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Abstract 

Fluorescence microscopy allows the visualization of live-cells and their components, but 

even with advances in super-resolution microscopy, atomic resolution remains unattainable. 

Contrarily, molecular simulations can access atomic resolution, but comparison with experimental 

microscopy images has not been possible. In this work, a novel in-silico fluorescence microscopy 

technique is proposed, which uses physics-based point-spread-function to generate images from 

molecular simulations. The method allows the resolution of molecular simulation to be reduced 

and made comparable to experiments, enabling direct cross-comparison between in-silico and 

experimental images. Simulation of a DNA-polyethylenimine gene delivery system is used to 

demonstrate the production of in-silico images with a different optical axis, object focal planes, 

exposure time, color combinations, resolution, brightness, and amount of out-of-focus fluorescence. 

These images bridge the distinct worlds of molecular simulation and experimental fluorescence 

microscopy by generating new knowledge from direct cross-validation, determining equivalence 

of properties extracted from molecular simulation and experimental images, assessing and 

developing algorithms for experimental image analysis, etc. The technique presented here can also 

be used as a standalone visualization tool for molecular simulation and lays the foundation for other 

in-silico microscopy methods. 
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Microscopy has enabled the exploration of tissues, cells, and its components,1–3 structure and 

properties of biochemicals,4–6 surface properties of materials,7,8 and advances in many other fields. 

Fluorescence microscopy accounting for more than eighty percent of all microscopy images,9 has 

enabled qualitative and quantitative analysis of live-cell processes.10 Such analysis includes, but is 

not limited to the fluorophores’ colocalization,11–13 intensity,14–16 count,12,14 diameter,12 area,17 

volume,11 shape,14 mean-squared displacement (MSD),12 position,11,12,18 diffusion,12,15 speed,11 etc., 

which form a key understanding of various biological processes. Excellent reviews on different 

fluorescence microscopy techniques and their applications can be found in Schermelleh et al,19 

Sahl et al,20 Lichtman and Conchello,21 Stephens and Allan,22 and Huang et al.1 

The intrinsic limitation of fluorescence microscopy arises due to diffraction,23 which is 

quantified by the effective point-spread-function (PSF) of a microscope. Standard fluorescence 

microscopy, such as widefield, experiences the resolution limit (i.e., diffraction barrier) of ~200 

nm in the lateral direction when imaging cells because only visible spectra can be used to avoid 

photodamage to the cells.10,23 The images also suffer from a further reduction in resolution due to 

the detection of out-of-focus fluorescence. Like widefield, optical sectioning microscopy (OSM) 

techniques such as confocal,24 light-sheet,25 two-photon,26 etc. are also diffraction-limited, but they 

improve the resolution of images by reducing the amount of out-of-focus fluorescence. 

Computational optical-sectioning microscopy (COSM) can be used, on a stack of 2D images 

obtained from different object focal planes (i.e., an equivalent 3D image), to further reduce the 

amount of out-of-focus fluorescence.27,28 This is achieved by applying theoretical or experimental 

knowledge of the microscope’s PSF and certain deconvolution algorithms.28,29 COSM can also be 

used directly on 2D images and those obtained from widefield microscopy. Even with advances in 

OSM and COSM observing fine details in most cellular organelles seemed impossible until a few 

decades ago. Innovations in the field of super-resolution microscopy30–34 have broken the 
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traditional diffraction barrier to achieve resolution as low as 20 nm. However, atomistic resolution 

on the order of angstroms still remains out of reach in fluorescence microscopy.  

On the other hand, molecular simulations (MS) can probe biochemical systems with 

molecular,35 sub-molecular,36,37 or atomic38 resolutions. Here for the first time, we present a 

generalized framework for performing in-silico fluorescence microscopy on a virtual specimen 

represented by MS trajectories. Different types of in-silico fluorescence microscopy can be 

achieved, and the wide and versatile applications of the method are demonstrated. It is critical to 

mention that in the literature the term “computational microscopy” refers to either a collection of 

MS not at all linked to microscopy,39,40 or computational techniques applied on microscopy images 

to improve their quality and therefore not related to MS.41,42 The framework proposed here is also 

distinct from existing studies in the literature that modeled microscopes, which focused on 

developing different PSFs to more accurately extract information from microscopy images.43–46 

Since the development of COSM,27,28 synthetic microscopy images have been generated by 

convoluting number density of objects placed in 2D or 3D space (considered “ground truth”) with 

a PSF to test analysis tools in experimental microscopy.27,47–50 As such, the “ground truth” used are 

not realistic and do not possess any predictive power. Much more information can be gained by 

bridging the worlds of physics-based MS and experimental fluorescence microscopy. In this regard, 

Dix et al.51 developed an in-silico fluorescence correlation spectroscopy (FCS), a statistical 

technique to analyze temporal fluctuations of fluorescence intensity in a control volume. The 

technique was applied to a Brownian dynamics simulation where the fluorophores were modeled 

as simple particles. Angiolini et al.52 developed a similar in-silico FCS and fluorescence cross-

correlation spectroscopy (FCCS) for a reaction-diffusion model of a cell. The in-silico FCS and 

FCCS are valuable tools because they allow the comparison of chemical kinetics, diffusion 

coefficients, and inter-particle interactions obtained from numerical simulations and experiments 
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(a review of experimental FCS and FCCS techniques is available in Macháň and Wohland53). 

However, the work by Dix et al.51 and Angiolini et al.52 lacked spatial resolution which is present 

in images or videos. Watabe et al.54 and Lindén et al.55 generated microscopy images for reaction-

diffusion models of cells, and performed limited comparison (e.g. single-particle tracking) with 

experiments. While reaction-diffusion models are useful, unlike MS they are incapable of 

predicting molecular interactions. To our knowledge, in-silico fluorescence microscopy performed 

on MS with detailed molecular interactions and structures is still absent in the literature. 

 
Figure 1. A framework of in-silico microscopy. (a) PSF with I0 = 1, β = 59.4°, μ = 1.51, Pl' = Pm' = Pn' = 25 nm, Δl' = 
Δm' = 0.1 nm, Δn' = 0.05 nm, n' = 0 nm, and fs = 530 (eqn (1)). In this work, PSF is calculated for λ = 461 (not shown), 
518, and 670 nm (corresponding to emission peaks of DAPI (4’,6-diamidino-2-phenylindole), FITC (Fluorescein 
isothiocyanate), and Cy5 (Cyanine 5)) at different n' (black arrow). (b) To highlight the features of the framework, a 
polyethylenimine (PEI)-DNA aggregation simulation36 (see Methods) is used as an MS specimen where PEI and DNA 
particles are assumed to emit fluorescence. The box represents the initial configuration of the MS, in the xyz coordinate 
system shown. DNAs are shown in blue and PEIs in orange. Particles in DNA and PEI molecules are assigned two 
different fluorophore types and their number density (𝜌) is calculated based on their positions, at different simulation 
times (black arrow). (c) In-silico monochrome images for DNA (top) and PEI (bottom) are obtained (at different 
simulation times; black arrow) using the convolution (∗) between PSF specified in (a) and 𝜌 (eqn (2)). In the images 
shown, t = 0, n is taken to be the z-axis and the object focal plane is at nO = 12 nm. DNA and PEI particles emit light 
with (λ, Ι0) = (670 nm, 0.13) and (518 nm, 0.27) respectively. Bright-white and dim-diffused-white colors represent 
in-focus and out-of-focus fluorescence respectively. (d) A colored in-silico microscopy image is generated by 
assigning indigo hue to the top figure in (c) and yellow hue to the bottom figure in (c), and colors are mixed in the hue-
saturation-value space using eqn (3-5). (e) Microscopy images generated at different simulation times can be combined 
into a microscopy video. Scale bars in (c-e), 5 nm. 
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The in-silico fluorescence microscopy created in this work can achieve functionalities similar 

