|p
]︂
≤ Kp,T∆

p/2 . (2.5)

The logarithmic Euler-Maruyama scheme helps in simulating the paths realised as

stock prices. Using this scheme we have generated the paths and applied Monte-

Carlo technique to obtain the price of European call option. We have shown this in

the numerical attempt section in the chapter 4 and the MATLAB codes are given in

4



appendix section.

We have also developed the formula to price European call option under risk

neutral measure where price of the risky asset is given by

⎧⎪⎪⎨⎪⎪⎩
dS(t) = f(S(t− b))S(t)dt+ g(S(t− b))S(t−)dZ(t), t ≥ 0 ,

S(t) = ϕ(t) , t ∈ [−b, 0] ,
(2.6)

and the price of risk-free asset is given by

dB(t) = rB(t)dt , or B(t) = ert , t ≥ 0 .

We find the risk neutral measure Q under stated assumptions (in the chapter) and

we can write (2.6) as

dS̃(t) = S̃(t−)

∫︂
J
zg(S(t− b))ÑQ(dt, dz).

Using the martingale representation theorem we have also derived the hedging port-

folio. We finally discuss the formula of European call option on the interval [T − b, T ]

where T is the maturity and b is the delay factor. We state our formula below. The

detailed result has been discussed in chapter 4.

Theorem When t ∈ [T − b, T ], price for the European Call option is given by

V (t) = ert lim
v→∞

1

2π

∫︂ ∞

−∞

1

iξ
(eivξ − eiwξ)A(t) · S̃(t) exp

{︃∫︂ T

t

∫︂
J

(︂
(1 + zg(S(u− b)))(1−iξ)

− (1− iξ) ln(1 + zg(S(u− b)))− 1
)︂
νQ(dz)du

}︂
−Kert lim

v→∞

1

2π

∫︂ ∞

−∞

1

iξ
(eivξ − eiwξ)A(t) · S̃(t) exp

{︃∫︂ T

t

∫︂
J

(︂
(1 + zg(S(u− b)))−iξ

+ iξ ln(1 + zg(S(u− b)))− 1
)︂
νQ(dz)du

}︂
, (2.7)

5



where w = ln(K/A)− rT and

A(t) = exp
(︂∫︂ T

t

∫︂
J
{ln (1 + zg(S(u− b)))− zg(S(u− b))νQ(dz)du

)︂
. (2.8)

The difference of this work from the work discussed in [22] is that we do not

include diffusion component in our model and the expression for risk neutral measure

found in [22] doesn’t allow the zero coefficient of the diffusion component of the model

discussed in [22]. The work we have discussed also differs from the work in [23], since

the convergence of Euler-Maruyama scheme is shown in L2 norm and we have shown

in Lp norm. Further we have also taken care that our scheme is always positive since

we also simulate stock price with the same scheme.

0.3 Euler-Maruyama scheme and convergence for

a system of equations

In this work we discuss the logarithmic Euler-Maruyama scheme and its convergence

for system of equations. We consider the following system of delayed stochastic dif-

ferential equations driven by compound Poisson process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi(t) =
d∑︂
j=1

fij(S(t− b))Sj(t)dt

+ Si(t−)
d∑︂
j=1

gij(S(t− b))dZj(t), , i = 1, · · · , d ,

Si(t) = ϕi(t) , t ∈ [−b, 0] , i = 1, · · · , d ,

(3.9)

where S(t) = (S1(t), · · · , Sd(t))T , Zj(t) =
∑︁Nj(t)

l=1 Yj,l where Yj,l are i.i.d and for each j,

Yj,l and Nj(t) are independent for all l where Nj(t) is a poisson process. Motivated by

application to finance we are interested in under what conditions the solution Si(t) are

6



all positive and find numerical solution which remain positive. We shall decompose

equation (3.9) into the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXi(t) = fii((S(t− b)))Xi(t)dt+Xi(t−)
d∑︂
j=1

gij(S(t− b))dZj(t)

dpi(t) =
d∑︂

j=1,j ̸=i

fij((S(t− b)))pj(t)dt,

Si(t) = pi(t) ·Xi(t) , i = 1, 2, · · · , d .

(3.10a)

(3.10b)

(3.10c)

Here

dpi(t) =
d∑︂

j=1,j ̸=i

fij((S(t− b)))pj(t)dt, i = 1, 2, · · · , d (3.11)

and we write

dp(t)

dt
= F ((S(t− b)))p(t),

where F (S(t− b)) is a d× d matrix consisting of entries fij(S(t− b)) when i ̸= j and

diagonal enteries as 0. We consider a finite time interval [0, T ] for some fixed T > 0.

We consider the partition π of the time interval [0, T ]. We then propose the following

logarithmic scheme to approximate the solution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xπ
i (t) = Xπ

i (tk) exp
(︂
fii(S

π(tk − b))(t− tk)

+
d∑︂
j=1

ln
(︂
1 + gij(S

π(tk − b))(Zj(t)− Zj(tk)
)︂)︂

,

pπ(t) =
[︂
F (Sπ(tk − b)))(t− tk) + I

]︂
pπ(tk),

Sπi (t) = pπi (t)X
π
i (t) ,

Xπ
i (0) = ϕi(0) , pπ(0) = 1 , tk ≤ t ≤ tk+1 , k = 1, 2, · · · , n− 1 .

(3.12a)

(3.12b)

(3.12c)

(3.12d)

7



In this work we assume Lipschitz continuity of fij, gij, ϕi and show that for some

constant Kpd,T > 0, independent of π, ∆ we have

E

[︄
sup

0≤t≤T

[︂
|S(t)− Sπ(t)|p

]︂]︄
≤ Kpd,T∆

p/2.
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Chapter 1

Lévy process and Jump Diffusion

models

1.1 Lévy Process

1.1.1 Lévy Process

Let (Ω,F ,P) be a probability space.

Definition 1.1.1. A one- dimensional Lévy process is a stochastic process {η =

η(t), t ≥ 0}

η(t) = η(t, ω), ω ∈ Ω

with the following properties

1. η(0) = 0 P− a.s.

2. η has independent and stationary increments.

3. It is stochastically continuous, i.e for every t ≥ 0 and ϵ > 0

lim
s→t

P{|η(t)− η(s)| > ϵ} = 0

9



.

4. η has càdlàg paths, that is the trajectories are right continuous with left limits.

The jump of the process η at time t is defined by

∆η(t) := η(t)− η(t−)

Denote R0 := R\{0} and let B(R0) be the σ- algebra generated by the family of all

Borel subsets U ⊂ R, such that Ū ⊂ R0, where Ū is the closure of U . If U ∈ B(R0)

with Ū ⊂ R0 and t > 0, we then define the Poisson random measure, N : [0, T ] ×

B(R0)× Ω → N ∪ {0}, associated with η by

N(t, U) :=
∑︂
0≤s≤t

χU(∆η(s)) , (1.1)

where χU is the indicator function of U . The associated Lévy measure ν of η is defined

by

ν(U) := E[N(1, U)] (1.2)

and compensated jump measure Ñ is defined by

Ñ(dt, dz) := N(dt, dz)− ν(dz)dt (1.3)

where ν satisfies ∫︂
min{1, x2}ν(dx) <∞

For further discussion on Lévy process see [9], [13], [14].

10



1.1.2 Stochastic Calculus

In this section we discuss Lévy-Ito decomposition, Ito formula and stochastic dif-

ferential equation. We state a few results without proofs and for proof and further

discussion please refer to [4], [13].

Theorem 1. Lévy-Ito decomposition Let η be a Lévy process. Then η = η(t), t ≥ 0

admits the following integral representation

η(t) = a1t+ σW (t) +

∫︂ t

0

∫︂
|z|<1

zÑ(ds, dz) +

∫︂ t

0

∫︂
|z|≥1

zN(ds, dz) (1.4)

for some constants a1, σ ∈ R. Here W = W (t), t ≥ 0 is a standard Wiener process.

(1.4) above can be written as

η(t) = at+ σW (t) +

∫︂ t

0

∫︂
R0

zÑ(ds, dz)

if ∫︂
|z|≥1

|z|2ν(dz) <∞.

Motivated by above we consider process X = X(t), t ≥ 0 admitting stochastic integral

representation in the form

X(t) = x+

∫︂ t

0

α(s)ds+

∫︂ t

0

β(s)dW (s) +

∫︂ t

0

∫︂
R0

γ(s, z)Ñ(ds, dz)

where α(t), β(t) are adapted process and γ(t, z) is predictable processes with respect

to filtration generated by W (t) and Ñ such that, for all t > 0, z ∈ R0

∫︂ t

0

[|α(s)|+ β2(s) +

∫︂
R0

γ2(s, z)ν(dz)]ds <∞.

11



The above condition implies that the stochastic integrals are well-defined and are local

martingales. The above process is called Itô-Lévy process. The Lévy-Itô decompo-

sition entails that for every Lévy process there exist a vector γ, a positive definite

matrix A and a positive measure ν that uniquely determine its distribution. The

triplet (A, ν, γ) is called characteristic triplet or Lévy triplet of the process Xt. Let

us first define Lévy process in Rd.

Definition 1.1.2. An Rd valued Lévy process is a stochastic process {η = η(t), t ≥ 0}

η(t) = η(t, ω), ω ∈ Ω

with the following properties

1. η(0) = 0 P− a.s.

2. η has independent and stationary increments.

3. It is stochastically continuous, i.e for every t ≥ 0 and ϵ > 0

lim
s→t

P{|η(t)− η(s)| > ϵ} = 0

.

4. η has càdlàg paths, that is the trajectories are right continuous with left limits.

We also note the Itô formula for Itô-Lévy process.

Theorem 2. Itô formula Let X = X(t), t ≥ 0, be the Itô-Lévy process and let

f : (0,∞)× R → R be a function in C1,2((0,∞)× R) and define

Y (t) := f(t,X(t)), t ≥ 0.
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Then the process Y = Y (t), t ≥ 0, is also an Itô-Lévy process and its differential form

is given by

dY (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))α(t)dt+

∂f

∂x
(t,X(t))β(t)dW (t)

+
1

2

∂2f

∂x2
(t,X(t))β2(t)dt+

∫︂
R0

[f(t,X(t) + γ(t, z))− f(t,X(t))

−∂f
∂x

(t,X(t))γ(t, z)]ν(dz)dt

+

∫︂
R0

[f(t,X(t−) + γ(t, z))− f(t,X(t−))]Ñ(dt, dz).

Theorem 3. Characteristic function of a Lévy process Let (Xt)t≥0 be a Lévy

process on Rd. Then there exists a continuous function ψ : Rd → C called the charac-

teristic exponent of X, such that:

E[eiz.Xt ] = etψ(z), z ∈ Rd.

Theorem 4 (Lévy-Khinchin representation). Let (Xt)t≥0 be a Lévy process on Rd

with characteristic triplet (A, ν, γ). Then

E[eizXt ] = etψ(z), z ∈ Rd (1.5)

with

ψ(z) = −1

2
z.Az + iγ.z (1.6)

+

∫︂
Rd

(eizx − 1− izx1|x|≤1)ν(dx). (1.7)
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1.1.3 Stochastic Differential Equation (SDE)

Proposition 1. Assume that λ is a positive constant and µ, σ, ϕ are functions : R+×

R → R which satisfy

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)|+ |ϕ(t, x)− ϕ(t, y)| ≤ C|x− y|, ∀t, x, y

|µ(t, 0)|+ |σ(t, 0)|+ |ϕ(t, 0)| ≤ C, ∀t.

Then the SDE

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt + ϕ(t,Xt−)dMt,

X0 = x0

admits a unique (pathwise) solution where M is a compensated martingale associated

with a Poisson process N with intensity λ.

Proof For details one may refer to [24] chapter 10. ■

For comprehensive study we refer to [39] or [25].

1.1.4 Doléans-Dade Exponential

Proposition 2. Let X be a real valued (σ2, ν, γ) Lévy process and Z the Doléans-Dade

exponential of X, i.e., the solution of

dZt = Zt−dXt, Z0 = 1.

Then

Zt = eXt−σ2t/2
∏︂

0<s≤t

(1 + ∆Xs)e
−∆Xs := E(X)t.

We also note here that E(X)t is a multiplicative Lévy process.
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For further discussion on Doléans-Dade exponential we refer to [4],[13].

1.1.5 Compound Poisson process

Definition 1.1.3. Let (τi)(i≥1) be a sequence of independent exponential random vari-

ables with parameter λ and Tn =
∑︁n

i=1 τi. The process (Nt, t ≥ 0) defined by

Nt =
∑︂
n≥1

1t≥Tn

is called a Poisson process with intensity λ.

The Poisson process is therefore defined as a counting process as it counts number

of random times (Tn) which occur between 0 and t.

Definition 1.1.4. A compound Poisson process on Rd with intensity λ > 0 and jump

size distribution f is a stochastic process Xt defined as

Xt =
Nt∑︂
i=1

Yi

where jumps sizes Yi are i.i.d. with distribution f and (Nt) is a Poisson process with

intensity λ, independent from (Yi)i≥1.

We can deduce following properties of compound Poisson process from the defini-

tion.

• The sample paths of X are càdlàg piecewise constant functions.

• The jump times (Ti)i≥1 have the same law as the jump times of the Poisson

process Nt: they can be expressed as partial sums of independent exponential

random variables with parameter λ.

• The jump sizes (Yi)i≥1 are independent and identically distributed with law f .

15



We shall state without proofs a few results about compound Poisson process. Inter-

ested readers can refer to ([13] or [14]) for further details.

Theorem 5. Characteristic function of a Compound Poisson process Let

(Xt)t≥0 be a compound Poisson process on Rd. Its characteristic function has the

following representation:

E[exp iu.Xt] = exp

[︄
tλ

∫︂
Rd

(eiu.x − 1)f(dx)

]︄
∀u ∈ Rd,

where λ denotes the jump intensity and f the jump size distribution.

We now define the jump measure for compound Poisson process.

Definition 1.1.5. As discussed above, to every càdlàg process (Xt)t≥0 on Rd one can

associate a random measure on [0,∞)×Rd describing the jumps of X: for any mea-

surable set B ⊂ [0,∞)× Rd, NX(B) = #{(t,Xt −Xt−) ∈ B}. For every measurable

set A ⊂ Rd, NX([t1, t2] × A) counts the number of jump times of X between t1 and

t2 such that their jump sizes are in A. Following result shows that NX is Poisson

random measure in the sense of 1.1.4.

Theorem 6. Jump measure of a compound Poisson process. Let (Xt)t≥0 be

a compound Poisson process with intensity λ and jump size distribution f . Its jump

measure NX is a Poisson random measure on Rd × [0,∞) with intensity measure

µ(dx× dt) = ν(dx)dt = λf(dx)dt.

Definition 1.1.6. Let (Xt)t≥0 be a Lévy process on Rd. The measure ν on Rd defined

by:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt ̸= 0,∆Xt ∈ A}], A ∈ B(Rd) (1.8)

is called the Lévy measure of X: ν(A) is the expected number per unit time of jumps

whose size belongs to A.
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1.2 Jump diffusion process

The Lévy process that we consider are of the form

dXt = b(Xt)dt+ σ(Xt)dZt (2.9)

where Zt =
∑︁Nt

i=1 Yi, Yi are i.i.d, {Nt, t ≥ 0} is a Poisson process with rate λ. Yi is

the size of ith jump and Yi are independent of Nt.

Theorem 7. (Itô formula for jump diffusion processes) Let X be defined as the sum

of a drift term, a Brownian stochastic integral and a compound Poisson process:

Xt = X0 +

∫︂ t

0

bsds+

∫︂ t

0

σsdWs +
Nt∑︂
i=1

∆Xi (2.10)

where bt and σt are continuous non-anticipating processes with

E[
∫︂ T

0

σ2
t dt] <∞.

Then for any C1,2 function f : [0, T ] × R → R the process Yt = f(t,Xt) can be

represented as:

f(t,Xt)− f(t,X0) =

∫︂ t

0

[︂∂f
∂s

(s,Xs) + bs
∂f

∂x
(s,Xs)

]︂
ds (2.11)

+
1

2

∫︂ t

0

σ2
s

∂2f

∂x2
(s,Xs)ds+

∫︂ t

0

∂f

∂x
(s,Xs)σsdWs

+
∑︂

i≥1,Ti≤t

[︂
f(XTi− +∆Xi)− f(XTi−)−∆Xif(XTi−)

]︂
.

For more discussion on jump diffusion process see [13], [24]. We now discuss

different distributions for Yi in (2.9).
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• (2.9) becomes an asymmetric double exponential jump diffusion model (DEJP)

if Yi has the distribution of the ‘jump size’ given by

fY (x) = p.η1e
−η1xχ{x≥0} + q.η2e

η2xχ{x<0} (2.12)

with ηi > 0 with p+ q = 1.

• (2.9) becomes a hyper exponential jump diffusion model (HEM) if Yi has the

distribution of the ‘jump size’ given by

fY (x) =
m∑︂
i=1

piηie
−ηixχ{x≥0} +

n∑︂
j=1

qiθje
θjxχ{x<0}

with ηi > 1, θ > 0, pi, qi > 0 with
∑︁m

i=1 pi +
∑︁n

j=1 qj = 1.

• (2.9) becomes a mixed exponential jump diffusion model (MEJP) if Yi has the

distribution of the ‘jump size’ given by

fY (x) = pu

m∑︂
i=1

piηie
−ηixχ{x≥0} + qd

n∑︂
j=1

qiθje
θjxχ{x<0}

where pu ≥ 0, qd = 1−pu ≥ 0. With pi ∈ (−∞,∞), ∀i = 1, 2, 3, ....,m−1,m with∑︁m
i=1 pi = 1 and qj, pj ∈ (−∞,∞), ∀j = 1, 2, 3, ...., n − 1, n with

∑︁n
i=1 qj = 1.

We would also want pi > 0, qi > 0 and
∑︁m

i=1 piηi ≥ 0,
∑︁n

i=1 qjθj ≥ 0 for f to

remain a density function.

Class of hyper-exponential distribution is rich enough to approximate many heavy

tailed distribution, power tailed distribution in the sense of weak distribution. HEM

is flexible enough to incorporate the uncertainty of the heaviness of the asset return

tails therefore can capture the leptokurtic feature. (leptokurtic feature = fat tails +

kurtosis). For further discussion on HEM, MEJP, DEJP please see [10], [11], [29].
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1.3 Option pricing

Below we discuss results of option pricing in the jump diffusion model when the

underlying process is asymmetric double exponential process or hyper exponential

process. In this section we discuss the works of Steven Kou, Hui Wang and Ning Cai

which can be found in [29], [28], [31], [10]. They have worked extensively on jump

diffusion models.

1.3.1 Pricing European call option under DEJP

We consider the model described by

dS(t)

S(t)
= µdt+ σdW (t) + d

(︂ Nt∑︂
i=1

(Vi − 1)
)︂

(3.13)

whereW (t) is a standard Brownian motion, Nt is a Poisson process with rate λ, and Vi

is a sequence of independent identically distributed (i.i.d.) positive random variables

such that Y = log(V ) has an asymmetric double exponential distribution with the

density given by (2.12) where p, q ≥ 0, p+q = 1, represent the probabilities of upward

and downward jumps. Here N(t),W (t), Y (t) are assumed to be independent. The

coefficients are assumed to be constants. Solving above equation using the Itô formula

we get

S(t) = S(0) exp

(︄(︁
µ− 1

2
σ2
)︁
t+ σW (t)

)︄
N(t)∏︂
i=1

Vi (3.14)

with E(Y ) = p
η1

− q
η2
, V ar(Y ) = pq( 1

η1
+ 1

η
)2 + ( p

η21
+ q

η22
) and

E(V ) = E(exp(Y ))

= q
η2

η2 + 1
+ p

η1
η1 − 1

, η1 > 1, η2 > 0.
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The requirement η1 > 1 is needed to ensure that E(V ) < ∞ which basically means

that the average upward jump cannot exceed 100%. To discuss the price of European

call option for the above model we introduce

Γ(µ, σ, λ, p, η1, η2; a, T ) = P[Z(T ) ≥ a]

where Z(t) = µt + σW (t) +
∑︁Nt

i=1 Yi where Y has an asymmetric double exponential

distribution described by (2.12), N(t) is a Poisson process with rate λ and

Γ(µ, σ, λ, p, η1, η2; a, T ) =
exp((ση1)

2T/2)

σ
√
2πT

∞∑︂
n=1

πn

n∑︂
k=1

Pn,k(σ
√
Tη1)

k

×Ik−1(a− µT ;−η1,−
1

σ
√
T
,−ση1

√
T )

+
exp((ση2)

2T/2)

σ
√
2πT

∞∑︂
n=1

πn

n∑︂
k=1

Qn,k(σ
√
Tη2)

k

×Ik−1(a− µT ; η2,−
1

σ
√
T
,−ση2

√
T )

+π0Φ(−
a− µT

σ
√
T

) (3.15)

where Pn,k, Qn,k are given by

Pn,k =
n−1∑︂
i=k

(︃
n− k − 1

i− k

)︃(︃
n

i

)︃
.
(︂ η1
η1 + η2

)︂i−k(︂ η2
η1 + η2

)︂i−k
piqn−i

Qn,k =
n−1∑︂
i=k

(︃
n− k − 1

i− k

)︃(︃
n

i

)︃
.
(︂ η1
η1 + η2

)︂n−i(︂ η2
η1 + η2

)︂i−k
piqn−i

and for β > 0 and α ̸= 0, In is given by

In(c;α, β, δ) = −e
ac

α

n∑︂
i=0

(︂β
α

)︂n−i
Hhi(βc− δ)

+
(︂β
α

)︂√2π

β
exp

(︂αδ
β

+
α2

2β2

)︂
Φ
(︂
− βc+ δ +

α

β

)︂
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and for β < 0 and α < 0, In is given by

In(c;α, β, δ) = −e
ac

α

n∑︂
i=0

(︂β
α

)︂n−i
Hhi(βc− δ)

−
(︂β
α

)︂√2π

β
exp

(︂αδ
β

+
α2

2β2

)︂
Φ
(︂
βc− δ − α

β

)︂

where

Hhn(x) =

∫︂ ∞

x

Hhn−1(y)dy =
1

n!

∫︂ ∞

x

(t− x)ne−t
2/2dt, n = 0, 1, 2, · · · , .

We now state the main result to compute the price of European call option under

DEJP. For proof and further discussion see [31], [29].

