
University of Alberta

Program Design and Animation in the Enterprise Parallel
Programming Environment

by

Greg Lobe
Duane Szafron

Jonathan Schaeffer

Technical Report TR 93-04
March 1993

- 1 - Enterprise Technical Report TR93-04

Program Design and Animation in the Enterprise
Parallel Programming Environment

Greg Lobe
Duane Szafron

Jonathan Schaeffer

Department of Computing Science,
University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1

{greg, duane, jonathan}@cs.ualberta.ca

ABSTRACT

The Enterprise programming environment supports the development of applications that run

concurrently on a network of workstations. This paper describes the object-oriented components

of Enterprise, implemented in Smalltalk-80, and their seamless integration with the procedural

components, implemented in C. The object-oriented user-interface supports a new

anthropomorphic model for parallel computation that eliminates much of the perceived complexity

of parallel programs. The object-oriented animation component implements a new animation

architecture that supports synchronous and asynchronous events. This allows a user to view the

dynamic interactions of the parallel components of a distributed application to simplify performance

monitoring and debugging. The Enterprise experience highlights the strengths of object-oriented

methodologies both for expressing user models and for implementing related components.

Keywords: Object-oriented, Smalltalk, programming environment, user-interface, animation, distributed
computing

- 2 - Enterprise Technical Report TR93-04

1. Introduction

This paper describes how object-oriented techniques were used to design and implement

components of the Enterprise programming environment. Enterprise supports the development of

distributed applications, written in the C programming language, that run on a network of

workstations. Enterprise is a good example of an embedded application where object-oriented and

traditional code co-exist. Object-orientation was used in the design of the parallel programming

model and Smalltalk-80 (ST-80) was used for the user-interface and program animation

components. The rest of the system was written in C.

Parallelism adds an extra dimension of complexity to the design, implementation, and

debugging of programs. With multiple processes running on multiple processors (dozens,

hundreds or more), the user often has difficulty understanding a parallel computation using

conventional sequential tools. Visualization and animation are needed to grasp the often intricate

and non-deterministic interactions between components. Most importantly, however, a simple

model is needed to bring order to an often chaotic collection of asynchronous processes.

In Enterprise, the interactions of processes in a parallel computation are described by using

an analogy based on the parallelism in a business organization. Most parallel computations can be

structured hierarchically, with "higher-level" management processes performing executive

functions, and "lower-level" subordinate processes carrying out designated tasks. Since business

enterprises efficiently coordinate many asynchronous individuals and groups, the analogy is

beneficial to designing, understanding and reducing the complexity of parallel programs.

Inconsistent parallel terminology (master-slave, pipelines, divide-and-conquer, etc.) is replaced

with more familiar business terms (assets called departments, receptionists, individuals, divisions,

representatives, etc.). Every sequential procedure that is to be executed concurrently is assigned an

asset type that determines its parallel behavior. The user code for each of these procedures is

sequential C, but a procedure call to such an asset is automatically translated to a message send by

Enterprise.

Consider the following user C code, assuming that func is an asset in the user's program:

result = func(x, y);
/* other C code */
a = result;

When Enterprise translates this code to run on a network of workstations, the parameters x and y

are packed into a message and sent to the process that executes the asset func. The caller

continues executing and only when it accesses the result of the function call (a = result) does it

block and wait for the result. Enterprise also supports passing parameters by reference.

- 3 - Enterprise Technical Report TR93-04

Enterprise consists of three components: an object-oriented graphical interface, a pre-

compiler, and a run-time executive. The user specifies the application parallelism by drawing a

hierarchical enterprise that consists of assets. At run-time, each asset corresponds to a process.

Sequential procedure calls in C are translated into message sends across a network by the pre-

compiler. The run-time executive controls program execution (process/processor assignment,

establishing communication links, monitoring the network load). More information about

Enterprise including the anthropomorphic parallel programming model, the system implementation

and a user appraisal can be found in [LMP92], [SSW92] and [Par93].

The graphical interface and the Enterprise anthropomorphic model are used for program

design. However, they can also used be used to monitor or replay an execution. The interface

animates the states of the assets (processes) and the messages that are sent between them. These

facilities are currently being expanded to include performance monitoring and debugging features.

This paper describes the design of the Enterprise interface and its animation capabilities.

Several research contributions and lessons were derived from the Enterprise project:

1. a new anthropomorphic model for parallel computation,

2. a new object-oriented, application-independent animation architecture containing both

synchronous and asynchronous components,

3. evidence that programming languages that support multiple inheritance are essential for the

proper representation of those object-oriented applications that depend on real-world

models or analogies,

4. how object-oriented techniques can be used in designing software development

environments that support non-object-oriented programming languages,

5. how object-oriented software can be integrated with non-object-oriented software and

6. how context-sensitive hierarchical direct manipulation user-interfaces can simplify user

models, focus user attention and prevent errors.

2. Designing Programs Using Enterprise

This section presents a simple example of how Enterprise can be used to construct a

distributed program. Consider a program (called Simulation) that displays a group of fish

swimming across a display screen. This problem was contributed by a research group in our

Department and is obviously more complex than portrayed by the following description. There are

three fundamental operations in the program (Model, PolyConv and Split) with the following

functionality and pseudo-code.

- 4 - Enterprise Technical Report TR93-04

• The main procedure, Model, computes the location and motion of each object in a

simulation frame, stores the results in a file, calls PolyConv to process the frame and goes

to the next frame.

Model()
{

for each frame
{

/* compute location and motion of objects */
PolyConv(frame);

}
}

• PolyConv reads a simulation frame from the disk file and performs some data format

transformations, viewing transformations, projections, sorts and back-face removal. It

then calls Split, passing it a transformed frame and a sequence number.

PolyConv(frame)
{

/* perform transformations and projections */
Split(frame, polygons);

}

• Split performs hidden surface removal and anti-aliasing and then stores the rendered image

in a file.

Split(frame, polygons)
{

/* hidden surface removal and anti-aliasing */
}

Examining the structure of the program shows that Model consists of a loop that, for each frame in

the simulation, performs some work on the frame and calls PolyConv with the results. PolyConv

manipulates the image received from Model and calls Split. Split does the final polishing of the

frame and writes the final image to disk.

An Enterprise user manipulates icons that represent high-level program components called

assets. An asset represents a single C procedure/function, called an entry procedure, together with

a collection of support procedures used by the entry procedure, all contained in a single file. A

program will consist of several assets. In this example, there will be three assets: Model,

PolyConv and Split.

When Enterprise is started, the Enterprise window contains a single view called the

Enterprise View. It contains the icon for a single enterprise asset that represents the new program.

Associated with each asset is a context sensitive pop-up menu. For example, if the user selects

Name from the asset menu of the enterprise and types the word Simulation into the dialog box that

appears, the enterprise would be named Simulation and appear as in Figure 1. Note that the

Enterprise user-interface is implemented in ST-80 which uses the host windowing system. The

- 5 - Enterprise Technical Report TR93-04

figures in this report were generated on the Macintosh implementation of the Enterprise user-

interface and look slightly different in X windows [GKM90] or Sun OpenWindows [Sun91].

Figure 1: A new program called Simulation.