to experimental fluorescence microscopies. As an example, widefield fluorescence microscopy 

follows simple optics, where the entire specimen is illuminated, imaging fluorescence from both 

in- and out-of-focus. Fluorophores with different emission peaks can be detected using one or 

multiple cameras.56 While both color and monochrome cameras are available, monochrome 

cameras are often used because of their higher sensitivity and resolution.56 Artificial colors can be 

digitally assigned to the monochrome images and superimposed to produce a colored microscopy 

image.57 Images (monochrome or colored) taken at different times can be combined to form a 

microscopy video, to examine the temporal variations in the locations of different fluorophores and 

their colocalization. The optics of OSM is similar to widefield, where a thin optical section around 

the object focal plane is illuminated instead of the entire specimen and/or most of the out-of-focus 

fluorescence is blocked using an aperture. Similarly, the optics of some super-resolution 

microscopies such as stimulated emission depletion31 (STED) microscopy resembles that of 

widefield but with a lower effective emission wavelength leading to higher resolution.58 

Analogous principles are followed in the in-silico fluorescence microscopy with the 

additional advantage of tunable resolution and amount of out-of-focus fluorescence. Detailed 

particle positions from an MS and PSF are used to generate fluorescence intensities, turning an MS 

“specimen” into in-silico monochrome images/videos, which are then superimposed with different 

hues to form colored in-silico microscopy images/videos (Figure 1). MS and experimental 

microscopy calculate physical properties using different principles, but they can now be directly 

compared through the in-silico images/videos. Since precise positions of particles are known 

through MS (the ground truth), a direct link between the position/motion of particles (Figure 1b) 

and in-silico microscopy images/videos (Figure 1c-e) can be established. This will not only allow 

cross-validation between experiments and MS, but also aid in the understanding of subcellular 
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processes and mechanisms by combining knowledge from MS and experiments which may cover 

different length and time scales. Three-dimensional MS trajectories, although containing a large 

amount of quantitative information, are tedious (if not difficult) to view and analyze on a two-

dimensional screen. The in-silico fluorescence microscopy presented here aims to provide a novel 

easy-to-use open-source visualization toolbox, which allows researchers to observe more by 

reducing the quantitative details. 

Results  

Setup of the in-silico microscope. A linear and lateral shift-invariant in-silico microscope 

(ℒ) is set up to observe an MS specimen (ℳ𝒮) with an arbitrarily chosen right-handed rectangular 

coordinate system lmn, where lm forms the lateral plane and n is the optical axis (Figure 2). The 

microscope is focused on the object focal plane ( ℱை  in Figure 2) where n = nO. Selected 

microscopy images generated with different n-axis and nO are shown in Figure 3a. For a given lmn, 

images taken at different nO provide insight into the 3D structure of the ℳ𝒮. 

 
Figure 2. Schematic of the in-silico microscope. ℳ𝒮 is the MS specimen being viewed under the in-silico microscope 
ℒ. The central box in ℳ𝒮 is the original MS system, and the adjacent boxes with equal dimensions to the original MS 
system are its periodic images if periodic boundary condition is applied. ℒ consists of a virtual cover slip, immersion 
oil, objective lens, and eyepiece. lmn is a right-handed coordinate system of the MS, where n is the optical axis. ℱை 
and ℱூ are the object and image focal planes respectively. The object focal plane is located at n = nO and the image 
focal plane at n = nI. 
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The image of ℳ𝒮 is produced in the image focal plane n = nI (ℱூ in Figure 2), magnifying 

the ℳ𝒮 coordinates by –M; i.e., in-focus fluorophore particle with coordinates (lj, mj, nO) produces 

a focal spot at (–Mlj, –Mmj, nI). An image coordinate system l'm' is introduced which scales the lm 

coordinates by –1/M, such that the image coordinates of the focal spot (–Mlj, –Mmj, nI) are given 

by ሺ𝑙ᇱ, 𝑚ᇱሻ ൌ ቀ
ିெೕ

ିெ
,

ିெೕ

ିெ
ቁ ൌ ሺ𝑙, 𝑚ሻ. Fluorophore particles in ℳ𝒮, both in- and out-of-focus, 

each generate an intensity profile around its own focal spot, which is characterized by the PSF. For 

the in-silico microscope with an ideal aberration-free high-magnification objective lens, the PSF is 

modeled using eqn (1).44  

𝑃𝑆𝐹ሺ𝑟ᇱ, 𝑛ᇱሻ ≡ 𝑃𝑆𝐹ሺ𝑙ᇱ, 𝑚ᇱ, 𝑛ᇱ, 𝜆ሻ ൌ 𝐼 ቤ
3

2ሺ1 െ cosଷ/ଶ 𝛽ሻ
න eିᇲఓᇲ ୡ୭ୱ ఏJሺ𝑘ᇱ𝜇𝑟′ sin 𝜃ሻ sin 𝜃 cosଵ/ଶ 𝜃 𝑑𝜃

ఉ


ቤ

ଶ

 (1) 

Eqn (1) describes the intensity produced at a point (l', m') in ℱூ by a fluorophore particle 

located at (0, 0, nO – n'), a distance of n' away from ℱை. 𝑟′ ൌ ඥሺ𝑙ᇱሻଶ  ሺ𝑚ᇱሻଶ, i is the unit imaginary 

number, and J0 is zeroth-order Bessel function of the first kind. The wavenumber k' = 2π fs /λ, where 

λ is the wavelength of the emitted light in vacuum, which is 461, 518, and 670 nm respectively for 

fluorophores DAPI (4’,6-diamidino-2-phenylindole), FITC (Fluorescein isothiocyanate), and Cy5 

(Cyanine 5), and fs a scaling factor introduced to tune the full-width-at-half-maximum (FWHM). 