Theorem 8. The price of European call option, Vc(0) for the model (3.13) with jumps

(2.12) is given by

V (0) = S(0)Γ(r +
1

2
σ2 − λζ, σ, λ̃, p̃, η1̃, η2̃; log(K/S(0)), T )

−K exp(−rT )Γ(r − 1

2
σ2 − λζ, σ, λ, p, η1, η2; log(K/S(0)), T )

where

p̃ =
p

1 + ζ
· η1
η1 − 1

, η1̃ = η1 − 1

η2̃ = η2 + 1, λ̃ = λ(ζ + 1), ζ =
pη1
η1 − 1

+
qη2
η2 + 1

− 1.

1.3.2 Pricing Asian options under Black-Scholes model (BSM)

In this subsection we price Asian option under BSM via Laplace transform. We first

briefly discuss infinitesimal generator and Lévy exponent.
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• In BSM under risk neutral measure the return process modelled by {X(t) =

log( S(t)
S(0)

) : t ≥ 0} is given by

X(t) = (r − σ2

2
)t+ σW (t), X(0) = 0

where r is the risk free rate, σ is the volatility, Wt is the standard Brownian

Motion. The infinitesimal generator of S(t) is

Lf(s) =
σ2

2
s2f ′′(s) + rsf ′(s).

• The Lévy exponent of Xt is

G(x) =
E[exX(t)]

t
=
σ2x2

2
+ (r − σ2

2
)x

• Let α1, α2 be the roots of G(x) = µ in BSM then α1, α2 =
−ν̄∓

√
ν̄2+2µ̄

2
with

α1 > 0, α2 < 0 where µ̄ = 4µ
σ2 , and ν̄ = 2r

σ2 − 1.

• We consider the following non-homogeneous ODE

Ly(s) = (s+ µ)y(s)− µ, s ≥ 0. (3.16)

(3.16) has infinitely many solutions as it has two singularities 0,∞. If solutions

are bounded then it is unique.

We now state a few results without proofs which helps us in pricing the Asian

option under BSM. For further details and discussion see [10].

Theorem 9. A bounded solution to (3.16), if exists must be unique. More

precisely let a(s) solve the ODE (3.16) and sups∈[0,∞) |a(s)| ≤ C <∞ for some
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positive C. Then we must have

a(s) = E[exp(−sATµ)] (3.17)

where ATµ =

∫︂ Tµ

0

eX(s)ds.

• Theorem 9 implies that if we can find a particular bounded solution to the ODE

(3.16), it must have the stochastic representation in (3.17). To find such a one,

consider a difference equation for a function H(ν) defined on (−1, α1)

h(ν)H(ν) = νH(ν − 1)

with h(ν) = µ−G(ν) =
−σ2

2
(ν − α1)(ν − α2) (3.18)

Theorem 10. If there exist a non-negative random variable X such that H(ν) =

E[Xν ] satisfies (3.18) then the Laplace transform of X i.e E[e−sX ], solves the non-

homogeneous ODE (3.16).

Theorem 11. Under BSM we have

ATµ =d
2Z(1,−α2)

σ2Z(α1)

and therefore

E[AνTµ ] =
2

σ2

Γ(ν + 1)Γ(1− α1)Γ(α1 − ν)

Γ(−α + ν + 1)Γ(α1)
, ∀ν ∈ (−1, α1)

here Z(a, b) denotes a beta random variable and Z(a) is a gamma random variable

with scale 1 and parameter ’a’ and =d denotes equality in distribution. Γ() is the

gamma function. Moreover Z(1,−α2), Z(α1) are independent.
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We now finally state the main result of this subsection where we price Asian option

under BSM.

Theorem 12. Under the BSM, for every µ, ν such that µ > 0 and ν ∈ (0, α1− 1) the

double Laplace transform of XE(S0

X
At − e−k)+ with respect to t, k is given by

L(µ, ν) = X
µν(ν+1)

(︂
2S0

Xσ2

)︂ν+1
Γ(ν+2)Γ(α1−ν−1)Γ(1−α2)

Γ(−α+ν+2)Γ(α1)

Therefore the Asian option price is equal to

P (t, k) =
e−rt

t
L−1(L(µ, ν))

⃓⃓⃓
k=ln ( X

Kt
)

where K is the strike price and L−1 a function of t, k is the inverse Laplace of L .

Furthermore we can also find the common greeks.

1.3.3 Pricing Asian options under Hyper Exponential Jump

diffusion model (HEM)

Let asset return process {Xt, t > 0} under the risk neutral measure is given by

X(t) = (r − σ2

2
− λζ)t+ σW (t) +

Nt∑︂
i=1

Yi, X(0) = 0

where r is the risk free rate σ the volatility ζ = E[eY1 ]−1 =
∑︁m

i=1
piηi
ηi−1

+
∑︁n

j=1
qjθj
θj+1

−1

with {W (t) : t ≥ 0} the standard Brownian Motion, {N(t) : t ≥ 0} a Poisson process

with rate λ and {Yi : i ∈ N} are i.i.d. with density

fY (x) =
m∑︂
i=1

piηie
−ηixχ{x≥0} +

n∑︂
j=1

qjθje
θjxχ{x<0}

where ηi > 1, θ > 0, p, q > 0 with
∑︁m

i=1 pi +
∑︁n

j=1 qj = 1.
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Due to jumps the risk neutral measure is not unique. We assume the risk neutral

measure is chosen within the rational expectations equilibrium setting such that equi-

librium option of a price of an option is given by expectation under P of the discounted

option payoff.

• The Lévy Exponent of {Xt} is given by

G(x) =
E[exX(t)]

t

=
σ2x2

2
+ (r − σ2

2
− λζ)x+ λ

(︂ m∑︂
i=1

piηi
ηi − x

+
n∑︂
j=1

qjθj
θj + x

− 1
)︂

for any x ∈ (−θ, η1) and for G(x) = µ we have exactly (m+n+2) roots.

• The infinitesimal generator is given by

Lf(x) =
σ2

2
s2f ′′(s) + (r − λζ)sf ′(s) + λ

∫︂ ∞

−∞
[f(seu)− f(s)]fY (u)du (3.19)

• We consider the Ordinary Integro-Differential Equation (OIDE)

Ly(s) = (s+ µ)y(s)− µ (3.20)

where L is as given above in (3.19).

We now state a few results without proofs which helps us in pricing the Asian op-

tion under HEM. For further details and discussion see [10]. We now describe the

distribution of ATµ

Theorem 13. A bounded solution to (3.20), if exists must be unique. More precisely

let a(s) solve the ODE (3.20) and sups∈[0,∞) |a(s)| ≤ C < ∞ for some positive C.

Then we must have

a(s) = E[exp(−sATµ)].
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Theorem 14. If there exist a non-negative random variable X such that H(ν) =

E[Xν ] satisfies (3.19) then the Laplace transform of X i.e E[e−sX ], solves the non-

homogeneous ODE (3.20).

Theorem 15. Under HEM we have

ATµ =d

2Z(1,−γ1)
∏︁n

j=1 Z(θj + 1,−γj+1 − θj)

σ2Z(βm+1)
∏︁n

i=1 Z(βi, ηi − βi)

where all the gamma and beta random variable on RHS are independent and therefore

ν ∈ (−1, β1)

E[AνTµ ] =
(︂ 2

σ2

)︂ν Γ(ν + 1)Γ(1− γ1)

Γ(−γ + ν + 1)
.
n∏︂
j=1

[︂ Γ(θj + 1 + ν)Γ(1− γj+1)

Γ(−γj+1 + 1 + ν)Γ(1 + θj)

]︂
.
m∏︂
i=1

[︂Γ(βi − ν)Γ(ηi)

Γ(ηi − ν)Γ(βi)

]︂
.
Γ(βm+1 − ν)

Γ(βm+1)
. (3.21)

We now finally state the main result of this subsection where we price Asian option

under HEM.

Theorem 16. Under the HEM, for every µ, ν such that µ > 0 and ν ∈ (0, β1− 1) the

double Laplace transform of XE(S0

X
At − e−k)+ with respect to t, k is given by

L(µ, ν) = X

µν(ν + 1)

Γ(ν + 2)Γ(1− γ1)

Γ(−γ + ν + 2)
.
n∏︂
j=1

[︂ Γ(θj + 2 + ν)Γ(1− γj+1)

Γ(−γj+1 + 2 + ν)Γ(1 + θj)

]︂
·
m∏︂
i=1

[︂Γ(βi − ν − 1)Γ(ηi)

Γ(ηi − ν − 1)Γ(βi)

]︂
.
Γ(βm+1 − ν − 1)

Γ(βm+1)
.

Therefore the Asian option price is equal to

P (t, k) =
e−rt

t
L−1(L(µ, ν))

⃓⃓⃓
k=ln ( X

Kt
)
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where k is the strike price and L−1 a function of t, k is the inverse Laplace of L.

Furthermore we can also find the common greeks.
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Chapter 2

General Product formula of

Multiple Integrals of Lévy Process

2.1 Introduction

Stochastic analysis of nonlinear functionals of Lévy processes (including Brownian

motion and Poisson process) have been studied extensively and found many applica-

tions. There have been already many standard books on this topic [4, 40, 41]. In

the analysis of Brownian nonlinear functional the Wiener-Itô chaos expansion to ex-

pand a nonlinear functional of Brownian motion into the sum of multiple Wiener-Itô

integrals is a fundamental contribution to the field. The product formula to express

the product of two (or more) multiple integrals as linear combinations of some other

multiple integrals is one of the important tools ([20]). It plays an important role in

stochastic analysis, e.g. Malliavin calculus ([20, 38]).

The product formula for two multiple integrals of Brownian motion is known since

the work of [42, Section 4] and the general product formula can be found for instance

in [20, chapter 5]. In this chapter we give a general formula for the product of m

multiple integrals of the Poisson random measure associated with (purely jump) Lévy
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process. The formula is in a compact form and it reduced to the Shigekawa’s formula

when m = 2 and when the Lévy process is reduced to Brownian motion.

When m = 2 a similar formula was obtained in [34], where the multiple integrals is

with respect to the Lévy process itself (ours is with respect to the associated Poisson

random measure which has a better properties). To obtain their formula in [34] Lee

and Shih use white noise analysis framework. Here, we have only used the classical

framework.

The product formula for multiple Wiener-Itô formula of Brownian motion plays an

important role in many applications such as U-statistics [35]. We hope similar things

may happen. But we are not pursuing this goal in the current chapter. Our formula

is for purely jump Lévy process. It can be combined with the classical formulas

[20, 35, 38, 42] to general case.

This chapter is organized as follows. In Section 2.2, we give some preliminaries

on Lévy process, the associated Poisson random measure, multiple integrals. We also

state our main result in this section. In Section 2.3, we give the proof of the formula.

2.2 Preliminary and main results

Let T > 0 be a positive number and let {η(t) = η(t, ω) , 0 ≤ t ≤ T} be a Lévy process

on some probability space (Ω,F , P ) with filtration {Ft , 0 ≤ t ≤ T} satisfying the

usual condition. This means that {η(t)} has independent and stationary increment

and the sample path is right continuous with left limit. Without loss of generality,

we assume η(0) = 0. If the process η(t) has all moments for any time index t, then

presumably, one can use the polynomials of the process to approximate any nonlinear

functional of the process {η(t) , 0 ≤ t ≤ T}. However, it is more convenient to use

the associated Poisson random measure to carry out the stochastic analysis of these

nonlinear functionals.
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The jump of the process η at time t is defined by

∆η(t) := η(t)− η(t−) if ∆η(t) ̸= 0 .

Denote R0 := R\{0} and let B(R0) be the Borel σ-algebra generated by the family of

all Borel subsets U ⊂ R, such that Ū ⊂ R0. If U ∈ B(R0) with Ū ⊂ R0 and t > 0,

we then define the Poisson random measure, N : [0, T ]× B(R0)× Ω → R, associated

with η by

N(t, U) :=
∑︂
0≤s≤t

χU(∆η(s)) , (2.1)

where χU is the indicator function of U . The associated Lévy measure ν of η is defined

by

ν(U) := E[N(1, U)] (2.2)

and compensated jump measure Ñ is defined by

Ñ(dt, dz) := N(dt, dz)− ν(dz)dt . (2.3)

The stochastic integral
∫︁
T f(s, z)Ñ(ds, dz) is well-defined for a predictable process

f(s, z) such that
∫︁
T E|f(s, z)|

2ν(dz)ds < ∞, where and throughout this chapter we

use T to represent the domain [0, T ]× R0 to simplify notation.

Let

L̂
2,n

:=
(︁
L2(T, λ× ν)

)︁⊗n ⊆ L2 (Tn, (λ× ν)n)

be the space of symmetric, deterministic real functions f such that

∥f∥2
L̂
2,n =

∫︂
Tn

f 2(t1, z1, · · · , tn, zn)dt1ν(dz1) · · · dtnν(dzn) <∞ ,
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where λ(dt) = dt is the Lebesgue measure. In the above the symmetry means that

f(t1, z1, · · · , ti, zi, · · · , tj, zj, · · · , tn, zn) = f(t1, z1, · · · , tj, zj, · · · , ti, zi, · · · , tn, zn)

for all 1 ≤ i < j ≤ n. For any f ∈ L̂
2,n

the multiple Wiener-Itô integral

In(f) :=

∫︂
Tn

f(t1, z1, · · · , tn, zn)Ñ(dt1, dz1) · · · Ñ(dtn, dzn) (2.4)

is well-defined. The importance of the introduction of the associated Poisson measure

and the multiple Wiener-Itô integrals are in the following theorem which means any

nonlinear functional F of the Lévy process η can be expanded as multiple Wiener-Itô

integrals.

We now state without proof result of Wiener-Itô chaos expansion for Lévy process.

For proof and related examples please see [14].

Theorem 17 (Wiener-Itô chaos expansion for Lévy process). Let FT = σ(η(t), 0 ≤

t ≤ T ) be σ - algebra generated by the Lévy process η.

Let F ∈ L2(Ω,FT , P ) be an FT measurable square integrable random variable.

Then F admits the following chaos expansion:

F =
∞∑︂
n=0

In(fn) , (2.5)

where fn ∈ L̂
2,n
, n = 1, 2, · · · and where we denote I0(f0) := f0 = E(F ). Moreover,

we have

∥F∥2L2(P ) =
∞∑︂
n=0

n !∥fn∥2
L̂
2,n . (2.6)

This chaos expansion theorem is one of the fundamental result in stochastic analy-

sis of Lévy processes. It has been widely studied in particular when η is the Brownian
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motion (Wiener process). We refer to [20], [38], [40] and references therein for further

reading.

To state our main result of this chapter, we need some notation. Fix a positive

integer m ≥ 2. Denote

Υ = Υm = {i = (i1, · · · , iα), α = 2, · · · ,m 1 ≤ i1 < · · · < iα ≤ m} (2.7)

where α = |i| is the length of the multi-index i (we shall use α, β to denote a natural

number). It is easy to see that the cardinality of Υ is κm := 2m − 1 − m. Denote

i⃗ = (i1, · · · , iκm), which is unordered list of the elements of Υ, where iβ ∈ Υ. We use

l⃗ = (li1 , · · · , liκm ) to denote a multi-index of length κm associated with Υ, where liα ,

1 ≤ α ≤ κm are nonnegative integers. l⃗ can be regarded as a function from Υ to

Z+ = {0, 1, 2, · · · }. Denote

⎧⎪⎪⎨⎪⎪⎩
Ω =

{︂
l⃗, n⃗ : Υ → Z+

}︂
and for any l⃗, n⃗ ∈ Ω ,

χ(k, l⃗, n⃗) =
∑︁

1≤α≤κm

[︂
liαχ{iα contains k} + niαχ{iα contains k}

]︂
.

(2.8)

Above χ on left side refers to the indicator function. The conventional notations such

as |l⃗| = li1 + · · · + liκm ; l⃗! = li1 ! · · · liκm! and so on are in use. Notice that we use li1

instead of l1 to emphasize that the li1 corresponds to i1. For i = (i1, · · · , iα) , j =

(j1, · · · , jβ) ∈ Υ, and non negative integers µ and ν denote

⊗̂µ

i (f1, · · · , fm) =

∫︂
([0,T ]×R0)µ

fi1((s1, z1), · · · , (sµ, zµ), · · · ) ⊗̂ · · ·

⊗̂fiα((s1, z1), · · · , (sµ, zµ), · · · )ds1ν(dz1) · · ·

dsµν(dzµ) f1 ⊗̂ · · · ⊗̂ f̂ i1 ⊗̂ · · · ⊗̂ f̂ iα · · · ⊗̂ fm , (2.9)
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and

V ν
j (f1, · · · , fm) = fj1((t1, z1), · · · , (tν, zν), · · · ) ⊗̂ · · ·

⊗̂fjβ((t1, z1), · · · , (tν, zν), · · · )f1 ⊗̂ · · · ⊗̂ f̂ j1 ⊗̂ · · · ⊗̂ f̂ jβ · · · ⊗̂ fm ,(2.10)

where ⊗̂ denotes the symmetric tensor product and f̂ j1 means that the function fj1 is

removed from the list. Let us emphasize that both ⊗̂µ

i and V ν
j are well-defined when

the lengths of i and j are one. However, we shall not use ⊗̂µ

i when |i| = 1 and when

|j| = 1, V ν
j (f1, · · · , fm) = f1 ⊗̂ · · · ⊗̂ fm (namely, the identity operator). For any two

elements l⃗ = (li1 , · · · , liκm ) and n⃗ = (µj1 , · · · , µjκm ) in Ω, denote

⊗̂l⃗
i⃗ = ⊗̂li1 ,··· ,liκm

i1,··· ,iκm = ⊗̂li1
i1

· · · ⊗̂ liκm
iκm

, V n⃗
j⃗
= V

µj1 ,··· ,njκm
j1,··· ,jκm = V

µj1
j1

⊗̂ · · · ⊗̂ V
njκm
jκm

.

(2.11)

Now we can state the main result of the chapter.

Theorem 18. Let fk ∈ (L2([0, T ]× R0, dt⊗ ν(dz)))
⊗̂qk , k = 1, · · · ,m. Then

m∏︂
k=1

Iqk(fk) =
∑︂
l⃗,n⃗∈Ω

χ(1,l⃗,n⃗)≤q1···
χ(m,l⃗,n⃗)≤qm

∏︁m
k=1 qk!∏︁κm

α=1 liα !
∏︁κm

β=1 µjβ !
∏︁m

k=1(qk − χ(k, l⃗, n⃗))!

I|q|+|n⃗|−|χ(l⃗,n⃗)|(⊗̂
li1 ,··· ,liκm
i1,··· ,iκm ⊗̂ V

µj1 ,··· ,njκm
j1,··· ,jκm (f1, · · · , fm)) , (2.12)

where we recall |q| = q1 + · · ·+ qm and |χ(l⃗, n⃗)| = χ(1, l⃗, n⃗) + · · ·+ χ(m, l⃗, n⃗).

If m = 2, then κm = 1. To shorten the notations we can write q1 = n, q2 = m,

f1 = fn, f2 = gm, lα1 = l, nβ1 = k. Thus, χ(1, l⃗, n⃗) = χ(2, l⃗, n⃗) = l + k and

|q|+ |n⃗| − |χ(l⃗, n⃗)| = n+m+ k − 2(l + k) = n+m− 2l − k. Hence we have;
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if fn ∈ (L2([0, T ]× R0, dt⊗ ν(dz)))
⊗̂n

, gm ∈ (L2([0, T ]× R0, dt⊗ ν(dz)))
⊗̂m

. Then

In(fn)Im(gm) =
∑︂
k,l∈Z+

k+l≤m∧n

n!m!

l!k!(n− k − l)!(m− k − l)!
In+m−2l−k

(︂
fn ⊗̂ k,lgm

)︂
,

where Z+ denotes the set of non negative integers and

fn ⊗̂ k,lgm(s1, z1, · · · , sn+m−k−2l, zn+m−k−2l)

= symmetrization of

∫︂
Tl

fn(s1, z1, · · · , sn−l, zn−l, t1, y1, · · · , tl, yl)

gm(s1, z1, · · · , sk, zk, sn−l+1, · · · , zn−l+1, · · · ,

sn+m−k−2l, · · · , zn+m−k−2l, t1, z1, · · · , tl, zl)dt1ν(dz1) · · · dtlν(dzl).

(2.13)

If m = 3, then κm = 4. To shorten the notations we can write, We write the product

formula for f1 ∈ (L2([0, T ]× R0, dt⊗ ν(dz)))
⊗̂q1 , f2 ∈ (L2([0, T ]× R0, dt⊗ ν(dz)))

⊗̂q2 ,

f3 ∈ (L2([0, T ]× R0, dt⊗ ν(dz)))
⊗̂q3 .

Lets write using the notions discussed

li1 = l12, li2 = l23, li3 = l13, li4 = l123 and l⃗! = l12!l23!l13!l123!

µj1 = k12, µj2 = k23, µj3 = k13, µj4 = k123 and n⃗! = k12!k23!k13!k123!.

Thus,

χ(1, l⃗, n⃗) = l12 + l13 + l123 + k12 + k13 + k123,

χ(2, l⃗, n⃗) = l12 + l23 + l123 + k12 + k23 + k123,

χ(3, l⃗, n⃗) = l13 + l23 + l123 + k13 + k23 + k123 and

|q|+ |n⃗| − |χ(l⃗, n⃗)| = q1 + q2 + q3 − 2l12 − 2l23 − 2l13 − 3l123

−k12 +−k23 − k13 − 2k123.
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Hence we have;

Iq1(f1)Iq2(f2)Iq3(f3) =
∑︂
l⃗,n⃗∈Ω

χ(1,l⃗,n⃗)≤q1
χ(2,l⃗,n⃗)≤q2
χ(3,l⃗,n⃗)≤q3

q1!q2!q3

l⃗!n⃗!
∏︁3

r=1(qi − χ(i, l⃗, n⃗))!

