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Abstract 

The release of oil sands process-affected water (OSPW) from tailings ponds is 

a major environmental issue that oil sands companies must consider over the next 

decade. Advanced oxidation processes (AOPs) and biological treatment processes 

have been shown to be able to degrade contaminant compounds and reduce 

toxicity of this OSPW. However, these processes are also associated with 

by-products generation which may be of environmental concern. This study 

successfully combined High Resolution Mass Spectrometry (HRMS) as an 

analytical tool to detect organic compounds (markers) in OSPW samples and 

Principal Component Analysis (PCA) as a statistical tool to manage the extensive 

HRMS datasets (over 1000 markers per sample). The HRMS and PCA were used 

to determine the markers most significantly changed during ozonation in different 

conditions and biological treatment processes and to determine their potential 

by-products. Based on m/z values, all the significant markers selected by PCA 

were designated into groups including naphthenic acids (NAs), oxidized NAs and 

unknown compounds. Of these markers, the main focus in this study was the 

unknown compounds given their trends in OSPW treatment processes have not 

been assessed previously. The significant unknown markers which decreased over 

treatment time were degraded during treatments; while those which increased 

over time were by-products of organic compounds found in raw OSPW treated by 

ozonation in different conditions and biological treatment processes. There were 

negligible or very low concentrations of compounds which were identified as 
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by-products in ozonation in different conditions and biological treatment 

processes found in different raw OSPWs (Syncrude West in Pit, Suncor Pond 7 

and CNRL OSPW). These compounds in raw OSPWs showed negative 

correlations to NAs concentrations and positive correlations to oxidized NAs 

concentrations, which indicate their close association with NAs degradation via 

oxidation. This study demonstrates an advanced approach to determining 

by-products that can be further used for any chemical or biological treatment 

process. Further research aimed at the identification of by-products structures and 

determination of potential degradation mechanisms will be useful in assessing 

treatment efficiency of OSPW compounds.    
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1.0 Introduction 

This chapter will give a brief introduction to the background of oil sands 

process-affected water (OSPW) with related environmental issues and identified 

knowledge gaps. Secondly, the tools applied in this project will be introduced, 

including the High Resolution Mass Spectrometry (HRMS) technique that was 

applied to detect organic compounds in the samples, and Principal Component 

Analysis (PCA) which was applied to manage HRMS datasets. Finally, the overall 

research objectives of the project will be defined.  

1.1 Oil Sands Process-affected Water Background 

Athabasca Basin in northeastern Alberta, Canada, compromising of 

approximately 169 billion barrels of recoverable bitumen, is one of the largest oil 

sands deposits in the world (Energy Resources Conservation Board, 2010). Oil 

sands are a mixture of roughly 6% to 16% bitumen, 1% to 7% water and 80% to 

87% mineral solids like sands, clay, and fine silts (Liu et al, 2005). Each year, 

more than 200 million barrels of crude oil are produced (Corinne, 2010). However, 

although oil sands production provides huge economic benefits, it is necessary to 

pay attention to the environmental impact associated with the oil sands mining 

operations. Water usage and remediation is one of the major environmental 

concerns. The Clarke caustic hot water extraction method is commonly used by 

oil sands industries to obtain high commercial value oil products. For each ton of 

oil sands, approximately 0.6 – 0.7 m
3
 of hot water is required to mix with sodium 

hydroxide to release naphthenates which act as surfactants to help extract bitumen 

(Brient et al, 1995; Hadwin et al, 2006). Approximately 2 to 4.5 barrels of water 

are required for producing one barrel of synthetic crude oil. The waste water 

generated during the extraction process is called oil sands process-affected water 

(OSPW), which is a complex mixture of suspended solids, salts, inorganic 

compounds, dissolved organic compounds, and trace metals (Corinne, 2010). 

Inorganic compounds include calcium, magnesium, sodium, chloride, bicarbonate, 

sulphate and ammonia (Allen, 2008). Meanwhile the major organic compounds 
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are benzene, toluene, polycyclic aromatic hydrocarbons (PAHs) and naphthenic 

acids (NAs).  

The NAs are a complex mixture of predominantly alkyl-substituted alicyclic 

carboxylic acids，cycloaliphatic acids, and a small amount of aromatic acids 

(Cornie, 2010; Allen, 2008). The general formula for NAs is CnH2n+zO2, where n 

is the carbon number, and Z represents the hydrogen deficiency because of the 

ring formation (Brient et al., 1995). OSPW are acutely and chronically toxic to 

aquatic lives, so a “zero discharge” policy for OSPW has been adopted, and all 

OSPW to date has been stored in tailings ponds (Brient et al., 1995; Allen, 2008). 

More than 90% of water demand for surface mining is recycled from settling 

basins, less than 10% of water demand is required from Athabasca River, and less 

than 10% of freshwater withdrawn from Athabasca River is returned to the nature. 

The National Energy Board (2006) reported that about 370 million m
3

 of 

freshwater from the Athabasca River was used for oil sands activities in 2006, and 

Energy Resources Conservation Board (2010) estimated that approximately 720 

million m
3
 of OSPW were currently stored in the Athabasca oil sands region. Thus, 

in order to meet future reclaiming strategies, it is necessary to find efficient 

remediation methods for the decontamination and detoxification of OSPW for 

safe release to the environment.  

Due to the persistence and toxicity of some chemical compounds, such as NAs, 

the natural degradation of OSPW by microbial activity is limited (Holowenko et 

al., 2002). However, previous studies have shown that treatment processes such as 

coagulation-flocculation, adsorption, advanced oxidation processes (AOPs) and 

biological treatment are able to remove or degrade OSPW contaminants and to 

reduce toxicity (Afzal et al., 2012; Perez-Estrada et al., 2011; Pourrezaei et al., 

2011). Treatment processes like coagulation-flocculation and adsorption 

physically remove major organic contaminants (Pourrezaei et al., 2011). 

Biological treatment and advanced oxidation processes only partially oxidize 

organic contaminants into lower molecular species rather than completely 

degrading them into CO2 and H2O (Scott et al., 2008; Afzal et al., 2012; 
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Perez-Estrada et al., 2011). Thus, those lower molecular weight species or 

reaction intermediates formed during AOPs and biological treatment could be 

potential contaminants of environmental concern. For example, bromate was 

reported as a harmful by-product of ozonation (Sohn et al., 2004). Moreover, 

previous studies have shown that profiles of chemical compounds (e.g., NAs) 

change after treatment (Scott et al., 2008; Drzewicz et al., 2010; Han et al, 2008), 

however, until recently there has been limited study reporting on how the organic 

compounds, other than NAs and oxidized NAs, respond to treatment processes 

including AOPs and/or biological treatment.  

Since many of the organic compounds remaining in OSPW after treatment are 

unknown, it is necessary to identify those compounds and their corresponding 

environmental concerns and health effects before subsequent release of OSPW 

effluents into the environment. Of most concern are those compounds which 

increased or formed during treatment processes which can potentially be more 

toxic than their parent compounds. In order to fill this knowledge gap, this project 

is the first step to determine those chemical compounds, other than NAs or 

oxidized NAs, which are increased or formed in OSPW during AOPs and/or 

biological treatment processes.    

1.2 Characterization of Organic Compounds in OSPW  

1.2.1 High Resolution Mass Spectrometry (HRMS)  

Mass Spectrometry as an analytic tool has been widely used for both 

quantitative and qualitative applications (El-Aneed et al., 2009). In order to detect 

chemical compounds with low concentrations in OSPW, more sensitive 

instruments and techniques, such as High Resolution Mass Spectrometry (HRMS), 

have recently been applied to detect and quantify the organic compounds such as 

NAs in OSPW (Drzewicz et al., 2010; Matthew et al., 2012). In this project, Ultra 

Performance Liquid Chromatography-High Resolution Mass Spectra 

(UPLC-HRMS) from Waters Inc. was applied to analyze the organic contents in 

OSPW samples. The Mass Spectrometry technique electrically isolates molecules 
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based on their exact mass-to-charge ratio (m/z) by converting molecules into 

either positively or negatively charged ions. In a typical mass spectrum, the x-axis 

is the m/z value, and the y-axis represents total ion counts (El-Aneed et al., 2009).  

The electrospray ionization mode was used in this project. Literal to the name 

of “electrospray”, injected samples are dissolved in solvent which enters the mass 

spectrometer in the form of spray. When the sample goes through a charged 

capillary, charged droplets are formed. With the stream of nitrogen, the charged 

droplets will further evaporate, and Coulomb explosions will break the charged 

droplets into smaller species. As a result, either ions will be desorbed from the 

surface based on the ion evaporation theory, or solvent will be completely 

evaporated as speculated by the charge residue theory (El-Aneed et al., 2009).  

After ionization, the ions will be separated based on their m/z values in the 

mass analyzer (El-Aneed et al., 2009). The Time-of-Flight (ToF) analyzer was 

used in this project which separates the charged species based on their mobility 

through a strong electric field drift column. When the mobile phase (moving 

liquid or gas) mixture passes through the column, the stationary material phase 

(liquid or solid) influences the mobility of different compounds in the mixture 

(Skoog et al., 1998). Generally, all ions entering the column have the same kinetic 

energy, so ions with higher m/z ratios move slower through the column than those 

ions with lower m/z ratios. As a result, ions with different m/z ratios reach the 

detector at different times (El-Aneed et al., 2009) where the signals generated are 

translated into three dimensional mass spectra with intensity versus time versus 

m/z ratios. Each peak with the intensity greater than the noise level represents one 

ion with corresponding m/z ratio detected at specific time (Kenl, 2003; El-Aneed 

et al., 2009). 

Resolution is defined as the capability of a mass spectrometer to separate m/z 

ratios, as expressed in Equation (1-1), where R is resolution, m is the normal mass 

of the first peak, and Δm is the mass difference between two adjacent peaks.  
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𝑹 =
𝒎

𝚫𝐦
 …………………………………………Equation 1- 1 

(Adapted from Skoog et al., 1998) 

If the height of the valley between two peaks is less than the critical height 

(usually 10% of the height), two peaks are considered as reliably separated. For 

example, to resolve two peaks with m/z ratios of 100.0 and 100.1, the 

spectrometer has to have a resolution of 1,000 (Skoog et al., 1998). For the 

instrument applied in this project, the observed resolution power was 400,000 

FWHM (full width at half maximum) (Waters Inc., 2010). 

The analysis was full scan in this project, so all fragments formed in the ion 

source were detected. The information gathered from the HRMS technique using 

full scan was very large, so appropriate multivariate analysis had to be applied to 

manage and extract the useful information from the datasets.  

1.2.2 HRMS Data Mining by Multivariate Analysis 

The concentrations of OSPW organic compounds vary between samples, 

treatments and from different sites. Analysis of these compounds creates extensive 

information datasets as detected by HRMS. Therefore, the study of the variations 

of OSPW organic compounds has to be done with a holistic approach. 

Multivariate Analysis (MVA) such as Principal Component Analysis (PCA) is a 

tool to identify which chemical compound or classes of compounds are most 

significant (e.g., change the most) under certain treatment conditions (CAMO, 

2011).  

Generally, a multivariate data matrix can be plotted into a multi-dimensional 

plot where one dimension represents one variable. The objective of a PCA is to 

transfer that sample into a new plan with fewer dimensions formed by principal 

components. For example, samples with three variables were plotted into three 

dimensions in Figure 1-1. The PCA finds the first principal component which 

explains the most variance in the original data, and second component will 

explain the second largest variance, and the remaining components will explain 
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less variance. Typically, only the first two or three components are selected since 

the remaining components are not significant, so the multivariate data matrix can 

be reduced into lower dimensions. As shown in Figure 1-1, samples with three 

variables were transferred into a new plan formed by principal components (PC1 

and PC2), so three dimensions (variables) were reduced into two dimensions 

(components). The new plot formed by principal components is called the PCA 

score plot. Score is defined as the distance from the sample on PC1 and PC2 axis 

to the score plot origin. For instance, PC1 score value is the horizontal distance 

from the origin to the sample on PC1 axis, and PC2 score value is the vertical 

distance on the PC2 axis from the sample to the origin as shown in Figure 1-1. In 

the score plot, the closer the distance between samples indicates greater 

similarities between the samples, and the greater the distance reflects larger 

differences between the samples. Thus, samples can be clustered into groups 

based on their relative distances in the score plot, and the similarities or 

differences between samples can be determined based on these distances.   

 

Figure 1- 1: Projection of Original Variables into PCA Score Plot, where V1, V2 and V3 = 

variable 1, 2 and 3; PC1 and PC2 = Principal Component 1 and 2 (revised from CAMO, 

2011).  

Given the score plot used to describe samples, the PCA also provides a loading 

plot to study sample variables. After graphing principal component in the original 

plot, there will be an angle (∠α) formed between the principal component and the 

variable as shown in Figure 1-2 which was generated after 90 degree clockwise 

V1 

V2 

V3 
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rotation of Figure 1-1. Theoretically, the variable is more important to the 

corresponding principal component if the angle between the variable and the 

component is smaller. Figure 1-2 shows the angle α formed between component 

PC1 and variable V2. The loading of V2 on PC1 can be calculated as the cosine of 

angle α, with smaller angles giving larger cosine value, therefore the variable with 

larger loading value is more important to the corresponding principal component. 

Similarly, the loading value of each variable on each principal component can be 

calculated, and PCA loading plot as shown in Figure 1-3b can be generated based 

on the variable loading values on each principal component. Variables with higher 

PC1 or PC2 loading values are more significant, and are the major variables 

describing the differences between samples.  

 

Figure 1- 2: Interpretation of PCA Loadings, where PC1=principal component 1; V1, V2 and 

V3=variable 1, 2 and 3 (revised from CAMO, 2011).   

The key to a PCA study is to combine the score and loading plots, allowing 

correlations between samples and variables to be interpreted. Theoretically, the 

variables with more positive PC1 loadings are more positively correlated to 

samples with more positive PC1 scores, and anti-correlated to samples with 

negative PC1 scores. Similarly, variables with higher PC2 loadings are more 

correlated to samples with higher PC2 scores, but anti-correlated to samples with 

V2 V1 

V3 

Parallel to V2 

PC1 

∠α PC1 loading of 
V2= Cosine ∠α 
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negative PC2 scores. However, PC1 and PC2 are perpendicular, so there is no 

correlation between those two components (CAMO, 2011). As a result, the 

variables with higher PC1 loadings may reflect their unique properties in the 

samples with higher PC1 scores. In contrast, variables with small loading values 

near the origin are common variables found in the majority of samples and cannot 

be used to describe differences. Therefore, by combining PCA score and loading 

plots, a researcher is able to determine which variables are specific to certain 

samples, and which can be used to describe the differences between other samples 

(CAMO, 2011; Jolliffe, 2002; Johnson and Wichern, 2007; Sanguansat, 2012). 

More detail of the PCA theories will be discussed in in Chapter 2.   

 

Figure 1- 3: Typical (a) PCA Score and (b) Loading Plots (revised from CAMO, 2011). Score 

plot (a) showed samples (blue circles); loading plot (b) showed variables (red points) in 

samples.  

1.3 Research Objectives 

There is a great need for the development of a high-throughput data analysis 

method to study the variation of the OSPW organic compounds before and after 

different treatment processes. The organic compounds of OSPW received from 

different regions and mining operations sites are variable (Allen, 2008; Pourrezaei 

et al., 2011), so treatment processes may have altered efficiencies on OSPW from 
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these sites. The general objective of this research is to use Multivariate Analysis 

(MVA) software to identify compounds decreasing, increasing or forming in 

OSPWs during various treatment processes and originating from different sites. 

Specific objectives are: 

 Mine the information from high-throughput HRMS datasets coming from 

OSPW treated by ozonation in different conditions, biological treatment 

processes, and raw OSPW from different sites samples by using the 

statistical tool Principal Component Analysis (PCA). 

 Classify the datasets information into different organic groups (i.e., NAs, 

oxidized NAs and unknown compounds) to compare the OSPW samples 

from different processes and sites.  

 Identify which compounds are increasing, decreasing or being formed in 

OSPW during treatment processes. 
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2.0 OSPW Treatment Processes and Analyses Review 

In this chapter a literature review is presented regarding the different advanced 

oxidation processes (AOPs) and biological treatment used in the remediation of 

the OSPW. Additionally, High Resolution Mass Spectrometry (HRMS) as an 

analysis method for the characterization of the OSPW organic compounds is 

described. The application of PCA as an analysis method of HRMS datasets is 

also reviewed.   

2.1 Advanced Oxidation Processes (AOPs) 

Ozonation involves direct and indirect metabolic pathways for degradation of 

compounds. The direct pathway, as shown in Equation (2-1), is where ozone 

reacts directly with organic compounds, but this reaction can be slow and 

selective. For example, the compounds containing aldehydes and carboxylic acid 

are not reactive with ozone. Also, direct reactions typically lead to the incomplete 

oxidation of organic compounds. The indirect pathway, as shown in Equation (2-2) 

and (2-3), is where the ozone decomposes and forms very reactive hydroxyl 

radicals, in which R represents the remaining elements in the chemical compound 

and ∙ 𝑂𝐻 is the hydroxyl radical. The reaction of hydroxyl radicals with organic 

compounds is fast, relatively non-selective and typically leads to the complete 

oxidation of organic compounds to CO2 (Catalkaya and Kargi, 2009). In other 

words, the indirect pathway supplements the direct pathway (Nawrocki and 

Kasprzyk-Hordern, 2010).  
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𝑶𝟑  +  𝑹 − 𝑪    →    𝑹 − 𝑪 = 𝑶 = 𝑪 − 𝑹  +  𝑶𝟐 ..…… Equation 2- 1 

𝑶𝟑  +  𝑶𝑯−     →    𝑶𝟐 + 𝐇𝑶𝟐
-
 ………………….….… Equation 2- 2 

𝑶𝟑  +  𝑯𝑶𝟐
−     →    𝑶𝟐 +  𝑶𝟐

∙− + ∙ 𝑶𝑯 ...........................… Equation 2- 3 

Where R represents the remaining elements in the chemical compound and ∙ 𝑂𝐻 

is the hydroxyl radical (revised from Catalkaya and Kargi, 2009). 

The use of ozonation for OSPW treatment has been the subject of many recent 

studies. Gamal El-Din et al. (2011) reported that during the first five minutes of 

ozonation of OSPW, 0.1 mg/L/s total acid-extractable organics were degraded, but 

after that initial time period, the degradation rate was only 0.04 mg/L/s. Thus the 

change of the degradation rate indicated that fast ozone-reacting compounds 

would react with ozone directly at the beginning of the reaction followed by the 

formed hydroxyl radical which was very active and reacted with the remaining 

compounds.  

Perez-Estrada et al (2011) recommended that ozone preferentially degraded the 

NAs with higher carbon number and more rings. It was explained that more 

carbons in the molecules indicated that more H atoms were available for 
•
OH 

radicals abstraction. Also, as the number of rings increased, the number of tertiary 

carbon (three carbon neighbors) also increased in the NAs molecules. The H 

atoms on the tertiary carbon were found to be more reactive compared with H 

atoms on the primary carbon (one carbon neighbours) and secondary carbon (two 

carbon neighbours). However, the mechanisms of degradation of OSPW NAs 

were difficult to study due to the presence of matrix complexity including 

dissolved organics and saline matrix in OSPW (Perez-Estrada et al, 2011). 

Scott et al. (2008) used ozone to treat the NAs in sediment-free OSPW from 

the Recycle Water Pond at Syncrude Canada Ltd., Fort McMurray, Alberta, 



12 
 

Canada. By using a Seair Diffusion System (Seair Diffusion Inc.), the ozone 

concentration in the reactor was kept at 35 mg/L. Approximately 70% of NAs 

were degraded after 50 minutes, and the effluent was considered as non-toxic by 

Microtox bioassay. While after 130 minutes of ozonation, the hydrocarbon 

concentration decreased from 19 to 0.6 mg/L, and the residual NAs concentration 

was only 2 mg/L which was less than 5% of the initial concentration. However, 

Scott et al. (2008) pointed out that there was no significant change in total organic 

carbon (TOC decreased from 60 mg/L to 46 mg/L), which indicated that ozone 

only oxidized NAs into other compounds rather than completely degrading into 

CO2. Moreover, 50% of chemical oxygen demand (COD) was decreased and 

biological oxygen demand (BOD) increased from 2 mg/L to 15 mg/L. As a result, 

the BOD/COD ratio increased from 0.01 to 0.15 by ozonation, which indicated 

that the biodegradability of OSPW was improved. Martin et al. (2010) suggested 

that ozonation was able to accelerate the NAs biodegradation and toxicity removal 

by indigenous microbes. Basically, ozone selectively oxidized bio-persistent NAs 

into their oxidized form like hydroxyl- or keto-NAs, and later the microorganisms 

could easily degrade the oxidized NAs and decrease the OSPW toxicity.   

Advanced oxidation processes (AOPs) methods utilize strong oxidants (e.g.,  

hydroxyl radicals) to more efficiently oxidize contaminants by combining a strong 

oxidizing agent such as hydrogen peroxide (H2O2) and ozone (O3) with catalysts 

and ultraviolet (UV) irradiation (Tarr, 2003; Parsons, 2004; Robertson, 2010). The 

chemical reactions of AOPs are essentially the same as ozonation, but the reaction 

rates are much faster than ozonation alone (Catalkaya and Kargi, 2009). 

During photolysis, parent compounds are broken down into small molecular 

compounds by absorbing light. When photolysis is combined with catalysts such 

as hydrogen peroxide (H2O2), the process is called a photocatalytic AOP. 

Drzewicz et al. (2010) used vacuum UV irradiation (VUV at 172 nm) and UV 
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irradiation (UV at 254 nm) combined with H2O2 to degrade alicyclic carboxylic 

acid (cyclohexanoic acid (CHA), a model NA compound). After 80 minutes of 

irradiation with a UV dose of 450 mJ/cm
2
 and H2O2 concentration of 60 mg/L, 10 

mg/L (86% of initial concentration) of CHA were degraded, and undefined 

by-products were found. 

Liang et al. (2011) compared four AOPs (UV/TiO2, UV/IO4
-
, UV/S2O8

2-
 and 

UV/H2O2) to degrade NAs in a model OSPW containing high total dissolved 

solids (TDS) and total suspended solids (TSS) concentrations. To achieve target 

residuals of 5 mg/L NAs and 3.4 mg/L TOC, UV/H2O2 (50 mM) at pH 8 were 

found as the optimal conditions, and the UV/S2O8
2-

 process was found to leave 

significant residual sulfate in the water, therefore not recommended.  

Catalytic ozonation that utilizes the catalysts such as Fe (II) and Fe (III) to 

increase the efficiency of ozone decomposition and hydroxyl radical formation at 

low pH is an AOP, which leads to the faster degradation and more effective 

mineralization of organic contaminants (Nawrocki and Kasprzylk-Hordern, 2010). 

For example, Kishimoto and Ueno (2012) investigated the catalytic degradation of 

1, 4-dioxane in a synthetic wastewater with zero-valent iron (Fe), ferrous ion 

(Fe
2+

), ferric ion (Fe
3+

), hematite (α-Fe2O3) and magnetite (Fe3O4). It was 

observed that Fe accelerated the degradation rate in pH from 3 to 9, but Fe
2+

 and 

Fe
3+

 only enhanced the degradation at pH of 3. The effects of α-Fe2O3 and Fe3O4 

on the degradation efficiencies were minor. Thus, Kishimoto and Ueno (2012) 

suggested the reaction of ozone with Fe
2+

/Fe
3+

 enhanced the hydroxyl radical 

production to accelerate the degradation rate of contaminants. In addition, the 

catalytic ozonation was suggested to have the additional advantage of fewer 

by-products generation (Nawrocki and Kasprzylk-Hordern, 2010).    
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The presence of scavengers decreases the ozonation efficiencies on the organic 

contaminants degradation (Nawrocki and Kasprzylk-Hordern, 2010). For example, 

Qi et al. (2009) achieved 80% degradation of 2,4,6-trichloroanisole (TCE) by 10 

minutes of ozonation with addition of 0.2 g/L alumina at pH 5.8. However, the 

addition of 10
-3

 M tert-butyl alcohol (TBA) as a radical scavenger reduced overall 

degradation to less than 30% removal. Also, Hiner et al. (2001) suggested that 

tetranitromethane (TNM) as a strong scavenger of superoxide radical reacted with 

𝑂2
∙− radicals in solution, as 200 µM and 2mM TNM were observed to rise oxygen 

generation of 50% and 500% respectively. Grebel et al. (2010) evaluated the 

effects of scavengers such as Cl
-
, Br

-
 and carbonates (H2CO3 + HCO3

-
 + CO3

2-
) on 

UV/H2O2 treatment of phenol in saline water. It was observed that the presence of > 

0.2 mM Br
-
 reduced phenol removal rate by 75%; the maximum scavenging 

effects reduced phenol removal rate by 35% with the presence of 400 mM Cl
-
; and 

the maximum scavenging effects of carbonates reduced phenol degradation rate 

by 28% when the carbonate concentration reached > 100 mM.  

Therefore, the recent studies suggest that advanced oxidation processes (AOPs) 

are able to partially degrade the organic contaminants such as NAs in OSPW into 

oxidized forms and smaller compounds which are more easily biodegradable, and 

by-products are potentially formed during the AOPs treatment. However, there 

have been no previous studies focusing on the detection and identification of 

unknown organic by-products.  

2.2 Biological Treatment Processes 

Compared with other remediation methods, bioremediation has the advantage 

of being both low cost and environmental friendly. The NAs of OSPW have been 

considered as the most toxic component of OSPW, therefore most OSPW studies 

have focused on NAs biodegradation. Given the toxicity of OSPW and difficulty 
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in separating single compounds from the mixture of OSPW NAs, commercial 

NAs manufactured as surrogates for NAs in tailings water have been used 

extensively in the investigation of bioremediation (Whitby, 2010).  

Clemente et al. (2004) used microorganisms from Mildred Lake Settling Basin 

of Syncrude Canada Ltd. to degrade commercial NAs (“Kodak salts”) and refined 

naphthenic acids (“Merichem acids”). Approximately 90% of Kodak NAs in 

viable cultures were degraded in the first 10 days. The biodegradation of 

Merichem acids showed similar results, with NAs concentrations in viable 

cultures decreased from 109 mg/L to 8 mg/L in the first 10 days. Lo et al. (2006) 

observed that NAs with more rings in the structure were more resistant to 

microbial degradation, and microorganisms tended to degrade lower molecular 

weight NAs more readily than higher molecular weight NAs (Clement et al., 

2004). 

Han et al. (2008) studied the mechanisms of NAs biodegradation, and 

suggested that the cyclic and alkyl branching prevent biodegradation of NAs, 

because when the alkyl branching attached to the β carbon, the tertiary or 

quaternary carbon appeared at α or β position prevent the β-oxidation which is the 

most common or first mechanism preferred by most microorganisms to degrade 

aliphatic and alicyclic carboxylic acids. The β oxidation pathway involves the 

formation of new carboxylic acids with two carbons fewer than parent compounds 

(Whitby, 2010). Other mechanisms include α-oxidation followed by β-oxidation 

as a second mechanism, known as combined α- and β-oxidation that further 

improves the biodegradation of NAs. The third mechanism is the cyclic NAs 

degradation by aromatization which forms an aromatic intermediate (Han et al., 

2008). 
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Biryukova et al (2007) and Lai et al. (1996) tested factors such as type of 

microorganisms, temperature, dissolved oxygen (DO), phosphate concentration 

and type of microorganisms that affected the biodegradation of commercial NAs. 

It was found that higher temperature, higher DO concentration and higher 

phosphate concentration provided microorganisms better environmental 

conditions to grow and degrade more NAs (Lai et al, 1996). Microorganisms from 

a non-contaminated region had no ability to degrade commercial NAs, but 

microorganisms from tailings water were able to partially degrade commercial 

NAs with low molecular weight (Biryukova et al, 2007).  

Unlike commercial NAs which contain a substantial fraction of rapidly 

biodegradable NAs with low molecular weight, the dominant compounds in 

OSPW are predominantly recalcitrant with multiple branches and rings (Lo et al., 

2006; Scott et al., 2005). Thus, the biodegradation of OSPW NAs was found to be 

much slower and more persistent due to the presence of high molecular weight 

NAs (Corinne, 2010). In addition, Han et al. (2009) observed that more 

biodegradation of NAs occurred under aerobic conditions than in anaerobic 

conditions. Unfortunately, most OSPW tailing ponds are anaerobic, especially in 

the subsurface, so there would be limited biodegradation processes occurring in 

the tailing ponds (Holowenko et al., 2001). However, the methane production in 

Syncrude Canada Ltd’s tailing ponds was found to increase in past years. 