If the user then selects Expand from the asset menu, the enterprise icon will expand to reveal

the single individual that it contains. To name this asset, the user selects Name from the asset

menu of the individual and types the word Model into the dialog box that appears.

The user could enter all of the code for Model, PolyConv and Split into this single individual

and run the program sequentially. However, there is no reason why Model should wait until

PolyConv completes the first simulation frame to start processing the second frame. Similarly,

PolyConv does not need to wait for Split. In the parallel processing community this type of

parallelism is often called a pipeline. Using the Enterprise analogy, these three routines act like an

assembly or production line and are represented by a line. Therefore, if the user selects Line from

the asset menu of Model, it is re-classified as a line. After re-classification, the individual appears

as a line consisting of a receptionist and one subordinate individual. Figure 2 shows the line where

the numeral 1 indicates the number of subordinate assets in the line.

Figure 2: A sequential program that contains a line called Model.

 If the user selects Expand from the asset menu of Model, it is expanded to reveal its two

components. Since we want three components, the user selects AddAfter from the last

- 6 - Enterprise Technical Report TR93-04

component's menu to add a third asset and then names the new assets, PolyConv and Split. The

user can then select Code from the menu of each asset in turn and enter the C source code into the

text editor window that appears, as shown in Figure 3.

Figure 3: Editing the C source code for PolyConv.

The double-line rectangle represents the enterprise. The dashed-line rectangle represents the

line and each icon represents a component. The first component is a receptionist that shares the

name, Model, with the line that contains it. All calls to a line are received by the receptionist. The

other two components are subordinate individuals.

If the user selects Compile from the Enterprise view menu, the Enterprise pre-compiler

inserts the parallelization code, compiles the program and reports any errors in a window. The

user can then select Execute from the Enterprise view menu and Enterprise finds as many

processors as are necessary to start the program, initiates the processes and monitors the load on

the machines.

One of the strengths of the Enterprise model is that it is easy to experiment with alternate

parallelization techniques without changing the C source code. Each asset represents at least one

- 7 - Enterprise Technical Report TR93-04

process. If a call is made to the individual Split, it is executed by a process and if a subsequent call

is made to Split before the first call is complete, the second call must wait for the first call to finish.

However, if the Split asset is replicated then multiple processes can be used to execute multiple

calls concurrently. For example, if the user selects Replicate from the asset menu of Split and

enters 1 and 5 as minimum and maximum replication factors in the dialog box that appears, then

Split is replicated as shown in Figure 4.

Figure 4: A replicated asset.

When PolyConv calls Split, a process is initiated and if a subsequent call is made to Split

before the first call is done then a second process is initiated (if there is an available machine).

Replication can be dynamic in Enterprise so that as many processors as are available on the

network may be used, subject to a lower and upper bound supplied by the user. Several other

asset kinds are supported by Enterprise and they can be combined in arbitrary hierarchies.

- 8 - Enterprise Technical Report TR93-04

3. The User-Interface Implementation

The Enterprise user-interface has been implemented in ST-80, version 4.0. It may be used to

construct programs on any machine that is supported by ST-80 including a broad range of Unix™

workstations as well as Macintoshes and IBM X86 or compatible machines. However, since the

rest of the Enterprise programming environment is Unix dependent, features such as Compile and

Execute only work on Unix workstations. Under Unix, the ST-80 interpreter runs as a single task

under X windows.

The history of the Enterprise user-interface is an interesting one and illustrates some of the

tradeoffs that can occur when deciding whether or not to use object-oriented technology and how

to integrate it with an existing software legacy. Enterprise is based on a predecessor programming

environment called Frameworks [SSG91] that was completely implemented in C. The

Frameworks environment had a primitive graphical user-interface that lacked the anthropomorphic

model and required the user to do more drawing. When the Enterprise project was started, a

decision was made to create an object-oriented graphical user-interface that could more easily

represent the new high-level parallel programming model.

Since the researchers had some experience with the object-oriented languages, Smalltalk and

C++, both were considered for implementing the user-interface. C++ was chosen for three

reasons: it has faster run-time performance than Smalltalk, it should be easier to integrate a C++

user-interface with existing C code since it is a superset of C and, unlike ST-80, there are no

licensing restrictions on the distribution of a C++ user-interface. Smalltalk/V was disqualified

since it does not currently run under Unix.

The Interviews [LVC89] user-interface class library was used to reduce development time.

Unfortunately, 6 person-months were spent trying to implement the user-interface using Interviews

without success. Although individual widgets were relatively easy to build, the complexity of

Interviews resulted in a learning curve that was too steep. Although an experienced Interviews

programmer may have been able to complete the task in this time, our programmer could not.

Since the user-interface was lagging behind the pre-compiler and executive, we then decided

to try Motif [You92]. However, two person-months of work on Motif (by a different

programmer) yielded results that were no better.

At this point, we decided to try ST-80 in spite of its perceived problems. A graduate student

who had previously taken a one semester course in object-oriented computing that included ST-80

as a component then produced a working prototype of the user-interface in three weeks! Of course

the final user-interface (with animation) as described in this paper took much longer (about four

™ Unix is a trademark of Bell Laboratories.

- 9 - Enterprise Technical Report TR93-04

months). The execution speed of the user-interface is well within our performance requirements

and it was quite easy to integrate the ST-80 user-interface with the C pre-compiler and executive.

The rest of this section describes the way the user-interface was implemented in ST-80.

3.1 The User-Interface Control Model

Since a program may display many ST-80 windows, the ST-80 interpreter polls the

windows, asking each in turn if it wants control. The default behavior is that a window takes

control whenever the cursor is inside of it.

The Model View Controller (MVC) paradigm [LP91] is used where the model is an instance

of class Enterprise, the view is an EnterpriseWindow and the controller is an EnterpriseController.

The EnterpriseController behaves exactly the same as a default Controller except when the program

is animated and this will be described in Section 4.

The model is responsible for knowing its enterprise (program). The window is responsible

for displaying the enterprise using the values stored by the model. Views are composite objects

that can contain sub-views, but the location and size of a sub-view within its parent view is

maintained by a wrapper object. That is, sub-views are contained in wrappers, which are

themselves contained in a parent view. An instance of EnterpriseWindow contains two wrapped

sub-views, an Enterprise view and a Service view. The Enterprise view displays the enterprise

(program) and the Service view displays the service assets used by the enterprise. The Service

view can be hidden when it is not used. Service assets are described in [LMP92].

When a mouse button is pressed, the window passes control to the view that contains the

cursor. The view then determines which asset (if any) was selected. The selected asset is one

whose bounds (rectangle) contains the cursor point. However, since assets may be nested in a

hierarchical structure, many assets may contain the cursor point. The selected asset is defined as

the innermost one that contains the cursor point. For example, in Figure 4, the cursor is inside of

the individual PolyConv, which is inside the line (dashed line) Model, which is inside the

enterprise (double line) named Simulation. In this case the cursor point is considered to be inside

PolyConv.

 If an asset is selected, a context sensitive menu is displayed. The menu contains only those

operations that are currently valid for the selected asset. For example, if an asset is expanded,

then the Collapse operation would appear in the menu, but the Expand operation would not. In

this way, it is impossible for a user to select an invalid operation. If no asset is selected, then the

menu for the Enterprise view is displayed.