·I|q|+|n⃗|−|χ(l⃗,n⃗)|

(︂
(⊗̂l⃗

i⃗ ⊗̂ V n⃗
j⃗
(f1, f2, f3))

)︂
,

⊗̂l⃗
i⃗ ⊗̂ V n⃗

j⃗
(f1, f2, f3)(s1, z1, · · · , s|q|+|n⃗|−|χ(l⃗,n⃗)|, z|q|+|n⃗|−|χ(l⃗,n⃗)|)

= symmetrization of

∫︂
T|l⃗|

f1(s1, z1, · · · , s(q1−l12+l13+l123), z(q1−l12+l13+l123),

t1, y1, · · · , tl12 , yl12tl12+1, yl12+1 · · · tl12+l13 , yl12+l13 , tl12+l13+1, yl12+l13+1,

· · · tl12+l13+l123 , yl12+l13+l123) · f2(s1, z1, · · · , sk12 , zk12 , sk12+1, zk12+1,

· · · sk12+k123 , zk12+k123 , sq1+k12+k123+1, zq1+k12+k123+1,

· · · sq1+k12+k123+k23 , zq1+k12+k123+k23 , sq1+k12+k123+k23+1, zq1+k12+k123+k23+1,

· · · , · · · , sq1+q2−l12−l23−l123 , zq1+q2−l12−l23−l123 , t1, z1,

· · · , tl123 , zl123 , tq1+q2+1, zq1+q2+1, ·, tq1+q2+l23 , zq1+q2+l23)

·f3(sk12+1, zk12+1, · · · sk12+k13 , zk12+k13 , sk12+k13+1, zk12+k13+1,

· · · sk12+k123+k13 , zk12+k123+k13 , sq1+q2+k12+k123+1,

zq1+q2+k12+k123+1, · · · sq1+q2+k12+k123+k23 , zq1+q2+k12+k123+k23 ,

sq1+q2+k12+k123+k23+1, zq1+q2+k12+k123+k23+1, · · · sq1+q2+q3−l23−l123−l13 ,

zq1+q2+q3−l23−l123−l13 , · · · tl12+1, yl12+1tl12+l13 , yl12+l13 , tl12+l13+1, yl12+l13+1,

· · · tl12+l13+l123 , yl12+l13+l123 , tq1+q2+1, zq1+q2+1,

· · · tq1+q2+l23 , zq1+q2+l23)dt1ν(dz1) · · · dtl12ν(dzl12), dtl12+1 · · · ν(dzl12+1)dtl12+l13

ν(dzl12+l13)dtl12+l13+1ν(dzl12+l13+1) · · · dtl12+l13+l123ν(dzl12+l13+l123)

dtq1+q2+1, ν(dzq1+q2+1) · · · dtq1+q2+l23 , ν(dzq1+q2+l23).

(2.14)
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Remark 2.1. (1) When η is the Brownian motion, the product formula (2.13) is

known since [42] (see e.g. [20, Theorem 5.6] for a formula of the general form

(2.12)) and is given by

In(fn)Im(gm) =
n∧m∑︂
l=0

n!m!

l!(n− l)!(m− l)!
In+m−2l

(︂
fn ⊗̂ lgm

)︂
.

(2.15)

It is a “special case” of (2.13) when k = 0.

2.3 Proof of Theorem 18

We shall prove the main result (Theorem 18). We shall prove this by using the

polarization technique (see [20, Section 5.2]). First, let us find the Wiener-Itô chaos

expansion for the exponential functional (random variable) of the form

Y (T ) = E(ρ(s, z))

:= exp

{︃∫︂
T
ρ(s, z)Ñ(dz, ds)−

∫︂
T

(︂
eρ(s,z) − 1− ρ(s, z)

)︂
ν(dz)ds

}︃
(3.16)

where ρ(s, z) ∈ L̂
2
:= L̂

2,1
= L2(T, ν(dz)⊗ λ(dt)). An application of Itô formula (see

e.g. [40]) yields

Y (T ) = 1 +

T∫︂
0

∫︂
R0

Y (s−)
[︂
exp (ρ(s, z))− 1

]︂
Ñ(ds, dz) .
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Repeatedly using this formula, we obtain the chaos expansion of Y (T ) as follows.

E(ρ(s, z)) = exp

{︃∫︂
T
ρ(s, z)Ñ(dz, ds)−

∫︂
T

(︂
eρ(s,z) − 1− ρ(s, z)

)︂
ν(dz)ds

}︃
=

∞∑︂
n=0

1

n!
In(fn) , (3.17)

where the convergence is in L2(Ω,FT , P ) and

fn = fn(s1, z1, · · · , sn, zn) = (eρ − 1)⊗̂n =
n∏︂
i=1

(︁
eρ(si,zi) − 1

)︁
. (3.18)

We shall first make critical application of the above expansion formula (3.17)-(3.18).

For any functions pk(s, z) ∈ L̂
2
(in what follows when we write k we always mean

k = 1, 2, · · · ,m and we shall omit k = 1, 2, · · · ,m), we denote

ρk(uk, s, z) = log(1 + ukpk(s, z)) , (3.19)

From (3.17)-(3.18), we have (consider uk as fixed real numbers)

E(ρk(uk, s, z)) =
∞∑︂
n=0

1

n!
unkIn(fk,n) , (3.20)

where

fk,n =
1

unk

n∏︂
i=0

(eρk(uk,si,zi) − 1) = p⊗nk =
n∏︂
i=1

pk(si, zi) (3.21)

It is clear that

m∏︂
k=1

E(ρk(uk, s, z)) =
∞∑︂

q1,··· ,qm=0

1

q1! · · · qm!
uq11 · · ·uqmm Iq1(f1,q1) · · · Iqm(fm,qm)

(3.22)
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where fk,qk , k = 1, · · · ,m are defined by (3.21). On the other hand, from the definition

of the exponential functional (3.16), we have

m∏︂
k=1

E(ρk(uk, s, z))

=
m∏︂
k=1

exp
{︂∫︂

T
ρk(uk, s, z)Ñ(dz, ds)−

∫︂
T

(︂
eρk(uk,s,z) − 1− ρk(uk, s, z)

)︂
ν(dz)ds

}︂
= exp

{︂∫︂
T

m∑︂
k=1

ρk(uk, s, z)Ñ(dz, ds)

−
∫︂
T

(︂
e
∑︁m

k=1 ρk(uk,s,z) − 1−
m∑︂
k=1

ρk(uk, s, z)
)︂
ν(dz)ds

}︂
· exp

{︂∫︂
T
e
∑︁m

k=1 ρk(uk,s,z) −
m∑︂
k=1

eρk(uk,s,z) +m− 1
)︂
ν(dz)ds

}︂
=: A ·B (3.23)

where A and B denote the above first and second exponential factors.

The first exponential factor A is an exponential functional of the form (3.16).

Thus, again by the chaos expansion formula (3.17)-(3.18), we have

A =
∞∑︂
n=0

1

n!
In(hn(u1, · · · , um)) , (3.24)

where

hn(u1, · · · , um) =
n∏︂
i=0

(e
∑︁m

k=1 ρk(uk,si,zi) − 1) . (3.25)

By the definition of ρk, we have

m∑︂
k=1

ρk(uk, si, zi) = log
m∏︂
k=1

(1 + ukpk(si, zi)) .

38



Or

hn(u1, · · · , um) =

(︄[︄
m∏︂
k=1

(1 + ukpk)− 1

]︄)︄⊗̂n

= Sym(s1,z1),··· ,(sn,zn)

n∏︂
i=1

[︄
m∏︂
k=1

(1 + ukpk(si, zi))− 1

]︄
,

where ⊗̂ denotes the symmetric tensor product and Sym(s1,z1),··· ,(sn,zn) denotes the

symmetriization with respect to (s1, z1), · · · , (sn, zn). Define

S = {j = (j1, · · · , jβ), β = 1, · · · ,m, 1 ≤ j1 < · · · < jβ ≤ m} .

The cardinality of S is |S| = κ̃m := 2m−1. We shall freely use the notations introduced

in Section 2. Denote also

uj = uj1 · · ·ujβ , pj(s, z) = pj1(s, z) · · · pjβ(s, z) (for j = (j1, · · · , jβ) ∈ S) .

We have

hn(u1, · · · , um) =

(︄∑︂
j∈S

ujpj

)︄⊗̂n

=
∑︂
|µ⃗|=n

|µ⃗|!
µ⃗!
uµ⃗
j⃗
p⊗̂µ⃗

j⃗

=
∑︂

µj1+···+µjκ̃m=n

n!

µj1 ! · · ·µjκ̃m
!
u
µj1
j1

· · ·u
µjκ̃m
jκ̃m

p
⊗̂µj1
j1

⊗̂ · · · ⊗̂ p
⊗̂µjκ̃m
jκ̃m

,

where µ⃗ : S → Z+ is a multi-index and we used the notation uµ⃗
j⃗
= u

µj1
j1

· · ·u
µjκ̃m
jκ̃m

; and

p⊗̂µ⃗

j⃗
= p

⊗̂µj1
j1

⊗̂ · · · ⊗̂ p
⊗̂µjκ̃m
jκ̃m

. Inserting the above expression into (3.24) we have

A =
∞∑︂
n=0

∑︂
µj1+···+µjκ̃m=n

1

µj1 ! · · ·µjκ̃m
!
u
µj1
j1

· · ·u
µjκ̃m
jκ̃m

In(p
⊗̂µj1
j1

⊗̂ · · · ⊗̂ p
⊗̂µjκ̃m
jκ̃m

)

(3.26)
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Now we consider the second exponential factor in (3.23):

B = exp
{︂∫︂

T

(︂
e
∑︁m

k=1 ρk(uk,s,z) −
m∑︂
k=1

eρk(uk,s,z) +m− 1
)︂
ν(dz)ds

}︂
= exp

{︂∑︂
i∈Υ

ui

∫︂
T
pi(s, z)ν(dz)ds

}︂
,

where Υ is defined by (2.7) (which is a subset of S such that |j| ≥ 2). Thus,

B =
∞∑︂
n=0

1

n!

(︄∑︂
i∈Υ

ui

∫︂
T
pi(s, z)ν(dz)ds

)︄n

=
∞∑︂
n=0

∑︂
li1+···+liκm=n

1

li1 ! · · · liκm !
u
li1
i1

· · ·uliκmiκm

(︃∫︂
T
pi1(s, z)ν(dz)ds

)︃li1
· · ·
(︃∫︂

T
piκm (s, z)ν(dz)ds

)︃liκm
, (3.27)

where l⃗ ∈ Ω is a multi-index. Combining (3.26)-(3.27), we have

AB =
∞∑︂

n,ñ=0

∑︂
µj1

+···+µjκ̃m
=n

li1
+···+liκm

=ñ

1

µj1 ! · · ·µjκ̃m
!li1 ! · · · liκm !

u
µj1
j1

· · ·u
µjκ̃m
jκ̃m

u
li1
i1

· · ·ulliκmiκm
Bi,j,li,µj , where (3.28)

Bi,j,li,µj :=

(︃∫︂
T
pi1(s, z)ν(dz)ds

)︃li1
· · ·(︃∫︂

T
piκm (s, z)ν(dz)ds

)︃liκm
In(p

⊗̂µj1
j1

⊗̂ · · · ⊗̂ p
⊗̂µjκ̃m
jκ̃m

) . (3.29)

To get an expression for Bi,j,li,µj we use the notations (2.9)-(2.10) and (2.11). Then

Bj,j̃,nj,ñj
= In(⊗̂

l⃗
i⃗ ⊗̂ V µ⃗

j⃗
(p

⊗ni1
1 , · · · , p⊗nm

m )) . (3.30)
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To compare the coefficients of u
ni1
1 · · ·unm

m , we need to express the right hand side of

(3.28) as a power series of u1, · · · , um. For k = 1, · · · ,m denote

χ̃(k, l⃗, µ⃗) =
∑︂

1≤α≤κm

liαI{iα contains k} +
∑︂

1≤β≤κ̃m

µjβI{jβ contains k} . (3.31)

Combining (3.23), (3.28) and (3.30), we have

∞∑︂
q1,··· ,qm=0

uq11 · · ·uqmm
q1! · · · qm!

Iq1(p
⊗q1
1 ) · · · Iqm(p⊗qmm )

=
∞∑︂

n,ñ=0

∑︂
µj1

+···+µjκ̃m
=n

li1
+···+lκm=ñ

χ̃(k,l⃗,µ⃗)=qk,k=1,...,m

uq11 · · ·uqmm
li1 ! · · · liκm !µj1 ! · · ·µjκ̃m

!

In(⊗̂
li1 ,··· ,liκm
i1,··· ,iκm ⊗̂ V

µj1
,··· ,µjκ̃m

j1,··· ,jκ̃m
(p⊗q11 , · · · , p⊗qmm )) .

(3.32)

Comparing the coefficient of uq11 · · ·uqmm , we have

m∏︂
k=1

Iqk(p
⊗qk
k ) =

∑︂
j1,··· ,jκ̃m∈S

i1,··· ,iκm∈Υ

∑︂
χ̃(k,l⃗,µ⃗)=qk,k=1,...,m

q1! · · · qm!
li1 ! · · · liκm !µj1 ! · · ·µjκ̃m

!

In(⊗̂
li1 ,··· ,liκm
i1,··· ,iκm ⊗̂ V

µj1
,··· ,µjκ̃m

j1,··· ,jκ̃m
(p⊗q11 , · · · , p⊗qmm )) . (3.33)

Notice that when |j| = 1, namely, j = (k), k = 1, · · · ,m, then V µ
j (f1, · · · , fm) =

f1 ⊗̂ · · ·⊗̂fm. We can separate these terms from the remaining ones, which will satisfy

|j| ≥ 2. Thus, the remaining multi-indices j’s consists of the set Υ. We can write a

multi-index µ⃗ : S → Z+ as µ⃗ = (n(1), · · · , n(m), n⃗), where n⃗ ∈ Υ. We also observe

qk = χ̃(k, l⃗, µ⃗) = n(k) + χ(k, l⃗, n⃗). After replacing µ⃗ by n⃗, (3.33) gives (2.12). This

proves Theorem 18 for fk = p⊗qkk , k = 1, · · · ,m. By polarization technique (see e.g.

[20, Section 5.2]), we also know the identity (2.12) holds true for fk = pk,1⊗· · ·⊗pk,qk ,

pk,qk ∈ L2([0, T ] × R0, ds × ν(dz)), k = 1, · · · ,m. Because both sides of (2.12) are
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multi-linear with respect to fk, we know (2.12) holds true for

fk =

νk∑︂
ℓ=1

ck,ℓpk,1,ℓ ⊗ · · · ⊗ pk,qk,ℓ , k = 1, · · · ,m ,

where ck,ℓ are constants, pk,k′,ℓ ∈ L2([0, T ] × R0, ds × ν(dz)), k = 1, · · · ,m, k′ =

1, · · · , qk and ℓ = 1, · · · ,νk. Finally, the identity (2.12) is proved by a routine limiting

argument.
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Chapter 3

Option Pricing and

Euler-Maruyama scheme for SDDE

driven by Brownian Motion

3.1 Introduction

In this chapter we discuss the option pricing formula and Euler-Maruyama scheme

convergence on stochastic delay differential equation (SDDE). In this chapter we dis-

cuss the work in [5] where the authors came up with a formula in the last delayed

period for pricing European options where the underlying model is driven by Brow-

nian motion. We also discuss the work in [22] where the authors derived a formula

for pricing European option on jump diffusion model in the last delayed period. Fi-

nally we also discuss the Euler-Maruyama scheme convergence for SDDE driven by

Brownian motion and Poisson random measure.
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3.2 Delayed Black-Scholes formula.

In this section we discuss the work in [5]. We discuss about the explicit formula for

pricing European options when the underlying stock price follows nonlinear stochas-

tic functional differential equations with fixed delays. The model maintains the no-

arbitrage property and the completeness of the market. The derivation of the option-

pricing formula is based on an equivalent local martingale measure. Here the model

considers the effect of the past in the determination of the fair price of a call option. In

particular, the stock price satisfies a stochastic functional differential equation (SFDE)

with delay and pricing of European option is considered.

3.2.1 Stochastic delay model

Consider a stock whose price at time t is given by a stochastic process S(t) satisfying

the following SFDE:

⎧⎪⎪⎨⎪⎪⎩
dS(t) = µS(t− a)S(t)dt+ g(S(t− b))S(t)dW (t), t ≥ 0 ,

S(t) = ϕ(t) , t ∈ [−L, 0] ,
(2.1)

on (Ω,F ,P) with the filtration (Ft){0≤t≤T} satisfying usual conditions where L =

max{a, b} with a > 0, b > 0. In the above, L, b and T are positive constants with

L ≥ b. The drift coefficient µ > 0 and g : R → R is continuous. The initial

process ϕ : Ω → C([−L, 0],R) is F0 measurable with respect to the Borel σ-algebra of

C([−L, 0],R) where the space C([−L, 0],R) of all continuous functions η : [−L, 0] → R

is a Banach space with the sup norm. The process W is a one-dimensional standard

Brownian motion adapted to the filtration (Ft){0≤t≤T}.

We now state without proof that the SDDE admits a pathwise-unique positive

solution. For further details we refer to [5]
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Theorem 19. Given an F0 measurable initial process ϕ(t), the stochastic delay dif-

ferential equation given by (2.1) with µ > 0, g : R → R admits a unique pathwise

solution with the property that S(t) ≥ 0 whenever ϕ(0) ≥ 0 for all t ≥ 0 almost surely.

If in addition ϕ(0) > 0 a.s, then S(t) > 0 for all t ≥ 0 a.s.

3.2.2 Delayed option pricing formula

Consider a market consisting of a riskless asset (e.g., a bond or bank account) B(t)

with rate of return r ≥ 0 (i.e., B(t) = ert ) and a single stock whose price S(t) at time

t satisfies the SDDE (2.1) where ϕ(0) > 0 a.s.. Consider a European option, written

on the stock, with maturity at some future time T > t and a strike price K. To price

the European option we first look at the following results (without proofs) discussing

the martingale measure and these are essential in obtaining the price of the option.

For proofs please see [5].

Let

∑︂
(u) =

µS(u− a)− r

g(S(u− b))
, u ∈ [0, T ]. (2.2)

Theorem 20. Let W (t), t ∈ [0, T ], be a standard Wiener process on (Ω,F ,P). Let∑︁
be a adapted process such that

∫︂ T

0

⃓⃓⃓∑︂
(u)
⃓⃓⃓2
du <∞ a.s., and let

ζt = exp

(︄∫︂ t

0

∑︂
(u)dW (u)− 1

2

∫︂ t

0

⃓⃓⃓∑︂
(u)
⃓⃓⃓2
du

)︄
t ∈ [0, T ]. (2.3)

Suppose that EP(ζT ) = 1, where EP denotes expectation with respect to the probability

measure P. Define the probability measure Q on (Ω,F) by dQ = ζTdP. Then the

process

Ŵ (t) := W (t)−
∫︂ t

0

∑︂
(u)du, t ∈ [0, T ]
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is a standard Wiener process under the measure Q.

Using the risk neutral measure obtained above and martingale representation the-

orem we can also find the hedging portfolio.

S(t) = ϕ(0) exp
(︂∫︂ t

0

g(S(u− b))dW (u) + µ

∫︂ t

0

S(u− a)du− 1

2

∫︂ t

0

g(S(u− b))2du
)︂

a.s for t ∈ [0, T ]. Hence using Theorem (20) from above we have

S̃(t) = ϕ(0) exp
(︂∫︂ t

0

g(S(u− b))dŴ (u)− 1

2

∫︂ t

0

g(S(u− b))2du
)︂

(2.4)

where

S̃(t) =
S(t)

B(t)
= e−rtS(t).

Hence we have

dS̃(t) = S(t)˜
[︂(︁
µS(t− a)− r

)︁
dt+ g(S(t− b))dW (t)

]︂
(2.5)

and therefore we will have

dS̃ = S̃(t)g(S(u− b))dŴ . (2.6)

We now discuss that how we can find the hedging portfolio for a contingent claim X.

Consider the Q martingale

M(t) = EQ(e
−rTX|FS

t ) = EQ(e
−rTX|FS

t )

where FS
t = F S̃

t = FŴ
t = FW

t . Then using martingale representation theorem

there exists a FŴ
t adapted process h0(t), t ∈ [0, T ] such that
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∫︂ T

0

h0(u)
2du <∞

and

M(t) = EQ(e
−rTX) +

∫︂ t

0

h0(u)dŴ (u), t ∈ [0, T ].

Define

πS(t) :=
h0(t)

S̃(t)g(S(t− b))
, πB(t) :=M(t)− πS(t)S̃(t), , t ∈ [0, T ]. (2.7)

Consider the strategy {πB(t), πS(t) : t ∈ [0, T ]} which consists of holding πS(t) units

of the stock and πB(t) units of the bond at time t. The value V (t) of the portfolio at

any time t ∈ [0, T ] is given by

V (t) = πB(t)e
rt + πS(t)S(t) = ertM(t).

Therefore, by the product rule and the definition of the strategy {πB(t), πS(t) : t ∈

[0, T ]}, it follows that

dV (t) = ertdM(t) +M(t)dert = πB(t)de
rt + πS(t)dS(t), t ∈ [0, T ].

Consequently, {πB(t), πS(t) : t ∈ [0, T ]} is a self-financing strategy. Moreover, V (T ) =

erTM(T ) = X a.s. Hence the contingent claim X is attainable. This shows that the

market {B(t), S(t) : t ∈ [0, T ]} is complete, since every contingent claim is attainable.

Moreover, in order for the augmented market {B(t), S(t), X : t ∈ [0, T ]} to satisfy the

no-arbitrage property, the price of the claim X must be

V (t) = e−r(T−t)EQ(X|FS
t ) (2.8)
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at each t ∈ [0, T ] a.s..

We can summarize above as

Theorem 21. Suppose that the stock price S is given by the SDDE (2.1), where

ϕ(0) > 0 and a, b > 0. Let T be the maturity time of an option (contingent claim) on

the stock with payoff function X, i.e., X is an FS
T measurable non-negative integrable

random variable. Then at any time t ∈ [0, T ], the fair price V (t) of the option is given

by the formula

V (t) = e−r(T−t)EQ(X|FS
t ) (2.9)

where Q denotes the probability measure on (Ω,F) defined by dQ = ζTdP with

ζt = exp

(︄∫︂ t

0

µS(u− a)− r

g(S(u− b))
dW (u)− 1

2

∫︂ t

0

⃓⃓⃓µS(u− a)− r

g(S(u− b))

⃓⃓⃓2
du

)︄
t ∈ [0, T ]. (2.10)

The measure Q is a local martingale measure and the market is complete. Moreover,

there is an adapted and square integrable process h0(u), u ∈ [0, T ] such that

EQ(e
−rTX|FS

t ) = EQ(e
−rTX) +

∫︂ t

0

h0(u)dŴ (u), t ∈ [0, T ]

where Ŵ is a standard Q Wiener process given by

Ŵ (t) := W (t) +

∫︂ t

0

µS(u− a)− r

g(S(u− b))
du, t ∈ [0, T ]. (2.11)

The hedging strategy is given by

πS(t) :=
h0(t)

S̃(t)g(S(t− b))
, πB(t) :=M(t)− πS(t)S̃(t), , t ∈ [0, T ]. (2.12)
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The following result is a consequence of Theorem 21. It gives a Black-Scholes type

formula for the value of a European option on the stock at any time prior to maturity.

