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Abstract 

The comparison of several treatments is an important statistical problem 

especially in clinical trials. In this thesis, we use methods of sequential 

analysis to test the statistical mean difference of several treatments. Since 

sequential analysis could stop a trial earlier than a fixed sample test, ethi

cal and economic are the main reasons for using sequential analysis. 

This thesis compares several treatments that have independent normal 

responses with unknown a2. The methods used in the thesis are group 

sequential analysis and fully sequential analysis. Monte Carlo simulations 

are performed to carry out the sample size calculation while fixing the Type 

I error and the power. The main purse of the thesis is to find a relationship 

among these methods and the relationship between fixed-sample size and 

sequential maximal sample size. An application is presented later in the 

thesis to show the benefits of using sequential analysis. 
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Chapter 1 

Introduction 

The comparison of several treatments is an important statistical problem 

especially in clinical trials. Let J be the number of treatments, and suppose 

observations of each treatment are from normal distributions with mean 

fij, j — 1 , . . . , J, and variance a2. The null hypothesis can be written as 

H,o : iii = [i2 = ... = [ij, and it is tested against the alternative hypothesis 

Ha : not all means are equal. Various methods are used to test the equal

ity or statistical difference of several treatments: sequential analysis is one 

of them. There are two types of sequential analysis: (1) fully sequential 

analysis, in which data is analyzed after every new observation is allocated 

in the data set until the hypothesis selected, and (2) group sequential anal

ysis, in which interim analyses are performed. Since sequential analysis 

could stop a trial earlier than a fixed sample size test, the main reasons for 

using sequential analysis are ethical and economic. 
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Group sequential analysis can be performed in two different ways. One is 

the original group sequential analysis, which is designed to fix the number 

of analyses K in the design stage and requires approximately even observa

tions in each group. The original sequential tests can get the overall Type 

I error (selecting Ha when HQ is true) very close or equal to the required 

Type I error a. But, as group size (sample size for each treatment at each 

stage) becomes more and more uneven, the original sequential tests cannot 

guarantee Type I error will be equal or close to a. In this case, another 

method is needed. Flexible group sequential analysis uses the error spend

ing approach (see Lan & DeMets (1983) or Jennison k, Turnbull (2000) 

Ch. 7. for details) to deal with unpredicted group size and guarantee Type 

I error exactly equal to a. This method does not require the number of 

analyses K to be fixed in advance and also does not require a roughly equal 

group size for each group. Since the original group sequential analysis is 

the common method usually used by statisticians in analyzing data, it is 

more valuable to use the original group sequential analysis in this thesis 

than the flexible method. 

This thesis compares several treatments that have independent normal re

sponses with unknown a2. In sequential analysis, the sample size needed to 

reach the required power is an important issue. Monte Carlo simulations 

are performed to carry out the sample size calculation. Different methods 
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of sequential analysis are evaluated while fixing the Type I error a and the 

required power (selecting Ha when Ha is true) at different levels of treat

ment differences with unknown a2. The main purpose of the thesis is to 

find a relationship between fixed-sample size and sequential maximal sam

ple size, and to compare the maximal sample sizes and average stopping 

times of different methods. Fixed-sample size is the number of observa

tions needed to obtain the required power and type I error when analyzing 

the whole data set at one time. The maximal sample size is the necessary 

maximum sample size to obtain the required power and type I error when 

using sequential methods. In sequential analysis, the sample size at which 

decision is made is a random variable, and these methods are evaluated 

using the average stopping time, the expected sample size when reaching 

the conclusion (reject Ho). The author is also interested in comparing the 

effectiveness of fully sequential tests and group sequential tests. 

Chapter two compares two treatments. The fixed-sample size calculation 

will be presented first. In group sequential tests, the theory of O'Brien & 

Flemming (OBF) (OBF (1979)) and Pocock (Pocock (1977)) tests will be 

introduced under known and unknown a2. Rao test (Gombay &; Hussein 

(2006)) will be used in the fully sequential analysis. In the simulation, 

patients are allocated to one treatment with allocation rate of 0.5; Hence, 

the sample size for each treatment in each stage is not exactly the same. 

The power and the Type I error are fixed to 0.9 and 0.05, respectively. The 
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simulation is based on 10,000 replicates to get the maximal sample sizes 

and average sample sizes at mean differences 6 = 0.1, 0.2, 0.5, and 0.9. 

For group sequential tests, the number of analyses K are set to K = 5 and 

K = 20. The simulation algorithm and results are given as well. 

Chapter three introduces a multi-treatment comparison. The author presents 

an approximate method (Chow, Shao, and Wang (2003)) and an exact 

method (Guenther(1977)) to carry out fixed-sample size calculations. OBF 

and Pocock tests are still used for group sequential tests under known and 

unknown a2 (Jennison & Turnbull (2000)). The sequential F-test (Sieg-

mund (1980)) and the Rao tests 1 and 2 (Gombay & Serban (2007)) are 

used in fully sequential analysis. In the simulation, patients in each treat

ment in each stage are exactly the same for both group sequential and 

fully sequential analyses. The power and the Type I error are fixed to 

0.8 and 0.05, respectively. The simulation is based on 5,000 replicates to 

get the maximal sample sizes and average sample sizes at mean differences 

5 = 0.2, 0.4, 0.6, and 0.8. Here, the definition of 5 is different from that in 

Chapter two (see Ch. 3. for details). For group sequential tests, the num

ber of analyses are set to K = 5 and K = 10. The simulation algorithm 

and results are also given. Finally, the author presents an application to 

show the benefits of using sequential methods. This application compares 

the equality of three treatments for an orthodontic clinical trial. The re

sults show that all sequential methods could stop the trial earlier and get 
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the same conclusion. 

We will be using the following notations. 

n/=fixed-sample size for each treatment, 

JV/=fbced-sample size for all treatments added, 

n.o=the maximal sample size for each treatment, 

N0=the maximal sample size for all treatments added, 

avst=ihe average stopping time for each treatment, 

and AVST=the average stopping time for all treatments added. 

In other words, let J be the number of treatments, then Nf = rif * J, 

AVST = avst * J, and No = no * J, if the number of treatments is greater 

than two. The relationships of the above formulas are not satisfied when 

the number of treatments is two because in two-treatment comparison, 

sample sizes for each treatment are not exactly the same in this thesis. 
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Chapter 2 

The Comparison of Two 

Treatments with Normal 

Response 

This chapter is to review the work by Gombay k, Hussein (2006) for two-

treatment comparison. 

2.1 Fixed-Sample Size Calculation 

For two treatments A and B, n patients are allocated to each treatment. 

Let XAI and XB% be the responses of patients receiving the two treatments, 

respectively, i = 1 , . . . , n. Suppose XA% are normally distributed with mean 

HA and variance a2, which we write XAI ~ N(IJ,A,<J2), i = 1 , . . . ,n. Like-
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wise, suppose XB% ~ N(fj,B,a2), and all observations are independent. 

The null hypothesis is H0 : HA — MB, and the alternative hypothesis is 

Ha : HA. ¥= HB or Ha : /J,A — (J.B = Q = ±5. A Type I error a is the probabil

ity to reject Ho when H0 is true. Power 1 — /3 is the probability to reject 

H0 when Ha is true, where (3 is a Type II error (selecting H0 when ifa is 

true). If we want to detect the difference at \HA ~ Ms I = 5 with given type 

I error a and power 1 — /3, 

a —P(reject HQ when H0 is true)= Pe=o(|-^A — XB\ > c) 

pi \XA-XB\ > c 

sfhFfn ~ y/2o*/r, 

c $-\l-a/2), (2.1.1) 

1 — /3 =P(reject H0 when Ha is true)= Pg=s(\XA — XB\ > c) 

pAXA-XB\-S > c-6 \ 

= - * _ 1 ( 1 - /3 ) , (2.1.2) 

where $ denotes the standard normal cumulative distribution function 

(cdf). From the formulas (2.1.1) and (2.1.2), the necessary sample size 

is 
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Under Ho, the statistic has standard normal distribution. In other words, 

1 n n 

Z = - = = ( X) ^ , - X ; ^ ) ~ i V ( 0 , l ) and n = n7. 
VAna i=1 i=l 

Rejection rule of fixed-sample test: reject H0 if \Z\ > $ - 1 ( l — a/2); 

otherwise, fail to reject H0. 

2.2 Group Sequential analysis 

Group sequential analysis has good features such as early stopping, and 

the data is analyzed at intervals rather than after every new observation 

(Jennison k Turnbull (2000)). 

For the original group sequential tests, the most important group sequen

tial analysis came from Pocock (1977) and OBF (1979) tests. In a two-

treatment comparison, choose the number of interim analyses K and a 

group size m. In each interval or stage k, k = 1,2,3,. . . , K, m new obser

vations are allocated in treatment A, and another m new observations are 

allocated in treatment B. Note that group size m and K are determined by 

the power requirement. The analysis proceeds on the accumulating data 

after 2m new observations are allocated in the two treatments. A standard-
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ized statistic Zk (k = 1,2,... ,K) is calculated using the first k groups of 

observations. If Zk is greater than or equal to the critical value Ck, which is 

calculated based on the type I error a, HQ is rejected after the kth analysis 

and the analysis stops at this stage. If Zk is less than c/. for all k, H0 is 

accepted after the last analysis. 

We will introduce some concepts of Pocock and OBF sequential analysis 

methods under known and unknown a2. 

2.2.1 Pocock and OBF Tests - When a2 is Known 

We first focus on the simplest case when the number of patients is the same 

for each treatment in each stage. 

Pocock Test 

For two treatments A and B, m patients are allocated to each treatment in 

each stage, and the analysis will proceed at each stage for the accumulated 

data set. K, the maximum number of stages, is chosen before the patients 

are assigned in the sequential study. Let XA% and XBi be the responses 

of subjects receiving the two treatments, i = 1 , . . . , and XA% and XBi are 

normally distributed with same variance a2 and means [iA and fiB, respec

tively, that is XAi ~ N(fj,A, a2) and XBi ~ N(fj,B, o"2), and the observations 

are independent. 
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As Jennison & Turnbull (2000) explain "Pocock adopted the idea of a 

'significance test' at a constant nominal significance level to analyze the 

accumulating data at a relatively small number of times over the course of 

a study". Hence, the critical value Ck — Cp(K,a) is a constant across all 

k intervals when K and a are fixed. The standardized statistic after each 

group of observations is 

1 mk mk 

The Value of Cp(K, a) is calculated using the following formula to obtain 

the required type I error a, 

Ps=o{\Zk\ > ck for some k = 1,..., K) = a. (2.2.2) 

The test rule of Pocock test: 

after group k = 1,..., K — 1: 

if \Zk\ > Cp(K,a) => stop, reject H0, 

otherwise => continue to group k + 1; 

after group K: 

if \ZK\ > Cp(K,a) => stop, reject H0, 

otherwise => stop, accept Ho

ld 



Constants Cp(K,a) are displayed in Table (4.1) in the appendix for the 

Type I error a = 0.01, 0.05, and 0.1 (Jennison & Turnbull (2000) or 

Pocock (1977)). 

When testing the statistical difference of two treatments, one of the impor

tant properties of Pocock test is the great opportunity for an early stop. 

OBF Test 

Instead of using a 'significance test' at a constant nominal significance level 

to analyze the accumulating data, OBF test uses increasing nominal signif

icance level as the study progress to analyze the accumulating data. Hence, 

one of the main properties of OBF test is that it is more difficult to reject 

Ho at early analyses but easier later on. Ck — CB(K, a)y/K/k is decreasing 

with k when K and a are fixed, and the value of CB{.K,O) is calculated 

using equation (2.2.2) to obtain the required type I error a. 

The test rule of OBF test: 

after group k = 1,..., K — 1: 

if \Zk\ > CB{K,a)\/K/k => stop, reject H0, 

otherwise => continue to group k + 1; 

after group K: 

if \ZK\ > CB{K,OI) =>• stop, reject H0, 
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otherwise => stop, accept H$. 

Values of Cs(K,a) which ensure an overall Type I error probability a 

(0.01, 0.05, and 0.1) are provided in the appendix Table (4.2) (Jennison & 

Turnbull (2000) or OBF (1979)). 

2.2.2 Group Sequential t-tests - When a2 is unknown 

Now consider two-treatment comparison when a2 is unknown. Let XA% and 

Xgi be the responses of subjects receiving the two treatments, % = 1 , . . . , 

and XA% and XBi are normally distributed, ie. XAi ~ JV(/^4,c2) and 

XBI ~ N(fj,s, c2), i = 1, • • •, and the observations are independent. We are 

interested in testing the null hypothesis H0 : /AA = nB, and the alternative 

hypothesis Ha : HA i^ As with type I error a and power 1 — /3 at specific 

difference S = \fj,A — A*B|- Some definitions, such as m, the group size, are 

the same as the previous definitions. The t-statistic after each group of 

observations is 

Tk = ^XALj^^i, k = l,...,K, (2.2.3) 
y/2mksf. 

where 

,2 _ Et\(xAi - xff + £g(xa - xPf 
Sk 2(mk- 1) • (2>2-4) 
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X\' and XB' are the means of XAX,..., XA,mk and XB1,..., XB,mk, re

spectively. Tk has a marginal t2mfc-2 distribution, which means Tk has 

t-distribution with degree of freedom 2mk - 2. 

To test the null hypothesis, we need to specify the critical values for 

each group analysis. Pocock (1977) suggested using the two-sided sig

nificance levels, 2(1 - $(cfc)), defined for the Z-statistics but apply these 

to the ^-statistics TI,...,TK- Denote tVtq. the upper q quantile of a t-

distribution on v degree of freedom, which means P(T > tVig) = q when 

T ~ tv. When a2 is known, the two-sided significance levels is deter

mined by P(\Zk\ > Cfc) = 2(1 — $(cfc)). Hence, when a2 is unknown, 

we modify the critical values Ck using the i-distribution so that we get 

P(\Tk\ > t2mk-2,l-Hck)) = 2(1 - $(Cfc)). 

The test rule: 

we reject H0 at analysis k if 

\Tk\ > i2mfc-2,l-*(cfc)) 

and we accept H0 if Ho has not been rejected at analysis K, where Ck is 

the critical values defined by Pocock or OBF. 
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2.3 Fully Sequential Analysis—Sequential Rao 

Test 

The sequential Rao test was first suggested by Gombay (2002). The test 

of two-treatment comparison is proposed by Gombay and Hussein (2006). 

Data is analyzed after every new observation. For the two treatments A 

and B, let XA% and XBJ be the independent responses, and assume that 

XAI and XBJ have N([iA,a2) and JV(JUB,CT2) distributions, respectively, 

i = 1 , . . . , and j — 1 , . . . . Patients are allocated to treatment A with prob

ability u and patients are allocated to treatment B with probability 1 — u. 

At stage k, we have n patients in treatment A, and n' patients in treatment 

B, and k = n + n'. Then n is a random variable that has binomial(fe, u) 

distribution. Denote JV0 the maximal sample size (or truncation point) for 

the total of the two treatments, which means the test should stop if N0 

observations have been obtained. 

The null hypothesis is HQ : HA = MB, and the alternative hypothesis is 

Ha '• VA 7̂  MB with c2 unknown. 

Sequential Rao Test: 

we reject H0 at stage k if (k/No)1/2(R*k)
1/2 > CV(a), fc = 2 , 3 , . . . , JV0; oth

erwise fail to reject Ho, where a is a level a of the test, and R% is defined 

by (2.3.1) and (2.3.2), 
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y_(w£Z..i**-" ,S?li*fli)a 

(n + n'jnn'ak 

-2 _ ^"=1 XAi + Z)"=i ^"Ij _ / YA=I
 xAi + YTj=i xBj \ 2 

°"fc ~ n + n' \ n + ri J 

It was proven in Gombay and Hussein (2006) that (A;/iVo)1/2(^)1/2, k = 

1 , . . . , TVo, is well approximated by a Brownian motion B(t), 0 < t < 1. 

