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Abstract 

Fuzzy models, especially fuzzy rule-based models, have received substantial attention 

as an important pursuit in the design and analysis of intelligent systems. In rule-based 

architectures, functional (Takagi-Sugeno) fuzzy rule-based models have been studied 

intensively resulting in a wealth of design strategies and applications. Due to the 

concentration effect, high dimensional data pose a genuine challenge to the efficient 

development process, quality of the models, and their ensuing interpretability. This 

research addresses these challenges in several fundamental and original ways. 

First, an original relational factorization based on fuzzy relational calculus and 

engaging triangular norms and conorms is developed. In terms of the enhancement of 

models, we propose two schemes. One is to construct a fuzzy rule-based model based on 

fuzzy relational factorization. The factorization facilitates an interpretable, logic-oriented 

encoding of conditions of the rules. Thus, the clustering algorithm commonly used in the 

design of TS models is replaced by the factorization so that the concentration effect is 

avoided. The other is to introduce and analyze the concept of distributed fuzzy rule-based 

models. The mechanisms of ensemble learning and gradient boosting are explored to 

construct the rules. In their realization, the data are sampled randomly and applied to each 

distributed rule-based model. Then the gradient boosting algorithm is involved to improve 

the quality of the models. Subsequently, some essential refinements of the fuzzy clustering 

method used in the formation of conditions of the rules are developed to further enhance 

the performance of the rule-based models. The augmentations of the clustering algorithm 

include: (i) an accommodation of extreme (minimal and maximal) values encountered in 

the output variable, (ii) a reduction of redundancy of the rules which is the result of overlap 
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existing among fuzzy sets forming the condition parts of the rules. (iii) the development of 

the core (granular) structure of rules and analysis of their features. The proposed methods, 

novel identification of the major characteristics of data, and a novel construction of the 

model, constitute the originality of this thesis. The experimental results obtained for 

publicly available data are reported along with a solid comparative analysis. 
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Chapter 1 Introduction 

In the late seventies, the idea of expert systems was proposed, mainly realized as a collection 

of ‘if-then’ rules. They were used to solve complex problems by identifying and describing rules 

[1]. Rules are characterized by modularity and were originally studied as a way of knowledge 

representation [2], [3]. Subsequently, fuzzy rule-based models (TS models) [4] were proposed by 

T. Takagi and M. Sugeno in 1985, which are constructed by if-then rules based on the fuzzy system 

[5]–[19]. 

Nowadays, we have entered the era of big data [20]–[24], in which data storage and data 

processing have become demanding [25]–[29]. As early as 1966, Bellman introduced the concept 

of the curse of dimensionality when considering problems in dynamic programming [30]. 

Subsequently, this concept is used to describe issues that arise when analyzing and organizing data 

in high-dimensional space, such as combinatorial explosion, concentration effect, etc. To deal with 

high-dimensional problems, two approaches are often used. The most intuitive way is to analyze 

and extract information from the data and discard the redundant one, thus achieving dimensionality 

reduction There are numerous approaches and architectures, say autoencoders, non-negative 

matrix factorization, principal component analysis (PCA), independent component analysis (ICA), 

random projection, among others. The second approach is to optimize and enhance the traditional 

models when coping with big data. We highlight the two main avenues viz. the realization of the 

process of dimensionality reduction and model optimization in Fig. 1.1. 
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Fig. 1.1. Outline of the thesis. 

To deal with high-dimensional problems, it is evident that dimensionality reduction is the 

most direct way. Thus, we propose a method to decrease dimensionality, which is the fuzzy 

relational matrix factorization in Chapter 3. In addition, high-dimensional problems can be solved 

by several improvement methods. A novel fuzzy rule-based model based on matrix factorization 

is developed in Chapter 4. The advanced distributed fuzzy rule-based model is proposed in Chapter 

5. In Chapter 6, three different methods for the augmentation of the Fuzzy C-Means (FCM) are 

presented. 

1.1 Motivation 

With the information explosion, rule-based models are unavoidably exposed to high 

dimensional and large volumes of data. Usually, FCM plays a vital role in the construction of the 

condition parts of rules in rule-based models. However, FCM performs poorly when clustering 

high-dimensional data, which in the sequel leads to the poor performance of fuzzy rule-based 
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models. To address this issue, we consider two ways, namely dimensionality reduction and 

enhancement of the model. There are many methods proposed for dealing with high-dimensional 

data [31]–[33] However, information loss being the result of dimensionality reduction is inevitable. 