Theoretically, acetate and H2 for methanogens could be produced by β-oxidation 

of long-chain carboxylic acids, as proved by Jeris and McCarty (1965) with 

anaerobic sewage digesters. Holowenko et al. (2001) studied if NAs were 

substrate to support methanogenesis in the OSPW tailings, but there was no 

evidence to prove that NAs from OSPW were the direct source of methane 

production in tailing ponds of Syncrude Canada Ltd. Also, Corrine (2010) pointed 



17 
 

out that it was not understood yet if the NAs in the tailing ponds were the 

substrate in methane biogenesis in situ.  

In summary, recent studies show that indigenous microorganisms from OSPW 

contaminated regions are able to easily degrade commercial NAs with relatively 

less carbons and rings under aerobic conditions. However, the biodegradation of 

OSPW NAs are slower due to the presence of higher molecular weight NAs and 

anaerobic conditions in tailing ponds. As reviewed in AOPs literatures, AOPs are 

able to degrade larger molecular compounds into lower molecular weight 

compounds which are more readily biodegradable. Thus, AOPs are suggested to 

be used as a complementary treatment to further biological treatment processes 

(Martin et al., 2010).  

2.3 Review of OSPW Characterization by HRMS 

Mass spectrometry as a quantitative and qualitative tool has been widely used 

in the field of environmental engineering to detect chemical compounds in various 

waters. In recent years, a few studies have applied HRMS to detect the NAs and 

oxidized NAs, and to estimate or quantify their concentrations in OSPW. By 

comparing compound concentrations before and after treatment processes, the 

overall degradation and formation of compounds during treatments can be 

determined.  

Martin et al. (2010), Gamal El-Din et al. (2011) and Perez-Estrada et al. (2011) 

successfully quantified and assessed NAs concentrations before and after 

ozonation of OSPW by using the HRMS technique. Their analysis was done using 

a Waters ACQUITY UPLC system (Water, MA, USA) and the detection was 

performed in-line with a high-resolution (7,000-10,000) mass spectrometer 

equipped with a TurboIon Spray source operating in negative ion mode. NAs with 
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carbon number from 7 to 22 and Z number from 0 to -12 were identified by 

matching their exact masses to the high-resolution mass measurements, and were 

further quantified by using relative responses to the internal standard. The OSPW 

NAs profiles before and after ozonation were plotted into three dimensions 

including carbon number, Z number and relative response on each axis as shown 

in Figure 2-1 for comparison. The relative response was considered as being 

directly proportional to the concentrations. Clearly, the magnitudes of NAs in 

relative response in fresh OSPW in Figure 2-1(a) were much higher than those in 

ozonated OSPW in Figure 2-1(b), so it was concluded that NAs were almost 

completely degraded after ozonation of 80 mg/L of utilized ozone dose (Gamal 

El-Din et al., 2011). With similar approach, Gamal El-Din et al. (2011) and 

Perez-Estrada et al. (2011) reported that the percentages of oxidized NAs were 

increased after ozonation.  

 

Figure 2- 1: NAs Profiles in (a) Fresh OSPW, and (b) OSPW after Ozonation, where n= 

carbon number (7 to 22), Z= hydrogen deficiency due to the ring formation (0 to -12) (revised 

from Gamal El-Din et al., 2011).  

Matthew et al. (2012) quantified NAs concentrations in samples collected from 

the Athabasca River region using a Shimadzu LC 20XR LC system with a 
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time-of-flight high-resolution (about 30,000 at m/z 250) mass spectrometer with 

an electrospray source, operating in negative ionization mode. NAs with carbon 

number from 7 to 22, and Z number from 0 to -20 were identified by matching 

their theoretical masses to the high-resolution mass measurements. Matthew et al. 

(2012) integrated NAs peaks with signal-to-noise ratio greater than or equal to 3:1, 

and concentrations were calculated based on the calibration curve. With Principal 

Component Analysis on the NAs quantification results to study the differences 

between samples collected along Athabasca River region, Matthew et al. (2012) 

concluded that regional samples with higher NAs concentrations indicated that the 

regions were potentially contaminated by oil sands mining activities.   

2.4 Principal Component Analysis  

Multivariate Analysis such as Principal Component Analysis (PCA) is a 

statistical tool to help manage and extract information from large datasets affected 

by multiple variables (Sanguansat, 2012). As reviewed previously, Matthew et al. 

(2012) successfully applied PCA to manage a complex HRMS data matrix to 

locate NAs contaminated regions. Similarly, PCA was the major strategy applied 

in this project to manage HRMS datasets, to classify the samples into groups and 

to extract significant variables. 

Table 2- 1: Typical PCA Datasets Structure (revised from CAMO, 2011). 

 Variable 1 Variable 2 … Variable n 

Sample 1     

Sample 2     

…     

Sample n     
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Since there are many variables that are not significant, it is a challenge to 

accurately select useful variables from datasets. The purpose of using PCA is to 

extract useful variables only and remove noise data so that the sample 

dimensionality will be reduced (Jolliffe, 2002; Johnson and Wichern, 2007; 

Sanguansat, 2012). Usually, the multivariate datasets for PCA will be organized 

into a datasets structure or matrix similar to Table 2-1. Each column is one 

variable, and each row is one observation or sample (CAMO, 2011).  

The PCA will transfer the original datasets into new latent components as 

previously shown in Figure 1-1. Basically, the new latent component or principle 

component is the linear combination of the original variables. Each component 

can be expressed in Equation 2-1:  

PC = b1 (X1) + b2 (X2) + … bp (Xp) …………. (Equation 2-1) 

(Revised from CAMO, 2011)  

In Equation 2-1, PC is the principal component; bp is the regression coefficient 

for observed variable Xp (CAMO, 2011). Generally, a larger regression coefficient 

bp indicates that the corresponding variable more significantly contributes to the 

component. Technically, the variable loads significantly on the component 

(Jackson, 1991; SAS, 2012). It is recommended that each component represents at 

least three variables for a reliable PCA without losing too much of the original 

information (Jolliffe, 2002, SAS, 2012). As introduced in Chapter 1, the first 

component PC1 will cover the most variance in original datasets, and second 

component PC2 will be perpendicular to PC1 and explain the second largest 

variance. The remaining components will explain declining variances, so they are 

less significant to the overall PCA model. Typically, the first two to three 

components are sufficient enough to generate a good PCA model (CAMO, 2011; 

Jolliffe, 2002).  
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The basic theory of PCA such as score and loading plots for PCA results 

interpretations was introduced in Chapter 1 and further the details are discussed in 

Chapter 4. This section mainly reviews theories not covered in Chapter 1, 

including general data pre-treatment methods, PCA algorithms, validation 

methods, and applications in environmental engineering areas will be discussed.   

2.4.1 Data Pre-treatment 

For a proper PCA, the original datasets generally need to be pretreated by 

transferring into other scales. Typical pre-treatments include Standard Normal 

Variate, pareto scaling, and log transformation (Van den Berg et al, 2006). For 

more accurate analysis of spectra data it is recommended to do a Standard Normal 

Variate (SNV) transformation. The original datasets will be subtracted from the 

mean in each dimension and divided by the standard deviation of each dimension. 

The new dataset will have a mean of zero and standard deviation of one. Such 

transformation is able to remove multiplicative interferences of scatter and 

particle size effects from spectral data (CAMO, 2011). Pareto scaling has a similar 

concept as SNV, but uses the square root of the standard deviation rather than the 

standard deviation. It also has the advantage of keeping partial relative importance 

of each variable in the original datasets as compared to SNV. Log transformation 

is one of the most common pre-treatment methods, because such transformation 

can set the data into a normal probability if the log scales relationship exists in the 

original datasets (Van den Berg et al, 2006). Webster (2001) suggested checking 

the skewness coefficient as the critical value to decide if the transformation of 

original data was required to get the normal distribution, because the skewed 

distributed data might fail to properly estimate the model. If the skewness 

coefficient is greater than 1, log transformation is recommended. For skewness 

coefficient in the range from 0.5 to 1, square root transformation is suggested. If 

skewness coefficient is less than 0.5, the original datasets is considered as the 
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normally distributed, so no transformation is required (Webster, 2001).  

Overall, the purpose of any transformation is to modify datasets in order to get 

better PCA results, but each pre-treatment method has its own strength and 

weaknesses (Van den Berg et al, 2006). For instance, SNV transformation 

simplifies the data structure with mean value of zero and standard deviation of 

one, but it assigns equal weights to all variables so that their relative importance 

in the original data structure is lost. Though pareto scaling has the advantage of 

keeping partial relative importance of variables, it is very sensitive to large fold 

(magnitude) change. Log transformation is unable to deal with datasets with 

relatively large standard deviations and zeroes (Van den Berg, 2006). The 

application of data pre-treatment should be done carefully, because PCA is 

sensitive to the data scales and sometimes transformations may make the PCA 

results worse (Gao et al, 1999; Praveena et al, 2012; Van den Berg et al, 2006).  

2.4.2 PCA Algorithm  

Non-linear Iterative Partial Least Squares (NIPALS) and Single Value 

Decomposition (SVD) are two commonly used algorithms for PCA. NIPALS is 

used when the datasets have missing data and is only accurate to compute the first 

few components of large datasets because it will accumulate more and more errors 

with higher components. SVD is appropriate for smaller datasets without missing 

data. Unlike NIPALS that computes only the first few components, SVD will 

calculate all components, so such algorithm is time consuming and not 

appropriate for datasets with either large samples or variables (CAMO, 2011; 

Jackson, 1991).  

2.4.3 PCA Validation 

The validation step estimates the uncertainty of the model prediction on new 
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datasets and the model is considered to be valid if the uncertainty is within an 

acceptable range (Jackson, 1991; Johnson and Wichern, 2007). Validation 

procedures for PCA involve cross validation and test set validation (CAMO, 

2011). Cross validation is the most common method used when there are not 

enough samples or the selected samples do not have large variations. This 

validation procedure uses all samples for both calibration and validation steps 

where some samples are first randomly selected for model calibration and the 

remaining samples are left out for validation. This process is repeated several 

times until every sample is left out once, and the uncertainty test results for 

iterations will be combined together to generate the final cross validation results 

(CAMO, 2011; Johnson and Wichern, 2007). Alternatively, the test set validation 

procedure is recommended for datasets with large sample sizes because samples 

used in the calibration step are not applied in validation step. Thus, the test set 

validation method will provide a more representative assessment of the model 

(CAMO, 2011).  

2.4.5 Application of PCA in Environmental Engineering 

PCA has been widely applied as a statistical tool in environmental engineering 

research to manage both relatively simple datasets containing sample populations 

much greater than number of variables, and more complex datasets containing 

number of variables much greater than the sample populations. The use of HRMS 

with extensive datasets creates the need for PCA for data mining as evaluation of 

these datasets without multivariate analysis would be impractical.   

With the help of PCA, several studies were performed for water quality 

monitoring and identification of membrane fouling sources (Helena et al., 2000; 

Peldszus et al., 2011). For instance, Helena et al. (2000) used PCA to evaluate the 

water composition of an alluvial aquifer of Pisuerga River in Spain using a 64×16 
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matrix (64 samples combined with 16 physico-chemical variables), and Helena et 

al. (2000) found hydro-chemical variables were highly correlated, and PC1 

explained 33% of the variance highly correlated to the mineralization which 

continuously occurred during the survey period. Similarly, Peldszus et al. (2011) 

successfully applied three principle components to estimate the surface water 

constituents on reversible and irreversible membrane fouling. It was found that 

both protein-like substances and particulate/colloidal maters in feed water highly 

correlated to reversible fouling. However, for the irreversible fouling, protein-like 

substances were the only significant factor.  

PCA has demonstrated a strong ability to extract information from a simple 

data matrix with sample populations much greater than number of variables. For 

instance, Parinet et al. (2004) applied PCA to extract four significant variables 

including pH, conductivity, UV absorbance at 254 nm and permanganate index 

for raw water from the 2,310 samples with 18 analytical variables, and the first 

two PCs that explained 62% of original variance were sufficient to accurately 

describe the trophic state of eutrophic lake systems. Similarly, by applying PCA 

on datasets of 573 samples with 26 water quality variables, Olsen et al. (2012) 

used the first two PCs to explain 60% of original data variances, and the 

significant variables (i.e. chloride, sodium, sulfate and etc.) with loading values 

greater than 0.75 on both PC1 and PC2 axis were extracted. These results lead to 

the conclusion that the runoff from fields containing land applied poultry waste 

and wastewater treatment plant effluent were the potential sources for surface 

water pollution (Olsen et al., 2012).  

PCA has not only been applied to simple datasets, it has been shown to  

successfully manage complex mass spectrometry data matrix with a number of 

variables much greater than sample populations to differentiate samples based on 

their chemical compounds variations. For example, Sleighter et al. (2010) applied 
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PCA to explore large datasets encountered from Fourier transform ion cyclotron 

resonance mass spectra of dissolved organic matter (DOM). 38 water samples 

were collected along a terrestrial to marine transect of lower Chesapeake Bay. 

Overall, 500 dominant peaks in each sample were selected to represent the 

characteristics of each sample with each peak assigned a chemical formula based 

on m/z values. After removing duplicates, the matrix was created with 2,143 peaks 

named by formulas in 38 samples, and their corresponding magnitudes were used 

for multivariate analysis. Sleighter et al. (2010) applied both hierarchal cluster 

analysis (HCA) and Principal Component Analysis (PCA) to get similar clustering 

results, but PCA had the advantage of studying the variables responsible for 

groupings by assessing the colocation of variables and samples in loading and 

score plots respectively. Due to the large number of variables in the datasets, PC1 

(28%) and PC2 (19%) only covered a total variance of 47% in original datasets. 

However, Sleighter et al. (2010) suggested that the amount of variance was 

sufficient to indicate the linear relationship between variables, and the inclusion of 

PC3 (13%) variance could not significantly provide additional relevant 

information while further complicating plot interpretations. In order to further 

understand samples and organic compounds, the variables significantly 

contributing to the clustering were selected to study their molecular structures 

based on m/z values, suggested formulas and calculated double bond equivalent 

(DBE) values.  

Appropriate data pre-treatment typically improves PCA results on HRMS 

datasets. For example, Fraser et al. (2013) combined HRMS and PCA techniques 

to profile tea samples for determining the potential compounds associated with 

fermented and unfermented tea. A total of 88 samples with 57 black tea (fully 

fermented) samples, 11 oolong tea (10-80% semi-fermented) samples, and 20 

green tea (unfermented) samples were analyzed by Ultra-Performance Liquid 
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Chromatography-Mass Spectrometry (UPLC-MS) to generate 690 and 359 peaks 

detected with positive and negative ionization mode respectively. Overall the 

auto-scaling, pareto scaling and log transformation all improved clustering 

compared with PCA alone, and Fraser et al. (2010) selected log transformation for 

date pretreatment due to its convenience in application. Similar to Sleighter et al. 

(2010), low variances were found with PC1 (26%) and PC2 (11%) for a total of 

37% of original datasets variances were explained. By collocated samples and 

variables in score and loading plots, Fraser et al. (2010) extracted and identified 

significant markers (variables) associated with fermentation to describe 

differences between tea samples by comparing their m/z values, relative retention 

time and source induced fragmentations. Fraser et al. (2010) indicated that such 

analytical approaches had substantial power to distinguish differences in 

metabolite profiles of tea samples.   

Matthew et al (2012) applied PCA to study NAs profiles, source 

determinations, and correlations to other water quality variables in surface and 

ground water in oil sands regions. 58 samples from lower Athabasca Region were 

collected as surface water samples, 6 Athabasca River sediment pore water 

samples were collected as regional groundwater samples, and 2 samples from 

active tailing ponds were collected to represent the OSPW samples. A data matrix 

of NAs homologue peaks identified by HRMS was pre-treated by logarithm 

transformation to satisfy the assumption of normal distribution. The first three 

PCs (PC1=33%, PC2=16%, PC3=9%) covered 58% of total variance. Further, by 

assessing correlations between score and loading plots, Matthew et al. (2012) 

concluded that natural fatty acids with even-number of carbons and 

bitumen-derived acids were identified as two categories of NAs. Bitumen-derived 

acids highly contributed to PC1 and natural fatty acids highly contributed to PC2. 

Surface water samples had lower bitumen-derived acids but higher natural fatty 
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acids because of the contribution of microorganisms. In contrast, sediment pore 

water samples had lower natural fatty acids but higher bitumen-derived acids. 

Variations between samples were mainly due to sampling locations (upstream, 

downstream and depth). By studying other water quality parameters, Matthew et 

al. (2012) found PC1 was positively correlated to total dissolved solids (TDS), 

hardness, total alkalinity, bicarbonate, calcium, barium, magnesium, magnesium, 

manganese, chloride, and ammonia. PC2 was negatively correlated to total 

Kjeldahl nitrogen (TKN).  
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3.0 Materials and Methodologies 

The entire scope of data analysis was demonstrated in the flow chart shown in 

Figure 3-1. Starting with the center vertical stream, three raw OSPW (Suncor, 

CNRL and Syncrude OSPW) samples were first analyzed by HRMS to detect 

markers in the samples. PCA was then applied to simplify the data matrix of 

detected markers and determine the significant markers describing the major 

variations between different raw OSPWs. The stream from Syncrude OSPW (thin 

orange line) demonstrates this sample was treated by ozonation in different 

conditions and/or biological treatment processes. The samples collected during the 

various treatment processes were analyzed by HRMS with PCA applied to 

determine markers that were significantly changed during treatment processes. 

The behaviours of markers indicated if they were degraded or formed as 

by-products during treatment processes. Finally, these significant markers  were 

further tracked in their presence/absence and correlations to NAs and oxidized 

NAs in the raw OSPW from the three different sites.   

The ozonation in different conditions and biological treatment processes 

experiment samples were provided by various researchers in Civil and 

Environmental Engineering at the University of Alberta. A brief overview of the 

experiment information is introduced in following section. Samples including raw 

OSPW and OSPW treated by ozonation in different conditions and biological 

treatment processes were analyzed using an Ultra Performance Liquid 

Chromatograms Mass Spectrometry (UPLC-HRMS) instrument from Waters Inc. 

with raw data recorded onto the online computer. The injections were performed 

by a professional laboratory technician, thus the sample injection procedures are 

only briefly reviewed here. The main focus of this chapter is on the methods setup 

of Masslynx Software which was applied for HRM dataset analysis.  
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Figure 3- 1: The Flow Chart of Entire Scope of Data Analysis Procedures, where HRMS = high resolution mass spectrometry; PCA = 

principal component analysis. 
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3.1 Sample Information 

3.1.1 Samples from Ozonation in Different Conditions Experiments 

The ozonation in different conditions experiment information was provided by 

the research group member who completed the experiments. Basically, six various 

ozonation condition experiments were performed which included the addition of 

different scavengers and catalysts. Experiments including proposed impacts 

included: 

(1) Raw OSPW + O3 (general ozonation); 

(2) Raw OSPW + O3 + CO3
2−  (carbonate from NaHCO3; impedes ozone 

decomposition); 

(3) Raw OSPW + O3 + TBA (tert-butyl alcohol; hydroxyl radical quencher); 

(4) Raw OSPW + O3 + TNM (tetranitromethane; free radical quencher); 

(5) Raw OSPW + O3 + TBA + CO3
2−; 

(6) Raw OSPW + O3 + Fe (II) (Ferrous iron from Fe2SO4; ozonation catalyst). 

The ozonation was performed in a batch reactor which was a 1L Pyrex glass 

bottle with a gas diffuser and a custom made external loop to mix the volume of 

liquid. A peristaltic pump was utilized to move the liquid though the external loop 

which had a sampling valve and a bypass valve installed. A GSO-40 Effizon 

ozone generator (WEDECO AG Water Technology, Herford, Germany) fed with 

extra dry high purity oxygen was used to produce ozone gas. The ozone 

concentration (inlet and outlet) was monitored using two HC500 ozone monitors 

(WEDECO, USA).  

Raw OSPW was from Syncrude West in Pit in 2010 that was stored at 4 °C 
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until used. In each ozonation experiment, 1L of raw OSPW was allowed to reach 

room temperature by pouring into the reactor without further preparation. 

Meanwhile each scavenger and catalyst was added into OSPW at concentrations 

of 20 mg/L and 1 mM, respectively. Previous to ozonation, the inlet gas flow 

meter was set to 1 L/min and the ozone monitors at both inlet and outlet were 

reset to zero flushing oxygen, and a time zero sample (t0) was taken. The ozone 

generator was activated and samples were collected using 20 mL glass vials with 

1 mL of 1 M NaNO2 used to quench the ozone and prevent further reactions. The 

ozone treatment was applied for 5 minutes, in which samples were taken every 10 

seconds during the first minute, and afterwards at 2, 3 and 5 minutes. All the 

samples were kept at 4 ºC until HRMS analysis. However, due to the economic 

cost and time constraints, only OSPW control, 0s, 20s, 40s, 60s, 180s, and 300s 

samples were used for HRMS analysis.     

For statistical analysis, each sample was injected 5 times so that instrumental 

replicates were obtained in each sample group. The 5 repetitions were used 

because the sample responses to the instrument signal might be varied due to the 

errors during samples preparation and injection, and instrument sensitivities to the 

surroundings. As a result, some injections might be detected as outliers by PCA, 

which need to be removed during PCA. After removing outliers, it was necessary 

to have at least 3 replicates for a reliable statistical analysis. 

3.1.2 Samples from Biological Treatment Processes Experiments 

OSPW biodegradation samples were taken from a research group member who 

completed the experiments. Raw OSPW was from Syncrude West in Pit in 2010, 

and was stored at 4 °C. The biodegradation study of OSPW was carried out in a 1 

L amber bottle at room temperature at 150 rpm on horizontal shaker (Innova
TM

 

2100, New Brunswick Scientific, USA). Both raw and ozonated OSPW without 
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any pre-treatment, and without addition of any nutrient was used. The experiment 

was carried out for 28 days with samples taken at 0 day (OSPW control), 5 days, 

14 days and 28days, and stored at 4 ºC until HRMS analysis.  

As previously stated, due to the concerns of economic costs and time 

constraints, only triplicate injections (repeated injection from same sample) were 

performed. However, using less replicates weakened the potential for statistical 

analysis if any injection was identified as an outlier, which was an issue for the 

statistical analysis limitation shown in the OSPW biodegradation results in 

Chapter 4.   

3.1.3 Samples of OSPW from Different Sites   

Raw OSPW is known to be variable from different sites and different regions 

within the same tailing pond (Allen, 2008; Pourrezaei et al., 2011). The potential 

by-products increased or formed during ozonation in different conditions or 

biological treatment processes were tracked by their presence, absence or varying 

behaviour in comparison to the other raw OSPWs. Three different raw OSPWs 

were provided for a fingerprinting project to study the variations of raw OSPWs 

including Suncor Pond 7, Syncrude West in Pit (WIP) and CNRL OSPW. 

However, the sampling information such as procedures and locations was not 

provided. Samples were directly taken from the collection barrels of OSPW stored 

at 4 ºC for HRMS analysis. Only duplicate injections (repeated injection from 

same sample) were prepared for raw OSPWs due to the economic and time 

constraints. The lack of appropriate replicates limited the statistical analysis, and 

the results could only be shown as average values without error bars (standard 

deviations) in the raw OSPW variations section in Chapter 4. 
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3.2 High Resolution Mass Spectrometry  

A Waters Acquity UPLC System (Milford, MA) was used for OSPW analysis 

since it had been shown to efficiently separate organic compounds such as NAs 

and their oxidized products (Gamal El-Din et al., 2011; Perez-Estrada et al., 2011). 

HRMS samples were prepared in 500 µl OSPW sample with an additional 100 µL 

ISTD and 400 µL methanol, for a total volume of 1 ml as injected through a 

Waters UPLC Phenyl BEH column (1.7 µm, 150 mm × 1 mm) for 

chromatographic separation. A 10 mM ammonium acetate solution prepared in 

Optima-grade water was used as mobile phase A; and 10 mM ammonium acetate 

in 50% methanol 50% acetonitrile, both Optima-grade, were used as mobile phase 

B. Gradient elution was performed as follows: 1% eluent B for first 2 minutes, 

ramped to 60% effluent B by 3 minutes, and to 70% eluent B by 7 minutes, next 

to 95% eluent B by 13 minutes, followed by a hold until 14 minutes, and finally 

returned to 1% eluent B again, finished by a further 5.8 minutes re-equilibration 

time. The flow during the whole process was controlled at 100 µL/min and 

column temperature was kept stable at 50 ⁰C (Afzal et al., 2012).  

The detection system was equipped with a high resolution Synapt G2 HDMS 

mass spectrometer with an electrospray ionization source operating in negative 

ion mode. A technician from Waters Corporation (Milford, MA) helped tuning and 

calibration by using standard solutions of lucine enkaphenlin and sodium formate. 

Masslynx ver. 4.1 was installed to control the Water Acquity UPLC System and 

for data analysis.  

3.3 Software Method Setup 

In Masslynx software, there are several sub-software programs including 

Markerlynx (XS V4.1 SCN803, Waters Inc.), EZ info (V2.0, Umetrics AB), 

Targetlynx (V4.1 SCN 803, Waters Inc.) and Elemental Composition calculator 
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(V4.0, Water Inc.) that can be used for different analyses.  

The following five steps were included in the current data analysis process. 

Each step used different sub-software from Water Inc. or Microsoft Excel:  

Step (1): Markerlynx software detected and collected the potential markers from 

the raw datasets of injected samples. Markers were presented as m/z 

values, and peaks areas were automatically integrated.  

Step (2): EZ Info software applied PCA based on the markers area integration 

results from Markerlynx to determine the markers that exhibited the 

major differences across the samples. 

Step (3): Markers were defined as significant and non-significant to describe the 

differences between samples. Only significant markers were further 

identified as NAs, oxidized NAs or unknown compounds based on m/z 

values. Microsoft Excel was used to plot trends in areas of significant 

unknown markers across samples to review the changes of markers 

during treatment processes.  

Step (4): Targetlynx software could be used to manually integrate the peak areas 

of significant markers extracted by PCA to compare with results from 

Markerlynx.  

Step (5): Elemental Composition calculator gave possible elemental compositions 

of significant unknown markers based on their exact masses.  

Each Masslynx sub-software method had to be individually setup in order to 

appropriately operate and reliably process the datasets. The specific method setup 

procedures are described in detail below.  
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3.3.1 Step 1: Markerlynx Method Setup 

Samples to be analyzed were selected to create a sample list. The next step was 

to setup the method in Markerlynx to process the analysis of the sample list. The 

peak alignment and detection parameters are shown in Table 3-1.   

Table 3- 1: Parameters in Markerlynx Method Setup Window (adapted from Waters Inc., 

2010). 

 

Function: Function 1 was set as the default function by Waters Inc. to process 

mass spectra data files.  

Analysis Type: Peak detection was selected as the analysis type in order to detect 

markers in the samples.  
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Initial and Final Retention Time: The entire chromatogram of the marker was 

shown in a range of 0 to 15 minutes. However, only 3-12 minutes were set as the 

initial and final retention time to specify the range of retention time window in 

which the data to be processed, because little peaks and mostly noises were shown 

in the chromatogram out of this range.  

Low and High Mass: Although the instrument is able to detect up to a mass of 

100,000 m/z unit, only 100 – 400 m/z units (equivalent to daltons; Da) was 

selected as the mass range over which the software detected makers, because all 

NAs and oxidized NAs analyzed (n = 7 to 22; Z= 0 to -12) are within this range.  

XIC Window (Da): XIC window limited the mass accuracy (Da) of acquired data, 

and 0.02 Da was recommend as the tolerance which was twice the quoted mass 

accuracy (0.01 Da) of UPLC-HRMS instrument from Waters Inc.  

Use relative retention time: This option allowed the software to automatically 

detect all markers with respect to the internal standard (ISTD) retention time. The 

retention time of a marker might vary in a tolerance range between the samples, 

but this method shifted all markers’ retention times to the ISTD retention time, 

which located the markers relative positions more accurately. The ISTD (m/z = 

228.2033 ± 0.02) retention time was set in a range of 6.7 ± 0.5 minutes.   

Peak Width at 5% Height: This option allowed the software to automatically 

determine the peak width and integrate the peak area. The width in unit of seconds 

on retention time axis was initially set at 5% height of the peak. However, due to 

noise and poor smoothing of the peak shape, the automatically determined peak 

width sometimes varied significantly in replicate samples creating huge variations 

of integrated areas in the replicates. Therefore, an accurate peak width would be 

suggested to be manually entered for more accurate area integrations (Water Inc., 
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2010). However, no information was given to assess which part of each peak was 

integrated to determine if a peak was overestimated or underestimated during the 

integration process. As recommended by a technician from Waters Corporation 

(Milford, MA), the maximum peak width from the first automatic analysis run 

was applied for all remaining samples in order to obtain better integration results. 

