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Abstract 

This thesis investigates stray losses in AC machines using the time-stepped 

finite element technique. Two aspects of this topic are involved in this thesis. The 

first aspect is to construct a finite element model for AC machine systems and 

develop an efficient numerical solution for the system equation; as the emphasis 

of this thesis, the second aspect is use the above model to analyze stray losses in 

AC machines under a variety of operation, design and manufacturing conditions. 

The thesis modifies the traditional 2-D finite element technique to account for 

the variations in electromagnetic field along the machine’s axis resulting from 

skewed structures, rotor interbar currents and ventilation ducts. Domain 

decomposition and parallel computation are incorporated to efficiently give a 

numerical solution to the system equation. 

The factors affecting harmonic stray losses in AC machines including pulse 

width modulation (PWM) supply, interbar resistance and slot shape are 

investigated using the above efficient analysis tool. Simulations and tests under 

different load conditions are carried out for an induction motor to investigate the 

additional harmonic stray loss caused by the PWM supply. For a large 

synchronous generator, simulations and tests are performed to study the effect of 

different amortisseur interbar resistances on the slot harmonic contents and the 

resulting harmonic stray loss in the amorisseur cage. As a factor influential to 

magnet stray loss in permanent magnet synchronous machines, various slot shape 

designs are assessed by simulations. An optimization based on an evolutionary 



strategy is implemented to find the best slot shape design with minimum machine 

loss. 

The conclusions in the thesis provide valued information to direct the future 

design and manufacture of efficient AC machines. 
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1 

Chapter 1 Introduction 

Electric machines are widely used as electro-mechanical energy converters in 

home appliances and industrial production. Electric motors which convert electric 

energy to mechanical energy consume a large percentage of the electric energy 

produced, typically about 60% in industrialized countries [1]. Electric generators 

which convert mechanical energy to electric energy produce almost all the global 

electricity consumed. The energy loss associated with the process of electro-

mechanical energy conversion has always been a concern of electric machine 

manufacturers and users. In modern society, economic growth is increasingly 

dependent on the consumption of fossil fuels. An opinion generally accepted is 

that the fossil energy resources will be eventually depleted due to the increasing 

consumption of fossil fuels, and on the other hand this results in the excessive 

emission of greenhouse and toxic gases. These resource and environment issues 

evoke a close attention to the energy losses inside electric machines. As a large 

portion of fossil energy is converted to other energy forms or eventually 

consumed by electric machines, the reduction of electric machine losses may help 

relieve the pressure on natural resources and environment. A full investigation of 

the loss mechanism is a prerequisite for the design of energy-efficient electric 

machines. This thesis focuses on the loss mechanism analysis for AC electric 

machines including induction machines, synchronous machines and permanent 

magnet synchronous machines.  

1.1 Components of AC machine losses 

The losses that occur in AC machines can be divided into four basic categories: 

1. Joule loss (I2R losses) 

2. Iron loss 

3. Mechanical loss 

4. Stray loss 

Joule loss is the ohmic heating loss that occurs in stator windings, field 

windings (in synchronous machines) and rotor windings or squirrel cage (in 
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induction machines). Since the conductor resistances are temperature dependent, 

the Joule losses are dependent on the expected operation temperature. 

The core of an electric machine is usually made of laminated ferromagnetic 

material, which is exposed to time and space varying magnetic fluxes. These 

fluxes produce hysteresis loss, eddy-current loss and excess loss. These three 

categories of magnetic losses occurring in the laminated core are lumped together 

to form the iron loss. 

Mechanical loss is associated with two mechanical effects in an AC machine: 

friction and windage. Friction loss is caused by the friction of bearings, while 

windage loss is caused by the air resistance that acts on the moving parts inside 

the machine. In some cases a fan is designed in to the end of the machine’s rotor 

in order to provide the air flow cooling the machine. The built-in cooling fan 

consumes the input energy to the machine without developing output. This 

portion of energy loss is also included in the windage loss.  

Stray loss is the portion of total loss that is difficult to model and quantify. 

This portion of loss is not strictly independent of other loss categories in this 

thesis. In the initial stage of design, most electric machine manufacturers give raw 

design of basic structures using their in-house software based on analytical and 

empirical equations. Regarding the loss calculations these programs assume that 

losses only occur because of the fundamental frequency of field. Due to this 

design routine, “Joule loss” and “iron loss” terms in common usage only refer to 

those losses at fundamental frequency. However, in additional to the fundamental 

losses, harmonic currents and harmonic fields do cause another portion of Joule 

loss and iron loss. As these additional losses are unable to be precisely calculated 

by the in-house programs, they are treated as stray losses in most of the previous 

work on machine losses. In this thesis, the terms of “Joule loss” and “iron loss” 

refer to the sum of loss components at all frequencies. The harmonic components 

of those losses that are treated as stray losses are termed as “harmonic Joule loss” 

and “harmonic iron loss”. 

The ratio of each above loss components to a total machine loss is a function 

of machine size and load condition. Generally speaking, with the increased load 
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the proportion of iron loss and the proportion of mechanical loss become less 

significant relative to the proportion of Joule loss. 

1.2 Origins of stray losses in AC machines 

Stray losses may bring extra temperature rise and machine performance 

degradation, therefore it is essential to understand the phenomena causing these 

losses and evaluate them for design of higher efficiency electric machines. 

Although stray losses in AC machines have been defined from the different 

aspects of the subject, there is general agreement that the following constitute the 

physical origins of stray losses [2], [3]: 

1. Saturation of magnetic material 

2. The space harmonics of magnetic field caused by the geometrical 

structures around the active region of the machine such as slots, windings 

and air-gap 

3. The nonsinusoidal input supply to a machine 

4. The leakage flux in the frame, end-region and other metallic parts 

5. The fringing flux caused by slots and ventilation ducts, if present 

6. Industrial imperfection – the most prominent of which is interbar currents 

due to imperfect insulation of the squirrel cage bars or the amortisseur bars 

1.3 Loss analysis by finite element method 

Manufacturers rely on experimental and simulation approaches to quantify the 

losses in electric machines. For induction machines and synchronous machines, 

IEEE or IEC standards [4] - [6] define some segregated losses that are similar to 

the loss components mentioned in Section 1.1. These standards also give 

recommendations on the test procedures for determination of those losses. The 

simulation approach for machine loss analysis is the subject of this thesis. 

Electromagnetic simulations have been carried out in the process of design to 

predict the various performances of electric machines. Generally the 

electromagnetic field in an electric machine is modeled by the Maxwell’s 

equations and the machine performances associated with the field are simulated 



4 

by solving these equations. As friction and windage are purely mechanical 

performances which usually need tests to be determined, they are not in the scope 

of electromagnetic simulations involved with this thesis. 

1.3.1 The application of time-stepped finite element method 

A full knowledge of the electromagnetic field distribution is required for 

electric machine loss analysis. In an electric machine, the field varies with time 

and space and may be saturated at certain regions of the iron core. Time-stepped 

finite element analysis (FEA) is a simulation technique that can calculate the field 

distribution in time domain, therefore it is a suitable technique for modeling of the 

time and space varying nonlinear field in electric machines. This feature is 

essential particularly to the accurate prediction of stray losses as time-stepped 

FEA is capable of predicting the harmonics which constitute a large proportion of 

stray losses. 

This thesis studies two aspects regarding the application of time-stepped finite 

elements in AC machine analysis. One aspect is the finite element modeling of 

AC machines. In this thesis some modifications are made to the conventional 2-D 

finite element method (FEM) by incorporating multislice technique, Carter’s 

coefficient and interbar circuit model in order to adapt it to certain special 

structures such as skewed bars (or slots) and ventilation ducts as well as 

manufacturing variations such as imperfect interbar insulation. The modified 2-D 

time-stepped finite element models are developed for induction machines, 

synchronous machines and permanent magnet synchronous machines, 

respectively. Most of the origins of stray losses mentioned in Section 1.2 can be 

taken into account using the 2-D model without incurring the impractical 

complexity and computation overhead of a fully time-stepped 3-D model. 

However the 2-D technique is still relatively expensive in comparison to the 

traditional analytical method as the former solves a large number of coupled 

equations at each time step for circuit variables and nodal magnetic potentials, 

though the number of these equations is much less than that with the 3-D 

technique. Thus the other aspect of the research on time-stepped FEA of AC 
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machines is the investigation of the approaches to reduce the computation time 

required to solve the finite element equations. This thesis proposes an efficient 

parallelized algorithm based on domain decomposition to the time-stepped finite 

element model for AC machines. 

1.3.2 Loss analysis for AC machines 

This thesis aims to analyze AC machine losses using the modified efficient 2-

D time-stepped finite element model. Emphasis is placed on the investigation of 

some factors affecting stray losses in induction machines, synchronous machines 

and permanent magnet synchronous machines. These factors include supply 

harmonics, rotor interbar resistances and shape of certain structure. 

A. Interbar resistance 

The induced interbar leakage currents between rotor bars are conventionally 

neglected in the AC machine design routines. A reason for this is the difficulty in 

modeling the bar-bar insulation by the traditional design routines based on 

analytical and empirical calculations. However the interbar currents are 

considered a vital internal factor underlying harmonic field in AC machines as 

well as a considerable source of harmonic stray losses. The bar-bar insulation 

represented by interbar resistances varies significantly with individual machines 

due to manufacturing variations. In this thesis the interbar circuit originating from 

the modeling of noninsulated cage bars in induction machines is generalized for 

the modeling of noninsulated amortisseur bars in synchronous machines, and the 

effects of interbar resistance variation on the various field harmonics and the 

relevant stray losses are investigated. 

B. Supply harmonics 

Pulse width modulation (PWM) schemes are commonly used in variable 

speed drives. As an external source of harmonics to AC machines a PWM supply 

causes additional stray losses at the PWM frequency. Simulations are carried out 

in this thesis for induction machines under a range of load conditions in order to 

investigate the additional stray losses caused by a PWM supply and their relation 

to the load variations. It is expected that these simulation results provide a better 
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understanding of stray losses caused by PWM frequency and consequently better 

inform future design of induction machines with nonsinusoidal supply. 

C. Slot shape 

The field distribution in an electric machine is a function of the dimension and 

shape of parts and structures. The adjustment of dimension and shape design may 

change the field distribution as well as the total loss. It is particularly of interest to 

the manufacturers of high-efficiency machines to seek the optimal design with the 

lowest losses using appropriate optimization algorithms. Of the various structures 

in an electric machine, the adjustment of slot shape is an economical approach to 

contribute towards loss reduction after an initial design using low-loss materials 

has been carried out. In this thesis a permanent magnet synchronous machine 

(PMSM) is selected as the prototype for slot shape optimization in order to 

minimize the total loss. An optimization based on evolution strategy is 

implemented and the 2-D time-stepped FEA is used to evaluate the loss 

components of the PMSM including the stray loss in the permanent magnets. The 

thesis highlights the advantage of the proposed optimal slot shape design in 

reducing the magnet stray loss. 

1.4 Contributions 

This thesis develops a universal time-stepped 2-D finite element model for AC 

machines. Some improvement techniques are incorporated with this model to 

make it compatible with the axial field variation caused by skewed bars (or slots), 

ventilation ducts and interbar currents. An efficient algorithm based on domain 

decomposition and parallel computation is proposed for solving the equations 

derived from that model. 

The thesis demonstrates that the combination of the proposed model and the 

efficient parallel algorithm is an efficient tool for the evaluation of AC machine 

performances. The time-stepped FEA is carried out to evaluate the stray losses in 

three basic types of AC machine: induction machine, synchronous machine and 

PMSM. Three factors affecting stray losses in AC machines are emphasized in 

this thesis: imperfect bar-bar insulation, PWM supply and shapes and dimensions 
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of certain parts such as stator slots. Using time domain simulations, the thesis 

makes a comprehensive analysis of the relation between these three factors and 

stray losses. A portrait of AC machine stray losses is obtained, and this 

information may guide electric machine manufacturers to develop new design for 

energy-efficient machines, which would be considered an asset in the current 

situation of energy scarcity. In pursuit of this goal, this thesis makes a valuable 

attempt at the design optimization based on evolution strategy and time-stepped 

FEM. 

This thesis presents a number of measurement results, and simulation results 

are obtained under the same supply and speed conditions. The machine 

performances under a number of variable factors (i.e. rotor temperatures and 

interbar resistances) are simulated in order to explain the experimental 

observation related to stray losses. 
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Chapter 2 Background Theory 

and Literature Review 

Three types of AC machines are studied in this thesis: induction machines, 

synchronous machines and PMSMs. Section 1.2 clarifies the general origins of 

stray losses in AC machines. Of those origins field harmonics may cause stray 

losses in a variety of parts exposed to those field harmonics, depending on the 

construction of different types of AC machines. The following sections give the 

qualitative explanations on the cause of field harmonics and harmonic stray losses. 

Most manufacturers of electric machines employ experiments to quantify these 

losses. Some of these stray loss test procedures are reviewed in this section. 

2.1 Induction machines 

By their rotor construction induction machines are classified into squirrel cage 

machines and wound rotor machines. In this thesis the induction machines 

involved in the loss study are squirrel cage machines. Squirrel cage induction 

machines have rugged construction without brushes. This characteristic increases 

their reliability and reduces maintenance costs. Induction machines are the 

preferred choice for industrial motors as the speed control of induction machines 

is now feasible thanks to modern power electronics. 

2.1.1 Harmonics and stray losses in induction machines 

In order to locate the parts where the harmonic stray losses occur, it is 

necessary to briefly introduce how the stator and rotor fields form in an induction 

machine. The stator current produces the rotating fundamental field at supply 

frequency. The rotor fundamental field and the induced fundamental current in 

squirrel cage vary at slip frequency due to the rotor’s motion at slip speed relative 

to the rotating fundamental field. 

Figure 2-1 summarizes the cause of harmonic stray losses in an induction 

machine. As an important source of harmonics in induction machines, a 

nonsinusoidal supply introduces current time harmonics that produce harmonic 
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Joule losses and cause harmonic iron losses through the induced harmonic fields. 

A typical example of the nonsinusoidal supply is an inverter that may produce 

current harmonics at the PWM switching frequency. The structures such as 

windings and slots form the other source of harmonics (i.e. space harmonics) in an 

induction machine. Space harmonics in air-gap flux density are partly due to the 

nonsinusoidal spatial distribution of the stator windings, and the other portion of 

space harmonics, referred as slot harmonic, is produced by the reluctance 

fluctuation due to the slot-tooth modulation. The flux density space harmonics 

produce a stationary wave interacting with the rotating fundamental field to give 

the rotating harmonic fields. The flux densities corresponding to these field time 

harmonics produce additional harmonic iron losses and induce additional 

harmonic currents that cause extra harmonic Joule losses in windings and bars. In 

summary, the harmonics caused by supply and machine structure are both 

reflected in the stator current, the induced current in rotor cage and the iron 

laminations. The resulting harmonic Joule loss and harmonic iron loss constitute 

the harmonic stray losses in an induction machine. 

2.1.2 Interbar currents in induction machines 

Due to their simplicity and effectiveness cast rotor cages are widely used in 

induction machines, particularly in small ratings. A disadvantage of cast cage is 

 

Figure 2-1 Harmonic stray losses in an induction machine 
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the imperfect insulation between the rotor bars and the rotor core. This 

manufacturing process leads to current flowing circumferentially between 

successive rotor bars through the lamination iron. This current is commonly 

referred to as “interbar current”. Large induction machines adopt the more 

traditional fabricated cage where the copper bars are inserted into the rotor slots. 

Generally a fabricated cage has less regular bar-iron contact surface and as a 

result a better interbar insulation than an equivalent cast rotor [7]. 

In an induction machine the interbar current is a common phenomenon that 

requires a special attention when modeling the machine as it contributes to the 

axial variations in both flux density and bar current density. The presence of 

interbar current changes particularly the harmonic electromagnetic field 

distribution in the rotor, and therefore the interbar current is considered an 

important factor underlying the rotor stray losses. An experimental study 

undertaken by the Toshiba Corporation claimed that the losses in a cast cage 

machine due to interbar currents constitute approximately 30% of the typical 

stray-load losses [7]. 

2.1.3 Determination of stray loss by experiment 

As experimental methods for determination of stray losses are not the main 

concern of this thesis, this section gives the brief comments only on the stray loss 

measurement procedure introduced in IEEE Standard 112, a representative of the 

prevalent international standards for induction machine testing. 

IEEE Standard 112 defines some segregated losses in an induction machine 

and describes the tests and calculations to be used to determine these losses [4]. 

The segregated losses include stator I2R loss, rotor I2R loss, friction and windage 

loss, core loss, and stray-load loss. Stray-load loss is defined as that portion of the 

total loss in a machine not accounted for by the sum of the other loss components. 

Generally, stray-load loss is actually the stray loss when load is applied, so it is 

dependent on motor loading. The standard defines the no load test and some other 

procedures to isolate stator I2R loss, core loss, friction and windage loss from the 

total no-load losses, however the harmonic Joule loss in squirrel cage, which is 
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supposed to be a stray loss, is treated as a part of the core loss in this standard. 

Although the IEEE Standard 112 provides a reverse-rotation test as the direct 

measurement method of stray loss, criticisms have been reported that the principle 

and presumption of this method are indeed problematic [8] and the measurement 

results are subject to a high degree of uncertainty [9] - [12]. According to 

empirical estimations the stray-load loss in an induction machine amounts to 1% - 

2% of the output, but values as low as 0.5% and as high as 4% are not uncommon 

[13]. 

2.2 Synchronous machines 

Almost all electrical power plants use synchronous machines to generate 

electricity. In some cases synchronous machines are used not to provide any real 

power to a power system, and instead they generate or absorb reactive power as 

compensators to improve the power factor on the local grid they are connected to. 

2.2.1 Rotor construction of synchronous machines 

The stator structure in a synchronous machine is similar to that in an induction 

machine. A synchronous machine differs from an induction machine only in the 

rotor geometry and structures. The rotor of a synchronous machine is excited by 

the field winding, which is nonexistent in an induction machine. 

Synchronous machines are classified into salient-pole machines and 

cylindrical-rotor machines depending on their rotor configuration. The 

construction of a salient-pole synchronous machine is shown schematically in 

Figure 2-2 (a). The rotors of this kind of machines have obviously salient poles 

with concentrated field winding surrounding the pole bodies. By properly shaping 

the pole face, a nonuniform air gap is usually obtained to make the radial air-gap 

flux density to approximate a sinusoidal distribution. A cylindrical-rotor 

synchronous machine has a round rotor with distributed field winding and 

uniform air gap as shown in Figure 2-2 (b). The coil sides are distributed in 

multiple slots around the rotor periphery and arranged to produce an 

approximately sinusoidal distribution of radial air-gap flux density. 
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Some synchronous machines may have an amortisseur winding on the rotor. 

Salient-pole machines normally have amortisseur winding in the form of 

conductive bars spaced across each pole face. The ends of the bars are brazed to a 

pair of conductors to form a low-resistance path. This configuration of 

amortisseur winding is similar to the squirrel cage in an induction machine. There 

are two basic types of amortisseurs. Nonconnected amortisseur windings are 

isolated on each pole face. Connected amortisseurs have conducting bridges that 

interconnect all the amortisseur groups at individual poles. The main purpose of 

amortisseur is to dampen oscillations about synchronous speed that result from 

electrical or mechanical perturbations. It is also used to accelerate the machine 

during starting. As the rotating field moves past the winding during oscillations or 

starting it induces currents in the amortisseur winding which produce torque and 

accelerate or decelerate the machine. In this process the amortisseur winding 

works exactly the same way as the squirrel cage in an induction machine.  

2.2.2 Harmonics and stray losses in synchronous machines 

Some harmonics in a synchronous machine are produced in a way similar to 

the harmonics occurring in an induction machine. For instance, all the slots 

around the periphery of iron cores and the nonsinusoidal spatial distribution of 

stator windings produce space harmonics modulating the machine fundamental 

 
(a) Salient-pole machine                              (b) Cylindrical-rotor machine 

Figure 2-2 Construction of synchronous machines 
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field. In addition, a power grid may input time harmonics into the synchronous 

machines connected to it. 

The field winding of a synchronous machine is excited with DC current, 

which produces fundamentally a DC rotor field. Thanks to the shape of pole face 

(in salient-pole machine) or the configuration of field winding (in cylindrical-

rotor machine), the spatial distribution of air-gap flux density is approximately 

sinusoidal. As the air-gap flux rotates with the rotor, a sinusoidal field presents on 

the stator at the fundamental frequency corresponding to the synchronous speed. 

However the DC excitation in synchronous machines still produces rotor 

magnetomotive force (MMF) harmonics though the rotor construction has been 

specially arranged to mitigate the impact of these harmonics on air-gap flux 

density. Thus the nonsinusoidal air-gap flux due to the DC excitation creates an 

additional harmonic source in a synchronous machine. 

Unlike the circumstances in an induction machine, the rotor of a synchronous 

machine in steady state does not carry any field or induced current at slip 

frequency, because the rotor motion is in synchronism with the stator fundamental 

rotating field. Thus DC rotor field fundamentally produces no loss in the rotor 

core and the amortisseur winding. However, as the effect of harmonics introduced 

by internal structures and external supply, the AC components of the rotor field 

and the induced current in amortisseur winding produce a considerable amount of 

rotor loss. The rotor loss and the stator harmonic loss constitute the harmonic 

stray losses in synchronous machines. It is postulated that interbar currents also 

occur in the rotor of a synchronous machine and cause an additional stray loss, for 

construction and manufacturing process of amortissuer are similar to those of the 

squirrel cage in an induction machine. However, to the author’s knowledge, no 

previous work on interbar currents in synchronous machines has been published 

prior to the work carried out for this thesis. 