Thus, it becomes urgent to develop a new method that can retain more information. On the other 

hand, several argumentation methods on the rule-based models are also considered. 

1.2 Objectives and Originality 

The key objectives are as follows. 

• The concept of relational decomposition of high dimensional data 

We introduce triangular norms and triangular conorms and develop a matrix factorization 

model based on them.  By involving those concepts, a learning scheme of three methods: single 

layer, two-level, and two-relation factorization are designed. 

• The rule-based model enhanced by logic-based processing 

We design models by capturing the underlying relationships present in the input-output data. 

Through the intermediate product of the matrix decomposition process, we reveal the relation 

between the data and the model and apply them to the fuzzy rule-based model. 

• The concept of the distributed model 

We develop a comprehensive design of an ensemble of rule-based models, producing a 

distributed architecture to cope with the high-dimensional data. The rule-based model is used in 

distributed models to deal with the data with chosen features. Then, a gradient boosting algorithm 

is applied to train the model to improve the model results. 

• The improvement methods for the clustering algorithm 
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Three methods are developed: the first one is to make sure all values are covered by adjusting 

the prototype. The second one is to reduce spurious activation levels of rules. The third is targeted 

at rules, where granular rules instead of the original (numeric) ones are proposed. 

The originality of the research in this study exhibits several facets. 

• We develop a fuzzy relational matrix factorization based on the combination of t-norms 

and t-conorms, which is a new matrix decomposition method. By Introducing the logic-based 

triangular norms and conorms, we improve the performance and interpretability of the results of 

decomposition. 

• A new idea is presented that the high dimensional data are decomposed to their low-

dimensional counterparts and some optimized transformation relations, which can be regarded as 

a collection of logic expressions (or-and or and-or composition), linking low dimensional data 

with the original data via weighted disjunctive or conjunctive logic formulas. 

• A novel distributed architecture based on ensemble learning is proposed, and a gradient 

boosting algorithm is used to improve the performance of the model. 

1.3 Organization 

The thesis is structured into the following chapters. In order to facilitate the understanding of 

the research, Chapter 2 reviews a number of documented methods such as fuzzy clustering, fuzzy 

rule-based model, matrix decomposition, ensemble learning, gradient descent algorithm, 

evaluation criteria, etc. 

Chapter 3 touches upon a matrix factorization scheme based on triangular fuzzy norms. Then, 

the model structure of the two-layer matrix decomposition is presented. Finally, the idea of a 

matrix decomposition model based on granularity is developed. 



 

5 

 

In Chapter 4, we are concerned with the encoding mechanisms realized with the aid of 

intervals and fuzzy sets. Then we introduce a rule-based model augmented based on fuzzy 

factorization, which has better relative performance than traditional models. 

Proposed in Chapter 5 is a distributed rule-based model based on the idea of Ensemble 

Learning, which combines with the gradient boosting algorithm for further optimization. 

In Chapter 6, three enhancement mechanisms based on the core level of the traditional TS 

model are proposed, which are realized by introducing extreme values of input data, reducing 

unnecessary activation levels, and introducing the concept of information granule to enhance the 

performance of the traditional TS model. 

In Chapter 7, we draw the main conclusions of this research and identify several promising 

directions for future research. 

  



 

6 

 

Chapter 2 Literature Review 

In this chapter, we concisely review the algorithms and methods used throughout this study, 

including clustering algorithm, fuzzy rule-based model, matrix factorization, ensemble learning, 

optimization algorithm, cross validation, performance indices, and information granules. 

2.1 Fuzzy clustering 

Clustering is a process of grouping objects into several clusters by minimizing the distance 

between the data and the cluster centers. Clustering contains two types, clustering and soft 

clustering (fuzzy clustering). In the former, each data can only be assigned to one cluster, while 

for fuzzy clustering, an object may belong to multiple clusters with the corresponding degrees of 

belongingness (membership grades).  