Thus, as shown in Table 3-1, the automatic peak width determination option was 

turned off as indicated by a red cross mark, and the maximum peak width of 10.5 

seconds entered in the value column would be applied for all markers’ area 

integrations. It should be noted that the maximum peak width to integrate all 

peaks leads to the overestimation of areas for narrow peaks. However, by 

comparing the integration results with and without using maximum peak width, 

the differences for narrow markers were not very significant. The possible reason 

might be the overestimation would only include noises within maximum peak 

width, but the noise with intensities below critical values would be rejected, and 

noise areas counted could be negligible in magnitudes compared with the actual 

peak areas.  

Peak-to-Peak Baseline Noise: Baseline noise between peaks on a typical 

extracted ion chromatogram directly impacts the number of markers detected. A 

higher value resulted in less detected markers because peaks with relatively low 

intensity approaching the baseline noise value were considered as noise rather 

than a peak. The parameter could be either manually set or automatically 

estimated by software. The green check mark in Table 3-1 indicated the value was 

automatically determined by software.  

Apply Smoothing: This option specified if the software applied two iterations of 

mean smoothing function (three data points wide) during the peak detection. By 

comparing the results with and without applying smoothing, it was found that 

some markers (sometimes even the included internal standard) could not be 
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detected in the samples by applying smoothing. Thus, no smoothing was applied 

for any analysis.  

Marker Intensity threshold (counts): This parameter defined the minimum level 

of intensity threshold (in counts) for a spectral peak to be considered as a marker. 

A 100 count default value was recommended by Waters Inc., so the peaks with 

threshold less than 100 would be considered as noise.   

Mass window: The value was in unit of daltons (Da) and specified the mass 

tolerance for a particular marker to be considered as the same marker across the 

different samples. A tolerance of 0.02 Da was used, because it was twice the 

quoted mass accuracy (0.01 Da) for a time-of-flight instrument as recommended 

(Waters Inc., 2010).  

Retention time window: The value (in minutes) specified the retention time 

tolerance for a particular marker to be considered as the same marker across the 

different samples. A 0.2 minute window was recommended as an appropriate 

value (Waters Inc., 2010) and used for all analyses.   

Noise elimination level: This option allowed the software to automatically 

eliminate the noise based on the value entered in the field during the peak 

detection. A larger value tended to discard more spectral peaks. Values in the 

range of 4 to 10 were suggested by Waters Inc. In Table 3-1, 6 times the standard 

deviation of the background noise was recommended for elimination by a field 

technician from Waters Corporation (Milford, MA) and used for all analyses.  

Deisotope data: This option removed isotope signals to prevent the assignment of 

isotope peaks as markers.        

Replicate % Minimum: Specified the minimum percentage of the total samples 
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in the entire list that a marker had to be detected. Otherwise, the intensity of that 

marker was scaled to 0 for every sample in the list. This minimum percentage was 

another reason why replicates were necessary to give reliable markers detection. 

With a minimum of 10% of 35 samples in total, the markers had to be detected in 

at least 3 samples which was the minimum number of replicates suggested for 

each sample group. If the marker was not consistently present in a minimum of 10% 

of total samples, that marker would be discarded.   

After modifying the method, the software was used to automatically process 

the samples and detect markers with the partial results shown in samples table 

(Table 3-2) and markers table (Table 3-3).  

Table 3- 2: Portion of Typical Samples Table from Markerlynx Software (adapted from 

Waters Inc., 2010). 

 

In the samples table (Table 3-2) the first column counts the number of samples. 

In the second column, a green check mark indicates that the corresponding sample 

was involved in PCA. Otherwise, a red cross mark was displayed to indicate that 

the corresponding sample was excluded. In the next two columns, each sample 

was labeled by file text and file name. In the following columns, information of 

vial references for injections, ISTD retention time, sample symbol, spectral noise, 

peak width and chromatogram noise are illustrated. The spectra noise was 

calculated based on the noise elimination level set in the method, and this value 

determined the intensity below which was considered as noise. Increasing of the 

noise elimination level also increased the spectral noise value. The chromatogram 
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noise showed the value of peak-to-peak baseline noise automatically determined 

by the software. In summary, information about ISTD retention time, spectral 

noise, peak width and chromatogram noise for each sample would be displayed in 

the sample table. These parameters are helpful to assess if the individual sample is 

an outlier which needs to be excluded for PCA. For instance, the sample #32 in 

Table 3-2 is excluded (red cross mark) because the software did not detect the 

ISTD as indicated by a retention time value of zero.  

Table 3- 3: Portion of Typical Markers Table from Markerlynx Software (adapted from 

Waters Inc., 2010). 

 

In the markers table (Table 3-3) the first column counted the number of 

markers. The second and third columns recorded the retention time and m/z values 

of the detected marker. The fourth column with a green check mark or a red cross 

mark indicates if the corresponding marker was included or excluded in further 

PCA study. For example, the internal standard (C13-Myristic acid, m/z = 

228.2044) was excluded. The following columns show the area integration results 

for the marker in each sample. In addition, the chromatogram of a selected marker 

across the samples could be viewed in Markerlynx to help decide if the marker 

actually showed a peak or was only noise. Markerlynx software was mistaken in 

identifying noise chromatograms which had intensities higher than the noise 
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intensity set in the method as peaks. The noise would be excluded for later PCA 

study. Examples of noise chromatograms are reviewed in Chapter 4.  

3.3.2 Step 2: EZ Info Method Setup 

The Markerlynx add-on statistical tool EZ Info (V2.0, Umetrics AB) was 

applied to analyze the data matrix with detected markers. In EZ Info, the PCA 

model was selected for the datasets analysis. Prior to PCA, data transformation 

methods such as log transformations and data scaling methods like centering and 

pareto scaling were available for data pre-treatment.  

3.3.2.1 Data Pre-treatment Methods 

PCA is sensitive to data scales and generally needs data pre-treatment prior to 

its use (Gao et al, 1999; Praveena et al, 2012; Van den Berg et al, 2006). Each data 

pre-treatment method has its own purpose, strengths and limitations (Van den 

Berg et al, 2006). However, there are no specific rules to define which method 

will give the best PCA results. The conditions vary depending on the properties of 

datasets, so the critical way to determine the appropriate data pre-treatment 

method in a specific situation is to compare the PCA results with and without 

different data pre-treatments (Van den Berg et al, 2006; Praveena et al, 2012; Reid 

and Spencer, 2009; Arruda et al, 2011; Gao et al, 1999).  

The data pre-treatment methods that are commonly used include data scaling 

such as centering, auto scaling, range scaling, pareto scaling, vast scaling, level 

scaling; and data transformations such as log transformation and power 

transformation (Van den Berg et al, 2006). A general overview has been 

introduced in Chapter 2. However, in the EZ Info Software, only centering, pareto 

scaling as the data scaling method and log transformation method are available. 

The purposes, advantages and disadvantages of each available pre-treatment 

method are discussed below.  
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Centering: 

�̃�𝒊𝒋 = 𝑿𝒊𝒋 − 𝑿𝒊
̅̅ ̅  …………………………Equation 3- 1 

Where 𝑋𝑖𝑗 is the value presents at i
th

 row and j
th

 column; �̅�𝑖 is the mean value 

of i
th

 row; �̃�𝑖𝑗 represents the result after centering.  

The purpose of centering is to focus the analysis on the differences rather than 

the similarities in the datasets. The method has the advantage of successfully 

removing the offset from datasets, but it is insufficient to treat datasets with 

heterosedastic properties that are defined as sub-populations having different 

variability from others, which leads to the failure in normal distribution (Van den 

Berg, 2006).  

Pareto Scaling: 

�̃�𝒊𝒋 =
𝑿𝒊𝒋−�̅�𝒊

√𝑺𝒊
  ……………………………………Equation 3- 2 

Where Si is the standard deviation of the i
th

 row in datasets 

The purpose of pareto scaling is to reduce the relative importance of variables 

with large values so that more correlations of the variables can be studied. The 

advantage is that it keeps part of the original data structure when it reduces the 

relative importance of the large variables, so it prevents creating variables (high 

variation and low variation) that are equally important. However, the limitation is 

that the scaling method is sensitive to the datasets with large fold (order of 

magnitude) changes.  
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Log Transformation:  

�̃�𝒊𝒋 = 𝒍𝒐𝒈(𝑿𝒊𝒋)𝒐𝒓 �̃�𝒊𝒋 = 𝒍𝒐𝒈(𝑿𝒊𝒋 + 𝟏) …………Equation 3- 3 

The log transformation is the most common method applied to pre-treat 

datasets prior to PCA. The purpose is to correct the datasets with 

heteroscedasticity and transfer the datasets into log scale to satisfy the normal 

distribution with skew value < 0.5. However, such transformation is poor when 

dealing with datasets containing relatively large standard deviations and zeros 

(Van den Berg, 2006). Although log (X+1) transformation improves the situations 

of numerous zeros in the datasets, Reid and Spencer (2009) pointed out that the 

log (X+1) transformation shifts the skewness of datasets to a more negative side, 

so log (X+1) transformation will worsen the data distribution if it has already 

shown a negative skew. Moreover, Gao et al (1999) suggested that the log 

transformation compresses the upper end of the data on the scale and reduces the 

relative importance of variables. As a result, the transformation leads to a more 

balanced weight of variables, so the relative significance of the variables is 

reduced. Further, the reducing of extreme values leads to the reducing of the 

effects of outliers (Gao et al, 1999).  

With the available data scaling method of centering and pareto scaling, and 

transformation method of log (X+1) as data pre-treatment methods in EZ Info 

software, six combinations of different data pre-treatments were considered 

below:  

(1) No scaling & no transformation 

(2) No scaling & log(x+1) transformation 

(3) Pareto scaling & no transformation 
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(4) Pareto scaling & log(x+1) transformation 

(5) Center scaling & no transformation 

(6) Center scaling & log(x+1) transformation 

All current datasets were first pre-treated by each method above. The PCA was 

applied on each modified dataset and the results were compared to choose the 

most appropriate data pre-treatment method to suit the data analysis. The critical 

evaluation was based on the more appropriate sample clustering and higher total 

variance of the original data that the principal components were able to recover.    

3.3.2.2 Validation Method Setup 

Validation is the technique to test if the model is well developed based on 

current datasets, and how well it performs to predict new datasets (Johnson and 

Wichern, 2007). Thus, the validation step usually estimates the uncertainty of the 

model prediction on new datasets and the model is considered to be valid if the 

uncertainty is in an acceptable range (CAMO, 201). Since the samples population 

(35 samples) were much smaller than the number of variables (>1,500 markers), 

cross validation which is designed to solve problems of limited sample 

populations (Johnson and Wichern, 2007; CAMO, 2011), was recommended to be 

applied in EZ Info Software (Waters Inc., 2010). The general review of cross 

validation was previously discussed in Chapter 2.     

3.3.3 Step 3: Significant Markers Selection and Identification  

Typical PCA score and loading plots were shown in Figure 1-3, and the basic 

interpretations of PCA plots were introduced in Chapter 1 as well. The 

distributions of the variables (i.e., markers) in the loading plot directly determine 

the clustering of samples in the score plot. However, it is not realistic to study 

over 1,500 individual markers, so it was necessary to extract significant markers 
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which can be used to best describe the differences between samples. Theoretically, 

the markers in the loading plots are positively correlated to the samples in the 

corresponding regions in the score plots. Markers with higher loading values are 

more specific to corresponding samples, and markers near the origin of loading 

plot are common or similar in concentrations in all samples. Thus, the analysis 

first focused on markers with larger loadings located on the outside of the loading 

plot, and narrowed down toward the origin in loading plot. The areas of markers 

were plotted across the samples by Microsoft Excel. The significant markers 

showed a significant change in area across sample groups; in contrast, 

non-significant markers showed a relatively stable or constant trend. Comparing 

the trends in areas of markers, a relative significance boundary was defined to 

separate significant and non-significant markers. The results for this analysis are 

shown in detail in Chapter 4.  

The m/z values of each significant marker were matched with exact masses of 

NAs and oxidized NAs (NA+Ox, where x = 1 to 4) shown in Table A1 to A5 in 

Appendix A. The marker was assumed to be NAs or NA+Ox if the exact mass 

was within the error of ± 0.01 Da. If the m/z value of the marker did not match 

any exact mass, that marker was considered as an unknown compound. As stated 

in previous chapters, this project would focus on the unknown markers’ 

behaviours during ozonation in different conditions and biological treatment 

processes, so Microsoft Excel was used to plot the trends of significant unknown 

markers across the sample groups in terms of average peak areas automatically 

integrated by Markerlynx.   

3.3.4 Step 4: Targetlynx Method Setup 

Unlike Markerlynx which is a qualitative tool mainly used to detect the 

markers across the samples and integrates peak areas automatically, Targetlynx is 
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a quantitative tool mainly used for quantification (Waters Inc., 2010), so the peaks 

of the significant markers were manually selected and adjusted in order to more 

accurately integrate the peak area in the extracted chromatogram window.  

First of all, it was necessary to create a target list which included all significant 

markers with their m/z values and retention times with error tolerance set as ±0.02 

minute. The peak responses were expressed as area integrations. The software 

automatically determined the peak-to-peak baseline noise and peak width at 5% 

height. The mean smoothing method with 2 iterations and 3 scans were applied 

during the area integrations. Targetlynx processed all selected samples 

automatically with the extracted ion chromatogram window displaying the peaks 

of each marker in the target list. Peaks could also be manually selected and 

adjusted in order to optimize the area integration. Manually adjusted and 

integrated significant markers peaks and integrated areas were exported into 

Microsoft Excel file for trends plots and comparison with the results based on the 

Markerlynx approach.  

3.3.5 Step 5: Elemental Composition Calculator Setup 

After selecting out the significant markers that described the main differences 

across the samples from PCA study and reviewing their trends plots, the next step 

was to study their possible elemental compositions and molecular structures. The 

Elemental Composition calculator in Masslynx software provided suggestions of 

elemental compositions and double bond equivalents for the significant markers 

based on m/z values. However, it was still necessary to setup the parameters in the 

calculator in order to get accurate and reliable suggestions.  

The double bond equivalent (DBE) range was set from 0 to 50 which would 

cover most possible double bonds present in organic compounds and it was the 

default setting suggested by Waters Inc. DBE is defined as the number of H2 
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molecules that have to be added to a molecule of the chemical compound to 

convert all pi bonds to single bonds, and all rings to acyclic structures (Clayden et 

al., 2001). DBE could be calculated based on the number of carbon, nitrogen and 

hydrogen molecules in the compound structure based on Equation 3-4:   

𝐃𝐁𝐄 = 𝑪 −
𝑯

𝟐
+

𝑵

𝟐
+ 𝟏  ………… Equation 3- 4 

(Adapted from Clayden et al., 2001) 

Each time a ring or a double bond forms, two hydrogen atoms have to be lost. 

Generally, one DBE indicates one ring or one double bond. Two DBE may be two 

rings, or two double bounds, or one triple bond, or one ring plus one double 

bound.   

Only carbon, hydrogen, nitrogen, oxygen and sulphur were selected as the 

possible elements of the compounds because they are the basic and common 

elements of organic compounds found in the tailing ponds (Allen, 2008; Corinee, 

2010; Pourrezaei et al., 2011). In addition, the range for each element was set as 

0-50 for carbon, 0-100 for hydrogen, 0-2 for nitrogen, 0-6 for oxygen and 0-2 for 

sulphur based on possible elements in organic compounds found in OSPW (Allen, 

2008; Corinee, 2010). After entering the exact mass of the marker, the calculator 

gave all the possible elemental compositions which had the error less than the 

tolerance of 10 ppm. The mass error tolerance was set up to 10 ppm or accurate to 

0.001 Da based on the mass differences between the exact mass of detected 

marker and the exact mass of the suggested compound, and it was calculated by: 

𝒑𝒑𝒎 =
𝐝𝐞𝐭𝐞𝐜𝐭𝐞𝐝 𝒎/𝒛−𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 𝒎/𝒛

𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 𝒎/𝒛
× 𝟏𝟎𝟔 ………… Equation 3- 5 

Since some markers had already been assumed as NAs or NA+Ox if their exact 

masses matched in the tolerance error of ±0.01 Da, the elemental compositions 
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calculator was only applied to unknown compounds whose m/z values did not 

match with any exact masses.  
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4.0 Results and Discussion 

This chapter presents PCA results based on three experimental datasets 

measured using HRMS: (1) ozonation in different conditions experiments 

including O3, O3+CO3
2-

, O3+TBA, O3+TBA+CO3
2-

, O3+TNM and O3+Fe (II); (2) 

raw and ozonated OSPW biodegradation experiments; and (3) raw OSPW from 

different sites including Syncrude West in Pit, Suncor pond 7 and CNRL OSPW. 

Sections 4.1 to 4.8 include the details of O3 results as an overall example for data 

analysis. Data pre-treatments, Markerlynx software validation, and the use of 

Targetlynx as complementary software to Markerlynx to more accurately monitor 

makers’ trends across samples are discussed in ozonation in different conditions 

results.  

PCA results based on raw and ozonated OSPW are reviewed in Section 4.9 by 

the same approaches as those illustrated in the ozonation in different conditions 

results. Additionally, raw OSPW from different sites are characterized in Section 

4.10 using the presences or absences of unknown markers which were 

significantly changed during the previous ozonation in different conditions 

treatment processes or biological treatment processes. Key results were 

summarized in Section 4.11.  

4.1 Markers Detection from Ozonation Datasets 

After initial set up of the Markerlynx software methods in Chapter 3, the 

software was used to automatically process the sample list to detect markers 

across the samples. The results are shown in samples table and markers table in 

Table 4-1 and 4-2 respectively.  
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Table 4- 1: Samples Table Showing Samples Information in Ozonation Datasets Processed by 

Markerlynx Software.  

 

As introduced previously in the software methods setup section in Chapter 3, 

the first column in the samples table (Table 4.1) counts the number of samples. In 

ozonation datasets, there were 5 replicates contained in each of 7 sample groups 

(OSPW control, 0s, 20s, 40s, 60s, 180s and 300s sample groups) for a total 

number of 35 samples analyzed. In the second column, a green check mark 

indicates that the corresponding sample was included in PCA. In contrast, a red 

cross mark indicates that the corresponding sample was excluded. In the next two 

columns, each sample was labelled by file text and file name which simply 

described samples. The vial references column shows replicates of repeated 
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injections from the same sample vial. In the following columns, information of 

internal standard (ISTD) retention time, spectral noise, peak width and 

chromatogram noise are listed which were used to determine if the samples were 

potential outliers, and to provide information on markers detection and peaks 

integration. For example, one sample at 300s (sample #32) was excluded because 

the software did not detect the internal standard retention time which was 

incorrectly shown as 0 minute. The remaining samples shown in Table 4-1 had 

ISTD retention time of 6.7 ± 0.2 minutes which was in the tolerant range of 6.7 ± 

0.5 minutes set in the method. The spectra noise was calculated based on the noise 

elimination level set in the method, and this value varied from 230 - 250 which 

indicated the minimum intensity below which the signal was considered as noise. 

The maximum peak width of 10.5 seconds was applied for all markers for optimal 

area integration (Water Inc., 2010). The chromatogram noise varied from 790 - 

900 which directly indicated the peak-to-peak baseline noise automatically 

determined by software, and a higher value resulted in less detected markers. The 

values in the spectral noise column and chromatogram noise column had 

variations of approximately 10% across the whole sample list, which indicates the 

consistency of the markers detection method across samples during the analysis 

process.  

Other than the one sample at 300s (sample #32) which was excluded as 

mentioned previously, six other samples including one OSPW control sample 

(sample #1), one 0s sample (sample #9), two 20s samples (sample #11, #13), one 

40s sample (sample #20), and two 60s samples (sample #21, #24) were excluded 

in Table 4-1 due to being potential outliers. For example, although the software 

detected the ISTD of those outliers within a tolerant retention time, the integrated 

areas of ISTD (m/z=228.2044) and other markers were much different compared 

with areas in other replicates as shown in markers table (partially shown in Table 



52 
 

4-2). Thus, only 27 samples remained for the PCA study with each sample group 

containing at least 3 replicates which allowed for a reliable statistical analysis. 

Table 4- 2: Portion of Markers Table Showing Markers Information in Ozonation Datasets 

Processed by Markerlynx Software. 

 

Similar to the samples table, the first column in the partial markers table in 

Table 4-2 counted the number of markers detected by the software Table 4-2. As 

defined in Chapter 3, markers were referred to as the ions analyzed by HRMS and 

they represent the organic compounds detected in the OSPW samples. The second 

and third column label markers based on their retention time relative to ISTD 

retention time, and the exact mass to charge ratio (m/z) which was equivalent to 

the exact mass (Z = 1). Table 4-2 only partially shows 16 markers (#633 to #648) 

with m/z values from 227.1636 to 231.0670, as there were 1,525 markers detected 

in total with m/z values ranging from 101.2019 to 399.2647 (the range of m/z=100 

to 400 was set in the method) by Markerlynx software. The next column with a 

green check mark or red cross mark indicates if the marker was included or 

excluded for PCA study. The following columns labelled with file names illustrate 

the integrated areas of the markers in each sample. Note that marker #638 was 
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removed since it is identified as the internal standard. 

 

Figure 4- 1: Examples of Noise Chromatograms Extracted from Markerlynx Software. (a) 

noise chromatogram of m/z=331.2656; (b) noise chromatogram of m/z=345.2826; (c) noise 

chromatogram of m/z=212.0738; (d) noise chromatogram of m/z=223.0282.  

Markerlynx software sometimes wrongly recognizes background noise as a 

marker if the noise had signal intensity greater than the minimum noise level set 

in the method (Figure 4-1 (a) to (d)). The inclusion of noises would lead to a 

further PCA study on noises rather than actual markers. Figure 4-1 (a) and (b) 

shows that the chromatograms have a peak shape so that the software determined 

it was a single peak with very high intensity. However, this type of chromatogram 

 
(a)  

 

m/z=331.2656 

RT = 1.45 

I= 7,127 

(c) 

m/z= 212.0738 

RT = 0.54 

I= 19,340 

(d) 

m/z= 223.0282 

RT = 5.08 

I= 1,168 

(b) 

m/z=345.2826 

RT = 10.53 

I= 1,243 

Examples of Noise Chromatograms 
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was not common, and these peaks were not considered as a normal markers, 

therefore two markers (m/z=331.2656 and m/z=345.2826) with noise 

chromatograms shown in Figure 4-1 (a) and (b) were excluded in further analysis. 

In addition, Figure 4-1 (c) and (d) indicate that software considered the noise with 

high intensity as peaks. In plot (c), the incorrect marker (m/z=331.2656) had 

retention time of 3.61 minutes where there was high intensity noise found in the 

plot. Similarly, in Figure 4-1 (d), the noise with highest intensity is found at 5.08 

minutes, which was the retention time of the incorrect marker (m/z=223.0282). 

The chromatograms shown in Figure 4-1 were extracted from a 60s sample, but 

similar chromatograms were found in other samples, they were concluded as 

noise across all samples. Thus, four markers with chromatograms shown in Figure 

4-1 were excluded from the markers table to provide for a more reliable PCA 

study.  

However, since it would be inefficient and time consuming to check for 

background noise determined as markers in all chromatograms considering more 

than 1,500 markers detected, it was determined that the PCA should first be 

applied to the datasets. The noise was only checked for the chromatograms of 

significant markers assigned with relatively large loading in the loading plot, since 

they were used to describe major differences in samples (Johnson and Wichern, 

2007). The markers with potential noisy chromatograms were excluded, and the 

PCA was reprocessed on the remaining markers. The whole process was repeated 

several times until there was no noise with relatively large loading detected in the 

PCA loading plot. However, this approach only eliminated the noises with large 

PCA loadings, but noises with relatively small loadings were still included in the 

markers table. Fortunately, the small PCA loading values indicated that the 

remaining noises had negligible area variations across samples, so the 

corresponding impacts on the PCA model were negligible. Therefore, this 
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approach saved a substantial amount of time on sorting out significant noise while 

minimizing the effects of non-significant noise on PCA results reliabilities.  

With the approach to sort out significant noise introduced previously, in 

addition to the four noises shown in Figure 4-1, some other markers were found to 

have noisy chromatograms but with large intensities and integrated areas 

including: m/z = 114-115, 148-149, 156-157, 184-185, 210-213, 223-224, 

255.23-256, 283-284, 331-332, and 345-346. These noises were excluded before 

processing PCA; otherwise the PCA would have concluded that these noises were 

significant markers describing the differences across samples, which would have 

negatively impacted the PCA results and lead to a wrong direction of analysis.  

4.2 Appropriate PCA Data Pre-treatment Selection 

EZ Info (V2.0, Umetrics AB) was applied to process the PCA studies based on 

the datasets after initial processing of samples and markers tables. As discussed in 

Chapter 2 and 3, datasets may need to be pre-treated prior to PCA for optimum 

analysis. Six different combinations of data pre-treatment methods are available in 

EZ Info software: 

(1) No scaling & no transformation 

(2) No scaling & log(x+1) transformation 

(3) Pareto scaling & no transformation 

(4) Pareto scaling & log(x+1) transformation 

(5) Center scaling & no transformation 

(6) Center scaling & log(x+1) transformation 
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As reviewed in Chapter 2, the critical technique to determine the appropriate 

pre-treatment method was to compare the PCA results from different 

pre-treatments with the most appropriate treatment selected as the optimum data 

pre-treatment method.   

(1) No Scaling & no transformation 

 

Figure 4- 2: PCA (a) Score plot; and (b) Bi-plot, based on Data without Pretreatment from 

EZ Info Software. OSPW control samples were in dark green; 0s samples were in black; 20s 

samples were in red; 40s samples were in light green; 60s samples were in blue; 180 sampls 

were in organe; 300s samples were in pink.  

Figure 4-2(a) shows the PCA score plot based on the ozonation datasets 

without any data pre-treatment. In the score plot, all samples were plotted on the 

positive axis of PC1 which explained 73% of total variances. A total of 79% of 

original data variances were recovered by PC1 (73%) and PC2 (6%). PC3 would 

explain even less variance than PC2, so it was considered as not significant. 

Ideally, the replicates are close to each other so that samples can be clustered into 
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groups, because the actual plot distance is equivalent to the differences between 

samples (Johnson and Wichern, 2007). However, in Figure 4-2(a), one 60s sample 

(blue) is separated from the sample group and there is significant overlapping of 

sample groups. For instance, samples in 0s (black), 20s (red), 40s (light green), 

and 60s (blue) were overlapped, and samples in 180s (orange) and 300s (pink) 

were overlapped as well. Although the overlapping reflected the similarities 

between samples, such observations also indicated poor separation of clusters of 

the individual samples, so the data might not be appropriately treated before 

applying PCA. The bi-plot as shown in Figure 4-2(b) is used to study the 

correlations between the samples and markers toward principal components, with 

the correlation coefficients read directly from the vertical and horizontal axis. The 

inner ellipse boundary has a correlation coefficient of 0.50, the middle ellipse 

boundary of 0.75, and the outer ellipse boundary has value of 1.00. Theoretically, 

a higher correlation coefficient indicates that samples or markers are highly 

correlated to PC1 or PC2 (Johnson and Wichern, 2007). Also, markers or samples 

located close together are positively correlated to each other. In contrast, markers 

and samples that are widely separated from each other are negatively correlated 

(CAMO, 2011). In Figure 4-2(b), all samples and markers are clustered together 

on the positive PC1 axis, so they were all positively correlated to PC1 with small 

differences between samples and markers. Such observations were not useful in 

determining differences between samples, which indicated that functions of PCA 

were not well developed to find the negative correlations between samples and 

markers, so the PCA results were not reliable. Thus, it was concluded that data 

had to be pretreated by scaling and/or transformation before applying PCA.  

(2) No scaling & log(x+1) transformation 
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Figure 4- 3: PCA (a) Score Plot; and (b) Bi-plot, based on Data by log(X+1) Transformaiton 

from EZ Info Software. OSPW control samples were in dark green; 0s samples were in black; 

20s samples were in red; 40s samples were in light green; 60s samples were in blue; 180 

sampls were in organe; 300s samples were in pink. 

Figure 4-3(a) shows the PCA score plot based on the ozonation data pretreated 

by log(X+1) transformation. In the clustering point of view, 300s (pink) and 180s 

(orange) sample groups were separated, but overlapping still happened in 0s 

(black), 20s (red), 40s (light green) and 60s (blue) samples. The PCA bi-plot 

shown in Figure 4-3(b) illustrates that although some markers were well 

distributed as expected on the negative axis along PC1 to show the negative 

correlations, samples and most of markers were still clustered together on the 

positive PC1 axis with correlation coefficients ranging from 0.75 to 1.00. Such 

clustering in Figure 4-5 shows that samples were very similar, so the function of 

PCA was not well developed to study the differences between samples. Although 

a total of 89% of the original variances were covered by PC1 (87%) and PC2 
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(2%), the loading values (not shown) were less than 0.1, which indicated that the 

components did not represent the markers. Thus, the low loading values of 

markers contradicted the high recovery (89%) of original data variances by 

principal components, which indicated problems within the PCA model.  Thus, 

the log(X+1) transformation alone was not adequate to provide reliable PCA 

results.  