So, the critical value CV(a) can be approximated using the well known 

distribution (see for example Csorgo and Revesz (1981)) 

1 - P[suPo<t<lli?(0| > y] =^p^eM~*2{f/ 1)2)" (2-3>3) 

The sum term of (2.3.3) is from zero to infinity, but k = 5 is sufficient for 

the calculations. Let y on the right hand side of the equation be a sequence 

from the ranging 1.5 to 3 by 0.001, and calculate the right hand side of the 

equation and get a sequence of 1 — p. The left hand side of the equation 

1 — p is equal to 1 — a. Choose the critical value y, which is corresponding 

to the value of a. Table (2.1) shows the critical values CV{a) for different 

levels of significance (a = 0.01,0.05, and 0.1). 

(2.3.1) 

(2.3.2) 
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Table 2.1: Critical value for different type I error 

a 
0.01 
0.05 
0.10 

CV{a) 
2.807 
2.241 
1.960 

2.4 Simulation Procedure and Results 

2.4.1 Simulation 

In the simulation, let the outcomes of treatment A be distributed as N([J,A, O2) 

and the outcomes of treatment B be distributed as N(fj,g,a2). The allo

cation rate is u = 0.5 for the three sequential tests, Pocock test, OBF 

test, and sequential Rao test. Denote AVST the average stopping time 

(or Average Sample Number) for two treatments added and <5 = \(JLA — MB I 

the mean difference. The power and the Type I error are fixed to 0.9 and 

0.05, respectively. The mean differences are set to be 0.1, 0.2, 0.5, and 

0.9. For Pocock and OBF tests, we consider K = 5 and 20. Through the 

simulation, we can get JVo and AVST and also get the empirical size a 

at the given maximum sample size NQ. ^ is calculated for the purpose 

of comparing the relationship between the fixed-sample size Nf and the 

maximum sample size NQ. 

In the Pocock and OBF simulation, the group sizes are slightly different 
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for treatment A and treatment B since we set the allocation rate u to 0.5; 

hence, in the simulation, T\. in (2.2.3) and s\ in (2.2.4) cannot be used. Let 

us take a group sequential test with five groups of observations (K = 5) as 

an example. Suppose we set iVo = 100. Then for each group analysis stage, 

we need additional 100/5=20 patients together in treatments A and B. The 

number of additional patients allocated to treatment A is binomial(20,0.5). 

In each group analysis stage, let p be the number of additional patients ob

served to treatment A, q be the number of additional patients observed to 

treatment B , and p + q = 20 should be satisfied. At stage k, we have 

n patients in treatment A and m patients in treatment B. The t-statistic 

after each group of observations is 

21 = *A~** , (2.4.1) 
•\/(m + fi)symn 

where 

st = ^To(D** - £0" + D*« - *B?). (2.4.2) sl — ^v 
* n+m-2 = 1 2 = 1 

XA and XB are the means of XAI, • • •, XA,U and XBI, • • •, XB,m, respec

tively. Tfe has a marginal tn+m-2 distribution, which means 71 has t-

distribution with degree of freedom m + n — 2. Note that formulas (2.2.3) 

and (2.2.4) are the special cases of (2.4.1) and (2.4.2), respectively. 

The test rule: 
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we reject HQ at analysis k if 

\Tk\ > tm+n-2,l- *(<*)» ( 2 - 4 - 3 ) 

and we accept H0 if HQ has not been rejected at analysis K, where Ck is 

the critical values defined by Pocock or OBF. 

2.4.2 Algorithm 

This simulation involved generating observations for the two treatments A 

and B with normal responses, and mean vector of the two treatments is 

V — (fJ'A, Ate)*- We set n = (0, Hsf, where \xB is determined by the value of 

5 and 5 = \HA — ̂ B\- When simulating the responses of the two treatments, 

we simply set JJ,B = S and a2 — 1. 

Group Sequential Analysis 

1. Set K = 5 or K = 20, and the initial value No which is equal to the 

fixed-sample size Nf. Nf is used as starting point for the calculation 

ofN0. 

2. Calculate the number of patients for each stage using NQ/K, and if 

NQ/K is not an integer, then the number of patients in each stage is 
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the smallest integer not less than the corresponding NQ/K. Denote 

the number of patients for each stage by nts. Hence, in software R, 

the program language is written as nts = ceiling(N0/K). 

3. Generate patients for each treatment at each stage (starting at k = 1). 

With probability (allocation rate) 0.5, p of nts patients are allocated 

to treatment A, and q (q = nts — p) patients are allocated to treat

ment B. Hence, p is distributed as binomial (nts, 0.5). In software R, 

generatep usingp = rbinom(l,nts,0.5), and then q = nts—p. Also, 

the responses of treatments A and B have JV(0,1), and N(HB, 1) 

distributions, respectively. At stage k, n patients are allocated in 

treatment A, and m patients are allocated in treatment B. 

4. Calculate s\ and Tk according to the equations (2.4.2) and (2.4.1). 

5. Compare \Tk\ with tk = £m+ra-2,i-*(cfc) according the equation (2.4.3) 

when k < K. If \Tk\ > tk, reject H0; otherwise, continue to assign 

another nts patients for the two treatments, and redo steps 3, 4 and 

5 for stage k + 1. 

6. Calculate the simulated power based on 10000 replicates. If the power 

is far below the required power 0.9, increase No, and find the maximal 

value of NQ until the simulated the power is just below 0.9. Calculate 

AVST. Record the values of the final N0, power and average stopping 

time AVST as n\, pwl and Enl. Continue to increase NQ, and find 
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the minimal value of No until the simulated power is just over 0.9. 

Calculate AVST. Record the values of the final No, power and AVST 

as n2, pw2 and En2. 

7. Calculate N0 and AVST using the linear interpolation method (This 

method can be found in any numerical analysis text book, eg. Burden 

& Faires (2001)). According to this method, 

nl - N0 pw2 - 0.9 , En2 - AVST pw2 - 0.9 
= , and = . 

n2 — nl pw2 — pwl En2 — Enl pw2 — pwl 

Hence, N0 = (0.9 - pw2)(n2 - nl)/(pw2 - pwl) + n2 and AVST = 

(0.9 -pw2)(En2 - Enl)/(pw2 - pwl) + En2. 

8. Simulate a. The empirical size a is simulated using the maximal 

sample size -/V0 which is calculated in step 7. Redo steps 2, 3, 4, and 

5. But, in step 3, the distribution for the treatment B should be 

changed to treatment B ~ N(0,1). Then calculate the a. 

Sequential Rao test 

1. Set initial iVo which is equal to the fixed-sample size Nf. 

2. Generate an observation from £7(0,1), the uniform distribution on 

(0,1). Let Uk ~ i7(0,1). link > 0.5, allocate this patient to treatment 

A; otherwise, allocate this patient to treatment B. Again, treatments 

A and B have iV(0,1) and N(fj,B, 1) distributions, respectively. 
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3. Once there is at least one patient in each treatment, calculate a% and 

Rl according to the equations (2.3.2) and (2.3.1). 

4. Compare Rk = (fc/JVo)1/2^*)1^ with the critical value CV{a) (see 

table (3.1)). If Rk > CV(a), reject HQ; otherwise, continue to include 

another patient according to step 2, and redo steps 3 and 4. 

5. Same procedures as steps 6, 7, and 8 in group sequential analysis. 

2.4.3 Results 

The simulation results are shown in Table (2.2). Prom Table (2.2), we can 

compare the three different methods based on the maximal sample size iVo, 

the ratio of NQ and Nf, and the average stopping time AVST under the 

fixed power (0.9) and the level of significance (a = 0.05). RT denotes the 

ratio of No and Nf, and RTX means the ratio of No and Nf using x method. 

• Since RTOBF < RTp0cock> the maximal stopping point iV0 of OBF 

test is smaller than that of Pocock test. For given the same 5, RT of 

K = 5 is smaller than RT of K = 20, but AVST of K = 5 is greater 

than AVST of K = 20 for both OBF and Pocock tests. 

• Pocock test has the highest value of RT (only except for 6 = 0.9 of 

Rao test, in which RT is just slightly higher than RT of Pocock), 
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Table 2.2: Simulation results for comparison of two normally distributed 
two-treatment. Set a — 0.05,1 — (3 = 0.9, allocation rate u = 0.5 

~K & 6 AVST A^ JVo RT = $• 

OBF 
20 
5 
20 
5 
20 
5 
5 

0.046 

0.050 
0.046 
0.049 

0.046 

0.048 

0.053 

0.1 
0.1 
0.2 
0.2 
0.5 
0.5 
0.9 

3036.26 

3117.76 
766.21 

798.06 

125.77 

128.91 
42.02 

4204 

4204 

1052 
1052 

170 
170 
52 

4513.00 

4250.18 
1138.18 

1087.47 

185.00 
175.04 

55.97 

1.07 

1.01 
1.08 
1.03 

1.09 

1.03 

1.08 

Pocock 

0.045 

0.049 

0.049 
0.051 
0.051 

0.047 

0.051 

0.1 
0.1 
0.2 
0.2 
0.5 
0.5 
0.9 

2808.57 

2901.23 

699.93 

726.88 
116.77 
119.24 

39.51 

4204 

4204 
1052 

1052 

170 
170 
52 

5633.48 
5124.92 

1391.85 
1276.56 

228.81 

207.99 
66.69 

1.34 

1.22 

1.32 

1.21 

1.35 

1.22 

1.28 

Rao Test 

n0 0.051 0.1 2922.54 4204 4465.58 1.06 
n0 0.050 0.2 728.18 1052 1127.32 1.07 
n0 0.049 0.5 123.76 170 188.12 1.10 
n0 0.075 0.9 40.42 52 67.07 1.29 
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which means this test needs the largest maximal stopping point No, 

but Pocock has its advantage, in which it has the smallest average 

stopping time among these three methods for given same S. 

• OBF test has relatively small value of RT compared with Pocock test 

for each $, small value of RT compared with Rao test when 5 is high, 

and similar RT with Rao test when 5 is small. But, OBF has the 

highest average stopping time among these three methods. 

• The average stopping time of Rao test is between that of OBF and 

Pocock tests. RT of Rao is getting larger as 5 increases . 

• In terms of empirical significance levels, a of OBF, Pocock, and Rao 

tests are all approximately equal to 0.05, only except for 6 = 0.9 of 

Rao test. 
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Chapter 3 

The Comparison of 

Multi-Treatment with Normal 

Response 

The following methods focus on simultaneous comparison of means of J 

univariate normal distributions, where J is the number of treatment arms. 

3.1 Fixed-Sample Size Calculation 

3.1.1 The Approximate Method 

We are interested in the simultaneous comparison of the means of J univari

ate normal distributions. For treatments 1,2,..., J, we allocate n patients 

to each treatment. Let X^ be the ith subject from the j t h treatment arm, 
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i = l,...,n, j = 1 , . . . , J. 

The approximate method to calculate fixed-sample size for power require

ment can be found in some undergraduate text books, e.g. by Chow, Shao, 

and Wang (2003). Let us consider the multiple-sample one-way ANOVA 

test first. The one-way analysis of variance model is 

where /ij is the fixed effect of the j t h treatment and e^ is a random error 

in observing Xji. It is assumed that £j, ~ (0, a2). So, the sum squares of 

error is 
J n 

2 xi-i » 

and the sum squares of treatments is 

SST = J2(xj.-x..f 

where 
1 " 1 

XJ = -J2X^
 and x- = jJ2 

For simultaneous comparison, the hypotheses of interest are 
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Ho : Mi = A*2 = • • • = M J 

Ha'- Hii1 IJ'j for some i and j , 1 < i < j < J. (3.1.1) 

The null hypothesis H0 is rejected at the a level of significance if 

FA = 
nSST/(J - 1) 

SSE/[J(n - 1)] 
rrr > F*,./-i,J(n-i), 

where -Fa.j-i.JXn-i) is the a upper quantile of an F-distribution with J — 1 

and J(n — 1) degrees of freedom. Under the alternative hypothesis, the 

power of this test is 

P(F > F , ^ - P(^ST/(J-1) > F , \ 

(i) ,nSST/(J-l) 2 N 
FUs£/[J(n-l)]>X«'J- l / (J 1}J 

S p(nSSr/(J - 1) > o\l,j-J{J - 1)) 

= P(nSST/a2 > Xl,j-i), 

(3.1.2) 

in which, (1) uses the approximation (J — l)-Fa,7-i,J(n-i) ~ X« j - i when 

J(n — 1) is large and \2
a j _ i is the upper a quantile for a x2 distribution 

with J — 1 degrees of freedom, and (2) uses the fact that SSE/[J(n — 1)] 

is approximately a2. So, under the alternative hypothesis, nSST/a2 is a 

non-central \ 2 distribution with J —1 degrees of freedom and non-centrality 
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parameter A = nA, where 

j 1 J 

3=1 3=1 

So, in order to achieve power 1 — /3, the sample size needed can be obtained 

by solving 

where Xj-iH-V) is the cumulative distribution function of the non-central 

X2 distribution with J — 1 degrees of freedom and non-centrality parameter 

A. Different power, different significant level and different number of treat

ment groups will give different values of A. The values of A for different 

power (0.80 and 0.90) with different significant level (0.01 and 0.05) for 

different number of treatment groups (J = 1,..., J = 20) are listed in Table 

(4.3) in the appendix (Chow, Shao, and Wang (2003)). Once A given, we 

can obtain A from Table (4.3) in the appendix, and the required sample 

size as 

n = n/ = A/A. (3.1.4) 

3.1.2 T h e Exact m e t h o d 

When comparing several treatments, the power of the tests about the 

means depends on a noncentral F distribution, which is determined by 

the degrees of freedom but also by the noncentrality parameter. Several 
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tables and graphs are available for calculating the power of the test. The 

most troublesome in evaluating the power is the noncentrality parameter 

which is a function of the unknown parameter a. It is usual to calculate 

the power and to solve for the sample-size based on differences between 

hypothesized and alternative values of means selected as multiples of a. 

This choice eliminates a from the noncentrality parameter. An alternative 

way to eliminate a is proposed by Guenther (1977), and is, perhaps, more 

intuitively appealing. In his paper, the form of the alternative hypothesis 

gives one or more means as the quantile of order p of a distribution with 

another mean. In our thesis, we choose the method of Guenther (1977). 

The details and explanation are as follows. 

Suppose we are interested in testing the hypotheses of (3.1.1) and seeking 

the power when some means are equal to quantiles of order p of distribu

tions with other means. Tables and graphs are available for the calculation 

of the power (eg. Odeh and Fox (1975)), and we need 

^=[7X>-A)2]1 7V, (3-1.5) 

where n is the sample size for each group, and n = n\ — n^ = ... = nj. 

However, our goal is to fix the power first and then try to find the sample-

size. The following example explains the method. Suppose we have three 
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treatments, J = 3, and we want to test 

H0 : \i\ = fi2 — M3 against Ha : not all means are equal 

with a = 0.05. We seek the minimum n at 1 — (5 = 0.8 when two 

means are equal and the third mean is the quantile of order 0.20 for 

the first two distributions. Then, ji\ = \x2, (^3 - Mi)/c — ^0.20, where 

Zp is the upper quantile p of a standard normal distribution. So, p, = 

Mi + Z0.20(cr/3), and £j=i(Mj - p,)2 = \ZlStaa
l. Solving (3.1.5) for n, we 

get, 

n=[o3 /5>J-/i)a].7^, 

which for our problem reduces to n = ;M— = 6.353^)2. We note that the 

degrees of freedom for the denominator of the F ratio is v^ = n J — J, and 

then we have n = (y^jJ) + 1. The degrees of freedom for the nominator 

of the F ratio is v\ = J — 1. For given n and power, we read <j) using 

Lehmer (1944) Tables. If we choose v2 — 00, n = 00, we read 0 = 1.792 

and compute n = 20.4 < 00. With v2 = 80, n = 27.6, we read <f> = 1.83 

and compute n = 21.27 < 27.6.With v2 = 60, n = 21, we read 0 = 1.838, 

and compute n = 21.46 > 21. Hence 21.27 < n < 21.46, and n=22 is the 

minimum sample size for each treatment. Hence, n/ = 22 for this case. 
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3.2 Group Sequential Analysis 

Now, we are interested in comparing the means of J univariate normal 

distributions using group sequential analysis, where J > 3 (see Jennison 

& Turnbull (2000)). Independent observations are available from each arm 

j = 1 , . . . , J, and assumed to be distributed with N(jij, a2). The group 

size is g. For j — 1 , . . . , J and k = 1 , . . . , K, denote Xjk, the sample mean 

of the rik = gk responses from treatment arm j available at stage k. Also, 

denote s2,, the pooled within-arms estimate of a2 available at stage k. 