Fuzzy C-Means (FCM) is a commonly used fuzzy clustering method. FCM was firstly 

introduced by J.C. Dunn [34], which was further improved by J.C. Bezdek [35]. The aim of FCM 

is to find the clustering centers (called prototypes) and partition matrix (used to describe the degree 

of membership of data to the clusters) which is through an iterative process. The objective function 

is the sum of weighted distance between data X={𝒙1, 𝒙2, … , 𝒙𝑁} in Rn-dimensional space and c 

prototypes 𝒗1, 𝒗2, … , 𝒗𝑐, see equation (2.1). 

 

𝑄 = ∑ ∑ 𝑢𝑖𝑘
𝑚

𝑁

𝑘=1

‖𝒙𝑘 − 𝒗𝑖‖
2

𝑐

𝑖=1

(2.1) 

 

where the fuzzification coefficient 𝑚 is greater than 1. 𝑢𝑖𝑘 is the component of partition matrix, 

standing for the membership grade of the 𝑘𝑡ℎ data to the 𝑖𝑡ℎ cluster. The sum of clustering the 𝑘𝑡ℎ 



 

7 

 

data into 𝑐 clusters is 1, i.e., ∑ 𝑢𝑖𝑘
𝑐
𝑖=1 = 1, and 𝑢𝑖𝑘 ∈ [0, 1]. 𝒙𝑘 is the 𝑘𝑡ℎ data point, 𝒗𝑖 is the 𝑖𝑡ℎ 

prototype, and the distance between them is 

 

‖𝒙𝑘 − 𝒗𝑖‖
2 = ∑

(𝑥𝑘𝑗 − 𝑣𝑖𝑗)
2

𝜎𝑗
2

𝑛

𝑗=1

(2.2) 

 

where 𝜎𝑗  stands for deviation of the 𝑗𝑡ℎ attribute of X.  

 

𝑢𝑖𝑘 =
1

∑ (
‖𝒙𝑘 − 𝒗𝑖‖

‖𝒙𝑘 − 𝒗𝑗‖
)

2
(𝑚−1)⁄

𝑐
𝑗=1

(2.3)
 

 

𝒗𝑖 =
∑ 𝑢𝑖𝑘

𝑚𝒙𝑘
𝑁
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1

(2.4) 

 

To achieve the minimum of Q in (2.1), the elements in the partition matrix and prototypes are 

updated in an iterative way. 

The detailed implementation of FCM is shown as follows: 

 
Input: data X, the number of clusters 𝑐 , fuzzification coefficient 𝑚 , threshold 𝜏 , maximal iteration 

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 

 Output: partition matrix and cluster centers 

 Randomly initialize cluster centers 𝒗𝑖, 𝑖 = 1,2,… 𝑐, 𝑖𝑡𝑒𝑟 = 0. 

 Compute element of partition matrix 𝑢𝑖𝑘, 𝑘 = 1,2,…𝑁, value of objective function Q 

 while Q > 𝜏 

 Compute 𝑢𝑖𝑘, 𝒗𝑖 by (2.3) and (2.4). 

 Compute Q by (2.1). 

 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 
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 if 𝑖𝑡𝑒𝑟 > 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 

 break 

 end 

 
end 

Return partition matrix and cluster centers 

 

The objective function (2.1) is influenced by the two main parameters 𝑐 and 𝑚. It is evident 

that when the number of clusters 𝑐 is high enough, the centers are close to or even equal to each 

data. Fig. 2.1 shows the membership functions as a function of 𝑚, where 𝑚 is 1.05, 2, and 4. It is 

apparent that with the increase of 𝑚, the shape of the partition matrix becomes steep. When 𝑚 is 

close to 1, the partition matrix tends to be crisp. 

 

Fig. 2.1. Membership functions as a function of 𝑚. 

There have been some related studies on the development of fuzzy clustering. Alata optimized 

the fuzzy coefficients by introducing the GA algorithm to improve the performance of the FCM 

algorithm [36]. In addition, the FCM was optimized with the introduction of gradient descent 

algorithm [37]. Pedrycz proposed the idea of collaborative fuzzy clustering, which aims at 

exploring the data structure [38], [39]. Suh proposed a two-level fuzzy clustering method that 
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involves adaptively expanding and merging convex polytopes, making it possible to represent an 

arbitrarily distributed data set [40]. Timme proposed to optimize the traditional clustering 

algorithm by introducing a mutual repulsion of the clusters [41]. At present, fuzzy clustering has 

been widely used in many fields, such as data mining [42], [43], pattern recognition [44], [45], and 

image analysis [46], [47]. 

