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Abstract

An accurate electroencephalogram (EEG) source localization algorithm is an asset 

for the surgical treatment of patients with epilepsy. Due to the underdetermined 

nature of the EEG inverse problem, a variety of algorithms are applied to select 

the current source distribution that best accounts for the scalp recordings. We 

investigated five algorithms: minimum norm, LORETA, Borgiotti-Kaplan 

beamformer, eigenspace projection beamformer, and MUSIC. Compared over 

multiple SNR values, the eigenspace projection beamformer and MUSIC 

exhibited superior localizing capabilities while minimizing source current 

dispersion for the simulated seizure data. Increasing the electrode density 

improved the localizing capability of the beamformers and MUSIC, yet hindered 

the performance of minimum norm and LORETA. The five algorithms were 

applied to inter-ictal EEG data to localize the epileptogenic zone and the 

eigenspace projection beamformer proved most reliable. Redefining the signal 

subspace with principal and independent component analyses and the varimax 

rotation did little to improve localization.
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Chapter 1 - Introduction

1.1 Motivation for Research

Epilepsy is a disease of the central nervous system (CNS) and is classified as a 

seizure-related disorder that affects approximately 1 % of the population [1 ], 

Epilepsy is diagnosed when two or more seizures of an unknown cause occur. A 

seizure occurs when a volume of nerve cells within the cerebral cortex experience 

a sudden surge of synchronized electrical activity, temporarily disrupting the cells 

functionality. The electrical disruption can irritate surrounding cells causing the 

seizure to propagate to other parts of the brain. Seizures are often triggered by a 

small group of injured or maldeveloped neurons.

The main diagnostic tool for diagnosing seizures is the 

electroencephalogram (EEG) and/or the magnetoencephalogram (MEG). The 

ictal electrical discharges are evident in the EEG as “spike and wave” waveforms. 

While functional magnetic resonance imaging (fMRI), computed tomography 

(CT), magnetic resonance spectroscopy (MRS), and positron emission 

tomography (PET) may also be used for diagnostic purposes, only the E/MEG can 

directly measure the electrical activity of the brain. While the E/MEG exhibits 

superior temporal resolution compared to the aforementioned imaging techniques, 

the spatial resolution of the E/MEG is insufficient to directly localize the 

responsible cortical areas.

Seizures are classified as either partial or generalized. A partial seizure 

occurs when the initial discharge occurs at a localized focus while a generalized 

seizure has multiple foci at various locations throughout the brain. Seizure side- 

effects vary greatly with respect to the area of the brain that is affected. Side- 

effects include, but are not limited to: headaches, nausea, convulsions, shaking, 

immobility, increased heart rate, breathing difficulties, exhaustion, 

unconsciousness, pain, injuries that may be suffered during the seizure, as well as 

the ongoing fear of experiencing another seizure.

1
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Some forms of epilepsy may be controlled with extensive drug treatment 

programs while other forms are medically intractable. For the latter cases, an 

alternative treatment option is to locate and surgically remove the region of the 

brain containing the seizure focus. Currently, there are several problems with this 

form of treatment that prevent patients from living a seizure-free post surgery 

lifestyle. The biggest problem is resolving the size and location of the seizure 

foci and ensuring that only the minimal amount of cortex is removed in order to 

minimize the loss of normal functioning gray matter. Therefore, an accurate and 

robust source localization algorithm would be an asset to the surgical treatment of 

patients suffering from epilepsy.

1.2 Organization o f  Thesis

This research will commence by examining the physical and mathematical 

problems associated with solving the EEG source localization problem. 

Simulated data will be used to illustrate and compare the various properties of 

five different inverse algorithms that are commonly used to localize electrical 

sources. Once a general feel for each method has been established, the methods 

will be applied to clinically obtained EEG data of an epileptic patient in order to 

compare the source localization performances under realistic conditions.

The mathematical notation used in the following research is as follows: 

vectors will be represented with bold, lower case letters, v. Matrices will be 

denoted with bold, capital letters, M. Estimated and/or predicted values are 

depicted with a “A” above the estimated quantity.

2
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Chapter 2 - Background Information

2.1 The Electroencephalogram and the Dipole Model

The brain is comprised of a vast number (order of 1011) of interconnected brain 

cells that integrate, interpret, and transport electrical signals from various regions 

of the brain [2]. The gray matter of the brain contains billions of pyramidal cell 

assemblies that act as integrators, summing excitatory and inhibitory signals 

received at the synapses located along the cell dendrites. During cell excitation, 

synaptic neurotransmitters induce a postsynaptic potential that will depolarize the 

dendrites at the apex of the cell. The depolarized dendrites will establish a 

potential difference with the cell body inducing primary and secondary currents.

u r re n ts

Figure 1 - Polarized pyramidal cell assembly 
Green dots represent the locations of excitatory post synaptic potentials [3]

3

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The primary currents flow along the body of the pyramidal cell while the 

secondary currents (also known as volume currents) flow within the extracellular 

material of the brain in a closed-loop fashion to maintain a conservation of 

electrical charge [3]. The magnitude and direction of current flow of the 

secondary currents is a function of the inhomogeneous and anisotropic 

conductivities of the various tissue types within the head model. The current 

density at a given location is the sum of the primary current and the secondary 

currents induced by other sources.

A depolarized cell behaves similarly to an ideal electric dipole within a 

conductive medium. Therefore, for modeling and simulation purposes, active 

cells are modeled as electric dipoles of variable amplitude, orientation, and 

location.

While the EEG and MEG both indirectly measure the electrical activity 

within the head, they differ in their sensitivity to the two types of currents. The 

EEG measures potential differences between two electrode sites. Therefore, 

whenever there is a net current flow between two electrodes, a potential 

difference will result [3].

A crude MEG measurement electrode consists of small loops of wire that 

detect changes in magnetic flux outside o f the scalp’s surface. If the “right hand 

rule” 1 is applied to the primary and secondary currents of a depolarized pyramidal 

cell, the magnetic field lines of the secondary currents have a nulling effect on 

one another. Therefore, primary currents are the main generators of magnetic 

field flux.

A single postsynaptic depolarization will produce an extremely weak 

current of approximately 20 fA [3] yielding undetectable electric and magnetic 

fields at the scalp using standard clinical equipment. Due to the interconnected

1 Right Hand Rule -  the direction of magnetic field is in the direction your fingers on your right 
hand curl as you point your thumb in the direction of the current

4
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and correlated nature of neighboring pyramidal cells, groups of neighboring cells 

regularly depolarize simultaneously producing a detectable net current. A 100 

mm3 volume of simultaneously depolarizing cells will produce a 10 nA current 

[3]. Common amplitudes of non-invasive EEG potentials are ~ 100 /zV and are 

easily detectable with common and inexpensive surface electrode materials such 

as tin, gold, silver, and silver/silver chloride [4].

The magnetic fields measured at the scalp are very small (~ 10 fT) 

compared to other commonly occurring magnetic fields and are susceptible to 

corruption from external magnetic field noise. Therefore, MEG measurements 

are obtained in magnetically shielded rooms. In addition, superconducting 

quantum interference sensors (SQUIDs) are situated within a liquid helium 

supercooling helmet-like apparatus to increase sensor sensitivity. Due to the 

complexity of obtaining MEG measurements, all the simulations and data 

collection for the following research will be conducted with an EEG.

The EEG measures the flow of secondary currents which are influenced 

by both the conductivity and geometry of the head. The electrode that is closest 

to the region of activation does not necessarily yield the largest potential 

difference due to conductive properties of the tissues within the head. Therefore, 

the EEG cannot be relied upon to provide direct spatial information about regions 

of neural activity without further data analysis.

PET and fMRI are also used in neurological studies to detect changes in 

hemodynamic properties as a result of increased activity in active regions o f the 

brain. While both these methods have superior spatial resolution compared to 

E/MEG, the temporal delay between cell activation and a measurable 

hemodynamic response (order of 1 s [3]) does not allow for reliable conclusions 

about the location and propagation of epileptic activity [5]. Conversely, the time 

delay between cell depolarization and detectable E/MEG scalp recordings is less 

than 1 ms allowing for the study of sequential electrical activity and propagation 

[5],

5
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2.2 The Forward and Inverse Problems

Source localization is the process of localizing signal sources of interest from 

noisy measurements using an array of sensors positioned outside of the source 

space. The process has numerous medical, radar, and audio signal applications. 

In neurology, accurate source localization can provide insight and treatment 

possibilities for a number of neurological disorders including: epilepsy, 

schizophrenia, and Alzheimer’s disease [3]. EEG potentials gathered from the 

scalp can be utilized to estimate the current density inside the head that best 

accounts for the measured EEG data. Source localization is subdivided into 2 

complex problems: the forward problem and the inverse problem.

In order to solve both the forward and inverse problems, a realistic head 

model is required. Initially, the human head was approximated using a sphere. 

This model proved inaccurate because it did not account for the large differences 

in conductivities between the skull and the other tissues. An improved variation 

was the three concentric spherical head model which consisted of three nested 

spherical shells representing the cortex, skull, and scalp. Each shell had a unique 

conductivity. While the three concentric spherical head model was an 

improvement, it was still a crude approximation for a human head. A realistic 

head model is obtained from medical images and can more accurately account for 

the conductive differences between various tissue types. Realistic head models 

are typically discretized onto a regularized grid for computational ease.

2.2.1 The Forward Problem

The forward problem is solved to determine the scalp potentials, v(to), produced 

by a known internal current density, j(to), within the head. In generalized matrix 

form, the solution to the forward problem is [6 ]:

V = KJ

In order to perform the forward calculation, a forward operator known as the lead 

field matrix, K, must be determined. In (2.1), V, is a N x T matrix where N is the 

number of electrodes and T is the number of time samples considered. J  is a
6

(2.1)
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3 - Mx T  matrix o f discretized dipole magnitudes fluctuating over time. M is the 

number of voxels within the source space and each voxel may have a dipole 

component in three orthogonal directions [6 ].

The lead field matrix, K, accounts for the geometry and the conductivities 

of the various components of the head model. A single column of the lead field 

matrix dictates how a unit dipole source oriented along a given basis vector is 

seen at the various electrode locations.

For simple head models, such as the three concentric sphere model, the 

lead field matrix can be solved for analytically via Maxwell’s and Poisson’s 

equations [7]. For more complex models, such as the human head, the lead field 

matrix must be solved for numerically using the boundary element method 

(BEM), the finite element model (FEM) or the finite difference method (FDM)

[8 ]. The accuracy of the lead field matrix has a direct relationship with the 

accuracy of any given source localization algorithm; therefore, factors such as 

anisotropic conductivities and tissue inhomogeneities should be included in the 

lead field matrix to ensure optimal localizing results.

2.2.2 The Lead Field Matrix

The determination of the lead field matrix, K, is the equivalent to solving the 

forward problem for each possible dipole location and orientation. The first step 

is to define an adequate head model. Realistic head models are typically 

generated from high resolution NMR or CT images that are segmented into 

various tissue types and discretized into cubic voxels. The recording electrodes 

are placed on the head model.

To compute the lead field matrix, a current source, I, is applied to the head 

model between electrode A (source) and electrode B (sink). Next, the potentials 

are determined at the nodes in the head model by solving Poisson’s equation. 

Poisson’s equation yields a relationship between the current sources and the 

resulting potentials in the head model. For the aforementioned current 

source/sink configuration, Poisson’s equation is expressed as [8 ]:

7
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v • (oVF) = /<S(r-r,) -/< ? (r -r2) (2.2)

For an isotropic case, a is a position dependent conductivity scalar. For 

anisotropic head models, ff is a 3D conductivity tensor. The current source and 

sink are located at ri and r2 respectively.

Due to the complexities of the realistic head model, Poisson’s equation 

must be solved numerically. There are numerous techniques capable of solving 

for the potentials including the BEM, FEM, and FDM. Although all three 

methods are valid, Poisson’s equation is solved for using the FDM in the current 

research. A more in depth description of BEM and FEM may be found in [8 ] and

[9]. FDM was selected because it can most accurately account for tissue 

anisotropies and inhomogenities and FDM also produces solutions that span the 

entire head model, not just at specified boundaries. FDM is also more 

computationally efficient than BEM [8 ].

The FDM utilizes nodes located at the center of each voxel. A mesh 

resistor network is established between any given node and the six neighboring 

nodes. The conductivity between any two adjacent nodes can be varied to 

account for conductive anisotropies.

Figure 2 - Mesh resistor network between central and neighboring nodes [10]

8
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Using a digitized head model, Poisson’s equation can be re-written as follows 

[10]:

°V /1  ( V1 -  V„ )  +  <?efJ2 ( V 2 -  V0 )  +  ( V3 ~  V„ )

(2.3)
+0 - ^ 4  (v4 -  v0) + (JeJf5 (v5 - v0) + aeff6 (v6 ~ v o )  = j  

In (2.3), <Jeffl represents the effective conductivity between the center and i111 node,
tPiVi is the potential at the i node, vo is the potential at the center node, and z'o is the 

net current flow into the central node and h is distance between adjacent nodes.

From KirchofFs Current Law, we conclude that there must be zero net current 

flowing into any given node, unless the node corresponds to a current source or 

sink. Considering all nodes, the matrix form of (2.3) is:

Av = i (2.4)

In (2.4), A is a square (Q x Q, Q = number of voxels in head model) sparse 

symmetric system matrix containing the various inter-nodal conductivities. Each 

row of A contains a maximum of seven non-zero values. The potentials and net 

currents at the nodes are v and i respectively. The entries for i are all zeros except 

at the nodes containing the current source and current sink. The potential vector, 

v is solved for iteratively until the left and right hand sides of (2.4) agree within 

error:

IIVVrfm-ulH* (2.5)

The d subscript denotes a deflated system matrix . The error tolerance level is e 

and m denotes the number of iterations. The iterative increments are presented in

[1 0 ] along with additional preconditioning techniques that facilitate convergence.