3.2.1 Group Sequential Chi-Squared Tests-When a2 

is known 

When a2 is known, we can consider group sequential test based on moni

toring successive x2 at each stage k to test the hypothesis of homogeneity 

of J normal means, HQ : \i\ — \ii = ... = / i j . The statistic is 

j 

Sk = ~^(Xjk-X.k)
2, k = l,...,K. (3.2.1) 

Here, nk = gk, the cumulative sample size on each arm, and 

1 J 
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is the overall mean at stage k. 

Sk has x2 distribution with J — 1 degrees of freedom and noncentrality 

parameter 
j 

where p, = j ]Cj=i /•*?• We reject i?o if Sk > Ck, at some fc, fc = 1 , . . . , K, 

and accept H0 if SK < CK at the final stage K. c\,..., CK are critical values 

to satisfy a specified Type I error probability a. 

For Pocock test, with the constant nominal significance levels, set Ck = 

Cp(p,K,a), for k = 1,...,K, where p = J — 1. For OBF test, set 

Ck = (K/k)CB(p,K,a), for k = 1,...,K. Values of Cp(p,K,a) and 

CB(P,K,OI) for a = 0.05, K = 1 , . . . , 10, and J = 2 , . . . , 5 are shown 

in Table (4.4) in the appendix (Jennison & Turnbull (1991)). 

3.2.2 Group Sequential F-Tes ts -When a2 is unknown 

When a2 is unknown, a2 in ( 3.2.1) is replaced with its current estimate 

si. Then we can monitor the F-statistics 

j 
F ^ f / n 8 2 E f e - ^ k = l,...,K, (3.2.2) 
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where 

where Xf = -7- Y ^ , Xu. Under the null hypothesis H0 : ix\ = 1x1 = • • • — 

^ j , Ffe has an F distribution with degrees of freedom on J—1 and J(nk — 1) 

. H0 is rejected if Fk > Ck at some stage k, 1 < k < K, and accepted if 

FR < CK at the final stage K. The critical values, ci, C2,..., c^, can be 

approximately obtained by using the significance level approach introduced 

in section (2.2.2). Then the values of Cfe satisfy 

i ^ - V ^ - i ) > ck) = a'k, k = l,...,K, (3.2.4) 

where FVl^2 denotes an F-distribution with degrees of freedom on V\ and 

v2 and a'k is the nominal significance level at stage k of a group sequen

tial x2 test. The values ak (k = 1,...,K) can be found using constants 

CP(p, K, a) or CB(p, K, a) in Table (4.4). 

3.3 Fully sequential Analysis 

Assume there are J groups (treatments), and the observations are made 

sequentially on vectors Xk = ( X i ^ X ^ , . . . ,Xjkf, k > 1, where Xjk is 

the kth observation from group j . The observations are independent and 
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normally distributed, i.e. 

Xjk iid N(fij,a2), for all k > 1, j = 1 , . . . , J. 

We are interested in testing (3.1.1) again. The following two sections will 

introduce the methods to test the hypotheses. One method is sequential 

F-test using log likelihood ratio statistic, which is proposed by Siegmund 

(1980). The other method is using Rao's statistic, which involves two tests, 

Rao test 1 and Rao test 2 proposed by Gombay (2002) (or see Gombay k. 

Serban (2007) for details). 

3.3.1 Sequential F-test 

Denote group sample means as Xj_ = | £^ = 1 Xji, and the overall sample 

mean as X„ = jjYlj=i^2i=i^ju f°r j — 1,...,«7 based on k observa

tions in each group. The log likelihood ratio statistic for testing the equal 

treatment means is 

k4l^i+wkf^ p-3-1' 
where 

„ * £ / = ! & • - * - ) 2 / ( . 7 - l ) , , _ 

Fk has an F-distribution with degrees of freedom J — 1 and J(k — 1) under 

Ho and the proof is as follows. 
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Proof: 

Under Ho, Mi = M2 = • • • = /V = M> 

as 

Xjk iid N(n, a2), for all k > 1, j = 1 , . . . , J, 

we have 

^EE(^-^-)2~xVi)- (3-3-3) 
j = i «=i 

Also, as 

Xj, iid N(n, a2/k), for all k>l, j = 1,.. . , J, 

we get 

-L.J2(X,-Xf~XU. (3-3.4) 
' j = i 

Since £ / = 1 £ t = i P ^ -X,-.)2 in (3.3.3) and £/=i(-fy - X . ) 2 in (3.3.4) are 

independent, 

J / Y Y ^2 , 

Ffe = 
( 3 . 3 . 4 ) / J - I feE;=1(^.-^..)2/(^-i) 

(3.3.3)/ J(* - 1) £ / = 1 ^ = 1 ( ^ - * ; . ) 7 ( ^ - 1))' 

Hence, 

It is convenient to use the following definition to do the test. Define 

/2 = 7 Z)/=i Mj a nd aj = fi-fij. Then E(Xj]e) = p, + aj: with X)/=i «j = 0. 
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Then, the expression of the hypotheses can be equivalently written as 

j J 

H0 : Y^tf = °> a9aist HA- Yltf > °- ^3'3-5) 

Sequential F-test: Given integers k0 < n0 and constants 0 < c < a, stop 

sampling at min(T,no), where 

T = inf{k : k > ko, Lk > a}, 

and reject f/o if either T < no and Lno > c. 

The role of c is that if no rejection happened until the final stage no using 

the fully sequential analysis (ie. using criterion Lno < a), then we add a 

fixed-sample test at the end of analysis using c as the critical value. Note, 

that c < a. In order to be consistent with the other sequential analyses, 

we set c = a. 

Then, the sequential F-test becomes: 

given integers k0 < n0 and constants 0 < a, stop sampling at min(T,n0), 

where 

T = inf{k : k > k0, Lk > a}, 

and reject H0 if T < n,Q. 
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According to Siegmund (1980), the power of the test depends on 

S=-(koc*y\ (3.3.6) 

which is the square root of A defined in (3.1.3) 

Then, the power function of the test is given by 

Ps{T < n0). 

It is very difficult to get an exact value of the power function for J > 

3. Siegmund (1980) provided an approximate method to calculate the 

constant a to obtain a level of significance a, and it is 

anP0(Lko>a) + P0{k0<T<n0). (3.3.7) 

The first term on the right-hand side of equation (3.3.7) can be obtained 

directly from tables of F-distribution, and it can be written as 

P0(LkQ >a) = P0(Fko > [eWJ - 1]J^~^), (3.3.8) 

where Fko is distributed as an F-distribution with degrees of freedom J — 1 

and J(k0 — 1) under the null hypothesis. The proof of equation (3.3.8) is 

as follows. 
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Proof: 

From equation (3.3.1), we get 

Then, 

Po(Lko>a) = P0(^.lOg{i+j^Fk0}>a) 

= P0(Fko>le^-l]^±). 

(3.3.9) 

From Siegmund (1980), the second term on the right-hand side of equation 

(3.3.7) is approximated as 

Po(fco < T < n0) » 2 e - a ( ^ ) ( J - 1 ) / 2 { r ( ^ ) } - 1 

p]>i 2 2 

x xJ-2vj{x){l + ^-)ll2{log{l + ^-)}^dx, (3.3.10) 

where 

vj{x) « exp{-0.583x(l + ^ - ) - 1 } , 

Zl = ]/J{eXP^ ~ 1}' /2 = \/J{eXP0 ~ 1}' 
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and r(-) is the gamma function defined by 

/•oo 

T(z) = / tz~l 

Jo 

oo 

e-'dt. 

3.3.2 Tests Based on Rao's Statistic 

Let Xi,X2,...,Xk sequentially come from a distribution with density func

tion f(x, 8, rj), where k is the kth observation, 8 is the parameter of interest 

known under HQ with dimension d > 0, and r\ is the nuisance parameter 

with dimension p > 0. Gombay (2002) proposed two sequential tests, Rao 

test 1 and Rao test 2, based on Rao's statistic. The hypotheses are 

H0 : 8 = 8Q, rj unknown, against HA • 8 ^ 8Q, n unknown. (3.3.11) 

The efficient score vector is defined as 

k 

Vk& = 7f E Vtl°9f(Xi, 0, (3-3.12) 

where f = (8,7}), and Vf denotes the vector of partial derivatives. Then, 

Rao's statistic can be defined as 

Rk(0 = vk(s)r\z)vZ(t), 
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where 7(f) = -E$(o^r-logf(X;£)) is the (d + p) • (d + p) information 

matrix. So, we can partition this matrix on £ = (9, rj) as 

1 = 
hi I12 

V 

The inverse of I is 

hi hi 

T-l 
I Jll J l2 

J21 J22 
V 

To deal with the nuisance parameter, we need to replace it by its maximum 

likelihood estimator under Ho, that is the solution of the equation 

fc 

J2^viogf(xi;eQ,r]) = o. 

i=i 

Then, the efficient score vector becomes d-dimensional vector 

1 k 

Vk(9, rfk) = -T=Y1 VelogfiXf, 00, ffk), 
v fc i=i 

and the Rao's statistic becomes 

Rk(0o,rfk) = Vk(60,rik)I
n(60,fik)V£(eo,rik). (3.3.13) 

39 



TEST 1. Stop and conclude that H0 is not supported by the data at the 

first k when 

Tx(k) = {-Rk(e0,ifk))
1/2 > Ci(a,d). (3.3.14) 

Fail to reject HQ if it is not rejected by k = no-

Here, no is the truncation point or maximal sample size for each treat

ment arm. 

The critical value C\(a, d) can be obtained by solving 

oo - i / - l -2 

where v = d/2 — 1, Jv(x) is the Bessel function defined by 

Ms) = 22 k\(v + k)\ ' 
fc=0 

k\(v + k)\ 

and 0 < j„,i < jy>2 < . . . are positive zeros of ./„(•)• Values of Ci(a, d) for 

different d and different levels of significance a (0.10, 0.05, and 0.01) are 

shown in Table (4.5) in the appendix (Gombay & Serban (2007)). 

TEST 2. Stop and conclude that H0 is not supported by the data at 
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Table 3.1: Critical value 6*2(0;, d, no) for different n0 and d when a is fixed 
to 0.05. 

d 
2 
3 
4 

n 0 = 50 

3.490 

3.830 

4.105 

n 0 = 100 

3.540 

3.880 

4.155 

n 0 = 200 

3.585 

3.920 

4.200 

n 0 = 500 

3.633 

3.970 

4.249 

the first k when 

T2(k) = (i?fc(0O) %))1 / 2 > C2(a, d, n0). (3.3.15) 

Fail to reject H0 if it is not rejected by k = no. 

The critical value (^(a, d, no) can be obtained by using a result of Vostrikova 

(1981). Then, C<z{a, d,no) can be obtained by solving 

a - 'wffW'-K1" I*+ i + ° < c ? ) f' <3'3-16> 
The critical values ^(ct , d, no) used in the later simulation study are cal

culated using Maple software. Table (3.1) gives some critical values for 

different no and d when a is fixed to 0.05. 

Comparison of Three Treatments. 

We are interested in comparing the means of three treatments (J = 3). Vec-
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tors Xk = (X\k,X2k,Xzk)t be observed, k > 1, and Xjk ~ iid N(fij,a2). 

The log likelihood function for the first k observations is 

o q I 3 k 

h = -^loglir - -logo-2 - —2 Y^ ^(xji - ^ ) 2 -
2°2 • 1 • 1 

Using the following parametrization 

a tn a\ ^ 1 + ^ 2 - 2 ^ 3 /J±-J^_s „ , n •. , M3 - 1 x 
g = (gi,(5»2) = ( 2 a 2 V g , ^ 7 f ) , *? = ( ^ 2 ) = ( ^ , ^ ) , 

we get d = 2 and p = 2. The hypotheses of (3.1.1) can be equivalently 

written as 

H0 : 6 = (0,0), n unknown, agaist Ha : 6 ^ (0,0), n unknown 

The Rao's statistic (3.3.13) becomes 

^ = ( r -75? J + I T^KT J > (3.3.17) 

where 

^ = ik ^ { x l i + x l + * * > - ̂  £ ( X H + X a + X 3 ^ 2 - (3-318) 

j=l i= l 

Comparison of Four Treatments. 

When J = 4, Vectors Xk = (Xik, X2k, X3k, X^f be observed, A; > 1, and 
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Xjk ~ iid N(fij,a2). The log likelihood function for the first k observations 

is 
1 4 k 

lk = -2log2Tr - 2loga2 - —^ J ] ^ ( X j 4 - /^-)2-

The null hypothesis of interest is 9Q = (0,0,0), d = 3 and p = 2 using the 

following parametrization 

a fa a a\ (fr-Vl M3~j»4 ( M I + ^ 2 ) - ( M 3 + / / 4 ) A 

and, = (,1,,2) = ( | ± | , - ^ ) . 

The Rao's statistic (3.3.13) becomes 

R = rZ)i=l(^"l» ~ ^2p-|2 rZ)i=l(^3» - Xti)-j2 r I^=i (-X"lt + X2j - X3i - Xg),2 
k L akV2k J L CTfcV2fc J L 2afc>/3fe ' 

(3.3.19) 

where a2, the estimator of a2 is 

(3.3.20) 
«=1 i = l 
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3.4 Simulation Process and Results 

3.4.1 Simulation 

This simulation is based on theories of group sequential analysis (F-test 

on Pocock and OBF tests) and fully sequential analysis (Sequential F-test, 

Rao test 1 and Rao test 2). The Type I error is fixed to 0.05. The power 

is fixed to 0.8 at treatments differences 6 (<5 = 0.2, 0.4, 0.6, and 0.8), 

where 6 is defined in equation (3.3.6). The study is to simulate the maxi

mal stopping points no and the average stopping time avst for three- and 

four-treatment with normally distributed outcomes (unknown a2), and to 

evaluate the ratio of no and fixed-sample size n/ (RT) for future reference. 

Since the condition for calculating the fixed-sample size is when the al

ternative hypothesis is given in quantiles (see section (3.1.2)), we first need 

to translate the values of 6 into the values of quantile. Then, we will present 

the procedures for carrying out the fixed-sample size using one example in 

three-treatment comparison and one example in four-treatment compari

son, and setting the parameters of normal distributions of all treatments 

in the simulation . 

For three treatments, we simply assume \IA = [i-B = 0, so the mean vector 

can be written as /J, = (0,0, Hcf- The alternative hypothesis is to test 

the statistical difference of the three treatments where first two means are 
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equal and the third mean is the quantile of order p for the first two distri

butions. Then, \LA = HB, (l^c — HA) I G = Zp. Hence, ^ = (fj,A,HB,Hcy can 

also be written as (0,0, ZpaY, ie. 

lie = Zpa. (3.4.1) 

According to the formula (3.3.6), 

5 = \ Kf )2 + ̂ f)2 + ( T ^ V2 = \flO = \flz-
Hence, 

Zp = -^=. (3.4.2) 

Let take 5 = 0.4 as an example. From (3.4.2), we get Zp = -^4 = 0.4899. 
Vs 

Since Zp is the upper p quantile of a standard normal distribution, we get 

p = 0.3121, which means the third mean is the quantile of order 0.3121 

for the first two distributions. To carry out the fixed-sample size, the 

procedure is similar to the example shown in section (3.1.2), and we get 

60.75 <nf < 63.34 while power and Tpye I error are fixed to 0.8 and 0.05, 

respectively. Since n/ is relative large (when rif > 50, say), the approxi

mate method (see section (3.1.1)) can be used. Prom Table (4.3), we read 

A = 9.64. According to (3.1.3), we get A = \Z% = 0.16. From equation 

(3.1.4), we get nf = 9.64/0.16 = 60.25 w 61, and Nf = 3nf = 183. To 
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simulate the responses of the three treatments, we simply set a2 = 1, and 

using (3.4.1), we get \ic = Zp = 0.4899. Hence, in the simulation, for 

6 = 0.4, treatment A and B have N(0,1) distribution, and treatment C 

has iV(0.4899,1) distribution. 