(3) Pareto scaling & no transformation 

 

Figure 4- 4: PCA (a) Score Plot; and (b) Bi-Plot, based on Data Pretreated by Pareto Scaling 

from EZ Info Software. OSPW control samples were in dark green; 0s samples were in black; 

20s samples were in red; 40s samples were in light green; 60s samples were in blue; 180 

sampls were in organe; 300s samples were in pink. 

Since log(X+1) transformation alone did not improve PCA results, the next 

step was to test if a numerical scaling method would improve the PCA. In EZ Info 

software, two types of scaling methods were available including pareto and center 
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scaling. Pareto scaling was first tested with the PCA score plot shown in Figure 

4-4(a). The clustering of samples was much improved compared to the previous 

PCA score plots. Samples were well classified into groups, and the overlapping 

between the groups was reduced. Control samples (dark green) and 0s (black) 

samples were  overlapped as expected, because those two groups of samples 

were collected from the beginning of the experiment, and should theoretically 

have the same number and type of markers. Although 40s (red) and 60s (blue) 

samples were closely clustered, they still have a noticeable separation and the 

small distances between them were possibly due to the presence of similar 

markers considering the samples were only 20 seconds apart from each other. 

However, PC1 and PC2 with 23% and 9%, respectively, only explained 32% of 

the total variance. The reduction of total explained variations indicated that the 

generated principal components lost some information from the original data. 

There are no specific rules to specify the minimum amount of original variances 

that an appropriate PCA model has to cover, but it is recommended that the 

outcomes will be significantly improved with a minimum sample population 

larger than five times the total number of analyzed variables (Osborne & Anna, 

2004). With over 1,500 markers detected in each OSPW sample it would be 

impossible to prepare over 5,000 samples to analyze. However, PCA of similar 

sized datasets as in the current study are considered as acceptable to explain the 

linear relationships between markers and samples in recent literature (Fraser et al., 

2013; Sleighter et al., 2010). For example, the PCA model generated by Sleighter 

et al. (2010) only covered 47% of original data variances by PC1 (28%) and PC2 

(19%) due to 2,143 variables in datasets, but still provided sufficient information 

to indicate the linear relationship between variables. As well, the PC3 with 

additional 13% variance was rejected because it complicated analysis and 

provided little additional information. Similarly, the first two components 

currently were selected by EZ Info software to represent the PCA results, because 
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PC3 would explain less than the 8% of PC2, and would further complicate the 

analysis. The bi-plot shown in Figure 4-4(b) demonstrates that samples and 

variables were well separated and distributed along PC1 and PC2 axis, so that the 

correlations between principal components, samples and variables could be easily 

observed. Overall, the PCA plots generated based on the data pretreated by pareto 

scaling were considered acceptable for explaining the overall dataset.    

(4) Pareto scaling & log (X+1) transformation 

 

Figure 4- 5: PCA (a) Score Plot; and (b) Bi-plot, based on Data Pretreated by Pareto Sacling 

& log(X+1) Transformation from EZ Info Software. OSPW control samples were in dark 

green; 0s samples were in black; 20s samples were in red; 40s samples were in light green; 

60s samples were in blue; 180 sampls were in organe; 300s samples were in pink. 

The pareto scaling alone successfully improved PCA samples clustering, but 

the loss of total variances of original datasets was a drawback, so the next analysis 

included pareto scaling with log(X+1) transformation to test if the log 

transformation could help increase the total variance. Theoretically, if logarithmic 
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relationships are hidden in the original datasets, the log transformation is expected 

to expose them and transforms the data into a normal distribution to improve the 

PCA results (Van den Berg et al, 2006). Figure 4-5(a) and (b) show the PCA score 

plot and bi-plot for ozonation data pretreated by pareto scaling with log (X+1) 

transformation. A total of 34% of the variances were explained with PC1 at 25% 

and PC2 at 9%. Compared with 32% of total variances covered by PCA based on 

data pretreated by pareto scaling only, log(X+1) transformation only marginally 

improved the total variance of original data coverage. On the other hand, this 

transformation dispersed the replicate clusters with distances between replicates in 

40s, 60s and 180s samples groups slightly increased, which indicated the 

differences between replicates in the same sample group. Thus, with little 

improvement in total original data recovery, the log(X+1) transformation was not 

recommended to be applied together with pareto scaling pre-treatment.  

(5) Center scaling & no transformation 

Pareto scaling improved the PCA results as shown previously, the center 

scaling method was tested if it could help better improve PCA results. Figure 

4-6(a) shows the PCA score plot based on the ozonation data pretreated by center 

scaling. PC1 (37%) and PC2 (9%) explained approximately 46% of total variance, 

which was 14% higher than the data treated by pareto scaling alone. However, in 

comparison to pareto scaling, overlapping happened between 40s (light green) and 

60s (blue) samples, and the distance between replicates in 60s and 180s samples 

(orange) groups increased, so the clustering was more dispersed. In the bi-plot 

shown in Figure 4-6(b), the samples and variables are well distributed, but the 

distances between replicates in 60s samples (blue) are considerably larger, which 

indicates that the clustering was rather dispersed, so pre-treating the data by center 

scaling did not to improve the PCA results. 
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Figure 4- 6: PCA (a) Score Plot; and (b) Bi-Plot, based on Data Pretreated by Center Scaling 

from EZ Info Software. OSPW control samples were in dark green; 0s samples were in black; 

20s samples were in red; 40s samples were in light green; 60s samples were in blue; 180 

sampls were in organe; 300s samples were in pink. 

(6) Center scaling & log (X+1) transformation 

Figure 4-7(a) shows the PCA score plot of the data pre-treated by both center 

scaling and log(X+1) transformation. A total of approximately 50% variance with 

PC1 of 43% and PC2 of 9% was explained, which was similar to the data treated 

by center scaling alone. In both score plot and bi-plot, there was overlapping 

between 40s (light green) and 60s samples (blue), and the distances between 

replicates in 60s samples group showed large dispersion, so the center scaling and 

log(x+1) transformation together could not improve the overall PCA results.  
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Figure 4- 7: PCA (a) Score Plot; and (b) Bi-Plot, based on Data Pretreated by Center Scaling 

and log(X+1) Transformaiton from EZ Info Software. OSPW control samples were in dark 

green; 0s samples were in black; 20s samples were in red; 40s samples were in light green; 

60s samples were in blue; 180 sampls were in organe; 300s samples were in pink. 

PCA Pre-treatment Conclusions 

Overall, after comparing the PCA results from different data pre-treatments 

shown above, it was concluded that data without any scaling treatment showed 

poor clustering results, because samples groups were overlapped, and distances 

between replicates in the individual groups were large. In bi-plots the samples 

were clustered together, so the negative correlations between samples and 

variables could not be studied, which indicated that the functions of PCA were not 

well developed.  

It was observed that log(X+1) did not improve the total original data variances 

recovered by the PCA model, but actually hampered the clustering by increased 

distances between replicates and overlaps between sample groups. Reid and 
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Spencer (2009) indicated that the log transformation would shift the data to the 

negative side of skewness. The skew values of the ozonation datasets applied in 

this project varied from negative one to positive one, so the log(X+1) 

transformation would not be appropriate for the datasets with the negative skew 

values.  

Pareto scaling and center scaling showed acceptable PCA score plots and 

bi-plots in the point view of clustering. However, by comparing the results from 

these two methods, center scaling still showed the overlapping of samples, 

especially between 40s and 60s samples, and relative large distances between 

replicates. Therefore, the pareto scaling alone showed the best clustering results 

with little overlapping and small distances between replicates as expected, which 

indicated those replicates had similar compounds given they were the repeated 

injections from same sample. Therefore, the pareto scaling method was 

considered as the appropriate data pre-treatment method for HRMS ozonation 

datasets before applying PCA.  

Similar results were observed by applying PCA on the other datasets including 

CO3
2-

, TBA, TBA+CO3
2-

, TNM and Fe (II) (PCA plots generated with pareto 

scaling as optimum data pre-treatment were shown in Appendix B-1 to B-5). Data 

without any treatment showed dispersed clustering and log(X+1) transformation 

did not improve either the clustering or the recovery of original data variances. 

Compared with data treated by center scaling, data treated by pareto scaling 

showed tighter clustering results. In addition, the pareto scaling has the advantage 

of compensating the relative importance of variables with large values so that 

more correlations of the variables can be studied, while keeping partial original 

data structure without making all variables equally important as in other scaling 

processes (Van den Berg, 2006). Thus, the pareto scaling was selected as the 

appropriate data pre-treatment method before applying PCA on all ozonation in 
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different conditions datasets.  

4.3 PCA Advanced Interpretation 

With pareto scaling as data pre-treatment, the PCA results based on ozonation 

datasets are shown in the PCA score and loading plots in Figure 4-8.   

In the score plot shown in Figure 4-8(a), samples are clustered into groups. 

Since the distances between samples were proportional to the differences between 

samples, small distances between replicates within each sample group indicates 

their consistency. In addition, a total of 32% of original data variances were 

recovered by PC1 (23%) and PC2 (9%).  Compared with the Sleighter et al. 

(2010) PCA model which explained 47% of variances in total by the first two PCs, 

it was assumed that the first two components shown in Figure 4-8 were sufficient 

to indicate the linear relationship between markers due to the large variables 

datasets (>1,500 markers in each OSPW sample). Moreover, it was observed that 

samples collected in the first minute were distributed vertically along PC2 axis, 

and samples taken after first minute were separated horizontally along PC1 axis 

(Figure 4-8(a)). Since PC1 (23%) explained more variances compared with PC2 

(9%), the distance along PC1 axis indicated greater differences between samples 

compared with the distance along PC2 axis. Therefore, 180s and 300s samples 

which were horizontally separated were more dissimilar from OSPW control and 

0s samples, compared to vertically separated samples collected in first minute. 
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Figure 4- 8: PCA (a) Score Plot; and (b) Loading Plot, based on Ozonation Data from EZ 

Info Software. OSPW control samples were in dark green; 0s samples were in black; 20s 

samples were in red; 40s samples were in light green; 60s samples were in blue; 180 sampls 

were in organe; 300s samples were in pink. 

In the loading plot shown in Figure 4-8(b), the markers which represented the 

organic compounds detected in the samples are labelled using their exact mass to 

charge ratio (m/z), and they are also assigned with loading values plotted on PC1 

and PC2 axis. Markers with small loading values near the origin were very similar 

in concentrations across the samples, but markers with higher loading values (i.e., 

located at furthest from the origin of loading plot) would vary most in 

concentrations and describe the major differences in the samples. Thus, the overall 

analysis of the individual markers currently started from markers furthest from the 

origin, and narrowed down toward the origin. However, there were over 1,500 

markers plotted in Figure 4-8(b), with many of them not being important due to 

their similar concentrations in all samples, so it was necessary to separate 

significant and non-significant markers prior to further interpretation.  

Traditionally, the correlation coefficient between the variables and principal 
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components is a critical way to separate significant and non-significant variables 

(Johnson and Wichern, 2007; CAMO, 2011). Figure 4-9 is a representative PCA 

Bi-Plot which was used to study the correlations between samples or markers 

between the PC1 and PC2 based on the correlation coefficients shown on each 

axis. The outer ellipse sets the boundary of maximum correlation coefficient value 

of 1.00, so all samples and markers were plotted within this boundary. The inner 

ellipse represents the correlation coefficient value of 0.75, and all markers and 

samples out of the middle ellipse have correlation coefficients greater than 0.75 

and are considered as significantly correlated to the corresponding components 

(CAMO, 2011). All variables and samples within the inner ellipse (correlation 

coefficient value of 0.50) are considered as non-significant to the PCA model, 

because their correlation coefficients are less than 0.50 (Johnson and Wichern, 

2007; CAMO, 2011). Therefore, all variables labelled by triangles within the 

outer and middle ellipse were highlighted with red squares, because they had 

correlation coefficients greater than 0.75 for both PC1 and PC2, and were 

considered as significant variables to PCA model (Figure 4-9). The large loading 

values of those highlighted markers found in the loading plot further proved their 

significance to the PCA model. However, there were only 27 highlighted variables, 

and only 300s samples group had correlation coefficients greater than 0.75 on 

PC1 axis, due to the low total variances of original data covered by PC1 and PC2. 

In order to explore more markers that could be used to determine differences 

between samples, it was necessary to study the markers with correlation 

coefficients of 0.50 - 0.75 between the middle and inner ellipse. Only markers 

within the inner ellipse (0.50) were defined as non-significant (CAMO, 2011), so 

those markers with correlation coefficients between 0.50 to 0.75 were considered 

as less significant than those greater than 0.75, but still useful to explore the data 

information.  
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Figure 4- 9: PCA Bi-Plot based on Ozonation Data from EZ Info Software. Samples and 

variables within inner ellipse have correlation coefficients less than 0.50; samples and 

variables between middle and inner ellipse have correlation coefficients of 0.50-0.75; samples 

and variables between middle and outer ellipse have correlation coefficients of 0.75-1.00.  

Since it is not reasonable or useful to study all the variables between the 

middle and inner ellipse (correlation coefficient = 0.50 – 0.75), a boundary was 

considered to separate the relative significant and non-significant markers in 

either bi-plot or loading plot. Due to the different scales of the bi-plot and loading 

plot, and the impacts of PC1 and PC2 loadings simultaneously on one marker, it 

was observed that the markers which were similar in the bi-plot (i.e., tightly 

clustered) might actually be dissimilar (i.e., more dispersed) in the loading plot. 

For example, although the 27 highlighted markers in bi-plot (Figure 4-9) were all 

on the outside of loading plot, not all of these markers were found on the outside 

of loading plot (Figure 4-10) as highlighted in the bi-plot. However, some of them 

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t(
co

rr
)[

2
], 

p
(c

o
rr

)[
2

]

t(corr)[1], p(corr)[1]

Loadings Bi Plot Comp[1] vs. Comp[2] colored by File Text

O3_0s
O3_20s
O3_40s
O3_60s
O3_180s
O3_300s
O3_ctrl
X variables

O3_ctrl
O3_ctrl

O3_ctrlO3_ctrlO3_0sO3_0s
O3_0s

O3_0s

O3_20sO3_20s
O3_20s

O3_40s
O3_40s

O3_40s

O3_40s

O3_60sO3_60s

O3_60s

O3_180s
O3_180s

O3_180s

O3_180s

O3_180s

O3_300s

O3_300s

O3_300s
O3_300s

EZinf o 2 - 22_Leo_O3 v arious condition_O3_relativ e RT15(1) (M1: PCA-X) - 2014-02-17 11:21:00 (UTC-7) 

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t(
co

rr
)[

2]
, p

(c
or

r)
[2

]

t(corr)[1], p(corr)[1]

Loadings Bi Plot Comp[1] vs. Comp[2] colored by File Text

O3_0s
O3_20s
O3_40s
O3_60s
O3_180s
O3_300s
O3_ctrl
X variables

O3_ctrl
O3_ctrl

O3_ctrlO3_ctrlO3_0sO3_0s
O3_0s

O3_0s

O3_20sO3_20s

O3_20s

O3_40s
O3_40s

O3_40s

O3_40s

O3_60sO3_60s

O3_60s

O3_180s
O3_180s

O3_180s

O3_180s

O3_180s

O3_300s

O3_300s

O3_300s
O3_300s

EZinf o 2 - 22_Leo_O3 v arious condition_O3_relativ e RT15 (M3: PCA-X) - 2013-09-11 15:03:09 (UTC-7) 

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t(
co

rr
)[

2]
, p

(c
or

r)
[2

]

t(corr)[1], p(corr)[1]

Loadings Bi Plot Comp[1] vs. Comp[2] colored by File Text

O3_0s
O3_20s
O3_40s
O3_60s
O3_180s
O3_300s
O3_ctrl
X variables

O3_ctrl
O3_ctrl

O3_ctrlO3_ctrlO3_0sO3_0s
O3_0s

O3_0s

O3_20sO3_20s

O3_20s

O3_40s
O3_40s

O3_40s

O3_40s

O3_60sO3_60s

O3_60s

O3_180s
O3_180s

O3_180s

O3_180s

O3_180s

O3_300s

O3_300s

O3_300s
O3_300s

EZinf o 2 - 22_Leo_O3 v arious condition_O3_relativ e RT15 (M3: PCA-X) - 2013-09-11 15:03:09 (UTC-7) 

Correlation Coefficient to PC1 

Correlation Coefficient to PC2 

PC1 = 23%  
PC2 = 9% 



70 
 

were found between the outer and middle ellipse (0.50 to 0.75). In addition, the 

samples in the score plot are traditionally combined with the markers in the 

loading plot to interpret PCA results and highlight the markers for characterizing 

the samples (Johnson and Wichern, 2007). Therefore, the boundary to separate 

relative significant and non-significant markers was set in the loading plot as 

shown in Figure 4-10. The correlation coefficients of those significant markers out 

of the boundary were checked in the bi-plot to make sure they were between the 

middle and inner ellipse with correlation coefficient within range of 0.50 - 0.75.   

In order to set the relative significance boundary to separate relatively 

significant and non-significant markers in loading plot (Figure 4-10), the analysis 

started with markers furthest from the origin and moved toward the origin in 

loading plot. It was expected that the markers on the outside were specific to 

certain samples, so they would have dramatic differences between samples, such 

as increasing or decreasing in their peak areas. However, when the analysis 

proceeded toward the origin, the markers would show similar concentrations in all 

samples, so their trends in terms of areas would tend to be constant across the 

samples. By comparing the trends in areas of markers across samples, the analysis 

was stopped when those approaching constant trends were observed, because the 

purpose of PCA was to identify the significant variables (markers) that help to 

describe the major differences between samples. The relative significance 

boundary in red line is shown in Figure 4-10 was drawn by connecting 

corresponding markers which were becoming constant between samples. 
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Figure 4- 10: Relative Significance Boundary Defined in PCA Loading Plot based on 

Ozonation Data from EZ Info Software.  

In Figure 4-10, 8 markers in green circles were used to define the relative 

significance boundary within the red highlighted line, and their trends across 

samples (Figure 4-11) were relatively constant compared with the 8 markers in 

blue squares (Figure 4-12) which were furthest from the origin. Of note are the 

error bars (± 1 standard deviation) in Figure 4-11 and Figure 4-12 are approaching 

the marker area values, which indicated that the variations of areas between the 

replicates in each sample group were large. Discussion regarding such errors is 

included in Section 4.5. The trends for relatively significant and non-significant 

markers were reviewed based on average area values.  
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Figure 4- 11: Relative Non-significant Markers Selected from PCA Loading Plot based on 

Ozonation Datasetsby Markerlynx, where (a) shows markers on positive PC1 axis in loading 

plot; (b) shows markers on negative PC1 axis in loading plot.  

Figure 4-11 shows the trends of the 8 non-significant markers within the 

relative significance boundary. Plot (a) shows the markers (m/z=295.1726, 

273.1488, 277.1798 and 261.1158) on positive PC1 axis, and plot (b) shows 

markers (m/z =289.1101, 277.1097, 297.1334 and 217.0044) on negative PC1 axis. 

All markers were shown in the same vertical axis scale in which the significant 

markers were plotted (Figure 4-12) for consistent comparisons.  

In Figure 4-12 (a), the trends of 5 significant markers (m/z = 267.1415, 

251.1644, 209.1167, 237.1487 and 265.1436) with larger loadings on the positive 

axis of PC1 were plotted. It was found that m/z=237.1487 varied most (range of 

900 total area) across samples. Alternatively, m/z = 267.1415 and 265.1436 

showed lower variations of 350 total area across samples. Compared with the four 

markers with lower loadings on positive PC1 axis plotted in Figure 4-11(a), it was 

found that markers plotted in Figure 4-11(a) show relatively constant trends and 
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the variations in areas were only about 60 across the samples, which were 

approximately 7% - 17% of the maximum area variation of 900 and minimum of 

350 respectively in Figure 4-12(a) where four markers with larger loadings on 

positive PC1 axis were plotted.   

 

Figure 4- 12: Relative Non-significant Markers Selected from PCA Loading Plot based on 

Ozonation Datasets by Markerlynx, where (a) shows markers on positive PC1 axis in loading 

plot; (b) shows markers on negative PC1 axis in loading plot.  

Similarly, compared with the trends of significant markers (m/z = 263.1283, 

267.1235 and 311.1681) with larger loadings on negative PC1 axis plotted in 

Figure 4-12(b), the trends of markers with lower loadings on negative PC1 axis in 

Figure 4-11(b) are relatively constant. Therefore, the 8 markers with relatively 

constant trends shown in Figure 4-11(a) and (b) were considered as 

non-significant markers. Thus markers closer to the origin in the loading plot 

would be even less significant. All markers outside of the relative significance 

boundary were considered as significant markers which would be further analyzed, 

and all markers within the boundary were considered as the non-significant 
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markers which would to be considered for further analysis in this project since 

they did not contribute to understanding of differences between samples.  

4.4 Significant Markers Identification and Monitoring 

In the first minute of ozonation, the direct reaction between molecular ozone 

and contaminants in OSPW dominates, as the molecular ozone takes time to 

decompose into hydroxyl radicals (Catalkaya and Kargi, 2009; Gamal El-Din et 

al., 2011). After the first minute, the non-selective and rapid reaction between 

hydroxyl radicals and contaminants becomes the dominant reaction (Catalkaya 

and Kargi, 2009; Gamal El-Din et al., 2011). These reaction mechanisms may be 

linked with the results of the PCA score and loading plots for a better 

interpretation of significant markers speciation. The PC2 axis, in which samples 

in first minute were vertically distributed, represented the direct reaction between 

markers and molecular ozone in the first minute where the molecular ozone 

preferentially reacted with markers with higher absolute PC2 loadings and lower 

absolute PC1 loadings. The PC1 axis, in which samples after the first minute were 

well separated, represented the non-selective reaction between markers and the 

hydroxyl radicals, where the markers with higher absolute PC1 loadings and 

lower absolute PC2 loadings were more reactive with hydroxyl radicals.         

Significant markers defined previously were further identified by matching 

their exact mass to charge ratio (m/z) values to the known exact masses of NAs 

and oxidized NAs (NA+O, NA+2O, NA+3O and NA+4O) listed in Table A1-A5 

in Appendix. The markers were assumed to be NAs or oxidized NAs if their exact 

masses were matched in a tolerance of ±0.01 Da. However, if the m/z values of 

the markers did not match with any exact mass of NA or oxidized NA, they were 

considered as unknown compounds. All significant markers are highlighted with 

different symbols in different colors in Figure 4-13.  
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Figure 4- 13: PCA (a) Score Plot; and (b) Loading Plot, based on Ozonation Data, where blue circle=NA; green circle=NA+O, blue 

square=NA+2O; brown square=NA+3O; green square=NA+4O; red circle=unknown compounds.  
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The correlations between samples and markers were determined by combining 

the score and loading plots as shown in Figure 4-13. The samples in specific 

regions in the loading plot were positively correlated to the markers co-located in 

the corresponding regions in the score plot (CAMO, 2011; Jackson, 1991; 

Johnson and Wichern, 2007). For example, OSPW control and time 0s samples 

are on the upper right corner (positive PC1 and PC2) in score plot in Figure 

4-13(a), so the markers on the upper right corner in loading plot Figure 4-13(b) 

were positively correlated to the OSPW control and time 0s samples, and those 

markers were mostly NAs and NA+O which were expected to have higher peak 

areas (proportional to higher concentrations) at the beginning of the experiment. 

Similarly, the markers on the negative PC2 axis would be correlated to 40s and 

60s samples co-located in the score plot, so they were expected to have larger 

areas in samples collected at the first minute of the experiment, and the majority 

were oxidized NAs with the exact masses matching with NA+O, NA+2O and 

NA+3O. Markers on the negative axis of PC1 in the loading plot were correlated 

to 180s and 300s samples in the score plot, and those markers would have higher 

areas in samples collected at the end of the experiment, and the majority were 

oxidized NAs such as NA+3O and NA+4O based on their exact masses.  

Therefore, samples at the beginning of the experiment had higher 

concentrations of NAs, NA+O and NA+2O, but through the process of ozonation, 

NAs and oxidized NAs were further oxidized into their higher oxidation states 

(NA+3O and NA+4O). These observations are in agreement with the findings 

reported in the literature (Gamal El-Din et al., 2011; Perez-Estrada et al., 2011; 

Scott et al., 2008). However, no study has previously reported on the fate of 

unknown compounds during ozonation process, so this project focused on 

tracking the behaviour of unknown markers (i.e., not identified as NAs nor 

oxidized NAs) during ozonation in different conditions.  
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Figure 4- 14: Significant Unknown Markers Selected from PCA Results based on Ozoantion 

Datasets by Markerlynx. Plot (a) show markers with decreasing trends; Plot (b) and (c) show 

markers with increasing followed by decreasing trends, but at different rates; Plot (d) show 

markers with increasing trends.  

Figure 4-14 shows the kinetic tendencies of unknown markers based on areas 

with respect to the ozonation time. The plots include the average value of 

replicates in each sample group, and the large error bars indicated the inconsistent 

peak area integration by Markerlynx which is discussed in detail in the following 
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section. Figure 4-14 (a) shows the markers (m/z = 243.1383, 269.1550 and 

281.1567) on the right upper corner (positive PC1 and PC2) in loading plot in 

Figure 4-13(b), which have a trend of decreasing area across the samples. This 

observation is in agreement with the prediction that those markers would have 

higher concentrations at the beginning of ozonation and are degraded in the 

ozonation process because they were positively correlated to OSPW control and 

0s samples. In addition, the rates of degradation of each marker were different as 

shown in Figure 4-14(a). Marker m/z=281.1567 decreased to zero area in the first 

20s, which indicated that the marker was very sensitive to ozonation and could be 

easily degraded. However, m/z=243.1384 and 269.1550 was more resistant to 

ozonation, because its degradation rate was much slower, and did not reach zero 

area until 180s.  

Similarly, Figure 4-14 (b) and (c) show the trends of markers (m/z = 313.1455 

and 299.1312; 223.0955 and 249.1125 respectively) which were expected to be 

correlated to 60s samples on the negative PC2 axis. As predicted, those markers 

illustrated an increasing trend until 60s to reach the highest area and started to 

degrade after the first minute of ozonation. Both increasing and decreasing rates 

of markers (m/z=313.1455 and 299.1312) in Figure 4-14 (b) are faster than the 

rates of markers (m/z=233.0965 and 249.1125) shown in Figure 4-14 (c), which 

indicated that markers in plot (c) might be more resistant to ozonation.  

Finally, Figure 4-14 (d) shows the trends of markers (m/z = 209.0945, 

239.1109, 265.1077, 281.1029 and 311.1681) which were correlated to samples 

collected at end of the experiment. As expected, those five markers had their 

highest area in 180s or 300s samples. In addition, markers with m/z=209.0945, 

239.1109, 265.1077 and 281.1029 started with an initial area of zero, which 

indicated that those four markers were at negligible concentrations in raw OSPW 

but only formed later during the ozonation process. Thus, those markers are the 
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by-products of ozonation. On the other hand, m/z=311.1681 shows an increasing 

trend with initial area at beginning of ozonation in Figure 4-14(d), so it was 

reasonable to consider that slight oxidation had already occurred in the tailings 

ponds as suggested in the literature (Allen, 2008; Clemente, 2004), and the 

ozonation further increased its concentration. Also, it was found that unknown 

markers m/z= 239.1109 and 281.1029 were formed after 180s, but unknown 

markers m/z=209.0945 and 265.1077 formed after only 40s or 60s. The 

differences of formation time indicated that m/z=209.0945 and 265.1077 could be 

formed from parent compounds that were more sensitive to ozone, but unknown 

compounds m/z=239.1109 and 281.1029 might be formed from a parent 

compound that was more resistant to ozone (i.e., slower degradation rates) or 

further degradation of other by-products.  

In conclusion, markers in the loading plot were correlated with the 

corresponding samples in the score plot, and such correlations could be reviewed 

in markers’ trends in areas across samples with respect to ozonation time. Markers 

were assumed as NAs, oxidized NA or unknown compounds based on their m/z 

values. It was found that NAs or oxidized NAs were oxidized to their higher 

oxidation states during the ozonation process. By studying the trends of unknown 

compounds, it was found that some unknown markers were degraded at different 

rates during ozonation; some unknown markers increased at the beginning of 

experiments followed by degradation after the first minute of ozonation; and some 

unknown markers were formed or increased at different rates during the ozonation 

process. The markers decreasing over time indicated they were able to be 

removed from OSPW by ozonation, but markers increased or formed remained in 

OSPW after ozonation, and any unknown markers with increasing trends were the 

by-products from OSPW treated by ozonation in different conditions. The 

faster/slower degradation and formation/increasing rates indicated the markers’ 
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relative sensitivities or resistances to molecular ozone and the hydroxyl radical. 