It is undeniable that the fuzzy clustering problem under high-dimensional data has been a hot 

topic. For example, Mei developed a new fuzzy clustering method by dividing the ensemble, which 

performs better with high-dimensional data problems [48]. Eschrich proposed to deal with the 

high-dimensional clustering problem by reducing the number of distinct patterns [49]. A 

combination of multi-objective evolutionary algorithm and fuzzy clustering algorithm was 

proposed, which has high-quality clustering when faced with high dimensional data [50]. 

Nevertheless, clustering realized on high-dimensional data is still a topic worthy of further study. 

Chang proposed a novel fuzzy c-means (FCM) model with sparse regularization to deal with high-

dimensional data [51]. A fuzzy clustering algorithm based on Hsim was proposed, which is used 

as the similarity measure of high dimensional data [52]. 

2.2 Fuzzy rule-based models 

Fuzzy rule-based models are one of the essential application areas of fuzzy sets [53] and fuzzy 

logic [54]–[65]. By formulating if-then rules over the input and output space [4], [5] [66], [67], 

fuzzy rule-based models use fuzzy sets to describe and handle complex nonlinear relationships, 

where ‘if’ is the condition part, and ‘then’ is the conclusion part. Assume that we have available 

input data 𝒙𝑘, 𝑘 = 1, 2, … , 𝑁, which is regarded as an n-dimensional vector in 𝑅𝑛. The structure 

of the rules is 
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−if 𝒙 is 𝐴𝑖(𝒙), then 𝑦 is 𝑓𝑖(𝒙) (2.5) 

 

where 𝑖 = 1,2, … , 𝑐 , c is the number of fuzzy rules. In the condition part, 𝐴𝑖  is a fuzzy set 

(information granule) while 𝐴𝑖(𝒙) denotes the degree of 𝒙 belonging to 𝑖-th rule. In the conclusion 

part, 𝑓𝑖(𝒙) describes the local behavior of the model. It is usually a constant, linear or polynomial 

function. Where constant (𝑓𝑖(𝒙) = 𝑤𝑖) and linear function (𝑓𝑖(𝒙) =  𝑎𝑖
0 + 𝑎𝑖

1𝑥1 + ⋯+ 𝑎𝑖
𝑛𝑥𝑛) are 

widely studied due to their efficiency and sound performance. The model output is taken as the 

weighted aggregation of 𝑐 outputs of the rules, namely 

 

�̂� =  ∑ 𝐴𝑖(𝒙)𝑓𝑖(𝒙)
𝑐

𝑖=1
∑ 𝐴𝑖(𝒙)

𝑐

𝑖=1
⁄ (2.6) 

 

Due to the property of the partition matrix, ∑ 𝐴𝑖(𝒙)𝑐
𝑖=1 = 1, the output is expressed as 

 

�̂� =  ∑ 𝐴𝑖(𝒙)𝑓𝑖(𝒙)
𝑐

𝑖=1
(2.7) 

 

Design of condition and conclusion parts of rules 

Start from condition part, membership functions are generated by clustering algorithm. The 

clustering algorithm could be realized based on the input data 𝑋 or a collection of input-output 

pairs (𝒙𝑘, 𝑡𝑎𝑟𝑔𝑒𝑡𝑘), 𝑘 = 1,2, … ,𝑁. Thus, the prototypes will be 𝒗𝑖 positioned in input space and 

𝑤𝑖 in output space, 𝑖 = 1,2, … , 𝑐. When it comes to the conclusion part, first we need to define the 

structure of the local function. Let us consider constant function, the rule could be written as 
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−if 𝒙 is 𝐴𝑖, then 𝑦 is 𝑤𝑖 (2.8) 

 

It is a concise way, as mentioned, 𝑤𝑖 comes from the clustering algorithm. Then we introduce two 

well-known linear functions, 

 

−if 𝒙 is 𝐴𝑖, then 𝑦 is 𝑎𝑖
0 + 𝑎𝑖

1𝑥1 + ⋯+ 𝑎𝑖
𝑛𝑥𝑛 (2.9) 

 

where  𝑎𝑖
0 is the 𝑖𝑡ℎ constant value, and  𝒂𝑖 = [𝑎𝑖

1,𝑎𝑖
2, ⋯ ,𝑎𝑖

𝑛] is the consequent parameter that need 

to be optimized in the 𝑖𝑡ℎ rule [68]. 