2.2.3 Determination of stray loss by experiment 

Similar to IEEE Standard 112, some segregated losses are defined in IEEE 

Standard 115 for synchronous machines. These losses include friction and 
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windage loss, core loss (on an open circuit), stray-load loss (on a short circuit), 

armature I2R loss and field I2R loss. The standard provides an experiment guide to 

determine the efficiency by measuring those segregated losses [5]. The loss 

components of core loss and stray-load loss due to harmonic, leakage and fringing 

flux constitute the stray losses at open and short circuit respectively. This 

experiment guide is based on a false assumption that the superposition of the core 

loss at an open circuit and the stray-load loss at a short circuit can simulate 

precisely the actual load loss in a synchronous machine. Ideally, the direct 

measurement of stray losses under the actual load condition is required for 

determination of efficiency. In [3] a measurement of stray losses throughout the 

entire geometry of a synchronous machine is carried out by using miniature 

thermistors and thin film area sensors. 

2.3 Permanent magnet synchronous machines 

A PMSM is similar to a synchronous machine with the exception that the field 

winding is replaced by permanent magnet. In comparison to conventional 

synchronous machines, the excitation by permanent magnet does not need the 

parts such as external DC supply, slip rings, brushes, and hence requires no 

maintenance cost for those parts. PMSMs are typically operated from variable-

frequency drives and behave similarly to conventional synchronous machines. 

PMSMs have high power density, high efficiency and are relatively simple to 

control. These advantages make PMSMs an attractive candidate for industrial 

drive, servo drive, electric vehicle traction drive and motion parts in home 

appliances such as washing machine, refrigerator and air conditioning. 

2.3.1 Rotor construction of permanent magnet synchronous 

machines 

PMSMs are classified as surface-mounted permanent magnet (SPM) and 

interior-mounted permanent magnet (IPM) types. The SPM machine has its 

magnets projected from the surface of the rotor, while the IPM machine has its 

magnets buried inside the rotor. The cross sections of the two types of machine 
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are schematically shown in Figure 2-3. In practice, the geometry of the permanent 

magnets and the rotor core may vary depending on individual applications in 

order to obtain sinusoidal spatial distribution of air-gap flux density, and desired 

direct and quadrature axis inductance (Ld and Lq). In a SPM machine, epoxy glue, 

special tape or retaining sleeve is used to fix the magnets to the rotor surface. This 

design makes SPM machines easy to build and less expensive, but less robust 

compared to IPM type, especially in high-speed applications. The rotor of an IPM 

machine possesses salient magnetic structure that favours development of a 

reluctance torque component and helps increase flux density. This extra torque 

component can be harnessed to increase output with a more sophisticated control 

algorithm. The main disadvantage of IPM machines is the large cogging torque 

that may cause noise and vibration. 

2.3.2 Harmonics and stray losses in permanent magnet 

synchronous machines 

Slots in the core periphery, nonsinusoidal spatial distribution of stator 

windings and nonsinusoidal supply (if presents) are all common sources of 

harmonics in conventional synchronous machines and PMSMs. Analogous to DC 

field winding in conventional synchronous machines, MMF of permanent 

(a) Surface-mounted permanent magnet (b) Interior-mounted permanent magnet 

Figure 2-3 Construction of permanent magnet synchronous machines 
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magnets in PMSMs contains harmonics and results in air-gap flux density which 

is not perfectly sinusoidal, though efforts have been made to reduce effect of these 

harmonics by shaping magnets and rotor core. Thus the nonsinusoidal MMF of 

permanent magnets produces an additional portion of stray loss in a PMSM. 

Supply and slot harmonics induce eddy currents in permanent magnet, rotor 

iron core and conductive retaining sleeve, if present. These eddy currents may 

produce significant stray losses at high speeds by heating the rotor. The rotor 

temperature rise caused by these stray losses is a special concern in design of 

PMSMs. The property of permanent magnet is sensitive to temperature. Residual 

flux density (Br) and coercive force (Hc) decrease as magnet temperature increases. 

This characteristic is unfavourable for the permanent magnet performance, 

particularly the demagnetization withstand, whose degradation increases the risk 

of demagnetization in the case of transients or field-weakening control. In 

addition, if the magnet is unfortunately heated to over its Curie temperature, 

irreversible demagnetization will occur to the magnet and lead to a permanent 

damage to the machine. It is technically difficult to construct a cooling system for 

the moving part inside an electric machine, thus a design with low rotor stray 

losses is expected to keep the rotor temperature in a safe range. A conventional 

approach to reduce the magnet loss is to divide the solid magnets into a number of 

insulated segments. 

2.4 Time-stepped finite element model 

2.4.1 Finite element methods for AC machine analysis 

For simulation of electric machine performances, two major finite element 

models have been established: time-harmonic FEA and time-stepped FEA. Time-

harmonic FEA relies on “one snapshot” rotor position in calculating the phasor-

based performance characteristics in frequency domain by treating the supply as a 

current phasor. This method can model only the effects of time harmonics as the 

result of nonsinusoidal supply. The effects of saturation and space harmonics 

caused by rotor motion cannot be investigated using such a linear field modeling 

method in frequency domain. As the induced currents in core laminations, squirrel 
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cage (or amortisseur windings) and permanent magnets are an outcome of the 

interacting supply and space harmonics, a more accurate model is required when 

evaluating the full effect of harmonics. Time-stepped FEA calculates machine 

electrical and magnetic performances at samples of rotor position. With the 

dynamic creation of finite element mesh (for a machine’s air gap only, in practice) 

this method inherently reflects the full effect of harmonics and saturation. This 

method has been employed in the simulations of nonsinusoidal field in induction 

machines since 1980’s [14] - [17], and it was extended in 1990’s to simulate the 

performances of conventional synchronous machines and PMSMs [18] - [21]. The 

authors of [14] - [19] simulate the steady-state electromagnetic performances of 

AC machines by solving the coupled electric circuit equations and finite-element 

field equations. To implement a comprehensive simulation of electromechnical 

performances such as the transients during starting and supply or load 

perturbation, this method has been improved by coupling an additional 

mechanical equation with the electromagnetic system equations. In [20] and [21] 

the starting transient of line-start PMSM is simulated by solving simultaneously 

those mechanical and electromagnetic equations. 

There are two approaches to implement time-stepped FEA on the 

electromagnetic system of AC machine: coupled circuit approach [22] and eddy-

current approach [23]. The coupled circuit approach is based on a circuit model 

comprised of time varying circuit equations coupled to a magnetostatic finite 

element model. The finite element model is used to update the self and mutual 

inductances of the circuit as the orientation of the rotor and the magnetic 

saturation vary. The eddy-current approach calculates the unknown circuit 

variables with the present change rate of magnetic potential, in other words, the 

field and circuit equations are solved simultaneously at each time step. This 

approach has the advantage that the full effect of instantaneous induced currents 

and electromotive forces (EMF) is directly included in the simulation results. The 

investigation of the two approaches show that the simulation based on the eddy-

current model is significantly faster than that based on the coupled circuit model 

[24], [25]. 
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2.4.2 Multislice technique 

Skewed slots are extensively adopted in AC machines as a design routine in 

order to reduce harmonics, noise and vibration. The center line of a skewed slot is 

not a straight line parallel to the axis of the machine, but is a spiral line along the 

cylinder (for instance, the surface of the rotor). In small or medium size induction 

machines, slot skewing is usually done on rotors. Slot skewing in synchronous 

machines and PMSMs, if presents, is usually done on stators. Conventionally, the 

slot pitch or the angle a skewed slot crosses on the surface of rotor or stator 

cylinder is used as the measure of skew. One slot pitch is an arc covering one slot 

and one tooth of the stator. 

Skewed slots result in axial variation of flux density that needs 3-D modeling 

technique. The 3-D finite element model requires extremely expensive overhead 

in computation, which makes it impractical to simulate AC machines by time-

stepped 3-D technique. To simplify the modeling of induction machines with 

skewed rotor slots and reduce the computation time, the multislice technique has 

been exploited that models the skew by a set of slices cut from the machine using 

planes perpendicular to the machine’s axis [26], [27]. The multislice model of a 

skewed slot is shown in Figure 2-4. The bar lying in a skewed slot is represented 

by the axial bar segments which are discretized by the slices and shifted parallel 

to one another on the surface of rotor cylinder, but electrically connected in series. 

The angle across the adjacent bar segments is dependent on the value of skew 

 

(a) Skewed slot (b) Discrete approximation 

Figure 2-4 Multislice model (5-slice example) 
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angle and the number of slices. As the bar segments within slices are assumed 

parallel to the machine’s axis, the magnetic field on each slice can be modeled 

using 2-D finite elements. The currents flowing in bars and windings are 

continuous across the discrete slices, and the magnetic fields on these slices are 

coupled together through the electric circuit equations with those continuous 

currents. 

2.4.3 Interbar circuit model 

As mentioned in Section 2.1.2 rotor interbar currents contribute to the axial 

variation in bar currents as well as machine field. A number of previous authors 

attempted to model these transverse currents using 3-D technique. In [28] and [29] 

two similar algorithms based on the coupled 2-D and 3-D models are adopted to 

compute the rotor stray losses caused by interbar currents in induction machines. 

Both algorithms employ a 2-D multislice time-stepped finite element model as the 

first step to compute the stator current, rotor current and the 2-D field 

distributions at each time step. The presence of interbar currents is neglected in 

the 2-D analysis. In the following step the harmonics in the 2-D solution are 

identified and then 3-D FEA in frequency domain is carried out at each 

remarkable harmonic in order to obtain the detailed information on rotor field and 

interbar currents. The introduction of 3-D models leads to a large amount of 

computational effort in solving interbar current problems. The computation 

required in the pre- and post-processing of 3-D FEA data is also complex [30]. On 

the other hand, these coupled 2-D and 3-D models are not a complete time-

stepped solution because the effect of interbar currents is not directly included in 

the initial 2-D time-stepped models; in addition, the 3-D analysis in frequency 

domain cannot be used to predict the transient nonlinear variation of the field. 

An alternative to the coupled 2-D and 3-D models is the 2-D multislice 

interbar circuit model. In [30] and [31], the interbar insulation is modeled using 

the lumped transverse resistances in a multislice rotor circuit, rather than the 3-D 

finite elements as in [28] and [29]. In this rotor circuit, the bar impedances are 

included as a part of the 2-D time-stepped finite element model; the end-ring 
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impedances and the interbar resistances constitute a circuit external to the finite 

element model. Thus the finite-element equation of rotor field and the interbar 

circuit equation are coupled together to form a full time-stepped 2-D finite 

element solution. Figure 2-5 shows two commonly used multislice interbar circuit 

models (3-slice examples). The bar-bar model in Figure 2-5 (a) is based on the 

usually accepted assumption that interbar currents flow directly between adjacent 

bars. However the iron resistance is usually much smaller than the bar-iron 

contact resistance; more logically, the interbar currents will enter the iron through 

the bar-iron contact resistances and then circulate in the iron core, rather than flow 

to the adjacent bars through the high resistance bar-iron path. This pattern of 

interbar currents is embodied in the bar-iron model, which is a cubic network 

shown in Figure 2-5 (b) [32], [33]. In [30] and [31] the bar-bar model is integrated 

with the 2-D time-stepped multislice FEM. In a recent publication, [34], the bar-

iron model is applied with the multislice model created by 2-D finite element 

commercial software. 

The interbar resistances (Rbb or Rc in Figure 2-5) are inconstant parameters in 

an induction machine. They may vary significantly with the individual machines, 

or even with the different bars in a single machine, depending on manufacturing 

 
Figure 2-5 Interbar circuit model (3-slice examples) 
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process and ageing [32], [35]. As examples, bar and slot diameter manufacturing 

tolerances, thermal expansion coefficients and oxide formation on surfaces may 

all affect the surface contact resistance between the bar and the iron core. For this 

reason, the estimation of interbar resistances is subject to a large amount of 

experimental effort [35], [36]. Depending on the values of interbar resistances, 

noticeable variations of machine performances may occur, e.g., starting torque [7], 

[37], torque-speed characteristic [38], harmonic related performances such as 

rotor harmonic Joule loss [38], torque and stator current ripples [31]. 

2.4.4 Computational efficiency of multislice time-stepped finite 

element method 

The multislice modeling technique for skewed induction machines has been 

summarized in Section 2.4.2. This section reviews the numerical technique 

developed recently to solve the nonlinear equation based on the multislice model. 

Generally, FEA of saturated field needs Newton-Raphson (N-R) numerical 

iterative technique to solve nonlinear equations. Multislice time-stepped FEM 

iterates at each time step the process of solving the circuit equation and the field 

equations on multiple slices. Although the multislice time-stepped technique has 

avoided the infeasibility of fully time-stepped 3-D modeling, the computational 

overhead is still a significant drawback which limits its application in day-to-day 

analysis and design of electric machines. It is essential to improve the 

computational efficiency in order to broaden the application of multislice time-

stepped FEM. 

A. Transmission line modeling method 

Transmission line modeling (TLM) method is a technique that is used for 

nonlinear electric circuit analysis. Previous authors borrowed TLM as a 

replacement numerical technique for N-R method to save the computation time in 

solving 2-D nonlinear magnetostatic and magnetodynamic problems [39], [40]. 

The N-R iterative solution to a nonlinear finite-element field equation has the 

following form: 

kkk FAS =∆ +1                                                        (2-1) 
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where Sk is Jacobian matrix, Fk is forcing term and kkk AAA −=∆ ++ 11  are nodal 

magnetic potentials. At each N-R iteration both Sk and Fk need to update, however 

this costs intensive computational effort as the N-R solution to a multislice finite 

element model produces a large-scale Jacobian matrix. The TLM iterative 

solution to a nonlinear field finite-element equation has the following form: 

kk  TLM0 FAS =                                                (2-2) 

where S0 is reconstructed only prior to the first TLM iteration within each time 

step, and then maintained constant until the next time step; the right-hand side 

term, k TLMF , embodies the nonlinearity of this equation, and is updated at each 

TLM iteration.  Thus, within each time step the TLM method needs to update 

only k TLMF  which takes significantly less time than updating both Sk and Fk by N-

R method. However the TLM method has a linear rate of convergence [39], which 

leads to more iterations to obtain convergence than the quadratically convergent 

N-R method. As this feature negates the advantage of TLM method in saving the 

computation time for reconstruction of large-scale matrix, this method alone may 

not be significantly faster than the N-R method for electric machine analysis. 

B. Domain decomposition 

Domain decomposition (DD) is also a mathematical method that is introduced 

to increase the computational efficiency in solving boundary value problems. DD 

splits a boundary value problem into smaller boundary value problems on 

subdomains. With the aid of this method the matrix equation constructed for a 

boundary value problem can be subdivided into a set of equations with reduced 

number of unknown variables and coefficient matrices of smaller size. Solving 

that set of equations is more efficient computationally than solving the original 

one because the computation overhead for solving a matrix equation decreases 

very fast with the reduced size of the matrix. 

For the analysis of a skewed induction machine, a previous author utilizes two 

levels of DD to solve the multislice numerical equation constructed by TLM 

method (TLM-DD method) [41]. The first level of DD creates the subdomains by 

exploiting the rotational symmetry of the finite-element mesh within each slice 
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while the second level of DD subdivides the multislice equation into blocks 

related to the slices. Thanks to the TLM method the representation of field 

nonlinearity is moved from the Jacobian matrix on the left-hand side of the 

numerical equation to the forcing term on the right-hand side. Thus the left-hand 

side coefficient matrix becomes dependent on the mesh geometry only, 

irrespective of the field nonlinearity. This feature lends the TLM equation to the 

first level of DD that utilizes the geometric periodicity of a machine’s cross 

section to define the subdomains for the physical regions covering each stator slot, 

each rotor slot, plus a single domain for the whole air gap. With the aid of this 

level of DD, the field equation of the whole domain on each slice is converted to a 

set of subdomain equations with respect to stator slot, rotor slot and air gap. In 

these subdomain equations all the stator slot subdomains and all the rotor slot 

subdomains share the same coefficient matrix respectively, within each time step. 

C. Parallel TLM-DD method 

As mentioned in Section 2.4.2, in the multislice model of induction machines, 

the magnetic fields on the slices interact on one another through the electric 

circuit of stator and rotor. By utilizing the absence of direct magnetic coupling 

between the slices, the second level of DD splits coefficient matrix and vector of 

unknown variables into blocks related to magnetic potentials on individual slices 

and circuit variables, respectively. With this level of DD, the calculations of nodal 

magnetic potentials on an individual slice are independent of other slices once the 

values of circuit variables are obtained. These calculations take a large amount of 

simulation time, but fortunately they can be carried out in parallel since the 

calculation related one slice requires no result from the calculation related to any 

other slice. The TLM-DD method brings a significant improvement of 

computational efficiency to the multislice model of skewed induction machines, 

especially when the calculations based on the multislice-level DD are 

implemented in parallel [41]. 
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2.5 Loss evaluation based on 2-D time-stepped finite 

element analysis 

Previous sections have clarified that AC machine losses may occur in 

windings, squirrel cage or amortisseur, interbar regions, permanent magnets and 

core laminations. These losses can be evaluated using the data of current and 

magnetic flux density obtained from multislice time-stepped FEA. 

2.5.1 Losses in windings and interbar regions 

The evaluation of losses in windings and interbar regions is straightforward. 

The windings and interbar regions are treated as lumped resistances, and the 

currents flowing in these resistances are predicted by the finite element simulation. 

The Joule losses in the windings and interbar regions are computed using the 

lumped resistances multiplied by the square of the currents. 

2.5.2 Losses in solid conductors 

Due to the skin effect the density of induced currents is not uniformly 

distributed in the cross sections of solid conductors such as squirrel cage or 

amortisseur bars and permanent magnet. For this reason these conductors cannot 

be treated as lumped resistance when predicting the Joule losses caused by the 

induced currents. It is necessary to first compute the Joule loss of each element 

from the local current density predicted by FEM and then add these element 

losses together. As a 2-D model does not mesh the end-ring regions of a squirrel 

cage or amortisseur, the effect of the electromagnetic field in these regions is 

reckoned in using the lumped resistances and inductances across the ends of 

adjacent bars (Zend in Figure 2-5). The Joule losses in end rings are obtained from 

the lumped end-ring resistances multiplied by the square of the end-ring currents. 

2.5.3 Iron loss 

The evaluation of the loss in core laminations (iron loss) is less 

straightforward in comparison to the losses mentioned above. Iron loss is actually 

the sum of three components: eddy-current loss, hysteresis loss and excess loss 
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due to domain wall effects. Modeling and calculation of these iron loss 

components have been investigated in a lot of literature. Modeling the eddy-

current loss explicitly usually requires the computationally expensive 3-D FEA 

[42], since the eddy currents flowing along the laminations are not compatible 

with the 2-D analysis of the field in a machine’s cross section. Hysteresis losses 

and excess losses in laminations can be directly accounted for by incorporating 

the Preisach hysteresis model with a time-stepped 2-D scheme [43], [44]. 

Although a lot of different Preisach models have been proposed over the years for 

evaluation of electric machine iron losses [45] - [49], it requires a very 

complicated algorithm to directly incorporate a Preisach model with the time-

stepped 2-D finite element model of an electric machine, and this algorithm is 

very expensive computationally [50]. On the other hand, electric machine 

manufacturers usually do not have the data necessary to establish a Preisach 

model for the ferromagnetic laminations. Due to the above difficulty in direct 

inclusion of the iron losses into a time-stepped finite element solution, a more 

common practice is to disregard the iron losses and replace the Preisach model 

with a single-valued B-H curve for the laminations during the time-stepped 2-D 

finite element solution. The iron loss components can be evaluated a posteriori as 

a part of the post-processing, from the instantaneous flux densities obtained by the 

2-D FEA. The three basic equations used to calculate the iron loss components are 

shown in [51] and cited below. 

A. Eddy-current loss 

The eddy-current loss density (in W/m3) in laminations, Pe, is given by the 

following classical equation: 
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where σm is lamination conductivity, d is lamination thickness, B is flux density, 

and T is period of fundamental flux density. This equation is based on the 

assumption that the flux densities in laminations do not vary in the normal 

direction, thus it is valid for thin laminations only where the skin depth of flux 

density is greater than the lamination thickness. 
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B. Hysteresis loss 

The hysteresis loss density (in W/m3) in laminations, Ph, can be calculated 

using an empirical formula 

)ˆ(ˆ
hh BKBfkP αρ=                                            (2-4) 

where f is fundamental frequency of flux density, ρ is lamination mass density, B̂  

is peak value of flux density, kh and α are constants determined by fitting a Ph - B̂  

experimental curve. )ˆ(BK  is an empirical correction factor proposed in [52] in 

order to take into account the losses caused by minor hysteresis loops. 

∑∆+=
i

iB
B

k
BK

ˆ
1)ˆ(                                                  (2-5) 

∆Bi is the change in flux density during the excursion at a minor loop, as shown in 

Figure 2-6. k is a constant between 0.6 and 0.7, depending on the material being 

considered. The value of 0.65 is used for k in [51]. 

C. Excess loss 

The following empirical formula can be used to calculate density of excess 

loss (in W/m3) 
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                                          (2-6) 

ke is excess loss constant determined from experiments. 

∆B1

∆B2

∆B3 B̂

Figure 2-6 Flux density waveform with reversals 
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For an AC machine modeled by multislice FEM, one needs to carry out the 

calculations shown in (2-3) to (2-6) in each lamination element on each slice to 

work out the total iron loss. 

2.6 Design optimization of AC machines for minimum 

loss 

An important aspect of research on AC machine losses is to investigate the 

influence of different configurations of machine structures and parts on the 

variations of machine losses including the local losses in specific parts and the 

total losses in a whole machine. The goal of design optimization in this thesis is to 

locate the optimal configuration with the minimum loss from a variety of choices. 