Once the potentials at the nodes are determined, we can exploit the 

reciprocity theorem in order to define a row of the lead field matrix. Intuitively, 

the reciprocity theorem can be described as follows: a current flowing between

2 A deflated matrix is obtained by setting the potential at one of the nodes equal to zero.
9
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nodes i and j inside the head, Iy, will generate a potential difference between 

electrodes A and B, V a b . Conversely, a current flowing in at electrode A and 

exiting via electrode B, I ab will generate a potential difference across the internal 

nodes i and j, V y . The reciprocity theorem states that the currents and voltages 

will obey the following relationship [8 ]:

V I  = V  IAB AB ij ij

Generalizing (2.6) to account for a dipole source located at r with orientation d, 

the reciprocity theorem states that the potential generated between an electrodes A 

and B is:

dr -VF(r)
VAB{r,d)  = -

A complete mathematical derivation of (2.7) can be found in [8 ].

Solving Poisson’s equation yields the potentials and the respective 

gradients needed in the numerator of (2.7). Computing the potential difference, 

V a b , for all voxel locations, r, and three orthogonal directions, d, will generate a 

single row of the lead field matrix. The above process must be repeated N times 

to account for all the measurement electrodes and to fill all the rows of the lead 

field matrix.

2.2.3 The Inverse Problem

Predicting the underlying neuronal current density, J, that justifies a given set of 

measured potentials, V, is known as the inverse problem. Ideally, an exact 

mathematical inverse to K in (2.1) could be calculated to solve the inverse 

problem. Unfortunately, no such inverse exists due to the severely 

underdetermined nature of the inverse problem (solution space voxels, M »  

number of electrodes, N). Therefore, we can only estimate the underlying current 

density, J . In the underdetermined case, there are an infinite number of source 

current configurations that can generate a given set of scalp potentials.

Numerous algorithms exist that estimate the neuronal current density.

Each algorithm applies unique mathematical and/or physiological constraints to
10

(2.6)

(2.7)
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select the most probable current density. The applied constraints and assumptions 

can introduce bias into the resulting inverse solution. Each inverse solution will 

be studied based on its ability to accurately localize regions o f maximum 

electrical activity, to minimize solution dispersion, to resolve multiple electrical 

source configurations, and to obtain computational efficiency. For the 

localization of epileptic foci, an algorithm’s ability to accurately locate regions of 

maximum electrical activity is the most important factor to consider.

Inverse algorithms perform various types of spatial filtering on the 

measured scalp potentials and can be categorized into non-adaptive and adaptive 

algorithms. The non-adaptive pseudo inverses are calculated independently of the 

measured scalp potentials and depend solely on the lead field matrix. Conversely, 

adaptive inverse algorithms incorporate the measured potentials into the 

derivation of spatial filter to place emphasis of regions of suspected activity. The 

adaptive filters are designed to be more accurate, but they are more 

computationally time consuming than the non-adaptive filters.

The adaptive algorithms are covariance structure based and require a 

sizable window of data in order to calculate the inverse solution. On the other 

hand, a non-adaptive inverse solution can be determined for an instantaneous slice 

of data. The inverse solutions can be obtained using either an underdetermined or 

an overdetermined source model.

2.2.3.1 Undetermined Inverse Problems

For underdetermined inverse solutions (also referred to as distributed dipole 

models), the solution space is discretized into many independent voxels, with 

each voxel containing a current source whose electrical contributions to the 

measured scalp potentials sum linearly. Although each dipole is fixed to a 

specific location, it has a variable orientation and amplitude to best account for 

the potentials measured at the electrode sites. Each dipole has three degrees of 

freedom: two for orientation and one for magnitude. In order to provide 

reasonable spatial resolution, the number of distributed dipoles greatly exceeds

11
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the number of electrode sites yielding a severely underdetermined set of linear 

equations. Therefore, there are an infinite number of estimated distributed dipole 

configurations that can account for the observed data. In order to reduce the 

underdetermined nature of the inverse problem, a variety of physiological and 

mathematical assumptions and constraints are applied to the solutions to isolate 

the most probable of the possible solutions [5]. The underdetermined inverse 

algorithms do not necessarily require any a priori knowledge with respect to the 

number of sources needed to account for the data.

2.2.3.2 Overdetermined Inverse Problems

The overdetermined model assumes that a small number of dipole sources may be 

fitted onto the solution space to adequately account for the electrical activity 

measured on the scalp [5]. Each assumed dipole has six degrees of freedom: three 

for dipole location, two for dipole orientation, and one for dipole magnitude [3]. 

Therefore, as long as the total number of degrees of freedom for all o f the 

assumed dipole sources does not exceed the number o f data measurements (EEG 

electrodes), the inverse solution will be overdetermined and a unique solution will 

exist. Correctly predicting the number of underlying dipoles to represent the 

measured scalp potentials is a difficult problem that can lead to erroneous results, 

especially if the predicted number of sources is less than the actual number of 

uncorrelated sources.

The dipole(s) magnitude, location, and orientation are approximated by 

performing a solution space scan and determining the forward solution at each 

voxel location. A comparison is computed between the resulting forward solution 

and the measured scalp potentials and the source configuration resulting in the 

minimal difference is the “best-fit” solution.
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2.3 Inverse Algorithms Studied

A brute force technique to solve the inverse problem would include estimating 

initial dipole conditions, solving the forward problem, comparing the resulting 

forward solution with the observed potentials, and iteratively incrementing the 

dipole characteristics until the resulting potentials agreed within error to the 

observed scalp potentials. Like most brute force methods, this technique would 

be both very time and memory consuming, therefore more efficient solving 

techniques have been developed.

Five different source localization algorithms are investigated in the 

following research. The algorithms studied have all been previously published 

with successful reviews in different experimental settings. The algorithms chosen 

include two underdetermined, non-adaptive filters: the minimum norm (MN) and 

low resolution electromagnetic tomography (LORETA), two underdetermined, 

adaptive filters: the eigenspace projection beamformer (ES Beam) and the 

Borgiotti-Kaplan beamformer (BK Beam), and one overdetermined adaptive 

filter: multiple signal classification (MUSIC).

2.3.1 Underdetermined Non-Adaptive Algorithms

2.3.1.1 Minimum Norm

The minimum norm algorithm constrains the estimated current density by 

minimizing the overall power of the inverse solution [6 ]:

min, |  jrj j , subject to v = Kj

The solution to (2.8) is [6 ]:

j = Tv where T = Kr [KKr J ’

Although the MN pseudo inverse is elegantly simple, its power 

minimizing regime introduces bias into the inverse solution. Intuitively, this bias
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can be understood by examining electric dipole behavior. The potential of an 

electric dipole in free space is given by [1 1 ]:

Where r is the vector between the measurement point and dipole center, r is the 

corresponding unit vector, p is the dipole moment, and 60 is the permittivity of 

free space. The dipole moment, p, is a function of the dipole properties, including

its magnitude. It is important to notice the j / 2 factor in (2.10) because it is

responsible for introducing an electrode bias in all MN solutions. In trying to

achieve a given potential at location r, the ratio must remain fixed.

Therefore, the dipole magnitude, p, may be minimized provided that r is reduced 

proportionately. The reduction in r2 will pull the estimated dipole location 

towards an electrode site, biasing the minimized solution. Sources located deeper 

within the solution space are drawn closer to the surface during the minimization 

process. The validity of the physiological assumption of minimum energy also 

comes into question during discussions of the MN algorithm [5].

LORETA is similar to the MN algorithm (2.9) with the exception of an additional 

weighting matrix, W, in the pseudo inverse, T [6 ]:

The matrix W performs solution smoothing and depth weighting to improve the 

MN estimation. W incorporates a 3D Laplacian high pass filter, B, to enhance the

edges/transitions in the amplitudes of j. Minimizing the energy of an edge 

enhanced image yields a maximally smooth solution. A smoothed solution is 

desirable because it emphasizes the interconnected and correlated nature of 

neighboring pyramidal cell assemblies. The high pass filter B is derived by

2.3.1.2 Low Resolution Brain Electromagnetic Tomography

(2
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locating and weighting the nearest neighbors (side, edge, and comer) of every 

voxel.

The square matrix W also provides depth weighting for the voxels located 

deeper within the solution space to offset the bias suffered in MN solutions. The 

depth weighting for a particular voxel, j, is derived from the lead field matrix by 

[6]:

Â | X k«

Where k~ = ̂ kiJ<x,klJ<y,kiy>z] ,  N is the number of electrodes and j = 1,...,M and M

is the number of voxels in the solution space. The depth weighting for a 

particular voxel applies in the x, y, and z directions.

Taking both the Laplacian high pass filter, B, and depth weighting 

operator, A into account, the LORETA weighting matrix in (2.11) is [6 ]:

w  = ( a ® i 3 ) b j b ( a ® i 3)

where ® is the Kronecker product. It is computationally difficult to invert Br B 

as needed in (2 .1 1 ), therefore the inverse of the high pass filter is replaced with a 

low pass filter.

Consistent with all smoothing operators, the resulting estimated current 

density suffers from considerable “blurring”. One of the major quandaries with 

the LORETA algorithm is the volume over which correlated behavior can be 

correctly assumed. Arguments have been made that the region of assumed 

correlated behavior should be made on a physiological and anatomical basis 

instead of just physical proximity to prevent the blurred solution from spreading 

over multiple lobes and hemispheres [5]. Unfortunately, doing so would greatly 

complicate the LORETA algorithm beyond the scope of this research.
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2.3.2 Underdetermined Adaptive Algorithms

2.3.2.1 Beamformer Basics

The underdetermined adaptive algorithms investigated are two variations of 

“beamformers”. Beamformers use the data collected at the sensors to 

discriminate the amount of signal originating from each possible location [3]. 

They are a series o f spatial “pass” and “stop” bands that allow signal to pass from 

only specified locations of interest while attenuating signals originating elsewhere 

[12]. Beamformers are regarded as virtual electrodes that scan the entire solution 

space measuring the signal emitted from each voxel. The estimated magnitude of 

a dipole at voxel location r, with orientation r\, at time t, is the dot product of the 

measured potentials and a weighting vector [13], [14]:

j(r,Ti, t) = w T (r,Tj) \ ( t )

The derivation of the weighting vector, w, specifies the beamformer type. Each 

voxel of the solution space has three weights; one for each orthogonal direction. 

Due to the severely underdetermined nature of the inverse problem, sharp “pass” 

and “stop” bands are unattainable due to the high number of degrees of freedom. 

Instead, the stop bands are focused over other voxels that are emitting significant 

energy [13]. These “significant” voxel locations are determined from the 

covariance structure of the EEG. If EEG data, V, is sampled T times such that 

each column represents an instantaneous measurement of all N electrode 

potentials, then the covariance matrix is defined as:

R = m
NT

The two beamformers examined are extensions of the minimum variance 

beamformer (MV Beam). The three dimensional (i = x, y, z) MV Beam 

weightings are derived in order to minimize the energy of the inverse solution 

given the following set of constraints [13]:
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minw (w^Rw.J, constrained by:

WX  W  = 1, (r) = 0, w X  (r) = 0

minw (w ^Rw Ji constrained by:

WX  (r) = °> WX  (r) = WX  (r) = 0
minw (wzrRwz), constrained by:

WX  (r ) = °> A  (r ) = °> w ^k * (r ) = 1

kn(r) is a single column of the lead field matrix, K, corresponding to a single 

dipole located at r, oriented in the r) direction. The constraints in (2.16) illustrate 

the pass and stop bands enforced by the weighting vectors. Eq. (2.16) can be 

solved for using Lagrange multipliers and the vectorized solution for the MV 

Beam weights in (2.16) for a voxel located at r is [15]:

[w „ w ,,w l ] = R-'K(r)[Kr (r)R"'K(r)J‘ I,

where I3 is a 3 x 3 identity matrix. Appropriate transformation matrices would be 

applied if other non-Cartesian coordinate systems were used.

During simulations, the number of active sources does not normally 

exceed the number of electrodes. Therefore, R is not a full rank matrix and is not 

invertible. This problem may be rectified by inverting the regularized inverse

(R+yl)~' [13] where y is called the regularization parameter. This is the

equivalent to adding white noise with power equivalent to y to the measured data 

to ensure a full rank covariance matrix. While the regularized inverse will be 

more stable and less susceptible to gross errors due to minute errors in the lead 

field matrix, the spatial resolution of the estimated current density will suffer from 

the added noise [16].

Beamformers produce erroneous results when the source configuration 

contains multiple sources experiencing some degree of correlation. Under these 

circumstances, the covariance matrix cannot discriminate between the correlated 

portions of the sources resulting in the possible suppression of the correlated
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sources and the formation of phantom sources located elsewhere. The errors 

associated with correlated sources help justify the null constraints in (2.16). If the 

orthogonal null constraints are not present, the orthogonal components of a single 

dipole behave like two correlated sources and suppress one another [16].

2.3.2.2 Borgiotti-Kaplan Beamformer

The Borgiotti-Kaplan beamformer (BK Beam) is an extension of MV Beam with 

modified constraints to ensure unity white noise gain. The estimated noise power 

at a given location is:

H r^)No>se =w7'(r^ )R^ w(r^)
The covariance matrix of the white noise, RNoise is equal to the power of the white 

noise detected at the electrode sites, R Noise = er21 .