4.5 Markerlynx Validation 

The area integrations by Markerlynx software showed relatively large 

variations between replicates. To track the variation, it was necessary to first 

review all integrated areas and chromatograms of the same marker across 

different samples. For example, Figure 4-15 shows the integrated areas of marker 

(m/z=269.1550) across all samples collected during ozonation and processed by 

PCA. Some sample groups only contained 3 or 4 samples after excluding the 

outliers. Each sample group was labelled with a different symbol across the 

horizontal axis. The vertical axis shows the area values of all samples, and the 

green and red lines set the boundary for two and three standard deviations 

determined using all sample values. It was observed the integrated area varied 

markedly in OSPW control samples labelled as blue squares and time 0s samples 

labelled as blue diamonds in Figure 4-15, because the variations exceeded the 

second standard deviation boundary.  

 

Figure 4- 15: Integrated Areas of m/z=269.1550 across all Samples from Markerlynx 

Software.  
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To further track the high variability of the software for area integrations (e.g., 

area = 0 for the second OSPW control sample and area = 300 for the fourth 

OSPW control sample in Figure 4-15), it was necessary to review the 

chromatograms of the integrated peaks. Figure 4-16 shows the chromatograms of 

m/z=269.1550 with four replicates in the OSPW control sample group. In Figure 

4-16, the chromatograms of the extracted ion in each OSPW control sample look 

very similar. The intensity (I) and area (A) under the peaks were labelled with 

numerical values. The intensities among four replicates were 1,281, 1,556, 1,324 

and 1,219 with a standard deviation of 147, which was about 10% relative 

standard deviation (RSD) with an average intensity of 1,345. However, the areas 

for four replicates were found to be 70, 0, 133 and 292. The standard deviation 

was 125 which was higher than the area of OSPW control sample 1, 2 and average 

value of 124 (RSD = 100%). Moreover, OSPW control sample 2 had the highest 

intensity of 1556, but the software did not recognize the peak. Thus, the problem 

observed above indicated that the Markerlynx software inconsistently integrated 

peak areas and sometimes did not recognize the peaks’ presence.  
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Figure 4- 16: Extracted Ion Chromatograms for m/z = 269.1550 in Four Injections of OSPW 

Control Sample.  

Another example of integration issues is found in Figure 4-17 where 

Markerlynx software did not recognize peaks for m/z=265.1077 which show the 

trend of formation in Figure 4-14(d). Since the chromatograms of replicates are 

similar, only one sample chromatogram from each sample group is shown in 

Figure 4-17 so that the change of marker’s chromatograms through the entire 

ozonation processes could be viewed. It was found that peaks with intensities of 

505, 521 and 543 actually existed in time 0s, 20s and 40s samples respectively, 

but the areas under those peaks were all integrated as 0. However, the peak areas 

in 60s, 180s and 300s samples were integrated as 82, 180 and 192 respectively, so 

it seemed the software could not recognize the peaks until the intensities reached 
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1,000. These problems indicated that the default parameters such as noise level, 

the minimum intensities and thresholds for peak detection used by the software 

needed adjustment.      

 

Figure 4- 17: Extracted Ion Chromatograms of m/z = 265.1077 duirng Ozonation Processes. 

The parameters set in the method for peak area integrations were discussed in 
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The values of each parameters tested currently are shown in Table 4-3, and the 

effects after adjusting each parameter are discussed below.   

Table 4- 3: Parameters in Method Which Potentially Influenced the Peak Area Integration 

Parameters Values 

Peak Width 10.5s 60s 100s 150s 

Peak-to-peak Baseline Noise automatic 500 300 100 

Smoothing Yes No   

Intensity Threshold (counts) 100 50 30 10 

Noise Elimination Level 6 4 2 0 

 

(1) Peak Width 

Initially, peak width was automatically determined at 5% height of the peak by 

Markerlynx software. Theoretically, peak width would vary from marker to 

marker based on the different markers’ chromatograms. However, the integration 

results by automatic peak width showed large variations across samples. Based on 

Waters Inc. (2010)’s recommendations, using the maximum peak width would 

provide better integration results if the exact peak width was not known. 

Therefore the maximum peak width of 10.5 seconds automatically determined by 

software was applied across all samples, and all results shown previously were 

generated based on this maximum peak width value.  

After reviewing a few markers’ chromatograms, for example m/z=269.1550 

and m/z=265.1077 in Figure 4-16 and 4-17, the peak widths were found to be 

about 60s which was much larger than the value of 10.5s applied previously. 

Therefore, a series of peak widths were manually entered including 60s, 100s and 

150s to test if these changes could improve area integrations. However, after 

testing different peak width values, it was found that the increasing of peak width 
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only resulted in differing areas for a few markers, but remained the same for the 

majority of markers. Table 4-4 shows the area results of m/z=269.1550 and 

m/z=265.1077 based on peak width of 10.5s, 60s, 100s and 150s. It was found 

that increasing peak width did not necessarily increase the integrated areas, 

because some of the areas reduced with extending peak width. For example, the 

integrated area of m/z=269.1550 in 0s sample slightly increased when the peak 

width extended from 10.5s to 60s, and almost doubled in area when the peak 

width further extended to 100s, but the area dramatically decreased when the peak 

width extended to 150s. Also, the standard deviations of the peak areas within 

sample groups were still large when the peak width extended, so the area 

variations in the replicates were still high. In addition, increasing of peak width 

did not allow Markerlynx software to recognize the peaks of m/z=265.1077 with 

areas still integrated as 0 in 0s to 40s samples in Table 4-4. The software did not 

provide output chromatographs to show which part of peak was integrated, so it 

was difficult to estimate the critical peak width and area values. Thus, it was not 

able to be concluded which area value shown in Table 4-3 was overestimated or 

underestimated. Therefore, increasing the peak width parameter did not help 

improve area integrations, so the maximum peak width of 10.5s automatically 

determined by Markerlynx software was kept for further analyses.  
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Table 4- 4: Integrated Areas for m/z=265.1077 and m/z=269.1550 by applying Different Peak Widths.  

Integrated Areas for m/z = 265.1077 

Peak width   10.5s 60s 100s 150s 

Samples average SD average SD average SD average SD 

ctrl 0 0 0 0 0 0 0 0 

0s 0 0 0 0 0 0 0 0 

20s 0 0 0 0 0 0 0 0 

40s 0 0 0 0 0 0 0 0 

60s 49 30 0 0 0 0 57 46 

180s 142 65 135 36 208 51 179 48 

300s 170 44 146 50 214 64 188 56 

Where, SD = standard deviation 

Integrated Areas for m/z = 269.1550 

Peak width   10.5s 60s 100s 150s 

Samples average SD average SD average SD average SD 

ctrl 124 125 168 113 465 260 202 150 

0s 225 96 227 66 436 289 258 163 

20s 83 50 99 51 156 155 101 37 

40s 73 57 88 67 102 99 128 29 

60s 20 34 0 0 67 49 0 0 

180s 0 0 0 0 0 0 0 0 

300s 0 0 0 0 0 0 0 0 
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(2) Peak-to-peak baseline noise 

The baseline noise between peaks on extracted ion chromatograms were 

automatically determined by software, and the values varied from sample to 

sample with a range of 788 to 909 based on the analysis of ozonation datasets 

(Table 4-1). In order to allow the software to recognize more peaks with lower 

intensities, a series of peak-to-peak baseline noise values were tested at reduced 

values of 500, 300 and 100. However, the method was limited to a single baseline 

noise value applied for the whole sample list, so noise with higher intensities 

would be recognized as markers. After manually entering baseline noise, it was 

found that more potential noise was recognized as markers as the baseline noise 

was reduced. For instance, there were 1,525 markers detected with the automatic 

baseline and noise values ranging from 788 to 909. As the baseline noise was 

manually reduced to 500, there were 3,804 markers detected, and about 5,000 

markers detected with baseline noise reduced to 300. Moreover, with baseline 

noise of 100, there were over 30,000 markers detected. However, despite the 

drawback of more noise with lower intensities being recognized as peaks by 

software, the integrated areas of m/z=269.1550 and m/z=265.1077 showed the 

same results as before, which indicated that software still could not properly 

recognize some peaks present in the chromatograms. Therefore, adjustment of the 

peak-to-peak baseline noise could not help the software to recognize peaks nor 

consistently integrate areas.  

(3) Smoothing 

Two iterations of a mean smoothing function (three data points wide) could be 

selected to be applied during the area integration process. However, the 

application of the smoothing function resulted in the Markerlynx software 

sometimes not detecting the internal standard. Also, this function did not solve the 
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problem of recognizing peaks, because some peak areas of the examples markers 

m/z=269.1550 and m/z=265.1077 were still integrated as 0. Thus, smoothing was 

not applied since it did not improve the overall analyses.   

(4) Marker intensity threshold (counts) 

The intensity threshold (counts) defined the minimum intensity of a spectra 

peak that was recognized by software. This parameter was originally set as 100 as 

recommended by Waters Inc. (2010). All PCA results shown previously were 

based on the intensity threshold of 100, and there were 1,525 markers detected. 

After reducing the intensity threshold to 50, there were 1,536 markers detected, so 

the total markers slightly increased. However, the integrated areas were exactly 

the same for example markers m/z=269.1550 and m/z=265.1077, and all other 

markers as well. In addition, similar results were observed by reducing the 

intensity threshold to 30 and 10, but realistically only more noises were being 

considered as markers. Therefore, the intensity threshold could not improve area 

integrations and was not applied further.  

(5) Noise elimination level 

Noise elimination level defined the number of standard deviations of the 

baseline noise to be eliminated. This parameter directly determined the magnitude 

of spectra noise shown in sample table (Table 4-1), and the spectra noise defined 

intensity threshold value below which the response was considered as noise 

(Waters Inc., 2010). The elimination level was originally set as 6, which is in the 

range of 4 to 10 recommended by Waters Inc. In order to have the software 

recognize more peaks, the elimination level was reduced to 4, 2 and 0. At the 

elimination level of 6, the spectra noises were about 250 consistently across all 

samples, and resulted in 1,525 markers detected. When the elimination level was 
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reduced to 4, the spectra noises were about 200 across all samples; and 1,596 

markers were detected. When the noise elimination level was set as 2, the spectra 

noise was reduced to about 70 and 1,728 markers were detected. As the 

elimination level was set to 0, the spectra noises became 0 for all samples and 

1,888 markers were detected. However, regardless of the spectra noises reduction, 

the integrated areas for the example markers m/z=269.1550 and m/z=265.1077 

remained unchanged. Thus, this parameter could not improve the area 

integrations.  

Overall, with the combinations of different parameters tested previously shown 

in Table 4-3, the results still showed large standard deviations in integrated areas 

of replicates, and peaks in the chromatograms for markers m/z=269.1550 and 

m/z=265.1077 were integrated as 0 which indicated that the software was not able 

to recognize all actual peaks. Therefore, it was concluded that changing the 

parameters in the method could not help to improve the area integrations, and it 

was suggested that the software needed to be reassessed by the manufacturer. 

Unfortunately, there was no plot given to show which part of the peak had been 

integrated. Therefore, it was difficult to determine the critical value of correct area 

integration and to conclude which peak areas were being overestimated or 

underestimated. 

4.6 Targetlynx  

After discussion with Waters Inc. concerning the area integration issues 

associated with Markerlynx software, it was suggested that Targetlynx be applied 

for manually selecting peaks for more accurate area integrations. Targetlynx 

software is a quantitative tool to estimate the concentrations of organic 

compounds based on known concentrations of an appropriate internal standard, 

and the concentration estimation was expressed in Equation 4-1: 
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Estimated Concentration =
Peak Response in Area

ISTD Response in Area 
× ISTD Concentration …. Equation 4-1 

However, since many of the current markers considered were unknown 

compounds, the internal standard used for quantifications of NAs and oxidized 

NA was not suitable for estimating concentrations of the unknown compounds. 

Since the peak responses in the form of areas were positively proportional to the 

concentrations, the trends of the compounds concentrations changing during the 

treatment processes could be reviewed in the form of the peak areas (i.e., a 

semi-quantitative analysis).  

The non-significant and significant markers shown in Figure 4-10 and 4-11 

(processed by Markerlynx software) were re-processed by Targetlynx software, 

and their trend plots are shown in Figure 4-18 and 4-19.  

 

Figure 4- 18: Trends of Non-significant Markers by Targetlynx. (a) trends of markers 

highlighted with green circles on negative PC1 axis in Figure 4-10; (b) trends of markers 

highlighted with green circles on positive PC1 axis in Figure 4-10.  
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Figure 4- 19: Trends of Significant Markers by Targetlynx. (a) trends of markers highlighted 

with blue squares on negative PC1 axis in Figure 4-10; (b) trends of markers highlighted 

with blue squares on positive PC1 axis in Figure 4-10. 

The areas of non-significant and significant markers integrated by Targetlynx 

were plotted using the same area and time scales for consistent comparisons to 

Markerlynx results. For example, four non-significant markers (m/z=295.1726, 

273.1488, 277.1798 and 261.1158) that defined the positive PC1 axis of the 

relative significance boundary in Figure 4-10 were plotted in an area scale of 1400 

in Figure 4-18(a). The five most significant markers (m/z=267.1415, 251.1644, 

209.1167, 237.1487 and 265.1436) that had large positive PC1 or PC2 loadings 

(Figure 4-10) were plotted in Figure 4-19(a). It was clear to see that the trends 

shown in Figure 4-18(a) are relatively stable compared with the trends shown in 

Figure 4-19(a). For instance, the area variations of significant markers over time 

ranged from about 450-1,000 in area, but the area variations of non-significant 

markers were only about 40-200 in area, which was about 10%-20% of the 

variations of significant markers. Similarly, the trends of non-significant markers 

(on the negative PC1 axis in loading plot) shown in Figure 4-18(b) are stable as 
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compared to the trends of significant markers (on the negative PC1 axis in loading 

plot) shown in Figure 4-19(b), because the area variations of non-significant 

markers over time were about 10-50 in area, which were about 5%-15% of the 

variations in areas of about 200-300 in area for significant markers. Therefore, the 

changes over time for the markers shown in Figure 4-18 were relatively 

non-significant compared with the 8 significant markers shown in Figure 4-19 

based on their trends plots, so the relative insignificance boundary defined in 

Figure 4-10 by Markerlynx was acceptable based on the area integrations by 

Targetlynx.  

Comparing the trends plots generated by Targetlynx (Figure 4-18 and 4-19) and 

Markerlynx (Figure 4-11 and 4-12), for the same marker, it could be observed that 

the average areas integrated by Targetlynx were larger than the average areas 

integrated by Markerlynx, and the standard deviations of areas in each sample 

group by Targetlynx were lower than those generated by Markerlynx. Such 

observations were expected since there should be more consistency of replicates 

in the same sample groups using a manually defined peak area. Generally, most 

markers showed similar overall trends by using the two different software 

approaches which validates the results considered in previous sections. However, 

there were some exceptions including markers m/z=267.1235 and 311.1681. By 

comparing Figure 4-12(b) and Figure 4-19(b) where these two markers were 

plotted by Markerlynx and Targetlynx, respectively, it was found that both 

m/z=267.1235 and 311.1681 had no initial values until the first minute of the 

experiment by Markerlynx, but those two markers were assigned with initial 

values at the beginning of the experiment by Targetlynx. The reason for these 

initial values differences by the two different software approaches was due to 

Markerlynx not detecting peaks as the extracted ion chromatograms of 

m/z=267.1235 shown in Figure 4-20, while the peak could be manually selected 
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for integration in Targetlynx. The chromatogram shown in Figure 4-20(a) is from 

Markerlynx with the peak intensity of 653 and integrated area of 0. While, the 

lower chromatogram shown in Figure 4-25(b) is from Targetlynx, and the peak 

with intensity of 399 was integrated with an area of 143. Moreover, the signal to 

noise ratio of 32, which was greater than the critical value of 10 for quantification 

limit, indicated the peak integrated was not noise. The chromatograms shown in 

Markerlynx and Targetlynx are different in Figure 4-20, because a smoothing 

factor was applied in Targetlynx as recommended by a field technician from 

Waters Inc., which gave the peak an improvement in shape prior to integration.  

 

Figure 4- 20: Chormatogram of Significant Marker m/z=267.1235 (a) in Markerlynx 

Software, and (b) in Targetlynx Software. 
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Not only did the initial area of m/z=267.1235 differ between Markerlynx and 

Targetlynx, but the overall trend of the marker was different. The trend in 

Markerlynx (Figure 4-12(b) shows that the marker was formed after 40s, and the 

area increased until the end of experiment. However, the trend in Targetlynx 

(Figure 4-19(b) shows that the marker steeply increased in first minute, but 

slightly decreased after first minute. The differences between the trends shown in 

two different software approaches were due to several reasons. For instance, the 

trends were based on the average integrated areas, so the large variations of areas 

in replicates would lead to the average area to be overestimated or underestimated 

by Markerlynx. Also, the area integration algorithms between Targetlynx and 

Markerlynx were different (Waters Inc., 2010). The integrations in Targetlynx 

were more user-controllable contrary to the software-control of Markerlynx, 

therefore the area integrations from Targetlynx could generally be considered as 

more reliable.   

Similarly, the significant unknown compounds shown in loading plot (Figure 

4-13) were re-processed by Targetlynx, and their trends were plotted in Figure 

4-21. Markers (m/z=243.1384, 269.1550 and 281.1567) in Figure 4-21(a) show a 

degradation trend during the ozonation process, so those markers were associated 

with OSPW control and 0s samples by combining PCA score and loading plots 

shown in Figure 4-13. While, markers (m/z=313.1455, 299.1312, 223.0965 and 

249.1125) in Figure 4-26(b) and (c) show a trend of increasing in the first minute 

followed by decreasing at different rates after the first minute, so those markers 

were correlated with samples collected at the first minute of experiment. Thus, the 

observations from Targetlynx agreed with those from Markerlynx which were 

shown in Figure 4-14(a), (b) and (c). Although the integrated areas for markers 

(m/z=243.1384, 269.1550, 281.1567, 313.1455, 299.1312, 223.0965 and 249.1125) 

were not exactly the same between the two software approaches, the overall 
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trends for those markers were similar. As for previous results, the areas integrated 

by Targetlynx were larger than the areas integrated by Markerlynx, and the 

standard deviations of areas in each sample group by Targetlynx were much 

smaller than the results generated by Markerlynx. Thus, Targetlynx helped to 

improve the consistent area integrations of replicates in each sample group as 

compared to Markerlynx.  

 

Figure 4- 21: Significant Unknown Markers Selected from PCA Results based on Ozonation 

Datasets by Targetlynx. Plot (a) shows markers with decreasing trends corresponded to 

Figure 4-14(a); Plot (b) and (c) show markers with increasing followed by decreasing trends 

corresponded to Figure 4-14(b) and (c), but at different rates; Plot (d) shows markers with 

increasing trends corresponded to Figure 4-14(d).  
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In addition, by comparing Figure 4-21(d) and 4-14(d) where the significant 

unknown markers with an increasing trend were plotted, it was found that the 

markers (m/z=281.1029 and 265.1077) had initial areas as integrated by 

Targetlynx, but those two markers showed no areas prior to the first minute in 

Markerlynx. In Figure 4-22, the extracted ion chromatograms of m/z=265.1077 

were obtained from the same sample but by both different software programs with 

Markerlynx in plot (a) and (b), and Targetlynx in plot (c) and (d). It was clear to 

visually see the peaks present in 0s sample and 40s sample in Figure 4-22(a) and 

(b), but both areas were integrated as 0 by Markerlynx. Alternatively, the areas 

were integrated as 79 in time 0s sample and 129 in time 40s sample by Targetlynx 

as highlighted by the red circles in Figure 4-22(c) and (d), and the signal to noise 

ratio of 25 and 27 indicated that the peaks were not noise.  

As discussed previously, markers integrated with no initial area by Markerlynx 

were integrated with an initial area by Targetlynx. The inconsistent automatic area 

integration and peak detections indicated that Markerlynx validation had to be 

improved. Since PCA was processed based on the integrated areas from 

Markerlynx, it was recommended to use Markerlynx to review the statistical 

significance of PCA on data analysis, and to apply Targetlynx to monitor the 

actual changes of markers during the ozonation process.   
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Figure 4- 22: Chromatograms of m/z=265.1077 in (a) 0s sample from Markerlynx software; 

(b) 40s sample from Markerlynx software; (c) 0s sample from Targetlynx software; (d) 40s 

sample from Targetlynx software.  
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with any exact mass of NAs or oxidized NAs, the Masslynx Elemental 

Composition (V4.0, Water Inc.) calculator was applied to propose the possible 

elemental compositions based on their m/z values.  

As introduced in Chapter 3, only elements including C (7-50), H (14-100), O 

(1-6), N (0-2) and S (0-2) were considered as possible compositions based on the 

previous study on the organic compounds in OSPW (Allen, 2008; Corinee, 2010; 

Pourrezaei et al., 2011). The possible elemental compositions given by the 

Masslynx Elemental Composition calculator for all significant unknown markers 

with red circles in the PCA loading plot (Figure 4-13) are listed in Table 4-5.  

In Table 4-5, the first column shows the exact masses of detected unknown 

markers, and the second column shows the calculated exact masses based on 

suggested molecular formulas shown in the last column. The third and the fourth 

column represent the errors of exact masses between the detected mass and the 

calculated mass in mDa and PPM, respectively. Table 4-5 only lists the 

suggestions of elemental compositions within error tolerances less than 10 PPM. 

Negative values in errors indicated that the detected markers had exact masses 

lower than the suggested markers. The DBE column calculated the double bonds 

equivalents based on Equation 3-4. The DBE value suggests the number of double 

bonds, rings or triple bonds in the structure (Clayden et al., 2001). For example, 

one double bond or one ring would have a DBE value of one, and one triple bond 

have a DBE value of two.   
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Table 4- 5: Elemental Compositions for Unknown Markers from O3 Datasets.  

Detected 

Mass 

Calculated 

Mass 

Error  

mDa 

Error 

PPM 

DBE Formula 

209.0945 209.0960 -1.5 -7.2 0.5 C7 H17 N2 O3 S 

 209.0926 1.9 9.1 5.5 C10 H13 N2 O3 

 209.0966 -2.1 -10 9.5 C15 H13 O 

223.0965 223.0970 -0.5 -2.2 5.5 C12 H15 O4 

239.1109 239.1106 0.3 1.3 4.5 C13 H19 O2 S 

243.1384 243.1385 -0.1 -0.4 7.5 C16 H19 O2 

249.1125 249.1127 -0.2 -0.8 6.5 C14 H17 O4 

265.1077 265.1076 0.1 0.4 6.5 C14 H17 O5 

 
265.1085 -0.8 -3 5.5 C15 H21 S2 

 
265.1051 2.6 9.8 10.5 C18 H17 S 

 
265.1103 -2.6 -9.8 11 C17 H15 N O2 

269.155 269.1542 0.8 3 8.5 C18 H21 O2 

 
269.1575 -2.5 -9.3 3.5 C15 H25 O2 S 

281.1029 281.1025 0.4 1.4 6.5 C14 H17 O6 

 
281.1034 -0.5 -1.8 5.5 C15 H21 O S2 

 
281.1052 -2.3 -8.2 11 C17 H15 N O3 

281.1567 281.1575 -0.8 -2.8 4.5 C16 H25 O2 S 

 
281.1542 2.5 8.9 9.5 C19 H21 O2 

299.1312 299.1310 0.2 0.7 14 C21 H17 N O 

 
299.1317 -0.5 -1.7 4.5 C15 H23 O4 S 

 
299.1283 2.9 9.7 9.5 C18 H19 O4 

311.1681 311.1681 0 0 4.5 C17 H27 O3 S 

 311.1674 0.7 2.2 14 C23 H21 N 

 311.1708 -2.7 -8.7 9 C20 H25 N S 

313.1455 313.1467 -1.2 -3.8 14 C22 H19 N O 

 
313.1440 1.5 4.8 9.5 C19 H21 O4 

 
313.1474 -1.9 -6.1 4.5 C16 H25 O4 S 

 
313.1433 2.2 7 0.5 C11 H25 N2 O6 S 
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According to Perez-Estrada et al. (2011), the AOPs mechanism of degradation 

is suggested as the reaction of the hydroxyl radical with organic compounds (e.g., 

NAs) by H atom abstraction. The markers with more rapid degradation during 

ozonation were suggested to have molecular structures of higher carbon number 

with more H atoms available for hydroxyl radical abstraction; more rings with 

more tertiary carbons in which the H atom is more reactive than that on primary 

and secondary carbon; and less quaternary carbons with no H atom available. The 

rapid degradation of the marker would lead to the rapid increasing in areas of 

another by-product marker. It was observed that significant unknown markers 

with higher carbon number or DBE values in their suggested formulas would tend 

to have faster rate in changes in Figure 4-14 by Markerlynx and in Figure 4-21 by 

Targetlynx. For example, m/z=313.1455 (C22H19NO, DBE = 14, error = -3.8 PPM) 

and m/z=299.1312 (C21H17NO, DBE = 14, error = 0.7 PPM) had similar rates of 

changes (increasing followed by decreasing) in Figure 4-14(b) and Figure 4-21(b), 

but their rates of change were faster compared to m/z=223.0965 (C12H15O4, DBE 

= 5.5, error = -2.2 PPM) and m/z=249.1125 (C14H17O4, DBE = 6.5, error = -0.8 

PPM) in Figure 4-14(c) and Figure 4-21(c), because of their higher carbon 

number and DBE values which indicated that more rings with H atoms available 

for hydroxyl radical abstraction were potentially present in the molecular 

structure.  

However, m/z=281.1567 (C16H25O2S, DBE = 4.5, error = -2.8 PPM) showed 

the highest degradation rate compared to m/z=243.1384 (C16H19O2, DBE = 7.5, 

error = -0.4 PPM) and m/z=269.1550 (C18H21O2, DBE = 7.5, error = 3 PPM) by 

both Markerlynx in Figure 4-14(a) and Targetlynx in Figure 4-21(a), but 

m/z=281.1567 had lower carbon number and DBE values compared with 

m/z=243.1384 and m/z=269.1550. Thus, the second possible formula with higher 

carbon number and DBE values for m/z=281.1567 (C19H21O2, DBE = 8.5, error = 
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8.9 PPM) might be more reliable based on the relative degradation rates. Overall, 

the analysis in this stage was only based on the possible elemental compositions 

given by software, which needs further experimental investigation.  

4.8 Common Markers in Ozonation in Different Conditions 

Markerlynx and Targetlynx analyses considered for O3 datasets previously 

were applied to other ozonation in different conditions datasets including ozone 

with carbonate (O3+CO3
2-

), ozone with tert-butyl-alcohol (O3+TBA), ozone with 

carbonate and tert-butyl-alcohol (O3+ CO3
2-

+TBA), ozone with tetranitromethane 

(O3+TNM) and ozone with iron (O3+Fe (II)). The significant unknown 

compounds were determined by PCA with all results including PCA score and 

loading plots, significant unknown compounds trends, and suggested elemental 

compositions for each significant unknown compound shown in Appendix B1 to 

B5.  

Overall, 12 significant unknown markers were selected from the O3 datasets; 

20 from O3+ CO3
2-

 datasets; 21 from O3+TBA datasets; 23 from O3+ CO3
2-

+TBA 

datasets; 21 from O3+TNM datasets; and 17 from O3+Fe (II) datasets. Comparing 

the results from each ozonation in different conditions dataset based on markers’ 

m/z values, it was found that 21 unknown markers were present only in a specific 

individual ozonation condition experiment (shown in Appendix B-6), while 27 

known markers (Figure 4-23 to Figure 4-27) were found more commonly in two 

or more ozonation conditions. The markers were assumed to be the same if their 

m/z values were in an error range of ±0.01 Da. However, the trends or behaviours 

of the common markers were specific to the different ozonation conditions. Figure 

4-23 to Figure 4-27 show the 27 unknown markers found to be common in 

different ozonation conditions by Markerlynx. To facilitate a comparison between 

the software approaches as shown previously, the trends plots for the common 
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markers by Targetlynx were plotted and included in Appendix B-7. Although the 

integrated areas were not exactly the same, the overall trends of these markers 

during ozonation in different conditions were found to be similar by both 

Markerlynx and Targetlynx software. Therefore comparisons are not further 

discussed.  