For four treatments, we simply assume /J,A = A*s = Vc = 0, so the mean 

vector can be written as fj, = (0,0,0, I^DY- The alternative hypothesis is 

to test the statistical difference of the four treatments where first three 

means are equal and the fourth mean is the quantile of order p for the first 

three distributions. Then, \iA = fiB = Mc, {p>D — HA)/° = Zp. Hence, 

H = (HA,HB,HC,H-DY can also be written as (0,0,0, Zvo)1, ie. 

HD = Zva. 

According to the formula (3.3.6), 

6 = I [(f)* + ( f )2 + ( f f + (3-ff]1/2 = y|(^) 

Hence, 

Zp = - i = . (3.4.4) 

Let take 8 = 0.4 as an example again. From (3.4.4), we get Zp = -2^ = 
V I 

0.46188 and p = 0.3221, which means the fourth mean is the quantile 

(3.4.3) 

— \ TZT,. 

46 



Table 3.2: Fixed-sample sizes for different S values when a = 0.05, power — 
0.8. Nf is the fixed sample size for the total treatments (Nf — J * n/) 

s 
0.2 
0.4 
0.6 
0.8 

iV/-three treatments 
726 
183 
84 
48 

Nf-four treatments 
1092 
276 
124 
72 

of order 0.3221 for the first three distributions. To carry out the fixed-

sample size, the procedure is similar to the example shown in section 

(3.1.2), and we get n/ > 50 while power and Tpye I error are fixed to 

0.8 and 0.05, respectively. Then, the approximate method (see section 

(3.1.1)) can be used. From Table (4.3), we read A = 10.91. Accord

ing to (3.1.3), we get A = \Z2 « 0.16. From equation (3.1.4), we get 

nf = 10.91/0.16 = 68.19 ss 69, and Nf = 4nf = 276. To simulate the re

sponses of the four treatments, we simply set a2 = 1, and using (3.4.3), we 

get HD = Zp = 0.46188. Hence, in the simulation, for 6 = 0.4, treatment 

A, B, and C have N(0,1) distribution, and treatment D has JV(0.46188,1) 

distribution. 

Fixing the level of significance a to 0.05 and power to 0.8, the values 

of fixed-sample size are shown in Table (3.2) for different <5 values. 
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For Pocock and OBF tests, we use K = 5 and K = 10 to compare dif

ferent number of interim analyses K. For sequential F-test, we choose ko, 

the starting point, approximately one fifth of the maximal stopping point 

no- In each case, we carry out the simulated experiment to evaluate the 

maximal stopping point no and the average stopping time avst. Each case 

in these simulations is based on 5000 replicates. 

3.4.2 Algori thm 

This simulation involved generating three and four treatments. For three-

treatment comparison (J = 3), treatments A, B, and C are normally 

distributed, in which the mean vector of the three treatments is /J, = 

(MAJ MB> A*C)*- We set fi = (0,0, ncY, where nc is determined by the value 

of 5 (see equation (3.3.6) or see the example in section (3.4.1)). For four 

treatments comparison (J = 4), treatments A, B, C, and D are normally 

distributed with mean vector fi = (HA, HB, He, A*u)' = (0,0,0, Hof, where 

HD is determined by the value of <5 (see equation (3.3.6) or see the example 

in section (3.4.1)). In the simulation, we simply set a2 = 1. 

Group Sequential Analysis 

1. Set K — 5 or K = 10, and the initial no which is equal to the fixed-
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sample size n/. n/ is used as the starting point for the calculation of 

n0. 

2. Calculate group size 5 = ^ , if ^ is not integer, then set g to the 

smallest integer not less than the corresponding ^ . 

3. For J = 3, generate g patients for each treatment at each stage, and 

treatments A and B are distributed with N(0,1), and treatment C 

has distribution N(fic, 1)- For J = 4, generate g patients for each 

treatment at each stage, and treatments A, B, and C have N(0,1) 

distribution, and treatment D has N(/ID, 1) distribution. 

4. Calculate s | and Fk according to the equations (3.2.3) and (3.2.2). 

5. Compare Fk with Ck according to the equation (3.2.4) when k < K. If 

Fk> Cfc, reject #0; otherwise, continue to include another g patients 

according to step 2, and redo steps 3, 4 and 5. 

6. Calculate the simulated power based on 5000 replicates. If the power 

is far below the required power 0.8, increase n0, and find the maximal 

value of no until the simulated the power is just below 0.8. Calculate 

avst. Record the values of the final no, power and avst as n l , pwl 

and Enl. Continue to increase no, and find the minimal value of no 

until the simulated power is just over 0.8. Calculate avst. Record 

the values of the final no, power and avst as n2, pw2 and i?n2. 
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7. Calculate no and avst using the linear interpolation method. So, 

n0 = (0.8 - pw2)(n2 - nl)/(pw2 - pwl) + n2 and avst = (0.8 -

pw2)(En2 - Enl)/(pw2 - pwl) + En2. 

8. Simulate a. The empirical size a is simulated using the maximal 

sample size n0 which was calculated in step 7. Redo steps 2, 3, 4, 

and 5. But, in step 3, the distribution for the treatment C should be 

changed to treatment C ~ N(0,1) for J = 3, or the distribution for 

treatment D should be changed to JV(0,1) for J = 4. Then calculate 

the a. 

Sequential F-test 

1. Set fco a little bit more than one fifth of n/ and the initial no which 

is equal to the fixed-sample size n/. Using n/ as the starting point 

for the calculation of no-

2. Calculate the constant a according to the equation (3.3.7), (3.3.8), 

and (3.3.10). 

3. Generate k0 patients for each treatment, and treatments A and B 

have N(0,1) distribution, and treatment C has N(fic> 1) distribution 

for J = 3. Or, generate ko patients for each treatment, and treat

ments A, B, and C have N(0,1) distribution, and treatment D has 

N(/j,£>, 1) distribution for J = 4. 
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4. Calculate Lk according to the equation (3.3.1). 

5. Compare Lk with a when k < %. If L& > a, reject H0; otherwise, 

continue to generate another patient for each treatment, and redo 

steps 4 and 5. 

6. Same procedures as steps 6, 7,and 8 in group sequential analysis. 

Rao tes ts 

1. Set initial no which is equal to the fixed-sample size rif. 

2. Generate one patient for each treatment, and treatments A and B 

have N(0,1) distribution, and treatment C has N(nc, 1) distribution 

for J = 3. Or, generate one patient for each treatment, and treat

ments A, B, and C have N(0,1) distribution, and treatment D has 

N{nD, 1) distribution for J = 4. 

3. Calculate a\ and Rk according to the equations (3.3.18 and 3.3.20) 

and (3.3.17 and 3.3.19) for J = 3 and J = 4, respectivly. 

4. Compute Ti(k) or T2(k) according to the equation (3.3.14) and (3.3.15). 

Compare Ti(k) or T2(k) with the critical values (Rao test 1: see Table 

(4.5), Rao Test 2: solving the critical value according to the equation 

(3.3.16)) when k < n0. If Tt(k) > Cj(fc) (i = 1 or 2, ie. cx{k) is the 

critical value for Rao test 1, and cz(k) is the critical value for Rao 

test 2.), reject HQ] otherwise, continue to generate another patient 

for each treatment, and redo steps 3 and 4. 
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5. Same procedures as steps 6, 7,and 8 in group sequential analysis. 

3.4.3 Results 

Three-Treatment Comparison. 

The simulation results are shown in Table (3.3). From Table (3.3), we can 

compare the five different methods based on the maximal sample size No, 

the ratio of N0 and Nf (RT), and the average stopping time AVST un

der the same power (0.8) and the level of significance (a = 0.05). AVSTX 

denotes the average stopping time for all treatments added using method x. 

• First, let us look at the group sequential analysis, Pocock and OBF 

tests. Since RTOBF < RTpOCOck, the maximal stopping point no of 

OBF test is smaller than that of Pocock test. For given the same 

5, RT of K = 5 is smaller than RT of K = 10 for both OBF and 

Pocock tests. When fixing K, for large 5, AVSTOBF is similar with 

AVSTp0C0Ck, and for small S, AVSTOBF is greater than AVSTpOC0Ck. 

• For fully sequential analysis, RTRaoi < RTseqF < RTBM,02, but AVSTSeqF < 

AVSTRaol < AVSTRao2. 

• For the five methods, OBF test has the smallest RT, which means 

OBF test needs the smallest maximum sample size, but relatively 

high AVST especially for small S. Sequential F-test has the smallest 
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Table 3.3: Simulation results for comparison of normally distributed three-
treatment. Set a = 0.05,1-/3 = 0.8. K is the number of interim analyses, 
N0 is the maximal stopping point, and AVST is the average stopping time 
for all treatments. K0 = 3 * fco 

K 

OBF 
5 
10 
5 
10 
5 
10 
5 
Pocock 
5 
10 
5 
10 
5 
10 
5 
Sequential F-test 
n0 

n0 

n0 

n0 

Rao Test 1 
n0 

n0 

n0 

n0 

Rao Test 2 
n0 

n0 

n0 

n0 

a 

0.050 
0.051 
0.052 
0.054 
0.059 
0.050 
0.051 

0.049 
0.055 
0.050 
0.049 
0.054 
0.057 
0.053 

0.056 
0.045 
0.042 
0.036 

0.045 
0.039 
0.033 
0.035 

0.022 
0.018 
0.014 
0.011 

6 

0.2 
0.2 
0.4 
0.4 
0.6 
0.6 
0.8 

0.2 
0.2 
0.4 
0.4 
0.6 
0.6 
0.8 

0.2 
0.4 
0.6 
0.8 

0.2 
0.4 
0.6 
0.8 

0.2 
0.4 
0.6 
0.8 

AVST 

606.7 
588.5 
154.3 
148.6 
70.6 
68.1 
41.5 

592.8 
581.6 
150.4 
150.5 
69.1 
69.0 
40.9 

571.9 
146.3 
70.3 
41.7 

591.5 
152.8 
71.7 
43.4 

754.1 
194.0 
91.0 
54.5 

No 

734.8 
746.0 
185.8 
187.4 
84.9 
85.9 
49.8 

886.5 
930.4 
225.1 
240.0 
102.3 
109.8 
59.3 

963.0 
246.0 
118.7 
69.6 

782.6 
200.8 
93.6 
56.0 

1237.2 
311.8 
141.2 
82.5 

JX-L — Nf 

1.012 
1.028 
1.015 
1.024 
1.011 
1.023 
1.038 

1.221 
1.282 
1.230 
1.306 
1.218 
1.307 
1.24 

1.326 
1.344 
1.413 
1.451 

1.078 
1.097 
1.114 
1.167 

1.704 
1.704 
1.681 
1.719 

K0 

180 
45 
21 
15 
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AVST especially for small 6. For large S, AVST of OBF, Pocock, 

and Sequential F-test are similar. Rao test 2 has the highest RT 

and AVST, and we note that AVST of Rao test 2 exceeds the fixed-

sample size Nf. 

• Values of a of Rao test 2 are far less than 0.05. 

Four-Treatment Comparison. 

The simulation results are shown in Table (3.4). From Table (3.4), we can 

compare the five different methods based on the maximal sample size No, 

the ratio of No and Nf, and the average stopping time AVST under the 

same power (0.8) and the level of significance (a = 0.05). 

• For group sequential analysis, since RTOBF < RTpOCock, the maximal 

stopping point JVo of OBF test is smaller than that of Pocock test. 

For given the same 6, RT of k = 5 is smaller than RT of K = 10 for 

both OBF and Pocock tests. For every given 6, AVSTOBF is greater 

than AVSTpOCOCk, which means Pocock test tends to stop earlier when 

comparing with OBF test. 

• For fully sequential analysis, RTRaol < RTseqF < RTRa02- Rao test 

2 has the largest AVST and RT, and AVST of Sequential F-test is 

similar to AVST of Rao test 1. 

• For the five methods, OBF has the smallest RT, which means OBF 
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Table 3.4: Simulation results for comparison of normally distributed four-
treatment. Set a = 0.05,1-/3 = 0.8. K is the number of interim analyses, 
no is the maximal stopping point , and AVST is the average stopping time 
for all treatments. K0 = 4 * k0. 

K 

OBF 
5 
10 
5 
10 
5 
10 
5 
Pocock 
5 
10 
5 
10 
5 
10 
5 
Sequential F-test 
n0 

n0 

n0 

n0 

Rao Test 1 
n0 

n0 

n0 

n0 

Rao Test 2 
n0 

n0 

n0 

n0 

a 

0.054 
0.049 
0.057 
0.052 
0.051 
0.049 
0.054 

0.053 
0.050 
0.048 
0.048 
0.049 
0.047 
0.051 

0.045 
0.044 
0.040 
0.030 

0.051 
0.042 
0.039 
0.038 

0.021 
0.018 
0.013 
0.011 

S 

0.2 
0.2 
0.4 
0.4 
0.6 
0.6 
0.8 

0.2 
0.2 
0.4 
0.4 
0.6 
0.6 
0.8 

0.2 
0.4 
0.6 
0.8 

0.2 
0.4 
0.6 
0.8 

0.2 
0.4 
0.6 
0.8 

AVST 

936.3 
905.2 
237.6 
227.2 
108.1 
104.5 
62.7 

888.4 
881.3 
222.2 
226.3 
104.4 
104.0 
60.8 

890.1 
233.5 
107.3 
62.9 

881.2 
231.9 
107.1 
64.1 

1122.0 
290.5 
133.0 
79.5 

N0 

1112 
1125 
281.5 
282.7 
127.7 
130.2 
74.1 

1311.3 
1377.5 
355.5 
352.8 
153.5 
160.0 
88.2 

1489.1 
389.5 
180.3 
104.0 

1144.5 
300.3 
137.4 
82.0 

1800.0 
462.9 
204.5 
119.9 

1X1 ~ Nf 

1.018 
1.031 
1.020 
1.024 
1.029 
1.050 
1.029 

1.201 
1.260 
1.216 
1.278 
1.238 
1.290 
1.225 

1.364 
1.411 
1.454 
1.445 

1.048 
1.088 
1.108 
1.138 

1.648 
1.677 
1.649 
1.666 

K0 

240 
60 
28 
20 
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needs the smallest maximal sample size, but relatively high AVST 

especially for small 8. Pocock test has the smallest AVST (except 

when 5 = 0.2, K = 5), and relatively reasonable maximal sample 

size. Rao test 1 also has reasonable AVST and RT. For Sequential 

F-test, the AVST is reasonable but a little bit higher in RT. Rao 

test 2 has high AVST and RT, and we note that AVST of Rao test 

2 exceeds the fixed-sample size Nf. 

• Values of a of Rao test 2 are far less than 0.05. 

3.5 Application to a Three-Treatment Com

parison 

The treatment of palatal expansion might produce a reduction in nasal re

sistance. An orthodontic clinical trial is to test the difference on total nasal 

volume among control, Hyrax expansion (traditional), and bone-anchored 

expansion groups, in which control group subjects did not start treatment 

for 12 months from induction and served as an untreated control group. 