Theorem 22. Assume the conditions of Theorem 21. Let V (t) be the fair price of a

European call option written on the stock S with exercise price K and maturity time

T . Let Φ denote the distribution function of the standard normal law, i.e.,

Φ(x) =
1√
2π

∫︂ x

0

e−u
2/2du, x ∈ R. (2.13)

Then for all t ∈ [T − l, T ] where l:=min{a,b}, V (t) is given by

V (t) = S(t)Φ(β+(t))−Ke−r(T−t)Φ(β−(t)) (2.14)

where

β± :=

log S(t)
K

+

∫︂ T

t

(r ± 1

2
g(S(u− b))2)du√︄∫︂ T

t

g(S(u− b))2du

. (2.15)

If T > l and t < T − l, then

V (t) = ertEQ

(︄
H

(︄
S̃(T − l),−1

2

∫︂ T

T−l
g(S(u− b))2du,

∫︂ T

T−l
g(S(u− b))2du

)︄⃓⃓⃓⃓
⃓Ft

)︄
(2.16)

where H is given by

H(x,m, σ2) := xem+σ2/2Φ(α1(x,m, σ))−Ke−rTΦ(α2(x,m, σ)) (2.17)
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and

α1(x,m, σ) =
1

σ

[︂
log
(︂ x
K

)︂
+ rT +m+ σ2

]︂
(2.18)

α2(x,m, σ) =
1

σ

[︂
log
(︂ x
K

)︂
+ rT +m

]︂
(2.19)

for σ, x ∈ R+,m ∈ R. The hedging strategy is given by

πS(t) = Φ(β+(t)), πB(t) = −Ke−rTΦ(β−(t)), t ∈ [T − l, T ]. (2.20)

3.3 Euler-Maruyama scheme

3.3.1 Introduction

In this section we discuss the work of [23]. The work is on convergence of Euler-

Maruyama scheme for SDDE driven by Brownian motion and Poisson Random mea-

sure.

Let (Ω,F , {Ft}t≥0, P ) is a complete probability space with a filtration {Ft}t≥0

satisfying usual conditions. Let A′ denote the transpose of a vector or a matrix A.

Let B(t) be am-dimensional Brownian motion and N(t, z) be a n-dimensional Poisson

process and denote the compensated Poisson process by

Ñ(dt, dz) =
(︁
Ñ1(dt, dz), · · · , Ñn(dt, dzn)

)︁′
=
(︁
N1(dt, dz)− ν1(dz1)dt, · · · , Nn(dt, dzn)− νn(dzn)dt

)︁′
where Nj, j = 1, · · · , n are Poisson random measures with Lévy measure νj, j =

1, · · · , n, coming from n independent 1-dimensional Poisson point processes. Here we

assume that N(t, z) and B(t) are independent. Let | · | denote the Euclidean norm

as well as the matrix trace norm. Let τ > 0 and C([−τ, 0];Rd) denote the family of
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continuous function ϕ : [−τ, 0] → Rd with the norm ||ϕ|| = sup−τ≤θ≤0 |ϕ(θ)|. Denote

by Cb
F0
([−τ, 0];Rd) the family of all bounded, F0 measurable C([−τ, 0];Rd) valued

random variables. Here we consider d dimensional stochastic delay equation with

jumps and diffusion component.

dX(t) = α(X(t), X(δ(t)))dt+ σ(X(t), X(δ(t)))dB(t)

+

∫︂
Rn

γ(X(t−), X(δ−), z)Ñ(dt, dz) (3.21)

on t ∈ [0, T ] with initial data

{X(t) : −τ ≤ t ≤ 0} = {ζ(t) : −τ ≤ t ≤ 0} ∈ Cb
F0

(3.22)

α : Rd × Rd → Rd, σ : Rd × Rd → Rd×m, γ : Rd × Rd × Rn → Rd×n. We note

here that the right hand side of (3.21) is a shorthand matrix expression. Using the

notation from above we can write

dXi(t) = αi(X(t), X(δ(t)))dt+
m∑︂
j=1

σi,j(X(t), X(δ(t)))dBj(t)

+
n∑︂
j=1

∫︂
R
γij(X(t−), X(δ−(t)), zj)Ñ j(dt, dzj). (3.23)

It is assumed that α, σ and γ are sufficiently smooth so that (3.21) has a unique

solution. We refer to [40] for detials. The following assumptions are always made

(A1) The Lipschitz continuous function δ : [0,∞] → R stands for the time delay and

satisfies

−τ ≤ δ(t) ≤ t and |δ(t)− δ(s)| ≤ ρ|t− s|, ∀t, s ≥ 0.

(A2) α, σ and γ are sufficiently smooth so that (3.21) has a unique solution on [−τ, T ].
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(A3) There exist constants K1 > 0 and β ∈ (0, 1] such that for all −τ ≤ s < t ≤ 0,

E|ζ(t)− ζ(s)| ≤ K0|t− s|β.

(A4) The measures ν = (ν1, · · · , νn)′ are bounded Lévy measures, i.e, ν(Rn) < ∞

and ν(A) = ν(−A) for all Borel set A ∈ Rn.

3.3.2 The Euler-Maruyama (EM) method

Let step size ∆ ∈ (0, 1) be a fraction of τ , that is ∆ = τ
N

for some sufficiently large

integer N . Then the scheme can be defined by

Y ((k + 1)∆) = Y (k∆) + α(Y (k∆), Y (I∆[δ(k∆)]∆))∆

+σ(Y (k∆), Y (I∆δ(k∆)))∆Bk

+

∫︂∫︂
Rn

γ(Y (k∆), Y (I∆[δ(k∆)])∆Ñ(dz) (3.24)

with Y (0) = ζ(0) on −τ ≤ t ≤ 0 where k = 1, 2, · · · and I∆[δ(k∆)] denotes the integer

part of δ(k∆)/∆, ∆Bk = B((k+1)∆)−B(k∆) and ∆Ñk(dz) = Ñ((0, (k+1)∆], dz)−

Ñ((0, k∆], dz). We note that

−τ ≤ I∆[δ(k∆)]∆ ∀k ≥ 0. (3.25)

We then have

−N = − τ

∆
≤ δ(k∆)

∆
≤ k

i.e

−N ≤ I∆[δ(k∆)] ≤ k.
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We now define the continuous interpolation by introducing the two step process. The

two step process can be written as

y1(t) =
∞∑︂
k=0

1[k∆,(k+1)∆)(t)Y (k∆) (3.26)

y2(t) =
∞∑︂
k=0

1[k∆,(k+1)∆)(t)Y (I∆[δ(k∆)]∆) (3.27)

Then the continuous EM numerical solution is defined by

Ȳ (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ζ(0)

ζ(0) +

∫︂ t

0

α(y1(s), y2(s))ds+

∫︂ t

0

σ(y1(s), y2(s))dB(s)

+

∫︂ t

0

∫︂
Rn

γ(y1(s
−), y2(s

−), z)Ñ(ds, dz).

We discuss a few results which would be helpful in stating the main result on conver-

gence of EM scheme.

Lemma 3.1. Assume that α, σ, γ satisfy the linear growth condition:

(LG) There exists a constant h > 0 such that

|σ(x, y)|2 + |α(x, y)|2 ≤ h(1 + |x|2 + |y|2) ∀x, y ∈ Rd

and

∫︂
R

n∑︂
k=1

|γ(k)(x, y, zk)|2νk(dzk) ≤ h(1 + |x|2 + |y|2) ∀x, y ∈ Rd. (3.28)

Then there is a constant K1, which dependents only on T, h, ζ but is independent of

∆, such that the exact solution and the EM numerical solution to the SDDE (3.21)

satisfy

E
[︂

sup
0≤t≤T

|X(t)|2
]︂
∨ E
[︂

sup
0≤t≤T

|Ȳ (t)|2
]︂
≤ K1. (3.29)
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In order to estimate the p-th moment the following assumption is also required.

(A5) Assume that α, σ and γ satisfy (3.28) and

∫︂
R

n∑︂
k=1

|γ(k)(x, y, zk)|pνk(dzk) ≤ h(1 + |x|p + |y|p) ∀x, y ∈ Rd (3.30)

Lemma 3.2. Under the assumption (A5), for any p > 2, there is a positive constant

Kp which depends only on p, ν, T, h but is independent of ∆ such that

E
[︂

sup
0≤t≤T

|X(t)|p
]︂
∨ E
[︂

sup
0≤t≤T

|Ȳ (t)|p
]︂
≤ Kp. (3.31)

We state the following global Lipschitz condition which are used in the results which

follow.

[(GL)] There exists a constant L > 0 such that

|σ(x, y)− σ(x̄, ȳ)|2 + |α(x, y)− α(x̄, ȳ)|2

+
n∑︂
k=1

∫︂
R
|γ(k)(x, y, zk)− γ(k)(x̄, ȳ, zk)|2νk(dzk)

≤ L(|x− x̄|2 + |y − ȳ|2) x, y, x̄, ȳ ∈ Rd. (3.32)

We now discuss some of the results which are required for the proof of the main

convergence result.

Lemma 3.3. Under the linear growth condition, one has

E|Ȳ (t)− y1(t)|2 ≤ K2∆.
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Lemma 3.4. Under the (A1),(A3) and the linear growth condition, if the stepsize

satisfies (ρ+ 1)∆ ≤ 1 one has

E|Ȳ (δ(t))− y2(t)|2 ≤ K3∆ ∀t ∈ [0, T ]

where K3 is a constant independent of ∆.

We now state the main convergence result under global Lipschitz condition.

Theorem 23. Under the global Lipschitz condition, we have

lim
∆→0

E
[︂
sup |X(t)− Ȳ (t)|2

]︂
= 0. (3.33)

3.4 Pricing European options with SDDE driven

by Brownian motion and by compound Poisson

process.

In this section we will briefly discuss the work of [22] which shows how to price

European call option when underlying model is stochastic delay differential equations

driven by Brownian motion and compound Poisson process.

Let (Ω,F ,P) be a probability space with filtration {F}t≥0 which satisfies the usual

conditions (i.e., F is right continuous and F0 contains all the null sets of F). LetW (t)

be standard Brownian motion and N(t) be a Poisson process with intensity λ. Let

Y1, Y2, Y3, · · · , be independent and identically distributed random variables with

E(Yj) = α, j = 1, 2, 3, · · ·
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Here we also assume Yj are independent of Poisson process N(t). The compound

Poisson process Q(t) can be defined as

Q(t) =

N(t)∑︂
j=1

Yj, t ≥ 0.

We consider a stock model as⎧⎪⎪⎨⎪⎪⎩
dS(t) = µS(t− a)S(t)dt+ f(S(t− a))S(t)dW (t) + g(S(t− a))S(t−)dL(t), t ≥ 0 ,

S(t) = ψ(t) , t ∈ [−a, 0] ,
(4.34)

where µ and a are positive constants with g > −1. Also f : R → R and g : R → R

are continuous and bounded functions and initial process ψ : Ω → C([−a, 0],R) is

F0 measurable with respect to the Borel sigma algebra of C([−a, 0],R). The process

W is a one dimensional Brownian motion which is adapted to the filtration (Ft)0≤t≤T

and L(t) = Q(t) − αλt is a compensated compound Poisson process with intensity

αλt. We also assume that W (t) and L(t) are independent from one another. Similar

to Theorem 19 we also discuss pathwise uniqueness and the property that S(t) ≥ 0

whenever ψ(0) ≥ 0 for all t ≥ 0 almost surely.

Theorem 24. Given an F0 measurable initial process ψ(t), the stochastic differential

delay equation with jumps given by (4.34) admits a unique pathwise solution with the

property that S(t) ≥ 0 whenever ψ(0) ≥ 0 for all t ≥ 0 almost surely. If in addition

ψ(0) > 0 a.s, then S(t) > 0 for all t ≥ 0 a.s.

3.4.1 Pricing of European Option

We first discuss the risk neutral measure required to price the European option.
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We assume that price B(t) of risk free asset is given by

B(t) = B(0)ert ∀t ∈ [0, T ] (4.35)

where r > 0 is the risk free rate of return and S(t) is given by (4.34). For a non-

dividend paying stock the discounted price S̃(t) of the stock S(t) is

S̃(t) =
S(t)

B(t)
= e−rtS(t). (4.36)

We find the risk neutral measure Q which will make the discounted stock price into a

martingale. For this, let N1, N2, · · · , NK be independent Poisson processes with Nm(t)

having intensity λm. Let λ1, λ2, · · · , λK be positive numbers then we can define

Z1(t) = exp
{︂
−
∫︂ t

0

Θ(u)dW (u)− 1

2

∫︂ t

0

|Θ(u)|2du
}︂
, (4.37)

Z2(t) =
K∏︂
i=1

e(λi−λī)t, (4.38)

Z(t) = Z1(t)Z2(t) (4.39)

where

Θ(u) =
µS(u− a)− r

f(S(u− a))
, u ∈ [0, T ]. (4.40)

Then the process Z(t) is a martingale.

Lemma 3.5. The Process Z(t) of (4.39) is a martingale. In particular E(Z(t)) = 1

for t ≥ 0.

We can now define the risk neutral measure Q by Radon Nikodyn density

Q(A) =

∫︂
A

Z(T )P(A) (4.41)
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Let p̃(yk) be the probability that the jump is of size yk.

Theorem 25. Let the risk neutral measure Q be as (4.41) defined above. Under Q,

the process

W̃ (t) = W (t) +

∫︂ t

0

Θ(u)du (4.42)

is a Brownian motion, Q(t) is a compound Poisson process with intensity λ̃ =
∑︁K

i=1 λĩ

and i.i.d jump sizes satisfying Q(Yi = yk) = p̃(yk) for all i and k = 1, · · · , K and the

process W̃ (t) and Q(t) are independent.

3.4.2 Pricing of European option

We now consider the pricing of European call option in this model where the price

process follows (4.34). We assume risk neutral measure given by (4.41). Then the

price process under risk neutral measure is given by

⎧⎪⎪⎨⎪⎪⎩
dS(t) = rS(t)dt+ f(S(t− a))S(t)dW̃ (t) + g(S(t− a))S(t)dL̃(t), t ≥ 0 ,

S(t) = ψ(t) , t ∈ [−a, 0] ,
(4.43)

where L̃(t) = Q(t)− α̃λt and

S(t) = S(0) exp
{︂∫︂ t

0

[r − α̃λ̃g(S((s− a))]ds+

∫︂ t

0

f(S(s− a))dW̃ (s)

−1

2

∫︂ t

0

f(S(s− a))2ds
}︂N(t)∏︂

i=1

[1 + g(S(t− a))Yi]

so that the discounted price

S̃(t) =
S(t)

B(t)
(4.44)
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is a martingale under Q. We consider a European call option with strike price K and

maturity T > 0. The payoff of such an option is given by (S(T ) − K)+. Let V (t)

denote the price of such an option at any time 0 ≤ t ≤ T . Then

V (T ) = (S(T )−K)+.

Let τ = T − t, then at any time 0 ≤ t ≤ T , we have

V (t) = e−rTEQ[V (T )|F(t)] = e−rτEQ[(S(T )−K)+|F(t)] (4.45)

where

S(T ) = S(t) exp
{︂∫︂ T

t

[r − α̃λ̃g(S(s− a))]ds∫︂ T

t

f(S(s− a))dW̃ (s)− 1

2

∫︂ T

t

f(S(s− a))2ds
}︂

×
N(T )∏︂

i=N(t)+1

[1 + g(S(t− a))Yi]. (4.46)

If we assume that t ∈ [T − a, T ] then we are able to obtain an explicit formulae for

European call (and put) options. For this, we can see that S(t) is measurable with

respect to F(t). We also note that

1. S(t) is Ft measurable.

2.

∫︂ T

t

[r − α̃λ̃g(S(s− a))− 1

2
f(S(s− a))2]ds is also Ft measurable in the interval

[T − a, T ].

3. For any z ∈ R,
∏︁N(T )

i=N(t)+1[1 + zYi] is independent of the Ft.

4.

∫︂ T

t

f(S(s − a))dW̃ (s) has the same distribution as under Q as ηX where X is

a standard Gaussian random variable and η2 =

∫︂ T

t

f(S(s− a))2ds.
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Based on the discussion above, (3.5) and Theorem 25 we state the following result

to calculate the price of European call option.

Theorem 26. Let V (t) be the fair price of a European call option written on the stock

S following the model (4.43), with strike price K and maturity time T . Let Φ denote

the distribution function of the standard normal law, i.e.,

Φ(x) =
1√
2π

∫︂ x

0

e−u
2/2du, x ∈ R. (4.47)

Then for all t ∈ [T − a, T ], V (t) is given by

V (t) = S(t)em+α2

2 Φ(d+(S(t),m, α))− ke−rτΦ(d−(S(t),m, α)) (4.48)

where

d+ :=
1

σ

[︂
log

S(t)

K
+ rT +m+ α2

]︂
(4.49)

d− :=
1

σ

[︂
log

S(t)

K
+ rT +m

]︂
. (4.50)

If T > a and t < T − a, then

V (t) = EQ

[︂
G
(︂
S(T − a), g(S(T − a)),

∫︂ T

T−a

[︂
r − 1

2
f(S(s− a))2

]︂
ds,∫︂ T

T−a
α̃λ̃g(S(s− a))ds,

∫︂ T

T−a
f(S(s− a))2ds

)︂⃓⃓⃓
Ft

]︂
(4.51)

where

G(y, z,m, n, η2) =
∞∑︂
j=0

e−λ̃(T−t)
(λ̃(T − t))j

j!
EQ

[︂
ζ(τ, ye−n

j∏︂
i=1

(1 + zYi),m, η
2)
]︂

and ζ(τ, y,m, α2) = e−rτEQ[(ye
m+αY −K)+].
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Chapter 4

Option Pricing and

Euler-Maruyama scheme for SDDE

driven by Lévy process

4.1 Introduction

The risky asset in the classical Black-Scholes market is described by the geometric

Brownian motion given by the stochastic differential equation driven by standard

Brownian motion:

dS(t) = S(t) [rdt+ σdW (t)] , (1.1)

where r and σ are two positive constants and W (t) is the standard Brownian motion.

Ever since the seminal work of Black, Scholes and Merton there have been many

research works to extend the Black-Scholes-Merton’s theory of option pricing from

the original Black-Scholes market to more sophisticated models.

One of these extensions is the delayed stochastic differential equation (SDDE)
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driven by the standard Brownian motion (e.g. [5], see also [36, 44]). In these works

the risky asset is described by the following stochastic delay differential equation

dS(t) = S(t) [f(t, St)dt+ g(t, St)dW (t)] ,

where St = {S(s) , t− b ≤ s ≤ t} or St = S(t− b) for some constant b > 0. .

On the other hand, there have been some recent discovery (see e.g. [28, 31, 11, 30])

that to better fit some risky assets it is more desirable to use the hyper-exponential

jump process along with the classical Brownian motion:

dS(t) = S(t) [rdt+ σdW (t) + βdZ(t)] ,

where Z(t) is a hyper-exponential jump process (see the definition in the next section).

Let N(dt, dz) be the Poisson random measure associated with a jump process

which includes the hyper-exponential jump process as a special case and let Ñ(dt, dz)

denote its compensated Poisson random measure. Then the above equation with

σ = 0 is a special case of the following equation

dS(t) = S(t)
(︂
rdt+ β

∫︂
[0,T ]×R0

zÑ(dz, ds)
)︂

(1.2)

and it has been argued in (eg. [6, 15, 13]) that the equation (1.2) is a better model

for stock prices than (1.1).

In this chapter, we propose a new model to describe the risky asset by combining

the hyper-exponential process with delay. More precisely, we propose the following

stochastic differential equation as a model for the price movement of the risky asset:

dS(t) = S(t−) [f(t, S(t− b))dt+ g(t, S(t− b))dZ(t)] , (1.3)
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where f and g are two given functions, and Z(t) is a Lévy process which include the

hyper-exponential jump processes as a special case. The above model along with the

Brownian motion component can be found in [22], where the coefficient of Brownian

motion cannot be allowed to be zero. In this chapter, we let the coefficient of the

Brownian motion to be zero and we use the Girsanov formula for the jump process to

address the issue of completeness of the market and hedging portfolio missed in [22].

With the introduction of this new market model, the first question is that whether

the equation has a unique solution or not and if the unique solution exists whether

the solution is positive or not (since the price of an asset is always positive). We shall

first answer these questions in Section 4.3, where we prove the existence, uniqueness

and positivity of the solutions to a larger class of equations than (1.3). To guarantee

that the solution is positive, we need to assume that the jump part g(t, S(t− b))dZ(t)

of the equation is bounded from below by some constant (see the assumption (A3)

in the next section for the precise meaning). The class of the equations our results

can be applied is larger in the following two aspects: The first one is that Z(t) can

be replaced by a more general Lévy process or more general Poisson random measure

and the second one is that the equation can be multi-dimensional.

Following the Black-Scholes-Merton’s principle we then obtain a formula for the

fair price for the European option and the corresponding replica hedging portfolio

is also given. To evaluate this formula during the last delay period, we propose a

Fourier transformation method. This method appears more explicit than the partial

differential equation method in the literature and is more closed to the original Black-

Scholes formula in spirit. This is done in Section 4.5.

Due to the involvement of f(S(t−b)) and g(S(t−b)) the above analytical expression

for the fair option price formula is only valid in the last delay period. Then how do

we perform the evaluation by using this option price formula? We propose to use

Monte-Carlo method to get the numerical value approximately. For this reason we
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need to simulate the equation (1.3) numerically. We observe that there have been a lot

of works (eg. [32, 16, 45]) on Euler-Maruyama convergence scheme for SDDE models.

There has already been study on the Euler-Maruyama scheme for SDDE models with

jumps (e.g. [23]). However, in general the Euler-Maruyama scheme cannot preserve

the positivity of the solution. Since the solution to the equation (1.3) is positive (when

the initial condition is positive), we wish all of our approximations of the solution is

also positive. To this end and motivated by the similar work in the Brownian motion

case (see e.g. [46]) we introduce a logarithmic Euler-Maruyama scheme, a variant of

the Euler-Maruyama scheme for (1.3). With this scheme all the approximate solutions

are positive and the rate of the convergence of this scheme is also 0.5. This rate is

optimal even in the Brownian motion case (e.g. [12]). Let us point out that the 0.5

rate of the usual Euler-Maruyama scheme for SDDE with jumps studied in [23] is only

obtained in the L2 sense. Not only our logarithmic Euler-Maruyama scheme preserves

the positivity, its rate is 0.5 in Lp for any p ≥ 2. This is done in Section 4.4.