There are a number of target structures selected for loss minimization or 

efficiency maximization in previous contributions. Some authors attempts to 

improve machine design by changing some fundamental variables that are used to 

sketch out the geometry and dimensions of the main parts [53] - [59]. Examples 

for these parameters include 

1. Stator bore diameter 

2. Length of laminated iron core stack 

3. Height of stator yoke 

4. Mean width of stator slot 

5. Width of stator slot opening 

6. Rotor shaft diameter, etc 

and the following if an induction machine, 

7. Height of rotor slot 

8. Mean width of rotor slot 

9. Width of rotor slot opening, etc 

or the following if a PMSM, 

10. Magnet thickness 

11. Magnet pole angle, etc 

Other authors focus on the design improvement of a specific type of structure, e.g., 

the stator slot [60] or the rotor slot [61]. A range of key points on a slot’s outline 



28 

are defined to describe the detailed geometry of the slot, and the various designs 

of geometry are implemented by changing the relative locations of these points. 

2.6.1 Loss evaluation 

In the process of seeking the optimal design with the minimum loss, one needs 

to evaluate the machine losses of various candidate designs, and the accuracy of 

these evaluation results is an important factor affecting the reliability of the final 

optimal result. In the publications mentioned in the previous section, the various 

design optimization methods for PMSM rely on analytical models to evaluate 

machine losses [55] - [59]. With these analytical models for loss evaluation, the 

stray losses such as the harmonic losses in iron laminations and permanent 

magnets are actually neglected [55], [56], [58], [59], or in a better case, assumed 

as a constant percentage of the output power [57]. In [54], [60] and [61], the 

design optimization of induction machines employs FEM to relatively accurately 

predict the flux density distribution, however these methods involve the use of 

either equivalent circuit of induction machine or time-harmonic FEM, whichever 

is still lack of accuracy in harmonic loss calculation. To the author’s knowledge, 

the time-stepped eddy-current FEA is unfortunately unpopular in machine 

optimization due to the excessive time penalty being incurred. Due to the absence 

of precise prediction of machine field and current density distribution, the 

harmonic stray losses are simply neglected or estimated inaccurately at the stage 

of loss evaluation in most of the previous work on design optimization of AC 

machines. 

2.6.2 Optimization algorithms review 

Solving an optimization problem is an iterative process of evaluating the 

performance of the current candidate, rearranging the objective variable value(s) 

of the current candidate, and selecting the next candidate until this process 

converges to the solution with the optimal performance. An optimization 

algorithm is a numerical method that mathematically defines this process. 

Deterministic method and stochastic method are two families of algorithms 

applied to engineering optimization problems. 
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A deterministic optimization method always converges to the same optimal 

value via the same route, if it repeatedly starts the seeking procedures from the 

same initial candidate. This optimization family includes a wide variety of 

commonly used techniques such as interval cutting methods, Newton’s method, 

steepest descent method, conjugate gradient method, etc [62]. At each iteration in 

these optimization processes the new candidate must be compared to the previous 

candidate to determine the better one. 

Stochastic optimization methods refer to a family of methods that introduce 

randomness into the search process as a means of speeding convergence and 

weakening the algorithm’s sensitivity to modeling errors. There are a large 

number of members in this family, such as direct random search methods [63], 

simulated annealing [64], evolutionary algorithms [65], [66], etc. The probability 

introduced into these algorithms may provide the necessary impetus to escape 

from a local solution by allowing some candidates inferior to the previous ones to 

be accepted in the optimization process. 

Evolutionary algorithms denote a category of stochastic optimization methods 

that use mechanisms inspired by natural selection and survival of the fittest in the 

biological world. This family of optimization methods includes three similar 

techniques: genetic algorithm (GA), evolution strategy (ES) and evolutionary 

programming (EP), which have been developed independently since the late 1950’s. 

One of the main advantages of evolutionary algorithms is that they are not selective to 

the mathematical form of the optimization problem. All they need about the object to 

be optimized is an evaluation of objective function, thus they can handle a wide 

variety of linear or nonlinear problems defined on continuous, discrete or mixed search 

spaces, and even the problems that cannot be explicitly defined by analytical objective 

functions [67]. Another advantage of evolutionary algorithms is the capability for self-

optimization. The performances of some optimization techniques are dependent on the 

settings of exogenous variables that are used to control the optimization algorithms 

themselves. Evolutionary algorithms (e.g., ES, self-adaptive GA and self-adaptive EP) 

may optimize these parameters as part of the optimum seeking process itself to adapt 

the algorithms to specific optimization problems [67]. Thanks to their broad 
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applicability, evolutionary algorithms (e.g., GA) have been commonly used in 

design optimization of AC machines for minimum loss or maximum efficiency 

[54] - [59]. 

2.6.3 Constrained optimization problem 

The optimal design of an electric machine must satisfy a number of technical 

requirements according to the relevant standards and the specific applications. For 

example, the requirements placed on induction machine design may include 

efficiency and power factor at rated load, locked-rotor torque, pullout torque, 

locked-rotor current, manufacturing cost, etc. On the other hand, in the process of 

optimization, the variation of each design variable must be confined into a 

feasible range that is determined by the physical dimension limits of the machine 

structures. Consequently, machine design optimization is mathematically a 

constrained optimization problem. 

A straightforward approach to handle these constraints is expressing them 

using a range of inequalities in terms of those technical variables and design 

variables, and the optimization algorithm discards the infeasible candidate 

solutions that violate any of those inequalities. An alternative approach is 

incorporating penalty functions with an objective function. Penalty functions use 

the amount of constraint violation to “punish” an infeasible candidate solution so 

that feasible solutions are favored by the search process. The penalty function 

approach is commonly used to handle those constraints determined by the 

technical requirements [54], [56], [61]. 
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Chapter 3 Numerical Models 

The modeling of some common structures in AC machines is similar, 

irrespective of the type of machine. The time-stepped multislice eddy-current 

finite element model of skewed induction machines is presented in this chapter as 

a representative. The modeling of the structures particular to synchronous 

machines and PMSMs is presented in Chapter 5 and Chapter 6, respectively. In 

this thesis the finite element models of AC machines are developed based on the 

following assumptions: 

1. Within each slice of a multislice model the flux densities have no axial 

variations and can be modeled using 2-D finite elements; 

2. As mentioned in Section 2.5.3, the magnetization property of lamination 

material can be characterized by a monotonic B-H curve, hysteresis losses 

are modeled and evaluated using (2-4) outside the finite element model; 

3. The eddy currents in laminations are sufficiently small and therefore can 

be excluded from the finite element model, eddy-current losses and excess 

losses are evaluated using (2-3) and (2-6) outside the finite element model, 

as mentioned in Section 2.5.3; 

4. There is no skin effect in the stranded conductors (i.e. the windings), the 

winding currents are uniformly distributed in the cross section of each coil 

side. 

3.1 Field equations 

Considering that the electromagnetic field in an electric machine is quasi-

static, the general form of electric machine field equation can be derived from 

Maxwell’s equations: 

JA =×∇×∇ )(ν                                              (3-1) 

A is magnetic vector potential, J is current density, and ν is reluctivity. In the 2-D 

multislice model of a skewed induction machine, (3-1) can be rewritten as follows 

for the different regions in the ith slice: 

For the regions of laminations, 
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For the region of jth rotor bar, 
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Asli is the z-component of magnetic vector potential on the ith slice (z-component 

is parallel to machine axis), Is is the stator phase current, and Vbij is the voltage 

over the segment of jth rotor bar within the ith slice, i.e. Zb in Figure 2-5. Nt is 

number of turns per stator coil, Nc is number of stator circuits in parallel, ∆cs is 

cross-sectional area of stator coil side, γ is ±1 depending on direction of coil side, 

σb is rotor bar conductivity, Lsl is axial length of machine core in each slice, and ν0 

is reluctivity of air, stator windings and rotor bars. νm is reluctivity of laminations, 

and it is a function of the lamination field. 

3.2 Electric circuit equations 

Applying Kirchhoff’s voltage law (KVL) to the stator circuit gives the 

following equation, 
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where Vs is a vector of polyphase supply voltages, Is is a vector comprised of the 

individual phase currents of stator (i.e. Is), Ncs is number of coil sides per phase, 

Nsl is number of slices, Rs is stator phase resistance, and Lew is end-winding 

inductance. The first term on the right-hand side of (3-6) is the induced EMF due 

to the magnetic flux through the stator coils. 
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The bar-iron type of interbar circuit model as shown in Figure 2-5 (b) is used 

for the proposed induction machine simulations. Some loop currents are defined 

in this model to develop the rotor circuit equations. Figure 3-1 shows two options 

for the definition of loop currents in that circuit model (only three representative 

loop currents are shown). The conventional definition of loop currents is shown in 

Figure 3-1 (a), where all the loop currents are linked with the interbar resistances. 

In case of insulated bars the large interbar resistances limit all the loop currents in 

the conventional definition to very small values that may lead to numerical 

instability. In this thesis an alternative definition of loop currents is proposed as 

shown in Figure 3-1 (b). With this definition the loop currents defined as i l3 link 

bar and end-ring impedances only, thus they bypass the potential high-impedance 

branches. This feature of the improved definition may enhance the numerical 

stability for the special case of insulated bars, and make feasible the simulations 

for a wide range of interbar resistances. 

With this improved definition of loop currents the voltages over rotor bar 

segments (Zb) within the slices are given by the following equation: 
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where Vb is defined as a vector comprised of voltages over rotor bar segments, i.e., 
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Nb is number of rotor bars, Rb is bar resistance, Ir is a vector comprised of the loop 

currents, 1b∆  to 
bbN∆ are the cross sections of the 1st to Nbth bars, and M is an 

NbNsl-by-NbNsl matrix which relates the loop currents to the currents through Zb. 

The second term on the right-hand side of (3-7) is a vector of induced EMF across 

bar segments. Applying KVL to the loops in Figure 3-1 (b) one may obtain an 

additional equation for rotor circuit: 

td

d r
rrrb

T I
LIRVM +=                                      (3-8) 

Rr is a matrix in terms of Rc, Ri and Rer (end-ring segment resistance, the resistive 

part of Zend). Lr is a matrix in terms of Ler (end-ring segment inductance, the 

inductive part of Zend). The value of Ri is usually negligible in comparison to Rc 

[33], however it is still included in (3-8) for the completeness of interbar circuit 

model. 

This thesis implements time-stepped FEA based on the eddy current approach 

to investigate steady-state losses of electric machines. This needs the 

simultaneous solution for a global equation comprised of (3-2) to (3-8) at constant 

rotor speed. In the global equation Asl, Is, Vb and Ir are time-varying unknown 

variables; Vs is a known time-dependent variable; νm is a variable whose value is 

 

Figure 3-1 Rotor loop currents for induction machines 
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determined by experimental samples and spline interpolation for the B-H curves 

of laminations; other parameters are all constant. 

3.3 Discretization of system equations 

The space- and time-discretized form of (3-2) to (3-8) is developed in this 

section in order to find the numerical solution of the system equation. 

3.3.1 Space discretization 

The space discretization is implemented on the machine field domain by the 

Galerkin FEM [68]. The summation of the finite-element expressions of the terms 

on both sides of (3-2) to (3-5) forms the general Galerkin formulation of the 

global multislice field equations: 
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AN is a vector of nodal magnetic potentials on all slices, S, Qs, Qb and Tb are 

matrices derived by the Galerkin FEM, and νe are element reluctivities that are 

multiplied by the corresponding nodal entries of the matrix S to form the 

coefficient of AN. S is a stiffness matrix dependent on the shapes of all finite 

elements on all slices. The first term on the right-hand side of (3-9) is nonzero for 

only the nodes related to stator winding elements, and it contains a matrix, Qs, 

which is dependent on the areas of stator winding elements. The term in the 

brackets is nonzero for only the nodes related to rotor bar elements, and it 

contains the Qb and Tb matrices which are dependent on the areas of rotor bar 

elements. In accordance with (3-2) and (3-3) the right-hand side of (3-9) equals 

zero for the nodes related to air-gap elements and lamination elements. It should 

be noted that the finite element mesh of rotor is in motion while the time-stepped 

simulation is running. However, the motion of rotor leads to the deformation of 

air-gap elements only. As the Qs, Qb and Tb matrices are determined by stator 

winding or rotor bar elements, they are constant throughout the time-stepped 

simulation. S is related to all finite elements including the deformed air-gap 

elements, thus the time-dependence of the S matrix requires consideration. 
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With the Galerkin FEM all the EMF terms in (3-6) and (3-7) are also 

converted into expressions in terms of the nodal magnetic potentials. The 

Galerkin formulations of (3-6) and (3-7) form the following equations: 
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With the space discretization by Galerkin method the electromagnetic system of 

an induction machine is described using the finite-element equations, (3-9) to (3-

11), plus the pure circuit equation, (3-8). 

3.3.2 Time discretization 

To find the numerical solutions for the time-dependent variables, AN, Is, Vb 

and Ir, (3-8) to (3-11) are required to be discretized in time domain. The time 

derivative terms in (3-8) to (3-11) can be discretized by Crank-Nicholson (C-N) 

method [68]. For example, the C-N representation of 
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(3-9) can be rewritten as follows for the moments of t and t + ∆t: 
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Substituting (3-13) and (3-14) into (3-12) and rearranging the terms to isolate the 

unknown t + ∆t variables, one may obtain 
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Applying the similar derivations to (3-10), (3-11) and (3-8) one may obtain the 

time-discretized form of those equations: 
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In the time-discretized system equations, (3-15) to (3-18), the values of t-variables 

are known from the solution to those equations at the last time step. To find the 

time-stepped solution one needs to iteratively substitute the present values of 

time-dependent variables for the corresponding t variables in the system equations 

and solve those equations with respect to the t + ∆t variables. 

3.4 An efficient solution based on Newton-Raphson 

technique and domain decomposition 

3.4.1 Newtion-Raphson system equation 

As known from Section 2.4.4, the implementation of DD significantly 

improves the computation efficiency in solving the TLM-linearized system 

equations. This suggests that it is potentially more efficient to utilize DD to solve 

the system equations linearized by N-R method as it is quadratically convergent. 

The N-R iterative form of (3-15) to (3-18) is written as 
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In (3-23) ∆e and Be are the area and the flux density of corresponding element, 

respectively. In the process of solving (3-19) to (3-22), the values of tt
k
∆

 e
+ν  and 

2
e

∆

 e

B

tt
k

∂
∂ +ν

 are obtained by spline interpolation. 

Unlike the constant coefficient matrix in TLM system equation, the coefficient 

matrix in the N-R system equation contains an iterative term, Gk, which embodies 

the field nonlinearity in an electric machine. As the electromagnetic field in an 

electric machine may display a circumferential periodicity, it is not necessary for 

this case to mesh the whole machine’s cross section when constructing the N-R 

system equation. The finite element mesh and the N-R system equation may be 

required for only a sector of one pole or one pole pair according to the field 

periodicity that depends on the number of slots and the number of poles in the 

machine. In the case that the field periodicity does not exist, it is required to 

construct the finite element mesh and the N-R system equation for the whole cross 

section. 
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For the purpose of calculation convenience the system equations (3-19) to (3-

22) are usually transformed to obtain a symmetric coefficient matrix with positive 

diagonal entries. It is well known that an equation with such a coefficient matrix 

can be solved by Cholesky decomposition that reduces the computation overhead 

for Gaussian elimination. The symmetry of such a matrix can be obtained by 

applying three multipliers to both sides of (3-20) to (3-22), respectively. The 

negative coefficients of tt
k
∆

1 s
+

+∆I  and tt
k
∆

1r 
+

+∆I  in (3-20) and (3-22), i.e. – (Rs∆t + 2Lew) 

and – (Rr∆t + 2Lr) that correspond to the negative diagonal entries in the 

coefficient matrix, are modified to be positive. Meanwhile dummy unknown 

variables corresponding to tt
k
∆

1 s
+

+∆I  and tt
k
∆

1r 
+

+∆I  are introduced into (3-20) and (3-22), 

respectively; and redundant equations with respect to these original and dummy 

variables are constructed in order to equate the total number of equations with the 

total number of unknown variables and negate the sign change of tt
k
∆

1 s
+

+∆I  and 

tt
k
∆

1r 
+

+∆I  terms on the left-hand side of the relevant subequations. With these 

transformations the N-R system equation can be rewritten into a submatrix form. 

A 3-slice example of this submatrix equation is shown as follows: 
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                     (3-24) 

In (3-24) As1, As2 and As3 are vectors of the t + ∆t nodal magnetic potentials of 

Slice 1, Slice 2 and Slice 3, respectively; C is a vector comprised of all the t + ∆t 

circuit variables including Np stator phase currents, Np dummy stator phase 

currents, NbNsl bar segment voltages, NbNsl rotor loop currents and NbNsl dummy 

rotor loop currents; the Jacobian matrix (i.e. the coefficient matrix on the left-

hand side) and the forcing terms on the right-hand side are written in terms of 

submatrices. The subscripts s1, s2 and s3 denote the coefficients of magnetic 

potential variables or the terms in the field equation of Slice 1, Slice 2 and Slice 3, 

respectively. The subscript c denotes the coefficients of circuit variables or the 

terms in the circuit equation. The subscript k denotes the matrices or the vectors 
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that are updated with the N-R iterations while those without the subscript k are 

independent of the nonlinear iterations and need to be recalculated only at the 

beginning of each time step. 

3.4.2 Domain decomposition of Newton-Raphson system equation 

As mentioned in Section 2.4.4 B, two levels of DD have been exploited with 

TLM method. Of those two levels of DD, the one based on the rotationally 

symmetric subdomains is not applicable to the system equation linearized by N-R 

technique as the field nonlinearity in those subdomains produces variable 

coefficient matrices on the left-hand side of the field equation. On the other hand, 

the second level of DD that is based on the multislice-related subdomains is 

applicable to a system equation linearized by either TLM technique or N-R 

technique. The idea of the multislice-level DD has been stated in Section 2.4.4 B. 

This section formulates the combination method of N-R iteration and multislice-

level DD (NR-DD method). 

The NR-DD method converts the direct solution of (3-24) into a process of 

solving a circuit equation and multislice field equations separately. The first step 

of NR-DD method is to construct and solve the following circuit equation: 

kkk dd1dd FCS =∆ +                                            (3-25) 

(3-25) is isolated from (3-24) by eliminating the magnetic potential variables. 

c3s
1
3s

T
c3sc2s

1
2s

T
c2sc1s

1
1s

T
s1ccdd SSSSSSSSSSS −−− −−−= kkkk                  (3-26) 

kkkkkkkk s3
1

s3
T

c3s2s
1
2s

T
c2s1s

1
1s

T
c1scdd FSSFSSFSSFF −−− −−−=                  (3-27) 

For the calculations of Sddk and Fddk it is unwise to design an algorithm to 

calculate the inverse of Ss1k, Ss2k and Ss3k in (3-26) and (3-27) due to the 

complication of matrix inverse calculation. Noting that the three submatrices Ss1k, 

Ss2k and Ss3k are also symmetric with positive diagonal entries like the global 

coefficient matrix, one may treat the matrix multiplications, c1s
1
1s SS−
k , c2s

1
2s SS−

k , 

c2s
1
2s SS−

k  and kk 1s
1
1s FS− ,  kk 2s

1
2s FS− , kk s3

1
s3 FS− , as solving a series of linear equations, 

which possess the symmetric coefficient matrices with positive diagonal entries 
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and thus can be solved by Cholesky decomposition. For example, kk 1s
1
1s FS−  can be 

found by solving the following equation with Cholesky decomposition 

kk 1s1s FXS =                                                (3-28) 

Similarly, c1s
1
1s SS−
k  can be calculated by solving the following equations with 

Cholesky decomposition: 

iik  c1s1s SYS =   (i = 1, 2, …, Nele)                                (3-29) 

where Nele = 2Np+3NbNsl, is the total number of unknown electric variables, and 

the vectors Ss1c i are the column vectors assembling Ss1c, i.e., 

] , , ,[
ele c1s2 s1c1 c1sc1s NSSSS L=                                  (3-30) 

The matrix c1s
1
1s SS−
k  can be obtained by assembling the column vectors Yi, i.e., 

] , , ,[
ele21c1s

1
1s Nk YYYSS L=−                                    (3-31) 

Thus Sddk and Fddk are eventually found through a range of matrix operations 

shown in (3-26) to (3-31), and the terms in (3-26) guarantee that Sddk is symmetric. 

However, if one needs to solve (3-25) by Choleksy decomposition, positive 

diagonal entries of Sddk are required but actually not guaranteed because Sddk is 

obtained by the subtraction operations from a matrix with positive diagonal 

entries, i.e. Sc. Trial simulations indicate that the negative diagonal entries of Sddk, 

if present, are always the diagonal coefficients for tt
k
∆

1 s
+

+∆I . One can change the 

sign of the negative diagonal coefficients to positive, and in the meanwhile adjust 

the coefficients of the dummy variables for tt
k
∆

1 s
+

+∆I  in the relevant subequations to 

negate the change of sign on the left-hand side of those subequations. 

The second step of NR-DD method is to substitute the solution of (3-25) into 

the first three subequations in (3-24), i.e. (3-32) to (3-34), to find the magnetic 

potentials. 

1c1s1s1,1s1s ++ ∆−=∆ kkkk CSFAS                                  (3-32) 

1c2s2s1,2s2s ++ ∆−=∆ kkkk CSFAS                                 (3-33) 

1c3s3s1,3s3s ++ ∆−=∆ kkkk CSFAS                                 (3-34) 
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It is evident that (3-32) to (3-34) can also be solved by Cholesky decomposition 

for the magnetic potentials. 

In summary, the multislice-level DD decouples the global equation (3-24) to 

isolate the circuit equation (3-25) and the field equation of each slice, (3-32) to (3-

34). Each of these isolated equations has significantly less unknown variables 

than the global equation. It is demonstrated that solving these isolated equations 

saves significant computation overhead in comparison to directly solving the 

global equation, where all the unknown variables are coupled. The proposed 

solution shown in (3-25) to (3-34) takes full advantage of those symmetric and 

positive diagonal matrices that enable the extensive application of Cholesky 

decomposition in equation solving and matrix multiplication. The generalized 

application of Cholesky decomposition simplifies the algorithm and further 

increases its execution efficiency. 

3.4.3 Parallel NR-DD method 

Constructing and solving the equations (3-25) and (3-32) to (3-34) can be 

executed in series on a single processor or in parallel on multiple processors. The 

parallel NR-DD method is expected to bring a significant promotion of 

computational efficiency for multislice time-stepped electric machine analysis. 