The study has begun at University of Alberta since January 2008. Pa

tients were recruited from the Graduate Orthodontic Clinic patient pool, 

and specific airway dimension measures were performed at the University 

of Alberta in Graduate Orthodontic Studies using the Eccovision Acoustic 

Rhinometer (Hood Laboratories, Pembroke, MA). Nasal airway dimen-
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Table 3.5: Data set of total nasal volume (TV) (cm3) for n0 = 50 and three 
treatment arms (C-control group, T-traditional group, B-bone-anchored 
expansion group) 

Entry C T B 
I 4.460 7.905 5^287" 
3 2.480 4.580 6.164 
5 4.497 6.028 6.410 
7 5.237 6.237 3.522 
9 5.445 6.653 2.337 
II 3.761 5.561 6.827 
13 5.573 6.254 7.344 
15 3.904 6.836 4.075 
17 5.126 5.547 8.471 
19 4.954 4.894 6.399 
21 5.725 7.579 3.900 
23 5.310 8.290 6.506 
25 3.699 7.559 7.572 
27 0.214 2.979 6.001 
29 4.565 7.983 0.853 
31 3.594 4.908 2.144 
33 4.519 6.001 6.269 
35 3.859 7.237 5.575 
37 4.280 8.220 7.433 
39 5.693 6.925 4.576 
41 4.570 8.392 6.015 
43 1.330 6.883 6.211 
45 3.099 6.965 4.426 
47 2.381 4.125 5.768 
49 3.825 5.638 10.807 

Entry C T B 
2 5.253 7.608 2.765 
4 2.642 8.458 4.124 
6 5.334 4.963 5.581 
8 3.359 3.166 9.526 
10 7.835 5.095 1.303 
12 5.487 6.874 4.730 
14 4.343 2.301 6.537 
16 4.608 5.836 8.811 
18 5.042 11.504 5.722 
20 7.332 5.832 0.952 
22 4.593 4.127 5.744 
24 2.260 8.440 3.888 
26 3.836 4.621 4.179 
28 5.819 4.503 3.305 
30 4.540 5.651 6.766 
32 5.903 8.919 5.080 
34 2.668 8.321 3.568 
36 5.508 7.696 4.533 
38 5.532 7.966 4.283 
40 6.196 7.543 5.383 
42 4.087 4.258 1.327 
44 5.962 7.421 6.124 
46 3.435 8.219 3.172 
48 5.476 7.315 8.099 
50 5.159 8.520 5.698 
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Table 3.6: The statistic, cumulative number of patients for the three arms 
(CNP), and critical values for each k for OBF and Pocock tests with K = 10 

A; 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

statistics 

5.655870 

1.759055 

1.967216 
2.204977 

4.653000 

5.041698 
8.120567 
11.053025 

14.343509 
15.852972 

C N P 

15 
30 
45 
60 
75 
90 
105 
120 
135 
150 

Critical Value-OBF 

1323.782500 

31.321578 

14.121313 
9.368310 

7.099825 

5.749483 
4.845108 
4.193484 

3.699992 

3.312473 

Critical Value-I 

6.883226 

5.459769 

5.124035 
4.974410 

4.889776 

4.835353 
4.797418 
4.769465 
4.748012 

4.731029 

sions were measured for all treatment subjects immediately following the 

expansion. Dimensions were measured for each nostril and the two sides 

of the nose were combined, providing total nasal volume (TV) (cms). The 

study had planed to recruit 50 patients per group (total 150 subjects), 

and recruited total of 15 patients so far. Based on this partial data set, 

Giseon Heo simulated the entire data set, which is for the purpose of an 

illustration. The actual data set will be analyzed as the more observations 

are gathered. The data set is shown in Table (3.5). Assume that there 

were three patients at each time, and they were randomly assigned to one 

of three treatments. We use five sequential methods which introduced in 

Chapter 3 to show the procedures of sequential tests and to analyze the 

data set. We want to test the group difference with type I error a = 0.05. 

For group sequential tests, we set K = 10. 
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Table 3.7: The statistic (stat) for each k for Rao test 1 and Rao test 2 and 
Sequential F-test. 

k stat-Raol stat-Rao2 stat-Seq-F CNP 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

0.2449490 

0.4416139 

0.4628016 
0.7232810 
0.8531453 
0.9060183 
1.0368113 
0.8731454 

0.9296627 

0.8316709 

0.8899017 
1.0195607 

1.0443467 
0.8887649 
1.0753224 

1.1194413 

1.1710191 
1.3962047 

1.4352800 

1.3128142 

1.4469134 

1.4330218 

1.5957683 
1.8932349 
2.0717430 

2.1355409 
2.1889596 

2.1455903 

2.2969992 

2.3682514 

2.4485812 

2.6163824 
2.7121840 
2.9880378 

1.732051 

2.208069 

1.889380 
2.557184 
2.697882 

2.615449 
2.770995 

2.182863 

2.191236 

1.859673 
1.897277 

2.081170 
2.048132 

1.679608 
1.963261 

1.978911 
2.008281 

2.327008 
2.328332 

2.075741 

2.232636 
2.160362 
2.352832 

2.732649 
2.929887 
2.961462 
2.978797 
2.867166 

3.016108 

3.057399 

3.109701 

3.270478 
3.338468 
3.623528 

0.000000 

0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
4.778933 
2.655801 

2.643473 

1.837251 

1.905772 

2.307403 
2.219025 
1.460147 
2.014770 

2.042548 
2.100805 

2.853049 

2.848266 

2.235620 

2.596461 

2.420199 
2.885264 

3.941826 
4.558264 

4.651853 
4.698968 

4.325615 

4.804246 

4.934801 

5.105410 

5.670103 
5.912097 
7.027682 

3 
6 
9 
12 
15 
18 
21 
24 
27 
30 
33 
36 
39 
42 
45 
48 
51 
54 
57 
60 
63 
66 
69 
72 
75 
78 
81 
84 
87 
90 
93 
96 
99 
102 
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The conclusion of all five methods of sequential analysis is that we re

ject the null hypothesis and conclude that there are statistical different 

nasal volumes among these three groups. 

For group sequential analyses, in Table (3.6), we list the statistics, cumu

lative number of patients for the three arms (CNP), and critical values for 

each k for OBF and Pocock tests with K = 10. From the table, the critical 

values for OBF test are getting smaller as k increasing. The critical values 

for Pocock test is not a constant for each k because we use f-distribution 

and the same significant levels as standard normal distribution to carry 

out the critical values. As the degree of freedom is getting larger, a t-

distribution tends to be a normal distribution; hence, Ck for Pocock test 

tends to stabilize as the degree of freedom increases. From Table (3.6), the 

analysis of OBF test stops at k = 7, which means 105 of 150 patients have 

been accrued. For Pocock tests, the analysis stops at k = 6, which means 

90 of 150 patients have been accrued. The first two graphs in Figure (3.5.1) 

are the graphs for monitoring the OBF and Pocock statistics for the three 

treatment arms. It shows the same results as above. 

For fully sequential analysis, in Table (3.7), we list k, the statistics, and 

CNP for Rao test 1, Rao test 2, and Sequential F-test. When fixing 

a = 0.05 and 1 — (3 = 0.8, the critical values (CV) for Rao test 1, Rao 
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test 2, and Sequential F-test are 2.695, 3.490, and 5.543, repectively. The 

table shows that the analyses of Rao test 1, Rao test 2, and Sequential 

F-test stop at k = 33, k = 34, and k = 32, respectively, ie. the conclusion 

is made right after 99 of 150, 102 of 150, and 96 of 150 patients have been 

accrued, respectively. Also, it is easy to get the same results from the last 

three graphs in Figure (3.5.1). 

With type I error is equal to 0.05, using any tests of sequential analysis can 

stop the trial earlier than no to get the final conclusion; hence, this exam

ple shows sequential analysis could stop a trial as soon as one treatment 

is significantly different with other treatments. Among the five methods, 

Pocock test is the test with the smallest number of patients accrued, and 

OBF is the the test with the most number of patients accrued. 

61 



o 

1 <B +3 

« & 
o 
a) £ 
h-

00 -

i~- -

to _ 

m -

•sf -

CO -

CM -

_ _ 

1 
0 

Critical value 
statistic 

1 1 
20 4( 

V / 
# / 

a * "" *• 

1 1 1 
) 60 80 100 

tic
 

s 
to 

^ o 
o 
o 
o 
D. 
ID 

JZ 

m -

• * -

CO -

CM -

1 

0 
1 1 

20 40 

- • — 

i 

60 

•J - 5 " " ^ 

i 

80 
i 

100 

Cumulative total sample size on three arms Cumulative total sample size on three arms 

o CO 

IT 

Cumulative total sample size on three arms Cumulative total sample size on three arms 

I 

r-

20 40 60 80 
- 1 — 
100 

Cumulative total sample size on three arms 

Figure 3.5.1: Monitoring the statistic for the three treatment arms 

62 



Chapter 4 

Appendix 

4.1 Tables 

1. Table (4.1): Pocock constants for two-sided tests with overall signif

icance level a 

2. Table (4.2): OBF constants for two-sided tests with overall signifi

cance level a 

3. Table (4.3): A values satisfying the power condition 

4. Table (4.4): Pocock and OBF constants for repeated x2-tests of ho

mogeneity of J normal means 

5. Table (4.5): Critical values for Rao test 1 
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Table 4.1: Pocock tests: constants Cp(K,a) for the two-sided tests with 
K groups of observations and level of significance a 

CP(K,a) 
K a = 0.01 a = 0.05 a = 0.20 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
15 
20 

2.576 
2.772 
2.873 
2.939 
2.986 
3.023 
3.053 
3.078 
3.099 
3.117 
3.133 
3.147 
3.182 
3.225 

1.960 
2.178 
2.289 
2.361 
2.413 
2.453 
2.485 
2.512 
2.535 
2.555 
2.572 
2.588 
2.626 
2.672 

1.645 
1.875 
1.992 
2.067 
2.122 
2.164 
2.197 
2.225 
2.249 
2.270 
2.288 
2.304 
2.344 
2.392 
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Table 4.2: O'Brien & Fleming tests: constants CB{K, a) for the two-sided 
tests with K groups of observations and level of significance a 

CB(K,a) 
K a = 0.01 a = 0.05 a = 0.20 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
15 
20 

2.576 
2.580 
2.595 
2.609 
2.621 
2.631 
2.640 
2.648 
2.654 
2.660 
2.665 
2.670 
2.681 
2.695 

1.960 
1.977 
2.004 
2.024 
2.040 
2.053 
2.063 
2.072 
2.080 
2.087 
2.092 
2.098 
2.110 
2.126 

1.645 
1.678 
1.710 
1.733 
1.751 
1.765 
1.776 
1.786 
1.794 
1.801 
1.807 
1.813 
1.826 
1.842 
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Table 4.3: A values satifying XJ-I(XL,J-I\^) = P 

1 - /? = 0.80 1-/3 = 0-90 
J a = 0.01 a = 0.05 a = 0.01 a = 0.05 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

11.68 
13.89 
15.46 
16.75 
17.87 
18.88 
19.79 
20.64 
21.43 
22.18 
22.89 
23.57 
24.22 
24.84 
25.44 
26.02 
26.58 
27.12 
27.65 

7.85 
9.64 
10.91 
11.94 
12.83 
13.63 
14.36 
15.03 
15.65 
16.25 
16.81 
17.34 
17.85 
18.34 
18.82 
19.27 
19.71 
20.14 
20.56 

14.88 
17.43 
19.25 
20.74 
22.03 
23.19 
24.24 
25.22 
26.13 
26.99 
27.80 
28.58 
29.32 
30.04 
30.73 
31.39 
32.04 
32.66 
33.27 

10.51 
12.66 
14.18 
15.41 
16.47 
17.42 
18.29 
19.09 
19.83 
20.54 
21.20 
21.84 
22.44 
23.03 
23.59 
24.13 
24.65 
25.16 
25.66 
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Table 4.4: Constants Cp(p, K, a) and CB(P, K, a) for respectively, Pocock-
type and O'Brien & Fleming-type repeated x2-tests of homogeneity of J 
normal means. Tests have K analyses, the x2 statistic at each analysis has 
p = J — 1 degrees of freedom and the the level of significance is a = 0.05. 

J p K Cp(p,K,a) CB(p,K,a) 

1 
2 
3 
4 
5 
6 
10 
1 
2 
3 
4 
5 
6 
10 
1 
2 
3 
4 
5 
6 
10 
1 
2 
3 
4 
5 
6 
10 

3.84 

4.74 

5.24 

5.58 

5.82 

6.02 

6.53 

5.99 

7.08 
7.67 
8.06 
8.35 

8.58 
9.17 

7.81 
9.04 

9.69 

10.13 
10.44 

10.69 
11.34 

9.49 
10.82 

11.53 
12.00 

12.35 
12.62 

13.32 

3.84 

3.91 

4.02 

4.10 

4.16 
4.21 

4.35 
5.99 

6.02 
6.12 
6.20 
6.27 

6.33 
6.48 

7.81 

7.83 
7.92 

7.99 
8.06 

8.11 

8.26 
9.49 

9.50 

9.57 
9.64 

9.71 

9.77 

9.93 
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Table 4.5: Critical values Ci(a,d) for Rao test 1 of different values of d 
and different levels of significance a 

a 
1 a = 0.10 a = 0.05 a = 0.01 

2 
3 
4 
5 
6 
7 
8 
10 
12 

2.419 
2.751 
3.023 
3.260 
3.474 
3.669 
3.851 
4.183 
4.482 

2.695 
3.023 
3.294 
3.530 
3.743 
3.938 
4.119 
4.450 
4.748 

3.242 
3.562 
3.827 
4.059 
4.269 
4.461 
4.640 
4.968 
5.264 
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4.3 Glossary 

avst 

AVST 

cdf 

J 

K 

nf 

Nf 

n0 

N0 

OBF 

RT 

X* 

the average stopping time for each treatment 

the average stopping time for all treatments 

cumulative distribution function 

number of treatment arms 

number of groups (analyses) in a group sequential procedure 

fixed-sample size for each treatment 

fixed-sample size for all treatments 

the maximal sample size for each treatment 

the maximal sample size for all treatments 

O'Brien and Fleming 

ratio of N0 and Nf 

transpose of vector X 
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U,a upper a quantile of a ^-distribution with v degrees of freedom 

Zp upper p quantile of a standard normal distribution 

a Type I error probability 

(3 Type II error probability 

<5 standard normal cumulative distribution function 

Xa v upper a quantile of a x2 distribution with v degrees of freedom 

xl (• | A) non-central cumulative x2 distribution with v degrees of freedom 
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4.4 Code 

1. Two-treatment Comparison 

* Simulate the maximum sample size or truncation point and average 
stopping point 

######### Group sizes are not equal, set lan=0.5########### 

#OBF 

alpha=0.05;sigma=l ;N=10000;lan=0.5; power=0.9 

#1 
K=20;Cb=2.162;delta=0.1 ;uA=0;uB=0.1 

#2 
K=5;Cb=2.040;delta=0.1 ;uA=0;uB=0.1 

#3 
K=20;Cb=2.162;delta=0.2;uA=0;uB=0.2 

#4 
K=5;Cb=2.040;delta=0.2;uA=0;uB=0.2 

#5 
K=20;Cb=2.162;delta=0.5;uA=0;uB=0.5 

#6 
K=5;Cb=2.040;delta=0.5;uA=0;uB=0.5 

#7 
K=5;Cb=2.040;delta=0.9;uA=0;uB=0.9 

nf=ceiling((qnorm(l -alpha/2)+qnorm(l -beta))A2*2*sigmaA2/deltaA2)*2 
nO=nf 
nts=ceiling(nO/K) # treatment size 
nO=nts*K 

y=rep(0,N) 
pw=0.8 
j=0 
while(pw<0.9){ 
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nO=nO+K*j 
nts=nO/K 
for(iinl:N){ 

AA=rnorai(nO*(K+l),uA,l);BB=rnorm(nO*(K+l),uB,l) 
count^l 
n=rbinom(l ,nts,lan) 
m=nts-n 
A=AA[l:n] 
B=BB[l:m] 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2) 
T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n))) 

while(T<qt(l-pnorm(Cb*sqrt(K/count)),n+m-2,lower.tail = F) & count<=K){ 
(nplus=rbinom( 1 ,nts,lan)) 
(n=n+nplus) 
(m=m+(nts-nplus)) 
(A=AA[l:n]) 
(B=BB[l:m]) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2)) 
(T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n)))) 
(count=count+1) 
} 

y[i]=count 
} 

pw=l-table(y,exclude=l :K)/N 
nl=nts*K 
j=j+l 
} 
pwl=pw 

q=rep(0,N) 
for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
En 1 =mean(q)*nts 

y=rep(0,N) 
j=l 
while(pw>0.9){ 

nO=nl-K*j 
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nts=nO/K 
for(iinl:N){ 