 

Figure 4- 23: Common Markers from Ozonation in Different Conditions Datasets by 

Markerlynx (part 1), where m/z=253.12 in plot (a); m/z=267.14 in plot (b); m/z=281.15 in 

plot(c). Legend CO3_253.1268 indicated m/z=253.1268 found in O3 + CO3
2-

 data.  

Figure 4-23(a), (b) and (c) show that three markers m/z=253.12, 267.14 and 

281.15 were degraded to below the detection limit in the first 20s - 40s of 

ozonation in different conditions. The rapid degradation of three markers in 

Figure 4-23 indicated they were very sensitive to most ozonation in different 

conditions regardless of the addition of ozonation scavengers or catalysts.   
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Figure 4- 24: Common Markers from Ozonation in Different Conditions Datasets by 

Markerlynx (part 2), where m/z=243.13 in plot (a); m/z=255.13 in plot (b); m/z=269.15 in plot 

(c); m/z=271.13 in plot (d); m/z=283.13 in plot (e); m/z=283.17 in plot (f); m/z=297.15 in plot 

(g).  
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Figure 4-24 plots (a) to (g) show seven markers (m/z=243.13; 255.13; 269.15; 

271.13; 283.13; 283.17; 297.15) that had degradation trends during ozonation in 

different conditions. However, compared with the markers rapidly removed 

shown in Figure 4-23, the areas of the seven markers shown in Figure 4-24 did 

not become zero until 1-5 minutes during ozonation in different conditions. Thus, 

the degradation rates of those markers were slower than those in Figure 4-23, so 

they were less sensitive to molecular ozone or hydroxyl radicals. In addition, it 

was expected that the addition of Fe (II) as a catalyst would enhance the hydroxyl 

radical production to accelerate the degradation rates of markers (Nawrocki and 

Kasprzylk-Hordern, 2010; Kishimoto and Ueno, 2012). However, the degradation 

rates of markers in the experiment with Fe (II) addition were slower than the rates 

found in other experiments with scavenger addition in plot (a) and (f). The reasons 

for these differences were not clear at this stage as the molecular structure of the 

markers and corresponding ozonation reaction mechanisms were not known.  

Figure 4-25 show six markers with slower degradation rates (more resistant to 

ozonation in different conditions) compared with markers shown in Figure 4-24. 

For instance, marker m/z=259.1327 in TBA in plot (a), m/z=275.1294 in CO3
2-

 in 

plot (c), m/z=325.1834 in Fe (II) in plot (f) could not be reduced below detectable 

limits during the 5 minute experiments used for the ozonation in different 

conditions. Plot (e) and (f) show the same marker but at different scales, as area 

m/z=325.1834 in Fe (II) data was more than 10 times larger than the areas in TBA 

and TBA+ CO3
2-

 data.  In addition, m/z=273.1142 and m/z=325.1835 in TBA+ 

CO3
2-

 data in plot (b) and (e) respectively show constant trends across samples, 

which indicated they were quite stable during ozonation in different conditions 

treatment, so they would be considered as resistant to molecular ozone or 

hydroxyl radicals. 
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Figure 4- 25: Common Markers from Ozonation in Different Conditions Datasets by 

Markerlynx (part 3), where m/z=259.13 in plot (a); m/z=273.11 in plot (b); m/z=275.12 in plot 

(c); m/z=285.15 in plot (d); m/z=325.18 in plot (c); m/z=325.18 in both plot (e) and (f). 

Figure 4-26 (a) to (g) show seven markers with varying trends in each 

ozonation condition. For instance, m/z=223.0963 and m/z=249.1123 in Fe (II) 

data showed increasing trends in plot (a) and (b) respectively, but their 
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corresponding common markers (e.g., m/z=223.0965 and m/z=249.1125 in O3 

data) show trends of increasing followed by decreasing in plot (a) and (b) 

respectively. Thus, observations indicated the addition of Fe (II) might increase 

the efficiency of ozonation (Nawrocki and Kasprzylk-Hordern, 2010; Kishimoto 

and Ueno, 2012), as the continuing increase of the markers’ areas indicated the 

continuing degradation of their parent compounds. However, the addition of Fe (II) 

did not always result in the increasing formation which would indicate the 

continuing degradation of another marker. For instance, m/z=299.1307 and 

m/z=313.1462 in Fe (II) data in plot (d) and (f) show the trends of increasing 

followed by decreasing, but their corresponding common compounds (e.g., 

m/z=299.1326 and m/z=313.1467 in TBA data) show increasing trends although 

TBA was added as a hydroxyl radical quencher to decrease the ozonation 

efficiency. The possible reasons were due to the ozonation in different conditions 

efficiencies and mechanisms which are directly related to the presence of 

scavengers or catalysts, and the molecular structures of target compounds.  
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Figure 4- 26: Common Markers from Ozonation in Different Conditions Datasets by 

Markerlynx (part 4), where m/z=223.09 in plot (a); m/z=249.11 in plot (b); m/z=297.11 in plot 

(c); m/z=299.13 in plot (d); m/z=311.13 in plot (e); m/z=313.14 in plot (f); m/z=325.14 in plot 

(g). 
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Figure 4-27 illustrates the common unknown markers with increasing trends in 

different ozonation conditions. Plot (a) shows the marker m/z=265.10 started 

increasing after 0s in CO3
2-

 data, but the marker was not formed until 40s in O3 

data. After the first minute for each ozonation condition, the increasing rates were 

similar. Plots (b) to (e) show the markers increasing at different rates during 

ozonation in different conditions with the addition of scavengers or catalysts. For 

example, in plot (d), the presence of Fe (II) accelerates the increasing rate of 

m/z=313.1111 compared with its corresponding common marker m/z=313.1116 in 

TNM data. The faster rate of increase might be a result of a faster rate of 

degradation of parent compounds, which would indicate the Fe (II) improved 

ozonation in different conditions efficiencies as expected (Catalkaya and Kargi, 

2009). In addition, the increasing rate for m/z=285.1173 in TBA+ CO3
2-

 in plot (c) 

was much faster at the beginning as compared with the rate after the first minute, 

but the rate of m/z=313.1116 in TNM in plot (d) was much faster after first minute 

of ozonation compared with the rate at beginning. Gamal El-Din et al. (2011) and 

Perez Estrada et al. (2011) suggested that the organic compounds rapidly 

degraded in the first minute of ozonation were more sensitive to molecular ozone, 

and the rapid degradation after the first minute indicated that the markers were 

mainly degraded by hydroxyl radicals. Further research would be necessary to 

identify the molecular structures of those significantly increased unknown 

markers, which would lead to better understanding of mechanisms of ozonation in 

different conditions. Overall, the markers shown in Figure 4-27 indicated that they 

were by-products of degradation for the majority of the current ozonation in 

different conditions regardless of the addition of catalysts or scavengers.    
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Figure 4- 27: Common Markers from Ozonation in Different Conditions Datasets by 

Markerlynx (part 5), where m/z=265.10 in plot (a); m/z=271.10 in plot (b); m/z=285.11 in plot 

(c); m/z=313.11 in plot (d); m/z=315.12 in plot (e).  
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4.9 Biological Treatment Processes 

4.9.1 Raw OSPW Biodegradation  

Similarly to the approach used to study the ozonation in different conditions 

datasets, the PCA was applied to datasets for raw OSPW treated by biological 

treatment processes. Figure 4-28 shows the PCA score and loading plots based on 

datasets of raw OSPW biodegradation.  

In the score plot in Figure 4-28(a), only duplicates were included in each 

sample group after removing outliers, although initially there were triplicates 

prepared for each sample group as mentioned in Chapter 3. As shown in Figure 

4-28(a), the total variances of 38% are explained by PC1 of 25% and PC2 of 13%. 

Although the total variance was low because of the large variables datasets 

(>1,500 markers), two components were still sufficient to indicate the linear 

relationship as discussed previously (Sleighter et al., 2010). There was a weak 

tendency of samples distributed along PC1 axis with respect to the experiment 

time. For instance, raw OSPW control samples were on the positive PC1 axis, 5 

days raw OSPW samples with bacteria addition were in the middle, and 14 and 28 

days raw OSPW samples with bacteria addition were on the negative side of the 

PC1 axis. However, the score values for 14 and 28 days samples were similar in 

magnitude, so the differences in those two samples groups were small.  
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Figure 4-28: PCA (a) Score, and (b) Loading Plots based on Datasets from Biodegradation of Raw OSPW. 
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In the loading plot in Figure 4-28(b), markers were identified as NAs, oxidized 

NAs and unknown compounds based on their m/z values, and were highlighted 

with different symbols. By combining the score and loading plots, it was observed 

that NAs correlated to control samples had higher loadings on the positive PC1 

axis. These NAs had Z values of -4 to -8 and carbon number from 12 to 16 which 

agrees with the major group of NAs in raw OSPW reported in literature (Matthew, 

2012).  In contrast, those NAs with higher positive PC1 loadings were negatively 

correlated to 14 and 28 days samples with negative PC1 scores, which indicated 

that those NAs were biodegraded over time. The observations agreed with the 

literature that microorganisms preferred to degrade NAs with lower molecular 

weight and fewer branches (Han et al., 2008; Corinne, 2010). The NAs with Z = 0 

and -2 were not selected as the most biodegraded species by PCA since the 

concentrations of those two groups of NAs were negligible in OSPW control 

samples.   

The quantification results showed the total initial NAs concentrations of 17.1 

mg/L in raw OSPW control decreased to 16.3 mg/L at day 5; 15.0 mg/L at day 14 

and 14.9 mg/L at day 28. Thus, 14 day and 28 day samples had comparable NAs 

concentrations, which could further lead to the similar PC1 scores in the score 

plot in Figure 4-28(a). However, the total NAs degradation during the 28 day 

experimental period was only 2.2 mg/L which was 12% of initial NAs 

concentrations, so the biodegradation was limited. The possible reason for this 

minimal biodegradation could be the incubation period of 28 days being too short 

for microorganisms to adapt to degrading NAs and the fact that no other nutrition 

was provided which may be a limitation to microorganism degradation activity 

(Lai et al, 1996; Clemente et al., 2004). The limited biodegradation would lead to 

less potential by-product generation, which explained why more markers with 

higher loadings were found on positive PC1 axis than on the negative PC1 axis in 
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Figure 4-28(b). This indicated that more markers associated with samples at 

beginning of the experiment (control and 5 day) on the positive PC1 axis would 

be degraded, but fewer markers associated with samples at end (14 and 28 days) 

would increase during the biodegradation process.  

The peak areas of relative significant unknown markers highlighted in Figure 

4-28(b) were integrated by Markerlynx and Targetlynx, and the results are shown 

in Figure 4-29 and 4-30, respectively. The trends were plotted based on the 

average values and error bars were not included due to duplicates in each sample 

group not being sufficient for statistical analysis. Figure 4-29(a) shows the 

markers with large PC1 loadings decreased during the biodegradation process, so 

they were correlated to the OSPW control samples in the score plot as predicted 

previously. Figure 4-29(b) shows the markers with trends decreasing over the first 

5 days followed by an increasing trend from 5 to 14 days, and becoming stable 

thereafter. Those markers had positive PC1 and negative PC2 loadings, so the 

positive PC1 loadings indicated the correlation with OSPW control samples as 

those markers degraded in first 5 days. However, the negative PC2 loadings 

suggested the anti-correlation to 5 days samples, so the areas of the markers 

dropped to the lowest point at 5 days, followed by an increasing trend afterward. 

Figure 4-29(c) shows the markers with increasing trends during biodegradation as 

those markers associated with 14 and 28 days samples due to their negative PC1 

and PC2 loadings, and those increased markers were suggested as the by-products 

from raw OSPW biodegradation. Figure 4-29(d) shows the markers reached the 

highest area at 5 days followed with decreasing trends because they had small 

PC1 loadings and were located on the top of loading plot being correlated to 5 

days samples. Overall, the decreasing trends indicated the biodegradation of 

markers, but the increasing trends indicated the potential formation of markers. 

For example, for m/z=287.0966 in Figure 4-29(c), the marker was not detected in 
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raw OSPW initially, but the area increased after 14 days which indicated the 

formation of this compound. However, it was important to note that, as discussed 

previously, Markerlynx had the issues with some of the area integrations, so the 

results shown in Figure 4-29 were confirmed by Targetlynx.  

 

Figure 4- 29: Trends of Significant Unknown Markers from Raw OSPW Biodegradation by 

Markerlynx Software, where plot (a) shows unknown markers degraded along time; plot (b) 

shows unknown markers decreased in first 5 days followed by increasing trends; plot (c) 

shows unknown markers had increasing trends duirng biodegradation process; plot (d) 

shows markers increased in first 5 days followed by decreasing trends.   

Figure 4-30 shows the same significant unknown markers as Figure 4-29 but 

integrated by Targetlynx. By comparing the trends in areas integrated by 

Markerlynx and Targetlynx, it was found that although Figure 4-30(a) shows the 

markers with similar intial areas degraded during the experiment, the decreasing 
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rates by Targetlynx were much faster compared with Markerlynx. Figure 4-30(b) 

shows the markers with decreasing trends, so the observations were different than  

Figure 4-29(b) in which markers decreased in the first 5 days followed by 

increasing afterward. In addition, in Figure 4-30(c), m/z=287.0966 and 295.1371 

show marginal decreasing trends by Targetlynx (i.e., degrading), although 

Markerlynx showed a slight increasing trend (i.e., forming). The markers shown 

in Figure 4-36(d) had different trends by Targetlynx compared with the results by 

Markerlynx. In the Targetlynx, m/z=299.1149 decreased during biodegradation, 

but it increased initially and decreased again after first 5 days by Markerlynx. The 

marker m/z=235.0997 slightly increased in 14 days by Targetlynx, but increased 

initially and decreased after first 5 days by Markerlynx. Thus, the results found by 

the two software approaches showed high variability for these experiments.  

 

Figure 4- 30: Trends of Significant Unknown Markers from Raw OSPW Biodegradation by 

Targetlynx Software. Plot (a), (b), (c) and (d) are corresponded to the markers shown in 

Figure 4-29.  
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As discussed previously, Targetlynx allows manual peak selection to integrate 

peak areas, so the markers’ trends from Targetlynx are suggested to more 

accurately demonstrate the actual changes of markers during biodegradation. 

However, the PCA was applied based on the integrated areas from Markerlynx, so 

the trends found using Markerlynx software demonstrate the statistical 

significance of PCA. Markers m/z=287.0966 and 295.1371 were considered as 

potential by-products of raw OSPW biodegradation because they showed 

increasing trends by Markerlynx, but decreasing trends by Targetlynx. Ozonation 

in different conditions datasets with at least three replicates showed similar 

overall markers trends by Markerlynx and Targetlynx. However, due to the lack of 

sufficient samples in biodegradation datasets for reliable statistical analysis, the 

trends of markers plotted based on average values of duplicates showed 

inconsistencies between Markerlynx and Targetlynx. Therefore, for future studies 

it is highly recommended to increase the number of replicates (at least five) to 

improve the PCA study and minimize the errors in integrated areas by Markerlynx. 

In addition, the potential for improvement in the Markerlynx software by the 

manufacturer should be considered in future software updates.  

4.9.2 Ozonated OSPW Biodegradation 

Using the same analysis methods as raw OSPW, the PCA results for ozonated 

OSPW further treated by the biological treatment processes were shown in Figure 

4-31. In the score plot, PC1 with 17% and PC2 with 12% explained a total 

variance of 29% of original data due to the large variables (>1,500 markers) 

matrix (Sleighter et al., 2010). The samples are distributed from positive PC1 and 

PC2 loadings to negative PC1 and PC2 loadings with respect to experimental 

duration from 0 day (control) to 28 days in Figure 4-31(a). In the loading plot in 

Figure 4-31(b), relative significant markers were identified as NAs, oxidized NAs 

and unknown compounds based on their m/z values. Most of the significant NAs 
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identified had carbon number from 12 to 17 and Z number from -4 to -8, and the 

quantification results showed the concentrations of NAs with Z=0 and -2 were 

negligible. However, the NAs are distributed throughout the loading plot, rather 

than grouped in a specific region in Figure 4-31, so there was no specific 

correlation between NAs and sample groups at specific times as for raw OSPW 

Based on the previous results, the NAs were expected to be correlated to samples 

at the beginning of biodegradation. The possible reason for no correlations might 

be the lack of significant biodegradation since the total NAs decreased only 

marginally from 12.1 mg/L at 0 day to 10.5 mg/L at 28 days (10% degradation). 

As for the raw OSPW biodegradation experiment, the possible reason could be the 

incubation period of 28 days being too short for microorganisms to degrade NAs 

and the lack of any nutrition provided which may limit microorganism activity 

(Lai et al, 1996; Clemente et al., 2004). In addition, more markers correlated to 

ozonated OSPW control samples were found on the positive PC1 axis and fewer 

markers correlated to 28 days samples were found on negative PC1 axis. This 

suggests that more markers were degraded, and fewer would be formed during 

biodegradation processes.   
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Figure 4- 31: PCA (a) Score, and (b) Loading Plots based on Datasets from Biodegradation of Ozonated OSPW. 
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Trends plots of the relative significant unknown compounds were shown in 

Figure 4-32 and 4-33 by Markerlynx and Targetlynx, respectively. In Figure 

4-32(a), two markers (m/z=297.1543 and 311.1681) with high loadings on the 

PC1 axis decrease in area during biodegradation, so they were correlated to 

ozonated OSPW control samples with the highest score values in the score plot. 

Markers (m/z=301.1465 and 309.1525) shown in Figure 4-32(b) reach their 

highest area at 5 days followed by a slight decrease in area afterward. Such 

observations were expected because those two markers were on the upper left side 

in loading plot (negative PC1 and positive PC2) which would be correlated to 5 

days samples. Finally, Figure 4-32(c) shows the marker (m/z=303.1231) had an 

increasing trend prior to reaching its highest area at 14 days, but followed with a 

decreasing trend afterward.  However, this marker was expected to reach its 

highest area at 28 days, because it was correlated to 28 days samples by its 

co-located region in loading plot. This anomaly could be due to the small PC1 

loading value assigned to marker m/z=303.1231 in Figure 4-31. The 28 days 

samples were expected to be correlated to markers with more negative PC1 

loadings, because PC1 explained more total variance compared with PC2 

(P1=17%; PC2=12%).     
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Figure 4-32: Trends of Significant Unknown Markers from Ozonated OSPW Biodegradation 

by Markerlynx Software. Plot (a) shows unknown markers with decreasing trends during 

biodegradation; plot (b) shows unknown markers with highest area in 5 days samples; plot 

(c) shows unknown markers with increasing trend in 14 days followed by decreasing trend.  

The results from Markerlynx demonstrated the statistical significance of PCA 

as discussed previously. In order to more accurately monitor the changes of 

markers during biodegradation, Targetlynx was applied and the trends of the 

unknown markers during ozonated OSPW biodegradation were shown in Figure 

4-33. Compared to the Markerlynx results in Figure 4-32(a) and Figure 4-32(b), 

unknown markers (m/z=297.1543 and 311.1681 shown in Figure 4-33(a); 

m/z=301.1465 and 309.1525m shown in Figure 4-33(b)) by Targetlynx had 
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similar decreasing trends and magnitudes in integrated areas. However, the 

marker (m/z=303.1231) in Figure 4-33(c) shows a decreasing trend which was 

different from Markerlynx which showed an increasing followed by decreasing 

trend (Figure 4-32(c)). The reason for this difference could be the inconsistent 

area integration by Markerlynx, and the lack of sufficient samples which could 

not decrease the overall errors in integrations.  

 

Figure 4-33: Trends of Significant Unknown Markers from Ozonated OSPW Biodegradation 

by Targetlynx Software. Plot (a), (b) and (c) are corresponded to the markers shown in 

Figure 4-32.  

Overall, based on the significant unknown markers selected by PCA and their 

trends by both Markerlynx and Targetlynx in Figure 4-32 and 4-33, respectively, 
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there was no detection of a possible by-product showing an increasing trend 

during the ozonated OSPW biodegradation processes. The reason could be 

attributed to limited biodegradation during the 28 day incubation period. However, 

it was expected that there would be greater biodegradation of ozonated OSPW 

than in raw OSPW since ozonation breaks down the larger molecules into more 

easily biodegradable smaller molecules (Martin et al., 2010). As discussed 

previously, Markerlynx sometimes did not recognize peaks. Thus, it was possible 

that some markers were not appropriately integrated so that the PCA was not able 

to identify them as significant markers. For future work, it is suggested to prepare 

more replicates (at least 5) to better define the outliers and minimize the 

inconsistent area integrations errors. As well, experiments with a longer 

incubation period and additional nutrition should be provided to allow for 

significant biodegradation of both raw and ozonated OSPW.    

4.9.3 Common Markers from Raw and Ozonated OSPW Biodegradation 

By PCA study, 16 significant unknown markers (Figure 4-29) were selected 

from raw OSPW biodegradation samples and 5 significant unknown markers 

(Figure 4-32) were selected from ozonated OSPW biodegradation samples. 

However, it was found that only m/z=309.1588 in raw OSPW and m/z=309.1525 

in ozonated OSPW were possible common markers as their exact mass error was 

in a tolerant range of ±0.01 Da. The trends for each of them are shown in Figure 

4-34. By using Markerlynx shown in Figure 4-34(a), it was found that the marker 

had a decreasing trend in the first 5 days followed by increasing from 5 days to 28 

days in raw OSPW. In contrast, in ozonated OSPW, the marker increased in the 

first 5 days and slightly decreased afterward. However, since the initial area of 

marker in the ozonated OSPW was higher than the initial area in the raw OSPW, 

this result indicates that its concentration in OSPW was increased after the 

ozonation process so it is a by-product of ozonation. In raw OSPW biodegradation, 
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this marker showed increasing trends and approached similar total areas found in 

ozonated OSPW after 28 days of biodegradation, which indicated that this 

common unknown marker would likely be oxidized products produced by either 

ozonation or biodegradation. 

 

 

Figure 4-34: Common Markers from Raw and Ozonated OSPW, where (a) shows the trends 

of common marker in Markerlynx; (b) shows the trends of common marker in Targetlynx.  

Figure 4-34(b) shows the same marker (m/z=309.1588 in raw OSPW and 

m/z=309.1525 in ozonated OSPW) integrated by Targetlynx. The marker was 

stable until a slight increase from 14 days to 28 days in raw OSPW, but the 

increasing rate was much slower compared to the Markerlynx plot. In ozonated 

OSPW biodegradation, the marker increased in the first 5 days followed by a 

decreasing trend. The initial area of the common unknown marker in ozonated 

OSPW was higher than that in raw OSPW by Markerlynx, so ozonation increased 

its concentration in OSPW. Thus, the overall trends shown in Targetlynx were 

considered to be similar to those of Markerlynx. However, only one marker was 

0

100

200

300

400

0 10 20 30

A
re

a 

Time (day) 

Targetlynx Approach 

m/z=309.1588_raw OSPW

m/z=309.1525_Oz OSPW
0

100

200

300

400

0 10 20 30

A
re

a 

Time (day) 

Markerlynx Approach 

m/z=309.1588_raw OSPW
m/z=309.1525_Oz OSPW

Common Markers from Raw and Ozonated OSPW 



124 
 

found to be common in both raw and ozonated OSPWs biodegradation, so the 

general target organic compounds for microorganism degradation in raw and 

ozonated OSPW would be different. However, previous discussions must be 

considered carefully given the lack of sufficient replicates and analytical errors 

due to the inconsistent area integration by Markerlynx software. Also, the 

biodegradation found in the period of 28 days was limited which resulted in 

limited markers showing significant increases or decreases. Further experiments 

with sufficient replicates and longer incubation periods with nutrient 

supplementation would be suggested for future work. 

4.10 Raw OSPW Variations 

4.10.1 Variations of Raw OSPW from Different Sites  

All previous analyses including OSPW treated by ozonation in different 

conditions or biological treatment processes was from Syncrude West in Pit. 

However, the contents and concentrations in OSPW can vary within the same 

tailings pond (both spatially and temporally), different sites and various bitumen 

extraction processes (Allen, 2008). To study this variability, three different 

sources of raw OSPW were analyzed including Syncrude West in Pit, Suncor 

Pond 7, and CNRL.  

Markerlynx was used to detect markers in OSPW samples from three different 

sites, and PCA was applied to determine the variations of detected markers in the 

samples. The PCA plots are shown in Figure 4-35. A total of 81% of the original 

data variances were covered by PC1 (59%) and PC2 (22%), as shown in the score 

plot in Figure 4-35(a), which was much higher than the comparable PCA models 

for ozonation in different conditions and biodegradation. Based on the m/z values, 

the markers were further identified as NAs, NA+O, NA+2O, NA+3O, NA+4O 
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and unknown compounds as labelled in the loading plot in Figure 4-35(b). By 

combining the score and loading plots, it was found that most NAs highlighted in 

blue circles were distributed on the positive PC1 axis in the loading plot, so the 

CNRL OSPW with higher PC1 scores contained the highest NAs concentrations. 

Similarly, the Suncor OSPW had the highest concentrations of NA+2O with blue 

squares co-located on the left upper corner. NA+O and NA+4O species with 

smaller loading values highlighted in green circles and squares were close to the 

relative significance boundary, so they were less significant. The quantification 

results further agreed with the PCA analysis, as the highest NAs concentrations of 

24 mg/L was determined for CNRL OSPW, followed by 14 mg/L in Suncor and 9 

mg/L in Syncrude; and the highest NA+2O concentrations of 11 mg/L was found 

in Suncor OSPW, followed by 7 mg/L in both Syncrude and CNRL OSPW. Based 

on these observations, it was predicted that there may have been greater oxidation 

occurring in Suncor Pond 7.  
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Figure 4- 35: PCA (a) Score, and (b)Loading Plots based on Datasets of OSPW from Suncor Pond 7, Syncrude West in Pit and CNRL.   
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In the loading plot in Figure 4-35(b), the unknown compounds are highlighted 

in red circles based on their m/z values. The peak areas in these markers’ 

chromatograms were integrated by Markerlynx and Targetlynx, and the results are 

plotted in Figure 4-36 and 4-37, respectively. Since there were only two analyses 

for each sample group, the areas were plotted based on the average value of 

duplicates and no error bars or standard deviations were included.  

In Figure 4-36(a), markers show the highest concentrations in CNRL OSPW 

and lowest concentrations in Syncrude OSPW, as those markers were associated 

with higher positive PC1 and PC2 loadings which were correlated to CNRL 

samples, but most anti-correlated to Syncrude samples. Figure 4-36(b) shows the 

markers with highest concentrations in CNRL but lowest concentrations in Suncor, 

since those markers had negative PC2 loadings which indicated the 

anti-correlation to Suncor OSPW. Further, it should be noted that the areas of four 

markers (m/z=297.1876, 309.1881, 311.2028 and 321.1885) were approaching 

zero in Suncor OSPW, so the concentrations of those four markers in Suncor 

OSPW were negligible. In addition, Figure 4-36(c) plots the markers with the 

highest concentrations in Syncrude OSPW but lowest concentrations in Suncor, 

because those markers were assigned with negative PC2 loadings. Moreover, the 

area of zero for m/z= 311.1691 in CNRL and Suncor OSPW made this marker 

unique to Syncrude OSPW. Figure 4-36(d) shows markers with the lowest 

concentrations in CNRL, in particular m/z=341.1409 which had an area of zero in 

CNRL OSPW. The presence and absence of NAs, oxidized NAs or unknown 

markers indicated the unique characteristic of OSPWs from different sites.  
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Figure 4- 36: Relative Responses of Significant Unknown Markers in Different OSPWs by 

Markerlynx Software, where plot (a) shows markers with highest area in CNRL and lowest 

in Syncrude; plot (b) shows markers with highest area in CNRL and lowest in Suncor; plot 

(c) shows markers with highest area in Syncrude; plot (d) shows markers with lowest area in 

CNRL.  

By comparing the integrated areas by Targetlynx shown in Figure 4-37, it was 

found that the majority of markers had similar trends by Markerlynx. For example, 

Figure 4-37(a) shows the markers with highest concentrations in CNRL but lowest 

concentrations in Syncrude OSPW; (b) plots the markers with highest 

concentrations in CNRL but lowest concentrations in Suncor; (c) illustrates the 

markers with highest concentrations in Syncrude but lowest concentrations in 

Suncor; (d) demonstrates markers with the lowest concentrations in CNRL OSPW. 

However, there were differences between two software approaches shown in 

Figure 4-36 and Figure 4-37. For instance, the markers that had area of zero by 

Markerlynx were all assigned area values by Targetlynx. These areas indicated 

that the instrument detected the presence of those markers in either CNRL or 

Suncor OSPW, although the integrated areas were low.  

Significant Unknown Markers from Different OSPW by Markerlynx 
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Figure 4- 37: Relative Responses of Significant Unknown Markers in Different OSPWs by 

Targetlynx Software. 