This approach simplifies the user's mental model of the programming environment since it

reduces the number of operations the user sees [LSW87]. It is in stark contrast to pull-down

- 10 - Enterprise Technical Report TR93-04

menus where the user is presented with a plethora of choices some of which have subtle

differences and some of which do not even apply to the user-interface component being

considered. For example, if the user chooses Compile from an asset's menu, only the code for the

asset is compiled. If the user chooses Compile from the Enterprise view menu, then all assets are

compiled. Furthermore, the Execute command does not even appear in an asset menu. In a pull-

down system, Compile Asset, Compile Program and Execute would all appear in the menus.

How does a view determine which of its assets is selected? A traditional non-object-oriented

approach would be for a view to maintain a list of its assets and their locations and to compute the

selected asset based on this information. However, since assets can be nested, some other

structural information would be required as well. Assets can be expanded to reveal their

components or collapsed to hide their internal details. As assets are expanded and collapsed, their

locations change and must be updated. In the object-oriented world, each asset should be

responsible for knowing its own location and its structure (its parent asset and the other assets it

contains). The view itself only needs to know the enterprise.

Even when it is assumed that assets are responsible for knowing their locations, there are

several approaches for determining the selected asset and transferring control to it so that its menu

can be displayed and the appropriate action taken.

The following naive approach was tried first. The ST-80 implementation of MVC provides a

default behavior that passes control to the innermost view that contains the cursor. This is

implemented by maintaining a list of scheduled controllers (the controller of each window). Each

of the scheduled controllers is sent a message in a polling loop. If a controller's view has the

cursor, it takes control and asks its view if one of its sub-views wants control. If one does, the

controller gives control to the sub-view's controller, otherwise it keeps control itself. The sub-

view's controller behaves the same way. Thus, the controller for the innermost sub-view that

contains the cursor gets control.

Since assets are views, the method that determines if a sub-view wants control was re-

implemented. This was necessary since ST-80 assumes that sub-views are always displayed. If

an asset is collapsed or has no components, the method returns the asset itself. Otherwise the

method invokes the original method that recursively finds a component of the asset that wants

control. Once a controller has control and knows that none of its sub-views wants control, it

displays its menu and it processes the user's choice.

Unfortunately, this approach failed. There were times when the wrong menus would be

displayed. Clicking on an asset would bring up the menu for one of its components, its parent, or

even one of its parent's parents. Clicking at the same location again would sometimes display the

same menu, but would sometimes display the right one or a completely different one. It seemed

- 11 - Enterprise Technical Report TR93-04

like the wrong controller was taking control. This behavior was caused by two different

phenomena. First, each asset asked the cursor for its location. When the cursor was moved

between the times that two assets queried it, each would receive a different point. Second, the

control method was not actually as simple as described previously. The method in the controller

that asks sub-controllers if they want control is sent from a loop. The loop iterates until the asset

no longer has the cursor. When a menu was displayed, the active control loop was initiated from a

controller in a loop that was initiated from a controller in a loop, etc. When the active controller

finished processing the user's choice, that loop would not end. The next time the user clicked the

mouse the controller would assume that it had the cursor (because it was active), would find that

no sub-view wanted control, and would display its own menu.

Our second approach alleviated this problem. The Enterprise view determines the

coordinates of the cursor and asks the enterprise which asset should be selected. The enterprise

either returns the selected asset or the UndefinedObject, nil, if no asset contains the cursor point.

In the former case, the selected asset is given control to display its menu and perform the selected

action. In the latter case, the Enterprise view displays its own menu and performs the selected

action.

 When the enterprise or any other asset is passed the cursor point and asked for the selected

asset, it behaves recursively as follows. If the point is outside its bounds it answers nil. If the

point is inside its bounds and it does not contain any component assets or it contains component

assets but they are not currently displayed, then it returns itself. Otherwise, the asset asks each of

its component assets in turn to identify the selected asset until one answers an asset or all respond

with nil. The asset then returns this result. Before asking each component asset, the asset asks the

wrapper of the component to change the coordinates of the cursor point to the local coordinates of

the component.

3.2 Drawing Assets

When an asset receives a display message, it draws itself. Any asset that contains component

assets can be either collapsed or expanded. Assets that are collapsed or do not have components

are displayed in the same way. First the asset draws its icon. Then it displays its name in the

lower left corner of the icon. If the asset is replicated, the replication is indicated by drawing lines

above and to the right of the icon to simulate a stack of icons, and by displaying the number of

replications outside of the top right corner of the icon.

An expanded asset first draws a rectangular border. The size of the rectangle is computed by

asking each component for its size and adding room for space between the components. Next a

display message is sent to each component so that it draws itself. The parent asset then draws the

- 12 - Enterprise Technical Report TR93-04

connections between the components. Finally the replication is indicated in the same way as it is

for collapsed assets.

The basic drawing behavior is implemented in the Asset class and each Asset subclass

provides a method for drawing its own icon. In addition, different line styles are used for the

borders of expanded assets. For example, enterprise assets use two lines separated by one pixel,

line assets use a dashed double width line, and division assets use a double width wavy line. The

method that draws the border is overridden in these assets to use the appropriate behavior.

Similarly, the method that draws connections is overridden to draw the appropriate connections for

the various Asset sub-classes.

3.3 Communicating with the Other Enterprise Components

Although the user-interface is implemented in ST-80, the other two Enterprise system

components are implemented in C. The user-interface communicates with the pre-compiler and the

executive through Unix pipes and text files. This section describes the technique for connecting to

the external Unix processes, the organization of the directories containing C source and object code

files for a program, and three other kinds of text files that are used to communicate with the other

Enterprise components.

Graph, Event and Preference Files

A graph file describes a single Enterprise program. It specifies the hierarchical structure of

the assets, replication factors, compile and link options, and any user machine preferences. The

assets are listed in a depth-first order. For each asset there is a line with its name, type, replication

factor and options for ordering, debugging and optimization. If the asset has internal components

there is also a count of components. Following this are four lines that specify the compile, link

and run options. If the asset has components, these lines are followed by their descriptions in the

same format. Appendix A contains a description of the Enterprise graph file format.

Graph files are created and edited by the user-interface. When the user selects the Save,

Compile, or Run commands from the Enterprise view menu, the enterprise is asked to store a

representation of itself in a graph file whose name is the enterprise name with a ".e" appended.

Each asset type knows how to write a description of itself and if it has components, it asks its

components to write themselves as well. Alternately, when the user wants to load a previously

saved program, the graph file is read and as it is parsed, assets are created and displayed to

represent the saved program.

The pre-compiler uses the information contained in a program's graph file to identify

procedure/function calls to assets and replaces them with message sends and receives. The run-

- 13 - Enterprise Technical Report TR93-04

time executive uses the graph file to determine how many processes to launch, the execution role of

each process and the appropriate communication links between these processes.

Event files are created by the run-time executive's monitor process while a program is

running and are used later, to animate the program. The events they contain are described in more

detail in Section 4. Appendix B contains a description of the Enterprise event file format.

Enterprise maintains a preferences file. When the user-interface first starts, it looks in the

current directory for a file named Enterprise.prefs. If the file exists, it is read and global

preferences are set from its contents. For example, the user's text editor is specified by a line of the

form EDITOR= editor name.