 

−if 𝒙 is 𝐴𝑖, then 𝑦 is 𝑤𝑖 + 𝒂𝑖
𝑇(𝒙 − 𝒗𝑖) (2.10) 

 

The estimation of parameters 𝒂𝑖  and 𝑎𝑖
0  is realized based on Least Square Error (LSE). The 

objective function is to minimize the distance between model output �̂� and the corresponding 

target.  

At present, fuzzy rule-based models have been developed in several ways. Hu designed the 

bagging and boosting mechanisms for assembling fuzzy rule-based models and demonstrated that 

the performance of the ensemble model was superior to the traditional single model for most 

datasets [69]. The distributed way and hierarchically driven way of rule development were 

discussed in [70]. Kacimi improved fuzzy models by optimizing simultaneously the membership 

functions, the scaling factor parameters, and the fuzzy rule conclusions with a mixed-coding 

particle swarm optimization algorithm (PSO) [71]. Mamaghani was concerned with the 
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development of fuzzy models realized with the aid of genetic programming (GP). The proposed 

architecture employs GP to form fuzzy logic expressions involving logic operators and information 

granules (fuzzy sets) located in the input space [72]. A methodology for the encoding of the 

chromosome of a genetic algorithm (GA) was described in [73]. The encoding procedure is applied 

to the problem of automatically generating fuzzy rule-based models from data. Precup suggested 

a structure for prosthetic hand myoelectric-based control systems and a set of evolving Takagi-

Sugeno-Kang (TSK) fuzzy models to characterize the finger dynamics of the human hand for the 

myoelectric control of prosthetic hands mathematically [74].  

However, fuzzy rule-based models still face some challenges, especially in the context of the 

high dimensional data. High dimensional data has a negative effect on the accuracy of the 

clustering algorithm, which is an important tool to construct the condition part of rule-based 

models. Thus, the reliability of rule-based models will also be influenced negatively. 

2.3 Non-negative matrix factorization 

Non-negative matrix factorization (NMF) is one of the well-known methods of 

dimensionality reduction. The difference between NMF and principal component analysis (PCA) 

is that the PCA components are orthogonal to each other, while the NMF components are all non-

negative and therefore construct a non-orthogonal basis [75], [76]. Non-negative matrix 

factorization is an algorithm in multivariate analysis and stemming from linear algebra, where the 

original data 𝑋 are factorized into two matrices: basis matrix 𝐻  and weight matrix 𝑅 , with the 

property that all three matrices have no negative elements. The dimensionality of the matrix 𝐻 is 

much smaller than the original dataset. In this process, we can obtain two smaller matrices by 

decomposing a larger matrix, where the matrix 𝐻 represents the data after the dimensionality 
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reduction, and 𝑅 is the weight matrix, which represents the weight of variables in the original data. 

In other words, given a nonnegative matrix 𝑋 (𝑁 by 𝑛) and a reduced rank 𝑟, we find two non-

negative matrices 𝐻 (of dimensionality 𝑁 by 𝑟) and 𝑅 (𝑟 by 𝑛), visualized as follows 

 

[

⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯

]

𝑋(𝑁×𝑛)

≈ [

⋯ ⋯
⋯ ⋯
⋯ ⋯
⋯ ⋯

]

𝐻(𝑁×𝑟)

[
⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯]

𝑅(𝑟×𝑛)

(2.11)
 

 

Through the decomposition process, we factorize high-dimensional data into low-

dimensional data and a weight matrix to achieve dimensionality reduction. The objective is to 

minimize the error between the original data and the data reconstructed by matrix H and R, i.e., 

we minimize the data loss encountered in the dimensionality reduction process: 

 

𝑓 =
1

2
∑∑(𝑋𝑖𝑗 − (𝐻𝑅)𝑖𝑗)

2

𝑛

𝑗=1

𝑁

𝑖=1

𝐻, 𝑅 = arg𝐻,𝑅min𝑓 (2.12)

 

 

and the iterative process of finding optimal 𝐻 and 𝑅 is shown as follows [75], [76].  