Hwhato = w r (r,77)<x2lw(r,/7)

To ensure the desired unity white noise gain:

wr (r,77)w(r,?7) = l

This constraint replaces the unity constraints in (2.16) while the null constraints 

remain the same.

w > x=l, w ^ ( r )  = 0, w[k,(r) = 0 

w^kJC(r) = 0, w jw ,= l, w jk,(r) = 0 

wX ( r )  = 0, wzrky(r) = 0, w > z =l

The BK Beam weights are [13]:

R”'K(r)[K r (r)R~‘K (r)]”1 f
w„ = -----------  — , --------------

Where fn is the unit vector for orientation tj and

Q = [K r (r) R_1K (r)]”1 Kr (r) R-2K (r) [K r (r) R_1K (r) J '
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2.3.2.3 Eigenspace Projection Beamformer

The eigenspace projection beamformer (ES Beam) projects the weights derived 

with BK Beam (2.22) onto the signal subspace of V. The data covariance matrix, 

R, can be factored via eigenvalue decomposition into signal and noise subspaces 

[16]. If the power of the white noise is known to be a2, then we can deduce that 

eigenvectors whose corresponding eigenvalues are greater than a2 define the 

signal subspace and eigenvectors with corresponding eigenvalues less than o2 

define the noise subspace. The decomposition of R is [16]:

R = EsAsE j+ E ,A X
Es and En are matrices whose columns are the eigenvectors of the signal and 

noise subspaces respectively. As and AN are diagonal matrices of the 

corresponding eigenvalues. The weights derived with BK Beam (2.22) are 

projected onto the signal eigenvectors of R [13]:

w „ = E 5E > „

The number of eigenvectors representing the signal subspace is equal to the 

number of uncorrelated sources. In order to accurately factor the covariance 

matrix into signal and noise subspaces, the number of sources or the noise power 

must be known a priori. This can pose problems when decomposing actual EEG 

data, where the number of sources or white noise power is unknown. ES Beam 

can extract a maximum of N uncorrelated sources from the data covariance 

structure. If all of the eigenvectors are used in the projection, ESE^ = I and ES

Beam devolves into BK Beam.

The advantages of ES Beam with respect to BK Beam or MV Beam 

become evident when there are differences in the actual and estimated lead field 

matrices. The signal to noise ratios for MV Beam and the ES Beam with a single 

current dipole located at r is [16]:

SNR p‘ p‘ [tr(r)r»k(riT
h  e3 [kr (r )r !sk(r) + kr (r )r ik (r )]
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[kr(r )rsk (r)J  

[k r W r 2sk (r)]
(2.27)

Where “ '  ” denotes the estimated values while symbols without the “ '  ” 

represent the actual values. Ts and FN are the inverses of the signal and noise 

subspaces respectively. Ps is the actual power of the underlying current density

denominator of (2.26) should approach zero because the noise subspace is

both MV and ES Beam have identical SNRs. Unfortunately, when using a 

realistic head model, the lead field vectors can only be approximated and we 

cannot assume othogonality with the noise subspace. Therefore, the second term 

does not go to zero and the SNR decreases for MV Beam. When analyzing real 

EEG data, defining the noise subspace can be problematic yielding decreased 

SNRs as well. ES Beam is used to increase the SNR of the inverse solution.

2.3.3 Overdetermined Adaptive Algorithms

2.3.3.1 Multiple Signal Classification

Multiple signal classification (MUSIC) is the overdetermined dipole fitting 

algorithm that will be examined for the sake of comparison. Like ES Beam, 

MUSIC uses eigenvalue decomposition to factor R into signal and noise 

subspaces. The working assumption behind MUSIC is that the noise subspace is 

orthogonal to the lead field matrix at source locations [17].

Like ES Beam, the number of sources must be known a priori to determine 

the dimensionality of the signal and noise subspaces. Once the signal subspace 

has been factored from the covariance matrix, a full solution space scan is 

performed simulating dipoles at each possible location and orientation. A cost

and a2 is the power of the white noise. Theoretically, the second term in the

orthogonal to the lead field vectors. If the kr (r)T^k(r) term does go to zero,

20

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



function comparing the degree of orthogonality between the lead field matrix and 

the noise subspace is computed for each location and orientation.

Es is the signal subspace as defined in (2.24) and therefore ( l - E sE£)is the noise

subspace. At actual source locations, the noise subspace and the lead field matrix 

are orthogonal and theoretically, the cost function, C should go to zero. The 

dipole configuration yielding the minimal cost function is assumed the correct 

source distribution [17]. Multiple minima occur for multiple sources. The cost 

function in (2.28) can be inverted to mimic a scaled probability density function 

with maxima located at the minima of (2.28).

Like ES Beam, problems arise when there are multiple sources suffering 

from some degree of correlation. The computational complexity of the MUSIC 

algorithm increases with the number of assumed sources.

(2.28)

p # ( r ,0 )  = - lo g lo(C(r,<9)) (2.29)
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Chapter 3 - Single Source Localization

3.1 Introduction

When comparing epileptic source localization algorithms, the most important 

criterion to examine is the algorithm’s ability to correctly predict the location of 

maximum electrical activity. Simulations are performed using a single point 

source positioned within the solution space at a known location. The forward 

solution, V, is calculated using (2.1). The inverse solution is estimated using the 

ES Beam, BK Beam, MN, LORETA, and MUSIC algorithms. The distance 

between the global maxima for the five inverse solutions are compared with the 

actual source location to quantify the bias/error of each algorithm. Multiple trials 

with unique source locations are executed to reduce head geometry and electrode 

bias.

Once the global maxima are located, the bias introduced by the electrode 

configuration and depth weighting is quantified by comparing the differences in 

mean source to electrode distances between the actual source location and the 

estimated maxima. This will determine if any of the inverse solutions are biased 

towards a more ‘electrode dense’ location.

The dispersion (blurring) o f the four underdetermined inverse solutions is 

also determined to estimate the full-width half maxima of the estimated current 

distributions. Dispersion measurements cannot be performed for MUSIC because 

the inverse solution is equivalent to a probability density function and does not 

represent a distribution of source magnitudes.

It is anatomically known that the pyramidal cells of the cortex are oriented 

normally to the cortical surface [18]. This additional a priori knowledge spatially 

filters the previously determined inverse solutions by projecting the dipole 

magnitudes onto the normal vectors. The effects on localization, dispersion, and 

the robustness to noise are subsequently examined.
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The adaptive inverse algorithms, ES Beam, BK Beam, and MUSIC, utilize 

a window of EEG data to estimate the covariance structure, R, in order to 

determine their respective weighting vectors and solution subspace estimations. 

The robustness of R is dependent on the number of data samples used to calculate 

it in (2.15). If too few samples are used, spurious correlations may result. 

Conversely, too many samples are computationally inefficient and assumptions of 

a stationary source over the entire data sampling period may be violated. 

Therefore, localization simulations are conducted with an increasing number of 

data points in order to determine an optimum data sampling window size.

3.2 Materials

3.2.1 Head Model

A realistic head model is used for the single source localization simulations. 

Geometric details were obtained from T1 weighted NMR images. The head 

model consists of 176 slices; each slice is 228 x 171 pixels for a total o f6 861 888 

voxels. The head model was digitized onto a regular grid with 1 mm resolution. 

The head model was segmented using a semi-automatic dynamic edge tracer 

segmentation algorithm into eight tissue types: cerebellum and pons, grey 

matter/cortex, ventricles and cerebral spinal fluid, white matter, diencephalon 

(grey matter), skull, scalp, and cerebrospinal fluid surrounding the cortex [19].
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Figure 3 - Single slice of segmented head

The number of voxels for each tissue type is given in Table I.

Table I -  Number of voxels per tissue type

Tissue Type Number of Voxels

Background 4 840 525

Cerebellum and Pons 118 107

Grey Matter (cortex) 455 477

Ventricles and Cerebrospinal Fluid 13 326

White Matter 349 611

Diencephalon (grey matter) 30 459

Skull 393 402

Scalp 499 238

Cerebrospinal Fluid 
(surrounding cortex) 161 743

TOTAL 6 861 888
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The resistivities for the various tissues are listed in Table II [20], [21]:

Table II -  Tissue resistivities

Tissue Tvpe Resistivitv fO - cm)

Cerebellum and Pons 300

Grey Matter (cortex) 300

Ventricles and Cerebrospinal Fluid 65

White Matter 700

Grey Matter (not cortex) 300

Skull 9000

Scalp 275

Cerebrospinal Fluid 65

The highly resistive skull attenuates the volume currents and causes a 

great deal of current dispersion before the current reaches the outer surface of the 

scalp [22]. Therefore, a detailed representation of the variations in skull thickness 

is of utmost importance to an accurate head model.

3.2.2 Lead Field Matrix

The lead field matrix was solved for using the finite difference method (FDM) in 

conjunction with the reciprocity theorem as detailed in [10]. The isotropic 

conductivities used to define the system matrix in (2.4) are given in Table II.

3.2.3 Solution Space

The solution space is defined as a single layer o f gray matter along the cortical

gray matter - white matter boundary. The solution space consisted of 61 041

voxels, 1 mm3 in volume. A normal unit vector corresponding to the direction of

minimal cortex thickness was determined at each voxel location.
25
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3.3 Methods

Once the head model and solution space were segmented using [19] and the lead 

field matrix computed using [10], the forward solution for the scalp potentials, V, 

could be accurately determined. The EEG was simulated using a single 17 Hz 

sinusoidal source with amplitude of 1, located within a randomly chosen solution 

space voxel. The scalp potentials are calculated via (2.1) at 32 independent point 

electrodes. The electrode locations are shown in Figure 4.

Nasion 10%

\

\ p  !
1*3 >P

In ion
10%

Figure 4 - 3 2  electrode configuration

The EEG is sampled at 256 Hz for one second. Gaussian white noise is 

added to V at the 32 electrode sites. The signal to noise ratio (SNR) is defined as
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the ratio of the sums of the eigenvalues of the signal and noise covariance 

matrices. For the following simulations, SNR values of 10, 5, and 2 are used in 

order to be consistent with the lower, middle, and upper noise levels observed 

with a phantom human head [23], In addition to simulating more realistic 

measurement conditions, the added noise also ensures an invertible full rank 

covariance.

The five inverse solutions are solved for using the previously discussed 

techniques. For the adaptive algorithms, all 256 samples are used to calculate R. 

A single eigenvector corresponding to the largest eigenvalue is used to define the 

signal subspace for the ES Beam and MUSIC algorithms. The LORETA

smoothing operator used to simulate (BrB) in (2.13), uses the immediate

neighboring side, edge, and comer voxels.

Although the adaptive algorithms utilized the entire data window, the 

instantaneous inverse solution is only determined for the first time slice in which 

the actual source amplitude is 1. Unless otherwise stated, the aforementioned 

techniques for generating the forward and inverse solutions are used for all 

subsequent simulations.

3.4 Results

3.4.1 Example Localization Images

An EEG generated with a single sinusoidal source and a SNR = 5 is shown in 

Figure 5.
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Figure 5 -  EEG of sinusoidal source, SNR = 5

The location of the source is shown in Figure 6. It is blurred out to encompass a 

larger area for easier viewing.

Figure 6 - Actual source location
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The inverse solutions using ES Beam, BK Beam, MN, LORETA, and MUSIC are 

shown in Figures 7 -1 1 .

Figure 7 - Inverse solution with ES Beam

f3!< 9wsffl

Figure 8 - Inverse solution with BK Beam
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Figure 10 - Inverse solution with LORETA
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Figure 11 - Inverse solution with M USIC

3.4.2 Localization Error

Although each inverse algorithm determines the dipole’s magnitude and 

orientation, only the magnitude determines the location of the estimated current
A

density maximum, jmax. For the underdetermined inverse algorithms, the 

localization error is defined as the Euclidean distance between the actual dipole 

location and the global maximum of j . The localization error for MUSIC is the 

straight line distance between the actual source location and the location of the 

probability density function maximum.

Due to the aforementioned limitations of the various inverse algorithms, 

the chosen location of the actual dipole source will greatly affect the localizing 

capabilities of each algorithm. For example, we expect a source located deep 

within a sulcus or relatively far from any given electrode will be biased towards 

an electrode. To partially remove this bias from subsequent results, 100 trials 

were conducted with randomly chosen source locations.
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The localization errors for the five inverse algorithms with SNRs of 10, 5, 

and 2 are listed in Table III. Results are expressed as the mean ± standard errors 

of the mean for the 100 trials.

Table III -  Localization errors

Localization Error (mm)

SNR =10 SNR = 5 SNR = 2

ES Beam 0.55 ± 0.08 0.93 ±0.12 1.90 ±0.25

BK Beam 0.73 ±0.11 1.37 ±0.13 4.19 ± 1.17

MN 50.87 ±3.36 55.03 ± 3.52 66.30 ±3.61

LORETA 50.48 ±3.38 57.35 ±3.58 67.79 ± 3.68

MUSIC 0.39 ±0.10 0.67 ±0.11 1.20 ±0.13

3.4.3 Electrode Bias

Some of the documented flaws of the non-adaptive inverse algorithms, such as 

MN and LORETA, are their tendencies to bias the inverse solution towards the 

electrodes in order to minimize overall energy. Little has been reported with 

respect to the bias the electrodes exert on the inverse solutions of the adaptive 

beamforming algorithms. To quantify the severity of the bias exerted by the 

electrodes, the mean distance from the source location, rmax, to all 32 electrodes,

d, is compared to the mean distance from the estimated peak, rmax to the same 32 

electrodes.
\  (  N  N  '

Bias Z  tax  -  e, ||2 -  Z  ||rmax -  e,. ||2
V  i = i  i '= i

It is interesting to note that an estimated peak may be biased away from 

the nearest electrode towards a more electrode dense location. For this reason, all 

electrode sites are considered, instead of just the distance to the nearest electrode. 