Enterprise Directories for Managing Source Code

When a new program is created, Enterprise creates a new sub-directory of the current

directory with the same name as the program. It then creates other sub-directories of this new

directory to organize the files used by the program. The following sub-directories are created:

Assets This directory holds the C source code for all of the assets. Each asset's code is

stored in a file ending with a ".e". The pre-compiler parses these files and produces

corresponding files ending with ".c". For example, the user's code for an asset

named Model will be stored in Model.e . The pre-compiler produces the

corresponding file Model.c.

Source This directory holds C source code for internal procedures used by assets.

Include This directory holds header files for all code in the Assets and Source directories.

The Enterprise pre-compiler and the C compiler search this directory when processing

#include directives.

Data If the user specifies input and output files from the run parameters dialog box to re-

direct program input or output, they will be stored here.

Obj This directory holds sub-directories that contain the object ".o" files for each machine

type on the network. This feature is necessary to support the execution of

applications on a network of heterogeneous computers.

Bin All executable programs produced by Enterprise will be stored here. A separate

executable program is required for each type of computer on the network.

Sys This directory holds all of the system generated data files for the program, such as the

graph and event files.

- 14 - Enterprise Technical Report TR93-04

External Processes

The user-interface launches external processes for compiling code, running a program and

(possibly) for editing code. The user may use a standard ST-80 editor or, when the user-interface

is running on Unix, a non-ST-80 editor may be selected. Several editors can be active at the same

time (one for each asset). If the ST-80 editor is used, no new process is launched. Instead, a new

ST-80 window is created and the window is added to the list of active windows. It is given

control by the ST-80 interpreter whenever its window has the cursor. If an external editor is used,

an X window is created. The editor becomes an X windows task that executes concurrently with

the ST-80 interpreter.

The Compile and Run commands are only usable with the Unix version of the user-interface

since the pre-compiler and executive currently require Unix. Both commands launch an external

process and establish communications with it. ST-80 simplifies this task by providing a

UnixProcess class. A message is sent to this class specifying the name of a Unix program, an

array of arguments for the command and a block. The block is evaluated with the external process

as an argument. This provides a mechanism for referencing the process from ST-80 after it has

been created. When the message is sent, the process is created and two pipes are established, one

connected to the process' standard input and the other connected to both its standard output and

standard error. These pipes are represented as ST-80 streams that are contained in the instance of

ExternalConnection that is returned by the message.

The user can elect to compile and link the entire program or to compile part of the asset

hierarchy. In either case, if the program has been changed, the user-interface first writes out the

graph file. The Enterprise pre-compiler process is then started and a window is created to display

all text that is sent to the External Connection's output stream. The event polling loop in the

controller for the Enterprise view monitors the stream. Whenever new text is available, it is

displayed in this window. If there is no new text, the polling loop just continues normally. The

user can interact with the system normally and may even cancel the compile. When the compile is

finished, the window is left open so that the user can review the compiler messages. Programs are

run in a similar manner except output is displayed in another window.

3.4 The Asset Inheritance Hierarchy

Section 3.2 described the way that assets are drawn and the approach relied heavily on

inheritance. In fact, inheritance is used extensively throughout the user-interface, but the asset

hierarchy can be used to illustrate its importance. The asset kinds form a natural inheritance graph

as shown in Figure 5. A solid triangle in the upper left corner of a class denotes an abstract

superclass as described in [WWW90]. The abstract class, Asset, is the root of the inheritance tree.

Universal responsibilities like naming are defined and implemented in this class.

- 15 - Enterprise Technical Report TR93-04

Asset

Codable
Asset

Replicable
Asset

Deletable
Asset

Expandable
Asset

Addable
Asset

Enterprise
Asset

Service
Asset

Representative
Asset

Receptionist
Asset

Individual
Asset

Division
Asset

Department
Asset

Line
Asset

Figure 5: The asset inheritance graph.

 Below the Asset class is a level of abstract superclasses that define several responsibilities

that are shared by several of the leaf asset classes. A CodableAsset has an external file of C source

code associated with it which can be edited and compiled. A ReplicableAsset can be replicated and

transformed to an asset of a different type. A DeletableAsset can be deleted from its parent asset.

An ExpandableAsset has component assets so it can be expanded or collapsed. An AddableAsset

can have components added to it after it has been created.

The rest of the asset classes are concrete subclasses. A ReceptionistAsset has code, but can't

be replicated, deleted, or expanded. A RepresentativeAsset has code and can be replicated but

can't be deleted or expanded. An IndividualAsset is like a RepresentativeAsset, except that it be

deleted. A DivisionAsset is like an IndividualAsset, except that it can be expanded. A

ServiceAsset has code and can be deleted, but it can't be replicated or expanded. A LineAsset or

DepartmentAsset can be replicated, deleted, or expanded, but has no code. An EnterpriseAsset is

expandable, has no code, can't be replicated and can't be deleted.

Unfortunately, ST-80 is restricted to tree inheritance so several compromises were made in

transforming this inheritance structure to a tree. The result is shown in Figure 6. A comparison of

Figures 5 and 6 illustrates clearly that support for multiple inheritance is essential for applications

with real-world models. The lack of multiple inheritance was the most difficult obstacle that

needed to be overcome in using ST-80 for the Enterprise project.

- 16 - Enterprise Technical Report TR93-04

Asset

Codable
Asset

Expandable
Asset

Addable
Asset

Enterprise
Asset

Individual
Asset

Division
Asset

Department
Asset

Line
Asset

Representative
Asset

Service
Asset

name
compile
replicate
coerce
delete

edit

expand
collapse

addTo

edit

run
~delete
~replicate
~coerce

Receptionist
Asset

~replicate
~coerce

~delete

~delete
~replicate
~coerce

Figure 6: The asset inheritance tree.

ReplicableAsset and DeletableAsset were merged with Asset. The rounded rectangles contain

the main messages defined by each class and the symbol ~ means that a message was overridden

because it should not exist for a class. For example, the ReceptionistAsset class overrides the

replicate, coerce, and delete methods. The Division class was made a subclass of ExpandableAsset

instead of IndividualAsset. The code editing methods were then re-implemented in DivisionAsset.

In addition to these changes, the Asset class was made a subclass of the ST-80 pre-defined class

CompositeView so that all assets could inherit the behavior of visual objects that have sub-parts.

4. Program Animation

Enterprise program animation is used to monitor a program's performance and to identify

parallel programming and logic errors at the message (asset) level. The user can examine the

amount of parallelism, when and where synchronization occurs, which machines are being used

and their load, the lengths of message queues, and the state of each process during execution.

Currently, there are no debugging facilities for setting breakpoints or examining the values of

variables. Animation consists of displaying asset states, displaying messages as they move

between assets and displaying message queues.

Enterprise replays execution of a program using an event file produced by an external Unix

event monitoring process that receives messages from the run-time executive. The interface

assumes that the events are partially ordered [Lam78] by the monitoring process. To support real-

time animation, it is possible to replace this file by a stream connection between the user-interface

- 17 - Enterprise Technical Report TR93-04

and event-monitoring processes. However, in this case, the animation system may be unable to

keep up with events. Therefore, replay is the preferred approach to animation.