 

𝐻𝑖𝑡𝑒𝑟+1 = 𝐻𝑖𝑡𝑒𝑟
(𝑋(𝑅𝑖𝑡𝑒𝑟)𝑇)

(𝐻𝑖𝑡𝑒𝑟𝑅𝑖𝑡𝑒𝑟(𝑅𝑖𝑡𝑒𝑟)𝑇)

 𝑅𝑖𝑡𝑒𝑟+1 = 𝑅𝑖𝑡𝑒𝑟
((𝐻𝑖𝑡𝑒𝑟)𝑇𝑋)

((𝐻𝑖𝑡𝑒𝑟)𝑇𝐻𝑖𝑡𝑒𝑟𝑅𝑖𝑡𝑒𝑟)
(2.13)

 

where iter stands for the index of iterations. 
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As an illustrative example, an original image is shown in Fig. 2.2(a) with a size 680 × 870. 

By using NMF, it is decomposed into a 680 × 20 basis matrix 𝐻 and a 20 × 870 weight matrix 

𝑅. 

Fig. 2.2(b) shows the reconstruction picture by the two decreasing-dimensionality matrices 

𝐻𝑅 , which shows that NMF can reduce the dimensionality of the data while retaining the 

information of the original data. Fig. 2.2(c) depicts the performance index changes in successive 

iterations. 

 

 (a)  (b)  

 

(c) 

Fig. 2.2. An example of values of the performance index (2.9) in successive iterations of the 

algorithm: (a) Original image, (b) Reconstructed image, (c) Relation between iteration and 

performance index. 
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In Fig. 2.3, we show another example with a small image data whose size is 13 × 60 while 

the iteration number is 60. Fig. 2.3(c) is the basis matrix and weight matrix. 

 

 (a)  (b)  

 

(c) 

Fig. 2.3. Resulting matrices of NMF. (a) Original data. (b) Reconstructed data. (c) Basis matrix 

and weight matrix. 

The main advantage of this method is that it is simple, faster, and more convenient to process 

large-scale data. Recently, NMF has been widely used in many fields, e.g., image clustering and 

labeling [77], [78], face recognition and characterization [79]–[81], social network clustering [82], 

speech processing [83], [84] and biomedical engineering [85], etc. Especially in recent years, there 

have been algorithmic developments in matrix factorization. Arefin proposed a new iterative 

method to replace the least square method in NMF, which can effectively increase the convergence 

rate [86]. A dual embedding regularized NMF was proposed in [87], where the developed model 

can effectively improve the performance of matrix factorization. Huang proposed an enhanced 

incremental NMF model that can effectively reduce the memory requirements without loss of 
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performance [88]. The multi-objective sparse non-negative matrix factorization proposed in [89] 

improved the performance of the model. 

2.4 Ensemble learning 

The underlying idea of ensemble learning is to realize modeling through a series of multiple 

independent models. This concept was first proposed by Breiman [90]. In contrast to traditional 

machine learning, the ensemble algorithm focuses on the integration of the results obtained by the 

independent models, which has been widely investigated and applied [14], [70], [91]–[102]. 

Ensemble learning involves two main categories: bagging and boosting. Bagging is a way to 

decrease the variance in the prediction by generating additional data for training from the dataset 

using combinations with repetitions to produce multi-sets of the original data. Boosting is an 

iterative technique that adjusts the weight of an observation based on the last classification. 

Bagging (bootstrap aggregating) is an ensemble idea that is to create several subsets of data 

from samples chosen randomly with replacement. Each collection of subset data is used to train 

the model separately, and then aggregate the sub-models together. One of the most common 

algorithms is the random forest model proposed by Ho in 1998 [103]. As the name suggests, 

Random Forest is a forest constructed in a random way, which is composed of many trees. Every 

single tree is calculated based on a certain number of features randomly selected from the dataset 

to obtain results. For different trees, they will have their own unique results, and the random forest 

obtains the result by the majority rule. Therefore, in the random forest algorithm, the greater the 

number of trees, the better the generalization result. 

At present, bagging has been widely used. In the field of fuzzy rules, ensemble learning has 

been applied to assess a driving style. The fusion of fuzzy rule-based models led to the increase in 
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accuracy of the evaluation to 94% [91]. Dieu [64] proposed a tree ensemble algorithm based on a 

fuzzy rule-based model to predict flash floods. Hu designed the bagging and boosting mechanisms 

for assembling fuzzy rule-based models and demonstrated that the performance of the ensemble 

model was superior to the traditional single model for most datasets [69]. The distributed and 

hierarchically driven ways of rule development were discussed in [70]. Some augmentations of 

the resulting models with the aid of information granules were investigated in [14], [92]. 