Similar to the parallel TLM-DD method summarized in Section 2.4.4 C, the basic 

idea of parallel NR-DD method is also to deal with the independent multislice 

field equations and the field terms in the circuit equation in parallel with multiple 

processors. The two methods differ only in the numerical techniques they use to 

linearize the nonlinear system equations. In this section the progress of parallel 

NR-DD method is illustrated with a 3-slice example. 

In the NR-DD equations, (3-25) to (3-27) and (3-32) to (3-34), the 

calculations with respect to the matrices and the vectors with the subscripts s1, s2 

and s3 are independent of one another. This feature suggests that one can assign 

the calculation related to each slice to one processor in a multiprocessor system 

that implements these calculations simultaneously. For example, this parallelized 

NR-DD algorithm may independently carry out: 
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1. Construction and updating of the matrices and vectors related to each slice, 

i.e. Ssik, Ssic and Fsik (i = 1, 2, 3); 

2. Calculation of each slice’s contribution to both sides of (3-25), i.e. 

cs
1

s
T

cs iiki SSS −  and ikiki s
1

s
T

cs FSS −  (i = 1, 2, 3); 

3. Calculation of the vectors on the right-hand side of (3-32) to (3-34), i.e. 

1css +∆− kiik CSF  (i = 1, 2, 3); 

4. Solving the field equation of each slice, (3-32) to (3-34). 

Under the above rules of calculation the number of processors needed for the 

parallel processing equals the number of slices. Two other tasks are assigned to 

the master processor which undertakes the calculations related Slice 1. The first is 

to construct Sc and Fck, and calculate Sddk and Fddk in accordance with (3-26) and 

(3-27) after the calculation of slice-contributed terms in those two equations is 

completed on the corresponding processors; the second is to solve the circuit 

equation (3-25). Figure 3-2 shows the steps of parallel NR-DD algorithm. 

The inter-processor communication overhead is a common concern for 

parallel processing techniques. Intensive exchange of information between 

processors may retard execution of simulation programs, especially in the case 

that the processors have no shared memory and rely on communication network 

for data exchange. For the proposed parallel NR-DD algorithm it should be 

emphasized that the data that the multiple processors need to exchange are only 

the circuit variables ∆Ck+1 and the slice-contributed matrices in (3-26) and (3-27). 

The slave processors are required to send their calculated results of cs
1

s
T

cs iiki SSS −  and 

ikiki s
1

s
T

cs FSS −  (i = 2, 3) to the master processor, where those results are needed for the 

calculations of Sddk and Fddk. Once the master processor finishes solving the 

circuit equation (3-25), the value of ∆Ck+1 is substituted into (3-32) to find 

∆As1,k+1; on the other hand, the master processor sends the results of ∆Ck+1 to the 

slave processors, where the value of ∆Ck+1 is substituted into (3-33) and (3-34) in 

order to find ∆As2,k+1 and ∆As3,k+1, respectively. It is noted that the data exchanged 

between the processors are only some Nele-dimensional matrices and vectors 

rather than the large nodes-related matrices. As the matrix operations take a large 
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proportion of the simulation time, the small amount of data exchange does not 

significantly slow down the simulations. 

3.5 Simulation examples 

3.5.1 Computational efficiency of NR-DD method 

In order to test the efficiency of the numerical techniques developed in the 

previous sections, simulations are carried out for a 208V, 60Hz, 3-phase, Y-

connected, 4-pole, 2hp skewed induction motor with a time-stepped multislice 

finite element model. The motor has 36 stator slots and 32 rotor slots with the 
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Figure 3-2 Flow chart of parallel NR-DD method (3-slice example) 
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rotor skew of one slot pitch, and the skew is modeled with 5 slices. The system 

equations are constructed and solved by traditional NR method, serial TLM-DD 

method, parallel TLM-DD method, serial NR-DD method and parallel NR-DD 

method, respectively, in order to compare their computational efficiencies. All 

these simulations are carried out at the rated voltage and speed for 10 supply 

cycles at 60Hz, with 100 time steps per cycle, i.e. 1000 steps of 166.7µs each. 

As the number of stator slots per pole and the number of rotor bars per pole 

are both integrals (9 and 8, respectively), the electromagnetic field of this motor 

displays a circumferential periodicity of one pole pitch. A finite-element mesh of 

one pole pitch is thereby created for a set of simulations based on the traditional 

N-R, serial NR-DD and parallel NR-DD numerical techniques. This mesh, as 

shown in Figure 3-3, consists of 1941 nodes and 3534 first-order triangular 

elements for each slice (the number of dynamic air-gap elements is not included). 

Regarding the various simulations in this section it should be emphasized that the 

Figure 3-3 Finite element mesh of an induction motor 
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interbar circuit model is applied in the serial and parallel NR-DD simulations but 

not in the traditional N-R simulation, in other words, the interbar leakage currents 

are neglected in the traditional N-R simulation. For the case when interbar 

currents are neglected, the rotor circuit is modeled with the conventional approach 

that defines one loop current circulating in the path of every two adjacent bars and 

the end-ring segments across the bars, producing in total Nb variables of rotor loop 

current and Nb dummy variables of rotor loop current in the rotor circuit equation. 

Thus, in this section the system equation created by the traditional N-R technique 

contains 2Nb(Nsl-1) less circuit variables than the ones created by the serial and 

parallel NR-DD techniques. 

The traditional NR and serial NR-DD simulations are executed respectively 

on a personal computer with a 3.2GHz dual-core PENTIUM D processor, while 

the parallel NR-DD simulation is executed on three of such computers connected 

by a local 1GB network. MPICH2, a high-performance and widely portable 

implementation of the Message Passing Interface (MPI) standard, is installed on 

those computers in order to develop and run the parallel simulation programs. 

Table 3-1 summarizes the elapsed time for the three simulations of the 10 supply 

cycles. Even though the NR-DD system equation has more unknown variables, 

the NR-DD methods are still obviously faster than the traditional N-R method. 

And particularly, the parallel NR-DD method is highly efficient, its simulation 

time is less than 1/5 of the time of traditional N-R simulation for a 5-slice model. 

A previous author has carried out another set of simulations including the 

serial TLM-DD, the parallel TLM-DD, as well as the traditional NR simulation in 

order to investigate the computational efficiency of TLM-DD technique [41]. That 

set of simulations was implemented in the same manner as the last set of 

Table 3-1 
5-slice simulation times, 3.2 GHz PENTIUM D 

 Traditional 
N-R method 

Serial 
NR-DD method 

Parallel 
NR-DD method 

Interbar circuit model Not included Included Included 

Elapsed time 2270s 1581s 395s 
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simulations (the same motor under the same operating condition, the same MPI 

software and the same local network for communication) except that a cluster of 

relatively slow workstations with two 1GHz PENTIUM III processors each was 

used for that set of simulations. The interbar circuit model was not included in any 

of those simulations. As explained in Section 2.4.4 B, the regions of one stator 

slot, one rotor slot and the air gap from Figure 3-3 were chosen as the finite 

element mesh for the TLM-DD simulations. The simulations in [41] came with 

the elapsed time shown in Table 3-2. 

Table 3-2 
5-slice simulation times, 1GHz PENTIUM III 

 
Traditional 
N-R method 

Serial 
TLM-DD method 

Parallel 
TLM-DD method 

Interbar circuit model Not included Not included Not included 

Elapsed time 9281s 7911s 2158s 

Since the traditional NR simulation was made in both sets of tasks, the elapsed 

time of this simulation can be used as a benchmark to calculate the relative 

simulation times of other numerical methods for comparison of their 

computational efficiencies. The relative simulation times are shown in Table 3-3. 

The results indicate that serial and parallel NR-DD techniques are faster than 

serial and parallel TLM-DD techniques, respectively. And this improvement 

comes again even though the NR-DD techniques in this thesis include an interbar 

circuit model that produces more equations to solve than the TLM-DD techniques. 

Table 3-3 
Relative simulation times 

Traditional N-R method 100.0% 

Serial TLM-DD method 85.2% 

Serial NR-DD method 69.6% 

Parallel TLM-DD method 23.3% 

Parallel NR-DD method 17.4% 
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3.5.2  Performance prediction 

The simulations in this section aim to ensure the validity of the combination of 

multislice time-stepped FEM, interbar circuit model and parallel NR-DD 

technique in evaluating the general performances of an induction motor including 

current, input power, losses, output power, output torque, etc. To predict the 

above performances, a general evaluation of the four aspects of losses is required 

including stator Joule loss, rotor Joule loss (or cage loss), iron loss and friction 

and windage loss. Stray losses account for parts of those loss components, but are 

not investigated in this section as a specific target component. Figure 3-4 depicts 

the relation between those loss components and the finite element solution. In 

accordance with the second and third assumptions presented at the beginning of 

this chapter, in this finite element model there is not an equation that deals with 

eddy currents and hysteresis inside laminations and is solved simultaneously with 

the system equations (3-19) to (3-22). For this reason, the power flow in the finite 

element model includes only the components of stator Joule loss, rotor Joule loss, 

friction and windage loss, and output power, rather than iron loss. To evaluate the 

general performances of an induction motor, one needs to do the following steps: 

1. Solve the system equation (3-19) to (3-22); 

2. Calculate the input power to the finite element model using the supply 

voltage and the currents obtained from the last step, calculate the stator 

and rotor Joule losses as stated in Section 2.5.1 and Section 2.5.2, and then 

subtract the Joule losses and the friction and windage loss (obtained from 

 

Figure 3-4 Power flow in an induction motor 
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experiment) from the input power to the finite element model to obtain the 

output power of the motor; 

3. Evaluate the iron loss in compliance with the equations (2-3) to (2-6) 

outside the finite element model; 

4. Add the iron loss into the input power to the finite element model to obtain 

the total input power to the motor, and correct the motor’s current and 

power factor obtained from the first step in notice of the errors caused by 

the neglect of iron loss occurring in the finite element model. 

The parallel NR-DD technique with an interbar circuit model is applied to this 

task. As the bar-iron contact resistance Rc (in Figure 2-5 (b)) is an influential 

factor to induction motor performances, it is important to estimate the value of Rc 

prior to a simulation. In [35] the authors propose an extensive experimental 

program in which the mean interbar resistance is determined for a large sample of 

cage rotors, and investigate the possible use of algorithms that may be used to 

estimate the interbar resistance of rotors having slots of a particular shape. The 

manufacturer of the induction motors investigated in [35] fabricated the same type 

of induction motor simulated in this section. As the value of Rc is a function of 

manufacturing procedures, the measurement results given by [35] are also 

considered valid for the motor simulated in this section. With the rotor circuit 

modeled as Figure 2-5 (b), the typical resistivity of Rc for this motor may range 

from 2.5×10-6 Ωm to 25×10-6 Ωm according to the estimation in [35], and the 

value of Ri is neglected. It should be noted that it is commonplace to describe 

interbar resistance in units of resistivity, a practice which may be somewhat 

confusing to those who are not familiar with the field. It is commonly known that 

the bar-iron resistance is physically a surface contact resistance, and as such may 

be thought of in terms of conductance per unit surface area. Since profile of the 

bar is uniform over the length of the machine, this in turn may be written as a 

conductance per unit length. As such the “interbar resistance” commonly referred 

to in papers is actually the interbar resistance between bars of unit length, and the 

units of resistivity are indicative of conductance per meter. 
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Rotor temperature is another sensitive factor to induction machine 

performances. In [69] the test measurement for this motor shows the stator 

temperature of 70˚C at rated operation. Rotor temperature is unknown and 

assumed approximately 15˚C - 35˚C higher than the stator temperature. 

The simulation conditions of 10 supply cycles with 100 time steps per cycle in 

the last section are not suitable for an accurate prediction of the induction machine 

performance. A simulation of more supply cycles is required because the 

prediction of rotor losses needs the rotor currents and flux densities over a full slip 

cycle. Meanwhile a smaller time step is preferred in the attempt to reflect the 

effect of slot harmonics on rotor losses, i.e. the rotor harmonic stray losses. For 

these purposes, a period of 34 supply cycles with 400 time steps per cycle is 

simulated for this induction motor. As the initial electromagnetic state of the 

motor at the rated speed is unknown, transients will occur in the simulation and 

last for several cycles. Of the 34 simulated supply cycles, the first 9 cycles are 

reserved for the transients to settle down, and the last 25 cycles (the 4th to 34th) 

which cover approximately a full slip cycle at the rotor speed of 1726.5 rpm and 

the synchronous speed of 1800 rpm are used to evaluate the rotor losses. 

Simulations are made with the rotor temperature assumptions of 86˚C, 95˚C and 

104˚C, and 10 different interbar resistances between 2.5×10-6 Ωm and 25×10-6 

Ωm for each temperature. The calculated output power and cage losses are shown 

in Figure 3-5 and Figure 3-6 respectively, under these different conditions of rotor 
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Figure 3-5 Evaluation of induction motor output power 
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temperatures and interbar resistances. Figure 3-5 shows that a ±9˚C variation of 

rotor temperature may result in a change of output power by ± 2% - 3%. By 

comparing the simulation results to the test results given by [69], the rotor 

temperature may be estimated to be in the range of 90˚C - 95˚C. This agrees with 

the expected range of rotor temperature, approximately 20˚C to 30˚C above the 

stator temperature. Figure 3-6 shows that the increasing interbar resistance in the 

simulated range leads to more cage loss. The simulated performances at the rotor 

temperature of 95˚C and the interbar resistance of 5.0×10-6 Ωm match the test 

results fundamentally, and they are tabulated in Table 3-4. Figure 3-7 shows the 

fluxes in the first and the fifth slice of the multislice model at the last time step of 

the simulation. Table 3-4 shows that there is a 40W difference between the input 

powers given by simulation and test, and simulated line current is somewhat 

smaller than the measured. A reason for these differences is that the finite element 

model does not explicitly include the iron loss. The posteriori evaluation of iron 

loss external to the finite element solution is not in complete accordance with the 

iron loss mechanism in reality. Relatively large discrepancies may be found 

between the simulated and measured power and current in the case of a larger 

ratio of iron loss to total loss.˚ 

3.6 Summary 
This chapter validates a time-stepped finite element model for skewed 

induction machines that is based on multislice technique and interbar circuit 
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Figure 3-6 Evaluation of induction motor cage loss 
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Table 3-4 
Induction motor simulation and test results 

 Simulation Test [69] 

Supply voltage (V) 208.45 208.45 

Line current (A) 6.44 6.51 

Input power (W) 1871.5 1831.5 

Torque (Nm) 8.62 8.67 

Speed (rpm) 1726.5 1726.5 

Output power (W) 1558.0 1567.5 

Efficiency (%) 83.2 85.6 

Stator temperature (˚C) 70 70 

Rotor temperature (˚C) 95 NA 

Interbar resistance (Ωm) 5.0×10-6 NA 

model. N-R method and DD are combined as a new technique to solve the system 

equation numerically. Incorporated with a more complicated rotor interbar circuit 

model, the new technique still brings a considerable promotion of computational 

 

(a) Slice 1 (b) Slice 5 

Figure 3-7 Fluxes in an induction motor 
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efficiency in comparison to the several previously developed techniques, which 

are incorporated with the relatively simple and traditional rotor circuit model. The 

execution of NR-DD algorithm on a single processor reduces the simulation time 

by 30% in comparison to the standard solution based on traditional N-R algorithm. 

The parallel execution of a 5-slice NR-DD algorithm is shown to require less than 

1/5 of the simulation time for the standard solution. The NR-DD algorithm is also 

shown to offer advantages of computational efficiency over the TLM-DD 

numerical technique in both serial and parallel executions. 

The proposed method has been used to rapidly analyze a range of possible 

operating conditions.  These results may be used by a manufacturer to provide a 

range of expected performance based on a stochastic analysis of “as made” 

characteristics. 



54 

Chapter 4 Induction Machine Analysis 

4.1 Introduction 

The simulation technique developed in Chapter 3 provides an accurate 

analysis tool for induction machines under a variety of operating conditions. 

Nowadays the use of induction machines with nonsinusoidal supplies is becoming 

increasingly common. Many of these machines are purpose-built inverter duty 

motors, yet the requirements for the design of an optimally efficient inverter duty 

motor are not fully understood. A significant amount of research has been done on 

the losses and properties of electrical steel sheets under nonsinusoidal supply 

conditions, e.g. [70] - [72]. Similarly, investigations into the losses in specific 

machines under nonsinusoidal supply have been carried out [73] - [77]. However, 

in the case of an inverter-fed machine, the impact of design choices on stray loss 

in the core, either what is traditionally defined as “iron loss” or through interbar 

currents, has not been fully described in the literature. Recent research has 

indicated that: the additional loss due to PWM frequency harmonics in standard 

steel samples is a function of the fundamental waveform shape [78]; additional 

stray loss density (compared to sinusoidal excitation) in transformer cores under 

PWM supply conditions is a function of the location within the lamination [71]. 

At higher flux densities, saturation effects may reduce the change in flux density 

caused by a high frequency current harmonic. Hence, it may be postulated that in 

a more saturated machine (with associated higher fundamental losses), the 

additional stray losses due to PWM switching may be less significant than in the 

case of a machine with a lower overall saturation level. Recent papers have also 

investigated the impact of interbar currents on slip frequency losses in skewed 

machines [7], [32], [34]. At these low frequencies, there is a complex relationship 

between interbar resistance and interbar loss as the current flow at low frequency 

is limited by both the resistance and reactances in the rotor circuit. However, at 

PWM frequencies, one may postulate that current harmonics will be limited by 
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the reactance of the circuit, giving additional stray losses that are proportional to 

resistance. 

Applying experimental investigations and FEA simulations based on the 

technique developed in Chapter 3, this thesis attempts to provide a better 

understanding of factors affecting stray loss and efficiency of induction machines 

excited with PWM supply. These factors include fundamental voltage waveform, 

load condition and PWM switching condition. The measurement and simulation 

results in this chapter may better inform future design of inverter-fed machines. 

4.2 Experimental investigation 

The experimental results in this chapter are provided by the collaborators at 

Politecnico di Torino, Turin, Italy. These collaborators possess a long-term 

experience of induction motor test and analysis. The test rig and the motor drive 

that are necessary for the experiments shown in chapter are accessible in their 

laboratory. This chapter attempts to use the simulation results shown in Section 

4.3 to explain the observation obtained from the following experiments. 

4.2.1 Experimental facility 

The induction motor for the loss investigation in this chapter is the same as the 

one simulated for general performance prediction in Chapter 3. Motor nameplate 

data together with parameters derived from locked-rotor and no-load tests 

according to IEEE Stand 112 are presented in Table 4-1. Resistance and reactance 

values are the values corresponding to a stator temperature of 75˚C. The 

experimental facility is shown in Figure 4-1. With the power supply in the facility 

an excellent symmetric three-phase voltage without reverse components is 

available. The supply uses a 40kVA static sinusoidal supply with harmonic 

distortion of 0.1%. For nonsinusoidal conditions, the PWM inverter allows 

completely independent regulation of the modulation index and DC link voltage. 

The switching frequency can be selected in the range of 1kHz - 15kHz. In 

addition, the modulation waveform can be selected among sinusoidal, sinusoidal 

plus third harmonic and space vector. The electrical instrumentation used is based 
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Table 4-1 
Induction motor parameters, referred to stator temperature of 75˚C 

Rated voltage 208V 

Rated output power 2.0HP (1492W) 

Rated frequency 60Hz 

Stator resistance 0.980Ω 

Rotor resistance 1.033Ω 

Stator leakage reactance 0.916Ω 

Rotor leakage reactance 1.896Ω 

Magnetizing reactance 31.933Ω 

Equivalent core loss resistance 561.75Ω 

Fiction and windage loss 30.1W 

 
on a digital power meter with a bandwidth of 800 kHz. In the load test, a torque 

transducer is connected between the motor under test and the load to measure both 

speed and torque. 

 

Figure 4-1 Induction motor test facility 
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4.2.2 Measured results 

With the experimental facility shown in Figure 4-1 measurements are taken 

under no-load and load conditions for both sinusoidal and PWM supplies. The 

PWM supply used for these measurements is sinusoidal PWM (SPWM) with the 

PWM frequency of 5kHz. In order to closely match the simulations to the test 

conditions, tests are carried out first and simulations carried out with parameters 

as close as possible to actual test data. 

A. No-load tests 

No-load tests are carried out under the stator temperature of approximately 

25˚C - 30˚C and a range of supply fundamental voltages with constant frequency, 

as IEEE Standard 112. The tests with PWM supplies are repeated under two 

different conditions: 

1. Constant DC link voltage (VDC = 354.03V), variable modulation index, ma; 

2. Constant modulation index (ma = 1), variable DC link voltage. 

Measured currents and loss components under the sinusoidal and PWM 

supply conditions are shown in Table 4-2. Of those loss components, the 

rotational losses (the sum of iron loss, stray loss due to harmonics in the squirrel 

cage and friction and windage loss) are presented in Figure 4-2 as a function of 

supply line-line voltage. Using the data from Table 4-2, it is possible to 

extrapolate by curve fitting to find the friction and windage loss. Using the data 

from the sinusoidal supply condition, a friction and windage loss value of 30.1W 

is found. Using a 5th order polynomial the rotational losses under sinusoidal 

excitation may be predicted for all magnitudes of supply voltage in the range of 

interest. Subtracting these predictions from the corresponding measured losses 

under PWM excitation, the additional rotational losses (relative to the sinusoidal 

case) can be found. These additional rotational losses are plotted in Figure 4-3. It 

can be seen that in the case of fixed modulation index and variable DC link 

voltage, the additional losses are approximately proportional to fundamental line-

line voltage. In the case where the DC link voltage is constant, the additional 

losses follow a curve that is somewhat similar to the shape of a B-H curve in a 

saturating material. 
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B. Load tests 

The motor is also tested under a range of load conditions up to 166% rated 

power, again with sinusoidal and SPWM supplies. The PWM supply tests are 

carried out with constant modulation index (ma = 1.0) and constant DC link 

voltage. 