During animation, the time between animation steps is proportional but not equal to the real

time program execution. The proportionality factor can be adjusted by the user to speed up or slow

down the animation. The user can also execute the animation one event at a time.

4.1 Animation View

When the user selects Animate from the Enterprise view menu, the Enterprise view is

replaced by an Animation view. The Animation view of the Simulation program is shown in

Figure 7 and the Animation view of a recursive AlphaBeta search program is shown in Figure 8.

Figure 7: The Animation view of the Simulation program.

- 18 - Enterprise Technical Report TR93-04

Figure 8: The Animation view of the AlphaBeta program.

Each replica from a replicated asset is displayed as a separate icon, messages and message

queues are displayed as icons and animation commands appear in the asset, message queue and

Animation view menus. For example, the user can use an asset menu to open a monitoring

window that contains such information as the machine name for the asset and performance

information for that machine. Similarly, the user can use the message queue menu to examine the

details of messages that it contains. Finally, the view menu itself has choices for starting the

animation from the beginning, pausing or resuming the animation, single stepping through events,

setting the speed of the animation and replacing the Animation view by the Enterprise view.

- 19 - Enterprise Technical Report TR93-04

Assets can be collapsed and expanded in the Animation view to provide a clustering

mechanism [Tay92]. Clustering is a useful abstraction technique during debugging since it reduces

the clutter caused by displaying too much inappropriate detail and allows the user to focus on the

important relationships. For example, Figure 8 shows a division (enclosed by a wavy-line

rectangle) that contains a receptionist (AB.1) and a division with a replication factor of three. The

left division is expanded to show its component assets while the two division assets on the right

are collapsed. Each of these divisions contains a receptionist and a representative with replication

factor of two. A representative is a leaf node of a division hierarchy.

The Animation view displays two message queues. Incoming messages are queued in the

input queue above the asset, and replies to previously sent messages are queued in the reply queue

to the right of the asset. These locations correspond to the logical structure of the user's code

where calls are received at the start of the code and replies are received in the body of the code.

Replicated assets share a common input queue that is displayed above and to the left of the

replicated assets. However, each replica has its own reply queue. Messages are represented by

icons that move along the paths between assets and into the message queues.

A message queue displays the number of messages it contains. When a message arrives at a

queue this number is incremented and when a message is removed from the queue to be processed

by an asset, the number is decremented. When the animation is active but stopped, the message

queue menu can be used to select any message it contains and to display its sender, parameter

values and any other information that is placed in the message event by the event logging process.

Replicas are named by appending an id number to the base asset name assigned by the user.

The id numbers for each asset are generated in sequential order starting at 1. Replicas are

numbered left to right as shown in Figure 7. However, the replicas in division assets are

structured hierarchically instead of linearly as shown in Figure 8.

Figure 7 shows an animation of the simulation program at a specific point in time. Each asset

is either busy (processing a task) or idle (waiting for a message to invoke a task). Model has just

sent its last message to PolyConv and has become idle. The message appears below Model and

will move to PolyConv's input queue as the animation proceeds. Currently, PolyConv's input

queue contains one message. However, PolyConv has just sent a message to Split, completed its

previous invocation and is now idle. Therefore, the message in its input queue will be received

and removed from the queue, momentarily. At this point, PolyConv will change its state to busy.

The message that PolyConv sent to Split will move left into the common input queue for the

replicated asset and increment the queue count to 3. Note that message queue icons show zero (no

visible icon), one (a single message icon) or many (a message icon with two others behind it)

messages. The number beside the queue icon indicates the exact count. Two of the replicated Split

- 20 - Enterprise Technical Report TR93-04

assets, Split.1 and Split.2, are currently busy. However, Split.3 has completed its task and is

currently idle. Since there are messages in the input queue waiting to be processed, a message is

moving from the queue to Split.3.

Figure 8 shows an animation of an AlphaBeta tree search program [MRS87] that illustrates

message replies. Note that in this example, the number of processes and the size of the message

queues have been reduced for brevity. This application was created using division assets that

allows one to easily write parallel recursive divide-and-conquer applications. The application

consists of a division that contains a receptionist (AB.1) whose subordinate division has a

replication factor of three (AB.1.1, AB.1.2 and AB.1.3). Each subordinate division contains a

receptionist with a replicated representative. Two of these subordinate divisions (AB.1.2 and

AB.1.3) have been collapsed, but the other (AB.1.1) is expanded.

At the moment represented in Figure 8, AB.1.1.2 has completed a task and replied to its

caller, AB.1.1. The reply message is shown on its way to the reply queue of AB.1.1.2. Note that

the message path of a reply begins at the bottom of the replying asset, corresponding to the

structure of an asset's code where the return statement is usually at the end.

4.2 States

At run-time, Enterprise assets become processes. A process communicates with other

processes by sending messages. As an asset executes, it can be in one of four states: idle, busy,

blocked, and dead. An asset changes state in response to events that affect it.

Idle An idle asset is one that is not currently executing. It is waiting to receive a message.

The next message sent to it will be received immediately.

Busy A busy asset is one that is executing code in response to a message from a caller

asset. It can send messages to other assets and receive replies from them, but cannot

receive a message from another caller until it completes the active message. All

messages sent to it are put in its message queue.

Blocked A blocked asset is one that has stopped execution to wait for a reply to a message it

has sent. This occurs when an asset tries to access the return value from an asset call

that has not yet replied. All messages sent to it are put in its message queue.

Dead A dead asset is one that has stopped execution because of some kind of error. The

Enterprise executive has determined that it can no longer communicate with any other

asset. The asset cannot send messages and ignores any messages sent to it.

The state of a collapsed asset is determined by the states of its components. If at least one

component is busy, the asset is busy. If no component is busy and at least one is blocked, the

- 21 - Enterprise Technical Report TR93-04

asset is blocked. If no component is busy or blocked and at least one is idle, the asset is idle.

Otherwise all of the components must be dead, so the asset is dead.

The state of an asset is indicated in the Animation view by one of two (user-selectable)

mechanisms: color or state name display. Icons for busy assets are green, icons for idle assets are

yellow, icons for blocked assets are red and icons for dead assets are black.

4.3 Events

Assets change state in response to events that occur when the program is running. The event

logging process monitors programs as they run, identifies when important events occur, and writes

event records to an event file, maintaining the original partial ordering between the events. The

animation system reads the events from the event file and updates the display. Seven events are

supported: SentMsg, RcvdMsg, Block, SentReply, RcvdReply, DoneMsg and Die. Figure 9 is a

state-transition diagram that shows the relationship between the asset states (represented by circles)

and the events (represented by arrows).

Busy

Dead

RcvdReply SentMsg

Blocked
Block

RcvdReply
Idle

RcvdMsg
SentReply

Die

Die
Die

DoneMsg

Figure 9: The state transition diagram for Enterprise assets.

The event file is an ASCII text file. Each event starts on a new line. It begins with the #

character and a space followed by an event type and its parameters separated by spaces and ends

with a new line character. An optional information string can follow on the next line. The

information string is displayed by the user-interface when the user inspects message contents.