AA=morai(nO*(K+l),uA,l);BB=morm(nO*(K+l),uB,l) 
count=l 
n=rbinom( 1 ,nts,lan) 
m=nts-n 
A=AA[l:n] 
B=BB[l:m] 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2) 
T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n))) 

while(T<qt(l-pnorm(Cb*sqrt(K/count)),n+m-2,lower.tail = F) & count<=K){ 
(nplus=rbinom(l ,nts,lan)) 
(n=n+nplus) 
(m=m+(nts-nplus)) 
(A=AA[l:n]) 
(B=BB[l:m]) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2)) 
(T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n)))) 
(count=count+1) 
} 

y[i]=count 
} 

pw=l-table(y,exclude=l :K)/N 

} 
pwO=pw 

for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
EnO=mean(q)*nts 

nnO=(power-pwO)*(nl-nO)/(pwl-pwO)+nO #the maximum sample size or 
truncation point 
En-(Enl-EnO)*(power-pwO)/(pwl-pwO)+EnO # average stopping point 
nnO 
En 

#Pocock 
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alpha=0.05;sigma=l ;N=10000;lan=0.5; power=0.9 

#1 
K=20;Cp=2.672;delta=0.1 ;uA=0;uB=0.1 

#2 
K=5;Cp=2.413 ;delta=0.1 ;uA=0;uB=0.1 

#3 
K=20;Cp=2.672;delta=0.2;uA=0;uB=0.2 

#4 
K=5;Cp=2.413;delta=0.2;uA=0;uB=0.2 

#5 
K=20;Cp=2.672;delta=0.5;uA=0;uB=0.5 

#6 
K=5;Cp=2.413;delta=0.5;uA=0;uB=0.5 

#7 
K=5;Cp=2.413;delta=0.9;uA=0;uB=0.9 

nf=ceilmg((qnorm(l-alpha/2)+qnorm(l-beta))A2*2*sigmaA2/deltaA2)*2 
nO=nf 
nts=ceiling(nO/K) # treatment size 
nO=nts*K 

y=rep(0,N) 
pw=0.8 
j=0 
while(pw<0.9){ 

nO=nO+K*j 
nts=nO/K 
for(iinl:N){ 

AA=rnorm(nO*(K+1 ),uA, 1 );BB=morm(nO*(K+l ),uB, 1) 
count=l 
n=rbinom(l ,nts,lan) 
m=nts-n 
A=AA[l:n] 
B=BB[l:m] 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2) 
T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n))) 

while(T<qt(l-pnorm(Cp),n+m-2,lower.tail = F) & count<=K){ 
(nplus=rbinom( 1 ,nts,lan)) 
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(n=n+nplus) 
(m=m+(nts-nplus)) 
(A=AA[l:n]) 
(B=BB[l:m]) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2)) 
(T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n)))) 
(count=count+l) 
} 

y[i]=count 
} 

pw=l-table(y,exclude=l :K)/N 
nl=nts*K 
j=j+l 
} 
pwl=pw 

q=rep(0,N) 
for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
Enl =mean(q)*nts 

q=rep(0,N) 
y=rep(0,N) 

j=l 
while(pw>0.9){ 

nO=nl-K*j 
nts=nO/K 
for(iinl:N){ 

AA=rnorm(nO*(K+l),uA,l);BB=rnorm(nO*(K+l),uB,l) 
COUllt=l 

n=rbinom( 1 ,nts,lan) 
m=nts-n 
A=AA[l:n] 
B=BB[l:m] 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2) 
T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n))) 

while(T<qt(l-pnorm(Cp),n+m-2,lower.tail = F) & count<=K){ 
(nplus=rbinom(l ,nts,lan)) 

76 



(n=n+nplus) 
(m=m+(nts-nplus)) 
(A=AA[l:n]) 
(B=BB[l:m]) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2)) 
(T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n)))) 
(count=count+1) 
} 

y[i]=count 
} 

pw=l-table(y,exclude=l :K)/N 
r j + i 
} 
pwO=pw 

for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
EnO=mean(q)*nts 
EnO 

nnO=(power-pwO)*(nl-nO)/(pwl-pwO)+nO #the maximum sample size or 
truncation point 
En=(Enl-EnO)*(power-pwO)/(pwl-pwO)+EnO # average stopping point 
nnO 
En 

# Sequential Rao 

alpha=0.05;sigma=l ;lan=0.5;N=10000; power=0.9 
#1 
delta=0.1;uA=0;uB=0.1 

#2 
delta=0.2;uA=0;uB=0.2 

#3 
delta=0.5 ;uA=0;uB=0.5 

#4 
delta=0.9;uA=0;uB=0.9 
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n^ceiling((qnorm(l-alpha/2)+qnorm(l-beta))A2*2*sigmaA2/deltaA2)*2 
nO=nf 

y=rep(0,N) 
pw=0.8 
j=0 
while(pw<0.9){ 

nO=nf+j 
for(iinl:N){ 

n=0;m=0 
AA=morm(nO,uA, 1 );BB=rnorm(nO,uB, 1) 

while(n<=0 || m<=0) { 
if (runif(l, min=0, max=l)<lan) (n=n+l) else (m=m+l) 
} 

k=n+m 
A=AA[l:n] 
B=BB[l:m] 
s2=(sum(AA2)+sum(BA2))/k-((sum(A)+sum(B))/k)A2 
R=l/k*(n*sum(A)-m*sum(B))A2/(n*m*s2) 
a=k/nO*R 
RR=sqrt(a) 

while(RR<2.24 & k<=nO){ 
(if (runif(l, min=0, max-l)<lan) (n^n+l) else (m=m+l)) 
(A=AA[l:n]) 
(B=BB[l:m]) 
(k=n+m) 
(s2=(sum(AA2)+sum(BA2))/k-((sum(A)+sum(B))/k)A2) 
(R=l/k*(n*sum(A)-m*sum(B))A2/(n*m*s2)) 
(a=k/nO*R) 
(RR=sqrt(a)) 
} 

y[i]=k 

} 
pw= 1 -table(y,exclude= 1 :nO)/N 
nl=nO 
j=j+10 # when delta=0.9 j=j+2, delta=0.1-->j=j+50 delta=0.5-->j=j+10 
} 
pwl=pw 

q=rep(0,N) 
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for(iinl:N){ 
if(y[i]>nO)(q[i]=y[i]-l) 

elseif(y[i]<=nO)(q[i]=y[i]) 
} 

Enl=mean(q) 

j=2 # when delta=0.9-->j=l delta=0.1,j=0.2--> j=10 delta=0.5->j-2 
while(pw>0.9){ 

nO=nl-j 
for(iinl:N){ 

n=0;m=0 
AA=rnorm(nO,uA, 1 );BB=rnorm(nO,uB, 1) 

while(n<=0 || m<=0) { 
if (runif(l, min=0, max=l)<lan) (n=n+l) else (m=m+l) 
} 

k=n+m 
A=AA[l:n] 
B=BB[l:m] 
s2=(sum(AA2)+sum(BA2))/k-((sum(A)+sum(B))/k)A2 
R= 1 /k*(n*sum(A)-m*sum(B))A2/(n*m*s2) 
a=k/nO*R 
RR=sqrt(a) 

while(RR<2.24 & k<=nO){ 
(if (runif(l, min=0, max=l)<lan) (n=n+l) else (m=m+l)) 
(A=AA[l:n]) 
(B=BB[l:m]) 
(k=n+m) 
(s2=(sum(AA2)+sum(BA2))/k-((sum(A)+sum(B))/k)A2) 
(R= l/k*(n*sum(A)<n*sum(B))A2/(n*m*s2)) 
(a=k/nO*R) 
(RR=sqrt(a)) 
} 

y[i]=k 
} 
pw= 1 -table(y,exclude= 1 :nO)/N 
nl=nO 
j=j+2 #whendelta=0.1 delta=0.2-->j=j+10 delta=0.9-->j=j+l delta=0.5-->j=j+2 
} 
pwO=pw 
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q=rep(0,N) 
for(iinl:N){ 
if(y[i]>nO)(q[i]=y[i]-l) 

elseif(y[i]<=nO)(q[i]=y[i]) 
} 

EnO=mean(q) 

nnO=(power-pwO)*(nl-nO)/(pwl-pwO)+nO #the maximum sample size or 
truncation point 
En=(Enl-EnO)*(power-pwO)/(pwl-pwO)+EnO # average stopping point 
nnO 
En 

* Simulate the empirical size at the given maximal sample size 

########### Calculate type I error ########## 
#OBF 
alpha=0.05;beta=0.1 ;sigma=l ;N=10000;lan=0.5 

#1 
K=20;Cb=2.162;delta=0.1 ;uA=0;uB=0;nO=4513 

#2 
K=5;Cb=2.040;delta=0.1 ;uA=0;uB=0;nO=4250 

#3 
K=20;Cb=2.162;delta=0.2;uA=0;uB=0;nO=l 13 8.2 

#4 
K=5;Cb=2.040;delta=0.2;uA=0;uB=0;n0=1087.5 

#5 
K=20;Cb=2.162;delta=0.5;uA=0;uB=0;n0=185 

#6 
K=5;Cb=2.040;delta=0.5;uA=0;uB=0;n0=175 

#7 
K=5;Cb=2.040;delta=0.9;uA=0;uB=0;n0=56 

nts=ceiling(nO/K) 
y=rep(0,N) 
for(iinl:N){ 

AA=rnorm(nO*(K+1 ),uA, 1 );BB=rnorm(nO*(K+1 ),uB, 1) 
count=l 
n=rbinom( 1 ,nts,lan) 

80 



m=nts-n 
A=AA[l:n] 
B=BB[l:m] 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2) 
T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n))) 

while(T<qt(l-pnorm(Cb*sqrt(K/count)),n+m-2,lower.tail = F) & 
count<=K){ 

(nplus=rbinom(l ,nts,lan)) 
(n=n+nplus) 
(m=m+(nts-nplus)) 
(A=AA[l:n]) 
(B=BB[l:m]) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2)) 
(T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n)))) 
(count=count+l) 
} 

y[i]=count 
} 

typel= 1 -table(y,exclude= 1 :K)/N 
typel 

#Pocock 
alpha=0.05;beta=0.1 ;sigma=l ;N=10000;lan=0.5 

#1 
K=20;Cp=2.672;delta=0.1 ;uA=0;uB=0;nO=5633.5 

#2 
K=5;Cp=2.413;delta=0.1;uA=0;uB=0;n0=5124.9 

#3 
K=20;Cp=2.672;delta=0.2;uA=0;uB=0;n0=1392 

#4 
K=5;Cp=2.413;delta=0.2;uA=0;uB=0;n0=1276.6 

#5 
K=20;Cp=2.672;delta=0.5;uA=0;uB=0;n0=228.8 

#6 
K=5;Cp=2.413;delta=0.5;uA=0;uB=0;n0=208 

#7 
K=5;Cp=2.413;delta=0.9;uA=0;uB=0;n0=67 

y=rep(0,N) 
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nts=ceiling(nO/K) 
for(iinl:N){ 

AA=morm(nO*(K+l),uA,l);BB=rnonn(nO*(K+l),uB,l) 
count=l 
n=rbinom(l ,nts,lan) 
m=nts-n 
A=AA[l:n] 
B=BB[l:m] 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2) 
T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n))) 

while(T<qt(l-pnorm(Cp),n+m-2,lower.tail = F) & count<=K){ 
(nplus=rbinom(l ,nts,lan)) 
(n=n+nplus) 
(m=m+(nts-nplus)) 
(A=AA[l:n]) 
(B=BB[l:m]) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2))/(n+m-2)) 
(T=abs((mean(A)-mean(B))/sqrt((m+n)*s2/(m*n)))) 
(count=count+1) 
} 

y[i]=count 
} 

typel=l-table(y,exclude=l :K)/N 
typel 

#Sequential Rao 

alpha=0.05;beta=0.1 ;sigma=l ;lan=0.5;N=l 0000 
#1 
delta=0.1 ;uA=0;uB=0;nO=4465.6 

#2 
delta=0.2;uA=0;uB=0;n0=l 127.3 

#3 
delta=0.5;uA=0;uB=0;nO=188.1 

#4 
delta=0.9;uA=0;uB=0;nO=67.1 

y=rep(0,N) 
for(iinl:N){ 

n=0;m=0 
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AA=rnorm(nO,uA, 1 );BB=rnorm(nO,uB, 1) 
while(n<=0 || m<=0) { 

if (runif(l, min=0, max=l)<lan) (n=n+l) else (m=m+l) 
} 

k=n+m 
A=AA[l:n] 
B=BB[l:m] 
s2=(sum(AA2)+sum(BA2))/k-((sum(A)+sum(B))/k)A2 
R=l/k*(n*sum(A)-m*sum(B))A2/(n*m*s2) 
a=k/nO*R 
RR=sqrt(a) 

while(RR<2.24 & k<=nO){ 
(if (runif(l, min^O, max=l)<lan) (n=n+l) else (m=m+l)) 
(A=AA[l:n]) 
(B=BB[l:m]) 
(k=n+m) 
(s2=(sum(AA2)+sum(BA2))/k-((sum(A)+sum(B))/k)A2) 
(R=l/k*(n*sum(A)-m*sum(B))A2/(n*m*s2)) 
(a=k/nO*R) 
(RR=sqrt(a)) 

} 
y[i]=k 
} 
typel=l -table(y,exclude=l :nO)/N 
typel 

• Calculate CV(alpha) for Sequential Rao 

#################### CV(alpha) for Sequential Rao ############### 

n=5;m=6 
k=c(0:n);q=c(0:m) 
r=seq(from=1.5, to=3, by=0.001) 
N=length(r) 
z=matrix(rep(0,N*4),ncol=4,byrow=T,dimnames = list(c(l :N),c("CV", 
"k=5","k=6","diff'))) 
for(iinl:N) { 
x=r[i] 
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y=4/pi*sum((- l)Ak/(2*k+l )*exp(-piA2*(2*k+l )A2/(8 *xA2))) 
p=4/pi*sum((4)Aq/(2*q+l)*exp(-piA2*(2*q+l)A2/(8*xA2))) 
d=p-y 
z[i,]=c(x,y,p,d) 

} 
z 

2. Three-treatment Comparison 

* Simulate the maximum sample size or truncation point and average 
stopping point 

alpha=0.05; sigma=l;N=5000; power=0.8;J=3 

#OBF 

#l)delta=0.8; 
K=5;Cb=6.27;uA=0;uB=0; uO0.9798;nf=48 # nf is sample size for all treatment 
K=10;Cb=6.48;uA=0;uB=0;uC=0.9798;nf=48 

#2)delta=0.6 
K=5;Cb=6.27;uA=0;uB=0;uC=0.7348;nf=84 
K=10;Cb=6.48;uA=0;uB=0;uC=0.7348;nf=84 
K=l ;Cb=5.99;uA=0;uB=0; uC=0.7348;nf=84 

#3)delta=0.4 
K=5;Cb=6.27;uA=0;uB=0; uC=0.4899;nf=l 83 
K=l 0;Cb=6.48;uA=0;uB=0; uO0.4899;nf=l 83 

#4)delta=0.2 
K=5;Cb=6.27;uA=0;uB=0;uO0.2449;nf=726 
K=10;Cb=6.48;uA=0;uB=0;uC=0.2449;nf=726 