Table 4-2 
Measured results of an induction motor at no-load 

Sinusoidal supply 

Line-line 
voltage (V) 

Line current 
(A) 

Stator Joule 
loss (W) 

Rotational 
loss (W) 

Friction and 
windage loss (W) 

Iron loss + 
Cage loss (W) 

52.29 1.00 2.48 34.36 30.10 4.26 

69.52 1.20 3.56 38.50 30.10 8.40 

86.82 1.44 5.11 43.48 30.10 13.38 

104.22 1.70 7.11 48.77 30.10 18.67 

121.40 1.99 9.70 54.67 30.10 24.57 

138.80 2.28 12.74 62.06 30.10 31.96 

156.06 2.59 16.53 70.43 30.10 40.33 

173.45 2.94 21.19 80.40 30.10 50.30 

199.34 3.54 30.65 99.38 30.10 69.28 

208.13 3.76 34.65 107.10 30.10 77.00 

216.78 4.02 39.49 115.56 30.10 85.46 

225.43 4.31 45.39 124.43 30.10 94.33 

PWM supply, constant Vdc and variable ma 

Fundamental 
line-line 

voltage (V) 

Line RMS 
current (A) 

Stator 
Joule loss 

(W) 

Rotational 
loss (W) 

Friction and 
windage loss (W) 

Iron loss + 
Cage loss 

(W) 

39.95 0.92 2.11 35.63 33.33 2.30 

49.55 0.99 2.43 38.49 33.33 5.16 

59.64 1.09 2.99 41.77 33.33 8.44 

79.76 1.36 4.65 50.18 33.33 16.85 

99.97 1.66 6.88 59.61 33.33 26.28 

120.30 1.99 9.91 69.18 33.33 35.85 

140.72 2.36 13.92 79.12 33.33 45.79 

159.21 2.69 18.06 88.15 33.33 54.82 

179.11 3.06 23.34 98.92 33.33 65.59 

189.53 3.39 28.58 107.54 33.33 74.21 

201.34 3.66 33.41 116.87 33.33 83.54 

210.47 3.89 37.69 125.17 33.33 91.84 
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Table 4-2 (continued) 

PWM supply, variable Vdc and constant ma 

Fundamental 
Line-line 

voltage (V) 

Line RMS 
current (A) 

Stator 
Joule loss 

(W) 

Rotational 
loss (W) 

Friction and 
windage loss (W) 

Iron loss + 
Cage loss 

(W) 

40.57 0.93 2.16 32.32 29.07 3.25 

49.89 1.00 2.49 34.35 29.07 5.28 

60.37 1.13 3.16 37.69 29.07 8.62 

70.51 1.26 3.95 41.41 29.07 12.34 

90.01 1.55 5.95 48.54 29.07 19.47 

110.04 1.85 8.45 56.55 29.07 27.48 

131.24 2.24 12.39 67.88 29.07 38.81 

161.53 2.86 20.05 88.17 29.07 59.10 

181.04 3.27 26.18 103.88 29.07 74.81 

199.93 3.63 32.24 117.19 29.07 88.12 

209.90 3.90 37.16 126.91 29.07 97.84 

The data from these tests are tabulated in Table 4-3. In the sinusoidal supply 

case, the tabulated variables of voltage, current and power are RMS values, and 

the efficiency is given both in terms of direct input-output calculation and IEEE 
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Figure 4-2 Measured rotational loss of an induction motor at no load 
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Standard 112. In the PWM case, both RMS and fundamental measurements are 

tabulated. Figure 4-4 plots the measured efficiency under both sinusoidal and 

PWM supply conditions. As may be expected, the sinusoidal efficiency is higher 

than the PWM case, with direct efficiency measurement higher than the value 

calculated according to the standard. Of particular interest in these results is the 

impact of PWM supply on available output torque and fundamental input power. 

Plotting the torque-speed curves in Figure 4-5, it can be seen that the gradient of 

the torque speed curve is less steep when PWM supply is used. The difference 

between the torques under PWM and sinusoidal supply conditions becomes more 

apparent as the load increases. Figure 4-6 plots the input power to the motor as a 

function of load; the input power under sinusoidal supply conditions is compared 

with fundamental and total input power under PWM conditions. The power curve 

under sinusoidal supply is found less steep than the total power curve and the 

fundamental power curve under PWM supply. The difference between sinusoidal 

supply power and PWM total power becomes pronounced as the load increases, 
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Figure 4-3 Measured additional rotational loss of an induction motor at no load 
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Table 4-3 
Load test results of an induction motor 

Sinusoidal supply 

Load percentage (%) 5.6 26.4 46.9 77.7 103.5 127.6 138.3 

Line-line voltage (V) 209.0 208.9 208.9 208.7 208.6 208.5 208.5 

Line current (A) 3.67 3.92 4.40 5.44 6.52 7.59 8.16 

Input power (W) 218.5 543.2 878.3 1392.3 1837.7 2262.5 2457.6 

Output torque (Nm) 0.47 2.20 3.91 6.47 8.62 10.63 11.52 

Speed (rpm) 1795.5 1783 1768 1746 1726 1705 1697 

Efficiency (direct, %) 40.0 75.6 82.4 85.0 84.8 83.9 83.3 

Efficiency 
(IEEE 112, %) 

NA 71.3 79.8 83.3 83.5 82.8 82.3 

PWM supply 

Load percentage (%) 4.6 24.7 45.0 65.2 100.2 122.1 166.6 

Line-line voltage 
(fundamental, V) 

213.5 211.5 210.0 208.8 207.7 207.1 206.5 

Line current 
(RMS, A) 

3.892 4.058 4.476 5.094 6.543 7.636 10.028 

Line current 
(fundamental, A) 

3.853 4.019 4.435 5.058 6.481 7.555 9.918 

Input power 
(total, W) 

240.9 564.6 897.6 1238.9 1854.4 2258.3 3123.0 

Input power 
(fundamental, W) 

220.7 542.7 873.4 1214.5 1827.9 2234.5 3072.7 

Output torque (Nm) 0.39 2.06 3.75 5.43 8.35 10.17 13.88 

Speed (rpm) 1799 1785 1772 1756 1727 1706 1663 

Efficiency (direct, %) 30.1 68.2 77.5 80.6 81.4 80.5 77.4 

however the difference between PWM fundamental and total power that 

represents the input harmonic power, appears relatively less noticeable. Regarding 

the load tests it is important to underline that the torque measurement under PWM 

condition is not easy, especially at low load where the ripple may be so 

considerable relative to the low output torque that it may interfere with the torque 
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meter reading. In addition the rotor temperature is not the same during the two 

load tests. 
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Figure 4-4 Measured efficiency of an induction motor 
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Figure 4-5 Measured torque-speed curves of an induction motor 
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4.3 Finite element simulation 

4.3.1 Simulation settings and parameters 

As for the cases with measured results, time-stepped 5-slice finite element 

simulations are carried out for the load and no-load operations under sinusoidal 

and PWM supply conditions. Accurate prediction of stray loss is essential to loss 

evaluation under PWM supply condition. For this reason the interbar circuit 

model is incorporated in the finite element simulation to accurately predict the 

cage losses at slot harmonic frequencies. The finite element mesh in Figure 3-3 is 

used again for these simulations. The parameters in Table 4-4 are provided for 

prediction of machine losses. 

The simulation algorithm deals with the time step setting in different manner 

for the cases of sinusoidal and PWM excitation. In the case of sinusoidal supply, 

400 time steps per cycle are used, and each step has equal length. The number of 

time steps and hence the computational burden required for a simulation with 

PWM supply may be significantly increased as the PWM frequency can be as 

high as hundreds of times the frequency of sinusoidal supply. A standard 3-phase 
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Figure 4-6 Measured input power to an induction motor 
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inverter has 6 switching instances per PWM cycle, and the intervals between 

adjacent switching instances are variable, resulting in variable time steps in the 

simulations. For an inverter with PWM frequency of 5kHz and reference signal 

frequency of 60Hz, there are 500 variable time steps per cycle of reference signal. 

The simulation algorithm searches for the switching instances by comparing the 

modulation waveform with the triangular switching waveform every 0.1µs, and 

sets up a new time step whenever the inverter switching state is found changed. 

The supply voltage is assumed to be an ideal PWM waveform, i.e. dead-time, 

rise-time and device voltage drop are all neglected and the input voltages to the 

machine are assumed to be constant within each time step. As a large number of 

simulations are required for different load and supply combinations and some of 

them involve long slip cycles under low load, parallel NR-DD technique is 

implemented to efficiently solve the system equation. 

Table 4-4 
Material parameters of an induction motor 

Core length 0.113m Bar-iron contact resistance 5.0×10-6
Ωm 

Lamination thickness 0.5mm Lamination mass density 7850kg/m3 

Lamination conductivity 5.556×106 S/m α 2.43 

kh 0.0199 ke 9.98×10-5 

Stator resistance at 20.2˚C 0.806Ω 
Rotor cage conductivity 

at 25.0˚C 
2.91×107S/m 

Temperature coefficient 
of stator resistance 

3.9×10-3/˚C 
Temperature coefficient 

of rotor cage 
3.9×10-3/˚C 

4.3.2 Simulation results 

As will be discussed later, accurate stray loss prediction under no-load 

conditions is difficult. Load predictions are discussed first, followed by the no-

load cases. 

A. Load simulations 

In accordance with the load test, the PWM conditions are simulated with an 

amplitude modulation index of 1.0. Due to the assumption of an ideal PWM 
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waveform, the DC link voltage used for the simulations is lower than the actual 

value used in the test. These load simulations simulate a full slip cycle for the load 

conditions with slip above 0.0155. The lower load cases have rotor fundamental 

time period in excess of 100 times the supply fundamental time period, those 

simulations are therefore impractical and aborted. 

Results of sinusoidal and PWM simulations of actual load conditions are 

presented in Table 4-5. At first glance, there is excellent agreement between the 

simulation and test measurements. There are some small discrepancies; the 

predicted line currents are approximately 1% - 5% smaller than the measurements; 

but the results are encouraging. One comment regarding the quality of the results 

should be reserved for the choice of temperature used in the simulations. 

Measured stator temperature under rated conditions was known at the time of the 

simulations and is used. However, the rotor temperature is unknown under the 

rated conditions and assumed to be approximately 30˚C above the stator, 

increasing slightly with the load. The same stator temperature is used for all 

sinusoidal simulations. In the PWM case, it is assumed that the rotor is hotter than 

in the sinusoidal case. This assumption is based in part on that the PWM 

excitation produces more rotor iron loss than the sinusoidal excitation. 

The simulated torque-speed curve is plotted in Figure 4-7 according to the 

results in Table 4-5. The test and predicted efficiencies are plotted in Figure 4-8 

for the sinusoidal supply case and Figure 4-9 for the PWM case. The simulated 

torque-speed curve displays the same tendency of gradient with the measured 

torque-speed curve in Figure 4-5. The result showing a difference in the torque-

speed curves under sinusoidal and PWM supply indicates that a higher slip is 

required for a given output power and this phenomenon becomes more 

remarkable as the load increases. The higher slip suggests that additional input 

power at fundamental frequency will be required for a motor with PWM supply. It 

is well known that additional harmonic stray loss is produced as a PWM 

excitation replaces a sinusoidal excitation, however the measured and simulated 

results of higher slip requirement indicate that the majority of the total additional 

loss comes from the fundamental input power rather than the harmonic input 
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Table 4-5 
Load simulation results of an induction motor 

Sinusoidal supply 

Load percentage (%) 46.9 77.7 103.5 127.6 138.3 

Line-line voltage (V) 208.9 208.7 208.6 208.5 208.5 

Line current (A) 4.33 5.36 6.43 7.51 7.96 

Input power (W) 901.29 1411.6 1867.0 2293.6 2464.3 

Output torque (Nm) 3.92 6.47 8.67 10.68 11.46 

Speed (rpm) 1768 1746 1726 1705 1697 

Rotor temperature (˚C) 100 104 104 110 110 

Stator temperature (˚C) 70 70 70 70 70 

Output power (W) 726.5 1183.1 1567.6 1906.4 2036.1 

Efficiency (%) 80.6 83.8 83.96 83.12 82.63 

Stator iron loss (W) 40.70 40.38 40.84 41.83 42.33 

Rotor iron loss (W) 27.86 28.76 29.66 29.55 30.58 

Total iron loss (W) 68.56 69.13 70.50 71.38 72.91 

Stator Joule loss (W) 51.59 78.97 114.09 156.37 175.76 

Cage loss (W) 25.11 51.19 86.00 130.91 151.09 

Friction and windage loss (W) 29.58 29.21 28.88 28.53 28.39 

PWM supply 

Load percentage (%) 45.0 65.2 100.2 122.1 166.6 

Line-line voltage (fundamental, V) 210.0 208.8 207.7 207.1 206.5 

Line current (RMS, A) 4.32 4.91 6.30 7.27 9.49 

Input power (total, W) 927.4 1251.2 1858.4 2247.1 3066.4 

Output torque (Nm) 3.80 5.45 8.41 10.23 13.918 

Speed (rpm) 1772 1756 1727 1706 1663 

Rotor temperature (˚C) 112 122 122 130 130 

Stator temperature (˚C) 69 72 72 77 77 

Output power (W) 705.7 1001.9 1521.1 1827.6 2421.6 

Efficiency (%) 76.10 80.08 81.85 81.33 78.97 

Stator iron loss (W) 60.92 59.47 59.74 60.06 62.00 

Rotor iron loss (W) 53.24 50.99 49.33 48.70 46.19 

Total iron loss (W) 114.16 110.46 109.07 108.76 108.19 

Stator Joule loss (W) 51.52 67.27 111.06 151.05 259.19 

Cage loss (W) 27.35 43.19 89.33 132.06 250.54 

Friction and windage loss (W) 28.63 28.37 27.91 27.57 26.87 
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power that is consumed in a motor as harmonic stray loss. This conclusion is 

verified by the measured input power curves in Figure 4-6, where the curve of 

PWM fundamental input power is closer to the curve of total PWM input power 

than to the curve of sinusoidal input power, indicating an additional harmonic 
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Figure 4-8 Comparison of predicted Sine efficiency with test 
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Figure 4-7 Simulated torque-speed curves of an induction motor 
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stray loss less than the additional fundamental loss. The cause of the additional 

fundamental frequency power losses may be due to higher rotor temperatures (due 

to the time harmonic losses introduced by the PWM supply and the consequent 

increase of the rotor resistance). In this case the slip required for a given torque 

will be higher. Alternatively, the torque at a given slip may be reduced due to 

increased saturation resulting in a lower available air-gap MMF. 

B. No-load simulations 

The accurate numerical prediction of no-load stray losses is difficult for a 

number of reasons. Typically, the time required for the simulation transient to 

pass and for steady state to be reached is significant as there is little damping in an 

unloaded motor system. In addition, the true no-load condition may result in a slip 

speed of as little as 1rpm, giving a slip cycle time period 1800 times the 

fundamental supply period. A number of attempts to overcome these difficulties 

are made in the work in this section, including simulation at synchronous speed 

which is a state close to no-load conditions. 

The results of no-load simulation under sinusoidal and PWM supply conditions 

are presented in Table 4-6. Loss calculation at synchronous speed neglects the 
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Figure 4-9 Comparison of predicted PWM efficiency with test 
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rotor hysteresis loss term (2-4) as the rotor laminations only traverse minor loops 

at synchronous speed. The predicted rotational losses at synchronous speed are 

plotted in Figure 4-10. It can be seen that the sinusoidal predictions match the test 

measurements well, but that the PWM predictions are excessive. Considering the 

sinusoidal simulations for a moment, the results match closely 

Table 4-6 
Simulation results of an induction motor at no load 

Sinusoidal supply 

Line-line 
voltage (V) 

Stator Joule 
loss (W) 

Rotational 
loss (W) 

Friction and 
windage loss (W) 

Iron loss 
(W) 

Cage loss 
(W) 

52.29 1.42 33.60 30.10 3.50 0.000 

69.52 2.48 36.22 30.10 6.12 0.001 

86.82 3.86 39.67 30.10 9.56 0.003 

104.22 5.58 44.14 30.10 14.01 0.02 

121.40 7.71 49.96 30.10 19.72 0.14 

138.80 10.44 57.33 30.10 26.61 0.62 

156.06 13.86 66.17 30.10 34.16 1.91 

173.45 18.12 77.50 30.10 43.06 4.34 

199.34 26.34 99.90 30.10 59.65 10.15 

208.13 30.42 108.96 30.10 66.31 12.56 

216.78 34.09 118.72 30.10 73.30 15.32 

225.43 40.00 128.70 30.10 80.57 18.03 

PWM supply, constant Vdc and variable ma 

Fundamental 
line-line  

voltage (V) 

Stator Joule 
loss (W) 

Rotational 
loss (W) 

Friction and 
windage loss 

(W) 

Iron loss 
(W) 

Cage loss 
(W) 

39.95 0.87 66.56 33.33 33.23 0.000 

49.55 1.32 74.00 33.33 40.66 0.001 

59.64 1.91 82.00 33.33 48.67 0.002 

79.76 3.38 97.18 33.33 63.85 0.003 

99.97 5.31 120.51 33.33 87.15 0.02 

120.30 7.85 141.11 33.33 107.62 0.16 

140.72 11.23 150.36 33.33 116.18 0.85 

159.21 15.22 154.06 33.33 118.17 2.56 

179.11 20.54 158.66 33.33 119.46 5.87 

189.53 23.84 162.82 33.33 121.23 8.25 

201.34 28.24 168.88 33.33 124.07 11.48 

210.47 32.24 173.35 33.33 126.07 13.95 
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Table 4-6 (continued) 

PWM supply, variable Vdc and constant ma 

Fundamental 
line-line 

voltage (V) 

Stator Joule 
loss (W) 

Rotational 
loss (W) 

Friction and 
windage loss 

(W) 

Iron loss 
(W) 

Cage loss 
(W) 

40.57 0.88 33.62 29.07 4.55 0.000 

49.89 1.32 35.87 29.07 6.80 0.000 

60.37 1.91 38.97 29.07 9.90 0.001 

70.51 2.60 42.58 29.07 13.51 0.001 

90.01 4.22 51.78 29.07 22.71 0.004 

110.04 6.37 55.73 29.07 26.61 0.05 

131.24 9.37 83.25 29.07 53.82 0.36 

161.53 15.46 109.76 29.07 78.05 2.65 

181.04 20.77 130.71 29.07 95.64 6.00 

199.93 27.31 154.53 29.07 114.72 10.74 

209.90 30.98 168.29 29.07 125.02 14.20 

with test (including the test value for friction and windage) and could be used to 

calculate the traditional iron loss parameter for the equivalent circuit model. 

Traditionally, it is assumed that the cage loss under synchronous conditions is 

zero, especially in the case where the rotor is skewed. The losses remaining after 
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Figure 4-10 Predicted rotational loss of an induction motor at no load 



71 

friction and windage and stator Joule loss are subtracted from the input power and 

assigned to be core losses in compliance with IEEE Standard 112. However, even 

though the machine is skewed, the interbar effect will result in some currents 

flowing at slot harmonic frequencies and hence stray cage loss. In the case shown, 

the stray cage loss component is predicted to be almost 20% of the iron loss 

component. 

Turning to the discrepancy in predicted loss under PWM conditions, it is the 

author’s opinion that the discrepancy is due mainly to the discrete calculation of 

the rotor eddy-current losses. Most of the laminations in the unloaded motor are 

operating in the unsaturated region of the B-H curve, with the effect that small 

field intensity changes cause relatively large flux density changes (when 

compared to the effect when saturated). It is observed that the predicted losses 

under PWM conditions are heavily dependent on the error tolerance used in the 

numerical simulations. This is likely due to a combination of the rapid change in 

magnetic field at PWM frequencies and the requirement for discrete time 

differentiation of flux density in order to predict the losses. Under a PWM 

excitation certain variable time steps used to model narrow input voltage pulses 

can be several orders of magnitude smaller than the fixed time steps used to 

model sinusoidal supply. Thus the sudden change of the PWM voltage excitation 

may cause the numerical errors of flux density to be exaggerated when the flux 

density derivative is used in (2-3) and (2-6) for evaluation of eddy-current loss 

and excess loss. Consequently, the direct numerical calculation of the flux density 

derivative will cause the predicted eddy-current and excess losses to be excessive. 

4.3.3 Improved rotor iron loss evaluation under low slip and PWM 

supply conditions 

As mentioned in Section 4.3.2 B, there are two reasons for the difficulty in 

accurately predicting iron loss in a PWM-fed induction motor at a low slip (or no 

load): 
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1. The true no-load conditions result in a rotor fundamental frequency less 

than 0.1Hz, the simulation for such a long period of PWM-fed induction 

machine operation produces impractical computational burden; 

2. The discrete-time calculation of no-load rotor iron loss under PWM supply 

conditions is sensitive to the accuracy of flux density prediction, even 

small noises in numerical simulation may cause eddy-current losses to be 

overpredicted. 

Although the simulation at synchronous speed plus a time-domain iron loss 

calculation is expected to give a result close to the true value of rotor iron loss at 

no-load, in practice this approach still cannot overcome the simulation accuracy 

interference in eddy-current loss evaluation. In addition, the synchronous model 

fails to calculate rotor hysteresis loss because the fundamental frequency on the 

rotor at synchronous speed is zero that forces the hysteresis loss calculation using 

(2-4) to be invalid. 

An alternative approach to give fast and accurate rotor iron loss evaluation for 

PWM-fed unloaded induction machines is under investigation. This approach 

identifies the significant flux density harmonics and calculates eddy-current losses 

in the frequency domain by summing the contributions of the individual 

harmonics. This new approach is implemented in three stages. 

The first stage is to carry out a time-stepped finite element simulation under 

the true no-load conditions, i.e. at a very low slip. After a certain number of 

supply cycles to end the simulation transients, only one supply period of magnetic 

potential data is required to be recorded, rather than a full slip period of data. 