I0 is the maximum PSF intensity, β = sin-1(NA /μ) the maximum half-angle in the virtual immersion 

oil (Figure 2), NA the numerical aperture of the virtual objective lens, and μ the refractive index 

of the virtual immersion oil. The factor 3/2(1 – cos3/2
 β) is a normalization constant to ensure the 

maximum of PSF is I0 for n' = 0.44 In this form of the PSF, Gandy44 assumed that the microscope 

is in design condition and the effective refractive index of the specimen is comparable to the 

immersion oil, which makes the PSF depth-invariant. Because of this, the location of the object 

plane (nO) does not explicitly appear in eqn (1). The location of the image focal plane (nI) also does 

not appear in eqn (1) because for a microscope, nI solely depends on the design parameters (focal 
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length of objective, eyepiece, thickness of coverslip and immersion oil, tube length, etc.) and its 

effect is felt through the magnification M. For example, magnification in a simplified microscope 

with only an objective lens is given by the ratio between the distances of the image and object from 

the objective lens. Since the microscope is linear and lateral shift-invariant, the PSF defined for a 

fluorophore particle at (0, 0, nO – n') can be used to calculate the contribution of particles located 

elsewhere by a simple shift operation. It is worth noting that the in-silico microscope presented in 

this work is not limited to the PSF given in eqn (1). Other PSF available in the literature, such as 

those proposed by Gibson and Lanni,43 Hell et al.,46 can also be used. More discussions on this are 

given in supporting information (SI) Section S1. 

For computational efficiency, PSF (l', m', n', λ) is predetermined with I0 = 1 at grid points 

within a cuboidal box that has a dimension of (Pl', Pm', Pn') and constant grid spacing of Δl', Δm' 

and Δn'. Typical PSF curves are shown in Figure 1a. Increasing fs will increase k', which is 

equivalent to decreasing λ, compressing the PSF along the r' axis (Figure 1a) and reducing the 

“spread” of the fluorescence intensity. This effectively decreases the FWHM making the in-silico 

microscopy images sharper (Figure 3b) and can be used to model super-resolution microscopy 

(See SI Section S2). Increasing I0 elongates the PSF along the vertical axis, causing the intensity 

of some local maxima in the PSF (Figure 1a) to exceed the minimum detection threshold of human 

vision. This makes the in-silico microscopy images brighter while increasing the radial distance 

over which each fluorophore particle contributes to the resultant image (Figure 3c). A concise 

guide on how to choose fs and I0 is available in SI Section S3. Pl' /2 and Pm' /2 are respectively the 

maximum lateral distances in directions l' and m' over which the fluorescence of a particle located 

at (0, 0, nO – n') is calculated. In general, Pl' and Pm' should be large enough such that the PSF 

decays to zero within the box of dimension (Pl', Pm'). Pn' /2 is the maximum distance of a fluorophore 

particle from ℱை for which its fluorescence contribution is calculated, i.e., Pn' is the thickness of 
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the excited specimen around ℱை. Therefore, decreasing Pn' decreases the amount of out-of-focus 

fluorescence (Figure 3d) and can be used to model OSM (see SI Section S2).  

Generating In-silico monochrome image. Particles in an MS are assigned to different 

fluorophore types, each emitting light at a specific wavelength λ. For each fluorophore type, the 

resultant fluorophore intensity I detected at ℱூ, when the object focal plane is at nO, is calculated 

as the convolution between PSF (given n-axis, nO, β, fs, λ, and I0) and particle number density 

𝜌ሺ𝑙, 𝑚, 𝑛, 𝑡ሻ ൌ ∑ 𝛿ሺ𝑙 െ 𝑙ሺ𝑡ሻ, 𝑚 െ 𝑚ሺ𝑡ሻ, 𝑛 െ 𝑛ሺ𝑡ሻሻே
ୀଵ  using eqn (2). The coordinates (lj(t), mj(t), 

nj(t)) specify the position of the j 
th fluorophore particle in the MS at time t, N is the number of 

fluorophore particles in the MS, and δ is the Dirac delta function. The convolution operator is 

responsible for the lateral shift-operation on the PSF based on the position of each fluorophore 

particle. Therefore, convolution of the PSF with 𝜌  provides the resultant diffraction pattern 

produced by all fluorophores on the camera. 

𝐼ሺ𝑙ᇱ, 𝑚ᇱ, 𝑛ை, 𝜆, 𝑡ሻ ൌ 𝑃𝑆𝐹ሺ𝑙ᇱ, 𝑚ᇱ, 𝑛ை, 𝜆ሻ ∗ 𝜌ሺ𝑙, 𝑚, 𝑛, 𝑡ሻ ൌ   𝑃𝑆𝐹ሺ𝑙ᇱ െ 𝑙ሺ𝑡ሻ, 𝑚ᇱ െ 𝑚ሺ𝑡ሻ

ே

ୀଵ

, 𝑛ை െ 𝑛ሺ𝑡ሻሻ  (2) 

Similar to PSF, for computational efficiency I is predetermined with I0 = 1 at discrete points 

where PSF was evaluated. I values calculated from I0 = 1 are hereafter denoted by I1. To generate 

images, Ι1 is scaled with the actual chosen I0 value and any intensity above 1 is treated as 1; i.e., I 

= min{I0 I1,1}. When Ι is rendered as an image for a fluorophore type, it is referred to as the in-

silico monochrome image. Periodic boundary condition (PBC) can be applied while calculating Ι. 

The number of periodic images that contribute to Ι depends on the dimension of the box (Pl', Pm', 

Pn') used to predetermine the PSF (see Methods). Because the size of the ℳ𝒮 can change over the 

course of the simulation, a white image frame larger than the ℳ𝒮 is created and the monochrome 

image is scaled with respect to the white image frame before being placed at its center (see 

Methods). This allows the comparison of images generated at different simulation times. An 
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example of the 3D distribution of fluorophore particles and the corresponding in-silico 

monochrome images are shown in Figure 1b-c. The white image frame is highlighted in Figure 

1c-e by adding a grey background.  

  
Figure 3. In-silico microscopy images generated with different parameters. MS on PEI-DNA aggregation36 (see 
Methods) is used as the virtual specimen where PEI and DNA particles are assumed to emit fluorescence. Unless 
otherwise specified, the PSF is modeled with β = 59.4°, μ = 1.51, n is z-axis, nO = 12 nm, Δl' = Δm' = 0.1 nm, Δn' = 
0.05 nm, Pl' = Pm' = Pn' = 25 nm, fs = 530, (λ, I0) = (670 nm, 0.13) for DNA and (518 nm, 0.27) for PEI; DNA and PEI 
particles are assigned indigo and yellow hues respectively (colocalization color bar on the top); and no time-averaging 
is performed. (a) Images with different n and nO at t = 3 μs. (b) Images with different fs, t = 0 μs and I0 = 0.2 for all 
particles. (c) Images with different I0 at t = 0 μs, fs = 130. (d) Images with different Pn' at t = 1 μs, fs = 130. I0 for DNA 
and PEI are (0.04, 0.12) (left), (0.01, 0.03) (middle), and (0.008, 0.02) (right). (e) Images with different exposure time 
at t = 0 and 1 μs. Scale bars, 5 nm. 
 