Event parameters depend on event types. They include asset names, message tags and

integers representing times. Asset names are the names from the graph file with replica numbers

appended to them. Tags are integers that are used to associate SentMsg events with RcvdMsg

events and SentReply events with RcvdReply events. Times are measured from some arbitrary

start time in milliseconds and refer to the time that the event was inserted into the event file. The

sequence of times must be monotonically non-decreasing.

- 22 - Enterprise Technical Report TR93-04

SentMsg

When the event logging process detects that an asset has sent a message to another asset, it

inserts a SentMsg event in the event file. The information string contains the names and values of

all message parameters. During animation, a message moves from the sender to the input queue of

the receiver where the message count is incremented. The sender must be busy and it does not

change state. The receiver does not change state.

RcvdMsg

When the event logging process detects that an asset has received a message and started

processing the task that the message invokes, it inserts a RcvdMsg event in the event file. During

animation, the receiver decrements its input queue counter. The receiver then changes its state

from idle to busy.

DoneMsg

When the event logging process detects that an asset has finished executing a message, it

inserts a DoneMsg event in the event file. During animation, the receiver changes its state from

busy to idle.

SentReply

When the event logging process detects that an asset has has sent a reply message to its

caller, it inserts a SentReply event into the event file. The information string contains the names

and values of all message parameters. During animation, a message moves from the sender to the

reply queue of the receiver and the message count is incremented. The sender asset must be in the

busy state but the receiver may either be busy or blocked.

RcvdReply

When the event logging process detects that an asset has accessed a message reply, it inserts

a RcvdReply event into the event file. During animation, the message count in the reply queue is

decremented. The asset that receives a reply may either be busy or blocked. If the asset was

blocked with the same tag as the RcvdReply it becomes busy.

Block

When the event logging process detects that an asset has tried to access a result computed by

another asset, and the result is not available, it inserts a Block event into the event file. The Block

event includes a tag that indicates the reply it is waiting for. During animation, the asset state

changes from Busy to Blocked.

- 23 - Enterprise Technical Report TR93-04

Die

If the event logging process determines that an asset is not responding for some reason, it

inserts a Die event into the event file. During animation, the asset becomes dead, but the message

queues are not affected so that the user can examine them, after the event. The asset can be any

state before this event.

4.4 The Animation Architecture

The object-oriented animation architecture is new and application independent. It has two

main components, one is asynchronous and the other is synchronous. The asynchronous

component has two responsibilities. It must process the events at the correct animation time.

However, since we want the user to be able to interact with the system during animation, it is also

responsible for user events as well. The synchronous component of the animation system is

responsible for animating messages.

The Asynchronous Component of the Animation Architecture

Several new classes were added to the user-interface to support animation and several

behaviors were added to the existing classes. When the Animation view is displayed, the asset

graph is modified. Each replicated asset is wrapped in an instance of ReplicatedAsset that contains

the original asset together with a list of replicas that are constructed by copying the original asset.

The copies are identical, except that each is given a different id number. As an animation proceeds,

the states of these replicas may diverge. The ReplicatedAsset is responsible for drawing the

connections between replicas, much like ExpandableAssets do for their components.

Two new responsibilities are added in the Asset class, knowing the input message queue and

knowing the reply message queue. Both queues are instances of the subclasses of MessageQueue,

InputQueue and ReplyQueue. A MessageQueue contains an ordered collection of messages, which

are instances of class Message. The display method in Asset checks to see if animation is active

and if so, allocates room for the message queues when it computes its bounding rectangle. When

an asset is told to draw itself, it also tells its message queues to draw themselves.

Message queue selection is implemented by augmenting the message that is sent to an asset to

ask it for its sub-asset that contains the cursor point. An asset now considers its two queues as

candidates in addition to its component assets. A MessageQueue determines if it contains the

cursor point by testing if the point is within its screen extent.

An instance of class EventQueue is responsible for knowing the start time for an animation

and the events from an event file. It is created when the Animation view is displayed. That is, to

speed up event processing, the event file is parsed and all events are created before the animation

begins. The animation start time is set when the user actually starts an animation.

- 24 - Enterprise Technical Report TR93-04

 When the event file is parsed and instances of class AnimationEvent are created, each event

time is translated to a time relative to the start time for its event queue. When the animation is

active, the control loop for the window sends a message to the program every time through the

loop. The program responds by telling the animation event queue to process its animation events.

The event queue processes its events in order until the event time plus the start time catches up to

the current time. Control is then returned to the control loop which checks for user input. In this

way the animation system only takes control periodically and, when it does, only for a short time.

This allows users to interact with the system during an animation. For example, the user could

pause the animation.

Each animation event represents one event from the event file. In addition to the event time,

an animation event contains a collection of animation messages. Each of the animation messages

consists of a receiver asset, a message selector, and an array of arguments for the message. One

event may translate into several animation messages. For example, a SentReply event translates to

two animation messages: one to tell the sending asset it has sent a reply and one to tell the receiving

asset it has been sent a reply. The set of messages for one event is treated as a transaction; if one

message is sent they all are. There is a subclass of the abstract superclass, AnimationEvent, for

each type of event. Each event sub-class need only implement creation messages. All other

messages are implemented in AnimationEvent. In addition, the asset classes implement methods

for each animation message sent by an animation event. The responsibilities include changing state,

updating message queues, and modifying the display.

Assets have input and reply message queues. Each queue contains an ordered collection of

messages. They are displayed either above or beside an asset. Messages move along the paths

between assets and into the queues in response to SentMsg and SentReply events. For a SentMsg

event, a message moves from below the sending asset to just above the receiving asset and then

into its input queue. For a SentReply event, a message moves from below the replying asset to

just below the receiving asset and into its reply queue. Although messages must move different

distances on the display screen, these distances are not necessarily indicative of the actual

communication distances. Therefore a message moves from one asset to another in (user

adjustable) constant time. For example, with replicated assets, the replicas will be different

distances from the calling asset due to the way that Enterprise displays assets hierarchically. To

compensate, messages with longer screen travel distances move faster to maintain a constant time

interval.

Because the destination queue is part of the receiver, animating the message is actually done

by the receiver. When a SentMsg or a SentReply event occurs, the receiver is informed. The

receiver creates a message, inserts it into its message queue and marks it as pending, determines

- 25 - Enterprise Technical Report TR93-04

the path it must follow to move from the sender into its queue, and asks the message to animate

itself. When the message reaches the message queue, the receiver removes the pending mark and

increments the counter for its message queue. The user can examine any message in a message

queue even if it is pending (the animation has not yet shown it reaching the queue).

A message is received when a RcvdMsg or a RcvdReply event occurs. The receiving asset

removes the message from its message queue. If the message is marked as pending, the receiver

also removes the message from the animation queue so it disappears at the next animation step. If

the message is not pending then the receiver decrements its message queue counter.

The Synchronous Component of the Animation Architecture

Animation of messages and busy assets are done synchronously. The program maintains an

instance of AnimationQueue that holds objects to be animated. When the program tells its event

queue to process events, it also tells its animation queue to animate its objects. The animation

queue checks to see if it is time to perform the next step of the animation and, if it is, sends an

animate message to every object in its queue. If it isn't time, the queue does nothing. The time

between steps is a constant. The class of each object in the queue must support the animate

message to perform one step of the animation.