Boosting is an iterative technique where multiple sub-datasets are sampled, and the model is 

trained on each sub-dataset separately. The idea can be traced back to the studies carried out by 

Dasarathy and Sheela [104].  The difference between boosting and bagging is that each model of 

boosting cannot be operated in parallel but is completed sequentially. One of the representatives 

boosting techniques is the gradient boosting algorithm. As an optimization algorithm, it improves 

the overall performance of the model by optimizing the loss function, commonly used in regression 

or classification and other problems. During computation, optimization is based on residuals. In a 

nutshell, in the gradient boosting algorithm, each iteration is revised based on the results of the 

previous round. In addition, an adaptive boosting (Adaboost) algorithm is also widely used. It was 

first proposed in [105], using an adaptive way of focusing attention on incorrectly classified data 

by associating them with heavier weights such that the designed model (classifier) is made more 

focused on such data. The approach proceeds in an iterative way, and the way of re-weighting data 

is repeated until some stopping criterion has been satisfied. This design strategy is applied in 

conjunction with various models including decision tree [96], SVM [95], naive Bayes [106], K-

means [97], etc. 

The boosting technique has been continuously studied to improve the accuracy of the model. 

For example, Pratima proposed to use it to predict solar radiation, where an experimental study 



 

18 

 

confirmed that, compared with the traditional random forest algorithm, the prediction error rate is 

reduced by 40%, and the training time of the model is greatly reduced [107]. Zhang proposed a 

model that uses the gradient boosting model by analyzing images to predict pm2.5 and improve 

the recognition accuracy [108]. 

2.5 Gradient-based learning algorithm 

 The concept of gradient descent could be traced back to 1847, first proposed by Cauchy 

[109], which aims to minimize the loss function. In other words, it is a process of finding the 

extreme value of the function. In subsequent developments, the concept of gradients has been 

frequently refined and applied to multiple domains [110]–[112]. Denote 𝑓(𝜃) as the objective 

function 𝑓 with 𝜃 being the parameter and the objective is to minimize this function by changing 

the value of the parameter. The values of 𝜃 are iteratively updated by using the gradient of the 

objective function 𝛻𝜃𝑓(𝜃) 

 

𝜃𝑖𝑡𝑒𝑟+1 = 𝜃𝑖𝑡𝑒𝑟 − 𝛼𝛻𝜃𝑓(𝜃) (2.14) 

where 𝛼 is a positive learning rate. 

 

As gradient descent has been intensively studied, many improved and enhanced algorithms 

have been proposed, including the Adaptive moment Estimation (ADAM) algorithm [113]. The 

generic learning scheme is augmented by admitting adaptive learning rates associated with 

individual optimized parameters [113]. Compared with the basic gradient descent algorithm, 

ADAM’s advantage is that the learning rate of individual parameters is adjusted according to the 

recorded historical learning rate. For example, in the optimization process, if one variable has been 
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optimized to the optimal state, but the other variables need further optimization, it is obviously 

unreliable to use a uniform learning rate for learning. The ADAM algorithm can effectively avoid 

this problem. In what follows, we briefly elaborate on the details of the algorithm. 

By denoting 𝒅𝒆 = 𝛻𝜽𝑓(𝜽)  coming from gradient descent, we complete the following 

computing: 

𝒅𝒆(𝑖𝑡𝑒𝑟) = 𝛻𝜽𝑓𝑖𝑡𝑒𝑟(𝜽); 

𝒎(𝑖𝑡𝑒𝑟 + 1) = 𝛽1 𝒎(𝑖𝑡𝑒𝑟) − (1 − 𝛽1) 𝒅𝒆(𝑖𝑡𝑒𝑟); 

�̂�(𝑖𝑡𝑒𝑟 + 1) = 𝒎
𝑖𝑡𝑒𝑟

1 − 𝛽1
𝑖𝑡𝑒𝑟

; (2.15) 

𝒆(𝑖𝑡𝑒𝑟 + 1) = 𝛽2 𝒆(𝑖𝑡𝑒𝑟) − (1 − 𝛽2) 𝒅𝒆2(𝑖𝑡𝑒𝑟); 