Finally in Section 4.6 we present some numerical attempts and compared that with

the classical Black-Scholes price formula against the market price for some famous call

options in the real financial market.

4.2 Delayed stochastic differential equations

Let (Ω,F ,P) be a probability space with a filtration (Ft){t≥0} satisfying the usual

conditions. On (Ω,F ,P) let W (t) be a brownian motion adapted to the filtration Ft.

We shall consider the following delayed stochastic differential equation driven by the

Brownian Motion W (t):

⎧⎪⎪⎨⎪⎪⎩
dS(t) = f(S(t− b))S(t)dt+ g(S(t− b))S(t)dW (t), t ≥ 0 ,

S(t) = ϕ(t) , t ∈ [−b, 0] ,
(2.4)
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where

(i) f, g : R → R are some given bounded measurable functions;

(ii) b > 0 is a given number representing the delay of the equation;

(iii) ϕ : [−b, 0] → R is a (deterministic) measurable function.

4.3 Delayed stochastic differential equations with

Jumps

Let (Ω,F ,P) be a probability space with a filtration (Ft){t≥0} satisfying the usual

conditions. On (Ω,F ,P) let Z(t) be a Lévy process adapted to the filtration Ft. We

shall consider the following delayed stochastic differential equation driven by the Lévy

process Z(t):

⎧⎪⎪⎨⎪⎪⎩
dS(t) = f(S(t− b))S(t)dt+ g(S(t− b))S(t−)dZ(t), t ≥ 0 ,

S(t) = ϕ(t) , t ∈ [−b, 0] ,
(3.5)

where

(i) f, g : R → R are some given bounded measurable functions;

(ii) b > 0 is a given number representing the delay of the equation;

(iii) ϕ : [−b, 0] → R is a (deterministic) measurable function.

To study the above stochastic differential equation, it is common to introduce the

Poisson random measure associated with this Lévy process Z(t) (see e.g. [4, 13, 14, 40]

and references therein). First, we write the jump of the process Z at time t by

∆Z(t) := Z(t)− Z(t−) if ∆Z(t) ̸= 0 .
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Denote R0 := R\{0} and let B(R0) be the Borel σ-algebra generated by the family of

all Borel subsets U ⊂ R, such that Ū ⊂ R0. For any t > 0 and for any U ∈ B(R0) we

define the Poisson random measure, N : [0, T ]×B(R0)×Ω → R, associated with the

Lévy process Z by

N(t, U) :=
∑︂

0≤s≤t, ∆Zs ̸=0

χU(∆Z(s)) , (3.6)

where χU is the indicator function of U . The associated Lévy measure ν of the Lévy

process Z is given by

ν(U) := E[N(1, U)] (3.7)

and the compensated Poisson random measure Ñ associated with the Lévy process

Z(t) is defined by

Ñ(dt, dz) := N(dt, dz)− E [N(dt, dz)] = N(dt, dz)− ν(dz)dt . (3.8)

For some technical reason, we shall assume that the process Z(t) has bounded negative

jumps and positive jumps to guarantee that the solution S(t) to (1.1) is positive.

This means that there is an interval J = [−R,∞) bounded from the left such that

∆Z(t) ∈ J for all t > 0. With these notations, we can write

Z(t) =

∫︂
[0,t]×J

zN(ds, dz) or dZ(t) =

∫︂
J
zN(dt, dz)

and the equation (1.1) becomes

dS(t) =

[︃
f(S(t− b)) + g(S(t− b))

∫︂
J
zν(dz)

]︃
S(t)dt

+g(S(t− b))S(t−)

∫︂
J
zÑ(dt, dz) .
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It is a special case of the following equation:

dS(t) = f(S(t− b))S(t)dt+

∫︂
J
g(z, S(t− b))S(t−)Ñ(dt, dz) . (3.9)

Theorem 27. Suppose that f : R → R and g : J × R → R are bounded measurable

functions such that there is a constant α0 > 1 satisfying g(z, x) ≥ α0 > −1 for all z ∈

J and for all x ∈ R, where J is the supporting set of the Poisson measure N(t, dz).

Then, the stochastic differential delay equation (1.6) admits a unique pathwise solution

with the property that if ϕ(0) > 0, then for all t > 0, the random variable X(t) > 0

almost surely.

Proof First, let us consider the interval [0, b]. When t is in this interval f(X(t−b)) =

f(ϕ(t − b)) and g(z;X(t − b)) = g(z;ϕ(t − b)) are known given functions of t (and

z). Thus, (1.6) is a linear equation driven by Poisson random measure. The standard

theory (see e.g. [4, 40]) can be used to show that the equation has a unique solution.

Moreover, it is also well-known (see the above mentioned books or [3]) that by Itô’s

formula the solution to (1.6) can be written as

X(t) = ϕ(0) exp

{︃∫︂ t

0

f(ϕ(s− b))ds+

∫︂
[0,t]×J

log [1 + g(z, ϕ(s− b))] Ñ(ds, dz)

+

∫︂
[0,t]×J

(︂
log [1 + g(z, ϕ(s− b))]− g(z, ϕ(s− b))

)︂
dsν(dz)

}︃
.

From this formula we see that if ϕ(0) > 0, then the random variable X(t) > 0 almost

surely for every t ∈ [0, b].

In similar way, we can consider the equation (1.6) on t ∈ [kb, (k + 1)b] recursively

for k = 1, 2, 3, · · · , and obtain the same statements on this interval from previous

results on the interval t ∈ [−b, kb]. ■

Since (1.1) is a special case of (1.6), we can write down a corresponding result of

the above theorem for (1.1).
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Corollary 4.1. Let the Lévy process Z(t) have bounded negative jumps (e.g. ∆Z(t) ∈

J ⊆ [−R,∞)). Suppose that f, g : R → R are bounded measurable functions such

that there is a constant α0 > 1 satisfying g(x) ≤ α0

R
for all x ∈ R. Then, the stochastic

differential delay equation (1.1) admits a unique pathwise solution with the property

that if ϕ(0) > 0, then for all t > 0 the random variable X(t) > 0 almost surely.

Proof Equation (1.1) is a special case of (1.6) with g(z, x) = zg(x). The condition

g(x) ≤ α0

R
implies g(z, x) ≥ α0 > −1 for all z ∈ J and for all x ∈ R. Thus, Theorem

32 can be applied. ■

Example One example of the Lévy process Z(t) we have in mind which is used

in finance is the hyper-exponential jump process, which we explain below. Let

Yi, i = 1, 2, · · · be independent and identically distributed random variables with

the probability distribution given by

fY (x) =
m∑︂
i=1

piηie
−ηixI{x≥0} +

n∑︂
j=1

qjθje
θjxI{x<0} ,

where

ηi > 0, pi ≥ 0, θj > 0, qj ≥ 0 , i = 1, · · · ,m, j = 1, · · · , n

with
∑︁m

i=1 pi +
∑︁n

j=1 qj = 1. Let Nt be a Poisson process with intensity λ. Then

Z(t) =
Nt∑︂
i=1

Yi

is a Lévy process. If m = 1, n = 1 then Z(t) is called a double exponential process.

The assumption on the boundedness of the negative jumps can be made possible by

requiring that qj = 0 for all j = 1, · · · , n or by replacing the negative exponential
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distribution by truncated negative exponential distributions, namely,

fY (x) =
m∑︂
i=1

piηie
−ηixI{x≥0} +

n∑︂
j=1

qj
θj

1− e−θjRj
eθjxI{−Rj<x<0} ,

where

ηi > 0, pi ≥ 0, θj > 0, Rj > 0, qj ≥ 0 , i = 1, · · · ,m, j = 1, · · · , n

with
∑︁m

i=1 pi +
∑︁n

j=1 qj = 1. For this truncated hyper-exponential process, we can

take J = [−R,∞) with R = max{R1, · · · , Rn}. Although in this chapter we will

mainly concern with the one dimensional delayed stochastic differential equation (1.6)

or (1.1) it is interesting to extend Theorem 32 to more than one dimension.

Let Ñ j(ds, dz), j = 1, · · · , d be independent compensated Poisson random mea-

sures. Consider the following system of delayed stochastic differential equations driven

by Poisson random measures:

dSi(t) =
d∑︂
j=1

fij(S(t− b))Sj(t)dt

+Si(t−)
d∑︂
j=1

∫︂
J
gij(z, S(t− b))Ñ j(dt, dz) , i = 1, · · · , d ,

Si(t) = ϕi(t) , t ∈ [−b, 0] , i = 1, · · · , d , (3.10)

where S(t) = (S1(t), · · · , Sd(t))T .

Theorem 28. Suppose that fij : Rd → R and gij : J × Rd → R , 1 ≤ i, j ≤ d

are bounded measurable functions such that there is a constant α0 > 1 satisfying

gij(z, x) ≥ α0 > −1 for all 1 ≤ i, j ≤ d, for all z ∈ J and for all x ∈ Rd, where J

is the common supporting set of the Poisson measures Ñ j(t, dz), j = 1, · · · , d. If for

all i ̸= j, fij(x) ≥ 0 for all x ∈ Rd, and ϕi(0) ≥ 0 , i = 1, · · · , d, then, the stochastic
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differential delay equation (1.7) admits a unique pathwise solution with the property

that for all i = 1, · · · , d and for all t > 0, the random variable Si(t) ≥ 0 almost surely.

Proof We can follow the argument as in the proof of Theorem 32 to show that

the system of delayed stochastic differential equations (1.7) has a unique solution

S(t) = (S1(t), · · · , Sd(t))T . We shall modify slightly the method of [19] to show the

positivity of the solution. Denote g̃ij(t, z) = gij(z, S(t− b)). Let Yi(t) be the solution

to the stochastic differential equation

dYi(t) = Yi(t−)
d∑︂
j=1

∫︂
J
g̃ij(t, z)Ñ j(dt, dz)

with initial conditions Yi(0) = ϕi(0). Since this is a scalar equation for Yi(t), its

explicit solution can be represented

Yi(t) = ϕi(0) exp

{︃ d∑︂
j=1

log
[︁
1 + g̃ij(s, z)

]︁
Ñ j(ds, dz)

+
d∑︂
j=1

∫︂
[0,t]×J

(︂
log
[︁
1 + g̃ij(s, z)

]︁
− g̃ij(s, z)

)︂
dsνj(dz)

}︃
,

where νj is the associated Lévy measure for Ñ j(ds, dz). Denote f̃ ij(t) = fij(S(t− b))

and let pi(t) be the solution to the following system of equations

dpi(t) =
d∑︂
j=1

f̃ ij(t)pj(t)dt , pi(0) = 1 , i = 1, · · · , d .

By the assumption on f we have that when i ̸= j, f̃ ij(t) ≥ 0 almost surely. By a

theorem in [7, p.173] we see that pi(t) ≥ 0 for all t ≥ 0 almost surely. Now it is

easy to check by the Itô formula that S̃i(t) = pi(t)Yi(t) is the solution to (1.7) which

satisfies that S̃i(t) ≥ 0 almost surely. By the uniqueness of the solution we see that

Si(t) = S̃i(t) for i = 1, · · · , d. The theorem is then proved. ■
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4.4 Logarithmic Euler-Maruyama scheme

The equation (1.1) or (1.6) is used in Section 4.5 to model the price of a risky asset in

a financial market and its the solution is proved to be positive as in Theorem 32. As

it is well-known the usual Euler-Maruyama scheme cannot preserve the positivity of

the solution (e.g. [46] and references therein). Motivated by the work [46], we propose

in this section a variant of the Euler-Maruyama scheme (which we call logarithmic

Euler-Maruyama scheme) to approximate the solution so that all approximations are

always non-negative. For the convenience of the future simulation, we shall consider

only the equation (1.1), which we rewrite here:

dS(t) = f(S(t− b))S(t)dt+ g(S(t− b))S(t−)dZ(t) , (4.11)

where Z(t) =
∑︁Nt

i=1 Yi is a Lévy process. Here Nt is a Poisson process with intensity

λ and Y1, Y2, · · · , are iid random variables.

The solution to the above equation can be written as

S(t) = ϕ(0) exp
(︂∫︂ t

0

f(S(u− b))du+
∑︂

0≤u≤t,∆Z(u)̸=0

ln(1 + g(S(u− b))YN(u))
)︂
.(4.12)

We shall consider a finite time interval [0, T ] for some fixed T > 0. Let ∆ = T
n
> 0

be a time step size for some positive integer n ∈ N. For any nonnegative integer

k ≥ 0, denote tk = k∆. We consider the partition π of the time interval [0, T ]:

π : 0 = t0 < t1 < · · · < tn = T .
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On the subinterval [tk, tk+1] the solution (4.12) can also be written as

S(t) = S(tk) exp
(︂∫︂ t

tk

f(S(u− b))du

+
∑︂

tk≤u≤t,∆Z(u)̸=0

ln(1 + g(S(u− b))YN(u))
)︂
, t ∈ [tk, tk+1] . (4.13)

Motivated by the formula (4.13), we propose a logarithmic Euler-Maruyama scheme

to approximate (1.1) as follows.

Sπ(tk+1) = Sπ(tk) exp
(︂
f(Sπ(tk − b))∆

)︂
· exp

(︂
ln(1 + g(Sπ(tk − b))∆Zk)

)︂
, k = 0, 1, 2, ..., n− 1

(4.14)

with Sπ(t) = ϕ(t) for all t ∈ [−b, 0]. It is clear that if ϕ(0) > 0, then Sπ(tk) > 0 almost

surely for all k = 0, 1, 2, ..., n. Then our approximations Sπ(tk) are always positive.

Notice that the approximations from usual Euler-Maruyama scheme is always not

positive preserving (see e.g. [46] and references therein).

We shall prove the convergence and find the rate of convergence for the above

scheme. For the convergence of the usual Euler-Maruyama scheme of jump equation

with delay, we refer to [23]. To study the convergence of the above logarithmic Euler-

Maruyama scheme, we make the following assumptions.

(A1) The initial data ϕ(0) > 0 and it is Hölder continuous i.e there exist constant

ρ > 0 and γ ∈ [1/2, 1) such that for t, s ∈ [−b, 0]

|ϕ(t)− ϕ(s)| ≤ ρ|t− s|γ. (4.15)
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(A2) f is bounded. f and g are global Lipschitz. This means that there exists a

constant ρ > 0 such that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⃓⃓⃓
g(x1)− g(x2)

⃓⃓⃓
≤ ρ|x1 − x2| ;⃓⃓⃓

f(x1)− f(x2)
⃓⃓⃓
≤ ρ|x1 − x2| , ∀ x,x2 ∈ R ;⃓⃓

f(x)
⃓⃓
≤ ρ , ∀x ∈ R

(A3) The support J of the Poisson random measure N is contained in [−R,∞) for

some R > 0 and there are constants α0 > 1 and ρ > 0 satisfying −ρ ≤ g(x) ≤ α0

R

for all x ∈ R.

(A4) For any q > 1 there is a ρq > 0

∫︂
J
(1 + |z|)qν(dz) ≤ ρq . (4.16)

For notational simplicity we introduce two step processes

⎧⎪⎪⎨⎪⎪⎩
v1(t) =

∑︁∞
k=0 1[tk,tk+1)(t)S

π(tk)

v2(t) =
∑︁∞

k=0 1[tk,tk+1)(t)S
π(tk − b).

Define the continuous interpolation of the logarithmic Euler-Maruyama approximate

solution on the whole interval [−b, T ] (not only on tk, k = 0, · · · , n) as follows:

Sπ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ(t) t ∈ [−b, 0]

ϕ(0) exp
(︂∫︂ t

0

f(v2(u))du

+
∑︁

0≤u≤t,∆Z(u)̸=0 ln(1 + g(v2(u))YN(u))
)︂

t ∈ [0, T ].

(4.17)

With this interpolation, we see that Sπ(t) > 0 almost surely for all t ≥ 0.
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Lemma 4.1. Let the assumptions (A1)-(A4) be satisfied. Then for any q ≥ 1 there

exists Kq, independent of the partition π, such that

E
[︂

sup
0≤t≤T

|S(t)|q
]︂
∨ E
[︂

sup
0≤t≤T

|Sπ(t)|q
]︂
≤ Kq.

Proof We can assume that q > 2. First, let us prove E
[︂
sup0≤t≤T |Sπ(t)|q

]︂
≤ Kq.

From (4.17) it follows

E
[︂

sup
0≤t≤T

|Sπ(t)|q
]︂

≤ |ϕ(0)|qE
[︂

sup
0≤t≤T

exp
(︂
q

∫︂ t

0

f(v2(u))du

+q
∑︂

0≤u≤t,∆Z(u)̸=0

ln(1 + g(v2(u))YN(u))
)︂]︂
.

Since |f(t)| ≤ ρ we have

E
[︂

sup
0≤t≤T

|Sπ(t)|q
]︂

≤ ϕ(0)qeqρTE
[︂

sup
0≤t≤T

exp
(︂
q

∑︂
0≤u≤t,∆Z(u)̸=0

ln(1 + g(v2(u))YN(u))
)︂]︂

= ϕ(0)qeqρTE
[︂

sup
0≤t≤T

exp
(︂
q

∫︂
T
ln(1 + zg(v2(u)))N(du, dz)

)︂]︂
, (4.18)

where and throughout the remaining part of this chapter, we denote T = [0, t] × J .

Now we are going to handle the factor

I := E
[︂

sup
0≤t≤T

exp
(︂
q

∫︂
T
ln(1 + zg(v2(u)))N(du, dz)

)︂]︂
.
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Let h = ((1 + zg(v2(u))
2q − 1))/z. Then

I = E
[︂

sup
0≤t≤T

exp
(︂1
2

∫︂
T
ln(1 + zh)N(du, dz)

)︂]︂
= E

[︂
sup

0≤t≤T
exp

(︂1
2

∫︂
T
ln(1 + zh)Ñ(du, dz) +

1

2

∫︂
T
ln(1 + zh)ν(dz)du

)︂]︂
= E

[︂
sup

0≤t≤T
exp

(︂1
2

∫︂
T
ln(1 + zh)Ñ(du, dz) +

1

2

∫︂
T
[ln(1 + zh)− zh] ν(dz)du

)︂]︂
sup

0≤t≤T
exp

(︂
− 1

2

∫︂
T
(1 + zg(v2(u))

2q − 1) ν(dz)du
)︂]︂

≤ CqE
[︂

sup
0≤t≤T

exp
(︂1
2

∫︂
T
ln(1 + zh)Ñ(du, dz) +

1

2

∫︂
T
[ln(1 + zh)− zh] ν(dz)du

)︂]︂
,

where we used boundedness of g and the assumption (A4). Now an application of the

Cauchy-Schwartz inequality yields

I ≤ Cq

{︃
E
[︂

sup
0≤t≤T

Mt

]︂}︃1/2

,

where

Mt := exp
(︂∫︂

T
ln(1 + zh)Ñ(du, dz) +

∫︂
T
[ln(1 + zh)− zh] ν(dz)du

)︂
.

But (Mt, 0 ≤ t ≤ T ) is an exponential martingale. Thus,

E
[︂

sup
0≤t≤T

Mt

]︂
≤ 2E

[︂
MT

]︂
= 2 .

Inserting this estimate of I into (4.18) proves E
[︂
sup0≤t≤T |Sπ(t)|q

]︂
≤ Kq < ∞. In

the same way we can show E
[︂
sup0≤t≤T |S(t)|q

]︂
≤ Kq <∞. This completes the proof

of the lemma. ■
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Lemma 4.2. Assume (A1)-(A4). Then there is a constant K > 0, independent of π,

such that

E
⃓⃓⃓
Sπ(t)− v2(t)

⃓⃓⃓p
≤ K∆p/2, ∀ t ∈ [0, T ] .

Proof Let t ∈ [tj, tj+1) for some j. Using |ex − ey| ≤ (ex + ey)|x− y| we can write

⃓⃓⃓
Sπ(t)− v2(t)

⃓⃓⃓
=

⃓⃓⃓
Sπ(t)− Sπ(tj)

⃓⃓⃓
≤

⃓⃓⃓
Sπ(t) + Sπ(tj)

⃓⃓⃓
·
⃓⃓⃓ ∫︂ t

tj

f(v2(s))ds+
∑︂
tj≤s≤t

ln(1 + g(v2(s))YN(s))
⃓⃓⃓
.

An application of the Hölder inequality yields that for any p > 1,

E
[︂⃓⃓⃓
Sπ(t)− v2(t)

⃓⃓⃓p]︂
≤

{︃
E
[︂⃓⃓⃓
Sπ(t) + Sπ(tj)

⃓⃓⃓]︂2p}︃1/2

·

⎧⎨⎩E

⃓⃓⃓⃓
⃓⃓∫︂ t

tj

f(v2(s))ds+
∑︂
tj≤s≤t

ln(1 + g(v2(s))YN(s))

⃓⃓⃓⃓
⃓⃓
2p⎫⎬⎭

1/2

≤ Kp

⎧⎨⎩E

⃓⃓⃓⃓
⃓
∫︂ t

tj

f(v2(s))ds

⃓⃓⃓⃓
⃓
2p

+ E

⃓⃓⃓⃓
⃓⃓ ∑︂
tj≤s≤t

ln(1 + g(v2(s))YN(s))

⃓⃓⃓⃓
⃓⃓
2p⎫⎬⎭

1/2

≤ Kp

⎧⎨⎩∆2p + E

⃓⃓⃓⃓
⃓⃓ ∑︂
tj≤s≤t

ln(1 + g(v2(s))YN(s))

⃓⃓⃓⃓
⃓⃓
2p⎫⎬⎭

1/2

. (4.19)

Now we want to bound

I := E

⃓⃓⃓⃓
⃓⃓ ∑︂
tj≤s≤t

ln(1 + g(v2(s))YN(s))

⃓⃓⃓⃓
⃓⃓
2p

.
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(we use the same notation I to denote different quantities in different occasions and

this will not cause ambiguity). We write the above sum as an integral:

I = E
⃓⃓⃓ ∫︂

J

∫︂ t

tj

ln(1 + zg(v2(s)))N(ds, dz)
⃓⃓⃓2p

= E
⃓⃓⃓ ∫︂

J

∫︂ t

tj

ln(1 + zg(v2(s)))Ñ(ds, dz)

+

∫︂
J

∫︂ t

tj

ln(1 + zg(v2(s)))ν(dz)ds
⃓⃓⃓2p

≤ Cp

(︄
∆2p + E

⃓⃓⃓ ∫︂
J

∫︂ t

tj

ln(1 + zg(v2(s)))Ñ(ds, dz)
⃓⃓⃓2p)︄

.