The second stage is to identify the major rotor flux harmonics and exclude the 

minor harmonics due to the insufficient accuracy of flux density derivative 

calculation. As known from the basic magnetic circuit relation in an induction 

machine, the flux density seen by the rotor in the stator reference frame is a 

function of MMF and permeance harmonics. The frequencies of those harmonics 

are determined by the electrical frequency of stator current (ωe), the number of 

stator slots (Nst) and the number of pole pairs (p). Converted to the rotor reference 

frame, the rotor flux density harmonics can be written as a function in terms of ωe, 
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Nst, p, the slip (s) and the angle referred to the rotor (θr). The approach of direct 

numerical derivative and integral needs a full slip period of flux density data for 

rotor eddy-current loss calculation. That approach actually discards the 

information about spatial distribution of flux that may be obtained through 

application of engineering knowledge. Rather than considering an element in 

isolation, one should recognize that it is one of many elements sampling a 

spatially distributed field. Using this additional information, the magnitude and 

phase of the individual rotor flux density harmonics may be identified with 

considerably less computational expense and with a faster response to the 

machine designer. As the analytical form of the major rotor flux density 

harmonics is known, one can make use of the additional information by applying 

linear least squares regression to the one supply period of flux density data 

collected in the first stage, from a series of spatially distributed elements of 

similar shape. 

The third stage is to find the magnitude of major rotor flux density harmonics 

according to the results of linear regression, and substitute the harmonic 

magnitude into the frequency-domain form of (2-3) and (2-6) for a prediction of 

rotor eddy-current loss with improved accuracy. 

Using this approach to simulate PWM operation at rated voltage with a slip 

speed of 1rpm, the predicted rotor loss is 36.7W, compared to 60.1W predicted by 

discrete calculation of the rate of change of flux density. Comparing the predicted 

rotational loss at rated voltage in Table 4-6  with the measured result in Table 4-2, 

one may find that the reduction by 23.4W is a significant improvement for the no-

load loss prediction under PWM supply conditions. This new approach is a topic 

of ongoing research. This section outlines the application of this new approach to 

rotor iron loss prediction, and interested readers may refer to [79] for details. 

Improvements to this method and application of similar approaches to the 

calculation of stator iron loss are under investigation. 
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4.4 Summary 

This section investigates the relative performance of an induction machine 

under both sinusoidal and PWM conditions. Combining FEA analysis with test 

data, some insights into causes of stray losses under PWM supply conditions are 

presented. It is interesting to note that both the tests and simulations indicate that 

the majority of additional losses under PWM conditions are actually fundamental 

frequency losses. As an induction machine becomes more saturated with the 

increasing load, the additional stray losses due to PWM switching become less 

significant than in the case of the machine with a lower saturation level. These 

results of stray loss investigation indicate that improvements to rotor thermal 

design may be more important to efficiency than PWM switching patterns. 

No-load tests and simulations are carried out in an attempt to investigate the 

relation of stray losses and PWM switching scheme. The sensitivity of numerical 

predictions of losses under no-load conditions is highlighted, together with the 

computational difficulty of simulating a machine at very low slip. A possible 

solution is briefly discussed, forming the start point to further study specifically 

on no-load or low-load conditions. 
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Chapter 5 Synchronous Machine Analysis 

This chapter generalizes the multislice interbar model to simulate synchronous 

machines with skewed stator slots. The interbar circuit model is extended in this 

chapter to model the rotor amortisseur cage. Simulations with a range of interbar 

contact resistance values are carried out for a synchronous generator to investigate 

their role in slot harmonics and stray loss in amortisseur cage. 

5.1 Synchronous machine modeling 

5.1.1 Field winding modeling 

The time-stepped finite element modeling of synchronous machines is 

implemented analogous with the modeling of cage induction machines. A 

structure special to synchronous machines is the field windings on the rotor. From 

the modeling perspective, field windings can be treated as stranded conductors 

similar to the stator windings. The only difference is that the field windings carry 

a DC current which can be assumed constant in the field excitation equation, and 

an additional circuit equation is not necessary to model the electric circuit of field 

windings. The contribution of field current to rotor field is denoted by the 

following equation in the form similar to (3-4), 

f

ff
2
sl

2

02
sl

2

0 ∆
−=

∂
∂

+
∂

∂ IN

yx
ii γνν AA

                                 (5-1) 

In (5-1), I f is constant field current, Nf is number of turns of field winding, and ∆f 

is coil side area of field winding. It should be noted that the physical field current 

contains ripples originating from the field supply (external or internal) and the 

induced EMF. However these ripples hardly affect the machine performances, and 

therefore the field supply is modeled as a constant current source, rather than a 

voltage source which accounts for the ripple effects but brings more modeling 

complexity by introducing an additional circuit equation. 



 76 

5.1.2 Generalization of multislice interbar model 

In a synchronous machine, the amortisseur is a structure analogous to the 

induction cage in an induction machine. The skew in a synchronous machine 

usually occurs at the stator slots in contrast to an induction machine where the 

skew is applied to the rotor bars. However the skew of stator or rotor relative to 

the other has a same effect on machine performances, no matter which one is 

physically skewed from the machine axis. Therefore the multislice interbar 

technique, which was originally developed for modeling skewed rotor bars in 

induction machines, can be generalized to model synchronous machines with 

skewed stator slots. 

As mentioned in Section 2.2.1, there is a group of amortisseur bars embedded 

in the rotor, across each pole pitch, and each bar group may or may not be 

connected to the groups at the adjacent poles through conductive bridges. Figure 

5-1 shows the interbar circuit model for a synchronous machine. The main 

difference from the interbar circuit models for a synchronous machine and an 

induction machine is that the former introduces two special parameters, i.e. pole-

pole iron resistance (Rp2p) and pole-pole end-ring impedance (Zp2p), which connect 

the adjacent bars belonging to different bar groups. These parameters usually have 

values different from Ri and Zend and dependent on the saliency and pole pitch of 

Zend Zend Zend Zp2p

Zb

Zb

Rc

Rc

Zend Zend Zend Zp2p

Ri

Zb il1 il2 il3

Ri

Rc Rc Rc

Rc Rc Rc
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Figure 5-1 Interbar circuit model for a synchronous machine (3-slice example) 
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the machine. Zp2p is infinity for the special case of nonconnected amortisseurs, 

where the bar groups are insulated from one another. The circuit equations of 

amortisseur are in the form similar to the rotor circuit equation of an induction 

machine, i.e. (3-7) and (3-8). For amortisseur modeling, the matrices Rr and Lr in 

(3-8) are related to not only the values of Rc, Ri and Zend, which have been used in 

induction machine models, but also the values of pole-pole parameters, i.e. Rp2p 

and Zp2p. 

Applying the modifications introduced in Section 5.1.1 and Section 5.1.2 to 

the multislice interbar model, one can obtain the synchronous machine system 

equations that are comprised of (3-2) to (3-8) and (5-1). Provided that the rotor 

position is known, one may simulate a synchronous motor by simultaneously 

solving the above equations, or simulate a synchronous generator by 

simultaneously solving the above equations and a load circuit equation that is 

coupled with the stator circuit equation (3-6). The procedure to solve the global 

equation for a synchronous machine is the same as the procedure to solve the 

induction machine equations. Galerkin method is applied to obtain the finite 

element form of field equations, and then the time-discretized form of the global 

equation is derived by C-N method. Considering that the global equation for a 

synchronous machine still shows no direct coupling between the fields on 

individual slices, the parallel NR-DD technique can be implemented again for an 

efficient solution. 

5.1.3 Ventilation duct modeling 

The core of a large AC machine is usually divided axially into packets of 

laminations by radial ventilation ducts as shown in Figure 5-2. These ducts allow 

cooling air to flow radially into the machine, removing heat from the core and 

windings. The presence of ventilation ducts causes flux fringing from the side of 

individual ducts and decrease in the average flux density at the air gap under each 

duct opening. The flux fringing produces axial variation in the air-gap flux density, 

the influence of ventilation ducts on magnetic circuit and flux density distribution 

is thereby unable to be modeled by the conventional 2-D FEM. 
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In the traditional analytical method for machine magnetic circuit modeling, 

the presence of ventilation ducts is taken into consideration in a similar way to the 

winding slots, where the flux fringing also occurs. The fringing of air-gap flux 

density due to slot openings leads to increase in the average air-gap reluctance, 

which can be expressed as a decrease in effective area or as an increase in 

effective air-gap length. Carter shows that the decrease in effective area can be 

obtained by reducing the slot pitch ε to the effective slot pitch ε’ as follows [80]: 

bw−=′ εε                                                   (5-2) 

where w is slot opening, and b is a factor expressed as 
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In (5-3) g is minimum length of air gap. With this transformation the calculation 

of air-gap flux density is performed as if the flux crossed the uniform air gap over 

this effective slot pitch. An alternative to reducing the slot pitch is increasing the 

air-gap length. Carter converted the decrease in width dimension as shown in (5-2) 

to an equivalent increase in the length dimension on the basis of constant 

reluctance. 

εε
gg ′

=
′

                                                    (5-4) 

According to (5-4) the familiar Carter’s coefficient is written as 

 

Figure 5-2 Ventilation ducts 
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and it is used to find the effective air-gap length g’. 

gKg C=′                                                    (5-6) 

Cochran shows that, similarly to winding slots, the presence of ventilation 

ducts also can be taken into consideration by using a factor to reduce duct pitch 

(the width of one stack of laminations plus one vent, as shown in Figure 5-2) or 

increase air-gap length [81]. If there are Nd ducts, each of width wd, the duct pitch 

is 

1d

d
d +

+
=

N

wLε                                                 (5-7) 

where L is the overall length of the core, including the ducts. In accordance with 

(5-5), Cochran multiplies the air-gap length by the following factor to obtain the 

effective air-gap length: 

ddd

d
d wb
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where bd is calculated using (5-3) with w replaced by wd. A number of 

publications propose the effective reduction in axial core length as an alternative 

approach to take into consideration the ventilation ducts [82] - [84]. Using a 

similar procedure embodied in (5-4), Williamson and Flack transform the 

effective increase in air-gap length to an effective reduction in core length [82]. 

This effective core length, L’, is given by 
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Liwschitz-Garik and Whipple give (5-9) with an approximate expression for bd 

[83]. With the assumption Nd >>1, L>>wd, Say gives an equivalent expression for 

L’ as follows [84]: 

ddd wbNLL −=′                                            (5-10) 

With the traditional analytical approach to model magnetic fields in AC 

machines, Carter’s coefficients as (5-5) and (5-8) are usually determined and 

applied successively for the stator slots, the rotor slots and the radial ventilation 
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ducts, to create the effective air gap or core length. The presence of slots causes 

radial and tangential variations of the flux density that are automatically modeled 

with the 2-D FEM. The axially spaced radial ducts cause axial variation of the 

flux density that are beyond the plane used with the traditional 2-D FEM. 

Fortunately, modified 2-D FEA can be carried out by simply replacing the 

physical core length in the system equation with the effective core length 

calculated as (5-9) or (5-10). This transformation does not incur any change to the 

2-D finite element mesh. 

It should be noted that the above approach is equally valid for both stator and 

rotor ducts. Large synchronous machines usually have ventilation ducts in the 

stator core only, while rotor ducts for synchronous machines are less common. In 

this case, Kd is computed by substituting only the stator duct parameters into (5-8), 

and the effective core length is then computed as (5-9). When both stator and 

rotor have ventilation ducts, as is the case of a large induction machine, Kds and 

Kdr must be computed respectively for stator and rotor by substituting the stator 

and rotor duct parameters into (5-8). Then the two Carter’s coefficients are 

applied successively as shown in (5-11) to compute the effective core length. 

drdsKK

L
L =′                                                (5-11) 

5.2 Outline of simulation and experiment conditions 

The amortisseur cage in a synchronous machine carries induced harmonic 

currents at slot frequencies that respond to the periodic variations in reluctance 

and air-gap flux density caused by stator slotting. It can be extrapolated that 

variation in the bar-iron contact resistance due to the uncertainty in manufacturing 

process has evident influence on magnitude of the rotor harmonic currents, and 

hence on stray losses in amortisseur cage. As these harmonic currents act on the 

machine magnetic field, variation in certain output harmonics, e.g. the open-

circuit voltage harmonics, may be observed as a reflection of interbar resistance 

variation. The simulations and experiments in this section aim to investigate the 



 81 

reaction of these slot harmonics and the resulting cage stray loss to the interbar 

resistance variation. 

The synchronous machine investigated in this chapter is a 3-phase, Y-

connected, large salient-pole synchronous generator provided by GE Canada. All 

the experiment results regarding this machine are also provided by GE Canada. 

The machine nameplate data are presented in Table 5-1. This machine has a skew 

of one slot pitch, and the rotor is equipped with a connected amortisseur. The 

basic structure parameters are omitted here for the purpose of confidentiality.  

Table 5-1 
Synchronous machine nameplate data 

Rated VA  14.089MVA 

Rated voltage 13.8kV 

Frequency 60Hz 

Simulations are carried out using a 4-slice finite element model with the 

generalized interbar circuit and the effective core length. According to the 

rotational symmetry the machine structure displays, a finite element mesh is 

created for the sector of one pole as shown in Figure 5-3. The mesh consists of 

3646 nodes and 6788 first-order triangular elements, not including the dynamic 

air-gap elements. Following the test procedures in IEEE Standard 115, 

simulations are carried out under open-circuit and short-circuit conditions, 

respectively. Prior to a synchronous machine simulation, a magnetostatic FEA 

with the field current as the input is usually necessary in order to find the initial 

nodal magnetic potentials. The time-stepped simulation with rotor motion is 

subsequently initialized by substituting these initial values of nodal potential for 

t
NA  in the global equation at the first time step. These initialization procedures are 

not required for induction machine simulations. One may simply assume zero 

initial conditions because the rotor cage can automatically dampen out the 

transients caused by initial sudden change in excitation. In addition, soft start 

conditions may be adopted to gradually increase the excitation during the initial 

stage of simulation, for the cases of long transients. In a synchronous machine 
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under steady-state operation, the amortisseur cage is unable to function as the 

squirrel-cage damper in an induction machine. Due to the lack of damping, 

synchronous machine simulations without initial magnetostatic solution may 

produce oscillations or intractably long transients. 

5.3 Open-circuit simulations and experiments 

The synchronous generator model developed in Section 5.1 is generally 

available to simulations under various load conditions. Simulations for the special 

case of open-circuit operation can be carried out by setting the stator resistance Rs 

to a very large value and setting the terminal voltage Vs to zero in the stator circuit 

equation (3-6). With these small modifications, (3-6) describes the case that an 

EMF induced by the rotor field is applied to a closed stator circuit with very large 

impedance, which limits the stator current Is to nearly zero. From the perspective 

of the machine magnetic field, the state of generator with this stator circuit is 

effectively equivalent to an open-circuit operation. 

 

Figure 5-3 Finite element mesh of a synchronous machine 
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5.3.1 Electromotive force calculation 

The main goal of this section is to extract the slot harmonic components of the 

open-circuit voltage (EMF) and investigate their relation to the rotor interbar 

resistances. The induced EMF can be calculated using the nodal magnetic 

potentials obtained from the solution of the system equation. Figure 5-4 shows a 

stator coil comprised of two effective coil sides (a and b) exposed to the 2-D 

magnetic field in a machine. L is the effective length of the coil, i.e. the core 

length. Aa and Ab are the magnetic potentials at the coil sides a and b, respectively. 

The magnetic flux through this coil is given by 

lll ba

acbd

d AAA −== ∫φ                                    (5-12) 

For stator windings comprised of coils of Nt turns, the magnetic potentials used 

for flux linkage calculation must be the average over the area of coil side. This 

average magnetic potential is expressed by 
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where Aei nj is the magnetic potential at the jth node of the ith element in a coil 

side, and ∆ei is the area of this element. In an Nsl-slice model, if a phase winding 

consists of Ncs coil sides that form Nc parallel circuits, the total flux linkage of one 

phase is given by 
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Figure 5-4 Calculation of the flux through a coil 
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where kmA  is the average magnetic potential at the kth coil side in the mth slice, 

and kγ  is ±1 depending on the direction of this coil side. The time-stepped phase 

EMF can be derived as follows: 
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5.3.2 Simulation and experiment results 

The harmonic components of measured and simulated open-circuit line-line 

voltage are obtained from fast Fourier Transform (FFT) and presented in Table 

5-2. These results are normalized to per unit values with the measured 

fundamental voltage as the baseline value. The simulation results obtained from 

the proposed multislice interbar model are given at a wide range of possible 

interbar resistances, from 1×10-5
Ωm to 1×10-1Ωm. To illustrate the advantage of 

proposed model in predicting slot harmonics, the additional results obtained from 

a 2-D finite element model modified by skew factor are also given in Table 5-2, 

as an object of comparison. The first step of this approach is to calculate the open-

circuit voltage with the conventional single-slice finite element model, as is used 

in most commercial 2-D FEA packages. The stator slots are assumed unskewed in 

the first step of calculations. The second step is to account for the effect of 

skewed slots on open-circuit voltage by correcting each of their harmonics 

obtained through FFT, with an analytical factor. This factor, known as the “skew 

factor”, is reproduced in numerous textbooks, such as [81]. Skew factor has been 

commonly used in analytical models of skewed AC machines to correct the air-

gap flux density calculated with the assumption of unskewed slots or bars. This 

factor is expressed by 
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where β is the skew angle in radian, as shown in Figure 2-4, and n is the harmonic 

order. 
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Table 5-2 shows the selected significant harmonics of the measured and simulated 

open-circuit voltages up to the 25th harmonic. The above analysis suggests that 

the main origin of the 11th, 13th, 23rd and 25th harmonics is the modulation 

effect of stator slots. The other harmonic components in Table 5-2 come into 

being as a result of the saturation in the iron core or the design of certain 

constructions such as the distribution of stator windings and the shape of pole face. 

The results given by the multislice interbar model indicate that the variation of 

interbar resistance clearly influences the magnitude of slot harmonics in open-

circuit voltage. On the other hand, the magnitude of other harmonics due to the 

reasons other than slots does not change significantly with the interbar resistance 

variation. For example, the phase belt voltage harmonics, such as the 5th and 7th 

harmonics, remain constant at the wide range of interbar resistances. The slot 

harmonics in open-circuit voltage are most sensitive to the variation in interbar 

resistance at the order of magnitude of 10-4 Ωm to 10-3Ωm. On the contrary, the 

variations of interbar resistance have only minor effect on the slot harmonics of 

open-circuit voltage if the amortisseur bars are insulated very well, e.g. the bar-

iron contact resistance is in a range greater than 1×10-2
Ωm, or they are poorly 

insulated, e.g. the bar-iron contact resistance becomes smaller than 1×10-4Ωm that 

is comparable to the bar resistance. In the simulation results at a variety of 

interbar resistances, the case of 1×10-3
Ωm shows the best agreement with the 

measured results at the slot harmonic frequencies. This implies that the average 

interbar resistance in this machine is approximately at the order of magnitude of 

10-3Ωm. Figure 5-5 shows a certain instantaneous open-circuit flux distribution 

under the interbar resistance of 3101 −× Ωm. The differences in stator tooth fluxes 

can clearly be seen. 

As a compromise that accounts for the skewed slots, the skew factor approach 

is computationally cheaper but less complete than the multislice interbar modeling 

technique. To compare the simulation accuracy, the harmonics predicted by the 

skew factor approach are presented in Figure 5-6 together with the measured 

result and the simulation result at the interbar resistance of 1×10-3Ωm. It is evident 
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(a) Slice 1 

 

(b) Slice 4 

Figure 5-5 Fluxes in an open-circuit synchronous machine 
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that, at the slot harmonic frequencies, the results given by the proposed model 

fundamentally match the measured results better than the results given by the 

skew factor approach. It should be underlined that the accuracy of harmonic 

prediction tends to be difficult as the harmonic order increases. As one may notice 

in Figure 5-6, there is a relatively large error in the predicted 25th harmonic given 

by the proposed model. The reason for this error is that the cubic spline 

interpolation of B-H curve used in the numerical simulations may not give 

sufficiently accurate prediction of the small variation in flux density. The 

investigation on a cage induction motor in [85] indicates that much of the slot 

harmonic flux closes on itself in a layer close to the rotor surface. It is considered 

reasonable that the similar phenomenon occurs on the stator inner surface in a 

synchronous machine that is excited by the rotor field windings. Only a small 

amount of harmonic flux at the high slot frequencies penetrates into the stator core, 

embraces an entire slot through the relatively low reluctance path provided by the 

teeth, and hence induces the slot harmonic EMF in stator windings. The B-H 

curve may not be measured and interpolated with sufficient data points to allow 

accurate prediction of such a small variation in flux density. 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

3 5 7 11 13 17 19 23 25

Harmonic order

N
or

m
al

iz
ed

 o
pe

n-
ci

rc
ui

t 
vo

lta
ge

Test Multislice interbar model (0.001Ωm) Skew factor method
 

Figure 5-6 Comparison of measured and simulated open-circuit voltages 
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The amortisseur bar currents consist of slot harmonics only. Figure 5-7 shows 

the magnitude of the simulated 12th and 24th current harmonics (720Hz and 

1440Hz) flowing in the individual slices of a certain amortisseur bar. The figure 

displays noticeable bar current variation along the axial direction, indicating the 

transverse currents of significant magnitude flowing into the rotor core. It can be 

found that the axial variation in bar current is more prominent when the order of 

magnitude of interbar resistance is 10-4
Ωm to 10-3Ωm. This fact shows an 

agreement with the sensitivity of slot harmonics in open-circuit voltage to the 

interbar resistance. The currents in the individual bar segments tend to be uniform 

as the interbar resistance increases, implying the decreased transverse currents in 

the cases of better insulation. 