#### Find nl and Enl (average stopping time) to obtain the maximal value of 
power ####which is less than 0.8 
nO=nf 
nts=ceiling(nO/(K*J)) # group size 
nO=nts*K*J 
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q=rep(0,N) 
y=rep(0,N) 

for(iinl:N){ 
AA=rnorm(nO,uA, 1 );BB=rnorm(nO,uB, 1 );CC=rnorm(nO,uC, 1) 
count=l 
m=l 
n=nts 
A=AA[l:nts] 
B=BB[l:nts] 
C=CC[l:nts] 
xbar=mean(c(A,B,C)) 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(nts-l)) 
F=(nts/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2) 

while(F<qf(l-pchisq(Cb*(K/count),J-l),J-l,J*(n-l),lower.tail = FALSE) & 
count<=K){ 

(m=m+l) 
(n=nts*m) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(xbar=mean(c(A,B,C))) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(n-l))) 
(F=(n/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2)) 
(count=count+l) 
} 

y[i]=count 
} 

pw=l-table(y,exclude=l :K)/N 
pwl=pw 

q=rep(0,N) 
for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
Enl :=mean(q)*nts* J 
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#### Find nO and EnO (average stopping time) to obtain the minimal value of 
power ####which is greater than 0.8 
nO #set the value of nO greater than nl 
q=rep(0,N) 
y=rep(0,N) 
j=l 

nts=nl/(K*J) 
for(iinl:N){ 

AA=rnorm(nO,uA, 1 );BB=rnorm(nO,uB, 1 );CC=Tnorm(nO,uC, 1) 
count=l 
m-1 
n=nts 
A=AA[l:nts] 
B=BB[l:nts] 
C=CC[l:nts] 
xbar=mean(c(A,B,C)) 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(nts-l)) 
F-(nts/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2) 

while(F<qf(l-pchisq(Cb*(K/count),J-l),J-l,J*(n-l),lower.tail = FALSE) & 
count<=K){ 

(m=m+l) 
(n=nts*m) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(xbar=mean(c(A,B,C))) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(n-l))) 
(F=(n/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2)) 
(count=count+l) 
} 

y[i]=count 
} 

pw= 1 -table(y,exclude= 1 :K)/N 
pwO=pw 

for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
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elseif(y[i]<=K)(q[i]=y[i]) 
} 

EnO=mean(q)*nts*J 

nnO=(power-pwO)*(nl-nO)/(pwl-pwO)+nO #the maximum sample size or 
truncation point 
En=(En 1 -EnO) * (power-p wO)/(pw 1 -p wO)+EnO 

#Pocock 

#l)delta=0.8; 
K=5;Cp=8.35;uA=0;uB=0; uC=0.9798;nf=48 # nf is sample size for all treatment 
K=l 0;Cp=9.17;uA=0;uB=0; uC=0.9798;nf=48 

#2)delta=0.6 
K=5;Cp=8.35;uA=0;uB=0;uO0.7348;nf=84 
K=10;Cp=9.17;uA=0;uB=0;uC=0.7348;nf=84 

#3)delta=0.4 
K=5;Cp=8.35;uA=0;uB=0; uC=0.4899;nf=l 83 
K=l0;Cp=9.17;uA=0;uB=0; uO0.4899;nf=l 83 

#4)delta=0.2 
K=5;Cp=8.35;uA=0;uB=0;uC=0.2449;nf=726 
K=l 0;Cp=9.17;uA=0;uB=0; uC=0.2449;nf=726 

#### Find nl and Enl (average stopping time) to obtain the maximal value of 
power ####which is less than 0.8 

n0=nf 
nts=ceiling(nO/(K*J)) # group size 
nO=nts*K*J 

q=rep(0,N) 
y=rep(0,N) 

for(iinl:N){ 
AA=rnorm(nO,uA, 1 );BB=rnorm(nO,uB, 1 );CC=rnorm(nO,uC,l) 
count=l 
m=l 
n=nts 

87 



A=AA[l:nts] 
B=BB[l:nts] 
C=CC[l:nts] 
xbar=mean(c(A,B,C)) 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(nts-l)) 
F=(nts/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2) 

while(F<qf(l-pchisq(Cp,J-l),J-l,J*(n-l),lower.tail = FALSE) & count<=K){ 
(m=m+l) 
(n=nts*m) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(xbar=mean(c(A,B,C))) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(n-l))) 
(F=(n/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2)) 
(count=count+l) 
} 

y[i]=count 
} 

pw=l-table(y,exclude=l :K)/N 
nl=nts*K*J 

pwl=pw 

q=rep(0,N) 
for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
Enl=mean(q)*nts*J 

#### Find nO and EnO (average stopping time) to obtain the minimal value of 
power ####which is greater than 0.8 

nO #set the value nO greater than nl 
q=rep(0,N) 
y=rep(0,N) 

nO=nl-K*j*J 
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nts=nO/(K*J) 
for(iinl:N){ 

AA=morai(nO,uA, 1 );BB=morm(nO,uB, 1 );CC=rnorm(nO,uC, 1) 
count=l 
m=l 
n=nts 
A=AA[l:nts] 
B=BB[l:nts] 
C=CC[l:nts] 
xbar=mean(c(A,B?C)) 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(nts-l)) 
F=(nts/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2) 

while(F<qf(l-pchisq(Cp,J-l),J-l,J*(n-l),lower.tail = FALSE) & count<=K){ 
(m=m+l) 
(n=nts*m) 
(A=AA[l:nj) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(xbar=mean(c( A,B, C))) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(n-l))) 
(F=(n/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2)) 
(count=count+1) 
} 

y[i]=count 
} 

pw=l-table(y,exclude=l :K)/N 
pwO=pw 

for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
EnO=mean(q)*nts*J 

nnO=(power-pwO)*(nl-nO)/(pwl-pwO)+nO #the maximum sample size or 
truncation point 
En=(Enl-EnO)*(power-pwO)/(pwl-pwO)+EnO 
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# Sequential F-test 

########### Seq F ########### 
# calculating "a" for giving d (#of treatment) ,kO,nO 

integrant<-function(x) {xA(d-2)*exp(-0.583 *x*(l +xA2/d)A(-
l))*sqrt(l+xA2/d)*(log(l+xA2/d))A(0.5-d/2)} 

d ; kO ; nO # set d, kO and nO to some value 

pl<-function(a){l-pf((exp(2*a/(k0*d))-l)*d*(k0-l)/(d-l),d-l,d*(k0-l))} 
p2<-function(a){2*exp(-a)*(a/d)A(d/2-0.5)*(gamma(d/2-0.5))A(-
l)*integrate(integrant,lower=sqrt(d*(exp(2*a/(n0*d))-
l)),upper=sqrt(d*(exp(2*a/(k0*d))-l)))$value} 

r=seq(from=5,to=6,by=0.001) 
m=length(r) 
z=matrix(rep(0,m*2),ncol=2,byrow=T) 
for (i in 1 :m) { 
a=r[i] 
p=pl(a)+p2(a) 
z[i,]=c(a,p) 
} 

# simulation 

alpha=0.05;beta=0.2;N=5000; power=0.8; J=3 

#l)delta=0.8; 
uA=0;uB=0; uC=0.9798;nf=48 # nf is sample size for all treatments 

#2)delta=0.6 
uA=0;uB=0; uC=0.7348;nf=84 

#3)delta-0.4 
uA=0;uB=0; uC=0.4899;nf=183 

#4)delta=0.2 
uA=0;uB=0; uC=0.2449;nf=726 
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nO=ceiling(nO*3)/3 # nO is sample size for each treatment 

#### Find nO and EnO (average stopping time) to obtain the minimal value of 
power ####which is greater than 0.8 

k0= 
n0= 
a= # set kO and nO to what we want, and a is calculated based on kO and nO. 

N=5000 
q=rep(0,N) 
y=rep(0,N) 

for(iinl:N){ 
AA=rnorm(nO*2,uA, 1 );BB=rnorm(nO*2,uB, 1 );CC=rnorm(nO*2,uC, 1) 
n=k0 
A=AA[l:n] 
B=BB[l:n] 
C=CC[l:n] 
ma=mean(A) 
mb=mean(B) 
mc=mean(C) 
m=mean(c(ma,mb,mc)) 
Lk=n*d/2*log(l+n*((ma-m)A2+(mb-m)A2+(mc-m)A2)/(sum((A-

ma)A2)+sum((B-mb)A2)+sum((C-mc)A2))) 
while(Lk<=a & n<=n0){ 
(n=n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(ma=mean(A)) 
(mb=mean(B)) 
(mc=mean(C)) 
(m=mean(c(ma,mb,mc))) 
(Lk=n*d/2*log(l+n*((ma-m)A2+(mb-m)A2+(mc-m)A2)/(sum((A-

ma)A2)+sum((B-mb)A2)+sum((C-mc)A2)))) 
} 

y[i]=n 
} 
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pw=l -table(y,exclude=l :nO)/N;pw 
pwl=pw 

q=rep(0,N) 
for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
Enl=mean(q) 

#### Find nO and EnO (average stopping time) to obtain the minimal value of 
power ####which is greater than 0.8 
n0= # set nO greater than nl 

for(iinl:N){ 
AA=rnorm(nO*2,uA,l);BB-rnorm(nO*2,uB,l);CC=rnorm(nO*2,uC,l) 
n=k0 
A=AA[l:n] 
B=BB[l:n] 
C=CC[l:n] 
ma=mean(A) 
mb=mean(B) 
mc=mean(C) 
m=mean(c(ma,mb,mc)) 
Lk=n*d/2*log(l+n*((ma-m)A2+(mb-m)A2+(mc-m)A2)/(sum((A-

ma)A2)+sum((B-mb)A2)+sum((C-mc)A2))) 
while(Lk<=a & n<=n0){ 
(n=n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(ma=mean(A)) 
(mb=mean(B)) 
(mc=mean(C)) 
(m=mean(c(ma,mb,mc))) 
(Lk=n*d/2*log(l+n*((ma-m)A2+(mb-m)A2+(mc-m)A2)/(sum((A-

ma)A2)+sum((B-mb)A2)+sum((C-mc)A2)))) 
} 

y[i]=n 
} 
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pw=l-table(y,exclude=l :nO)/N;pw 
pwO=pw 

q=rep(0,N) 
for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
EnO=mean(q) 

nnO=(power-pwO)*(nl-nO)/(pwl-pwO)+nO #the maximum sample size or 
truncation point 
En=(Enl -EnO)*(power-pwO)/(pwl -pwO)+EnO 
nnO;En 

# Rao test 1 

############### Rao test 1 ############ 
alpha=0.05;beta=0.2;N=5000;power=0.8 

#l)delta=0.8; 
uA=0;uB=:0; uC=0.9798;nf=48 # nf is sample size for all treatments 

#2)delta=0.6 
uA=0;uB=0; uC=0.7348;nf=84 

#3)delta=0.4 
uA=0;uB=0; uO0.4899;nf=183 

#4)delta=0.2 
uA=0;uB=0; uC=0.2449;nf=726 

#### Find nO and EnO (average stopping time) to obtain the minimal value of 
power ####which is greater than 0.8 

n0=ceiling(nf/3) # per treatment 
q=rep(0,N) 
y=rep(0,N) 

for(iinl:N){ 
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AA=morm(nO*2,uA,l);BB=morm(nO*2,uB, 1 );CC=rnorm(nO*2,uC, 1) 
n=l 
A=AA[l:n] 
B=BB[l:n] 
C=CC[l:n] 
sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2) 
R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2 
Tl=((n/nO)*R)A(l/2) 
while(TK=2.695 & n<=nO){ 
(n=n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2)) 
(R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2) 
(Tl=((n/nO)*R)A(l/2)) 
} 

y[i]=n 
} 

pw=l -table(y,exclude=l :nO)/N 
nl=nO 
p w l ^ w 
nl # per treatment 

for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
Enl=mean(q) 

#### Find nO and EnO (average stopping time) to obtain the minimal value of 
power ####which is greater than 0.8 
n0= # set nO greater than nl 
q=rep(0,N) 
y=rep(0,N) 

for(iinl:N){ 
AA=rnorm(nO*2,uA, 1 );BB=rnorm(nO*2,uB, 1 );CC=morm(nO*2,uC, 1) 
n=l 
A=AA[l:n] 

94 



B=BB[l:n] 
C=CC[l:n] 
sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2) 
R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2 
Tl=((n/nO)*R)A(l/2) 

while(TK=2.695 & n<=nO){ 
(n--n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2)) 
(R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2) 
(Tl=((n/nO)*R)A(l/2)) 

} 
y[i]=n 
} 

pw= 1 -table(y,exclude= 1 :nO)/N 
pwO=pw 
pwO 
nO # per treatment 

for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
EnO=mean(q) 
EnO 

nnO=(power-pwO)*(nl-nO)/(pwl-pwO)+nO #the maximum sample size or 
truncation point 
En=(Enl -EnO)*(power-pwO)/(pwl -pwO)+EnO 

nnO # trancation point per treatment 
En # expect per treatment 

# Rao test 2 

######## Rao Test 2 ########### 
alpha=0.05;beta=0.2;N=5000;pwer=0.8 
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#l)delta=0.8; 
uA=0;uB=0; uC=0.9798;nf=48 # nf is sample size for all treatments 

#2)delta=0.6 
uA=0;uB=0; uC=0.7348;nf=84 

#3)delta=0.4 
uA=0;uB=0; uC=0.4899;nf=183 

#4)delta=0.2 
uA=0;uB=0; uC=0.2449;nf=726 

q=rep(0,N) 
y=rep(0,N) 

nO=nf 
cv= # calculated by Maple software 

#### Find nO and EnO (average stopping time) to obtain the minimal value of 
power ####which is greater than 0.8 

for(iinl:N){ 
AA=rnorm(nO*2,uA,l );BB=rnorm(nO*2,uB, 1 );COrnorm(nO*2,uC, 1) 
n=l 
A=AA[l:n] 
B=BB[l:n] 
OCC[l:n] 
sigma-sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2) 
R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2 
T2=(R)A(l/2) 
while(T2<=cv & n<=n0){ 
(n=n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2)) 
(R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2) 
(T2=(R)A(l/2)) 
} 
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y[i]=n 
} 

pw=l-table(y,exclude=l :nO)/N;pw 
pwl=pw 

q=rep(0,N) 
for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
Enl=mean(q) 

#### Find nO and EnO (average stopping time) to obtain the minimal value of 
power ####which is greater than 0.8 
n0= # set nO greater than nl 

for(iinl:N){ 
AA=rnorm(nO*2,uA, 1 );BB=rnorm(nO*2,uB, 1 );COrnorm(nO*2,uC, 1) 
n=l 
A=AA[l:n] 
B=BB[l:n] 
C=CC[l:n] 
sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2) 
R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2 
T2=(R)A(l/2) 
while(T2<=3.538 & n<=n0){ 
(n=n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2)) 
(R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2) 
(T2=(R)A(l/2)) 
} 

y[i]=n 
} 

pw=l-table(y,exclude=l :nO)/N;pw 
pw0=pw 

q=rep(0,N) 
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for(iinl:N){ 
if(y[i]>K)(q[i]=y[i]-l) 
elseif(y[i]<=K)(q[i]=y[i]) 

} 
EnO=mean(q) 
nnO=(power-pwO)*(nl-nO)/(pwl-pwO)+nO #the maximum sample size or 
truncation point 
En=(En 1 -EnO) * (power-pwO)/(pw 1 -pwO)+EnO 
nnO # trancation point per treatment 
En # expect per treatment 

* Simulate the empirical size at the given maximal sample size 

### Calculating type I error 
#OBF 
#l)delta=0.8; 
K=5;Cb=6.27;uA=0;uB=0; uC=0;nO=49.84 # nf is sample size for all treatment 

#2)delta=0.6 
K=5;Cb=6.27;uA=0;uB=0;uC=0;n0=84.85 
K=10;Cb=6.48;uA=0;uB=0;uC=0;n0=85.89 

#3)delta=0.4 
K=5;Cb=6.27;uA=0;uB=0; uC=0;nO=l 85.79 
K=10;Cb=6.48;uA=0;uB=0;uC=0;nO=l 87.39 