When generating monochrome images using Eq 2, at any time t all fluorophores are assumed 

to undergo the same number of light emissions for a constant time interval Δt. However, 

fluorophores can undergo intricate photophysical conversions between electronic states, which can 
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result in different number of light emissions for different fluorophores and at different time, as well 

as emission with different wavelengths. These photophysical conversions and emissions can be 

modeled by a continuous-time Markov process, to study photoblinking, photobleaching, 

phosphorescence, and fluorophores emitting multiple wavelengths, which is discussed in SI 

Section S4. 

Generating In-silico microscopy image and video. The final in-silico microscopy image is 

generated by selecting a color for each monochrome image and superimposing them. The colors 

are mixed in the hue-saturation-value (HSV) space. Each fluorophore type is assigned a hue, 

saturation of 1, and value equal to I = min{I0 I1,1}. The hue, saturation, and value of mixed color 

are given by eqn (3-5), where (Hj, Vj) are the hue and value of the jth color, arg() returns the phase 

of a complex number, and maxn (Vj) represents the nth largest Vj after sorting Vj of the colors being 

mixed (SI Section S5). For example, if the colors being mixed have values 0.2, 0.5 and 0.5, then 

max1(Vj) = max2(Vj) = 0.5 and max3(Vj) = 0.2. 

𝐻௫ ൌ arg ቌ  𝑉𝑒ுೕ

ே

ୀଵ

ቍ (3) 

𝑉௫ ൌ maxଵ൫𝑉൯ (4) 

𝑆௫ ൌ 1 െ
maxଷሺ𝑉ሻ
maxଵሺ𝑉ሻ

 (5) 

For two-color mixing the third-largest Vj is zero, resulting in a fully saturated color (Figure 

4a). When the third largest Vj is non-zero, it represents the mixing of three or more colors, and the 

mixed color is desaturated. A graphical representation of four-color mixing is shown in Figure 4b. 

A concise guide for choosing hues is provided in SI Section S6. A typical in-silico microscopy 

image generated from a two-color mixture of indigo (assigned to Figure 1c, top) and yellow 

(assigned to Figure 1c, bottom) hues is shown in Figure 1d. 
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Figure 4. Demonstration of color mixing. (a) Two-color mixing always results in a fully saturated color. When hues 
H1 and H2 are chosen for two fluorophore types, all possible mixed colors (for different V1 and V2) are shown using 
the minor sector of the circle. (b) Demonstration of four-color mixing. The hue, saturation, and value are represented 
by the azimuthal angle, vertical distance and radial distance respectively. Colors associated with all hue-value 
combinations are shown at three saturation levels 0, 0.5, and 1. The four colors being mixed have hues of 0°, 90°, 200° 
and 300°, and values of 0.8, 0.6, 0.4 and 0.3 respectively, which are shown using solid-white arrows. The hue and 
value of the mixed color are calculated using eqn (3) and (4) based on the sum of the four complex numbers 𝑉𝑒ுೕ. 
The resultant complex number 𝑉௫𝑒ுೣ is shown by the dashed-white arrow in the S = 1 plane. The mixed color 
has a value of 0.8 and hue of 19.5°. The saturation of mixed color is 0.5 (eqn (5)). The drop in saturation to the S = 0.5 
plane is shown by the dashed-black arrow. 
 

Existing color mixing techniques often use the RGB (red-green-blue) or CMY (yellow-cyan-

magenta) color space. At most three fluorophore types can be superimposed in these methods and 

they can only be associated with the primary (in RGB) or secondary colors (in CMY). In the HSL 

(hue-saturation-luminance) color mixing scheme developed by Demanolx and Davoust,59 I for one 

fluorophore type can be associated with any fully saturated hue. However, this method cannot mix 

more than two hues because it does not follow the associative law; consequently, mixing more than 

two colors is order-dependent. In contrast, the new color mixing scheme presented here is superior 

to previous methods because an arbitrary number of fully saturated hues can be mixed. This allows 

great flexibility in choosing hues for different fluorophores, such as choosing color-safe 

colocalization hues for color-blind readers (SI Section S6). Choice of non-standard colors has the 

added benefit of producing stronger color contrast in in-silico (Figure 5) and experimental (SI 

Section S7) images. Even if the resultant Vmix is the same for different color combinations, the 

contrast in images can be different because the relative luminance60 (brightness) is not the same 

for all hues. For example, relative luminance60 is highest for yellow and lowest for blue, with 
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yellow having ~10 times the relative luminance60 of blue at the saturation of 1. For further 

discussion on color contrast and relative luminance,60 see SI Section S8. 

Time-averaged in-silico microscopy images can be generated by superimposing time-

averaged in-silico monochrome images. The time over which average is performed represents an 

effective exposure time (Figure 3e, and SI Section S9). As fluorophore particles move, a time-

averaged image captures the motion blur arising from the particle’s motion. When the particle’s 

diffusion coefficient is high so is the motion blur and vice versa. Finally, multiple images generated 

at different simulation times, with or without time averaging, can be combined to create an in-silico 

microscopy video (Figure 1e). The in-silico microscopy video associated with Figure 3e is 

provided in SI Video 1-3. 

 
Figure 5. Images with different color combinations. (a) red-green-blue, (b) orange-cyan-violet, and (c) yellow-cyan-
magenta (colocalization color bars below each subfigure; D: DNA, P: PEI, I: ions). MS on PEI-DNA aggregation36 
(see Methods) at t = 3 μs is used as the virtual specimen where all the PEI and DNA particles, and ions are assumed to 
emit fluorescence. PSF is modeled with β = 59.4°, μ = 1.51, n is x-axis, nO = 4 nm, Δl' = Δm' = 0.1 nm, Δn' = 0.05 nm, 
Pl' = Pm' = Pn' = 25 nm, fs = 530, (λ, I0) = (670 nm, 0.13) for DNA, (518 nm, 0.27) for PEI and (461 nm, 0.4) for ions. 
Visibility for ions over black (red arrow) and non-black (white arrow) backgrounds is dependent on the color 
combinations. Ion visibility for color combination of D-P-I follows yellow-cyan-magenta > orange-cyan-violet > red-
green-blue over black background, and orange-cyan-violet > yellow-cyan-magenta > red-green-blue over non-black 
background. Overall orange-cyan-violet combination performs best among the three.  
 

Applications. In-silico microscopy is operated on MS data using physics-based PSF. 

Therefore, similar to experimental images, in-silico images should be treated as data61 of the 
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underlying MS, and both qualitative and quantitative analyses can be performed on the in-silico 

images. More importantly, since MS has predictive power, MS data associated with in-silico 

images serve as the ground truth, enabling cross-validation, attainment of new knowledge, 

examination of existing analysis tools, and creation of new analysis tools, to name a few. The wide 

and versatile application of the in-silico microscopy is demonstrated using the following three 

examples. 