4.10.2 Combined with Ozonation in Different Conditions Datasets 

In order to predict the fates of unknown compounds or potential by-products 

from ozonation in different conditions in raw OSPWs from different sites, the 

significant unknown markers selected from different sites OSPWs were compared 

with significant unknown markers selected from the previous ozonation in 

different conditions datasets.  

The common significant unknown markers selected from ozonation in different 

conditions and different sites OSPWs datasets are shown in Figure 4-38. Each of 

these markers showed a degradation trend during ozonation in different conditions. 

In addition, most of these markers had the lowest areas in Syncrude and highest 

areas in CNRL OSPW, except m/z=297.1181 which had the highest areas in 

Syncrude OSPW. In the loading plot in Figure 4-35, these markers were clustered 

with NAs, so they were positively correlated to NAs and would be expected to be 

Significant Unknown Markers from Different OSPW by Targetlynx 
samplePC2 
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degraded during oxidation processes.   

Unfortunately, none of significant unknown markers with increasing trends 

(defined as by-products) for the ozonation in different conditions experiments 

were selected as significant unknown markers from datasets of different sites 

OSPWs. Since the application of PCA was used to find significant markers that 

described the major differences between samples, those significant unknown 

markers with increasing trends for ozonation in different conditions treatments 

could be assumed to have similar concentrations in OSPWs from different sites if 

they were considered as non-significant by PCA. Thus, it was reasonable to 

assume that those significant unknown markers with increasing trends were 

associated with ozonation in different conditions, rather than naturally formed or 

generated from different bitumen extraction processes. However, this assumption 

needs to be further tested with more experimental evidence.  

 

Figure 4- 38: Areas of Common Significant Unknown Markers from OSPWs from Different 

Sites Datasets and Ozonation in Different Conditions Data.  

In order to track if the unknown markers which had increasing trends during 

ozonation in different conditions would be present in different sites OSPWs, all 24 

increased or formed unknown markers shown in different ozonation condition 
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experimental results were selected based on their m/z values from datasets of 

different sites OSPWs. Of these markers, 19 out of 24 were found in the different 

site OSPW chromatograms and their integrated areas were plotted in Figure 4-39. 

Since the purpose of the current analysis was to more accurately track the relative 

magnitudes of markers in different sites OSPWs, there was no PCA applied and 

the peak areas were only integrated by Targetlynx.  

Figure 4-39(a) shows the markers with the highest areas in Syncrude and 

lowest areas in CNRL, and plot (b) shows the markers with the highest areas in 

Suncor and lowest areas in CNRL. However, the loading plot in Figure 4-35(b) 

shows most NAs had their highest concentrations in CNRL, which is in agreement 

with the quantification results with highest total NAs concentrations of 24 mg/L in 

CNRL, and 14 mg/L and 9 mg/L in Suncor and Syncrude OSPW, respectively. 

This suggests that the markers with increasing trends during ozonation in different 

conditions were negatively correlated to the NAs concentrations in raw OSPW. 

The higher concentrations of NAs, coupled with lower concentrations of unknown 

markers with increasing trends during ozonation in different conditions, indicate 

that there may be less oxidation in the CNRL OSPW. In contrast, lower NAs 

concentrations and higher concentrations of NA+2O in the Suncor OSPW 

indicated that Suncor OSPW was more oxidized. In addition, the unknown 

markers with increasing trends during ozonation in different conditions shown in 

Figure 4-39(a), (b) and (c) had higher areas in Suncor OSPW. Therefore, those 

unknown markers might be associated with oxidation by-products in raw OSPW. 

On the other hand, there were some exceptions as shown in Figure 4-39(d), in 

which some unknown markers have areas lower in Suncor and higher in CNRL. 

These markers could represent compounds associated with the degradation of 

other unknown compounds negatively correlated to NAs in raw OSPW.  
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Figure 4- 39: The Relative Response of Markers with Increasing Trends duirng Ozonation in 

Different Conditions in Different OSPWS by Targetlynx, where plot (a) and (b) show 

markers with lowest areas in CNRL OSPW; plot (c) shows markers with highest areas in 

Suncor OSPW; plot (d) shows markers with highest areas in CNRL or Syncrude OSPW.  

In addition the remaining 5 out of 24 of the significant unknown markers with 

increasing trends during ozonation in different conditions were not detected in 

OSPWs from different sites. For instance, unknown markers m/z=209.0945, 

265.1077 and 281.1029 in O3 data, m/z=265.1084 in O3+ CO3
2-

 data, and 

m/z=287.0954 in O3+TNM data were not found in other different site OSPWs. 

However, the peaks of markers were shown in the chromatograms in Syncrude 

OSPWs used for ozonation in different conditions experiments. Therefore, the 

concentrations of those unknown markers which increased during ozonation had 

to be below the detection limit in different sites OSPWs, and it was possible that 

those unknown markers were the by-products from other compounds oxidation 

Unknown Markers with Increasing Trends during Ozonation in Different Conditions in Different OSPW 
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rather than naturally existing in raw OSPW. However, the observations currently 

show the differences between the Syncrude raw OSPW from different barrels used 

for ozonation in different conditions experiment and the study on different sites 

OSPWs variations. All barrels of Syncrude OSPW were sent to Department of 

Civil and Environmental Engineering, University of Alberta on the same date in 

2010. However, there was no information given if all barrels of Syncrude OSPW 

were sampled on the same date by same sampling procedures (e.g., same location, 

depth and etc.). Also, with the presence of iron species and scavengers like 

carbonates in raw OPSW (Allen, 2008), it is possible that partial oxidation may 

have occurred in raw OSPW during the storage period.  

In summary, unknown markers with increasing trends during ozonation in 

different conditions were correlated to NAs oxidation based on their absence and 

relative areas in different sites OSPWs as shown in Figure 4-39(a), (b) and (c). 

Therefore, it was reasonable to predict those unknown markers were associated 

with the oxidation by-products of OSPW NAs. However, these suggestions are 

based only on the relative increasing and decreasing trends of NAs and unknown 

markers during ozonation in different conditions treatments. Further experiments 

focusing on the molecular structures to determine the formation of compounds 

and transformation products are recommended to corroborate the current study 

results.  

4.10.3 Combined with Biological Treatment Processes Datasets 

Significant unknown markers from raw OSPW biodegradation datasets were 

compared with the significant unknown markers from different sites OSPWs 

datasets, and seven common unknown markers were found including: 

(m/z=241.1259, 253.1264, 255.1407, 269.1563, 281.1578, 283.1718, and 

295.1729) (Figure 4-40). It was found that all common unknown markers were 

clustered with NAs in the loading plot in Figure 4-35(b), so they were positively 

correlated to NAs that had highest concentrations in CNRL OSPW, which is 

further corroborated their highest area in the CNRL OSPW in Figure 4-40. Also, 

with decreasing trends similar to NAs during the previous biological treatment 
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processes, those common unknown markers were suggested as being positively 

correlated to NAs which were degraded by microorganisms rather than as 

biodegradation by-products.  

 

Figure 4- 40: Areas of Common Significant Unknown Markers from OSPWs from Different 

Sites Datasets and Raw OSPW Biodegradation Datasets. 

The significant unknown markers with increasing trends during raw OSPW 

biodegradation were further tracked in different sites OSPWs, and their integrated 

areas by Targetlynx were plotted in Figure 4-41. It was found 4 out 5 markers 

(m/z=295.1329, 309.1572, 325.1837 and 327.1227) increased during Syncrude 

OSPW biodegradation had the lowest areas in CNRL OSPW, which is in contrast 

to the highest NAs concentrations in CNRL OSPW. Also, unknown markers in 

Figure 4-41 have highest areas in Suncor OSPW, which was positively correlated 

to the highest NA+2O concentrations in Suncor OSPW. Thus, combining these 

results with the increasing trends found for these markers during raw OSPW 

biodegradation process, the unknown markers shown in Figure 4-41 were 

suggested as being the by-products associated with NAs biodegradation in raw 

OSPW.  

Additionally, marker m/z=287.0966 (the 1 out of 5 marker that increased 
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during Syncrude OSPW biodegradation by Markerlynx) with peak shown in 

chromatogram of Syncrude OSPW used for raw OSPW biodegradation 

experiment, was not detected in different sites OSPWs including the Syncrude 

OSPW from different barrels. Thus, m/z=287.0966 marker can be considered as a 

by-products formed during biodegradation.   

 

Figure 4- 41: The Relative Response of Markers with Increasing Trends during 

Biodegradation in Different OSPWS by Markerlynx.  

4.11 Summary 

In summary, HRMS detected over 1,500 markers from each OSPW sample for 

ozonation in different conditions and biological treatment processes. PCA with 

pareto scaling as the optimum data pre-treatment method successfully selected 

markers significantly changed during ozonation in different conditions and 

biological treatment processes (Figure 4-13; Figure 4-28; Figure 4-31). The 

significant markers selected by PCA were further defined as NAs (n = 7 to 22, Z = 

0 to -12); oxidized NAs (NAs + Ox, x = 1, 2, 3, and 4); and unknown compounds 

based on their m/z values. The trends of significant unknown markers during 

treatment processes were reviewed in terms of areas integrated by Markerlynx 

software and Targetlynx software, and the results were used to evaluate the data 
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analysis consistency and reliability.  

PCA is processed based on the peak areas automatically integrated by 

Markerlynx, so the general trends of markers during treatment processes exhibit 

the statistical significance of PCA study. Targetlynx allows for manual peak 

selection where the area integrations are more accurate than Markerlynx, thus, it 

was applied as complementary software to more accurately review the actual 

markers changes during the treatment processes. For ozonation in different 

conditions datasets with at least 3 replicates after removing outliers, the 

significant unknown markers showed similar overall trends during ozonation in 

different conditions treatments using both Markerlynx and Targetlynx. In contrast, 

for biological treatment processes datasets with only duplicates after removing 

outliers, the overall trends of significant unknown markers showed relatively large 

differences between the two software approaches. Experiments using greater 

replication are suggested to allow for improved statistical power which is not 

available for only duplicate samples.  

4.11.1 Ozonation in Different Conditions  

PCA study verified that NAs were degraded into lower molecular compounds 

and/or higher oxidized forms during ozonation in different conditions, which is in 

agreement with previous studies (Gamal El-Din et al., 2011; Perez-Estrada et al., 

2011). The unknown compounds found currently were reported previously to 

occur, however, have not been further identified in the literature (Scott et al., 2008; 

Drzewicz et al., 2010). Overall, 12 significant unknown markers were selected by 

PCA from the O3 datasets (Figure 4-14); 18 from O3 + CO3
2-

 datasets (Figure B-2); 

21 from O3+TBA datasets (Figure B-4); 23 from O3+ CO3
2- 

+TBA datasets 

(Figure B-8); 21 from O3+TNM datasets (Figure B-11); and 15 from O3 + Fe (II) 

datasets (Figure B-16). Generally, the significant unknown markers were found to 

have highly variable behaviour, both increasing and decreasing at various rates, 

throughout the ozonation in different conditions experiments. Based on the 

suggested elemental compositions (e.g., Table 4-5) and previous literature, 

significant unknown markers which increased at a higher rate were associated 
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with a more rapid degradation of another marker (NAs, oxidized NAs or unknown 

compounds), and markers with higher rates of changes (e.g., decreased or 

increased) were more sensitive to ozonation (Gamal El-Din et al., 2011; 

Perez-Estrada et al., 2011). Based on m/z values, 26 significant unknown markers 

were detected in only one individual ozonation in different conditions experiment 

(Table B-6), and 27 significant unknown markers were present in at least two 

ozonation in different conditions experiments (defined as common markers). The 

27 common markers had differing behaviours (Figure 4-23 to Figure 4-27) for 

each conditional ozonation treatment because of their varying molecular 

structures and the presence of scavengers and catalysts (iron salts) during 

ozonation in different conditions.  

In addition, markers behaviours provided information on their fates in OPSW 

treated by ozonation in different conditions. All significant unknown markers 

which decreased over time were considered as degraded by ozonation in different 

conditions; while all significant unknown markers with increasing trends were 

concluded to be by-products. Overall, 24 by-products (Table B-7) from all 

ozonation in different conditions experiments showed similar results were 

selected by both Markerlynx and Targetlynx, with 12 by-products being common 

markers for all experiments (Figure 4-26 to Figure 4-27). In the Markerlynx, 

among the 24 by-products, 12 of them increased from zero initial area in raw 

OSPW sample, so they might be completely absent in raw OPSW and formed as 

by-products during ozonation in different conditions. However, in the Targetlynx, 

all 24 by-products showed increasing trends with an initial integrated area, so they 

were concluded as by-products which were originally present in raw OSPW, 

which indicates that there may be oxidation occurring in tailings ponds (Allen, 

2008; Pourrezaei et al., 2011). 

4.11.2 Biological Treatment Processes  

By PCA study, 16 significant unknown markers (Figure 4-29) were selected 

from raw OSPW biodegradation datasets and 5 significant unknown markers 

(Figure 4-32) were selected from ozonated OSPW biodegradation datasets. All 
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significant unknown markers showed variable behaviours (increasing and 

decreasing at various rates) during biological treatment processes. Among the 16 

significant unknown markers from raw OSPW biodegradation datasets, 5 of them 

(Figure 4-29 (c)) were concluded as by-products based on their increasing trends 

with 3 increasing from an initial area of zero. However, in the Targetlynx 

approach, only 3 out of 16 significant unknown markers (Figure 4-30 (c)) were 

considered as by-products, and all of them increased from an initial area. There 

were 2 by-products (m/z = 287.0996 and 295.1371), which had decreasing trends 

by Targetlynx, while showed increasing trends by Markerlynx, due to the 

inconsistency of area integration in Markerlynx. Among the 5 significant 

unknown markers (Figure 4-32 and Figure 4-33) selected by PCA from the 

datasets of ozonated OSPW followed by the biological treatment processes, none 

of them were considered as by-products by either software program. 

Overall, the PCA study showed NAs and oxidized NAs were degraded during 

the biological treatment processes of both raw and ozonated OSPW. However, 

only 5 by-products from Markerlynx and 3 by-products from Targetlynx were 

found from raw OSPW biodegradation datasets, and no markers were considered 

as by-products from ozonated OSPW biodegradation datasets. As compared to the 

number of by-products (24 in total) selected from datasets of raw OSPW treated 

by ozonation in different conditions, the number of by-products selected from 

datasets of both raw and ozonated OSPW treated by biological treatment 

processes were very limited. The possible reason for the limited by-products was 

the limited biodegradation of NAs in both raw and ozonated OSPW (~10% 

reduction in NAs concentrations). This result was unexpected since more 

biodegradation was predicted to occur for ozonated OSPW due to the increased 

biodegradability of the smaller compounds created by ozone degradation (Martin 

et al., 2010). In addition, only one significant unknown marker (Figure 4-34) was 

found as a common marker selected by PCA in both raw and ozonated OSPW 

biodegradation. Thus, the target compounds degraded by microorganisms were 

suggested to be different in raw and ozonated OSPW given the limit number of 

common markers.  
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4.11.3 Raw OSPW from Different Sites  

By PCA study, it was found that NAs, oxidized NAs and 19 significant 

unknown markers were the major sources of variations of raw OSPW from 

Syncrude West in Pit, CNRL, and Suncor Pond 7. CNRL OPSW contained the 

highest concentrations of NAs but lowest concentrations of oxidized NAs, while 

Suncor OSPW had highest concentrations of oxidized NAs (especially NA+2O) 

but lower concentrations in NAs. 13 out of 19 significant unknown markers 

(Figure 4-36 and Figure 4-37) selected by PCA had their highest concentrations in 

CNRL and they were found to be degraded during ozonation in different 

conditions and/or biological treatment processes, so they were positively 

correlated to NAs concentrations.  

In addition, 19 by-products selected (15 out of 24 by-products defined by both 

software programs from raw OSPW treated by ozonation in different conditions, 

and 4 out 5 by-products defined by Markerlynx from raw OSPW treated by 

biological treatment processes) had their lowest concentrations in CNRL OSPW 

and highest concentrations in Suncor OSPW (Figure 4-39 and Figure 4-41), which 

indicated their negative correlations to NAs concentrations and positive 

correlations to oxidized NAs concentrations. Moreover, 5 out of 24 by-products 

from ozonation in different conditions (m/z=209.0945, 265.1077 and 281.1029 in 

O3 datasets, m/z=265.1084 in O3+CO3
2-

 datasets, and m/z=287.0954 in O3+TNM 

datasets); and the remaining 1 out of 5 by-products (m/z=287.0966) from 

biological treatment processes on raw OSPW, were not detected in OSPWs from 

different sites, which indicated that their concentrations were negligible. 

Therefore, this further exhibits that those 5 by-products from ozonation in 

different conditions and one by-product from biological treatment processes were 

associated with degradation of NAs.  
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5.0 Conclusions 

HRMS with Markerlynx software was able to detect over 1,500 markers in 

each OSPW samples collected during ozonation in different conditions and 

biological treatment processes, and raw OSPWs from different sites. Pareto 

scaling was found as the optimum pre-treatment method for these large datasets 

prior to PCA which successfully selected markers significantly changed during all 

treatment processes.  

OSPW samples from different processes and sites were successfully 

characterized using significant markers selected by PCA, and those significant 

markers were considered to be in three groups of organic compounds including: 

classical naphthenic acids (NAs, n = 7 to 22, Z = 0 to -12); oxidized NAs (NAs + 

Ox, x = 1, 2, 3, and 4); and unknown compounds based on their m/z values.  

PCA study verified that NAs were degraded into lower molecular compounds 

and/or higher oxidized NAs during ozonation in different conditions. In addition, 

26 significant unknown markers (unknown compounds) were selected by PCA 

were present in only one individual ozonation condition experiment; 27 

significant unknown markers selected by PCA were commonly present in at least 

two ozonation in different conditions experiments; and 24 significant unknown 

markers (included 12 common markers) with increasing trends were considered as 

by-products from all ozonation in different conditions. The differences in 

behaviour (e.g., decreasing and/or increasing) of the common markers for various 

ozonation conditions indicate the variability in the efficiency of each ozonation 

condition for the treatment of specific organic compounds. These differences can 

be used as a guide to characterize ozonation in different conditions and 

recommend the appropriate treatment for a specific organic compound target.  

The biodegradation of NAs in both raw and ozonated OSPW were limited (~10% 

reduction) as shown in biological treatment processes datasets. There were only 5 

out of 16 significant unknown markers selected by PCA were considered as 

by-products from raw OSPW biodegradation, while none of the 5 significant 
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unknown markers selected by PCA were considered as by-products from ozonated 

OSPW biodegradation. In addition, only one significant unknown marker was 

found as the common marker selected by PCA in both raw and ozonated OSPW 

biodegradation samples. Thus, the conclusion was that the target compounds 

degraded by microorganisms were different in raw and ozonated OSPW given the 

limited number of common markers. 

PCA study verified that raw OSPW from different sites (Syncrude West in Pit, 

CNRL, and Suncor Pond 7) had variable NAs concentrations with the highest 

concentrations in CNRL OSPW; oxidized NAs (especially NA+2O) had the 

highest concentrations in Suncor OSPW; and 19 unknown markers of which 15 

had the highest concentrations positively correlated to the highest NAs 

concentrations in CNRL OSPW.  

In addition, 15 by-products from ozonation in different conditions and 4 

by-products from biological treatment processes had negative correlations to NAs 

concentrations and positive correlations to oxidized NAs (especially NA+2O) 

concentrations in raw OSPWs from different sites. Moreover, 5 by-products from 

ozonation in different conditions and 1 by-product from biological treatment 

processes were not detected in raw OSPWs from different sites, which indicated 

they were only formed during ozonation or biological treatment processes. 

Therefore, these further exhibits that the by-products selected by PCA from 

ozonation in different conditions and biological treatment processes were 

associated with degradation of NAs. 

The use of PCA is advantageous to simplify complex data matrices, allowing 

for the rapid review of the potential sources of variations between OSPW samples. 

The PCA provided in the Markerlynx analysis software is also automated versus 

more labour intensive analyses such as ion mobility study or Excel plotting. With 

huge amount of unknown information provided by HRMS analysis, the use of a 

PCA is necessary to work as a filter to extract useful information from produced 

datasets allowing the focus on the further target analysis of significant markers.   
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PCA study with more replicates (at least 3) from ozonation in different 

conditions datasets showed more reliable results compared to the PCA study with 

duplicates only from biological treatment processes. Therefore, it is recommended 

to process at least 5 replicates for a more reliable PCA study in the future. 

General trends of markers during treatment processes determined by 

Markerlynx exhibit the statistical significance of PCA study; while Targetlynx is 

recommended to be applied as a complementary approach to more accurately 

review the actual markers changes during treatment processes. The combination 

of the Markerlynx and Targetlynx approaches are currently the best method 

available from Waters Inc. to assess markers significance in particular treatments 

and to compare their behaviours in different treatment processes. 

In summary, the manual analysis of all the compounds detected by HRMS in 

every OSPW sample is unviable. This project successfully demonstrates that the 

application of the PCA is a feasible approach to identify chemical markers that 

show significant changes (e.g., increase, decrease, or form) and potentially 

identify by-products from the OSPW treated by chemical (e.g., ozonation in 

different conditions) or biological treatment processes. The unknown by-products, 

other than the known NAs and oxidized NAs, defined in this study will lead the 

further research on the identification of their elemental compositions and 

molecular structures, which can contribute to filling the knowledge gap of 

reaction mechanisms in OSPW. As well, the markers most significantly changed, 

as determined in this study, can be used for monitoring the ozonation in different 

conditions and/or biological treatment processes. This monitoring may be useful 

to aid in the improvement of their efficiencies and potential use in OSPW 

treatments for the creation of environmentally safe final effluents. In addition, by 

linking the markers changed most at different times as defined by PCA to the 

toxicity data matrix, it may be possible to identify which markers can be 

attributed to the overall toxicity of different OSPW samples, and a more specific 

treatment process may be determined for reduction of these markers to reduce the 

toxicity of OSPW which will allow its release into receiving environments.   
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Exact Masses of Naphthenic Acids (NAs) & Oxidized NAs 
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Table A- 1: Exact Masses of Classical NAs (CnH2n+ZO2)  

Z 0 -2 -4 -6 -8 -10 -12 

n 

      
  

7 129.0921 127.0765           

8 143.1078 141.0921           

9 157.1234 155.1078 153.0921         

10 171.1391 169.1234 167.1078         

11 185.1547 183.1391 181.1234 179.1078       

12 199.1704 197.1547 195.1391 193.1234       

13 213.1860 211.1704 209.1547 207.1391 205.1234     

14 227.2017 225.1860 223.1704 221.1547 219.1391     

15 241.2173 239.2017 237.1860 235.1704 233.1547 231.1391   

16 255.2330 253.2173 251.2017 249.1860 247.1704 245.1547   

17 269.2486 267.2330 265.2173 263.2017 261.1860 259.1704 257.1547 

18 283.2643 281.2486 279.2330 277.2173 275.2017 273.1860 271.1704 

19 297.2799 295.2643 293.2486 291.2330 289.2173 287.2017 285.1860 

20 311.2956 309.2799 307.2643 305.2486 303.2330 301.2173 299.2017 

21 325.3112 323.2956 321.2799 319.2643 317.2486 315.2330 313.2173 

22 339.3269 337.3112 335.2956 333.2799 331.2643 329.2486 327.2330 

 
Table A- 2: Exact Masses of NA+O (CnH2n+ZO3) 

Z 0 -2 -4 -6 -8 -10 -12 

n 

      
  

7 145.0870 143.0714           

8 159.1027 157.0870           

9 173.1183 171.1027 169.0870         

10 187.1340 185.1183 183.1027         

11 201.1496 199.1340 197.1183 195.1027       

12 215.1653 213.1496 211.1340 209.1183       

13 229.1809 227.1653 225.1496 223.1340 221.1183     

14 243.1966 241.1809 239.1653 237.1496 235.1340     

15 257.2122 255.1966 253.1809 251.1653 249.1496 247.1340   

16 271.2279 269.2122 267.1966 265.1809 263.1653 261.1496   

17 285.2435 283.2279 281.2122 279.1966 277.1809 275.1653 273.1496 

18 299.2592 297.2435 295.2279 293.2122 291.1966 289.1809 287.1653 

19 313.2748 311.2592 309.2435 307.2279 305.2122 303.1966 301.1809 

20 327.2905 325.2748 323.2592 321.2435 319.2279 317.2122 315.1966 

21 341.3061 339.2905 337.2748 335.2592 333.2435 331.2279 329.2122 

22 355.3218 353.3061 351.2905 349.2748 347.2592 345.2435 343.2279 
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Table A- 3: Exact Masses of NA+2O (CnH2n+ZO4) 

Z 0 -2 -4 -6 -8 -10 -12 

n 

      

  

7 161.0819 159.0663           

8 175.0976 173.0819           

9 189.1132 187.0976 185.0819         

10 203.1289 201.1132 199.0976         

11 217.1445 215.1289 213.1132 211.0976       

12 231.1602 229.1445 227.1289 225.1132       

13 245.1758 243.1602 241.1445 239.1289 237.1132     

14 259.1915 257.1758 255.1602 253.1445 251.1289     

15 273.2071 271.1915 269.1758 267.1602 265.1445 263.1289   

16 287.2228 285.2071 283.1915 281.1758 279.1602 277.1445   

17 301.2384 299.2228 297.2071 295.1915 293.1758 291.1602 289.1445 

18 315.2541 313.2384 311.2228 309.2071 307.1915 305.1758 303.1602 

19 329.2697 327.2541 325.2384 323.2228 321.2071 319.1915 317.1758 

20 343.2854 341.2697 339.2541 337.2384 335.2228 333.2071 331.1915 

21 357.3010 355.2854 353.2697 351.2541 349.2384 347.2228 345.2071 

22 371.3167 369.3010 367.2854 365.2697 363.2541 361.2384 359.2228 

 
Table A- 4: Exact Masses of NA+3O (CnH2n+ZO5) 

Z 0 -2 -4 -6 -8 -10 -12 

n 

      

  

7 177.0768 175.0612           

8 191.0925 189.0768           

9 205.1081 203.0925 201.0768         

10 219.1238 217.1081 215.0925         

11 233.1394 231.1238 229.1081 227.0925       

12 247.1551 245.1394 243.1238 241.1081       

13 261.1707 259.1551 257.1394 255.1238 253.1081     

14 275.1864 273.1707 271.1551 269.1394 267.1238     

15 289.2020 287.1864 285.1707 283.1551 281.1394 279.1238   

16 303.2177 301.2020 299.1864 297.1707 295.1551 293.1394   

17 317.2333 315.2177 313.2020 311.1864 309.1707 307.1551 305.1394 

18 331.2490 329.2333 327.2177 325.2020 323.1864 321.1707 319.1551 

19 345.2646 343.2490 341.2333 339.2177 337.2020 335.1864 333.1707 

20 359.2803 357.2646 355.2490 353.2333 351.2177 349.2020 347.1864 

21 373.2959 371.2803 369.2646 367.2490 365.2333 363.2177 361.2020 

22 387.3116 385.2959 383.2803 381.2646 379.2490 377.2333 375.2177 
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Table A- 5: Exact Masses of NA+4O (CnH2n+ZO6) 

Z 0 -2 -4 -6 -8 -10 -12 

n 

      
  

7 193.0718 191.0561           

8 207.0874 205.0718           

9 221.1031 219.0874 217.0718         

10 235.1187 233.1031 231.0874         

11 249.1344 247.1187 245.1031 243.0874       

12 263.1500 261.1344 259.1187 257.1031       

13 277.1657 275.1500 273.1344 271.1187 269.1031     

14 291.1813 289.1657 287.1500 285.1344 283.1187     

15 305.1970 303.1813 301.1657 299.1500 297.1344 295.1187   

16 319.2126 317.1970 315.1813 313.1657 311.1500 309.1344   

17 333.2283 331.2126 329.1970 327.1813 325.1657 323.1500 321.1344 

18 347.2439 345.2283 343.2126 341.1970 339.1813 337.1657 335.1500 

19 361.2596 359.2439 357.2283 355.2126 353.1970 351.1813 349.1657 

20 375.2752 373.2596 371.2439 369.2283 367.2126 365.1970 363.1813 

21 389.2909 387.2752 385.2596 383.2439 381.2283 379.2126 377.1970 

22 403.3065 401.2909 399.2752 397.2596 395.2439 393.2283 391.2126 
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B-1: O3+CO3
2- 

Datasets Analysis  

 

 

Figure B- 1: PCA (a) Score Plot; and (b) Loading Plot, based on O3+CO3
2-

 Datasets. 
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Figure B- 2: Trends of Significant Unknown Markers Selected from PCA Results based on 

O3 + CO3
2-

 Datasets by Markerlynx. Plot (a) and (b) show markers with decreasing trends; 

plot (c) and (d) show markers with increasing followed by decreasing trends; plot (e) and (f) 

show markers with increasing trends.  
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Figure B- 3: Trends of Significant Unknown Markers Selected from PCA Results based on 

O3 + CO3
2-

 Datasets by Targetlynx. Plot (a) to (f) show the trends of markers corresponding 

to the markers in Figure B-2 (a) to (f). 
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Table B- 1: Elemental Compositions for Significant Unknown Markers from O3 + CO3
2-

 Datasets.  