By the isometry condition, we have

E
⃓⃓⃓ ∫︂

J

∫︂ t

tj

ln(1 + zg(v2(s)))Ñ(ds, dz)
⃓⃓⃓2p

= E

(︄∫︂
J

∫︂ t

tj

⃓⃓⃓
ln(1 + zg(v2(s)))

⃓⃓⃓2
ν(dz)ds

)︄p

≤ Kp∆
p .

Thus, we have

I ≤ Kp,T∆
p .

Inserting this bound into (4.19) yields the lemma. ■

Our next objective is to obtain the rate of convergence of our logarithmic Euler-

Maruyama approximation Sπ(t) to the true solution S(t).

Theorem 29. Assume (A1)-(A4). Let Sπ(t) be the solution to (4.14) and let S(t) be

the solution to (4.11). Then there is a constant Kp,T , independent of π such that

E
[︂

sup
0≤t≤T

|S(t)− Sπ(t)|p
]︂
≤ Kp,T∆

p/2 . (4.20)
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Proof We write S(t) = ϕ(0) exp (X(t)) and Sπ(t) = ϕ(0) exp (p(t)). Then

⃓⃓⃓
S(t)− Sπ(t)

⃓⃓⃓p
≤
⃓⃓⃓
S(t) + Sπ(t)

⃓⃓⃓p ⃓⃓⃓
X(t)− p(t)

⃓⃓⃓p
.

Hence by Lemma 4.1 we have for any r ∈ [0, T ]

E
[︂
sup
0≤t≤r

|S(t)− Sπ(t)|p
]︂

≤ E
[︂
sup
0≤t≤r

⃓⃓⃓
S(t) + Sπ(t)

⃓⃓⃓2p]︂1/2
E
[︂
sup
0≤t≤r

⃓⃓⃓
X(t)− p(t)

⃓⃓⃓2p]︂1/2
≤ 22p−1

(︂
E
[︂
sup
0≤t≤r

⃓⃓⃓
S(t)

⃓⃓⃓2p]︂
+ E

[︂
sup
0≤t≤r

⃓⃓⃓
Sπ(t)

⃓⃓⃓2p]︂)︂1/2[︂
E sup

0≤t≤r

⃓⃓⃓
X(t)− p(t)

⃓⃓⃓2p]︂1/2
≤ Kp

[︂
E sup

0≤t≤r

⃓⃓⃓
X(t)− p(t)

⃓⃓⃓2p]︂1/2
= KpI

1/2 . (4.21)

Thus we need only to bound the above expectation I, which is given by the following.

I = E
[︂
sup
0≤t≤r

|X(t)− p(t)|2p
]︂

≤ E sup
0≤t≤r

⃓⃓⃓ ∫︂ t

0

(f(S(u− b))− f(v2(u)))du (4.22)

+
∑︂

0≤u≤t,∆Z(u)̸=0

ln(1 + g(S(u− b))YN(u))− ln(1 + g(v2(u))YN(u))
⃓⃓⃓2p
.

By the Lipschitz conditions we have

I ≤ KpE
∫︂ r

0

⃓⃓⃓
S(u− b)− v2(u)

⃓⃓⃓2p
du

+KpE sup
0≤t≤r

⃓⃓⃓ ∑︂
0≤u≤t,∆Z(u)̸=0

ln(1 + g(S(u− b))YN(u))− ln(1 + g(v2(u))YN(u))
⃓⃓⃓2p

≤ Kp

[︂
E
∫︂ r

0

⃓⃓⃓
S(u− b)− Sπ(u− b)

⃓⃓⃓2p
du+ E

∫︂ r

0

⃓⃓⃓
Sπ(u− b)− v2(u)

⃓⃓⃓2p
du
]︂

+KpE sup
0≤t≤r

⃓⃓⃓ ∑︂
0≤u≤t,∆Z(u)̸=0

ln(1 + g(S(u− b))YN(u))− ln(1 + g(v2(u))YN(u))
⃓⃓⃓2p

= I1 + I2 + I3 . (4.23)

78



By Lemma 4.2 and by the assumption (A1) about the Hölder continuity of the initial

data ϕ we have

I2 ≤ Kp,T∆
p . (4.24)

We write the above sum I3 with jumps as a stochastic integral:

I3 = E sup
0≤t≤r

⃓⃓⃓ ∑︂
0≤u≤t,∆Z(u)̸=0

ln(1 + g(S(u− b))YN(u))− ln(1 + g(v2(u))YN(u))
⃓⃓⃓2p

= E sup
0≤t≤r

⃓⃓⃓ ∫︂
J

∫︂ t

0

[ln(1 + zg(S(u− b)))− ln(1 + zg(v2(u)))] Ñ(du, dz)

+

∫︂
J

∫︂ t

0

[ln(1 + zg(S(u− b)))− ln(1 + zg(v2(u)))] ν(dz)du
⃓⃓⃓2p

= 4pE sup
0≤t≤r

⃓⃓⃓ ∫︂
J

∫︂ t

0

[ln(1 + zg(S(u− b)))− ln(1 + zg(v2(u)))] Ñ(du, dz)
⃓⃓⃓2p

+4pE sup
0≤t≤r

⃓⃓⃓ ∫︂
J

∫︂ t

0

[ln(1 + zg(S(u− b)))− ln(1 + zg(v2(u)))] ν(dz)du
⃓⃓⃓2p

=: I31 + I32 .

Using the Lipschitz condition on g and (A3), we have

I32 ≤ KpE
(︂∫︂ r

0

⃓⃓⃓
g(S(u− b))− g(v2(u))

⃓⃓⃓
du
)︂2p

≤ Kp,TE sup
0≤t≤r

|S(t− b))− Sπ(t− b)|2p .

Using the theorem 2.13 of [17] we have

I31 ≤ KpE
(︂∫︂

J

∫︂ r

0

⃓⃓⃓
ln(1 + zg(S(u− b)))− ln(1 + zg(v2(u)))

⃓⃓⃓2p
ν(dz)du

)︂
.

Similar to the bound for I32, we have

I31 ≤ Kp,TE sup
0≤t≤r

|S(t− b))− Sπ(t− b)|2p .
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Combining the estimates for I31 and 32, we see

I3 ≤ Kp,TE sup
0≤t≤r

|S(t− b))− Sπ(t− b)|2p . (4.25)

It is easy to verify

I1 ≤ Kp,TE sup
0≤t≤r

|S(t− b))− Sπ(t− b)|2p . (4.26)

Inserting the bounds obtained in (4.24)-(4.27) into (4.23), we see that

I ≤ Kp,TE sup
0≤t≤r

|S(t− b))− Sπ(t− b)|2p +KP,T∆
p . (4.27)

Combining this estimate with (4.21), we see

E
[︂
sup
0≤t≤r

|S(t)− Sπ(t)|p
]︂

≤ Kp,T

[︃
E sup

0≤t≤r
|S(t− b)− Sπ(t− b)|2p

]︃1/2
+KP,T∆

p/2 (4.28)

for any p ≥ 2 and for any r ∈ [0, T ]. Now we shall use (4.28) to prove the theorem on

the interval [0, kb] recursively for k = 1, 2, · · · , [T
b
] + 1. Since Sπ(t) = S(t) = ϕ(t) for

t ∈ [−b, 0]. Taking r = b, we have

E
[︂
sup
0≤t≤b

|S(t)− Sπ(t)|p
]︂
≤ Kp,T∆

p/2 (4.29)
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for any p ≥ 2. Now taking r = 2b in (4.28), we have

E
[︂

sup
0≤t≤2b

|S(t)− Sπ(t)|p
]︂

≤ Kp,T

[︃
E sup

−b≤t≤b
|S(t))− Sπ(t)|2p

]︃1/2
+KP,T∆

p/2

≤ Kp,T [K2p,T∆
p]1/2 +KP,T∆

p/2 ≤ Kp,T∆
p/2 . (4.30)

Continuing this way we obtain for any positive integer k ∈ N,

E
[︂

sup
0≤t≤kb

|S(t)− Sπ(t)|p
]︂
≤ Kk,p,T∆

p/2 . (4.31)

Now since T is finite, we can choose a k such that (k− 1)b < T ≤ kb. This completes

the proof of the theorem. ■

4.5 Option Pricing in Delayed Black-Scholes mar-

ket with jumps

In this section we consider the problem of option pricing in a delayed Black-Scholes

market which consists of two assets. One is risk free, whose price is described by

dB(t) = rB(t)dt , or B(t) = ert , t ≥ 0 . (5.32)

Another asset is a risky one, whose price is described by the delayed equation (1.1)

or (4.11), namely,

dS(t) = f(S(t− b))S(t)dt+ g(S(t− b))S(t−)dZ(t) , (5.33)
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where Z(t) =
∑︁Nt

i=1 Yi is a Lévy process, Nt is a Poisson process with intensity λ, and

Y1, Y2, · · · , are iid random variables. As in Section 2, we introduce the Poisson random

measure N(dt, dz) and its compensator Ñ(dt, dz). The above delayed equation can

be written as

dS(t) =

[︃
f(S(t− b)) + g(S(t− b))

∫︂
J
zν(dz)

]︃
S(t)dt

+g(S(t− b))S(t−)

∫︂
J
zÑ(dt, dz) .

Denote

L =

∫︂
J
zfY (z)dz , (5.34)

where fY is the probability density of Yi (whose support is J ). Then

∫︂
J
zν(dz) = λL .

Set

S̃(t) =
S(t)

B(t)
.

Then by Itô’s formula we have

dS̃(t) = S̃(t−)g(S(t− b))
(︂∫︂

J
z
[︁
θ(t)ν(dz)dt+ Ñ(dt, dz)

]︁)︂
, (5.35)

where θ(t) = f(S(t−b))+g(S(t−b))−r
λLg(S(t−b)) . We shall keep the assumptions (A1)-(A4) made in

previous section and we need to make an additional assumption:

(A5) There is a constant α1 ∈ (1,∞) such that

∫︂
J
ν(dz) ≥ α1

⃓⃓⃓f(s) + g(s)− r

g(t)

⃓⃓⃓
∀ s, t ∈ [0,∞)

To find the risk neutral probability measure we apply Girsanov theorem for Lévy

process (see [14, Theorem 12.21]). The θ(t) is predictable for t ∈ [0, T ]. From the
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assumptions above we also have that 0 < θ(s) ≤ 1
α1
. Thus,

∫︂
[0,T ]×J

(︂
| log(1 + θ(s))|+ θ2(s)

)︂
ν(dz)ds ≤ K <∞ .

Now define

Sθ(t) := exp
(︂∫︂

[0,t]

{log
(︁
1− θ(s)

)︁
+ θ(s)}ν(dx)ds

+

∫︂
[0,t]

log
(︁
1− θ(s)

)︁
Ñ(dx, ds)

)︂
.

In order for us to obtain an equivalent martingale measure we need to verify the

following Novikov condition:

E
[︂
exp

(︂1
2

∫︂
[0,T ]×J

{(1− θ(s)) log(1− θ(s)) + θ(s)}ν(dz)ds
)︂]︂

<∞ (5.36)

This is a consequence of our assumption (A5). In fact, we have first

|θ(s)| =
|f(S(t− b))− r|
λLg(S(t− b))

≤ 1

α1

< 1 .

Hence we have

∫︂
[0,T ]

{(1− θ(s)) log(1− θ(s)) + θ(s)}ds < ∞ .

But ν(dz) = λfY (z)dz, we have

∫︂
J
ν(dz) =

∫︂
J
λfY (z)dz <∞ .

Thus, we have (5.36).
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Now since we have verified the Novikov condition (5.36) we have then E[Sθ(T )] = 1.

Define an equivalent probability measure Q on FT by

dQ := Sθ(T )dP . (5.37)

On the new probability space (Ω,FT ,Q) (new probability Q) the random measure

ÑQ(dz, ds) = θ(t)ν(dz)ds+ Ñ(dz, ds) , (5.38)

is a compensated Poisson random measure. With this new Poisson random measure

we can write (5.35) as

dS̃(t) = S̃(t−)

∫︂
J
zg(S(t− b))ÑQ(dt, dz) . (5.39)

The following result gives the fair price formula for the European call option as well

as the corresponding hedging portfolio.

Theorem 30. Let the market be given by (5.32) and (5.33), where the coefficients f

and g satisfy the assumptions (A1)-(A5). Then the market is complete. Let T be the

maturity time of the European call option on the stock with payoff function given by

X = (ST −K)+. Then at any time t ∈ [0, T ], the fair price V(t) of the option is given

by the formula

V (t) = e−r(T−t)EQ

(︂
(ST −K)+|Ft

)︂
(5.40)

where Q is the martingale measure on (Ω,FT ) given by (5.37).

Moreover, if

∫︂
J
zjνQ(dz) < ∞,

∫︂
R+

g(t)jdt < ∞ for j = 1, 2, 3, 4, there is an adapted
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and square integrable process ψ(z, t) ∈ L2(J × [0, T ]) such that

EQ

(︂
e−rT (ST −K)+|Ft

)︂
= EQ

(︂
e−rT (ST −K)+

)︂
+

∫︂
[0,t]×J

ψ(z, s)ÑQ((dz, ds)

and the hedging strategy is given by

πS(t) :=

∫︂
J
ψ(z, t)ÑQ(dz, t)

S̃(t)g(S(t− b))
, πB(t) := U(t)− πS(t)S̃(t), t ∈ [0, T ] , (5.41)

where U(t) = EQ(e
−rT (ST −K)+|Ft).

Proof Applying the Itô formula to (5.39) we get

S̃(T ) = exp
(︂∫︂

[0,T ]×J
{ln(1 + zg(S(t− b)))− zg(S(t− b)}νQ(dz)dt

+

∫︂
[0,T ]×J

ln(1 + zg(S(t− b)))ÑQ(dt, dz)
)︂

(5.42)

Denote X = (ST −K)+ and consider

U(t) := EQ(e
−rTX|Ft) .

In order to apply martingale representation theorem for Lévy process (see e.g. [4,

Theorem 5.3.5]) we shall first show that Ut ∈ L2, which is implied by EQ[S
2
T ] <∞.

Write h = g(S(t− b)). Then we can write

S̃
2

T = exp
(︂∫︂

[0,T ]×J
{ln(1 + zh)2 − 2zh}νQ(dz)dt

+

∫︂
[0,T ]×J

ln(1 + zh)2ÑQ(dt, dz)
)︂
. (5.43)
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Denoting T = [0, T ]× J and taking h̃ = (1+zh)4−1
z

we have

S̃
2

T = exp
(︂1
2

∫︂
T
{ln(1 + zh̃)− zh̃}νQ(dz)dt+

1

2

∫︂
T
ln(1 + zh̃)ÑQ(dt, dz)

)︂
.

exp
(︂∫︂

T

(︂zh̃
2

− zh
)︂
νQ(dz)dt

)︂
.

Applying the Hölder inequality we have

EQ
[︁
S̃
2

T

]︁
≤
[︂
EQ exp

(︂∫︂
T
{ln(1 + zh̃)− zh̃}νQ(dz)dt+

∫︂
T
ln(1 + zh̃)ÑQ(dt, dz)

)︂]︂1/2
·
[︂
EQ exp

(︂
2

∫︂
T

(︂zh̃
2

− zh
)︂
νQ(dz)dt

)︂]︂1/2
=
[︂
EQ exp

(︂
2

∫︂
T

(︂zh̃
2

− zh
)︂
νQ(dz)dt

)︂]︂1/2
.

From the definition of h̃, we have zh̃ = (1 + zh)4 − 1. Then

zh̃− 2zh = (1 + zh)4 − 1− 2zh = z4h4 + 4z3h3 + 6z2h2 + 2zh .

Thus,

EQ
[︁
S̃
2

T

]︁
≤ exp

(︂∫︂
T

(︂
z4h4 + 4z3h3 + 6z2h2 + 2zh

)︂
νQ(dz)dt

)︂

which is finite by the assumptions of the theorem.

From the martingale representation theorem (see e.g. [4, theorem 5.3.5]) there

exists a square integrable predictable mapping ψ : T× Ω → R such that

U(t) = EQ(e
−rT (ST −K)+) +

∫︂ t

0

∫︂
J
ψ(s, z)Ñ(ds, dz).
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Define

πS(t) :=

∫︂
J
ψ(z, t)ÑQ(dz, t)

S̃(t)g(S(t− b))

=

∫︂
J
ψ(z, t)S̃(t)g(S(t− b))dS̃(t)

S̃(t)g(S(t− b))
,

πB(t) := U(t)− πS(t)S̃(t), t ∈ [0, T ] .

Consider the strategy {(πB(t), πS(t)) : t ∈ [0, T ]} to invest πB(t) units in the riskyless

asset B(t) and πS(t) units in the risky asset S(t) at time t. Then the value of the

portfolio at time t is given by

V (t) := πB(t)e
rt + πS(t)S(t) = ertU(t)

By the definition of the strategy we see that

dV (t) = πB(t)de
rt + πS(t)dS(t) = ertdU(t) + U(t)dert .

Hence the strategy is self-financing. Moreover, we have

V (T ) = erTU(T ) = (ST −K)+.

Hence the claim (referring to the European call option) is attainable stand therefore

the market {S(t), B(t) : t ∈ [0, T ]} is complete. ■

The pricing formula (5.40) is hard to evaluate analytically and we shall use a

general Monte-Carlo method to find the approximate values. But when the time fall

in the last delay period, namely, when t ∈ [T − b, T ] we have the following analytic

expression for the price.
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Theorem 31. Assume the conditions of Theorem 30. When t ∈ [T − b, T ], then price

for the European Call option is given by

V (t) = ert lim
v→∞

1

2π

∫︂ ∞

−∞

1

iξ
(eivξ − eiwξ)A(t) · S̃(t) exp

{︃∫︂ T

t

∫︂
J

(︂
(1 + zg(S(u− b)))(1−iξ)

− (1− iξ) ln(1 + zg(S(u− b)))− 1
)︂
νQ(dz)du

}︂
−Kert lim

v→∞

1

2π

∫︂ ∞

−∞

1

iξ
(eivξ − eiwξ)A(t) · S̃(t) exp

{︃∫︂ T

t

∫︂
J

(︂
(1 + zg(S(u− b)))−iξ

+ iξ ln(1 + zg(S(u− b)))− 1
)︂
νQ(dz)du

}︂
, (5.44)

where w = ln(K/A)− rT and

A(t) = exp
(︂∫︂ T

t

∫︂
J
{ln (1 + zg(S(u− b)))− zg(S(u− b))νQ(dz)du

)︂
. (5.45)

Proof By (5.40) for any time t ∈ [0, T ] we have

V (t) = e−r(T−t)EQ

(︂
(S(T )−K)+ | Ft

)︂
= ertEQ

(︂
(S̃(T )−Ke−rT )+ | Ft

)︂
= ertEQ

(︂
S̃(T )1{S̃(T )≥Ke−rT } | Ft

)︂
−KertQ(S̃(T ) ≥ Ke−rT )

=: V1(t)− V2(t) . (5.46)

First, let us compute V1(t) and V2(t) can be computed similarly. The solution S̃(t)

is given by (5.42), which we rewrite here:

S̃(T ) = S̃(t) exp
{︂∫︂ T

t

∫︂
J
{ln (1 + zg(S(u− b)))− zg(S(u− b))}νQ(dz)du

+

∫︂ T

t

∫︂
J
ln (1 + zg(S(u− b)))ÑQ(dz, du)

}︂
. (5.47)

When u ∈ [t, T ] and t ∈ [T − b, T ], we see that S(u − b) is Ft-measurable. Hence

while computing the conditional expectation of h(S̃(T )) with respect to Ft, we can
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consider the integrands ln(1 + zg(S(u − b))) and ln(1 + zg(S(u − b))) − zg(S(u −

b)) as “deterministic” functions. Thus, the analytic expression for the conditional

expectation is possible. But it is still complicated. To find the exact expression and

to simplify the presentation, let us use the notation (5.45) and introduce

Y =

∫︂ T

t

∫︂
J
ln (1 + zg(S(u− b)))ÑQ(dz, du) .

With these notation we have

S̃(T ) = S̃(t)A expY .

To calculate EQ

(︂
eY 1{v≥Y≥w}

)︂
we first express 1[w,v] as the (inverse) Fourier transform

of exponential function because E(eiξY ) is computable. Since the Fourier transform

of 1{w,v} is ∫︂ ∞

−∞
eixξ1[w,v]dx =

1

iξ
(eivξ − eiwξ)

we can write

1[w,v](x) =
1

2π

∫︂ ∞

−∞

1

iξ
(ei[v−x]ξ − ei[w−x]ξ)dξ .

Therefore we have

EQ(e
Y 1{v≥Y≥w} | Ft) =

1

2π

∫︂ ∞

−∞
EQ

(︂ 1

iξ
(ei[v−Y ]ξ+Y − ei[w−Y ]ξ+Y ) | Ft

)︂
dξ

=
1

2π

∫︂ ∞

−∞

1

iξ
(eivξ − eiwξ)EQ(e

Y (1−iξ) | Ft)dξ .
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Denote Tt = [t, T ]× J . Then we have

EQ(e
Y−iY ξ) = EQ

(︂
exp

∫︂
Tt

(1− iξ) ln (1 + zg(S(u− b)))Ñ(dz, du) | Ft

)︂
= EQ

(︂
exp

∫︂
Tt

(1− iξ) ln (1 + zg(S(u− b)))Ñ(dz, du)
)︂

= exp
(︂∫︂

Tt

{e(1−iξ) ln(1+zg(S(u−b)))

−(1− iξ) ln(1 + zg(S(u− b)))− 1}νQ(dz)du
)︂

= exp
(︂∫︂

Tt

{(1 + zg(S(u− b)))(1−iξ)

− ln(1 + zg(S(u− b)))(1−iξ) − 1}νQ(dz)du
)︂
.

Hence

EQ(e
Y 1{v≥Y≥w} | Ft) =

1

2π

∫︂ ∞

−∞

1

iξ
(eivξ − eiwξ) exp

(︂∫︂
Tt

{(1 + zg(S(u− b)))(1−iξ)

− ln(1 + zg(S(u− b)))(1−iξ) − 1}νQ(dz)du
)︂
dξ .

Taking w = ln(K/A) − rT , v → ∞ in the above formula we can evaluate (5.46) as

follows.