 
Figure 6. Gaining new information by comparing in-silico images, experimental images, and detailed MS data. (a) In-
silico microscopy images from endosomal acidification simulation of PEI-DNA nanoparticles (see Methods), where 
PEI and DNA particles are assumed to emit fluorescence. PSF is modeled with β = 59.4°, μ = 1.51, n is z-axis, nO = 0 
nm, Δl' = Δm' = 0.1 nm, Δn' = 0.05 nm, Pl' = Pm' = Pn' = 25 nm, fs = 260, (λ, I0) = (670 nm, 0.04) for DNA and (518 
nm, 0.06) for PEI; DNA and PEI particles are assigned red and green hues respectively. Above each image, the 
simulation time is specified in microseconds, with endosomal acidification marking the start of the simulation. Scale 
bar, 5 nm. (b) Experimental fluorescence microscopy images by Rehman et al.2 of PEI-mediate delivery of plasmid 
DNA (red) and oligonucleotides (green). The time is in hours:minutes:second format and the scale bar represents 7 
μm. [Reprinted with permission from Rehman et al.2 Copyright © 2013 American Chemical Society]. (c) The number 
of particles and (d) cross-sectional area of nanoparticles, normalized by the corresponding maximum value from in-
silico images, experimental images, and MS data. Threshold of 0.588 and 0.196 was used for in-silico and experimental 
images respectively to calculate the number and cross-sectional area. The cross-sectional area corresponding to MS 
was calculated from the square of the hydrodynamic radius (see Methods).  
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First, new information can be gained by comparing data from MS, in-silico images, and 

experimental images. In Figure 6a, in-silico microscopy images are generated for an endosomal 

acidification simulation on polyethylenimine (PEI)-DNA nanoparticles (see Methods). In Figure 

6b, PEI-based delivery of plasmid DNA (red) and oligonucleotides (green) inside HeLa cells is 

shown, which also undergoes endosomal acidification.2 Qualitative similarities between Figure 6a 

and Figure 6b (appearance of smaller nanoparticles as time increases) can be established by visual 

inspection. Quantitatively, the normalized number of particles (Figure 6c) and normalized average 

cross-sectional area of nanoparticles (Figure 6d) are calculated (See Methods). In Figure 6c, a 

general increasing trend is observed for both experimental microscopy and MS. The trend from in-

silico microscopy is less clear due to the large fluctuations caused by particles moving in and out 

of the focal plane of interest. Similar fluctuation is also observed in experimental microscopy at 

~90% of the total time. In Figure 6d, a general decreasing trend of average cross-sectional area is 

observed for in-silico microscopy, experimental microscopy, and MS. A transient increase at a 

short time (10-40% of the total time) is also observed for in-silico and experimental microscopy 

images. Clearly, qualitative and quantitative agreement between MS and experimental microscopy 

is achieved. In addition, detailed MS data has provided direct evidence for nanoparticle dissociation 

under endosomal acidification, which means dissociation of plasmid DNA from the nanoparticles 

likely occurred in Rehman et al.2 although it was not reported in the original article. The 

comparison also suggests that an overall decrease in average cross-sectional area is a good indicator 

for nanoparticle dissociation, which can be used as a new analysis tool for experimental microscopy.  
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Figure 7. Bridging data obtained from MS and in-silico images. (a) In-silico microscopy images of PEI-DNA 
aggregation simulation36 (see Methods) at different times, where PEI and DNA particles are assumed to emit 
fluorescence, for visual colocalization analysis. The PSF is modeled with β = 59.4°, μ = 1.51, n is z-axis, Δl' = Δm' = 
0.1 nm, Δn' = 0.05 nm, Pl' = Pm' = Pn' = 25 nm, fs = 530, (λ, I0) = (670 nm, 0.13) for DNA and (518 nm, 0.27) for PEI; 
DNA and PEI particles are assigned indigo and yellow hues respectively. 2D images (shown) were generated using nO 

= 12 nm, and 3D images (not shown) were generated with ΔnO = 1 nm. The time, in microseconds, is shown above 
each in-silico image. Scale bar, 5 nm. Colocalization analysis was performed using Manders’ coefficients13 with 
JACoP plugin62 in Fiji ImageJ63: (b) fraction of PEI colocalized with DNA (eqn (6)), and (c) fraction of DNA 
colocalized with PEI (eqn (7)) were calculated using a threshold of 0.2685 for both PEI and DNA. The MS values in 
(b) and (c) correspond to the fraction of PEI beads having at least one DNA bead within 0.81 nm, and the fraction of 
DNA beads having at least one PEI bead within 0.85 nm. 
 

Second, in-silico microscopy can bridge the analyses of data from MS and experimental 

microscopy, despite their distinct data acquisition techniques. Figure 7a shows the in-silico 

microscopy images of a PEI-DNA aggregation simulation at different times. The DNAs and PEIs 

begin unaggregated at 0 μs and aggregate over time. Complexation of DNA and PEI can be 

observed as the color of DNAs and PEIs change from indigo and yellow to magenta. Most of the 

DNAs are complexed at 0.2 μs. Meanwhile, free PEIs not complexed with DNAs are observed to 

decrease. The lowest number of free PEI is observed at 1 μs, whereafter it does not change 

significantly. Quantitative data can be obtained using a dedicated colocalization analysis, such as 

Manders’ coefficients13 M1 (Figure 7b) and M2 (Figure 7c) given by eqn (6) and (7) respectively. 
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IPEI and IDNA are monochrome intensities of PEI and DNA respectively at a given pixel, Ithres is a 

threshold intensity, ℍ(ꞏ) is the Heaviside step function, and summations are performed over all 

pixels.62 Physically, M1 is the fraction of total PEI fluorescence that is colocalized with DNAs 

having fluorescence above the threshold Ithres. Similarly, M2 is the fraction of total DNA 

fluorescence that is colocalized with PEIs having fluorescence above the threshold Ithres. The 

Manders’ coefficients13 are calculated from a single 2D image, as well as from multiple 2D images 

generated using ΔnO = 1 nm (i.e., 3D in-silico microscopy in Figure 7b-c).  