A positive bias in (3.1) represents a move to a more ‘electrode dense’ location.
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The electrode biases for all five algorithms are listed in Table IV. Results are 

expressed as the mean ± standard errors of the mean for the 100 trials.

Table IV -  Quantifying electrode bias

Electrode Bias (mm)

SNR = 10 SNR = 5 SNR = 2

ES Beam 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.02

BKBeam 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.04

MN 0.71 ± 0.27 0.99 ± 0.33 1.38 ±0.32

LORETA 0.41 ± 0.27 1.03 ±0.30 0.99 ± 0.32

MUSIC 0.01 ± 0.01 -0.01 ± 0.01 -0.01 ±0.01

3.4.4 Dispersion

The estimated current density exhibits varying degrees of dispersion (or blurring) 

due to the underdetermined nature of the inverse problem. The sharpness of the 

inverse solution increases the resolving power of multiple source configurations.

Due to the nonsymmetrical nature of the solution space and the resulting inverse 

solutions, standard fiill-width half maximum measurements could not be taken.

The distance between the maximum and the half power contour line depends on 

the direction of the radial path taken from the maximum. Therefore, the 

dispersion was quantified via:

dispersion = ^ j ( r ) ( r -r max)2 (3.

In (3.2), N is the number of voxels with a dipole magnitude greater or equal to 

^my 2  ' location of the estimated current density peak is rmax- For the

calculation of the dispersion in (3.2), j is normalized so that j  (rmax) = 1.
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Dispersion is calculated for the four underdetermined algorithms, but not 

for the overdetermined MUSIC algorithm because the output of MUSIC is 

equivalent to a probability density function and not a series o f dipole magnitudes. 

The various dispersions for SNRs of 10, 5, and 2 are listed in Table IV. Results 

are expressed as the mean ± standard errors of the mean for the 100 trials.

Table V - Dispersions

Dispersion (mm)

SNR =10 SNR = 5 SNR = 2

ES Beam 30.6 ± 3.0 51.9 ±4.4 121.9 ±9.3

BK Beam 38.3 ±4.1 128.0 ±42.2 1202.7 ±212.5

MN 829.4 ± 62.0 847.2 ± 63.3 793.8 ± 47.5

LORETA 1135.3 ±86.4 1074.1 ±81.2 1038.2 ±69.7

3.4.5 Dispersion with Normal Vectors

Pyramidal cell assemblies are oriented normally to the cortical surface [18]. 

Therefore, in order to reduce the effects of noise, the three dimensional 

underdetermined inverse solutions are projected onto the normal vectors 

associated with each voxel location. The normal vectors correspond to the 

direction of minimum cortical thickness at each voxel location. It is reasonable to 

assume that incorrectly estimated sources resulting from noise are not likely to be 

oriented normally to the cortical surface and experience substantial attenuation 

upon normal vector projection. The projection operation is applied after each 

dipole’s location and orientation is determined.

An alternative approach to cortical normal vector exploitation is to 

multiply the three (x, y, z) lead field matrix column vectors of the ith voxel by the
tlicorresponding i normal unit vector:
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This yields a single lead field matrix column vector for each voxel instead of three 

vectors per voxel. Using this technique, the dipole orientations of the resulting 

inverse solutions are defined along the normal directions and expressed only as a 

dipole magnitude. This technique reduces the memory requirements and 

computing time of the various algorithms by two thirds, but does not reduce the 

effects of noise on inverse solution dispersion. Therefore, the normal vector 

projection is applied as a post processing filter after the dipole properties are 

determined.

The resulting differences between the localization errors for the standard 

and normally projected inverse solutions are shown in Table VI. A positive 

difference infers that the normalized solution yields improved localization. 

Results are expressed as the mean difference for the 100 trials.

Table VI -  Localization error differences

Difference in Localization Errors (mm)

SNR = 10 SNR = 5 SNR = 2

ES Beam -0.01 0.02 0.63

BK Beam 0.02 0.42 -0.13

MN 1.13 -2.42 -0.76

LORETA -0.71 1.18 1.05

The dispersions of the normally projected inverse solutions with SNRs of 

10, 5, and 2 are listed in Table VII. Results are expressed as the mean ± standard 

errors of the mean for the 100 trials.
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Table VII -  Normally projected dispersions

Dispersion (mm)

SNR = 10 SNR = 5 SNR = 2

ES Beam 16.6 ±2.1 27.6 ±2.8 62.3 ± 4.8

BK Beam 22.0 ±3.1 90.0 ± 33.0 762.4 ± 133.9

MN 492.6 ± 40.8 420.7 ±35.1 410.3 ±25.3

LORETA 612.2 ±46.8 556.7 ± 42.7 550.7 ± 36.2

By comparing the dispersions in Table V and Table VII, we see that the 

additional a priori knowledge with respect to the solution space anatomy reduces 

the dispersion considerably as shown in Table VIII.

Table VIII -  Reduction in dispersion due to normal vector projection

Reduction in Dispersion (%)

SNR =10 SNR = 5 SNR = 2

ES Beam 46% 47% 49%

BK Beam 43% 30% 37%

MN 41% 50% 48%

LORETA 46% 48% 47%

A summary of the localization errors and dispersions for the various 

algorithms are shown in Figure 12 and Figure 13.
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3.4.6 The Covariance Matrix

The robustness of the covariance matrix used to determine the adaptive (ES 

Beam, BK Beam, and MUSIC) inverse solutions depends on the number of data 

samples used to calculate R (2.15). If too few samples are used, spurious 

correlations may result. On the other hand, too many samples are 

computationally burdensome and may violate stationary source assumptions. 

When computing R and extracting the relevant signal subspace, we assume that 

the location and number of sources remains constant. If R is sampled over too 

long of a time interval, these assumptions may no longer be valid.

To determine the minimum number o f samples required to provide a 

robust estimate of R, a single 17 Hz, radially oriented, source is positioned on a 

gyrus o f the solution space. A gyrus is selected for the source location because it 

will reduce depth related localization errors. As in the previous simulations, the 

EEG is calculated using (2.1) and sampled at 256 Hz for one second. Noise is 

added to the entire EEG data matrix to produce the desired SNR. The number of 

samples used to calculate R ranged from 1 to 256 in single increments starting at 

the t = 0 sample. To ensure a frill rank invertible covariance matrix for BK and 

ES Beam, a regularization parameter [13] is added to the diagonal elements of R.

For each estimate of R, the underlying neural electric activity was 

estimated using ES Beam, BK Beam, and MUSIC. Ten trials were conducted at 

each increment. The localization error for each algorithm was averaged over the 

10 trials. The simulation was conducted with SNRs of 10, 5, and 2.

Since the single source is positioned on a solution space gyrus, it was 

more accurately localized than other possible deeper sources. For such a 

favorable source location, there were only slight differences in the ES Beam and 

BK Beam localization errors. For simplicity, only one trace representing both 

beamformer’s behavior is shown in Figure 14. The localization error versus the 

data window size for SNRs of 10, 5, and 2 for the beamformer and MUSIC are 

plotted in Figures 14 and 15 respectively.
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Figure IS -  MUSIC localization error for variable data window size
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A comparison between the beamformer and MUSIC, with a SNR = 2, is shown in 

Figure 16.
25

20 -

 Beamformer
 MUSIC

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251
N um ber o f D ata P o in ts

Figure 16 -  Beamformer and MUSIC localization errors for variable data window size

3.4.7 Computational/Time Requirements

While the localizing capabilities of the non-adaptive algorithms are inferior to 

those of the adaptive algorithms, the computational efficiency and speed of the 

non-adaptive algorithms are far superior. The computational demands of 

calculating the pseudo inverses, T, may be quite burdensome depending of the 

number of electrodes and the resolution of the solution space. Although, once T 

has been determined for a given head model, it is applied to all inverse 

calculations using an identical head model and electrode configuration. 

Therefore, the inverse solution for subsequent time slices is calculated via simple 

matrix multiplication (2.9). On the other hand, the inverse solutions for the 

adaptive beamforming techniques are calculated on an individual time slice basis 

due to the sliding covariance matrix window, yielding long computational times
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for each EEG sample. Initial and subsequent time slice calculation times for the 

adaptive and non-adaptive algorithms are listed in

Table IX. Calculations were executed using MATLAB 7 with a 3.2 GHz 

processor.

Table IX -  Calculation times

Calculation times (seconds)

Initial Calculation Subsequent Calculations

Adaptive 17.5 17.5

Non-Adaptive 9.0 1.5

3.4.8 Signal Subspace Dimensionality

The adaptive inverse algorithms that use signal subspace projection (ES Beam 

and MUSIC) require a priori knowledge with respect to the number of underlying 

sources. When the number of sources is known, it is obvious how many 

eigenvectors/dimensions are needed to adequately map the signal subspace, but if 

the number of sources is unknown, problems arise.

The following simulation uses multiple dipole sources to form an EEG. 

Three uncorrelated, radially oriented, sinusoidal sources with frequencies of 13 

Hz, 17 Hz, and 21 Hz are situated at considerable distances from one another. 

The locations of the three sources are shown in Figure 17.
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Figure 17 -  Actual location of three uncorrelated sinusoidal sources

Noise with a SNR = 5 is added at the electrode sites. The inverse 

solutions are calculated using all five inverse algorithms. Inverse solutions that 

are not signal subspace specific (BK Beam, MN, and LORETA) are shown in 

Figure 18 to illustrate multi source performance.

Top View Left View Right View

Borgiotti-Kaplan Beamformer

Minimum Norm
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LORETA

Figure 18 -  Inverse solutions for three source configuration using signal subspace
independent algorithms

Comparing the three inverse distributions, it is evident that both MN and 

LORETA indicate a phantom source located in the frontal lobe. This is of interest 

because it coincides with the region with the highest electrode density. The BK 

Beam adequately resolves three separate sources while the other two algorithms 

tend to blend the three sources into a single phantom source.

Ideally, the three eigenvectors corresponding to the three largest 

eigenvalues will define the signal subspace needed for ES Beam and MUSIC. 

Subsequent adaptive inverse solutions are determined for both over and 

underestimated signal subspace dimensionalities/ranks.

The normalized eigenvalues, shown in Figure 19, illustrate the percentage 

of power contained in each dimension.
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Figure 19 -  Normalized eigenvalues of three source configuration

Inverse solutions with a signal subspace dimensionality/rank of one, three, and ten 

are shown below. The one, three, and ten dimensional subspaces account for 

57.0%, 85.2%, and 90.4% of the total EEG power respectively.
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Figure 20 -  Inverse solutions for three source configuration using signal subspace dependent 
algorithms with a variable dimensionality/rank of signal subspace

3.5 Discussion

The localization errors listed in Table III illustrate the accuracy of the three 

adaptive algorithms. Regardless of noise level, MUSIC localizes most accurately, 

followed by ES Beam and BK Beam. As the SNR decreases, the signal subspace 

specific algorithms (ES Beam and MUSIC) illustrate a robustness that is not 

present with BK Beam. This is an expected result since MUSIC and ES Beam 

factor the desired signal subspace from the noisy EEG before proceeding with 

localization. The MN and LORETA inverse solutions are very similar to one 

another and neither is capable of producing accurate results. The errors of the 

non-adaptive algorithms in a low noise environment are substantially larger than 

the results obtained at the highest noise levels with the adaptive algorithms.
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The results in Table IV show that there is a definite trend for the non- 

adaptive algorithms (MN and LORETA) to bias the inverse solutions towards 

regions of greater electrode density. The accurate results obtained for the 

adaptive algorithms illustrate a greater immunity to electrode bias. These results 

are consistent with the shortcomings of the non-adaptive algorithms mentioned in 

the literature [5] and [6].

Incorporating the anatomical normal vector projection operator into the 

localization algorithms yields neutral and positive results. Differences in peak 

localization error are minimal with slight improvements for the normally 

projected current source distributions. The largest improvement in localization 

error is 1.18 mm. While this appears to be a significant improvement, it only 

represents a 3.48% decrease in localization error due to the large errors already 

associated with the LORETA algorithm.

The normally projected solution reduces the dispersion by a relatively 

constant amount (37% —> 50%) for all four underdetermined algorithms across 

the entire range of signal to noise ratios (Table VIII). The reduced dispersion in 

conjunction with the albeit slight reduction in localization error creates a more 

focused and precise inverse solution. In order to take full advantage of these 

benefits, high resolution medical images and rigorous segmentation programs are 

required to accurately map the solution space. Without accurate solution space 

details, the normal projection operator could have negative effects on source 

localization.

Figures 14 and 15 illustrate how the localization error may be reduced by 

increasing the number of data samples used to estimate the covariance structure, 

R. Relatively constant localization errors were achieved when the number of 

samples exceeds 150. This is equivalent to approximately 0.6 seconds of data. At 

this point, an adequately representative covariance structure is established. 

Although additional data points do not affect the localization error, they can 

handicap adaptive algorithms with respect to computational efficiency.
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The numerical results (150 samples, 0.6 seconds) cannot be assumed to be 

concrete thresholds for adequate localization. Data threshold levels are 

dependent upon the electrode configuration, number of underlying dipole sources, 

noise levels, and the duration of source stationarity. This simulation was 

conducted to illustrate the generalized trend in localization error with respect to an 

increasing number of data points.