Detected 
Mass 

Calculated 
Mass 

Error 
PPM 

DBE Formula Detected 
Mass 

Calculated 
Mass 

Error 
PPM 

DBE Formula Detected 
Mass 

Calculated 
Mass 

Error 
PPM 

DBE Formula 

235.0981 235.0970 4.7 6.5 C13 H15 O4 275.1294 275.1283 4 7.5 C16 H19 O4 309.1449 309.1450 -0.3 6.5 C15 H21 N2 O5 

 235.0997 -6.8 11 C16 H13 N O  275.1310 -5.8 12 C19 H17 N O  309.1459 -3.2 5.5 C16 H25 N2 S2 

 235.1004 -9.8 1.5 C10 H19 O4 S  275.1317 -8.4 2.5 C13 H23 O4 S  309.1432 5.5 1 C13 H27 N O3 S2 

243.1403 243.1419 -6.6 2.5 C13 H23 O2 S 281.1571 281.1575 -1.4 4.5 C16 H25 O2 S  309.1425 7.8 10.5 C19 H21 N2 S 

 243.1385 7.4 7.5 C16 H19 O2 283.1350 283.1361 -3.9 14 C21 H17 N 313.1463 313.1467 -1.3 14 C22 H19 N O 

249.1126 249.1127 -0.4 6.5 C14 H17 O4  283.1334 5.7 9.5 C18 H19 O3  313.1474 -3.5 4.5 C16 H25 O4 S 

253.1268 253.1262 2.4 4.5 C14 H21 O2 S  283.1368 -6.4 4.5 C15 H23 O3 S  313.1440 7.3 9.5 C19 H21 O4 

 255.0877 5.9 4.5 C13 H19 O S2  283.1328 7.8 0.5 C10 H23 N2 O5 S 325.1412 325.1408 1.2 5.5 C16 H25 N2 O S2 

265.1084 265.1085 -0.4 5.5 C15 H21 S2 291.1330 291.1327 1 2 C13 H25 N O2 S2  325.1440 -8.6 10.5 C20 H21 O4 

 265.1076 3 6.5 C14 H17 O5  291.1345 -5.2 7.5 C15 H19 N2 O4  325.1381 9.5 1 C13 H27 N O4 S2 

 265.1103 -7.2 11 C17 H15 N O2 297.1571 297.1576 -1.7 5 C15 H23 N O5 327.1609 327.1596 4 9.5 C20 H23 O4 

 265.1110 -9.8 1.5 C11 H21 O5 S  297.1585 -4.7 4 C16 H27 N S2  327.1623 -4.3 14 C23 H21 N O 

269.1549 269.1542 2.6 8.5 C18 H21 O2  297.1551 6.7 9 C19 H23 N S  327.1630 -6.4 4.5 C17 H27 O4 S 

 269.1575 -9.7 3.5 C15 H25 O2 S 299.1341 299.1344 -1 9 C18 H21 N O S 331.1204 331.1208 -1.2 14 C21 H17 N O3 

271.1368 271.1368 0 3.5 C14 H23 O3 S  299.1317 8 4.5 C15 H23 O4 S  331.1190 4.2 8.5 C19 H23 O S2 

 271.1361 2.6 13 C20 H17 N 301.1441 301.1440 0.3 8.5 C18 H21 O4  331.1235 -9.4 18.5 C24 H15 N2 

 271.1395 -10 8 C17 H21 N S  301.1467 -8.6 13 C21 H19 N O 333.1370 333.1365 1.5 13 C21 H19 N O3 

           333.1392 -6.6 17.5 C24 H17 N2 

           333.1347 6.9 7.5 C19 H25 O S2 

           333.1399 -8.7 8 C18 H23 N O3 S 
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B-2: O3 + TBA Datasets Analysis  

 

Figure B- 4: PCA (a) Score Plot; and (b) Loading Plot, based on O3+TBA Datasets.   
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Figure B- 5: Trends of Significant Unknown Markers Selected from PCA Results based on O3 + TBA Datasets by Markerlynx. Plot (a) and (b) show 

markers with decreasing trends; plot (c) shows markers with increasing followed by decreasing trends; plot (d) shows markers with increasing trends.  
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Figure B- 6: Trends of Significant Unknown Markers Selected from PCA Results based on O3 + TBA Datasets by Targetlynx. Plot (a) to (d) show the 

trends of markers corresponding to the markers in Figure B-5 (a) to (d). 
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Table B- 2: Elemental Compositions for Significant Unknown Markers from O3 + TBA Datasets. 

Detected 
Mass 

Calculated 
Mass 

Error 
PPM 

DBE Formula Detected 
Mass 

Calculated 
Mass 

Error 
PPM 

DBE Formula Detected 
Mass 

Calculated 
Mass 

Error 
PPM 

DBE Formula 

243.1388 243.1385 1.2 7.5 C16 H19 O2 285.1506 285.1517 -3.9 13 C21 H19 N 323.1681 323.1681 0 5.5 C18 H27 O3 S 

249.1122 249.1127 -2 6.5 C14 H17 O4  285.1491 5.3 8.5 C18 H21 O3  323.1674 2.2 15 C24 H21 N 

259.1000 259.0997 1.2 13 C18 H13 N O  285.1524 -6.3 3.5 C15 H25 O3 S  323.1708 -8.4 10 C21 H25 N S 

 259.1004 -1.5 3.5 C12 H19 O4 S 295.1354 295.1361 -2.4 15 C22 H17 N 313.1467 313.1467 0 14 C22 H19 N O 

259.1327 259.1334 -2.7 7.5 C16 H19 O3  295.1368 -4.7 5.5 C16 H23 O3 S  313.1474 -2.2 4.5 C16 H25 O4 S 

 259.1303 9.3 2.5 C12 H23 N2 S2  295.1334 6.8 10.5 C19 H19 O3  313.1440 8.6 9.5 C19 H21 O4 

269.1543 269.1542 0.4 8.5 C18 H21 O2  295.1328 8.8 1.5 C11 H23 N2 O5 S 325.1438 325.1440 -0.6 10.5 C20 H21 O4 

271.1009 271.1004 1.8 4.5 C13 H19 O4 S 297.1554 297.1551 1 9 C19 H23 N S  325.1467 -8.9 15 C23 H19 N O 

 271.0997 4.4 14 C19 H13 N O  297.1576 -7.4 5 C15 H23 N O5  325.1408 9.2 5.5 C16 H25 N2 O S2 

 271.1031 -8.1 9 C16 H17 N O S 299.1326 299.1317 3 4.5 C15 H23 O4 S 325.1831 325.1830 0.3 14 C24 H23 N 

271.1365 271.1368 -1.1 3.5 C14 H23 O3 S  299.131 5.3 14 C21 H17 N O  325.1837 -1.8 4.5 C18 H29 O3 S 

 271.1361 1.5 13 C20 H17 N  299.1344 -6 9 C18 H21 N O S  325.1804 8.3 9.5 C21 H25 O3 

281.1569 281.1575 -2.1 4.5 C16 H25 O2 S 311.1361 311.1351 3.2 0.5 C13 H27 O4 S2 326.1836 326.1842 -1.8 5 C16 H26 N2 O5 

 281.1542 9.6 9.5 C19 H21 O2  311.1378 -5.5 5 C16 H25 N O S2  326.1850 -4.3 4 C17 H30 N2 S2 

283.1360 283.1361 -0.4 14 C21 H17 N  311.1344 5.5 10 C19 H21 N O S  326.1817 5.8 9 C20 H26 N2 S 

 283.1368 -2.8 4.5 C15 H23 O3 S 311.1668 311.1674 -1.9 14 C23 H21 N      

 283.1334 9.2 9.5 C18 H19 O3  311.1681 -4.2 4.5 C17 H27 O3 S      
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B-3: O3 + TBA + CO3
2-

 Data Analysis  

 

Figure B- 7: PCA (a) Score Plot; and (b) Loading Plot, based on O3 + TBA + CO3
2-

 Datasets.  
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Figure B- 8: Trends of Significant Unknown Markers from PCA Results based on O3 + CO3
2-

 

+TBA Data by Markerlynx. Plot (a) and (b) show markers with decreasing trends; plot (c) 

and (d) show markers with increasing trends; plot (e) shows marker with decreasing 

followed by increasing and decreasing trend.  
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Figure B- 9: Trends of Significant Unknown Markers Selected from PCA Results based on 

O3 + CO3
2-

 + TBA Data by Targetlynx. Plot (a) to (e) show the trends of markers 

corresponding to the markers in Figure B-8 (a) to (e).  
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Table B- 3: Elemental Compositions for Significant Unknown Markers from O3 + CO3
2- 

+ TBA Datasets. 

Detected 
Mass 

Calculated  
Mass 

Error 
PPM 

DBE Formula Detected 
Mass 

Calculated  
Mass 

Error 
PPM 

DBE Formula Detected 
Mass 

Calculated  
Mass 

Error 
PPM 

DBE Formula 

243.1399 243.1385 5.8 7.5 C16 H19 O2 285.1497 285.1491 2.1 8.5 C18 H21 O3 311.1359 311.1351 2.6 0.5 C13 H27 O4 S2 

 243.1419 -8.2 2.5 C13 H23 O2 S  285.1517 -7 13 C21 H19 N  311.1344 4.8 10 C19 H21 N O S 

253.1260 253.1262 -0.8 4.5 C14 H21 O2 S  285.1524 -9.5 3.5 C15 H25 O3 S  311.1378 -6.1 5 C16 H25 N O S2 

255.1384 255.1385 -0.4 8.5 C17 H19 O2 289.1102 289.1103 -0.3 13 C19 H15 N O2 313.1461 313.1467 -1.9 14 C22 H19 N O 

257.1209 257.1211 -0.8 3.5 C13 H21 O3 S  289.1110 -2.8 3.5 C13 H21 O5 S  313.1474 -4.2 4.5 C16 H25 O4 S 

 257.1204 1.9 13 C19 H15 N  289.1085 5.9 7.5 C17 H21 S2  313.1440 6.7 9.5 C19 H21 O4 

269.1551 269.1542 3.3 8.5 C18 H21 O2  289.1076 9 8.5 C16 H17 O5 315.1244 315.1241 1 8.5 C19 H23 S2 

 269.1575 -8.9 3.5 C15 H25 O2 S 297.1162 297.1161 0.3 5.5 C15 H21 O4 S  315.1232 3.8 9.5 C18 H19 O5 

271.1004 271.1004 0 4.5 C13 H19 O4 S  297.1154 2.7 15 C21 H15 N O  315.1259 -4.8 14 C21 H17 N O2 

 271.0997 2.6 14 C19 H13 N O  297.1187 -8.4 10 C18 H19 N O S  315.1266 -7 4.5 C15 H23 O5 S 

271.1363 271.1361 0.7 13 C20 H17 N 297.1528 297.1524 1.3 4.5 C16 H25 O3 S 325.1440 325.1440 0 10.5 C20 H21 O4 

 271.1368 -1.8 3.5 C14 H23 O3 S  297.1517 3.7 14 C22 H19 N  325.1467 -8.3 15 C23 H19 N O 

273.1142 273.1154 -4.4 13 C19 H15 N O  297.1551 -7.7 9 C19 H23 N S  325.1408 9.8 5.5 C16 H25 N2 O S2 

 273.1127 5.5 8.5 C16 H17 O4 297.1563 297.1551 4 9 C19 H23 N S 325.1835 325.1837 -0.6 4.5 C18 H29 O3 S 

 273.1161 -7 3.5 C13 H21 O4 S  297.1576 -4.4 5 C15 H23 N O5  325.1830 1.5 14 C24 H23 N 

281.1575 281.1575 0 4.5 C16 H25 O2 S  297.1585 -7.4 4 C16 H27 N S2  325.1864 -8.9 9 C21 H27 N S 

283.1355 283.1361 -2.1 14 C21 H17 N 299.1332 299.1344 -4 9 C18 H21 N O S  325.1804 9.5 9.5 C21 H25 O3 

 283.1368 -4.6 4.5 C15 H23 O3 S  299.1317 5 4.5 C15 H23 O4 S 345.1376 345.1365 3.2 14 C22 H19 N O3 

 283.1334 7.4 9.5 C18 H19 O3  299.1310 7.4 14 C21 H17 N O  345.1392 -4.6 18.5 C25 H17 N2 

 283.1328 9.5 0.5 C10 H23 N2 O5 S 303.1236 303.1232 1.3 8.5 C17 H19 O5  345.1399 -6.7 9 C19 H23 N O3 S 

285.1173 285.1161 4.2 4.5 C14 H21 O4 S  303.1241 -1.6 7.5 C18 H23 S2  345.1347 8.4 8.5 C20 H25 O S2 

 285.1187 -4.9 9 C17 H19 N O S  303.1259 -7.6 13 C20 H17 N O2 283.1708 283.1698 3.5 8.5 C19 H23 O2 

 285.1154 6.7 14 C20 H15 N O  303.1266 -9.9 3.5 C14 H23 O5 S  283.1732 -8.5 3.5 C16 H27 O2 S 
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B-4: O3 + TNM Datasets Analysis  

 

 

Figure B- 10: PCA (a) Score Plot; and (b) Loading Plot, based on O3 + TNM Datasets. 
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Figure B- 11: Trends of Significant Unknown Markers Selected from PCA Results based on 

O3 + TNM Datasets by Markerlynx. Plot (a) and (b) show markers with decreasing trends; 

plot (c) and (d) show markers with decreasing followed by increasing and decreasing trends; 

plot (e) shows markers with increasing trends; plot (f) shows markers with increasing 

followed by decreasing and increasing trends.  
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Figure B- 12: Trends of Significant Unknown Markers Selected from PCA Results based on 

O3 + TNM Data by Targetlynx. Plot (a) to (f) show the trends of markers corresponding to 

the markers in Figure B-11 (a) to (f).   
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Table B- 4: Elemental Compositions for Significant Unknown Markers from O3 + TNM Datasets. 

Detected 
Mass 

Calculated 
Mass 

Error 
PPM 

DBE Formula Detected 
Mass 

Calculated 
Mass 

Error 
PPM 

DBE Formula Detected 
Mass 

Calculated 
Mass 

Error 
PPM 

DBE Formula 

243.1388 243.1385 1.2 7.5 C16 H19 O2 283.1699 283.1698 0.4 8.5 C19 H23 O2 297.1561 297.1551 3.4 9 C19 H23 N S 

249.1129 249.1127 0.8 6.5 C14 H17 O4 285.1179 285.1187 -2.8 9 C17 H19 N O S  297.1576 -5 5 C15 H23 N O5 

253.1266 253.1262 1.6 4.5 C14 H21 O2 S  285.1161 6.3 4.5 C14 H21 O4 S  297.1585 -8.1 4 C16 H27 N S2 

255.1385 255.1385 0 8.5 C17 H19 O2  285.1154 8.8 14 C20 H15 N O 299.1332 299.1344 -4 9 C18 H21 N O S 

267.1406 267.1419 -4.9 4.5 C15 H23 O2 S 287.0954 287.0953 0.3 4.5 C13 H19 O5 S  299.1317 5 4.5 C15 H23 O4 S 

 267.1385 7.9 9.5 C18 H19 O2  287.0946 2.8 14 C19 H13 N O2  299.1310 7.4 14 C21 H17 N O 

269.1252 269.1263 -4.1 5 C13 H19 N O5  287.0928 9.1 8.5 C17 H19 S2 311.1347 311.1344 1 10 C19 H21 N O S 

 269.1238 5.2 9 C17 H19 N S  287.0980 -9.1 9 C16 H17 N O2 S  311.1351 -1.3 0.5 C13 H27 O4 S2 

 269.1272 -7.4 4 C14 H23 N S2 295.1721 295.1732 -3.7 4.5 C17 H27 O2 S  311.1317 9.6 5.5 C16 H23 O4 S 

269.1544 269.1542 0.7 8.5 C18 H21 O2  295.1698 7.8 9.5 C20 H23 O2 313.1116 313.1110 1.9 5.5 C15 H21 O5 S 

271.1361 271.1361 0 13 C20 H17 N  295.1692 9.8 0.5 C12 H27 N2 O4 S  313.1103 4.2 15 C21 H15 N O2 

 271.1368 -2.6 3.5 C14 H23 O3 S 297.1156 297.1154 0.7 15 C21 H15 N O  313.1136 -6.4 10 C18 H19 N O2 S 

281.1564 281.1575 -3.9 4.5 C16 H25 O2 S  297.1161 -1.7 5.5 C15 H21 O4 S  313.1143 -8.6 0.5 C12 H25 O5 S2 

 281.1542 7.8 9.5 C19 H21 O2  297.1127 9.8 10.5 C18 H17 O4  313.1085 9.9 9.5 C19 H21 S2 

283.1414 283.1420 -2.1 5 C14 H21 N O5 297.1524 297.1524 0 4.5 C16 H25 O3 S 315.1256 315.1259 -1 14 C21 H17 N O2 

 283.1428 -4.9 4 C15 H25 N S2  297.1517 2.4 14 C22 H19 N  315.1266 -3.2 4.5 C15 H23 O5 S 

 283.1395 6.7 9 C18 H21 N S  297.1551 -9.1 9 C19 H23 N S  315.1241 4.8 8.5 C19 H23 S2 

           315.1232 7.6 9.5 C18 H19 O5 
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B-5: O3 + Fe (II) Datasets Analysis  

 

 

Figure B- 13: PCA (a) Score Plot; and (b) Loading Plot, based on O3 + Fe (II) Datasets. 
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Figure B- 14: Trends of Significant Unknown Markers Selected from PCA Results based on 

O3 + Fe (II) Datasets by Markerlynx. Plot (a) and (c) show markers with decreasing trends; 

plot (d) show markers with increasing trends; plot (e) shows markers with increasing 

followed by decreasing trends; plot (f) shows markers with variable trends.  
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Figure B- 15: Trends of Significant Unknown Markers Selected from PCA Results based on 

O3 + Fe (II) Datasets by Targetlynx. Plot (a) to (f) show the trends of markers corresponding 

to the markers in Figure B-16 (a) to (f).  
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Table B- 5: Elemental Compositions for Significant Unknown Markers from O3 + Fe (II) Datasets. 

Detected 
Mass 

Calculated  
Mass 

Error 
PPM 

DBE Formula Detected 
Mass 

Calculated  
Mass 

Error 
PPM 

DBE Formula Detected 
Mass 

Calculated  
Mass 

Error 
PPM 

DBE Formula 

223.0963 223.0970 -3.1 5.5 C12 H15 O4 275.1299 275.1310 -4 12 C19 H17 N O 313.1111 313.1110 0.3 5.5 C15 H21 O5 S 

243.1386 243.1385 0.4 7.5 C16 H19 O2  275.1283 5.8 7.5 C16 H19 O4  313.1103 2.6 15 C21 H15 N O2 

248.0790 248.0797 -2.8 8 C12 H12 N2 O4  275.1317 -6.5 2.5 C13 H23 O4 S  313.1136 -8 10 C18 H19 N O2 S 

 248.0779 4.4 2.5 C10 H18 N O2 S2 281.1572 281.1575 -1.1 4.5 C16 H25 O2 S  313.1085 8.3 9.5 C19 H21 S2 

249.1123 249.1127 -1.6 6.5 C14 H17 O4 283.1704 283.1698 2.1 8.5 C19 H23 O2 313.1462 313.1467 -1.6 14 C22 H19 N O 

253.1258 253.1262 -1.6 4.5 C14 H21 O2 S  283.1732 -9.9 3.5 C16 H27 O2 S  313.1474 -3.8 4.5 C16 H25 O4 S 

259.1330 259.1334 -1.5 7.5 C16 H19 O3 297.1523 297.1524 -0.3 4.5 C16 H25 O3 S  313.1440 7 9.5 C19 H21 O4 

267.1395 267.1385 3.7 9.5 C18 H19 O2  297.1517 2 14 C22 H19 N 325.1834 325.1837 -0.9 4.5 C18 H29 O3 S 

 267.1379 6 0.5 C10 H23 N2 O4 S  297.1551 -9.4 9 C19 H23 N S  325.1830 1.2 14 C24 H23 N 

 267.1419 -9 4.5 C15 H23 O2 S 299.1307 299.1310 -1 14 C21 H17 N O  325.1804 9.2 9.5 C21 H25 O3 

269.1540 269.1542 -0.7 8.5 C18 H21 O2  299.1317 -3.3 4.5 C15 H23 O4 S  325.1864 -9.2 9 C21 H27 N S 

273.1145 273.1154 -3.3 13 C19 H15 N O  299.1283 8 9.5 C18 H19 O4 339.1991 339.1994 -0.9 4.5 C19 H31 O3 S 

 273.1161 -5.9 3.5 C13 H21 O4 S 311.1678 311.1681 -1 4.5 C17 H27 O3 S  339.1987 1.2 14 C25 H25 N 

 273.1127 6.6 8.5 C16 H17 O4  311.1674 1.3 14 C23 H21 N  339.2021 -8.8 9 C22 H29 N S 

      311.1708 -9.6 9 C20 H25 N S  339.1960 9.1 9.5 C22 H27 O3 
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B-6: Specific and Common Markers from Ozonation in Different 

Conditions Datasets 

Table B- 6: Specific Significant Unknown Markers Only Presented in One Individual 

Ozonation Condition 

Ozonation Condition Specific unknown markers in individual Ozonation (m/z) 

O3 209.09 239.11 281.10 311.17 
   

O3+CO3
2- 301.14 327.16 291.13 331.12 333.14 235.10 309.14 

O3+TBA 295.14 323.17 325.18 259.10 
   

O3+TBA+CO3
2- 257.12 289.10 303.12 273.14 303.12 345.14  

O3+TNM 295.17 287.10 297.15 
    

O3+Fe (II) 339.20 223.09 
     

 

Table B- 7: Common and Specific By-products from All Ozonation in Different Conditions  

Marker (m/z) O3 O3+CO3
2- O3+TBA O3+TBA+CO3

2- O3+TNM O3+Fe(II) 

209.09 ✔ 
     

223.09 
     

✔ 

235.09 Δ ✔ 
    

239.11 ✔ 
     

249.11 Δ ✔ ✔ 
 

Δ ✔ 

259.10 
  

✔ 
   

265.11 ✔ ✔ 
    

271.10 
  

✔ ✔ 
  

273.14 
   

✔ 
  

281.10 ✔ 
     

285.12 
  

✔ ✔ Δ 
 

287.10 
    

✔ 
 

289.10 
   

✔ 
  

297.12 
   

✔ Δ 
 

297.15 
    

✔ 
 

299.13 Δ Δ ✔ ✔ 
 

Δ 

303.12 
   

✔ 
  

311.13 
  

✔ Δ Δ 
 

311.17 ✔ 
     

313.11 
    

✔ ✔ 

313.15 Δ Δ ✔ ✔ 
 

Δ 

315.12 
   

✔ Δ 
 

325.14 
 

Δ 
 

✔ 
  

345.14 
   

✔ 
  

Note: ✔= markers defined as by-products in corresponding ozonation condition; 

Δ = markers (not by-products) showing various behaviours in different ozonation 

conditions; blank = not detected. Markers highlighted in red are common markers.   
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B-7: Trends of Common Markers in Ozonation in Different 

Conditions by Targetlynx  

 

Figure B- 16: Common Markers from Ozonation in Different Conditions Datasets by 

Targetlynx (Part 1). Plot (a) to (c) showed trends of markers corresponding to the markers 

shown in Figure 4-23 (a) to (c).  
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Figure B- 17: Common Markers from Ozonation in Different Conditions Datasets by 

Targetlynx (Part 2). Plot (a) to (g) showed trends of markers corresponding to the markers 

shown in Figure 4-24 (a) to (g). 
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Figure B- 18: Common Markers from Ozonation in Different Conditions Datasets by 

Targetlynx (Part 3). Plot (a) to (f) showed trends of markers corresponding to the markers 

shown in Figure 4-25 (a) to (f).  
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Figure B- 19: Common Markers from Ozonation in Different Conditions Datasets by 

Targetlynx (Part 4). Plot (a) to (g) showed trends of markers corresponding to the markers 

shown in Figure 4-26 (a) to (g).  
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Figure B- 20: Common Markers from Ozonation in Different Conditions Datasets by 

Targetlynx (Part 5). Plots (a) to (e) showed trends of markers corresponding to the markers 

shown in Figure 4-27 (a) to (e). 
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Appendix C 

Supplementary Information for Biological Treatment 

Processes  
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C-1: Raw OSPW Biodegradation 

Table C- 1: Elemental Compositions for Significant Unknown Markers from Raw OSPW Biodegradation Datasets 

Detected 
Mass        

Calculated 
Mass 

Error 
PPM 

DBE Formula Detected 
Mass        

Calculated 
Mass 

Error 
PPM 

DBE Formula Detected 
Mass        

Calculated 
Mass 

Error 
PPM 

DBE Formula 

235.0997 235.0997 0 11 C16 H13 N O 287.0966 287.0953 4.5 4.5 C13 H19 O5 S 309.1588 309.1585 1 5 C17 H27 N S2 

            235.1004 -3 1.5 C10 H19 O4 S             287.0980 -4.9 9 C16 H17 N O2 S             309.1576 3.9 6 C16 H23 N O5 

241.1255 241.1262 -2.9 3.5 C13 H21 O2 S             287.0946 7 14 C19 H13 N O2             309.1603 -4.9 10.5 C19 H21 N2 O2 

253.1276 253.1262 5.5 4.5 C14 H21 O2 S 295.1371 295.1368 1 5.5 C16 H23 O3 S             309.1610 -7.1 1 C13 H27 N O5 S 

255.1403 255.1419 -6.3 3.5 C14 H23 O2 S             295.1361 3.4 15 C22 H17 N             309.1558 9.7 0.5 C14 H29 O3 S2 

            255.1385 7.1 8.5 C17 H19 O2             295.1395 -8.1 10 C19 H21 N S 325.1822 325.1830 -2.5 14 C24 H23 N 

269.1559 269.1575 -5.9 3.5 C15 H25 O2 S 295.1732 295.1732 0 4.5 C17 H27 O2 S             325.1837 -4.6 4.5 C18 H29 O3 S 

            269.1542 6.3 8.5 C18 H21 O2 299.1149 299.1158 -3 10 C17 H17 N O4             325.1804 5.5 9.5 C21 H25 O3 

281.1578 281.1575 1.1 4.5 C16 H25 O2 S             299.1139 3.3 4.5 C15 H23 O2 S2             325.1797 7.7 0.5 C13 H29 N2 O5 S 

283.1712 283.1698 4.9 8.5 C19 H23 O2 305.1576 305.1575 0.3 6.5 C18 H25 O2 S 327.1268 327.1266 0.6 5.5 C16 H23 O5 S 

            283.1732 -7.1 3.5 C16 H27 O2 S 307.1730 307.1732 -0.7 5.5 C18 H27 O2 S             327.1259 2.8 15 C22 H17 N O2 

                      327.1293 -7.6 10 C19 H21 N O2 S 

                      327.1241 8.3 9.5 C20 H23 S2 

                      327.1300 -9.8 0.5 C13 H27 O5 S2 
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Table C- 2: Elemental Compositions for Significant Unknown Markers from Ozonated 

OSPW Biodegradation Datasets 

Detected 

Mass        

Calculated 

Mass 

Error 

PPM 

DBE Formula 

297.1543 297.1551 -2.7 9 C19 H23 N S 

            297.1524 6.4 4.5 C16 H25 O3 S 

            297.1517 8.7 14 C22 H19 N 

311.1681 311.1681 0 4.5 C17 H27 O3 S 

            311.1674 2.2 14 C23 H21 N 

            311.1708 -8.7 9 C20 H25 N S 

301.1465 301.1467 -0.7 13 C21 H19 N O 

            301.1474 -3 3.5 C15 H25 O4 S 

            301.1440 8.3 8.5 C18 H21 O4 

309.1525 309.1524 0.3 5.5 C17 H25 O3 S 

            309.1517 2.6 15 C23 H19 N 

            309.1551 -8.4 10 C20 H23 N S 

303.1231 303.1232 -0.3 8.5 C17 H19 O5 

            303.1241 -3.3 7.5 C18 H23 S2 

            303.1207 7.9 12.5 C21 H19 S 

            303.1259 -9.2 13 C20 H17 N O2 

            303.1201 9.9 3.5 C13 H23 N2 O2 S2 

 

 

 

 

 

 