A message in the animation queue animates itself by moving along a pre-computed path in

steps. The path was computed by the asset that created the message. This asset computed the

location of the sender and receiver and computed a set of points along the path between them. The

path was stored in the message before the message was added to the animation queue. Whenever a

message receives an animate message, the message moves itself to the next point on its path, then

deletes the point from its path. If a message reaches the end of its path, it removes itself from the

animation queue, tells the receiver to mark it as not pending and tells the receiver to increment its

message queue counter.

5. Conclusions

This paper describes the object-oriented component of the Enterprise programming

environment for developing distributed applications that execute concurrently on a network of

workstations. These components provide a new anthropomorphic model for parallel computation.

The simplicity of this model:

1. makes it easier to learn than other models of parallel computation,

2. has allowed programmers to write parallel programs more quickly than with other models

and

- 26 - Enterprise Technical Report TR93-04

3. has reduced the complexity of the user-interface and the other Enterprise components so

they could be designed and implemented quickly.

Enterprise includes an animation component that:

1. has a new architecture that supports asynchronous and synchronous events,

2. is a valuable tool for understanding the complexity of parallel computations and

3. is independent of Enterprise so that it can used for other applications.

Our experience with the object-oriented components of Enterprise have also provided some

insights into the use of object-oriented computing in general and ST-80 in particular.

1. The advantages obtained from the extensive user-interface libraries of ST-80 outweigh the

perceived disadvantages. The efforts required to combine object-oriented user-interface

code with traditional C code were minimal. The execution time performance problems of

ST-80 are insignificant in user-interfaces, even though in this application the user-interface

is fairly CPU intensive during animation.

2. Although Smalltalk has not been used extensively to construct user-interfaces where object

motion is an important factor, the Enterprise experience illustrates its power for such

applications.

3. The lack of support for multiple-inheritance is a significant problem in Smalltalk when the

application depends on a real-world analogy.

The success of the Enterprise project is largely due to its object-oriented components. In

fact, several members of the research group who had severe doubts about the utility of the object-

oriented approach are now firmly committed to the use of object-oriented technology for user-

interfaces in particular and for embedded applications in general.

Acknowledgements

The Enterprise project has benefitted from the efforts of many people, including: Paul

Iglinski, Paul Lu, Ron Meleshko, Ian Parsons, Carol Smith and Zhonghua Yang. This research

was supported in part by research grants from the Central Research Fund, University of Alberta,

the Natural Sciences and Engineering Research Council of Canada, grants OGP-8173 and 107880

and a grant from IBM Canada.

- 27 - Enterprise Technical Report TR93-04

References
[GKM90] J. Gettys, P. Karlton and S. McGregor. The X Window System, Version II.

Software - Practice and Experience, Vol. 20, No. 2, pp. 35-67, 1990.
[Lam78] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System.

CACM, Vol. 21, No. 7, pp. 558-565, 1978.
[LMP92] G. Lobe, P. Lu, S. Melax, I. Parsons, J. Schaeffer, C. Smith and D. Szafron. The

Enterprise Model for Developing Distributed Applications. Technical Report TR 92-
20, Dept. of Computing Science, University of Alberta, 1992.

[LP91] W. LaLonde and J. Pugh. Inside Smalltalk Volume II. Prentice-Hall, Englewood
Cliffs N.J., 1991.

[LSW86] D. Lanovaz, D. Szafron and B. Wilkerson. The Synergism of Logic-Based
Programming and Software Engineering: A Programming Environment Approach.
CIPS Edmonton '87 Intelligence Integration Conference Proceedings, pp. 43-53,
November, 1987.

[LVC89] M.A. Linton, J.M. Vlissides and P.R. Calder. Composing User Interfaces with
InterViews. IEEE Computer, Vol. 22, No. 2, pp. 8-22, 1989.

[MRS87] T.A. Marsland, A. Reinefeld and J. Schaeffer. Low Overhead Alternatives to SSS*.
Artificial Intelligence, Vol. 31, No. 1, pp. 185-199, 1987.

[Par93] I. Parsons. An Appraisal of the Enterprise Model. M.Sc. thesis, Dept. of Computing
Science, University of Alberta, 1992.

[Sun91] Sun Microsystems, Inc. OpenWindows DeskSet Reference Guide. Sun
Microsystems Inc., 1991.

[SSG91] A. Singh, J. Schaeffer and M. Green. A Template-Based Approach to the Generation
of Distributed Applications Using a Network of Workstations. IEEE Transactions on
Parallel and Distributed Systems, Vol. 2, No. 1, pp. 52-67, 1991.

[SSW92] D. Szafron, J. Schaeffer, P.S. Wong, E. Chan, P. Lu and C. Smith. The Enterprise
Distributed Programming Model. Programming Environments for Parallel
Computing, N. Topham, R. Ibbett and T. Bemmerl, editors, Elsevier Science
Publishers, pp. 67-76, 1992.

[Tay92] D. Taylor. A Prototype Debugger for Hermes. Cascon '92, IBM Canada Ltd,
Toronto, pp. 29 - 42, November, 1992.

[WWW90] R. Wirfs-Brock, B. Wilkerson and L. Wiener. Designing Object-Oriented Software.
Prentice Hall, 1990.

[You92] D. Young. Object-Oriented Programming with C++ and OSF/Motif. Prentice-Hall,
Englewood Cliffs N.J., 1992.

- 28 - Enterprise Technical Report TR93-04

Appendix A: The Enterprise Graph File Format

This appendix describes the format of the Enterprise graph file using extended BNF notation.

Notation

<abcd>* means 0 or more occurrences of <abcd>
<abcd>+ means 1 or more occurrences of <abcd>

Syntax

<graph> ::= <asset>
<service>*

<asset> ::= <name> <simpType> <min> <max> <order> <debug> <opt>
<options>

| <name> <compType> <min> <max> <order> <debug> <opt>
<childcount>

<options>
<asset>+

<service> ::= <name> service <debug> <opt>
<options>

<name> ::= <string>

<min> ::= <positive integer>

<max> ::= <non-negative integer>

<order> ::= ORDERED | UNORDERED

<debug> ::= DEBUG | NDEBUG

<opt> ::= OPTIMIZE | NOPTIMIZE

<simpType> ::= individual | representative

<compType> ::= line | department | division

<childcount> ::= <positive integer>

<options> ::= CFLAGS <flags>
EXTERNAL <libraryList>
INCLUDE <machineList>
EXCLUDE <machineList>

<libraryList> ::= <string>

<machineList> ::= <string>

<flags> ::= <string>

- 29 - Enterprise Technical Report TR93-04

Semantics

<graph>

A graph represents the entire Enterprise program. It consists of an asset definition followed by 0

or more service definitions. The file can be parsed from top to bottom to perform a depth-first

traversal of the graph.

<asset>

An asset can either be simple or composite. Simple assets are either individuals or representatives.

Each is represented by one line containing information about the asset followed by 4 lines

containing information about options. Composite assets are represented in the same way as simple

assets except that they also specify a count of children and are followed by a definition for each

child.

<service>

A service asset is represented in the same way as a simple asset, except that it cannot have a

replication factor or ordering option.

<name>

A name may be used as the name of an asset or the base name for a C source file.