Increasing the number of data points used to estimate R also helps reduce 

the effects of noise. From Figures 14 and 15, we see larger differences between 

localization errors at different noise levels when the data window is small. As the 

data window increases in size, the differences in the localization error become 

less dependent on the noise level. Greater data window sizes help eliminate false 

correlations within the noise matrix.

Figure 16 is a comparison of the localization errors of the beamformer and 

MUSIC algorithms with a SNR = 2 as the data window size is increased. From 

Figure 16, it is evident that MUSIC requires substantially less data than the 

beamformer to produce minimal localization error. The localization error of the 

beamformer approaches the performance of MUSIC given a large enough data 

window (approximately 220 samples in the above scenario). MUSIC yields 

smaller localization errors with a small data window because the algorithm does 

not require an inverted covariance matrix like the beamformers. Therefore, 

MUSIC does not require a full rank covariance matrix or the use of regularization 

parameter that has been shown to degrade spatial resolution [13].

Table IX shows the differences in the computation times for non-adaptive 

algorithms and the beamformers. With the given head model, deriving a single 

set of beamforming weights requires almost twice as much time as the derivation 

of a non-adaptive pseudo inverse. Since the weightings are constantly updated, 

beamformers can become quite time and memory consuming.

The computational time for MUSIC depends on the complexity o f the 

hypothesized source configuration. For example, it takes substantially longer to 

perform a solution space scan with multiple dipoles than just a single dipole.
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More complicated beamforming algorithms have been proposed that perform a 

rough scan of the solution space to generate a crude picture of the electrical 

activity. Subsequently, beamforming techniques are only applied to regions of 

suspected activity as opposed to the entire solution space to reduce the 

computation time [24].

The three source simulations in Section 3.4.8 illustrate the importance of 

accurately predicting the number of underlying sources for ES Beam and MUSIC. 

When the dimensionality of the signal subspace is underestimated (i.e. Rank = 1), 

ES Beam yields one dominant source and a secondary source of much smaller 

magnitude. On the other hand, MUSIC is confined to yielding a single source that 

theoretically contributes the greatest proportion of power to the EEG. Unlike 

MUSIC, ES Beam can still generate other sources that are still visible on the 

cortical surface, but these secondary sources are greatly attenuated by the signal 

subspace projection coefficient in the derivation of the weightings (2.25).

When the dimensionality of the signal subspace is chosen correctly (Rank 

= 3), three distinct sources are visible for both ES Beam and MUSIC. The 

sources are generally in the correct locations. Searches for local maxima disclose 

localization errors of 1 mm, 1.41 mm, and 1.73 mm for the three sources. The 

locations of the local maxima were identical for the two algorithms. It would 

appear that the ES Beam algorithm yields more localized results, but this 

conclusion is misleading due to the difference in algorithm interpretations. The 

output of MUSIC is a probability density function for the locations of the best-fit 

dipoles while ES Beam outputs the degree of electrical activity at each voxel site. 

Therefore, the dispersion of the two algorithms cannot be compared.

Overestimating the dimensionality of the signal subspace (Rank =10) has 

only minor effects on the quality of the inverse solutions. Increasing the 

dimensionality from three to ten is equivalent to generating pass filters for an 

additional 5.2% of the EEGs total power. It is assumed that the small amount of 

additional power is almost entirely due to noise and the resulting inverse solutions 

will suffer from poorer localization and increased dispersion. The localization
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errors for the three sources using ES Beam are 0 mm, 3.32 mm, and 1.41 mm and 

the errors using MUSIC are 1.41 mm, 3.32 mm, and 1.41 mm. The localization 

errors tend to increase for each additional noise-related eigenvector included in 

the signal subspace estimation. The MUSIC probability density function consists 

of 10 local maxima, but maxima (dipoles) four through ten are too weak to be 

visible.

The previous simulations illustrate that it is wise to err on the cautious side 

when estimating the dimensionality of the signal subspace. If the rank is over 

estimated, localization will suffer slightly and inverse solution dispersion will 

increase, but the overall picture is still evident. On the other hand, 

underestimating the number of possible sources can greatly hinder localization 

results producing either phantom sources or the omission/attenuation of 

significant sources.
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Chapter 4 - Electrode Montage Density vs. Localizing 

Capabilities

4.1 Introduction

The locations of the measurement electrodes significantly bias the inverse 

solutions of non-adaptive algorithms like MN and LORETA. The effects of 

electrode bias have been noted in [5], [22], as well as section 3.4.3. The bias is a 

result of the inverse solutions pulling towards regions of higher electrode density 

in order to minimize the total energy. A logical step to reduce the bias would 

include increasing the density of the electrode montage. Theoretically, if each 

possible source location is in close proximity to an electrode, the dipole at that 

location will experience less bias, yielding a more accurate inverse solution.

Additional electrodes reduce the underdetermined nature of the inverse 

problem and therefore should produce more accurate results with increased 

topographical resolution [5]. Additional electrodes can also yield a more accurate 

covariance structure. This will help adaptive algorithms reduce the effects of 

additive random noise. This effect is similar to how increasing the number of 

EEG data points reduces the number of spurious positive correlations. This 

theory assumes that the additional electrodes do not produce an increase in noise 

that cannot be “adequately accounted for” [5].

4.2 Materials

4.2.1 Head Model

Due to the complexities, time constraints, and inaccuracies associated with 

computing the lead field matrix for a realistic head model, a concentric three shell 

head model was used for the following simulations. The three concentric shells 

are homogeneous with isotropic conductivities consistent with measured cortex,
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skull, and scalp values. The resistivities for the cortex, skull, and scalp are shown
\

in Table X.

Table X -  Spherical head model resistivities

Tissue Type Resistivity (p.-cm)

Cortex 350

Skull 28 000

Scalp 350

4.2.2 Lead Field Matrix

The lead field matrix for a realistic head model is estimated numerically while 

analytic solutions exist for simpler head models such as the three concentric shell 

head model [3]. An exact lead field matrix will eliminate a possible source of 

error for inverse solutions and will generate a more precise picture of how the 

electrode density affects the localizing capabilities of the various inverse 

algorithms.

The lead field matrix for a three concentric sphere head model is 

computed using the methods discussed in [25]. The scalp potential measured at a 

given point on the outer shell surface with spherical coordinates (R, a, /3) is [25]:

£ (2«+ l)2 
dn(n+1)

•[nmrPn (cosa) + mtP̂  (cosa)cos/?]

where b is the eccentricity o f the dipole in the three concentric sphere head 

model, a  is the conductivity of the cortex and the scalp and <7S is the conductivity

of the skull. £ = ° y  is the ratio between the skull and cortex conductivities. /  a

The radial and tangential components of the dipole are mr and mt respectively.

Pn and Pi are the Legendre and associated Legendre polynomials. Only the first

50 Legendre and associated Legendre polynomials were used to solve (4.1).

In (4.1),
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• ( r - r ) - < ( > - i ) ' 7
V 2 /

/  ^  \2rt+l (4.2)

The inner and outer skull radii are rx = 8.7 cm and r2 = 9.2 cm respectively. The

A single column of the lead field matrix is equivalent to the solution of 

(4.1) with a unity dipole source oriented along a coordinate system basis vector.

4.2.3 Solution Space

The solution space is a 1 mm thick spherical shell with a radius of 8.5 cm and 

consists of 51 741 current dipoles. Defining the solution space on the surface of a 

shell o f a constant radius will eliminate any errors associated with depth 

weighting that detract from the MN and LORETA inverse solutions. The solution 

space does not consist of the full spherical shell, but a truncated shell with the 

bottom section removed to more accurately represent a realistic cortex. Assuming 

the z = 0 origin lay at the center of the sphere, the minimum z value for the 

solution space is z = - 3 cm. The solution space is shown in Figure 21.

outer scalp radius is R = 10 cm. In (4.2), f x = and f 2 =h /
/R -
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Figure 21 - Solution space for three concentric shell head model with 113 electrode
configuration

4.2.4 Electrode Montage

Unlike the variation of the 10-20 electrode montage used for the realistic head 

measurements, the electrodes in the following simulations were evenly distributed 

to achieve a constant inter-electrode distance. No electrodes were positioned 

below the lower limit of the solution space. Therefore, the minimum possible z 

coordinate for any given electrode was z = -3 cm. Seven different electrode 

montages were examined. The number of electrodes in each montage is 17, 37, 

61, 113, 149, 197, and 249. The 249 electrode montage is comparable to 

commercially available 256 channel Geodesic EEG System [26].

4.3 Methods

The EEG is simulated using a single 17 Hz sinusoidal dipole source of unit 

amplitude, oriented normally to the solution space surface. The location of the 

source is chosen randomly within the solution space. The scalp potentials, V(t),
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are determined via the forward solution, (2.1), using the lead field matrices 

corresponding to the 17, 37, 61, 113, 149, 197, and 249 electrode montages. All 

of the lead field matrices are computed with double precision except the 249 

electrode lead field matrix that is calculated with single precision due to memory 

constraints. The simulated EEG is sampled at 256 Hz for one second.

For each electrode configuration, Gaussian white noise is added to V at 

the electrode sites. The SNR is defined as the ratio of the sums of the eigenvalues 

of the signal and noise covariance matrices. For the following simulations, SNR 

values of 10, 5, and 2 were used in order to be consistent with the lower, middle, 

and upper values observed with a phantom human head [23]. In addition to 

simulating more realistic measurement conditions, the added noise also ensures a 

full rank covariance matrix, allowing matrix inversion.

The five inverse solutions are obtained using the techniques discussed 

earlier. For the adaptive algorithms, all 256 samples were used to define the 

covariance structure, R. A single eigenvector corresponding to the largest 

eigenvalue defines the signal subspace for the ES Beam and MUSIC algorithms. 

The regularization parameter [13], used to ensure stable inversion of the 

covariance matrix for the beamformers, is equal to 1% of the largest eigenvalue of 

R.

The simulation consists of 100 trials; each trial has a unique, randomly 

chosen source location. For each trial, the forward and inverse solutions were 

determined using the 17, 37, 61, 113, 149, 197, and 249 electrode montages.

4.4 Results

For the four underdetermined algorithms (ES Beam, BK Beam, MN, and 

LORETA), the localization error is defined as the straight line distance from the 

actual source location to the global maximum of the inverse solution. The 

localization error for MUSIC is the straight line distance between the actual 

source location and the location of probability density function maximum.
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The localization errors for each algorithm, for the various electrode 

montages, with SNRs of 10, 5, and 2, are shown in Figures 22 - 26. Results are 

expressed as the mean for the 100 trials.
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Figure 22 -  Localization error with eigenspace projection beamformer for multiple electrode
configurations
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Figure 23 -  Localization error with Borgiotti-Kaplan beamformer for multiple electrode
configurations
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Figure 25 -  Localization error with LORETA for multiple electrode configurations
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Figure 26 -  Localization error with MUSIC for multiple electrode configurations

The dispersions, (3.2), are also calculated for the seven electrode montages for the 

four underdetermined inverse algorithms. The dispersions for each algorithm, 

with the various electrode montages, with SNRs of 10, 5, and 2, are shown in 

Figures 27 - 30. Results are expressed as the mean for 100 trials.
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Figure 27 -  Dispersions for multiple electrode configurations using eigenspace projection
beamformer
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Figure 28 -  Dispersions for multiple electrode configurations using Borgiotti-Kaplan
beamformer
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Figure 29 -  Dispersions for multiple electrode configurations using minimum norm
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Figure 30 -  Dispersions for multiple electrode configurations using LORETA

Consistent with previous single source localizing experiments, the adaptive 

algorithms yield smaller localization error and dispersions compared the non- 

adaptive algorithms. Compared to BK Beam, the two signal subspace based 

algorithms, ES Beam and MUSIC, exhibit superior localizing capabilities. In 

addition, the adaptive algorithms experience reduced localization error and 

dispersion as the number of electrodes increases.

The localization error data also suggests that increasing the number of 

electrodes reduces the effect of noise. Large discrepancies in localization error 

due to varying SNR exist for the adaptive inverse solutions for the sparse 

electrode configurations. As the number of electrodes exceeds 149, the adaptive 

inverse algorithms produce similar localization errors and dispersions regardless 

of the SNR. Therefore, we conclude that increasing the number of electrodes 

reduces the effect of uncorrelated noise for the adaptive inverse algorithms.

The performance of the non-adaptive algorithms with respect to an 

increasing electrode density produced counter intuitive results. Both MN and 

LORETA suffered increasing localization errors as the number of electrodes 

increased. MN and LORETA exhibit substantially greater localization errors for
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all electrode and noise combinations than the three adaptive algorithms. With an 

increasing number of electrodes, the MN and LORETA localization errors 

increased until a relative plateau is reached with 197 electrodes. The m inim um  

localization errors for MN and LORETA were 30.27 mm and 37.94 mm  

respectively and occurred with only 17 electrodes. On the other hand, m inim um  

localization errors for ES Beam, BK Beam, and MUSIC were substantially lower 

with values of 0.00 mm, 0.01 mm, and 0.00 mm respectively and occurred when 

electrode density was at its highest level with 249 electrodes.

MN and LORETA localization errors become less dependent on the SNR 

as the number of electrodes increases (minimal difference observed with 249 

electrodes), unfortunately, the errors are too large ~ (95 mm —»• 98 mm) to be of 

any use in a clinical environment.

The dispersions of the non-adaptive solutions follow more intuitive 

decreasing trends with respect to increasing electrode density. This result is 

similar to the behavior of the adaptive algorithms under similar conditions.

4.5 Discussion

Reasons for the poor localizing ability of the non-adaptive algorithms are 

discussed in Chapter 3. A major conclusion drawn from the previous single 

source simulations is that the electrode configuration biases the estimated maxima 

towards regions of greater electrode density in order to minimize the overall 

energy. By decreasing the inter-electrode distance while maintaining a regular 

configuration, we hoped to reduce the severity of bias exerted by the electrodes. 