𝑀ଵ ൌ
∑ 𝐼ாூℍሺ𝐼ே െ 𝐼௧௦ሻ

∑ 𝐼ாூ
 (6) 

𝑀ଶ ൌ
∑ 𝐼ேℍሺ𝐼ாூ െ 𝐼௧௦ሻ

∑ 𝐼ே
 (7) 

Using detailed MS data, the fraction of PEI beads that have at least one DNA bead within 

0.81 nm shows excellent agreement with M1 (Figure 7b). The cutoff 0.81 nm is the sum between 

the first minimum in the PSF of PEI and the distance at which the PSF of DNA is equal to the 

threshold Ithres for n' = 0. Similarly, the fraction of DNA beads that have at least one PEI bead 

within 0.85 nm is equivalent to M2 (Figure 7c), where 0.85 nm is the sum between the first 

minimum in the DNA PSF and the distance at which the PEI PSF is equal to the threshold Ithres for 

n' = 0 (see Methods). Figure 7b-c shows that the equivalency of properties calculated from MS 

and in-silico, and hence experimental, microscopy images which suggest a way to bridge data 

analyses in these two completely different fields. The example here also demonstrates that it is 

feasible to estimate 3D contacts of molecules (and likely other properties) by visual inspection and 

quantitative analysis of 2D microscopy images (Figure 7a). 
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Figure 8. Single-particle tracking using in-silico microscopy on MS of dimyristoyl phosphatidylcholine (DMPC) lipid 
bilayer64 (see Methods), where a phosphorous atom in DMPC is assumed to emit fluorescence. (a) In-silico microscopy 
image at time 0 μs. The PSF is modeled with β = 59.4°, μ = 1.51, n is z-axis, nO = 3 nm, Δl' = Δm' = 0.1 nm, Δn' = 0.2 
nm, Pl' = Pm' = 25 nm, Pn' = 2 nm, fs = 530, (λ, I0) = (670 nm, 0.7) was used for phosphorous atoms in DMPC. Particles 
detected by TrackMate65 plugin in Fiji ImageJ63 are shown with purple circles. (b) Particle’s tracks recognized by 
TrackMate.65 A unique color is assigned to each track. (c) The lateral (in the lm plane) positions of phosphorous atoms 
as functions of time detected by TrackMate65 were used to calculate the lateral mean squared displacement (MSD) and 
compared with the corresponding value from MS. 
 

Third, in-silico microscopy can be used as a platform to assess image analysis tools. In 

Figure 8, single-particle tracking is performed on in-silico images of a dimyristoyl 

phosphatidylcholine (DMPC) lipid bilayer MS64 using TrackMate65 in Fiji ImageJ63 (see Methods). 

The phosphorous atom in each DMPC molecule was selected to emit fluorescence (Figure 8a). 

TrackMate65 detects several “tracks” of particles (“spots”), which are shown with different colors 

in Figure 8b. As the particles move across the periodic boundary in the MS, they are considered 

to be different by TrackMate65 and therefore produce new “tracks”. The lateral mean-squared-

displacement (MSD) calculated from “tracks” with more than 20 consecutive particle positions is 

shown in Figure 8c (see Methods). Due to PBC, the “tracks” are short and the sampling is poor 
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beyond 1 ns. Such sampling issues are not observed when lateral MSD is calculated directly from 

MS (with msd function in Gromacs) using positions of only phosphorous atoms and PBC (Figure 

8c). The lateral MSD determined from MS and in-silico images are significantly different even at 

a short time (< 0.4 ns). This difference is not caused by PBC because the sampling is sufficient 

within such a short time; rather it is likely due to incorrect detection of particles (for example 

arrows in Figure 8a) and “tracks”. The lateral diffusion coefficient can be calculated by dividing 

the slope of the lateral MSD vs. time plot in linear scale by a factor of 4. The results from MS and 

in-silico images are respectively 6.17×10-7 cm2/s and 51.6×10-7 cm2/s, a more than 8-fold 

difference. Researchers therefore should exercise caution when directly applying particle tracking 

to experimental microscopy images to evaluate the mobility of the particles. As an alternative 

approach, we demonstrate that diffusion coefficients can be calculated using FCS on in-silico 

images, which agree better with MS simulation results (SI Section S10).  

To demonstrate the applications of the in-silico microscopy, in the examples above non-

fluorophore particles are assumed to emit fluorescence. It is recognized that the presence of 

fluorophores in a real sample may affect the dynamics and even interact with the molecules of 

interest (e.g., PEIs and DNAs). Such effect can be addressed by explicitly including the 

fluorophores in the MS, as well as by modeling accurate photophysics of fluorophores (SI Section 

S4). In fact, the in-silico microscopy can provide a means to test the accuracy of modeling the 

photophysical processes and interactions of fluorophores, by generating in-silico images with 

different models and comparing them with experimental images. 

Discussions 

A novel in-silico fluorescence microscopy is presented as an open-source toolbox (in-silico-

microscopy, v1.2.2), which can work with different optical axis, object focal plane, exposure time, 
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and color combinations; and generate images and videos with the desired resolution, contrast, 

brightness, and amount out-of-focus fluorescence. The toolbox has the capability of capturing 

photophysical processes such as photoblinking, photobleaching, phosphorescence, and 

fluorescence with multiple wavelengths (SI Section S4). Images that resemble experimental 

widefield, OSM, and super-resolution microscopy images can be generated by changing 

parameters such as the amount of out-of-focus fluorescence and FWHM scaling factor (see SI 

Section S2 for more details). Properties calculated from different experimental microscopies will 

differ and corresponding in-silico microscopies can be used to quantify the difference. Other 

fluorescence microscopies can also be modeled by changing the PSF,46,66,67 which is allowed by 

the modular nature of the toolbox. Moreover, PSF obtained from experiments can be implemented 

to model non-ideal objective lens with aberration.28 It is recognized that some fluorescence 

microscopies such as structure illuminated microscopy68,69 (SIM), Förster resonance energy 

transfer70,71 (FRET) microscopy, etc. involve mechanisms other than diffraction of light and cannot 

be modeled by simply changing the PSF. Nevertheless, our powerful toolbox has laid the 

foundation to generate in-silico fluorescence microscopy images that can be compared to those and 

other techniques such as X-ray microscopy (can be modeled with a PSF72), which would greatly 

enhance cross-validation and integration between simulations and experiments.  

Generally, any image analysis developed for experimental microscopy is also applicable to 

in-silico microscopy, making the list of applications long. Three major categories of applications 

are presented in this work, namely generating new information by cross-comparison, determining 

equivalence of properties calculated from MS and experiments, and assessing image analysis tools 

or estimating errors using MS-based ground truth. For the former two, similar experimental and 

MS systems are required, which is possible in many fields of research such as gene delivery (shown 

in Results), biological motors,73 role of lipid in membrane organization,74 chromosomal 
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dynamics,75 etc. Error estimation for imaging analysis is a common practice in the literature where 

randomly placed objects are usually used as the ground truth.47–50 The in-silico microscopy enables 

the use of MS data as the ground truth, which is physics-based, dynamic, and more realistic than 

synthetic data. For better comparison with experiments, in-silico images can be generated with and 

without noise (SI Section S11), before and after deconvolution (SI Section S12), further 

demonstrating the versatility of the toolbox. Care should be taken while using existing image 

analysis tools, as these algorithms do not employ PBC which may be present in some MS. The 

existence of PBC in the MS does not affect analysis such as colocalization, fluorescence intensity, 

FCS and fluorescence cross-correlation spectroscopy (FCCS) (SI Section S10), or deconvolution 

(SI Section S12), while it might affect the calculation of count, radius, area, volume, and shape if 

the fluorescence of the particles is divided across the periodic boundary (Figure 9). In the toolbox 

v1.2.2 provided, count, area, and volume can be evaluated with the presence of PBC, while existing 

image analysis algorithms do not yet have this capability. 