V1(t) = ertEQ

(︂
S̃(T )1{S̃(T )≥Ke−rT } | Ft

)︂
= ert lim

v→∞

1

2π

∫︂ ∞

−∞

1

iξ
(eivξ − eiwξ)A · S̃(t) · exp

(︂∫︂
Tt

{(1 + zg(S(u− b)))(1−iξ)

− ln(1 + zg(S(u− b)))(1−iξ) − 1}νQ(dz)du
)︂
dξ

= ert lim
v→∞

1

2π

∫︂ ∞

−∞

1

iξ
(eivξ − eiwξ)A · S̃(t). exp

(︂∫︂
Tt

{(1 + zg(S(u− b)))(1−iξ)

− ln(1 + zg(S(u− b)))(1−iξ) − 1}νQ(dz)du
)︂
dξ .

90



Exactly in the same way (and now without the factor eY ), we have

V2(t) = Kert lim
v→∞

1

2π

∫︂ ∞

−∞

1

iξ
(eivξ − eiwξ)A · S̃(t). exp

(︂∫︂
Tt

{(1 + zg(S(u− b)))−iξ

− ln(1 + zg(S(u− b)))−iξ − 1}νQ(dz)du
)︂
dξ.

This gives (5.44). ■

4.6 Numerical attempt

In this section we make an attempt to carry out some numerical computations of our

formula (3.39) against the American call options Microsoft stock traded in Questrade

platform. To apply our model in the financial market, we need to estimate all the

parameters including the delay factor b from the real data. To the best of our knowl-

edge the theory on the parameter estimation is still unavailable even in the case of

the classical model of [3]. Motivated by the work of [19], we try our best guess of the

parameters in the model (3.31)-(3.32).

The real market option prices we consider is for the American call option on

Microsoft stock. The data we use is from Questrade trading/investment platform on

October 5, 2020 at 12:25 PM (EDT). We take T to be one, three and six months

active trading period respectively. The real prices of the options of different strike

prices are listed in the last column of the three tables below.

The readers may wonder that since the option pricing formulas for both our model

and the classical Black-Scholes model are for the European call option, why we use the

market price for the American option. The reason is that we can only find the market

price for the American option. On the other hand, as stated in [33, p.251] “There is

no advantage to exercise an American call prematurely when the asset received upon

early exercise does not pay dividends. The early exercise right is rendered worthless
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when the underlying asset does not pay dividends, so in this case the American call

has the same value as that of its European counterpart”. See also [26, p.61, Theorem

6.1]. This justifies our use of the market price for the American option.

Using Monte-Carlo simulation we calculate the prices of European option given

by (5.40) and the analogous Black-Scholes formula obtained from the model: dS(t) =

S(t)[αdt+ σdW (t)]. We simulate 2000 paths of the solutions to both equations using

the logarithmic Euler-Maruyama scheme [for Black-Scholes model the logarithmic

Euler-Maruyama scheme is the same by replacing the jump process by Brownian

motion]. In the simulations we take the time step ∆ to be the trading unit minute.

So when T = 1 month, there are

n = trading hours× 60× trading days = 6.5× 60× 22 = 8580

minutes. So ∆ = 1
8580

. We do the same for T = 3 and T = 6.

In our calculation for the delayed jump model we use the double exponential jump

process as our Yi’s with parameters p = .60, q = 1 − p = .40, η = 12.8, θ = 8.40

with the intensity λ = .03. The interest rate r = .01 is the risk free rate. The delay

factor was taken to be one day which is b = 6.5×60
8580

because there are trading 6.5 hours

in a trading day. The function f(x) was taken to be a fixed constant f(x) = .1,

g(x) = .15 ∗ sin(x/209.11) and ϕ(x) = exp(αx/n) with α = .11. We choose α = .11

since the initial price we have taken is 209.11 and the predicted average price target

of Microsoft stock for next one year (around 12 months from October 5, 2020) is 230

which is 11%.

For the simulation of the Black-Scholes model, based on stock prices for the year

2019 we take volatility of the Microsoft stock as σ = 15% to calculate Black-Scholes

price. We have taken r = 1% since in the last one year the range of 10 year treasury

rate has been between .52% to 1.92%. In the following tables the computations have
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Call Option price comparison for T = 1 month for Microsoft stock
Strike Price Black-Scholes

option price
(European)
with 1 month
expiration
(no delay)

Option price
of jump
model (Eu-
ropean) with
1 month
expiration

Market Price
of American
option with
expiration 1
month

195 16.27 16.08 18.3
200 11.41 11.05 15.15
205 7.65 6.91 12
210 4.54 3.62 9.43
215 2.05 1.48 7
220 .83 .61 5.15

Table 4.1: T=1 month

Call Option price comparison for T = 3 month for Microsoft stock
Strike Price Black-Scholes

option price
(European)
with 3 month
expiration
(no delay)

Option price
of jump
model (Eu-
ropean) with
3 month
expiration

Market Price
of American
option with
expiration 3
months

195 21.37 21.27 24.40
200 16.72 16.99 21.35
205 13.08 14.50 18.55
210 9.65 11.43 15.95
215 6.35 8.58 13.65
220 4.31 7.51 11.55

Table 4.2: T=3 month

been summarized. Notice an interesting phenomenon that the price we obtain by

using our formula is comparable to the Black-Scholes price for shorter maturities and

is more closer to the real market price for longer maturity. This may be because of

our choice of the parameters by guessing.
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Call Option price comparison for T = 6 month for Microsoft stock
Strike Price Black-Scholes

option price
(European)
with 6 month
expiration
(no delay)

Option price
of jump
model (Eu-
ropean) with
6 month
expiration

Market Price
of American
option with
expiration 6
months

195 28.41 29.53 29.00
200 23.85 26.11 26.15
205 19.49 24.44 23.50
210 16.24 21.15 21.05
215 12.83 18.39 18.80
220 10.58 17.97 16.70

Table 4.3: T=6 month
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Chapter 5

Logarithmic Euler-Maruyama

scheme for multi-dimensional

SDDE driven by Lévy process

In [1] we introduced a logarithmic Euler-Maruyama scheme for a single stochastic

delay equation, which preserve positivity if the solution to the original equation is

positive. The convergence rate was also obtained for such scheme. This scheme is

important for simulation of the paths of the equation. It plays important role in

option pricing for example since we often cannot obtain the explicit pricing value and

we need to use Monte-Carlo to complete the evaluation. Naturally our next question

would be what will be the analogous scheme for a system of stochastic delay equations

and if such schemes converges. This type of problems is very important since there is

always more than one stock in the real market. Now in more than one dimension, the

problem of positive solution and the numerical schemes which preserve the positivity

are much more complicated. In this chapter we shall extend our work in [1] to a system

of stochastic delay differential equations. The problems of existence and uniqueness of

a positive are solved. The multi-dimensional logarithmic Euler-Maruyama scheme are
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constructed which preserve the positivity of the approximate solutions. The scheme

is proved to be convergent with rate 0.5.

5.1 Positivity

We consider the following system of stochastic delayed differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi(t) =
d∑︂
j=1

fij(S(t− b))Sj(t)dt

+ Si(t−)
d∑︂
j=1

gij(S(t− b))dZj(t), , i = 1, · · · , d ,

Si(t) = ϕi(t) , t ∈ [−b, 0] , i = 1, · · · , d ,

(1.1)

where S(t) = (S1(t), · · · , Sd(t))T and

(i) fij, gij : Rd → R are some given bounded measurable functions for all 0 ≤ i, j ≤

d with fij ≥ 0 for i ̸= j.

(ii) b > 0 is a given number representing the delay of the equation.

(iii) ϕi : [−b, 0] → R is a (deterministic) measurable function for all 0 ≤ i ≤ d.

(iv) Zj(t) =
∑︁Nj(t)

k=1 Yj,k are Lévy processes, where Yj,k are i.i.d random variables,

Nℓ(t) are independent Poisson random processes which are also independent of

Yj,k for j, ℓ,= 1, 2, · · · , d, k = 1, 2, · · ·

Let | · | Euclidean norm in Rd. If A is d×m matrix, we denote

|A| = sup
|x|≤1

|Ax| .

For example, if A = I +M is a d × d matrix, where M = (mij)1≤i,j≤d is a matrix,

then we can bound the norm of A as follows. Let 0 ≤ λ1 ≤ · · · ≤ λd be eigenvalues of

96



MTM (since MTM is a positive definite matrix, we can assume that its eigenvalues

are all positive). Then

|I +M | = sup
|x|≤1

√︁
|x|2 + xTMTMx ≤

√︂
1 + max

1≤i≤d
λi|x|

≤

⌜⃓⃓⎷1 +
d∑︂
i=1

λi|x| .

But
∑︁d

i=1 λi = Tr(MTM). Thus we have

|I +M | ≤
√︁

1 + Tr(MTM)|x| . (1.2)

To study the above stochastic differential equation, it is common to introduce the

Poisson random measure associated with the Lévy process Zj(t). We write the jumps

of the process Zj at time t by

∆Zj(t) := Zj(t)− Zj(t−) if ∆Zj(t) ̸= 0 j = 1, 2, · · · , d .

Denote R0 := R\{0} and let B(R0) be the Borel σ-algebra generated by the family of

all Borel subsets U ⊂ R, such that Ū ⊂ R0. For any t > 0 and for any U ∈ B(R0) we

define the Poisson random measure, Nj : [0, T ]× B(R0)× Ω → R (without confusion

we use the same notation N), associated with the Lévy process Zj(t) by

Nj(t, U) :=
∑︂

0≤s≤t, ∆Zj(s)̸=0

χU(∆Zj(s)), j = 1, 2, · · · , d, (1.3)

where χU is the indicator function of U . The associated Lévy measure ν of the Lévy

process Zj is given by

νj(U) := E[Nj(1, U)] j = 1, 2, · · · , d. (1.4)
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We now define the compensated Poisson random measure Ñ j associated with the Lévy

process Zj(t) by

Ñ j(dt, dz) := Nj(dt, dz)− E [Nj(dt, dz)] = Nj(dt, dz)− νj(dz)dt . (1.5)

We assume that the process Zj(t) has only bounded negative jumps to guarantee that

the solution S(t) to (1.1) is positive. This means that there is an interval J = [−R,∞)

bounded from the left such that ∆Zj(t) ∈ J for all t > 0 and for all j = 1, 2, · · · d.

With these notations, we can write

Zj(t) =

∫︂
[0,t]×J

zNj(ds, dz) or dZj(t) =

∫︂
J
zNj(dt, dz)

and write (1.1) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi(t) =
d∑︂
j=1

fij(S(t− b))Sj(t)dt+ Si(t−)
d∑︂
j=1

∫︂
J
zgij(S(t− b))νj(dz)dt

+ Si(t−)
d∑︂
j=1

∫︂
J
zgij(S(t− b))Ñ j(dz, dt) ,

Si(t) = ϕi(t) , t ∈ [−b, 0] , i = 1, · · · , d . (1.6)

In fact we can consider a slightly more general version of system of equations than

(1.6):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi(t) =
d∑︂
j=1

fij(S(t− b))Sj(t)dt

+ Si(t−)
d∑︂
j=1

∫︂
J
gij(z, S(t− b))Ñ j(dz, dt), i = 1, · · · , d ,

Si(t) = ϕi(t) , t ∈ [−b, 0] , i = 1, · · · , d . (1.7)

First, we discuss the existence, uniqueness and positivity of (1.7).
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Theorem 32. Suppose that fij : Rd → R and gij : J × Rd → R , 1 ≤ i, j ≤ d are

bounded measurable functions such that there is a constant α0 > 1 satisfying gij(z, x) ≥

α0 > −1 for all 1 ≤ i, j ≤ d, for all z ∈ J and for all x ∈ R, where J = [−R,∞)

is the common supporting set of the Poisson measures Ñ j(t, dz), j = 1, · · · , d. If for

all i ̸= j, fij(x) ≥ 0 for all x ∈ R, and ϕi(0) ≥ 0 , i = 1, · · · , d, then, the stochastic

differential delay equation (1.7) admits a unique pathwise solution such that Si(t) ≥ 0

almost surely for all i = 1, · · · , d and for all t > 0.

Proof The theorem is stated and proved in [1, Theorem 1] following the method

of [19] (where the case of Brownian motion was dealt with). In fact, the existence

and uniqueness are routine and easy. The main point is to show the positivity of

the solution. The idea in [1] was to decompose the solution to (1.7) as product of

some nonnegative processes. Here we give a slightly different decomposition which

will prove the positivity and will be very useful in our numerical scheme.

Denote f̃ ij(t) = fij(S(t − b)) and g̃ij(t, z) = gij(z, S(t − b)). Let Yi(t) be the

solution to the stochastic differential equation

dYi(t) = f̃ ii(t)Yi(t)dt+ Yi(t−)
d∑︂
j=1

∫︂
J
g̃ij(t, z)Ñ j(dt, dz)

with initial conditions Yi(0) = ϕi(0). Since this is a scalar equation for Yi(t), its

explicit solution can be represented

Yi(t) = ϕi(0) exp

{︃ d∑︂
j=1

log
[︁
1 + g̃ij(s, z)

]︁
Ñ j(ds, dz) +

∫︂ t

0

f̃ ii(s)ds

+
d∑︂
j=1

∫︂
[0,t]×J

(︂
log
[︁
1 + g̃ij(s, z)

]︁
− g̃ij(s, z)

)︂
dsνj(dz)

}︃
, (1.8)
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where νj is the associated Lévy measure for Ñ j(ds, dz). Let pi(t) be the solution to

the following system of equations

dpi(t) =
d∑︂

j=1,j ̸=i

f̃ ij(t)pj(t)dt , pi(0) = 1 , i = 1, · · · , d .

Since by the assumption that f̃ ij(t) ≥ 0 almost surely for all i ̸= j, Theorem [8, p.173]

implies that pi(t) ≥ 0 for all t ≥ 0 almost surely. Now it is easy to check by the Itô

formula that S̃i(t) = pi(t)Yi(t) satisfies (1.7) and S̃i(t) ≥ 0 almost surely. By the

uniqueness of the solution we see that Si(t) = S̃i(t) for i = 1, · · · , d. The theorem is

then proved. ■

5.2 Convergence rate of logarithmic Euler-Maruyama

scheme

In this section we construct numerical scheme to approximate (1.1) by positive value

processes.

Motivated by the proof of Theorem 32 we shall decompose equation (1.1) into the

following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXi(t) = fii((S(t− b)))Xi(t)dt+Xi(t−)
d∑︂
j=1

gij(S(t− b))dZj(t)

dpi(t) =
d∑︂

j=1,j ̸=i

fij((S(t− b)))pj(t)dt,

Si(t) = pi(t) ·Xi(t) , i = 1, 2, · · · , d .

(2.9a)

(2.9b)

(2.9c)

The reason is, as in the proof of Theorem 32, that Xi(t) and pi(t) are all positive.
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Consider a finite time interval [0, T ] for some fixed T > 0 and let π be a partition

of the time interval [0, T ]:

π : 0 = t0 < t1 < · · · < tn = T .

Let ∆k = tk+1 − tk and ∆ = max0≤k≤n−1(tk+1 − tk) and assume ∆ < b.

We shall now construct explicit logarithmic Euler-Marauyama recursive scheme to

numerically solve (2.9a)-(2.9c). By the expression (1.8) the solution X on [tk, tk+1] to

Equation (2.9a) is given

by

Xi(t) = Xi(tk) exp

{︃∫︂ t

tk

fii(S(s− b))ds+
d∑︂
j=1

∫︂ t

tk

log [1 + gij(S(u− b))dZj(s)]

}︃
,

where Zj(t) :=
∑︁Nj(t)

k=1 Yj,k. If we denote by F (x) the d × d matrix whose diagonal

elements are all zero and whose off diagonal entries are fij(x), namely,

Fij(x) =

⎧⎪⎪⎨⎪⎪⎩
0 when i = j

fij(x) when i ̸= j .

With this notation we can write (2.9b) as a matrix form:

dp(t)

dt
= F ((S(t− b)))p(t) , p(t) = (p1(t), · · · , pd(t))T , (2.10)

and its solution on the sub-interval [tk, tk+1] is given by

p(t) = exp
(︂
F̃ (S(t− b))

)︂
p(tk) , t ∈ [tk, tk+1] , (2.11)

where the exponential of a matrix is in the usual sense: eA =
∑︁∞

k=0A
k/k!, the integral
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of a matrix is entry-wise. Here due to the noncommutativity F̃ (S(t−b)) is complicated

to determine and we give the following formula for the sake of completeness:

F̃ (S(t− b)) =
∞∑︂
r=1

∑︂
σ∈Pr

⎛⎝ (−1)e(σ)

r2
(︂
r−1
e(σ)

)︂
⎞⎠∫︂

Tr(t)

(2.12)

×[[· · · [F (S(uσ(1) − b)F (S(uσ(2) − b)] · · · ]F (S(uσ(r) − b)]du1 · · · dur

is given by the Campbell-Baker-Hausdorff-Dynkin Formula (see e.g. [21], [43]), where

Pr is the set of all permutations of {1, 2, · · · , r}, e(σ) is the number of errors in ordering

consecutive terms in {σ(1), · · · , σ(r)}, [AB] = AB − BA denotes the commutator of

the matrices, and Tr(t) = {0 < u1 < · · · < ur < t}.

Analogously to [1] we propose the following logarithmic scheme to approximate

the solution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xπ
i (t) = Xπ

i (tk) exp
(︂
fii(S

π(tk − b))(t− tk)

+
d∑︂
j=1

ln
(︂
1 + gij(S

π(tk − b))(Zj(t)− Zj(tk)
)︂)︂

,

pπ(t) =
[︂
F (Sπ(tk − b)))(t− tk) + I

]︂
pπ(tk),

Sπi (t) = pπi (t)X
π
i (t) ,

Xπ
i (0) = ϕi(0) , pπ(0) = 1 , tk ≤ t ≤ tk+1 , k = 1, 2, · · · , n− 1 .

(2.13a)

(2.13b)

(2.13c)

(2.13d)

We introduce step processes

⎧⎪⎪⎨⎪⎪⎩
v1(t) =

∑︁∞
k=0 1[tk,tk+1)(t)S

π(tk)

v2(t) =
∑︁∞

k=0 1[tk,tk+1)(t)S
π(tk − b).
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Using the above step process we can write the continuous interpolation for Xi as

Xπ
i (t) = exp

(︂∫︂ t

0

fii(v2(u))du+
d∑︂
j=1

∑︂
0≤u≤t

∆Z(u)̸=0

ln
(︂
1 + gij(v2(u))Yj,Nj(u)

)︂)︂
(2.14)

Denote ⌊t⌋ = max{k, tk < t}. From (2.13b) we have

pπ(t) =
[︂ ∫︂ t

t⌊t⌋

F (v2(u))du+ I
]︂ ⌊t⌋∏︂
k=1

[︂ ∫︂ tk

tk−1

F (v2(u))du+ I
]︂
. (2.15)

We first show that pπ(tk) ≥ 0.

Lemma 5.1. If ϕ(0) ≥ 0 a.s., then pπ(tk) ≥ 0 a.s. with pπ(t) = ϕ(t) for all t ∈ [−b, 0].

Proof This can be seen from (2.13b) and by induction. Assume pπ(tk) ≥ 0 a.s.

Since by our definition of F (Sπ(tk − b)) we know all of its components are positive,

we see from (2.13b) that pπ(t) ≥ 0 a.s. for all tk ≤ t ≤ tk+1. ■

Similarly we will have

Lemma 5.2. If ϕ(0) ≥ 0 a.s., then Xπ(t) ≥ 0 a.s. , hence Sπ(t) ≥ 0 a.s. for all

0 ≤ t ≤ T .

To obtain the convergence of the logarithmic Euler–Maruyama scheme (2.13a)-

(2.13d), we make the following assumptions:

(A1) The initial data ϕi(0) > 0 and it is Hölder continuous, i.e. there exist constant

ρ > 0 and γ ∈ [1/2, 1) such that for t, s ∈ [−b, 0]

|ϕi(t)− ϕi(s)| ≤ ρ|t− s|γ. i = 1, 2, · · · , d. (2.16)
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(A2) fij and gij are global Lipschitz for i, j = 1, 2, · · · , d. This means that there

exists a constant ρ > 0 such that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⃓⃓⃓
gij(x1)− gij(x2)

⃓⃓⃓
≤ ρ|x1 − x2| ∀ x1, x2 ∈ Rd ;⃓⃓⃓

fij(x1)− fij(x2)
⃓⃓⃓
≤ ρ|x1 − x2| , ∀ x1, x2 ∈ Rd ;⃓⃓

fij(x)
⃓⃓
≤ ρ , ∀x ∈ Rd.

(A3) The support J of the Poisson random measure Nj (associated with Z) is con-

tained in [−R,∞) for each j = 1, 2, · · · , d for some R > 0 and there are con-

stants α0 > 1 and ρ > 0 satisfying −ρ ≤ gij(x) ≤ α0

R
for all x ∈ Rd and for all

i, j = 1, 2, · · · , d.

(A4) For any q > 1 there is a ρq > 0

∫︂
J
(1 + |z|)qνi(dz) ≤ ρq , i = 1, 2, · · · , d. (2.17)

Lemma 5.3. Let Assumptions (A1)–(A4) be satisfied. Then, for any q ≥ 1, there

exists Kq, independent of the partition π, such that

E
[︂
sup
1≤i≤d

sup
0≤t≤T

|Xi(t)|q
]︂
∨ E
[︂
sup
1≤i≤d

sup
0≤t≤T

|Xπ
i (t)|q

]︂
≤ Kq.
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Proof From our definition of Xπ
i and boundedness of fij for all i, j we have

E
[︂

sup
0≤t≤T

|Xπ
i (t)|q

]︂
= E

[︂
sup

0≤t≤T
exp

(︂
q

∫︂ t

0

fii(v2(u))du

+q
d∑︂
j=1

∑︂
0≤u≤t

∆Z(u)̸=0

ln(1 + gij(v2(u))Yj,Nj(u))
)︂]︂

= E
[︂

sup
0≤t≤T

exp
(︂
q

∫︂ t

0

fii(v2(u))du (2.18)

+q
d∑︂
j=1

∫︂
T
ln(1 + zjgij(v2(u)))Nj(du, dz)

)︂]︂
≤ KE

[︂
sup

0≤t≤T
exp

(︂
q

d∑︂
j=1

∫︂
T
ln(1 + zjgij(v2(u)))Nj(du, dz)

)︂]︂
=: KI , (2.19)

where T = [0, t]× J . Denote hj = ((1 + zjgi,j(v2(u))
2q − 1))/zj. Then,

I = E
[︂

sup
0≤t≤T

exp
(︂1
2

d∑︂
j=1

∫︂
Tt

ln(1 + zjhj)Nj(du, dzj)
)︂]︂

= E
[︂

sup
0≤t≤T

exp
(︂ d∑︂
j=1

(︂1
2

∫︂
Tt

ln(1 + zjhj)Ñ j(du, dzj)

+
1

2

∫︂
Tt

ln(1 + zjhj)νj(dzj)du
)︂)︂]︂

= E
[︂

sup
0≤t≤T

exp
(︂ d∑︂
j=1

(︂1
2

∫︂
Tt

ln(1 + zjhj)Ñ j(du, dzj)

+
1

2

∫︂
Tt

[ln(1 + zjhj)− zjhj] νj(dzj)du
)︂)︂]︂

sup
0≤t≤T

exp
(︂ d∑︂
j=1

−1

2

∫︂
Tt

(1 + zjgij(v2(u))
2q − 1) νj(dzj)du

)︂]︂
≤ CqE

[︂
sup

0≤t≤T
exp

(︂ d∑︂
j=1

(︂1
2

∫︂
Tt

ln(1 + zjhj)Ñ j(du, dzj)

+
1

2

∫︂
Tt

[ln(1 + zjhj)− zjhj] νj(dzj)du
)︂)︂]︂

,
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where we used Assumption (A4) and the boundedness of gij. Write for k = 1, 2, · · · , d

Mk,t := exp
(︂∫︂

Tt

ln(1 + zkhk)Ñk(du, dzk) +

∫︂
Tt

[ln(1 + zkhk)− zkhk] νk(dzk)du
)︂
.