Unfortunately, the simulations contradicted the hypothesis, indicating that other 

faults must exist within the MN and LORETA inverse algorithms.

Since the lead field matrix was derived analytically and used for the both 

the adequately performing adaptive algorithms and the poorly performing non- 

adaptive algorithms, its accuracy cannot be responsible for skewing the results. 

Instead the errors must reside in the derivation of the pseudo inverse, T, (2.9) and 

(2.11). As the number of electrodes increase, T increases proportionately. The
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size of T is (7Vx3-M) where N is the number of electrodes and M is the number

of dipoles within the solution space. Therefore, each additional electrode adds an 

additional ( 3 - 5 1  741) = 155 223 entries to T. Assuming there are small 

inaccuracies in the derivation of T, each additional electrode will contribute a 

substantial number of spurious entries that will propagate throughout the 

estimated inverse solution. Therefore, the electrode bias witnessed in Chapter 3 is 

only responsible for a portion of the MN and LORETA localization errors. A 

more accurate pseudo inverse is required to further reduce the localization error.

Another factor to consider when altering the electrode density is the effect 

on electrode sensitivity. Electrode sensitivity is affected by the locations of the 

electrodes as well as the conductive properties of the head model [27]. In order to 

determine the sensitivity of a given electrode pair, we must examine the 

“reciprocity theorem” which states that “the knowledge of the current density (or 

electric field) throughout a volume conductor caused by an injection of current 

between two (stimulating) electrodes completely specifies how these same 

electrodes, when serving as recording electrodes, pick up the potentials caused by 

dipole sources at any place in the volume conductor [27].”

Consider two electrodes positioned on the scalp that are connected by an 

external voltage source (stimulating mode): current flows through the conductive 

head model from one electrode to the other. The current density at any location 

within the head model depends on the anisotropic and inhomogeneous properties 

of the various tissue types. The sensitivity o f an electrode pair (measurement 

mode) to an electric dipole source located at any point in the head model is 

proportional to the current density at the same location if the electrode pair was 

operating in a stimulating mode. More specifically, the direction of the sensitivity 

is equal to the negative gradient of the induced electric field [2].

Due to the highly resistive barrier of the skull, a substantial portion of the 

current will flow from the “source” electrode through the scalp to the “sink” 

electrode without penetrating the skull or brain. The closer the source and the

sink are to one another, the less resistive the scalp current pathway becomes.
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Therefore, even less of the injected current penetrates the brain and the internal 
sensitivity decreases. In fact, the greatest sensitivity for an electric dipole source 

located deep within the brain occurs when the source and sink electrodes are 

positioned on opposite sides of the head. Unfortunately, such a sparse 

configuration does not provide enough information for accurate source 

localization.

In the simulations detailed above, the head model consisted of three 

concentric spheres of constant radii with dipole sources located on the equivalent 

cortical surface. Therefore, our results are not skewed by the affect of decreasing 

sensitivity with respect to source depth. The same assumptions cannot be made 

for realistic head models where the solution space is not always equidistant from 

the EEG montage.

At first glance, increasing the electrode density initially appears to be a 

viable solution to reducing the bias associated with inverse source localization 

algorithms, but upon further investigation, this is not the case for all of the 

investigated algorithms. Increasing the number of electrodes has a definite 

advantage in reducing the localization error and dispersion for the ES Beam, BK 

Beam, and MUSIC algorithms. A more electrode dense EEG measurement 

configuration also helps reduce the effects of noise, especially in the signal 

subspace dependent solutions (ES Beam and MUSIC). These advantages are 

partially offset by the increase in computation time and memory requirements for 

both the derivation of the lead field matrix and the calculation of the beamforming 

weighting vectors. Also, electrode sensitivity suffers as inter electrode distances 

decrease making deeper sources less visible at the electrodes. A delicate balance 

with respect to electrode density must exist that maximizes electrode sensitivity 

and computational efficiency while providing adequate spatial source information 

required for accurate source localization. On the other hand, simulations showed 

that additional electrodes had a negative effect on the localization error of the 

non-adaptive algorithms. This leads us to believe that the pseudo inverses, T,
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contain inaccuracies that propagate as T grows in size in proportion with the 

number of electrodes.
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Chapter 5 - Localization of Real EEG Data

5.1 Introduction

Previous simulations in Chapters 3 and 4 involved the localization of a single 

stationary source with the remainder o f the solution space electrically inactive. 

From these simulations, we concluded that the adaptive inverse solutions (BK 

Beam, ES Beam, and MUSIC) are the most accurate in localizing a single source. 

ES Beam and MUSIC make use o f signal subspace projection to further improve 

their localizing capabilities while reducing the effects of noise. Although ES 

Beam and MUSIC perform better than the other three investigated algorithms 

(MN, LORETA, and BK Beam), they require the a priori knowledge with respect 

to the number of sources underlying the EEG. This knowledge may not be 

present when analyzing real EEG data. ES Beam and MUSIC also assume that 

the eigenvectors corresponding to the greatest source of power coincide with 

epileptic activity.

Inter-ictal EEG data collected from an epileptic patient will be used to test 

the performance of the five inverse algorithms. In previous simulations, the 

location of the electric dipole source was known and the effectiveness of the 

various inverse solutions could easily be quantified by comparing the 

characteristics of the inverse solution with the known source characteristics. For 

the clinically obtained EEG data, the location, magnitude, and orientation of the 

actual source(s) are unknown, making it difficult to assess the performance of 

each algorithm. Instead, the quality of the inverse solutions will be assessed by 

splicing together consecutive inverse solution images into a video and assessing 

the physiological probability of the observed seizure propagation. From the 

various videos, we will look for consistent areas of focused electrical activity that 

could represent an epiletogenic zone.

Another fault that has affected the performance of all five algorithms in 

previous simulated results is the accuracy of the lead field matrix. During the

65

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



simulation of the EEG, the lead field matrix used to simulate the EEG in the 

forward solution is identical to the lead field matrix used to calculate the inverse 

solution. Using clinical EEG data, instead of simulated EEG data, will introduce 

an additional source of error due to the differences between the estimated 

discretized lead field matrix and the actual continuous conductivities linking the 

cortex to the scalp. The differences between estimated and actual lead field 

matrices will affect the performance of all five source localizing inverse 

algorithms. The erroneous effects of differing lead field matrices for the 

beamforming algorithms are detailed in [16].

In addition to examining the performance of the five aforementioned 

inverse solutions, adaptations of the ES Beam and MUSIC that further define the 

signal subspace will also be considered. Principal component analysis (PCA) and 

temporal independent component analysis (ICA) will be performed on the EEG 

data matrix to extract the time series that are characteristic of epileptic activity. 

Both PCA and ICA have the potential to extract the epileptic subspace from the 

EEG data to improve upon epileptic source localization. The varimax algorithm 

will be used to rotate the vectors spanning the signal subspace in order to 

concentrate the signal variance over a minimum number of electrodes.

5.2 Background Information

As seen in previous chapters, projecting the derived weights onto the signal 

subspace improves the performance of the beamformer. In addition, correctly 

predicting the signal subspace also improves the performance of MUSIC. The 

process of determining the signal subspace can be achieved through various 

rotations and factoring techniques such as: principal component analysis [28], 

independent component analysis [29], and the varimax rotation [30].

The EEG potentials, V, can be factored into spatial and temporal 

components.

V = XY
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In (5.1), the columns of X are the spatial components while the rows of Y are the 

temporal components. Each temporal component defines how a single 

component fluctuates over time while the corresponding column vector of X is a 

series of electrode loadings that describes how the temporal component is 

distributed over the scalp. Select columns of X can be used to define the signal 

and noise subspaces. Subsequent subsections outline different techniques for 

performing the factorization in (5.1).

5.2.1 Principal Component Analysis

Principal component analysis (PCA) utilizes singular value decomposition (SVD) 

to factorize the EEG data into three matrices:

V = USWr (5.2)

In (5.2), U is a N x N (N = the number of electrodes) matrix of orthogonal column 

eigenvectors. W i s a T x T ( T -  number of data samples) matrix; each column of 

W has unit variance and describes how each component varies over time. Only 

the first N columns of W are of interest (N is the rank of W). S is a N x T 

diagonal matrix of singular values defining the rms value of each temporal 

component [28].

It is more computationally efficient to calculate the temporal components 

via eigenvalue decomposition of the square, symmetric covariance matrix, R 

(2.15).

R = UkUr  (5.3)

The eigenvectors of R are the same as the eigenvectors of V and the eigenvalues,

1, of R are the squares of the singular values of V. Therefore, the temporal 

components can be obtained via:

Wr = k~^l]TV  (5.4)

The first N temporal components are visually inspected in search of components 

resembling epileptic waveforms. Ideally, a small number of the components 

would exhibit the typical epileptic “spike and wave” waveform. The eigenvectors
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corresponding to the epileptic waveforms can be used to define the signal 

subspace needed for the eigenspace projection beamformer as well as MUSIC.

PCA can also extract epileptic components from an EEG that can be used 

to localize epileptic sources using non-adaptive techniques like MN and 

LORETA. In this case, only the temporal components resembling epileptic 

waveforms are included in the reconstruction of the epileptic EEG (5.2) while the 

remaining components are set to zero. This would reduce the contributions from 

non-epileptic sources.

PCA differs slightly from the eigenspace projection algorithm because it 

no longer assumes that the high power components are epileptic in nature. It may 

be erroneous to assume that the component(s) with the most power are epileptic 

and not due to other neurological activity. Visually inspecting each component 

generates a greater understanding of the underlying sources and provides insight 

into the number of possible epileptic sources.

5.2.2 Independent Component Analysis

Independent component analysis is an alternative technique for performing the 

decomposition in (5.1). The EEG is assumed to be the result of linear mixing of 

the underlying electrical activity within the brain. Temporal independent 

component analysis (ICA) extracts the time series of the underlying sources as 

well as the weightings that govern signal mixing at the electrodes. The ICA 

model is identical to the model in (5.1).

V is a N x T matrix of scalp potentials. N is equal to the number of 

electrodes and T is the number of data samples. Matrix Y is also a N x T matrix 

representing the statistically independent, unit variance time series of N sources 

that generate the EEG. X is N x N matrix of “mixing coefficients’ that determine 

the degree of influence each time series has at each electrode site. The ICA 

model assumes that the number of independent sources does not exceed the 

number of electrodes. Firstly, the ICA algorithm applies PCA in order to reduce
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the dimensionality of V so that only the waveforms contributing significant 

portions of the overall EEG power are considered.

The central limit theorem3 is the underlying principle that enables the 

extraction of the independent components: a single independent component of V 

will be less Gaussian than the sum of the independent components that constitute 

V. Gaussianity is measured using combinations of kurtosis and negentropy [29].

Each independent component has a corresponding vector that can be normalized 

to define the signal subspace necessary for the implementation of ES Beam and 

MUSIC. Like PCA, ICA allows us to localize and visualize sources 

corresponding to a given waveform while nulling the contributions from other 

waveforms. Unlike PCA, the column vectors of X are not constrained to be 

orthogonal to one another.

The ith independent time component can be projected into the N electrode 

head space, forming a single rank EEG via:

V'ica -  X(:,z‘)Y(/,:) (5.5)

5.2.3 Varimax Rotation

Varimax is a subspace rotating algorithm that redistributes the loadings o f a set of 

eigenvectors, X, so that the loadings are concentrated over a smaller number of 

electrodes [30]. This is achieved by maximizing the variance of the vectors. The 

varimax rotation reduces the complexity of the EEG interpretation because it 

assumes that a small group of electrodes are largely responsible for detecting each 

principal component. The loadings of the electrodes that do not account for large 

variation are redistributed via rotation onto the electrodes accounting for the

3 The central limit theorem states that the probability distribution function of a sum of independent 
random variables with arbitrary distributions, approaches a Gaussian distribution as the number of 
variables increases [34].
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majority of component variation. The rotated vectors remain orthogonal to one 

another during the varimax rotation and the subspace spanned by the vector set 

does not change with rotation. The larger the dimensionality of the original 

subspace, the more electrode specific the rotated electrode loadings become. For 

example, a 29 dimensional subspace can be rotated so that only one electrode is 

weighted while the remaining 28 electrode weightings are set to zero. 

Conversely, the varimax rotation will have no effect on a one dimensional 

subspace.

5.3 Methods

5.3.1 Head Model and Solution Space

The details regarding the head model and solution space are identical to those 

mentioned in Chapter 3 for the realistic head simulations. To summarize, the 

head model was segmented from NMR images and contains 7 tissue types 

(cerebellum and pons, cortical grey matter, ventricles and cerebrospinal fluid, 

white matter, non-cortical grey matter, skull, scalp, and cerebrospinal fluid that 

surrounds the cortex) of varying isotropic resistivities. The resistivities are listed 

in Table II. The solution space consisted of a single layer of cortex composed of 

61 041 voxels with 1 mm3 resolution located along the white matter -  grey matter 

boundary.

5.3.2 Electrode Montage

The EEG data is collected using 30 electrodes. The Cz electrode is designated the 

common ground. Eighteen electrodes follow the 10-20 electrode configuration 

and an additional eleven electrodes were concentrated around the frontal region of 

the scalp because this is the region where the clinicians suspected the origin of the 

epileptic activity. The locations of the 29 measurement electrodes and the ground 

electrode are shown in Figure 31.
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Figure 31 -  Location of 30 electrodes

5.3.3 Lead Field Matrix

The lead field vectors for each orthogonal direction of every solution space voxel 

are solved for using the reciprocity theorem outlined in [10]. A thorough 

explanation of the lead field matrix derivation may be found in Chapter 2.