Compared to existing studies in the literature,51,52,54,55 this work has detailed considerations 

of the PSF, color, and applications. Moreover, our toolbox can model phosphorescence and a 

fluorophore emitting fluorescence of multiple wavelengths (to simulate emission spectra), which 

has not been achieved before. The work by Angiolini et al,52 Watabe et al,54 and Lindén et al.55 

uses reaction-diffusion models, which cannot capture molecular interactions and thereby do not 

have the predictive power of MS. Dix et al.51 performed a MS but only considered simple particles 

without elaborate intermolecular interaction. Furthermore, their application was limited to FCS 

analysis over a control volume and did not produce spatial fluorescence data such as in-silico 

images or videos. In contrast, our work can model FCS and FCCS, as well as generate in-silico 

microscopy images and videos which has additional applications as demonstrated above. The work 

by Girsault et al.49 is also worth mentioning, which modeled super-resolution optical imaging 
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(SOFI) and stochastic optical reconstruction microscopy (STORM) for randomly placed 

fluorophores. These microscopy techniques use multiple diffraction-limited images and improve 

their resolution based on photoblinking (STORM) or fluctuations in fluorescence intensity (SOFI). 

Our toolbox can be integrated with these techniques to perform in-silico SOFI and STORM. 

 Software such as visual molecular dynamics (VMD) can visualize 3D structures, where the 

particles’ colors are linearly blended with the background color according to the depth of the 

particles. As a result, it is difficult to visually estimate distances between particles. Furthermore, 

the opacity of the particles limits the view of the particles behind, and increasing transparency 

worsens the depth perception. Typically, the proximity of particles at a specific time is determined 

by rotating/translating the MS system and zooming into the area of interest, which is a time-

consuming process. The toolbox presented here can be used as a standalone visualization tool for 

MS, where complex 3D data is condensed into 2D images. Key features from the plane of interest 

(object focal plane) are stored in high resolution, while the information away from the plane of 

interest is stored in low resolution. The proximity between two or more types of particles can be 

visualized using their colocalized hues, which is superior to depth perception in software like VMD. 

For example, in Figure 7 it is demonstrated that 3D contacts can be predicted with a visual 

inspection of 2D images. Other plausible applications include the analysis of morphological 

changes in molecules, aggregation or dissociation of molecules, multi-phase diffusion, etc. While 

in-silico images are corrupted by PSF, the amount of corruption can be controlled using the FWHM 

scaling factor or by changing the functional form of PSF, which does not need to model a 

microscope when used as a visualization tool. The visualization of colocalized fluorophores is 

improved using the newly developed color mixing scheme for both in-silico (Figure 5) and 

experimental (SI Section S7) images, representing an added strength of the standalone visualization 

tool.   
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Although the toolbox is developed for MS such as molecular dynamics, microscopy images 

can be generated for other non-molecular simulations such as the finite element method (FEM), by 

treating the nodes in an FEM mesh as particles (the FEM nodes data must be converted to “gro” 

coordinate file format to be directly usable by the v1.2.2 of the toolbox). For continuum-level 

models such as Poisson-Boltzmann, where discrete position coordinates are unavailable, the 

general methodology demonstrated in this work can still be applied to create microscopy images 

by the convolution of PSF and particle densities in continuous form.  

Conclusion 

A novel open-source toolbox for performing in-silico (virtual) fluorescence microscopy on 

molecular simulations is presented. The toolbox can generate in-silico microscopy images that 

models different experimental fluorescence microscopies as well as photophysical processes of 

fluorophores. This brings the seemingly remote fields of microscopy and simulations together by 

generating new knowledge from direct cross-validation, determining equivalence of properties 

extracted from MS and experimental images, assessing and developing algorithms for experimental 

image analysis, etc. The ability to form a direct bridge between experimental microscopy and 

molecular simulation can enhance our understanding on many biomolecular processes such as 

chemical kinetics, diffusion, binding of lipids, proteins and nucleic acids, gene delivery, and 

chromosomal dynamics, to name a few. It also paves the path for other in-silico microscopy 

techniques applied to molecular and non-molecular simulations. The work also reports the 

development of a new color mixing scheme, which allows the visualization of multi-fluorophore 

colocalization with an arbitrary color assignment to the fluorophores. We expect this to be 

beneficial for in-silico microscopy, experimental fluorescence microscopy, and standalone 



24

visualization tools. We further hope this new open-source toolbox would spread the joy of creating 

and observing beautiful and powerful images, to theoreticians and experimentalists alike. 

Methods 

Generating in-silico microscopy images and videos. The in-silico monochrome images 

were rendered using matplotlib76 imshow with a grey colormap. A 2D cross-sectional view 

depicting the use of PBC and a white image frame is shown in Figure 9. The number of periodic 

images of fluorophores that contribute to I (l', m', nO, λ, t) depends on the dimensions (Pl', Pm', Pn') 

specified for the predetermination of PSF. However, the range of (l', m') coordinates corresponds 

to the original MS specimen (center box in ℳ𝒮, Figure 2). For example, if an MS specimen is a 

cube with side length of 100 nm and Pl', Pm', Pn' = 300 nm, I will be calculated for the image 

coordinates 0 ≤ l', m' ≤ 100 nm, while particles (and their periodic images) located at l ∈ [l' – 150, 

l' + 150], m ∈ [m' – 150, m' + 150] and n ∈ [n' – 150, n' + 150] can all contribute to I at (l', m' ). In 

each direction l or m, the dimension of the white image frame is greater than or equal to the largest 

MS specimen during the entire trajectory. For example, if an MS simulation produces two MS 

specimens with dimensions of (100, 200, 300) and (200, 100, 300) nm in the lmn directions, the 

white image frame is no smaller than 200 × 200 nm2. 

 
Figure 9. Handling of periodic boundary condition and white frame. a) MS box when seen along the optical axis n. 
The lm axes are shown for reference. The yellow and indigo circles represent particles of two different fluorophore 
types. The PSF for the yellow circle with a black outline is calculated over a 3D cuboidal box centered around it with 
dimension (Pl', Pm', Pn'). The 2D cross-sectional view of the box with dimension (Pl', Pm') is shown by black dashed 
lines, which is split into two parts due to PBC. b) The image is generated from the fluorescence of the yellow particle 
with a black outline shown in (a). The largest MS box in the trajectory is represented by the white frame with 
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dimensions 𝐵
∗ and 𝐵

∗ . The MS box for the current time is represented by the black background with dimensions Bl 
and Bm and placed at the center of the white image frame. 