Then (Mk,t, 0 ≤ t ≤ T ) is an exponential martingale. Now an application of the

Cauchy–Schwartz inequality yield

I ≤ Cq

{︃
E
[︂

sup
0≤t≤T

M1,t

]︂}︃d/2
,

which proves

E
[︂

sup
0≤t≤T

|Xπ
i (t)|q

]︂
≤ Kq <∞.

In the same way, we can show E
[︂
sup0≤t≤T |Xi(t)|q

]︂
≤ Kq < ∞. This completes the

proof of the lemma. ■

Lemma 5.4. Assume Assumptions (A1)–(A4). Then for ∆ < 1, there is a constant

K > 0, independent of π, such that

E sup
0≤t≤T

⃓⃓⃓
Sπ(t)− v2(t)

⃓⃓⃓p
≤ K∆p/2 .

Proof Let tk = ⌊t⌋ if t ∈ [tk, tk+1) for some k. We have v2 = (v21, v22, · · · , v2d) for

which we write in short v2 = (v̄1, v̄2, · · · , v̄d). For any i = 1, · · · , d,

E sup
0≤t≤T

⃓⃓⃓
Sπi (t)− v̄i(t)

⃓⃓⃓p
= E sup

0≤t≤T

⃓⃓⃓
pπi (t)X

π
i (t)− pπi (⌊t⌋)Xπ

i (⌊t⌋)
⃓⃓⃓p

= E sup
0≤t≤T

⃓⃓⃓
pπi (t)X

π
i (t)− pπi (⌊t⌋)Xπ

i (t) + pπi (⌊t⌋)Xπ
i (t)− pπi (⌊t⌋)Xπ

i (⌊t⌋)
⃓⃓⃓p

≤ C
(︂
E sup

0≤t≤T

⃓⃓⃓
pπi (t)− pπi (⌊t⌋)

⃓⃓⃓2p)︂1/2(︂
E sup

0≤t≤T

⃓⃓⃓
Xπ
i (t)

⃓⃓⃓2p)︂1/2
(2.20)

+C
(︂
E sup

0≤t≤T

⃓⃓⃓
Xπ
i (t)−Xπ

i (⌊t⌋)
⃓⃓⃓2p)︂1/2(︂

E sup
0≤t≤T

⃓⃓⃓
pπi (⌊t⌋)

⃓⃓⃓2p)︂1/2
.

(2.21)
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By Assumption 2 we can bound E sup0≤t≤T

⃓⃓⃓
pπi (⌊t⌋)

⃓⃓⃓2p
and by lemma (5.3) we can

bound E sup0≤t≤T

⃓⃓⃓
Xπ
i (t)

⃓⃓⃓2p
. We now bound the other two components.

E sup
0≤t≤T

⃓⃓⃓
pπi (t)− pπi (⌊t⌋)

⃓⃓⃓2p
≤

d∑︂
j,j ̸=i

E sup
0≤t≤T

⃓⃓⃓ ∫︂ t

⌊t⌋
fij(v2(u))du

⃓⃓⃓2p
. (2.22)

By Assumption 2 it is easy to see that for some constant C1

E sup
0≤t≤T

⃓⃓⃓
pπi (t)− pπi (⌊t⌋)

⃓⃓⃓2p
≤ C1∆

2p. (2.23)

For E sup0≤t≤T

⃓⃓⃓
Xπ
i (t) − Xπ

i (⌊t⌋)
⃓⃓⃓2p

we use the expression for Xπ
i (t), boundedness of

fij for all i, j and use |ex − ey| ≤ |ex + ey||x− y| to obtain

E sup
0≤t≤T

⃓⃓⃓
Xπ
i (t)−Xπ

i (⌊t⌋)
⃓⃓⃓2p

≤
{︃
E sup

0≤t≤T

⃓⃓⃓
Xπ
i (t) +Xπ

i (⌊t⌋)
⃓⃓⃓2p}︃1/2

·K

⎧⎨⎩E sup
0≤t≤T

⎡⎣⃓⃓⃓ d∑︂
j=1

∑︂
⌊t⌋≤s<t

ln(1 + gij(v2(s))Yj,N(s))
⃓⃓⃓⎤⎦2p⎫⎬⎭

1/2

.

The first factor is bounded and now, we want to bound the second factor:

I := E sup
0≤t≤T

⃓⃓⃓⃓
⃓⃓ d∑︂
j=1

∑︂
⌊t⌋≤s≤t

ln(1 + gi,j(v2(s))Yj,Nj(s))

⃓⃓⃓⃓
⃓⃓
2p

.
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(We use the same notation I to denote different quantities in different occasions and

this does not cause ambiguity). We write the above sum as an integral:

I = E sup
0≤t≤T

⃓⃓⃓ d∑︂
j=1

∫︂
J

∫︂ t

⌊t⌋
ln(1 + zjgij(v2(s)))Nj(ds, dzj)

⃓⃓⃓2p
= E sup

0≤t≤T

⃓⃓⃓ d∑︂
j=1

∫︂
J

∫︂ t

⌊t⌋
ln(1 + zjgij(v2(s)))Nj

˜ (ds, dzj)

+
d∑︂
j=1

∫︂
J

∫︂ t

⌊t⌋
ln(1 + zjgij(v2(s)))νj(dzj)ds

⃓⃓⃓2p
≤ Cp

(︃
∆2p + E sup

0≤t≤T

⃓⃓⃓ ∫︂
J

∫︂ t

⌊t⌋
ln(1 + zjgij(v2(s)))Nj

˜ (ds, dzj)
⃓⃓⃓2p)︃

.

By the theorem 2.13 of [17], we have

E sup
0≤t≤T

⃓⃓⃓ ∫︂
J

∫︂ t

⌊t⌋
ln(1 + zjgij(v2(s)))Nj

˜ (ds, dzj)
⃓⃓⃓2p

≤ E
(︃∫︂

J

∫︂ t

⌊t⌋

⃓⃓⃓
ln(1 + zjgij(v2(s)))

⃓⃓⃓2p
νj(dzj)ds

)︃
≤ Kp∆

2p . (2.24)

Plugging above, (2.23), in (2.21) we get for some K,K1, K2 > 0

E sup
0≤t≤T

⃓⃓⃓
Sπi (t)− vi(t)

⃓⃓⃓p
≤ K1∆

p +K2∆
p < K∆p/2. (2.25)

This proves the lemma. ■

Theorem 33. Assume that Assumptions (A1)–(A4) are true. Then, there is a con-

stant Kpd,T , independent of π such that

E

[︄
sup

0≤t≤T

[︂
|S(t)− Sπ(t)|p

]︂]︄
≤ Kpd,T∆

p/2.

(2.26)
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Proof First, we we want to bound

I1 := E
(︂

sup
0≤t≤r

|p(t)− pπ(t)|p
)︂
. (2.27)

From (2.12), we see that when t ∈ [tk, tk+1],

F̃ (S(t− b)) =

∫︂ t

tk

F (S(u− b))du+O(∆2) .

Thus

exp
(︂
F̃ (S(t− b))

)︂
= I +

∫︂ t

tk

F (S(u− b))du+O(∆2) .

Thus we have a formula for p(t) which is analogous to the one for pπ(t) (Equation

(2.15) ):

p(t) =
[︂
I +

∫︂ t

⌊t⌋
F (S(u− b))du+O(∆2)

]︂ ⌊t⌋∏︂
k=0

[︂
I +

∫︂ tk+1

tk

F (S(u− b))du+O(∆2)
]︂

= ρ(⌊t⌋, t)
⌊t⌋∏︂
k=0

ρ(tk, tk+1) , (2.28)

where

ρ(r, s) = I +

∫︂ s

r

F (S(u− b))du+O(∆2) .

We can also write

pπ(t) = ρπ(⌊t⌋, t)
⌊t⌋∏︂
k=0

ρπ(tk, tk+1) , (2.29)

where

ρπ(r, s) = I + F (Sπ(s− b))(s− r) .
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When r, s ∈ [tk, tk+1], r < s, we have by the Lipschitz condition

|ρ(r, s)− ρπ(r, s)| ≤ |F (S(tk − b))− F (Sπ(tk − b))|(s− r)

+

∫︂ s

r

|F (S(u− b))− F (Sπ(tk − b))|du+O(∆2)

≤ C|S(tk − b)− Sπ(tk − b)|+O(∆3/2) . (2.30)

We also have

|ρπ(r, s)| = |I + F (Sπ(s− b))(s− r) ≤ |I + C(s− r)| ≤ eC(s−r) . (2.31)

In the same way we have

|ρ(r, s)| ≤ eC(s−r) . (2.32)

Thus

|pπ(t)− p(t)| ≤ |ρ(⌊t⌋, t)− ρπ(⌊t⌋, t)|
⌊t⌋∏︂
k=0

ρπ(tk, tk+1)

+

⌊t⌋∑︂
ℓ=0

|ρ(tℓ, tℓ+1)− ρπ(tℓ, tℓ+1)| ρ(⌊t⌋, t)
⌊t⌋∏︂

k=0,k ̸=ℓ

ρπ(tk, tk+1)

≤
[︁
C |S(tk − b)− Sπ(tk − b)|+O(∆3/2)

]︁ ⌊t⌋∏︂
k=0

eC(tk+1−tk)

+

⌊t⌋∑︂
ℓ=0

[︁
C|S(tℓ − b)− Sπ(tℓ − b)|+O(∆3/2)

]︁
ρ(⌊t⌋, t)

⌊t⌋∏︂
k=0,k ̸=ℓ

eC(tℓ+1−tℓ)

(2.33)

Thus we have for some C > 0

I1 ≤ CE sup
0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓p
+K1E sup

0≤t≤r

⃓⃓⃓
v2(u)− Sπ(t− b)

⃓⃓⃓p
.
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Then by lemma 5.4 we have

I1 ≤ CE sup
0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓p
+ C∆p/2. (2.34)

We now bound E sup0≤t≤r |X(t)−Xπ(t)|p. Denote

Ai,t =
d∑︂
j=1

∑︂
0≤u≤t

∆Z(u)̸=0

ln
(︂
1 + gij(S(u− b))Yj,Nj(u)

)︂

Aπi,t =
d∑︂
j=1

∑︂
0≤u≤t

∆Z(u)̸=0

ln
(︂
1 + gij(v2(u))Yj,Nj(u)

)︂
(2.35)

and denote I2 = E
(︂
sup0≤t≤r |X(t)−Xπ(t)|p

)︂
. Then,

I2 = E
(︂

sup
0≤t≤r

|X(t)−Xπ(t)|p
)︂

≤
(︂
E sup

0≤t≤r

d∑︂
i=1

⃓⃓⃓ ∑︂
0≤u≤t

∆Z(u)̸=0

d∑︂
j=1

[︁
ln(1 + gij(S(u− b))Yj,Nj(u))

− ln(1 + gij(v2(u))Yj,N(u))

+

∫︂ t

0

(fii(S(u− b))− fii(v2(u)))du)
]︁⃓⃓⃓2p)︂)︂1/2(︂

E
(︂
| exp(Ai,t) + exp(Aπi,t)|2p

)︂)︂1/2
=
(︂(︂ d∑︂

i=1

E sup
0≤t≤r

⃓⃓⃓ ∫︂
J×[0,t]

d∑︂
j=1

[ln(1 + zjgij(S(u− b)))

− ln(1 + zjgij(v2(u)))]Ñ j(du, dz)

+

∫︂
J×[0,t]

d∑︂
j=1

[ln(1 + zjgij(S(u− b)))− ln(1 + zjgij(v2(u)))] νj(dz)du

+

∫︂ t

0

(fii(S(u− b))− fii(v2(u)))du
⃓⃓⃓2p)︂)︂1/2

·
(︂
E
(︂
| exp(Ai,t) + exp(Aπi,t)|2p

)︂)︂1/2
.
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Then for some C1 > 0 we have

I2 ≤
[︂(︂
C1E sup

0≤t≤r

⃓⃓⃓ ∫︂
J×[0,t]

d∑︂
j=1

[ln(1 + zjg1j(S(u− b)))

− ln(1 + zjg1j(v2(u)))]Ñ j(du, dzj)
⃓⃓⃓2p)︂1/2

+
(︂
C1E sup

0≤t≤r

⃓⃓⃓ ∫︂
J×[0,t]

d∑︂
j=1

[ln(1 + zjg1j(S(u− b)))

− ln(1 + zjg1j(v2(u)))]νj(dzj)du
⃓⃓⃓2p)︂1/2

+
(︂
C1E sup

0≤t≤r

⃓⃓⃓ ∫︂ t

0

(fii(S(u− b))− fii(v2(u)))du
⃓⃓⃓2p)︂1/2]︂

·
(︂
E
(︂
| exp(A1,t) + exp(Aπ1,t)|2p

)︂)︂1/2
=: C1(I

1/2
21 + I

1/2
22 + I

1/2
23 ) ·

(︂
E
(︂
| exp(A1,t) + exp(Aπ1,t)|2p

)︂)︂1/2
.

Using the Lipschitz condition on gij,
∫︁
J zjνj(dzj) = Kν < ∞ for j = 1, 2 · · · , d,

Lemma 5.4 and Assumption 3 we have

I22 ≤ E sup
0≤t≤r

⃓⃓⃓ ∫︂
J×[0,t]

d∑︂
j=1

[ln(1 + zjgij(S(u− b)))− ln(1 + zjgij(v2(u)))] νj(dzj)du
⃓⃓⃓2p)︂

≤ CE sup
0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓2p
+ CE sup

0≤t≤r

⃓⃓⃓
v2(u)− Sπ(t− b)

⃓⃓⃓2p
=: CE sup

0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓2p
+ C∆p.

Using the theorem 2.13 from [17] we have

I21

≤
d∑︂
i=1

E
(︂∫︂

J

∫︂ t

0

d∑︂
j=1

⃓⃓⃓
ln(1 + zjgij(S(u− b)))− ln(1 + zjgij(v(u− b)))

⃓⃓⃓2p
νj(dz)du

)︂
.
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Similar to the bound for I22 we have

I21 ≤ CE sup
0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓2p
+ C∆p.

Similar to the bound for I22 using assumption (A2) we have

I23 ≤ CE sup
0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓2p
+ C∆p.

Combining the bounds for I21, I22, I23 with the help of lemma (5.3), we get for

some K2 > 0

I2 ≤ K2

(︂
E sup

0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓2p)︂1/2
+K2∆

p/2. (2.36)

We write I3 = E
(︂
sup0≤t≤r |S(t)− Sπ(t)|p

)︂
. Then we have

I3 = E
(︂

sup
0≤t≤r

|S(t)− Sπ(t)|p
)︂

≤ E
(︂

sup
0≤t≤r

⃓⃓⃓
(p(t)− pπ(t))X(t)− (X(t)−Xπ(t))pπ(t)

⃓⃓⃓p)︂
≤ 2p−1E

(︂
sup
0≤t≤r

⃓⃓⃓
(p(t)− pπ(t))X(t)

⃓⃓⃓p)︂
+ 2p−1E

(︂
sup
0≤t≤r

⃓⃓⃓
pπ(t)(X(t)−Xπ(t))

⃓⃓⃓p)︂
.

=: C(I31 + I32).

We now bound I31, I32

I31 ≤ C
(︂
E
(︂

sup
0≤t≤r

⃓⃓⃓
X(t)

⃓⃓⃓2p)︂)︂1/2(︂
E
(︂

sup
0≤t≤r

⃓⃓⃓
(p(t)− pπ(t))

⃓⃓⃓2p)︂)︂1/2
. (2.37)

Using the Lemmas 5.3 and 2.34 we will have f

I31 ≤ C
(︂
E sup

0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓2p
+∆p

)︂1/2
.
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Using assumption 2 we can show that pπ is bounded, hence we can write using (2.36)

I32 ≤ C
(︂(︂

E sup
0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓4p)︂1/2
+∆p

)︂1/2
. (2.38)

Hence we have for some K3 > 0

I3 ≤ K3

(︂
E sup

0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓2p)︂1/2
+K3∆

p/2. (2.39)

Therefore we get

E

[︄
sup
0≤t≤r

[︂
|S(t)− Sπ(t)|p

]︂]︄

≤ C
(︂
E sup

0≤t≤r

⃓⃓⃓
S(t− b)− Sπ(t− b)

⃓⃓⃓2p)︂1/2
+K∆p/2. (2.40)

Taking r = b, we have

E

[︄
sup
0≤t≤b

[︂
|S(t)− Sπ(t)|p

]︂]︄
≤ C∆p/2 (2.41)

for any p ≥ 2. Now, taking r = 2b in (2.40), we have

E

[︄
sup

0≤t≤2b

[︂
|S(t)− Sπ(t)|p

]︂]︄
≤ C

[︃
E sup

−b≤t≤b
|S(t))− Sπ(t)|2p

]︃1/2
+K∆p/2

≤ C [K∆p]1/2 +K∆p/2 ≤ C∆p/2 . (2.42)

Continuing this way, we obtain for any positive integer k ∈ N,

I0≤t≤kb ≤ Cp,k,d,T∆
p/2 . (2.43)

Now, since T is finite, we can choose a k such that (k−1)b < T ≤ kb. This completes

the proof of the theorem. ■
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Bull. Inst. Math. Acad. Sinica, 32(2):71–95, 2004.
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Appendix A

Matlab codes to jump model used

in chapter 4

Formula used in first code

S(tk+1) = S(tk) ∗ (1 + g ∗ Yi) ∗ exp((α− fλ)∆) (0.1)

function

path=jump_delay(p,q,eta,phi,Nsteps,lambda,Npaths,T,S0,delay_fac,alpha)

n=zeros(Nsteps+1,Npaths);

for k=1:Npaths

for i=1:Nsteps+1

n(i,k)=poissrnd(lambda*i*(T/Nsteps));

end

end

function y = sigma(S0,x)

y=.15*sin(x/S0 );% .0224-.0222*x/S0);

end
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path=zeros(1,Npaths);

path(1,:)=S0;

if delay_fac>Nsteps

delay_fac=0;

else

delay_fac=delay_fac;

end

for k = 1:Npaths

for j=1:Nsteps

if j<=(delay_fac)

path(j+1,k)=path(j,k)*(1 +

.15*doubleexpo1(p,q,eta,phi,n(j+1,k)))*exp((alpha-lambda*.2)

*T/Nsteps);

else

path(j+1,k)= path(j,k)*(1 +

sigma(S0,path(j-floor(delay_fac),k))

*doubleexpo1(p,q,eta,phi,n(j+1,k)))

*exp((alpha-lambda*sigma(S0,path(j-floor(delay_fac),k)))

*T/Nsteps);

end

end

end

plot(0:T/Nsteps:T,path)

end

Function for generating double exponential process

function sum= doubleexpo1(p,q,eta,phi,Nsamples)
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r=rand(1,Nsamples);

Y=zeros(1,Nsamples);

sum=0;

for i=1:Nsamples

if r(i)<q

Y(i)=(1/phi)*log(r(i)/q);

elseif r(i)==q

Y(i)=0;

else

Y(i)=(1/eta)*log(p/(1-r(i)));

end

sum=sum+Y(i);

end

%plot(Y)

We also write the program to simulate geometric brownian motion

function Ssample = GeoBMPaths2(S0,nu,sigma,T,Nsteps,Npaths)

s = sigma*(T/Nsteps)^.5;

n = nu*T/Nsteps;

incr(1,1:Npaths) = S0;

incr(2:Nsteps+1,:) = exp(n+s*randn(Nsteps,Npaths));

Ssample = cumprod(incr);

plot(0:T/Nsteps:T,Ssample)

title(’sample paths of geometric Brownian motion’,’fontsize’,14);

ylabel(’value of sampled geometric Brownian motion’,’fontsize’,14);

set(gca,’fontsize’,14,’FontWeight’,’bold’);
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xlabel(’time’,’fontsize’,14);

Using below we can compare the call option prices among models considered

K=210.0:5.0:215.0;

prices=zeros(length(K),3);

%prices(length(K),1)=K;

for j = 1:length(K)

paths=GeoBMPaths2(209.11,.11,.15,6/12,6.5*60*22*6,200);

GeoBMPaths2(S0,nu,sigma,T,Nsteps,Npaths)

prices(j,1)=priceCall1(paths,K(j),.01,6/12);

prices(j,1)=Call_p_j_no_bm(0.60,0.40,12.8,8.40,2*6.5*60*

*22*6,.03,150,6/12,209.11,60*6.5,.11,.01,K(j));

prices(j,2)=Call_p_j_no_bm(0.60,0.40,12.8,8.40,4*6.5*60

*22*6,.03,150,6/12,209.11,60*6.5,.11,.01,K(j));

prices(j,3)=Call_p_j_no_bm(0.60,0.40,12.8,8.40,8*6.5*60

*22*6,.03,150,6/12,209.11,60*6.5,.11,.01,K(j));

Call_p_j_no_bm(p,q,eta,phi,Nsteps,lambda,Npaths,T,S0,delay_fac,

alpha,rho,K)

end

prices
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