5.3.4 EEG Data

Real EEG data was obtained from the University of Alberta hospital for a female

patient in her mid to late twenties. Clinicians diagnosed the patient with right

frontal lobe epilepsy. The localization results of the five aforementioned
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algorithms will be evaluated based on their ability to localize an epiletogenic zone 

consistent with the region hypothesized by clinicians.

The available EEG consists of 3 seconds of data sampled at 256 Hz 

yielding 772 samples. The EEG data is band-pass filtered with lower and upper 

comer frequencies of 1 and 20 Hz respectively. The filter reduces the high 

frequency noise and removes any DC offset from the EEG. The 772 sample EEG 

is shown in Figure 32.

I
©

t im e  (s e c )

Figure 32 -  772 sample, 29 electrode EEG

The beamforming weighting vectors are derived from the inverted EEG 

data covariance matrix. Therefore, the covariance matrix must remain full-rank. 

The non-adaptive algorithms do not require a full rank data set, so the EEG can be 

further filtered via rank reduction. Projecting the EEG data onto the most 

“powerful” or “active” eigenvectors of V, can theoretically isolate the EEG 

subspace associated with epileptiform activity while eliminating the less 

“powerful” background/noise components of the EEG. The projection is obtained 

from:
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V*w„m = U ( : , l : e ) U ( : , l : e ) r V

U(:,1:Q) denotes the first Q eigenvectors of V arranged in columnar form. Q is 

the dimensionality of the ictal signal subspace and is determined by examining the 

magnitudes of the eigenvalues of R. If an eigenvalue is large, the corresponding 

eigenvector is included in the epileptiform activity subspace. The normalized 

eigenvalues are shown in Figure 33.
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Figure 33 - Eigenvalues of the EEG and the percentage of power represented in each
dimension

(5.6)

The eigenvalues show that 83.4% of the total power resides in the first two 

components and 88.2% in the first three components, suggesting two or three 

underlying sources. The filtering technique in (5.6) is used with a three 

dimensional signal subspace to improve the localizing capabilities of the non- 

adaptive MN and LORETA algorithms.
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5.3.5 Data Window for the Covariance Matrix

As noted in Chapter 3, the larger the number of samples used to compute the 

covariance matrix, the more accurate the localizing capabilities of the adaptive 

inverse algorithms. This generalization assumes that the source is stationary and 

unfortunately, this assumption may not be valid for real data. When the size of 

the window is small, the beamformer weightings change rapidly resulting in a 

“flashing” video representation. To ensure some temporal stability, 257 samples 

were used to calculate R with 128 points on either side of the time slice of 

interest.

5.3.6 Temporal Smoothing

When consecutive instantaneous solutions are catenated together, unintuitive 

“flashing” video clips resulted. In order to obtain a continuous video of source 

activity, temporal smoothing was applied to the EEG data.

For the non-adaptive inverse algorithms, an instantaneous inverse solution

is:

}(<)=Tv(<) <5-7)
Given that we are only interested in the magnitude of the distributed dipoles at 

each voxel location, we can display the power, s(t), associated with the estimated 

current density:

s(t) = d/ag(TR(t)Tr ) (5.8)

Where R(?) denotes the covariance structure of a small window of data centered 

about the time slice in question. R(t) is defined by:

V
f  ... ...\rw w w w\,t------------:?H—  V \ , t--—

R(0 = — ------------- 2!  ~ —  ------ —  (5.9)V '  W ( w  + 1) V 7

The width of the smoothing window is defined by w and N is the number of 

electrodes. Increasing w will create a more temporally smooth inverse solution. 

The temporal smoothing window was 11 points long
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In a similar manner, the instantaneous inverse solution for a voxel located 

at r with orientation tj using one of the beamforming techniques is:

i ( r , 7 ] , t )  = w T ( r , T ] , t ) \ ( t )

To apply temporal smoothing, the power at each voxel location, s ( r , r } , t ) ,  is

displayed using the smoothing window covariance structure (5.9) instead of the 

instantaneous potentials:

s (r, tj, t ) = w T (r, 77, t ) R (f) w (r, ij, t )

Because there is no need to invert the covariance matrices in (5.8) or (5.11), the 

temporal smoothing covariance matrix may be decreased in rank and tailored to 

include only the component(s) of interest.

5.4 Results

Video clips consisting of 772 frames were made using the traditional methods 

(MN, LORETA, BK Beam, ES Beam, and MUSIC) as well as more advanced 

subspace projection techniques utilizing PCA, ICA, and the varimax rotation. In 

order to describe each algorithms performance, a common frame from each video 

is shown with additional details added when necessary. The 63rd slice is chosen 

because it contains a well-defined peak, flanked by periods of reduced activity in 

both directions. These conditions should yield optimal localization results. The 

blue vertical line on the EEG indicates the 63rd slice.

5.4.1 Localization Results Using Traditional Methods

5.4.1.1 MN and LORETA

The pseudo inverses, T, were calculated using the MN and LORETA algorithms. 

The EEG was projected onto three eigenvectors, accounting for 88.2% of the total 

power of the EEG.
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Figure 34 -  Minimum norm inverse solution
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Figure 35 -  LORETA inverse solution 
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5.4.1.2 Borgiotti-Kaplan and Eigenspace Projection Beamformers

The BK and ES Beam algorithms were applied to the same EEG. A moving data 

window of 257 samples is used to define the covariance matrix needed to 

calculate the beamforming weights. For the ES Beam, the weights are projected 

onto the signal subspace defined by the first three eigenvectors of the 257 sample, 

full rank data covariance matrix. The 11 data samples used to compute the 

temporal smoothing covariance matrix are also projected onto the same three 

dimensional subspace. Neither of the subspace projections are implemented for 

the BK Beam.

Soi'tf o!!> H-;sQiirrtfî irorfW
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Figure 36 -  Borgiotti-Kaplan beamformer
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Figure 37 -  Eigenspace projection beamformer

5.4.1.3 Multiple Signal Classification

The inverse solution at n = 63 is calculated using the MUSIC algorithm. From 

looking at the magnitudes of the eigenvalues in Figure 33, it was decided that 

three dipoles should be fitted into the solution space. The data covariance matrix 

used to define the signal and noise subspaces for the MUSIC algorithm is 

identical to the one used to calculate the weights for BK and ES Beam.

78

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 38 -  MUSIC Inverse Solution

5.4.1.4 Summary of Traditional Methods

The MN and LORETA solutions are very similar to one another and are 

concentrated about the front of the frontal lobe. Both solutions show more 

electrical activity on the right hand side of the head. This is expected due to the 

asymmetrical characteristics of the EEG. For example, large fluctuations are 

observed at electrodes F4 and FC4 compared to their symmetrical counterparts F3 

and FC3. It is possible that these two inverse solutions are biased towards the 

frontal lobe because of the increase in electrode density at the frontal region of the 

scalp (see Figure 31).

The inverse solution for the BK Beam fluctuated rapidly and covered 

areas on both sides of the temporal lobe. During the second and third second of 

data, the activity spread to the central and left regions of the frontal lobe. The BK 

Beam results were very difficult to interpret and do not provide a high level of 

confidence. Although, the sharp focus seen in ES Beam was evident in many of
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the BK Beam inverse solutions, the BK Beam solution appeared to be more easily 

corrupted by noise.

In previous chapters, the BK Beam algorithm incorporated a regularization 

parameter in order to invert the data covariance matrix. This was necessary 

because the covariance matrix was not necessarily fall rank despite the added 

white noise. Unfortunately, the regularization parameter is equivalent to adding 

additional white noise to the EEG data [13]. From looking at the eigenvalues in 

Figure 33 it appears that all 29 eigenvalues are large enough that a regularization 

parameter is unnecessary, but a regularized solution was computed regardless. 

The BK Beam inverse solution produced with the regularization parameter was 

even more variable than the non-regularized video. This result reinforces just 

how susceptible the BK Beam is to added noise.

The ES Beam video has quite a focused and relatively stationary peak 

located at the same position as the frontal lobe maximum in Figure 37. During 

the second half of the data, the focus begins to shift towards the central portion of 

the frontal lobe with brief pulses of activity on the left hand side during the third 

second of data. Of all the algorithms, ES Beam produces the most focused source 

location and appears to agree with the observed EEG data set. Since 88% of the 

EEG power is accounted for in the three dimensional subspace, it is fair to 

conclude that the drastic reduction in dispersion is not a result of excessive data 

filtering.

Without a known source location, it is difficult to determine which 

location (MN/LORETA, ES Beam, or either) is the correct location of the 

epileptic focus. The clinicians treating the patient diagnosed the epileptogenic 

zone to a region resembling the focus obtained with ES Beam. Their expert 

opinion in conjunction with the excellent performance of ES Beam in previous 

chapters biases our suspicions towards the ES Beam result.

The source location probability density function associated with MUSIC is 

quite broad covering both the right temporal lobe and the aft portions of the 

frontal lobe. The MUSIC algorithm was repeated with both one and two
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hypothesized sources with very similar results. Also, the number of samples used 

to estimate the signal and noise subspaces was varied with only slight differences 

in the results. Like the four other algorithms, MUSIC shows a right side 

dominant solution that is expected based on the observed EEG.

Sixteen consecutive frames of the LORETA and ES Beam inverse solution 

are shown in Figures 40 and 41 to illustrate how the electrical activity propagates 

throughout the head during an inter-ictal spike. Only the right hand side of the 

head is shown because it contains the majority of the electrical activity. The 16 

frames chosen were slices 317 -  333. This portion of the EEG lies between the 

two red vertical lines in Figure 39 and contains an inter-ictal spike.
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Figure 39 - Portion of EEG used in consecutive images
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Figure 40 - LORETA consecutive inverse solutions 
(left to right, top to bottom)
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Figure 41 - ES Beam consecutive inverse solutions 
(left to right, top to bottom)

Figure 40 illustrates how the LORETA algorithm localizes the inverse 

solution at very front of the frontal lobe with greater electrical activity on the right 

hand side. As the EEG approaches the peak, the LORETA inverse solution 

propagates outwards and towards the right hand side o f the frontal lobe. The ES 

Beam series shows a radial trend in signal propagation from the focus located on 

the right hand side of the frontal lobe.

Besides location, another difference between Figures 40 and 41 is the 

speed of signal propagation. Both inverse solutions experience equal temporal 

smoothing, but the LORETA inverse solution is already receding by the 16th 

frame while the ES Beam inverse solution is not. This difference can be 

attributed to the underlying full rank EEG that is used to derive the beamforming 

weights. More variance in future samples will yield larger weights as the moving 

covariance matrix slides to the right. This example illustrates that the covariance 

structure based algorithms impose additional temporal smoothing on the inverse 

solution.

5.4.2 EEG Analysis Using Advanced Methods

5.4.2.1 Eigenspace Projection with Principal Component Analysis

The magnitude of the eigenvalues in Figure 33 suggests two or three possible 

sources, but without looking at the principal components corresponding to the 

eigenvalues, we cannot assume that the most dominant sources are epileptic 

waveforms. The temporal principal components indicate how the power 

distributed along a given eigenvector fluctuates over time. The temporal principal 

components are determined via (2.9) and the first eight are plotted on the right 

hand side of Figure 42.
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V̂ÂA/''WWWfA/̂ /̂ vyjvA^
P\ F3

Uni! Variance Principal Components
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Figure 42 - Temporal principal components 
Left side -  Original EEG 

Right side -  First eight temporal principal components

The low frequency waveforms associated with epilepsy are evident to some 

degree in principal components one through three. The remaining components 

appear to lack epileptic features.

ES Beam is used to view the inverse solution corresponding to each 

temporal component. Therefore, if there was a particular component of interest, 

we can isolate it from the others, regardless of component power.

The frill rank EEG is still required to derive the initial beamformer 

weights. The initial weightings are subsequently projected onto the signal 

subspace defined by the eigenvector of the desired temporal component to create 

a new, more specific set of beamformer weights. The weighting vectors are 

applied to the single rank EEG consisting of the desired component projected onto
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the 29 electrode head space. The first three projected principal components are

shown in Figure 43.
PCA#1 PCA #2 PCA *8
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Figure 43 - Three temporal components projected into the 29 electrode measurement space

The magnitude of the EEG traces reinforces that principal component (PC) #3 

represents a small portion of power compared to the first two components. PC #1 

is relatively symmetrical across the sagittal plane while PC #2 illustrates a great 

degree of asymmetric behavior between the left and right hemispheres. Inverse
j

solutions for the 63 slice of PC #1 and PC #2 are determined using ES Beam and 

shown in Figures 41 and 42.
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Figure 45 -  PC #2 Inverse solution
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5.4.2.2 Summary of Principal Component Analysis Localization

Although there are some clear distinctions between the two components, there are 

also some similarities that must be addressed. Both components seem to produce 

a well defined peak in the right frontal lobe during the first second of data 

(although this peak is not evident in PC #1 at n = 63). PC #1 produces a sharp 

focus in the same location as Figure 45 at 0.86 s. The second component is more 

consistent in reproducing foci in the same location. During the next second of 

data, PC #1 becomes more dispersed about the solution space while the second 

component yields little electrical activity. During the third second of data, a 

significant portion of power is prevalent in the frontal lobe for both PC #1 and #2. 

PC #2 even shows significant power of the left hand side during this time interval.

The inverse solutions for PC #1 and #2 were also calculated using MN and 

LORETA. Both components had concentrated amounts of activity in the front 

region of the frontal lobe (similar to Figures 34 and 35). This further fuels 

suspicions that the non-adaptive algorithms are susceptible to biases due to the 

uneven distribution of electrodes.