#4)delta=0.2 
K=5;Cb=6.27;uA=0;uB=0;uC=0;n0=734.79 
K=10;Cb=6.48;uA=0;uB=0;uC=0;n0=746.04 

nts=ceiling(nO/(K*J)) 
y=rep(0,N) 
for(iinl:N){ 

AA=rnorm(nO,uA, 1 );BB=rnorm(nO,uB, 1 );CC=rnorm(nO,uC, 1) 
count=l 
m=l 
n=nts 
A=AA[l:nts] 
B=BB[l:nts] 
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C=CC[l:nts] 
xbar=mean(c(A,B,C)) 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(nts-l)) 
F=(nts/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2) 

while(F<qf(l-pchisq(Cb*(K/count),J-l),J-l,J*(n-l),lower.tail = FALSE) & 
count<=K){ 

(m=m+l) 
(n=nts*m) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(xbar=mean(c(A,B ,C))) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(n-l))) 
(F=(n/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2)) 
(count=count+l) 
} 

y[i]=count 
} 

typel=l -table(y,exclude=l :K)/N 
typel 

# Pocock 

#l)delta=0.8; 
K=5;Cp=8.35;uA=0;uB=0; uC=0;nO=59.34; # nf is sample size for all treatment 
K=l 0;Cp=9.17;uA=0;uB=0; uC=0;nO=65.16; 

#2)delta=0.6 
K=5;Cp=8.35;uA=0;uB=0;uC=0;nO=l 02.25 
K=10;Cp=9.17;uA=0;uB=0;uC=0;n0=l 09.82 

#3)delta=0.4 
K=5;Cp=8.35;uA=0;uB=0;uO0;n0=225.09 
K=10;Cp=9.17;uA=0;uB=0;uO0;n0=238.98 

#4)delta=0.2 
K=5;Cp=8.35;uA=0;uB=0;uC=0;n0=886.52 
K=l 0;Cp=9.17;uA=0;uB=0; uC=0;nO=930.404 
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nts=ceiling(nO/(K*J)) 
y=rep(0,N) 
for(iinl:N){ 

AA=rnorm(nO,uA, 1 );BB=rnorm(nO,uB, 1 );CC=rnorm(nO,uC, 1) 
count=l 
m=l 
n=nts 
A=AA[l:nts] 
B=BB[l:nts] 
C=CC[l:nts] 
xbar=mean(c( A,B ,C)) 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(nts-l)) 
F=(nts/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2) 

while(F<qf(l-pchisq(Cp,J-l),J-l,J*(n-l),lower.tail = FALSE) & count<=K){ 
(m=m+l) 
(n=nts*m) 
(A=AA[l:n]) 
(B-BB[l:n]) 
(OCC[l:n]) 
(xbar=mean(c(A,B,C))) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(n-l))) 
(F=(n/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2)) 
(count=count+l) 
} 

y[i]=count 
} 

typel=l -table(y,exclude=l :K)/N 
typel 

# Sequential F-test 

#l)delta=0.8; 
uA=0;uB=0;uC=0;nO=23.215 # nO is sample size for each treatment 

#2)delta=0.6 
uA=0;uB=0; uC=0;nO=39.55385 
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#3)delta=0.4 
uA=0;uB=0; uC=0;nO=82 

#4)delta=0.2 
uA=0;uB=0; uC=0;n0=321.0154 

#type I error 
n0=ceiling(n0*3)/3 # nO is sample size for each treatment 

y=rep(0,N) 
for(iinl:N){ 

AA=rnorm(nO*2,uA, l);BB=rnorm(nO*2,uB, 1 );CC=rnorm(nO*2,uC, 1) 
n=kO 
A=AA[l:n] 
B=BB[l:n] 
C=CC[l:n] 
ma=mean(A) 
mb=mean(B) 
mc=mean(C) 
m=mean(c(ma,mb,mc)) 
Lk=n*d/2*log(l+n*((ma-m)A2+(mb-m)A2+(mc-m)A2)/(sum((A-

ma)A2)+sum((B-mb)A2)+sum((C-mc)A2))) 
while(Lk<=a & n<=nO){ 
(n=n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(ma=mean(A)) 
(mb=mean(B)) 
(mc=mean(C)) 
(m=mean(c(ma,mb,mc))) 
(Lk=n*d/2*log(l+n*((ma-m)A2+(mb-m)A2+(mc-m)A2)/(sum((A-

ma)A2)+sum((B-mb)A2)+sum((C-mc)A2)))) 
} 

y[i]=n 
} 

typel=l -table(y,exclude=l :nO)/N 
typel 
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#Rao test 1 
### calculating type I error 
#l)delta=0.8; 
uA=0;uB=0; uC=0;n0=18.67 # nO is sample size for each treatment 

#2)delta=0.6 
uA=0;uB=0; uO0;n0=31.215 

#3)delta=0.4 
uA=0;uB=0; uO0;n0=66.93 

#4)delta=0.2 
uA=0;uB=0; uC=0;nO=260.85 

n0=ceiling(n0*3)/3 # nO is sample size for each treatment 
y=rep(0,N) 
for(iinl:N){ 

AA=rnorm(nO*2,uA, 1 );BB=rnorm(nO*2,uB, 1 );CC=rnorm(nO*2,uC, 1) 
n=l 
A=AA[l:n] 
B=BB[l:n] 
C=CC[l:n] 
sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2) 
R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2 
Tl=((n/nO)*R)A(l/2) 
while(TK=2.695 & n<=nO){ 
(n-n+1) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(OCC[l:n]) 
(sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2)) 
(R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2) 
(Tl=((n/nO)*R)A(l/2)) 
} 

y[i]=n 
} 

typel= 1 -table(y,exclude= 1 :nO)/N 
typel 

# Rao test 2 
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### calculating type I error 
#l)delta=0.8; 
uA=0;uB=0; uC=0;nO=27.51 ; cv=3.435# nf is sample size for all treatments 

#2)delta=0.6 
uA=0;uB=0;uC=0;n0=47.075;cv=3.483 

#3)delta=0.4 
uA=0;uB=0; uC=0;n0=103.94;cv=3.542 

#4)delta=0.2 
uA=0;uB=0;uC=0;n0=412.39;cv=3.624 

nO=ceiling(nO) 
y=rep(0,N) 
for(iinl:N){ 

AA=rnorm(nO*2,uA, 1 );BB=rnorm(nO*2,uB, 1 );CC=rnorm(nO*2,uC, 1) 
n=l 
A=AA[l:n] 
B=BB[l:n] 
C=CC[l:n] 
sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2) 
R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2 
T2=RA(l/2) 
while(T2<=cv & n<=nO){ 
(n=n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(sigma=sqrt((l/(3 *n))*sum(AA2+BA2+CA2)-((l/(3 *n))*sum(A+B+C))A2)) 
(R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2) 
(T2=RA(l/2)) 
} 

y[i]=n 
} 

typel=l-table(y,exclude=l :nO)/N 
typel 

• Calculate Critical value for Rao test 2 (Maple software) 
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>f:=(n0,d)->-solve(0.05=c2Ad*exp(-c2A2/2)/(2A(d/2)*GAMMA(d/2))*(ln(n0)*(l-
d/c2A2)+4/c2A2)); 
> f(n0,2)[3]; (input nO to calculate CV) 

3. Four-treatment Comparison 

• Program procedures are similar to three-treatment comparison. 

4. Application 

cc<-read.table("F:/thesis_usb/thesis_usb/newdata 
set/simulatedforMing.txt",h=TRUE) 
AA=cc[,2] #AA-Volume.control 
BB=cc[,3] #BB-Volume.traditional 
CC=cc[,4] #CC-Volume.Bone 
alpha=0.05; n0=50 
win.graph() 
par(mfrow=c(3,2)) 

#OBF 
J=3;K=10;Cb=6.48;nO=50 #nts: sample size for each treatment 
nts=50/K 

count=l 
m=l 
n=nts 
A=AA[l:nts] 
B=BB[l:nts] 
C=CC[l:nts] 
xbar=mean(c(A,B,C)) 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(nts-l)) 
F=(nts/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2) 

while(F<qf(l-pchisq(Cb*(K/count),J-l),J-l,J*(n-l),lower.tail = FALSE) & 
count<=K){ 

(m=m+l) 
(n=nts*m) 
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(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(xbar=mean(c(A,B,C))) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(n-l))) 
(F=(n/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2)) 
(count=count+l) 
} 

count 
count*nts # stopping time 

N=K 
z=ma1rix(rep(0,N*3),ncol=3,byrow=T) 
for(iinl:N){ 
(n=nts*i) 
(A=AA[l:n]) 

(B=BB[l:n]) 
(C=CC[l:n]) 
(xbar=mean(c( A,B ,C))) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(n-l))) 
(F-(n/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2)) 
(ss=n*J) 
(cv=qf(l-pchisq(Cb*(K/i),J-l),J-l,J*(n-l),lower.tail = FALSE)) 
z[i,]=c(F,ss,cv) 

} 
z 
stat=z[l:count,l] # OBF statistic 
ss=z[l :count,2] # cumulative total sample size on three arms 
cv=z[l :count,3] # critical value 
plot(ss,stat, type="l", lty=l,xlab="Cumulative total sample size on three 
arms",ylab="The OBF statistic") 
lines(ss,cv,lty=2) 
points(ss,stat) 
points(ss,cv,pch= 19) 
legend(x="topleft",legend=c("Critical value", "statistic"),lty=c(2,1)) 
#axis(l ,at=c(0,15,30,45,60,75,90,105),labels=c(0,l 5,30,45,60,75,90,105)) 

######Pocock 
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J=3;K=10;Cp=9.17;nO=50 
nts=nO/K 

count=l 
m=l 
n=nts 
A=AA[l:nts] 
B=BB[l:nts] 
C=CC[l:nts] 
xbar=:mean(c(A,B,C)) 
s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(nts-l)) 
F=(nts/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2) 

while(F<qf(l-pchisq(Cp,J-l),J-l,J*(n-l),lower.tail = FALSE) & count<=K){ 
(m=m+l) 
(n=nts*m) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(xbar=mean(c(A,B,C))) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(n-l))) 
(F=(n/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2)) 
(count=count+l) 
} 

count 
count*nts 

N=K 
z=matrix(rep(0,N*3),ncol=3,byrow=T) 
for(iinl:N){ 
(n=nts*i) 
(A=AA[l:n]) 

(B=BB[l:n]) 
(C=CC[l:n]) 
(xbar=mean(c(A,B,C))) 
(s2=(sum((A-mean(A))A2)+sum((B-mean(B))A2)+sum((C-

mean(C))A2))/(J*(n-l))) 
(F=(n/((J-l)*s2))*((mean(A)-xbar)A2+(mean(B)-xbar)A2+(mean(C)-xbar)A2)) 
(ss=n*J) 
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(cv=qf(l-pchisq(Cp,J-l),J-l,J*(n-l),lower.tail = FALSE)) 
(z[i,]=c(F,ss,cv)) 

} 
z 
stat=z[l :count,l] # pocock statistic 
ss=z[l :count,2] # cumulative total sample size on three arms 
cv=z[l :count,3] # critical value 
plot(ss,stat, type="l", lty=l,xlab="Cumulative total sample size on three 
arms",ylab="The Pocock statistic") 
lines(ss,cv,lty=2) 
points(ss,stat) 
points(ss,cv,pch=l 9) 
legend(x="topleft",legend=c("Critical value", "statistic"),lty=c(2,1)) 

#### Rao test 1 

cv=2.695;n0=50;J=3 
n=l 
A=AA[l:n] 
B=BB[l:n] 
C=CC[l:n] 
sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2) 
R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2 
Tl=((n/nO)*R)A(l/2) 
while(TK=cv & n<=nO){ 
(n=n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2)) 
(R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2) 
(Tl=((n/nO)*R)A(l/2)) 
} 

count=n 
count 
N=nO 
z=matrix(rep(0,N*2),ncol=2,byrow=T) 
for (i in 1:N){ 

(n=i) 
(A=AA[l:n]) 
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(B=BB[l:n]) 
(C=CC[l:n]) 
(sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2)) 
(R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2) 
(Tl=((n/nO)*R)A(l/2)) 
(ss=i*J) 
z[i,]=c(Tl,ss) 

stat=z[l: count, 1] # Rao test 1 statistic 
ss=z[l :count,2] # cumulative total sample size on three arms 

plot(ss,stat, type=T',xlim=c(0,100),ylim=c(0,4.5), lty=l,xlab="Cumulative total 
sample size on three arms",ylab="The Rao test 1 statistic") 
abline(h=cv,lty=2) 
legend(x="topleft",legend=c("Critical value", "statistic"),lty=c(2,1)) 

##### Rao test 2 
nO=50;cv=3.490;J=3 

n=l 
A=AA[l:n] 
B=BB[l:n] 
C=CC[l:n] 
sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2) 
R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2 
T2=(R)A(l/2) 
while(T2<=cv & n<=nO){ 
(n=n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2)) 
(R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2) 
(T2=(R)A(l/2)) 
} 

count=n 
count 
N=nO 
z=matrix(rep(0,N*2),ncol=2,byrow=T) 
for(iinl:N){ 
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(n=i) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(sigma=sqrt((l/(3*n))*sum(AA2+BA2+CA2)-((l/(3*n))*sum(A+B+C))A2)) 
(R=(sum(A+B-2*C)/(sigma*sqrt(6*n)))A2+(sum(A-B)/(sigma*sqrt(2*n)))A2) 
(T2=(R)A(l/2)) 
(ss=i*J) 
z[i,]=c(T2,ss) 

stat=z[l:count,l] # Rao test 2 statistic 
ss=z[l :count,2] # cumulative total sample size on three arms 

plot(ss,stat, type="l",xlim=c(0,105),ylim=c(0,5.5), lty=l,xlab="Cumulative total 
sample size on three arms",ylab="The Rao test 2 statistic") 
abline(h=cv,lty=2) 
legend(x="topleft",legend=c("Critical value", "statistic"),lty=c(2,1)) 

#### Sequential F-Test 

n0=50;k0=7;a=5.543;J=3 ;d=3 # a—cv 
n=kO 
A=AA[l:n] 
B=BB[l:n] 
C=CC[l:n] 
ma=mean(A) 
mb=mean(B) 
mc=:mean(C) 
m=mean(c(ma,mb,mc)) 
Lk=n*d/2*log(l+n*((ma-m)A2+(mb-m)A2+(mc-m)A2)/(sum((A-

ma)A2)+sum((B-mb)A2)+sum((C-mc)A2))) 
while(Lk<=a & n<=nO){ 
(n=n+l) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(ma=mean(A)) 
(mb=mean(B)) 
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(mc=mean(C)) 
(m=mean(c(ma,mb,mc))) 
(Lk=n*d/2*log(l+n*((ma-m)A2+(mb-m)A2+(mc-m)A2)/(sum((A-

ma)A2)+sum((B-mb)A2)+sum((C-mc)A2)))) 
} 

n 
count=n 

N=nO 
z=matrix(rep(0,N*2),ncol=2,byrow=T) 
for(iinkO:N){ 

(n=i) 
(A=AA[l:n]) 
(B=BB[l:n]) 
(C=CC[l:n]) 
(ma=mean(A)) 
(mb=mean(B)) 
(mc=mean(C)) 
(m=mean(c(ma,mb,mc))) 
(Lk=n*d/2*log(l+n*((ma-m)A2+(mb-m)A2+(mc-m)A2)/(sum((A-

ma)A2)+sum((B-mb)A2)+sum((C-mc)A2)))) 
(ss=i*J) 
z[i,]=c(Lk,ss) 

} 
z 
stat=z[kO:count,l] # Sequential F statistic 

ss=z[k0:count,2] # cumulative total sample size on three arms 

plot(ss,stat, type="l",xlim=c(kO*J,100),ylim=c(l,8), lty=l,xlab=MCumulative total 
sample size on three arms",ylab="The Sequential F statistic") 
abline(h=a,lty=2) 
legend(x="topleft",legend=c("Critical value", "statistic"),lty=c(2,1)) 
dev.copy2eps(file="paper.eps") 
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