<min> and <max>

These are the integers representing minimum and maximum replication factors. If they are both 1,

there is no replication. Min must be > 0 and max must be 0 or >= min. An asset will be replicated

at least min times and at most max times. If max is 0, there is no fixed maximum and the asset is

replicated as many times as necessary to use all available processors. If max = min, an asset will

be replicated exactly min times.

<order>

This flag indicates whether a replicated asset's return values are returned in the order that the assets

were called (ORDERED) or in the order that they finish (UNORDERED).

<debug>

This flag indicates whether an asset should be compiled using debug flags (DEBUG) or not

(NDEBUG). It may also be used to turn the debugger on and off for each asset.

<opt>

This flag indicates whether an asset should be compiled with optimization off (NOPTIMIZE) or on

(OPTIMIZE).

- 30 - Enterprise Technical Report TR93-04

<simpType>

The type of a simple asset must be individual or representative.

<compType>

The type of a composite asset must be line, department or division.

<childcount>

 Each composite asset has a receptionist and one or more children. The receptionist is not explicitly

represented in the graph file. Each child asset is represented in the graph file.

<options>

Four lines give options for compiling, linking and executing each asset and all four lines must

appear. If an option does not apply to an asset, the rest of the line is left blank. The options are

treated as character strings by the interface. That is, they will not be parsed but will be passed to

the Enterprise executive in the form that they are entered by the user. CFLAGS gives a list of

compile flags to use when compiling the asset. They are appended to the compile command by the

executive. EXTERNAL gives a list of external modules or libraries to be linked with an asset.

They are appended to the link command by the executive. INCLUDE gives a list of machines that

can execute an asset. If the list is present, the machines will be used instead of the machines in the

Enterprise mach_file. EXCLUDE gives a list of machines that are forbidden to execute an asset.

These will be excluded from the list in mach_file.

- 31 - Enterprise Technical Report TR93-04

Appendix B: The Enterprise Event File Format

This appendix describes the format of the Enterprise event file using extended BNF notation.

Notation

<abcd>* means 0 or more of <abcd>
<abcd>+ means 1 or more of <abcd>
a|b means a or b
() is used for grouping

Syntax

<eventFile> ::= <event>*

<event> ::= # (<sentEvent> | <rcvdEvent> | <doneEvent> | <blockEvent>
| <dieEvent>) <evTime> <comment>*

<sentEvent> ::= (sentMsg | sentReply) <assetName> <assetName> <msgTag>

<rcvdEvent> ::= (rcvdMsg | rcvdReply) <assetName> <assetName> <msgTag>

<doneEvent> ::= doneMsg <assetName>

<blockEvent> ::= block <assetName> <msgTag>

<dieEvent> ::= die <assetName>

<comment> ::= <oneLineOfFile>

<assetName> ::= <assetBase> <assetSuffix>+

<msgTag> ::= <integer>

<evTime> ::= <integer>

<assetBase> ::= <string>

<assetSuffix> ::= . <integer>

Semantics

<eventFile>

An <eventFile> contains all of the events that were captured for one run of the program. It

consists of zero or more event records. The file is used to communicate between the run-time

executive and the animation system.

<event>

An <event> represents the occurrence of one run-time event. Because each event may span

multiple lines in the file, each must be prefixed with the # character. Events are generated in

- 32 - Enterprise Technical Report TR93-04

response to actions taken by the user's program. Each event record contains the time at which the

event occurred. The sequence of times must be non-decreasing.

<sentEvent>

A <sentEvent> can be either a <sentMsg> or a <sentReply>. A <sentMsg> is generated

by an asset that has sent a message to another asset. A <sentReply> is generated by an asset that

has previously received a message from another asset and has just sent a reply for this message. In

both types, the record contains the name of the sending asset, the name of the receiving asset, and

the tag for the message. Following this line is an optional comment. The comment will be

displayed in the message when it is expanded by the user during an animation. Each line of

comment will be displayed on a separate line in the expanded message.

<rcvdEvent>

A <rcvdEvent> can be either a <rcvdMsg> or a <rcvdReply>. A <rcvdMsg> is generated

by an asset that has received a message from a caller and started to work on the task. A

<rcvdReply> is generated by an asset that has accessed a reply from a previous call to another

asset. In both types, the record contains the name of the receiving asset, the name of the sending

asset, and the message tag. The tag must match the tag of a message (for <rcvdMsg>) or reply (for

<rcvdReply>) that was previously sent.

<doneEvent>

A <doneEvent> is generated by an asset that has finished a task and become idle. If a reply

was sent, the asset must generate a <sentReply> event before the <doneEvent>. The event

record contains the name of the asset.

<blockEvent>

A <blockEvent> is generated by an asset when it tries to access the returned value of a

previously sent message and the reply is not yet available. The event record contains the name of

the blocking asset and the tag of the message that was sent and has not yet returned.

<dieEvent>

A <dieEvent> is generated by the run-time executive when it detects that an asset is no

longer responding to messages. The event record contains the name of the asset that has died.

<comment>

A <comment> is a string of characters with embedded spaces, ended by an end of line. It will

be displayed when its message is expanded by the user during an animation. The animation

system will not process the string in any way. The run-time executive is responsible for building

the string before writing it to the event file.

- 33 - Enterprise Technical Report TR93-04

<assetName>

An <assetName> is a string that matches the name of one of the assets in the graph,

including its number suffix. An asset's <assetName> is unique within a program, even when

replicas are considered. The <assetName>is built by appending its number suffix to the base name

assigned by the user. Its base name consists of its parents name and its number suffix consists of

a '.' and its replica number. The root asset just appends a '.1' to its base name. Assets that are not

replicated have replica numbers of 1. Replicas of replicated assets are numbered left to right within

their parent, starting at 1. When an asset is replicated, it becomes a manager for its replicas. The

manager takes the place of the original non-replicated asset in the graph and is the parent for the

replicas. For example, consider a line of two assets, A and B. B is replicated twice. Then A will

have assetName A.1, and B will become a manager with assetName B.1 There will be two

replicas of B created that will have the manager B.1 as their parent. They will have assetNames

B.1.1 and B.1.2

<msgTag>

A <msgTag> is an integer that uniquely identifies a message. Message tags are used to

associate message replies and message blocks with message sends.

<evTime>

 An <evTime> is an integer time measured from some arbitrary start time.

Notes

1. The sender is not actually required in a <rcvdEvent> since the tag can be used to find the

corresponding <sentEvent> that contains the sender. However, it is more convenient to

include it.

2. When a manager forwards a message to a replica, it must ensure that the replica replies to

the original sender and not to the manager. However, the event record must be a

<sentMsg> from the manager to the receiver so that the animation system animates the

message from the shared replica queue to the replica. That is, the sequence of events for

asset A calling replicated asset B and its reply must be:

sentMsg A.1 B.1 tag1 (A.1 sends to manager)
rvcdMsg B.1 tag1 (manager receives msg)
sentMsg B.1 B.1.1 tag2 (manager forwards msg to B.1.1)
rcvdMsg B.1.1 tag2 (B.1.1 receives message)
sentReply B.1.1 A.1 tag3 (B.1.1 replies to A.1 directly)
doneMsg B.1.1 (B.1.1 is finished executing)
rcvdReply A.1 tag3 (A.1 uses the result)