5.4 Short-circuit simulations and experiments 

5.4.1 Simulation settings 

This section aims to use simulation technique to investigate the composition 

of stray-load loss as is defined and measured under short-circuit operation, in 

compliance with IEEE Standard 115. The components of stray-load loss include 

stator iron loss, rotor iron loss and amortisseur cage loss. The simulation of short-

circuit operation can be achieved with Vs in (3-6) set to zero. The simulated range 

of interbar resistances is 1×10-5
Ωm to 1×10-1Ωm, identical to that in the open-

circuit simulations. 

The stray-load loss under short-circuit operation is evaluated by measurements 

and simulations. The stator and rotor lamination parameters that are used for 

calculation of iron losses are presented in Table 5-3. The approach to evaluate 

stator iron loss for synchronous machines is identical to that for induction 

machines, i.e. calculating the eddy-current loss, hysteresis loss and excess loss as 

(2-3), (2-4) and (2-6), respectively. The rotor iron loss evaluation for synchronous 

machines usually excludes the hysteresis loss component for the similar reason 

mentioned in Section 4.3.2 B. In that section, the rotor hysteresis loss are not 

considered when calculating the rotor iron loss in an induction motor at 

synchronous speed, because the hysteresis loss produced by minor hysteresis 
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Table 5-3 
Lamination parameters of a synchronous machine 

Stator lamination thickness 0.483mm 

Stator lamination conductivity 1.923×106S/m 

Rotor lamination thickness 1.880mm 

Rotor lamination conductivity 6.864×106S/m 

Mass density of laminations 7650kg/m3 

α 1.828 

kh 0.0195 

ke 2.12×10-5 

loops is usually assumed negligible. The rotor field in a synchronous machine is 

fundamentally constant with the similar minor hysteresis loops, which are caused 

by stator slot openings and stator current harmonics as in an induction machine. 

Thus the evaluation of rotor iron loss in a synchronous machine also neglects the 

component of hysteresis loss. However, the rotor flux density fluctuations still 

produce eddy-current loss and excess loss, and these losses are taken into account 

as rotor iron loss components. 

5.4.2 Simulation and experiment results 

The short-circuit measurement and simulation results are given in Table 5-4. 

The results are normalized to per unit values with the measured stray-load loss 

and short-circuit current as the baseline values. A breakdown of the simulated 

stray-load losses at different interbar resistances is presented in Table 5-4. The 

simulation results indicate that a significant proportion of the stray-load loss 

comes for the harmonic Joule loss in amortisseur cage. The ratio of this cage stray 

loss to the total stray-load loss may change significantly with the variation in 

interbar resistance. For instance, the simulation results in Table 5-4 show that this 

ratio is as low as 8.86% at the interbar resistance of 1.0× 510− Ωm, reaches the 

peak as high as 29.35% at the interbar resistance of 1.0×10-3
Ωm, and decreases to 

20.91% at the interbar resistance of 1.0×10-1
Ωm. Due to the variation in cage 
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case of perfect bar-bar insulation. The simulated stray-load loss at the interbar 

resistance of 1.0×10-3
Ωm matches the measured result. Figure 5-8 shows a 

 

 

(a) Slice 1 

(b) Slice 4 

Figure 5-8 Fluxes in a short-circuit synchronous machine 
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snapshot of flux distribution in the synchronous machine under this interbar 

resistance condition. The flux density distribution on the pole face of a short-

circuit synchronous machine is evidently less even than that in an open-circuit 

synchronous machine due to the armature reaction. 

5.5 Discussion on rotor iron loss evaluation for 

synchronous machines 

The iron sheets from which the rotor core of this machine is manufactured are 

as thick as 1.88mm, significantly thicker than the typical laminations. Trial 

simulations indicate that an accurate prediction of the eddy-current loss in this 

rotor core is technically difficult in some cases. The eddy-current loss formulation 

as (2-3) is based on an assumption of uniform distribution of the magnetic field 

across the lamination thickness. However, this assumption is valid only if the iron 

sheets are sufficiently thin. Skin effect should be taken into account for iron 

sheets whose thickness is comparable with the skin depth. The alternating 

component of magnetic field may concentrate on the surface of the thick sheets 

and increase the effective flux density. Skin depth is a measure of the distance 

over which the harmonic flux density falls to 1/e of its original value. For a 

harmonic flux density at the radian frequency of ω, the skin depth is denoted by 

ωσµ
δ

mm

2=                                              (5-17) 

where µm is average permeability in the iron. (5-17) suggests that the skin depth 

depends on the local saturation in laminations. A lamination region exposed to 

saturated field possesses a lower permeability and hence a larger skin depth with 

respect to each flux density harmonic. On the other hand, an unsaturated iron 

region displays a smaller skin depth due to the higher permeability. For this 

reason, a general expression of eddy-current loss that accounts for the local 

saturation level and skin depth, is required in order to improve the accuracy of 

eddy-current loss prediction for thick laminations. 

Dreyfus developed an analytical approach that multiplies the conventional 

frequency-domain expression of eddy-current loss by a factor to predict the eddy-
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current loss under skin depth condition [86]. If skin depth is not considered, the 

lamination eddy-current loss density (in W/m3) corresponding to the harmonic 

flux density at the radian frequency of ω is given as follows: 

( )
2 2

2m
e

ˆ
24

d
P Bω

σ ωω =                                         (5-18) 

where ωB̂  is magnitude of flux density at the radian frequency of ω. The factor 

that is used by Dreyfus to modify (5-18) is given by 

ξξ
ξξ

ξ coscosh

sinsinh3
sk −

−⋅=K                                      (5-19) 

where 

δ
ξ d=                                                    (5-20) 

Thus an alternative expression of lamination eddy-current loss density that takes 

into account the skin depth is given as follows: 

( ) ( ) ( )
2 2

2m
e sk sk e

(sinh sin ) ˆ
8 cosh cos

d
P K P Bω

σ ω ξ ξω ω
ξ ξ ξ

−= =
−

                  (5-21) 

To predict the total eddy-current loss in thick laminations, the calculation shown 

in (5-21) must be implemented for individual lamination elements at individual 

harmonic frequencies, with ωB̂  provided by FFT of the finite element solution. 

Although (5-21) provides an improved approach to calculate eddy-current 

losses in thick laminations, this approach still may not guarantee the calculation 

accuracy for some local regions with low flux density. The practical magnetizing 

curve of the iron core displays a relatively high reluctivity in the segment of 

“reversible growth” subject to a low external field, as shown in Figure 5-9. This 

reluctivity decreases in the transition to the region of “irreversible growth”, i.e. 

producing a negative gradient of reluctivity. The negative gradient may result in 

negative diagonal entries of the matrix Gk in (3-19), and harm the convergence of 

numerical simulations. For this reason, in the practical simulations, the “reversible 

growth” segment of the magnetizing curve is replaced with an approximate linear 

representation that has an equal slope with the segment of “irreversible growth”. 

With this approximate representation, the permeability of elements with very low 
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flux density is overpredicted, and hence errors may be created when calculating 

skin depth and eddy-current loss density of these elements as (5-17) and (5-21). 

The simulation error of the total eddy-current loss in thick laminations may be 

considerable if there are a large number of such regions with low flux density. 

Evaluation of rotor iron loss in synchronous machines is a topic for future 

investigation. The above discussion is motivated by the special case of thick 

laminations in this rotor iron core. Some general factors (e.g., minor hysteresis 

loops) also may be worthy of investigation for more credible evaluation of rotor 

iron losses in synchronous machines. It is encouraging that an insight into the 

factors affecting rotor stray losses in synchronous machines is obtained from the 

loss breakdown shown in Table 5-4, though the simulation results of rotor iron 

losses might be questionable quantitively. The simulations reveal clearly the 

tendency of cage stray loss and total rotor stray loss under different interbar 

resistances. 

5.6 Summary 

This chapter develops a 2-D multislice finite element model for a large 

salient-pole synchronous machine with skewed stator slots. Simulations and 

experiments are carried out to investigate the harmonics and the resulting stray 

losses in this machine. The magnitude of harmonics due to stator slot openings is 

found subject to the value of rotor interbar resistance. The simulation results 

indicate that a number of performances such as open-circuit voltage, amortisseur 

bar currents and stray-load loss, are significantly influenced by the variation in 

 

Figure 5-9 Magnetizing curve of iron core 
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interbar resistance. The data and curves obtained from the simulations will be 

beneficial to an improvement of rotor interbar insulation for the purpose of 

mitigation of slot harmonics and stray losses in synchronous machines. 

It is noted that accurate calculation of rotor iron loss in this synchronous 

machine is a challenging issue worthy of special attention. A modified equation 

that accounts for the skin depth of the thick rotor laminations in this machine is 

required in order to improve the calculation accuracy of the eddy-current loss in 

the rotor core. It is also acknowledged that other unknown factors affecting the 

calculation of rotor iron loss in regular synchronous machines (with typical 

lamination thickness) may be existent and worthy of future investigation. 
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Chapter 6 Permanent Magnet 

Synchronous Machine Analysis 

6.1 Introduction 

In the previous three chapters, multislice 2-D finite element models with 

interbar circuit have been established for skewed induction machines and 

synchronous machines. The harmonic stray losses in AC machines are 

investigated using these models, under a variety of PWM supply and rotor 

interbar insulation conditions. The shape and dimension of stator and rotor slots 

also play an important role in the formation of harmonic stray loss. An 

appropriate design of slot geometry helps reduce the stray loss caused by slot 

harmonics. 

This chapter attempts to optimize the shape of slots in a PMSM in order to 

minimize the machine loss. This PMSM is utilized to accelerate or decelerate the 

rotating mass in a flywheel energy storage system. A power electronic converter 

controls the power flow during the process of energizing (the PMSM is motoring) 

and deenergizing (the PMSM is generating) the flywheel. The energy loss 

occurring in the mechanical-electrical energy conversion is one of the primary 

concerns regarding a flywheel system. Even though PMSMs are typically 

considered to be high efficiency machines, particular attention should be made to 

losses in a machine designed for use with a flywheel. Total loss should be as low 

as possible in order to maximize round-trip energy efficiency. The rotor of the 

system is typically evacuated, eliminating conductive and convective heat transfer 

from the rotor. Due to the difficulty in removing the heat from the rotor, high 

frequency eddy current losses in the magnets should be minimized to protect the 

magnets from performance degradation or permanent malfunction. Adjustment of 

the slot shape is an economic approach to reduce the total loss, and particularly 

the magnet stray loss in a PMSM. 

The slot shape optimization in this chapter involves two techniques that are 

integrated into one computer program: the optimum seeking algorithm based on 
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ES is implemented as the outer loop to repeatedly adjust the slot design; time-

stepped finite element simulations are carried out as a nested loop in the body of 

optimization loop to calculate the losses for the individual designs. 

6.2 Permanent magnet synchronous machine modeling 

This section aims to develop a time-stepped finite element model for PMSMs 

which is used to provide the information of flux density distribution for loss 

calculation. The machine investigated in this chapter has fractional-slot windings 

in unskewed slots, and there is no amortisseur assembled with the rotor. As the 

time-stepped finite element models for the common structures or regions in all 

types of AC machines, such as core laminations, stator windings and air gap 

region, have been established in Chapter 3, this section focuses on modeling of 

permanent magnets, the parts particular to a PMSM, and calculation of magnet 

stray loss caused by eddy currents. 

A permanent magnet is a type of hard magnetic material that is characterized 

by a wide hysteresis loop. The magnets commonly used in permanent magnet 

machines usually exhibit a linear normal magnetization characteristic in the 

second quadrant, as shown in Figure 6-1. The slope of the straight line shown in 

Figure 6-1, i.e. the permeability of a permanent magnet is only slightly greater 

than that of free space. A permanent magnet machine must be designed to operate 

in the second quadrant of the magnet’s hysteresis loop so that the magnet will not 

be demagnetized when exposed to an external repellent field. The magnets in 

 

Figure 6-1 Linear magnetization characteristic of a permanent magnet 
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many permanent magnet machines are segmented in order to reduce the magnet 

eddy-current loss. The main goal of this chapter is to investigate the effect of slot 

shape on the total machine loss and the magnet stray loss. The adoption of solid 

pieces or thin sheets of magnet in a simulation model does not affect the 

assessment of various slot shape designs and the final selection from them. 

Therefore, for modeling convenience, it is assumed that the machine is equipped 

with solid magnets, and a single-slice finite element model can be applied 

considering the unskewed structures. The single-slice field equation for a solid 

permanent magnet is given by 

pme)( JJA +=×∇×∇ ν                                        (6-1) 

where Je is the eddy current density in the magnet, and Jpm is the term of 

equivalent current density representing contribution of the magnet. Je and Jpm are 

given as follows: 
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σpm, νpm and Br are respectively the conductivity, reluctivity and residual flux 

density vector of the magnet, and Brx and Bry are respectively the x- and y-

component of Br. Substituting (6-2) and (6-3) into (6-1) and writing left-hand side 

of the equation as derivatives, one obtains 
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Applying Galerkin method to (6-4) and the field equations of other regions, one 

can obtain the global finite element field equation as follows: 
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The first term on the right-hand side of (6-5) is nonzero for only the nodes related 

to stator winding elements. The term in the square brackets is nonzero for only the 

nodes related magnet elements. Tpm, D and E are constant matrices derived by 

Galerkin method. As the rotor of this machine has no amortisseur, rotor circuit 
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terms do not present in (6-5). The global equation of the permanent magnet 

machine is comprised of (6-5) and the stator circuit equation (3-10). These 

equations are discretized in time domain by C-N method and then solved by NR-

DD numerical technique. 

Eddy currents in permanent magnets are taken into account in the above field 

equation, the resulting losses can thereby be calculated using the solution of the 

equation. The eddy-current loss (in Watts) in a magnet is expressed by the 

following integral over the cross section of the magnet: 

SJ
L

P d2
e

pm

pm
pm ∫∫=

σ
                                            (6-6) 

Lpm is the axial length of the magnet. Je is the z-component of the eddy current 

vector, Je (Je has only z-component in a 2-D model). To give a finite element 

solution to (6-6), Je can be expressed by the nodal magnetic potentials. The eddy-

current density in the ith element in a magnet is given by 
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where ieA  is average of the three nodal potentials. The magnet’s instantaneous 

eddy-current loss is expressed by finite elements as follows: 
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6.3 Initial design of prototype machine 

The application in flywheel system places a number of technical requirements 

on the PMSM and the drive system. Table 6-1 summarizes the specific 

characteristics of this flywheel machine system. As the flywheel may be 

frequently accelerated or decelerated, the PMSM is required to be operated at a 

wide range of high speeds, and the field weakening control is applied at these high 

speeds. Due to the difficulty in removing heat from the rotor, permanent magnets 

with high temperature tolerance are preferred in the flywheel machine. The 

maximum operating temperature of the chosen magnets is as high as 200˚C. In the 

stage of raw design, the values of flux linkage and inductance are first roughly 
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Table 6-1 
Specification of a flywheel permanent magnet synchronous machine system  

Number of poles 4 

Typical operating frequency range 467Hz – 933Hz 

Speed range 0rpm – 28000rpm 

Typical operating speed range 14000rpm – 28000rpm 

Machine average efficiency over the typical speed range >98% at rated power 

System average efficiency including inverter loss >95% 

Total harmonic distortion (THD) of line-line back EMF <1.32% 

Nominal DC link voltage 600V 

DC link voltage range 500V – 700V 

Nominal maximum continuous power 70kW 

30-second overload power rating 120kW 

calculated by an analytical lumped-parameter prediction and then verified by 

static FEA. Once all the parameters regarding dimensions, materials, electric and 

magnetic circuits, etc are determined in the raw design, the machine performances 

under different load conditions are simulated using the time-stepped finite 

element model developed in the previous section and a commercial 2-D FEA 

package, respectively. In both simulations, it is assumed that the magnets operate 

at constant temperature of 120˚C with the desired linear magnetization 

performance. Although the magnet temperature in the real machine system may 

deviate from the assumed value, the assumption of linear magnetization 

performance is reasonable in consideration of the strong temperature tolerance of 

the magnets. In both simulations the machine is assumed driven by a sinusoidal 

current supply. Provided that the stator currents Is and the rotor position are 

known, one can perform the following steps to simulate a load operation of the 

PMSM: 

1. Find all the nodal magnetic potentials by independently solving (6-5); 

2. Substitute these magnetic potentials into (3-10) to calculate the terminal 

voltages; 
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3. Calculate the stator Joule loss, iron loss, magnet eddy-current loss and 

input power using the time-stepped data of stator current, terminal voltage 

and magnetic potential. 

4. Apply the Maxwell stress tensor method [68] to calculate the torque, and 

subsequently calculate the output power and efficiency. 

The above steps can give a full prediction of the load operation performances. The 

performances predicted by the proposed model are in good agreement with those 

predicted by the commercial software package. The stage of initial design ends up 

with minor adjustment to this design that aims to better match the simulated 

machine performances to the technical requirements. The initial design is mainly 

other authors’ contribution [87]. As this part is not the emphasis of this chapter, 

details about the process of initial design are omitted here. 

The initial design adopts a rotor with the SPM, and double-layer fractional-

slot short-pitched distributed windings. The SPM design is more inclined to 

produce magnet stray loss than an IPM design because the SPM are right located 

in the air gap, where the slot harmonic flux density can easily diffuse on the 

surfaces of the magnets. In an IPM machine, the iron laminations that cover the 

magnets filter part of the slot harmonic fields and hence prevent high stray loss 

being produced in the magnets. For these reasons, the SPM stray loss is more 

susceptible to the slot shape than the IPM stray loss. The slot shape optimization 

for this SPM machine is expected to contribute a significant reduction in the 

magnet stray loss besides in the total machine loss. 

Figure 6-2 shows the finite element mesh for the prototype machine’s cross 

section. The mesh contains 3167 nodes and 5964 first-order triangular elements, 

not including the dynamic air-gap elements. In consideration of the 

circumferential periodicity of magnetic field in the fractional-slot machine, the 

finite element mesh is constructed for a pitch over one pair of poles. Table 6-2 

shows the dimension of basic structures in the prototype machine. Table 6-3 

presents the lamination parameters. 
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Table 6-2 
Basic structure of the prototype permanent magnet synchronous machine 

Core length 0.144m 

Outer diameter of stator core 0.229m 

Stator slots 
2.5slots/phase/pole 

short pitched by 0.5slots 

Rotor core diameter 0.107m 

Air gap length (including magnet and overwrap) 7.5mm 

Magnet arc 73˚ 

Magnet thickness 3.88mm 

Table 6-3 
Stator and rotor lamination parameters of 

the prototype permanent magnet synchronous machine 

Thickness 0.20mm α 1.8559 

Conductivity 1.818×106S/m kh 0.01743 

Mass density 7650kg/m3 ke 1.6088×10-5 

6.4 Slot shape optimization 

6.4.1 Slot shape variables and cost function 

The finite element mesh of the stator region in Figure 6-2 is created by 

duplicating the mesh for half a stator slot pitch, which contains 79 nodes and 116 

elements as shown in Figure 6-3 (a). To numerically describe the slot shape, a 

range of key points on the slot’s outline are chosen and 6 decision variables are 

used to define the relative locations of these nodes as shown in Figure 6-3 (b). 

Each time when the optimization algorithm reshapes the slot, the values of these 

variables are changed and this brings about an adjustment of the mesh in Figure 

6-3 (a). To avoid a complicated remeshing algorithm that may change the number 

of nodes and elements, this adjustment is achieved by recalculating the 

coordinates of existing nodes according to the new values of decision variables. 
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w2

w1

w  

(a) Finite element mesh of half a slot pitch (b) Decision variables 

Figure 6-3 Stator slot shape 

In order to ensure a reasonable design and a feasible mesh for the slot 

geometry and, some constraints as shown in Table 6-4 are placed on the 

individual decision variables, and the combination of these variables is required to 

satisfy some inequalities. In Table 6-4 the upper for the radius r is chosen to 

reserve sufficient area of the back iron region; a lower limit for the slot opening w 

is chosen to allow the enameled wires to pass in the process of assembling stator 

Table 6-4 
Variable constraints 

 
w 

(mm) 
d1 

(mm) 
d2 

(mm) 
w1 

(mm) 
w2 

(mm) 
r  

(mm) 
Ast 

(mm2) 
Ld, Lq 
(mH) 

Ψpm 
(Wb) 

Lower limit 1.90 0.30 1.00 2.00 4.00 70.00 206.4 0.275 0.085 

Upper limit 4.00 3.00 5.00 8.00 20.00 105.00 -- 0.418 0.108 
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windings. The inequality constraints chosen for the decision variable combination 

include 

1 1 (mm)w w≥ +                                               (6-9) 

2 1 0.4 (mm)d d≥ +                                          (6-10) 

The ES optimizations in this chapter force a decision variable to be the maximum 

(or minimum) if it violates the corresponding constraint, e.g. w = 1.9 if w is found 

less than 1.9; w1 = w + 1 if w1 is found less than w + 1. 

Additional constraints are placed on some dependent variables that are derived 

as functions (explicit or implicit) of the decision variables. Such variables 

concerned in this optimization task include Ast (slot area), Ld, Lq and Ψpm 

(permanent magnet flux linkage). Corresponding to the maximum current density 

allowed in the slot cross sections, Ast must be above the lower limit to ensure 

sufficient currents in the slots. Constraints are placed on Ld, Lq and Ψpm to ensure 

that the field weakening control may be applied efficiently and the DC link 

voltage is sufficiently high as the machine supply. Qualitative analysis based on 

well-known d-q axis model of PMSM reveals that inappropriate values of Ld, Lq 

or Ψpm may produce unsatisfying value of efficiency or DC link voltage. The d-q 

axis equations for a PMSM under steady-state operation are given by 

dqq iRv ψωes +=                                            (6-11) 

qdd iRv ψωes −=                                           (6-12) 

qqq iL=ψ                                                  (6-13) 

ddd iL+= pmψψ                                            (6-14) 

[ ]qdqdq iiLLipT )(
2

3
pme −+= ψ                                 (6-15) 

where vd, id and Ψd are direct axis voltage, current and flux linkage, respectively; 

vq, iq and Ψq are quadrature axis voltage, current and flux linkage, respectively; Te 

is electromagnetic torque. The electromagnetic relations shown in the above 

equations reveal that 
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1. Excessively large Ψpm or excessively small Ld causes additional di  for 

field weakening and hence decrease in efficiency under the high speed 

operations; 

2. In the case of excessively small Ψpm, additional iq is required to 

compensate for the decrease in torque due to the small Ψpm, and this also 

may lead to decrease in efficiency; 

3. Excessively large Lq may lead to excessively large Ψq and hence a 

requirement for supply voltage over the limit of DC link voltage. 