5.4.2.3 Eigenspace Projection with Independent Component 

Analysis

The first four temporal principal components generated in the previous section 

underwent ICA to formulate four statistically independent time components. The 

software used to execute the ICA algorithm is the “FastICA” algorithm, freely 

available online [31]. The four independent time components are displayed in 

Figure 46.
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Figure 46 -  Four unit variance independent components

Independent components (IC) three and four show the greatest resemblance to the 

desired “spike and wave” waveform commonly associated with epilepsy. Each 

component is projected onto the 29 electrode head model to illustrate how each 

individual component is seen by all 29 electrodes. This helps confirm which 

components are epileptic in nature. The projection of the ith time component is 

computed via (5.5).
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Figure 47 -  Four independent components projected into 29 electrode measurement space
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As hypothesized earlier, IC #3 and IC #4 show the greatest epileptic 

characteristics while accounting for 42.2% and 32.9% of the total EEG power 

respectively. IC #3 possesses very symmetric properties across the sagittal plane 

while IC #4 has a high degree of asymmetrical behavior.

Unlike other rotations, ICA no longer requires that the corresponding 

eigenvectors for the independent components are orthogonal. The angle between 

the eigenvectors for IC #3 and IC #4 is 61.1°.

The individual electrode loadings of the eigenvectors of IC #3 and IC #4 

illustrate how the ICA rotation redistributes the electrical sensitivity over the 29 

electrodes. With respect to their contributions to overall EEG power and 

symmetrical behavior, IC #3 is comparable to PC #1 while IC #4 is compared to 

PC #2. Bar graphs illustrating the differences between the electrode loadings are 

shown in Figure 48.
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Figure 48 - Comparison of ICA and PCA eigenvectors 
Top -  PC #1 vs. IC #3 

Bottom -  PC #2 vs. IC #4
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From Figure 48, it is evident that PC #1 and IC #3 are quite comparable. The 

ICA rotation defines a signal subspace which is more sensitive to fluctuations in 

electrodes Fp2, F8, T4, Fpz, Fp4, and F48. All six of these electrodes are located 

in the frontal right hand side on the head. In theory, this should draw the inverse 

solution for IC #3 towards the frontal right hand side of the solution space. The 

loadings of IC #4 show no resemblance to PC #2. IC #4 shows high electrode 

sensitivities at F4, P3, Ol, 02, T5, Fz4, F48, and FC4. Unlike IC #3, the high 

sensitivity electrodes are located at various regions spanning the entire head. This 

does not bode well for a well-defined localized inverse solution.

The inverse solutions for IC #3 and #4 were calculated ES Beam with the 

beamformer weights projected onto each components respective subspace.
incloprinbprrt Component H-2
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Figure 49 -  IC #3 inverse solution
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Figure 50 -IC #4 inverse solution

5.4.2.4 Summary of Independent Component Analysis 

Localization

The inverse solution of IC #3 produces similar electrical foci to those found with 

ES Beam as well as activity in the right frontal region of the solution space at later 

times in the EEG. Unlike PC #1, the peak electrical activity of IC #3 is more 

contained to right hand side of the frontal lobe. This is to be expected based on 

the increase in the loadings of the electrodes in that region as a result of the ICA 

rotation. While other inverse solutions migrate to the frontal and left regions of 

the solution space, IC #3 remains relatively fixed in position.

The loadings of IC #4’s eigenvector did not exhibit a focused tendency in 

the electrode sensitivities like the tendency witnessed for IC #3. Instead, select 

electrodes spanning the entire solution space experienced increases in sensitivity. 

This leads us to believe that IC #4 is not a focused epileptic waveform, but some 

other neurological artifact. The inverse solution corresponding to IC #4 shows a
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wide variety of source locations, migrating from the right hand side to left hand 

side and then to the frontal lobe as time progresses.

It is interesting to note that IC #4 has many identical looking peaks that 

produce extremely different inverse solutions. Reasons for the extreme 

differences lie in the underlying full rank covariance matrix used to define the 

initial beamforming weightings.

5.4.2.5 Eigenspace Projection with Varimax

The varimax rotation rotates the principal components in order to re-distribute the 

loadings onto a few electrodes while maintaining the orthogonality of the basis 

vectors. The rotation of the vectors does not alter the spanned subspace. In a 

similar fashion to ICA, the first four PC’s were rotated using the varimax rotation 

algorithm. The original EEG was projected onto each of the four signal subspaces 

defined by the four rotated vectors. The effect of the varimax rotation on the first 

two principal components is shown in Figure 51.
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Figure 51 -  Effect of the varimax rotations on the back projected principal components 
Top -  PC #1 (top, left), rotated PC #1 (top, right)

Bottom -  PC #2 (bottom, left), rotated PC #2 (bottom, right)

The magnitude of the electrode loadings for both the original spatial PC and the 

corresponding varimax rotated spatial PC are shown for the first two components 

in Figure 52.
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Figure 52 - Comparison of PC and rotated PC eigenvectors 
Top - PC #1 

Bottom - PC #2

For PC #1, the varimax rotation substantially increases the 

loadings/sensitivities of electrodes F4, C4, P4, Fz, Pz, FZ4, while switching the 

polarity of FZ3. With the exception of FZ3, these electrodes all reside in central- 

right hand side of the solution space. For PC #2, electrodes increasing in 

sensitivity are: C4, P4, 02, T4, T6, while the frontal right hand side electrodes 

(Fp2, F4, Fpz, Fp4, and F48) all experience a decrease in sensitivity. Initial 

investigation, leads us to believe that the inverse solution will be biased towards 

the right hand side of the temporal and occipital lobes.

The inverse solutions for the two varimax rotated components were 

calculated using ES Beam with the aforementioned subspace projection 

techniques.
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Figure 54 -  Varimax rotated PC #2 inverse solution
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5.4.2.6 Summary of Varimax Rotation Localization

Ideally the varimax rotation would place the emphasis on a few electrodes and 

would help reduce noise and background electrical activity by suppressing the 

data observed at other electrodes. Unfortunately, the observed inverse solutions 

for both of the rotated electrodes did little clarify matters.

Each spike in the rotated PC #1 EEG yielded very dispersed inverse 

solutions. The most focused inverse solution occurred at 2.75 s and was confined 

to the front of the frontal lobe. This is an unexpected result given that the single 

rank EEG shows very little activity at electrodes Fpl and Fp2.

The second varimax rotated PC produced focused inverse solutions that 

resided in the right hand side of the frontal lobe (see Figure 54) for all of the 

peaks in the first half of the data. During the second half of the data, the foci 

bounced around the left and right hand side of the frontal lobe with a higher 

degree of dispersion. Again, this is an unexpected result based on the decrease in 

sensitivities for the electrodes located on the right hand side of the frontal region 

of the scalp. Although the second rotated component still produces foci in the 

common location, the inverse solutions do not seem intuitive based on the single 

rank EEG.

5.5 Discussion

Two focused locations dominated the above studies. The non-adaptive algorithms 

yielded a focused region at the front of the frontal lobe while many of the 

adaptive algorithms yielded sources on the right hand side of the frontal lobe. 

The diagnosis of the clinicians treating the patient agrees more favorably with the 

results obtained with the adaptive, eigenspace projected algorithms than the non- 

adaptive algorithms. Their professional diagnoses in conjunction with the 

superior results of the adaptive techniques seen in Chapters 3 and 4, leads us 

towards the source locations obtained with adaptive algorithms. Additional signal 

subspace factoring techniques such as principal component analysis, temporal
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independent component analysis, and the varimax rotation did little to clarify the 

situation.

The unintuitive results obtained when mapping single components 

illustrate how the beamformers are handicapped by the full rank EEG. For the 

adaptive inverse solutions, the covariance matrix used to define the initial 

beamforming weights was calculated using a 257 sample, moving window of 

data. Theoretically, this should increase the adaptability of these algorithms 

because the weightings are constantly adjusted to the changing covariance 

structure, providing more representative results. For comparison, videos were 

also made with the various beamforming techniques that had a fixed covariance 

structure based on all 772 samples. These videos were much more intuitive than 

the ones mentioned in previous sections because similar EEG spikes produced 

similar looking inverse solutions. On the other hand, we can show several 

examples where single spikes in the projected, single component EEG look the 

same, but the underlying full rank covariance matrix is quite different. This 

produces two different inverse solutions for what appears to be the same 

neurological event. The fixed covariance matrix method localizes to the same 

point at both instances in time while the variable covariance matrix method does 

not. Although the fixed covariance matrix method produces better looking and 

more intuitive results, we cannot assume them to be more accurate.

A potentially large source of error with the analysis o f the EEG data and 

the corresponding head model is the conflicting EEG referencing techniques. The 

lead field matrix was derived assuming a common reference while the data was 

collected using a linked electrode montage. The erroneous effects produced by 

this discrepancy are unquantifiable. To try and reduce the complications 

introduced by combining the two techniques, the two rows of data that were 

collected at the linked electrodes were omitted from the EEG data. Removing the 

two electrodes increases the underdetermined nature of the inverse problem.

The derivation of the lead field matrix also assumed that the various tissue 

types were isotropic in nature. This approximation makes the derivation much

98

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



less burdensome, but does introduce additional inaccuracies in the lead field 

matrix. In reality, the human head is highly anisotropic with conductivity 

differences of 1:10 for the radial and tangential directional components of the 

skull and a 10:1 difference in directions parallel and normal to the nerve fibers in 

the white matter [32], Therefore, ignoring the anisotropic conductivities o f our 

current head model will yield a less accurate lead field matrix and hinder the 

localizing ability of all of the investigated inverse algorithms.

To enhance the quality of the EEG source localization results, a greater 

EEG sampling frequency is required to show the chronological order of seizure 

propagation. Depending of the amount of myelin insulation coating an axon, the 

speed of propagation of an action potential ranges from 0.5 m/s to 100 m/s [33]. 

Assuming that the maximum diameter of the head is 20 cm, the amount of time 

for an action potential to propagate to the opposite side of the head ranges from 

0.4 s to 2 ms. The current EEG sampling rate of 256 Hz translates to a 3.9 ms 

sampling interval. Therefore, the dynamics of action potential propagation cannot 

be deciphered for faster moving signals. The corresponding inverse solution will 

look like two distinct sources instead of a single source propagating outwards. 

Increasing the EEG sampling frequency will provide additional information to 

emphasize the propagation of epileptic foci.

Another possible source of error for the non-adaptive algorithms is the 

concentration of the electrodes around the frontal lobe. The additional electrodes 

were placed there to improve the spatial resolution in that region, but as shown in 

previous chapters, an uneven electrode density can bias the non-adaptive inverse 

solutions.
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Chapter 6 - Conclusions and Future Work

6.1 Conclusions

The adaptive beamforming methods showed great promise in their ability to 

accurately localize simulated sources while limiting solution dispersion. 

Compared to the non-adaptive algorithms, the beamformers showed an 

unparallelled robustness to noise and were not as heavily biased by the electrodes. 

In addition, beamformers exhibited a positive correlation between localization 

accuracy and electrode density that could be further exploited to improve results.

Two source locations typically prevailed in our analysis of the clinically 

obtained inter-ictal EEG in Chapter 5. The non-adaptive algorithms produced 

results at the very front of the frontal lobe while the adaptive algorithms typically 

localized the source to the right hand side of the frontal lobe. The epileptogenic 

zone specified by the eigenspace projected beamformer agreed with the general 

region diagnosed by the clinicians treating the patient further enhancing our 

confidence in the algorithm. Trying to isolate specific epileptic waveforms via 

PCA, ICA, and the varimax rotation appeared to confirm previous diagnoses, but 

did little to further improve matters. Mind you, the selection of epileptic 

waveforms and components is a rather subjective process that would benefit 

greatly from the expertise of an epileptologist and/or a neurologist.

Although the eigenspace projection beamformer agreed within reason to 

the clinical diagnosis, there is no gold standard with which to properly quantify 

the performance of the various algorithms for the clinical data analyzed in 

Chapter 5.

6.2 Future Work

The quality of the inverse solution is proportional to the accuracy of the forward 

solution. Therefore, future work should lean towards improving the accuracy of
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the lead field matrix. As mentioned earlier, more accurate tissue conductivities 

with anisotropic properties are required in order to formulate a more accurate 

head model. Future experiments analyzing the effect of different skull to cortex 

ratios could shed light on the poor performance of the non-adaptive algorithms in 

Chapter 4 where a more highly resistive skull was used to define the three 

concentric shell head model.

In Chapter 3, 100 randomly located single source locations were used to 

estimate the localization error for each algorithm. Time permitting; a more 

effective measure of localization error would incorporate a trial performed at each 

possible source location. In addition to providing a more conclusive mean value, 

a three dimensional head model map could display the localization error 

associated with each source location. This map could be used to determine the 

relationship between the head model anatomy and source localization error and 

assist in redefining/incorporating anatomical related weightings for the non- 

adaptive inverse algorithms.

Future experiments of this nature should be more conscientious with 

respect to the data acquisition to avoid having conflicting reference points 

between the lead field matrix and the data. The effect this oversight has on the 

results obtained in Chapter 5 is unquantifiable and possibly quite substantial.

The lack of knowledge with respect to the seizure source location made it 

very difficult to assess the performance of the various inverse solutions. 

Therefore, it would be advantageous to combine EEG with fMRI data in order to 

cross reference the individual results with one another. Although fMRI has poor 

temporal resolution, it could provide a much needed spatial baseline to assess 

each of the algorithms.
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