 

For generating colored microscopy images, all mixed HSV colors were converted to RGB 

colors based on Smith77 before rendering each in-silico microscopy image. The final in-silico 

microscopy images were produced using imshow in matplotlib76 v3.1.3. Videos were created 

in .mov format with ‘mp4v’ codec using VideoWriter class from OpenCV-python v.3.4.4 

(https://libraries.io/pypi/ opencv-python/3.4.4.19). The toolbox also allows the generation of 

microscopy images as TIFF format which can handle multidimensional images. 

Molecular simulations. The PEI-DNA aggregation simulation used in this work was a 

MARTINI coarse-grained molecular dynamics simulation36 performed using the GROMACS 5 

package.78 The system contained 27 DNAs, 270 PEIs, and 150 mM KCl. In the initial configuration, 

the DNAs were arranged in a 3x3x3 cubic lattice inside a cubic box of side 25 nm, with 6 nm as 

the closest distance between the centers of mass of two DNAs. The PEIs and ions were placed 

randomly in the cubic box. The configuration of the system after energy minimization using 

steepest-descent and constrained simulation of 1 ns in NPT ensemble is shown in Figure 1b. 

Thereafter, an unconstrained NPT simulation was run for 4 μs. In the constrained NPT simulation, 

all bonds in PEI and water, and backbone bonds in DNA were constrained. A cut-off radius of 1.1 

nm was chosen for van der Waal’s interactions using the potential-shift-Verlet scheme in 

GROMACS. Electrostatic interactions were modeled using short-range Coulombic interactions 

with a relative dielectric constant of 2.5 and cut-off radius of 1.1 nm, as well as long-range reaction-

field79 interactions with a relative dielectric constant of ∞.80 A neighbor list with the cut-off radius 

of 1.1 nm was updated every 20 steps using the Verlet scheme.81 Berendsen barostat was used with 

a time constant of 3 ps and compressibility of 3×10 
–

 
4 bar 

–
 
1 to maintain the pressure at 1 bar. Initial 

velocities were generated from Maxwell-Boltzmann distribution for the temperature of 300 K. The 
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temperature was then maintained using a velocity-rescaling thermostat with a time constant of 0.1 

ps.82 The leap-frog integrator was used with the timestep of 5 fs, and periodic boundary condition 

was applied in all directions. A time-scaling factor of 4 was used to scale the reported simulation 

time. Unconstrained NPT simulation was similar to constrained NPT simulation with three 

differences. First, Parrinello-Rahman barostat was used with a time constant of 5 ps and 

compressibility of 4.5×10 
–

 
5 bar 

–
 
1. Second, constraints were only applied to bonds in the water 

molecules. Third, initial velocities were obtained from the last step of constrained NPT simulation.  

The last configuration of the PEI-DNA aggregation simulation was used as the initial 

configuration for the endosomal acidification simulation. To simulate acidification, every 0.4 ns 

the protonation ratio of a randomly selected PEI was changed from 23% to 46%, followed by 

adding an appropriate number of chloride ions to keep the system electroneutral. After all PEIs 

were acidified (in 108 ns), an unconstrained NPT simulation was run for an additional 2.5 μs. 

Acidification simulation did not involve constrained NPT simulation, and the settings for the 

unconstrained simulation were the same as described above. 

The DMPC lipid bilayer simulation dataset produced by Miettinen64 (Copyright © 2013 

Miettinen, Creative Commons Attribution 4.0 International License) was used to calculate mean-

squared-displacement. The system consisted of 128 DMPC and 5097 SPC water molecules and 

was run for 110 ns in an unconstrained NPT ensemble using the Gromacs 383 package.  

Analysis of in-silico microscopy images. To determine the number and cross-sectional area 

of particles from an in-silico image, a binary image was produced using a threshold intensity; any 

pixel with intensity above the threshold was considered to be part of a particle. If two pixels were 

vertically or horizontally adjacent (while considering PBC) to each other and both have intensity 

above the threshold, they were considered to be part of the same particle; pixels diagonal to each 

other were not considered to be adjacent. Pixels belonging to the same particle were grouped. The 
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number of such groups was defined as the number of particles, and the cross-sectional area of a 

particle was calculated from the product between the number of pixels in the particle and the area 

of a pixel (Δl'Δm'). For experimental images, the number of particles and cross-sectional area were 

calculated using the “Analyze Particles” feature in Fiji ImageJ.63 The number of particles and cross-

sectional area were then normalized by their corresponding maximum values. 

Single-particle tracking was performed using TrackMate v6.0.2 in Fiji ImageJ.63,65 Voxel 

dimensions were calibrated to the grid used for PSF calculation, i.e., (Δl', Δm') = (0.1, 0.1) nm. The 

time interval was set as 1 ns (based on the lipid simulation64). The entire image was used for 

analysis, i.e., crop settings were set to default. Particles were detected using Laplacian of Gaussian 

detector with an “estimated blob diameter” of 9.0 and threshold diameter of 6.0. All detected 

particles were selected for tracking using the “Simple LAP” tracker. Maximum linking distance, 

gap-closing distance, and gap-closing frame gap were set to 5.0, 5.0, and 2 respectively. Lateral 

MSD was calculated using 𝑀𝑆𝐷ሺ𝑡ሻ ൌ 〈|𝒓ሺ𝑡  𝑡ሻ െ 𝒓ሺ𝑡ሻ|ଶ〉, where r was the 2D position vector 

of a particle (l, m), and the average 〈⋅〉 was performed over different “tracks” and different reference 

time t0. 

Analysis of MS data. The number of nanoparticles in a MS was calculated based on Mahajan 

and Tang.36 PEIs and DNAs were considered to be bound if their minimum distance was less than 

0.528 nm. A PEI-DNA nanoparticle was a collection of all PEIs and DNAs bound to each other. 

At each time, the number of nanoparticles was averaged over 10 ns after this time. Hydrodynamic 

radius of a nanoparticle was calculated using 𝑅௬ௗ ൌ 𝑁ଶ 〈∑ 1 𝑟⁄ழ 〉ൗ , where N was the number 

of beads in a nanoparticle (including those from both PEIs and DNAs), rij was the distance between 

beads i and j, and 〈⋅〉 represented ensemble average.84 Cross-sectional area of nanoparticles was 

approximated by 𝑅௬ௗ
ଶ  averaged over 10 ns. 
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The fraction of PEI beads that had at least one DNA bead within a cutoff distance was 

determined using the mindist function in Gromacs. The total number of contacts between PEIs and 

DNAs was calculated using the group option where all DNAs were specified as the first group. 

That is, contacts between a PEI bead and multiple DNA beads were treated as one. Then, the 

number of contacts was divided by the total number of PEI beads to obtain the fraction of PEI 

beads in contact with at least one DNA bead. A similar approach was taken to determine the 

fraction of DNA beads in contact with at least one PEI bead. 
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