The constraints on Ld, Lq and Ψpm are determined according to the machine 

performances that are roughly predicted using (6-11) to (6-15) under various 

values of Ld, Lq and Ψpm and field weakening conditions. These constraints are 

presented in Table 6-4 together with the constraints for dimension variables. As 

this PMSM adopts a SPM design with equal Ld and Lq, the constraints on them are 

identical. 

The slot shape optimization is mathematically equivalent to minimization of a 

cost function. The cost function is constructed by superimposing the penalty 

functions on the total machine loss:  

)()()( pm32st1 ψPLPAPWC d +++=                            (6-16) 

In (6-16), W is the total machine loss (in Watts). As the flywheel PMSM would 

rarely operate at steady speeds, it is impractical to minimize the machine losses 

under a range of varying load conditions. The machine loss under 28000rpm, 

open-circuit operation is chosen as a representative object for slot shape 

optimization. The open-circuit PMSM loss is comprised of the stator and rotor 

iron loss and the magnet eddy-current loss. After the field distribution information 

is acquired by FEA, the iron losses can be calculated using the three classical 

equations (2-3), (2-4) and (2-6); the magnet losses can be calculated using the 

equation (6-8). In (6-16), the penalty functions P1, P2 and P3 may add positive 

numbers to the cost function when the dependent variable values violate the 

constraints. The decision variable constraints are handled outside the cost function. 

The general form of penalty functions is given by 
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where xl, xu are respectively the lower limit and upper limit of the variables, Kl 

and Ku are positive factors that give “penalty” to the candidates beyond the 

dependent variable limits. The values of Kl and Ku should be determined before 

carrying out the optimization algorithm. One may evaluate the machine 

performances under the variable values beyond the limits, using the d-q axis 

equations (6-11) to (6-15), and determine the values of Kl and Ku according to 

sensitivity of the performances to the variable values. The values of Kl and Ku 

used for this optimization task are presented in Table 6-5. Adding penalty values 

into the cost function may allow some infeasible candidates to survive during a 

number of optimum-seeking iterations, rather than discard all of them by 

following a zero tolerance rule. For the case that the optimum occurs close to or 

right on the boundary of the feasible range, the penalty function approach is more 

probable to locate the optimum than the zero tolerance approach. 

Table 6-5 
Penalty weights 

 For Ast, per mm2 For Ld, per mH For Ψpm, per Wb 

Kl 10 1000 10000 

Ku 0 1000 20000 

6.4.2 Evolution strategy review 

In an ES algorithm a candidate solution is expressed as a vector of objective 

variables, 

a = (x, σ, θ)                                               (6-18) 

x is a vector of Ndv decision variables. σ is a vector of Ndv step size values (i.e. 

standard deviations), each corresponding to a decision variable. θ is a vector of 

Ndv(Ndv-1)/2 rotation angles, and [ ]ππθ  ,−∈i . σ and θ are strategy parameters 

optimized together with the decision variables, and this gives ES a self-adaptive 

feature. For the sake of completeness, a typical ES algorithm is briefly introduced 
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in this section. A typical ES algorithm performs recombination, mutation and 

selection in sequence within each generation. Flow chart of the ES algorithm is 

shown in Figure 6-4. 

A. Selection 

According to the criterion for selection, ES algorithms are classified into two 

categories: (µ, λ) ES and (µ+λ) ES. λ children are reproduced from µ parents by 

recombination and mutation within each generation of the ES algorithm. (µ, λ) ES 

selects the fittest µ out of the λ children to be the parents for the next generation. 

(µ+λ) ES differs from (µ, λ) ES in that the fittest µ to be the parents for the next 

Evaluate the fitness of the µ candidates

Generation number = Generation number + 1

Produce λ children by recombination of the µ parents

Create µ feasible solutions for the initial population

Evaluate the fitness of each child

Mutate the children and ensure their feasibility

Check

Selction mode

“+”“,”

Maximum generation?

Yes

End

No

Start

Select the fittest µ candidates as the 

parents for the next generation,

from the combination of µ current 

parents and λ children

Select the fittest µ candidates as the 

parents for the next generation,

from the λ children

 

Figure 6-4 Flow chart of a typical evolution strategy 
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generation are selected from the combination of the current µ parents and λ 

children. The applications of different ES algorithms to AC machine design 

optimization are found in a number of publications. For example, Chun, Jung and 

Yoon apply (1+1) ES to slot shape optimization for a permanent magnet motor to 

minimize the cogging torque [88]; Kim, Lee and Jung apply a modified (1+1) ES 

to the multiobjective optimal design of a three-phase induction motor [89]; 

Bochnia, Hofmann and Hupe optimize the design of an outer-rotor permanent 

magnet motor by (1, 5) ES [90]. 

B. Recombination 

In the ES algorithm, the genes (i.e. components of the vector a, including the 

decision variables and the strategy parameters) of each child are produced by 

recombination of the genes of two parents. The recombination operator can be 

sexual or panmictic, and each of them can be discrete or intermediate. 

The sexual or panmictic operator is used to determine how the two parents are 

chosen from the µ individuals. In the sexual form, the two parents of each child 

are randomly chosen from the µ individuals (choosing the same individual twice 

for creation of one child is not suppressed though this incest recombination 

operator can never create anything new), and all the genes of this child are 

produced by these two parents. For each child produced by panmictic 

recombination, one parent is first chosen randomly and held fixed, then for each 

gene of this child the second parent is randomly chosen anew from the parent 

population. Thus the individual genes of a panmictic variant can be produced 

from different combinations of parents. 

Once the two parents are determined by the sexual or panmictic operator, the 

discrete or intermediate operator is used to determine the manner in which the 

genes are inherited from the two parents. In the discrete form, it is decided 

randomly from which of the two corresponding parents each gene is copied to a 

child. In the intermediate form, each gene of a child is obtained by calculating the 

arithmetic mean of the corresponding genes of two parents. The various forms of 

recombination that create a child ( )θσxa ′′′=′  , ,  from a parent population are 
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summarized here in order to formulate the above recombination operators. The ith 

component of the vector a′  is expressed by 

F, 

F, S, 

F, S , 

F, S, 

F, S , 
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 or         sexial discrete

 or        panmictic discrete
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where the subscripts F and S denote respectively the first and the second parent 

individual chosen randomly from the parent population, and the subscript Si 

indicates that the second parent is sampled anew for each value of i. 

C. Mutation 

The λ children produced by the above recombination operations will 

experience mutations prior to selection of the parents for the next generation. 

There are two types of mutation operators: uncorrelated and correlated. For ES 

with uncorrelated mutation, the vector of a candidate solution does not include the 

rotation angles θ, i.e. 

a = (x, σ)                                                  (6-19) 

The axes of the uncorrelated mutation hyper-ellipsoids (surfaces of equal 

probability density to place an offspring by mutation) are parallel to the 

coordinate axes of the search space x. The uncorrelated mutation operator is 

expressed as follows (i = 1, 2, …, Ndv): 

[ ])1 ,0()1 ,0(exp 21 iii NN ⋅+⋅⋅′=′′ ττσσ                            (6-20) 

)1 ,0(iiii Nxx ⋅′′+′=′′ σ                                         (6-21) 

In (6-20) and (6-21) the superscript ’  denotes a child’s variables while the 

superscript ”  denotes the variables of that child’s mutant. τ1 and τ2 are interpreted 

in the sense of “learning rates” as in artificial neural networks. The values of τ1 

and τ2 suggested by Schwefel [66] are ( ) 1

dv1 2
−

= Nτ , 
1

dv2 2
−






= Nτ . The 

notation N(0, 1) denotes a realization of a normally distributed 1-D random 
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variable with the expectation of zero and the standard deviation of one, and that is 

sampled anew for each mutant. Ni(0, 1) denotes that the random variable is 

sampled anew for each gene of the mutant as the counter i is being updated. 

In the more general case of correlated mutation, the standard deviations still 

mutate as (6-20) while the rotation angles and the decision variables mutate as (6-

22) and (6-23), respectively ( j = 1, 2, …, Ndv(Ndv-1)/2 ). 

)1 ,0(jjj N⋅+′=′′ χθθ                                         (6-22) 

[ ]) ,( , θσNxx ′′′′+′=′′ R0                                     (6-23) 

The value of χ suggested by Schwefel [66] is 0873.0≈χ . [ ]) ,( , θσN ′′′′R0  

denotes a realization of a random vector that complies with the generalized Ndv-

dimensional normal distribution with the expectation of 0 and the covariance 

matrix of ) ,(1
θσ ′′′′−R . Details about how to find a realization of that random 

vector are omitted here, and they can be found in a number of textbooks, e.g. [91]. 

The correlated mutation allows the mutation hyper-ellipsoids to have any 

orientation by rotating them with a rotation (covariance) matrix R-1. In this way 

the ES algorithm with correlated mutation can adapt itself to any advantageous 

direction of search, nevertheless it implies extra computational effort and memory 

space for the covariance matrix. 

The above mutation algorithm may produce an infeasible candidate with 

decision variables that violate their constraints. To ensure the feasibility of a 

candidate, the mutation algorithm may discard such a candidate and repeat itself 

until a feasible candidate is found, or directly limit the candidate onto the 

constraint boundary. 

6.4.3 Optimization by (1, 4) and (1+4) evolution strategies 

Previous authors’ experiences show that the ES algorithms such as (1+1) ES 

[88], [89] and (1, 5) ES [90] are competent enough for a variety of AC machine 

optimization tasks, an algorithm with large population seems unnecessary for the 

optimization task in this chapter that has only 6 objective variables. (1, 4) ES and 

(1+4) ES with uncorrelated mutation are applied respectively to the slot shape 

design optimization. Recombination is skipped over in these algorithms as the 4 
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offspring are born to only one parent. As mentioned in Section 6.4.1, for this 

optimization task the ES mutation deals with a candidate with any infeasible 

decision variable by limiting it onto the constraint boundary, rather than repeating 

the algorithm until a candidate with feasible decision variables is obtained. On the 

other hand, the dependent variable constraints are handled by adding penalty 

functions into the cost function as shown in (6-16). Finite element simulations are 

carried out for evaluation of the candidate solutions’ fitness. Static FEA is first 

implemented to calculate Ld (or Lq) and Ψpm, and then the open-circuit 

performances over one cycle at the speed of 28000rpm are simulated by time-

stepped FEA to calculate the iron loss and the magnet stray loss. Similarly to the 

iron loss evaluation for synchronous machines, for a PMSM, the stator iron loss is 

evaluated from the aspects of hysteresis loss, eddy-current loss and excess loss 

while the rotor iron loss evaluation neglects the minor hysteresis loop. In the (1, 4) 

ES and (1+4) ES algorithms, the fitness evaluation, mutation and mesh adjustment 

for the 4 offspring are independent of each other, so that these steps can be carried 

out in parallel on 4 processors. The finite element simulation for the unskewed 

PMSM investigated in this chapter utilizes a single-slice model, parallel 

processing is therefore not implemented on the level of machine model. Flow 

chart of the parallelized (1, 4) ES and (1+4) ES algorithms is shown in Figure 6-5. 

These ES algorithms are efficiently carried out on a quad-core computer, saving 

significant time in the FEA for fitness evaluation. 

The loss minimization algorithms based on (1, 4) ES and (1+4) ES start with 

the same initial values of objective variables. The results of initial design and 

optimized designs given by the two algorithms are presented in Table 6-6. Due to 

the design with a long air gap, the magnitude of slot harmonics in the rotor core 

flux density is so low that it produces little harmonic stray loss in the rotor iron. In 

this case, stator iron loss and magnet stray loss are the main loss components that 

noticeably response to the adjustment of slot shape. Both the (1, 4) and (1+4) ES 

algorithms give the slots that are fundamentally thinner and shorter than the initial 

design, reducing the total loss by 12.7% and 11.8%, respectively. The data in 

Table 6-6 show that the ES designs produce a similar effect of loss density 
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reduction in the regions of teeth and back iron. In comparison to the initial and 

(1+4)-ES designs, the (1, 4)-ES design creates narrower slot openings and a more 
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Figure 6-5 Flow chart of slot optimization by parallel (1, 4) ES and (1+4) ES 
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Table 6-6 
Initial design and optimization results of slot shape 

Shape and performance variables Initial design (1, 4) ES (1+4) ES 

w (mm) 2.44 1.94 2.22 

d1 (mm) 2.00 0.90 1.31 

d2 (mm) 2.49 3.97 2.47 

w1 (mm) 6.20 4.88 6.72 

w2 (mm) 12.00 11.93 10.55 

r (mm) 90.58 89.89 87.41 

Ast (mm2) 248.05 206.40 208.10 

Fill factor 0.373 0.447 0.444 

Ld, Lq (mH) 0.310 0.319 0.305 

Ψpm (Wb) 0.102 0.103 0.103 

Cost function value 756.86 660.55 667.22 

Total machine loss (W) 756.86 660.55 667.22 

Total iron loss (W) 707.49 639.64 633.89 

Stator iron loss (W) 707.45 639.62 633.85 

Rotor iron loss (W) 0.04 0.02 0.03 

Magnet stray loss (W) 49.37 20.91 33.33 

Average loss density in tips (kW/m3) 265.72 213.32 310.34 

Average loss density in teeth (kW/m3) 373.54 347.60 348.20 

Average loss density in back iron (kW/m3) 166.92 142.17 136.70 

smooth tip-tooth transition by a better combination of w, d1, d2 and w1 values. It 

can be seen that the initial slot area is relatively large with a fill factor less than 

0.4 if an appropriate wire gauge such as Gauge 15 or Gauge 18 is chosen. 

Provided that the same wire is applied into the slots given by the (1, 4)-ES and 

(1+4)-ES designs, the fill factors of both designs are increased to slightly under 

0.45. This still admits sufficient wires within the reduced slot area. As the results 

of the decrease in air-gap flux density fluctuations, this design significantly 
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reduces the average loss density in the tip regions and the permanent magnets. 

The most important advantage of the (1, 4)-ES design is that the percentage of 

decrease in magnet stray loss (compared to the initial design) is as high as 57.6%. 

This design can significantly reduce the risk of degrading and demagnetizing the 

permanent magnet in an evacuated flywheel enclosure. Figure 6-6 shows the loss 

density distribution of the initial design, (1, 4)-ES design and (1+4)-ES design. 

Due to the concentration of high-frequency harmonic flux densities on the 

magnets’ surface, the eddy-current loss density on the surface is obviously higher 

than those in the inner region. 

The results in Table 6-6 indicate that the (1+4)-ES algorithm does not give the 

optimal design. The progress of the cost function during the ES generations is 

shown in Figure 6-7. In the (1+4)-ES optimization, the cost function value has 

been fast decreasing to a local minimum within the first 5 generations, however 

does not get any chance to escape from this local minimum thereafter. Conversely, 

the (1, 4)-ES algorithm presents a sequence of cost function values that are not 

monotonically decreasing (a result larger than the initial value even occurs at the 

9th generation), however it eventually converges to a better design. This 

phenomenon can be explained by comparing the selection mode of the two 

algorithms. With the (1+4) ES any offspring inferior to its parent will not survive 

for the next generation, therefore this algorithm may escape from a local optimum 

only if it reproduces by chance a mutant which is out of the close neighborhood of 

the local optimum and superior to its parent. With the (1, 4) ES an offspring 

inferior to its parent still has the opportunity to survive for more than one 

generation, this may allow the candidate to jump out of the close neighborhood of 

a local optimum and eventually help the algorithm converge to the global 

optimum. 

6.5 Summary 

This chapter investigates the shape of slots as a factor affecting the loss 

density distribution in an AC machine. Optimization of stator slot shape is 

implemented for a flywheel PMSM to minimize the total machine loss. The 
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optimization adjusts 6 decision variables that are chosen to sketch out the slot 

shape. A cost function (objective function for optimization) is defined as the sum 

of total machine loss and penalty functions that account for the design constraints 

on the parameters such as slot area, d- and q- axis inductances and permanent 

magnet flux linkage. In the process of optimization, static 2-D FEA is carried out 

to calculate those constrained parameters while time-stepped 2-D FEA is carried 

out to evaluate the PMSM losses including the magnet stray loss that is a 

component very sensitive to the shape of stator slots. 

Parallelized (1, 4) ES and (1+4) ES are implemented respectively as 

optimization algorithms for the slot shape design improvement. These parallelized 

algorithms are suitable to be executed on a quad-core computer, which is popular 

nowadays in design offices. The parallel execution can significantly save the time 

consumed in FEA that is used to evaluate the children’s fitness. The (1, 4) ES 

gives an optimization result superior to that given by the (1+4) ES. The slot-tooth 

design given by the (1, 4) ES appears with thinner and shorter slots and smooth 

tip-tooth transition. This new design significantly reduces the total machine loss 

as well as the magnet stray loss. The decrease in the total loss can help improve 

the round-trip efficiency of the flywheel PMSM. On the other hand, the decrease 
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in the magnet stray loss is significantly beneficial as it can strengthen reliability of 

the permanent magnets in the evacuated flywheel chamber. 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

Time-stepped 2-D finite element models are constructed for various AC 

machines in order to investigate the stray losses in these machines. Multislice 

technique, interbar circuit model and Carter’s effective core length are 

incorporated with the traditional 2-D finite element model to account for the axial 

variations in the electromagnetic field that are caused by the presence of skewed 

stator or rotor, imperfect bar-bar insulation and radial ventilation ducts. 

The AC machine simulations based on the multislice interbar model are very 

expensive computationally. In order to improve the computational efficiency of 

the multislice interbar model, the serial and parallel NR-DD numerical techniques 

are developed respectively to solve the system equation of a skewed induction 

motor. The motor performances at a range of interbar resistances and rotor 

temperatures are simulated, and the simulation results are validated by test results. 

For a 5-slice simulation, the serial NR-DD technique reduces the simulation time 

to less than 70% in comparison to the traditional NR technique while the parallel 

NR-DD technique further reduces the simulation time to less than 20%. The 

efficient simulation technique is used to investigate some aspects of stray losses in 

induction machine, synchronous machine and PMSM. 

Simulations and tests are carried out for an induction motor under sinusoidal 

and SPWM supply to investigate the harmonic stray loss caused by PWM supply. 

As expected, the simulation and test results suggest additional losses under a 

PWM supply relative to the case of sinusoidal supply. Of the two components in 

these additional losses, the component of harmonic stray loss is less significant 

than the fundamental loss component. As an induction machine becomes more 

saturated with the increasing load, the weight of fundamental loss in this 

additional loss becomes even more significant than in the case of a lower 

saturation level. These results of stray loss investigation indicate that a thermal 
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design improvement may be more beneficial to induction motor efficiency than an 

improvement of PWM switching patterns. 

The investigation in this thesis reveals that the rotor interbar leakage current is 

an important source of harmonic stray loss in AC machines. Simulations and tests 

are carried out on a large synchronous generator to study the impact of interbar 

resistance on the harmonic fields and harmonic stray losses in this generator. The 

simulation results indicate that the slot harmonics and the resulting stray losses in 

the amortisseur cage are susceptible to the variation in interbar resistance. Within 

a certain range of interbar resistance, the cage stray loss may account for a 

significant proportion of the total rotor loss. The data and curves obtained from 

the simulations can better inform the rotor manufacturing improvement that aims 

to mitigate the harmonic stray loss in amortisseur by appropriate interbar 

insulation. 

The slot shape is investigated in this thesis as another factor affecting the total 

loss and the slot harmonic stray loss in AC machines. ES is applied as a formal 

optimization algorithm to the improvement of slot shape design in order to 

minimize the total loss in a flywheel PMSM. The magnet stray loss that is caused 

by the slot harmonics is taken into account in the task of loss minimization. The 

parallelized (1, 4) ES gives a design of slot shape that reduces the total machine 

loss by 12.7% and the magnet stray loss by 57.6%. An attractive advantage of this 

design is the significant reduction in magnet stray loss that conduces to a safe 

range of operating temperature for the permanent magnets. 

7.2 Recommendations for future work 

There are some areas worthy of further investigation as research topics 

subsequent to the results presented in this thesis. Recommendations for the future 

work focus on the improvement of modeling techniques for AC machines. 

This thesis assumes that iron laminations possess a monotonic magnetization 

characteristic, the effect of minor hysteresis loops in the B-H curve are not taken 

into consideration. The losses caused by minor hysteresis loops, though usually 

assumed very small, should be taken into account when making a detailed 
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comparison of the harmonic stray losses under different PWM switching patterns. 

An improvement of the minor hysteresis loop modeling may help to distinguish 

the harmonic stray losses under various PWM schemes such as SPWM, space 

vector PWM (SVPWM), discontinuous PWM (DPWM), etc, and under the 

different combinations of amplitude modulation index and DC link voltage. 

The modeling improvement for thick iron laminations is another 

recommendation for the further work. “Thick” means that the sheet’s thickness 

along the machine axis is comparable to or greater than the skin depth. In this case, 

the flux density and the eddy current density both decay from the surface to the 

center of a conductor sheet, rather than uniformly distributed as assumed in this 

thesis. The skin depth turns smaller as the saturation level of a machine field turns 

lower. As a function of saturation level, skin effect should be included in a 

machine loss evaluation model for those iron laminations that are “thicker” 

relative to the skin depth. 

The AC machine model in this thesis requires the rotor temperature as an 

input to the simulation system. A thermal equation coupled to the AC machine 

simulation system is recommended to correct the parameter of rotor resistance and 

improve the accuracy of rotor loss prediction. 
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