�̂�(𝑖𝑡𝑒𝑟 + 1) = 𝒆 (𝑖𝑡𝑒𝑟)/(1 − 𝛽2
𝑖𝑡𝑒𝑟); 

𝜽(𝑖𝑡𝑒𝑟 + 1) = 𝜽(𝑖𝑡𝑒𝑟) − 𝛼�̂�(𝑖𝑡𝑒𝑟 + 1)/(√�̂� (𝑖𝑡𝑒𝑟 + 1) + 𝛿). 

where 𝛿 assumes a small positive value that prevents division by zero, 𝒅𝒆2 stands for the element-

wise square of 𝒅𝒆. 𝒎 is the first moment estimate and 𝒆 is the second raw moment estimate. 𝛽1 

and 𝛽2 are the exponential decay rates for the first and second moment estimates, respectively, 

controlling their moving averages. However, those moving averages are initialized as 0’s, which 

causes that the moment estimates are biased towards 0. Considering this issue, the algorithm is 

improved as follows 

𝒅𝒆(𝑖𝑡𝑒𝑟) = 𝛻𝜽𝑓𝑖𝑡𝑒𝑟(𝜽); 

𝒎(𝑖𝑡𝑒𝑟 + 1) = 𝛽1 𝒎(𝑖𝑡𝑒𝑟) − (1 − 𝛽1) 𝒅𝒆(𝑖𝑡𝑒𝑟); 

𝒆(𝑖𝑡𝑒𝑟 + 1) = 𝛽2 𝒆(𝑖𝑡𝑒𝑟) − (1 − 𝛽2) 𝒅𝒆2(𝑖𝑡𝑒𝑟); (2.16) 

𝛼(𝑖𝑡𝑒𝑟 + 1) = 𝛼(𝑖𝑡𝑒𝑟)√(1 − 𝛽2
𝑖𝑡𝑒𝑟)/(1 − 𝛽1

𝑖𝑡𝑒𝑟); 

𝜽(𝑖𝑡𝑒𝑟 + 1) = 𝜽(𝑖𝑡𝑒𝑟) − 𝛼(𝑖𝑡𝑒𝑟 + 1) 𝒎(𝑖𝑡𝑒𝑟 + 1)/(√𝒆(𝑖𝑡𝑒𝑟 + 1) + 𝛿). 
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2.6 Cross validation in the development of the model 

Usually, when building a machine learning model, we need to train the model with known 

data and test the trained model to verify its performance. Therefore, the data are usually divided 

into the training set and the testing set. In order to ensure the validity of the experiment, the process 

of separating the data is often done randomly. But this randomness leads to the generation of 

sampling error. Therefore, researchers introduce the concept of the generalization error, which is 

a tool to explain the generalization performance of learning algorithms [114]. The generalization 

error can be decomposed into bias, variance, and noise as follows 

 

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒 (2.17) 

 

where 𝑏𝑖𝑎𝑠 is an error from erroneous assumptions in the learning algorithm and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 is an 

error from sensitivity to small fluctuations in the training set. 

 

In order to minimize the generalization error, a cross-validation method is often used in the 

experiment process. The advantage of cross-validation is that when the number of datasets is 

limited, the cross-validation method can effectively expand the dataset, thereby verifying the 

generalization ability of the model to a certain extent. In this study, we use a relatively common 

method, namely K-fold cross validation, which is a dynamic validation method that reduces the 

impact of data partitioning. The specific steps are as follows: first, divide the dataset into K parts; 

then use 1 of the K copies as the testing set, and group all others as the training set. After K times, 

every part has been used as a testing set. Note that we calculate the average values of K times as 

the model output [115], [116]. 
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2.7 Performance indexes 

There are a plethora of methods for evaluating a model. Here we focus on the following 

approaches that have been selected as evaluation criteria in this study. 

Mean-square error (MSE): This is a common method to calculate the error Q between the 

estimated value (est) produced by the model and the actual value (act), which measures how close 

the fitted line is to the actual data points. The smaller the mean squared error, the closer the fit of 

the model is to the dataset: 

  

𝑄 =
1

𝑁
∑(𝑒𝑠𝑡𝑘 − 𝑎𝑐𝑡𝑘)

2

𝑁

𝑘=1

(2.18) 

 

where N denotes the number of data. 

Root mean square error (RMSE): It measures the average magnitude of the error and directly 

interpreter it in terms of measurement units, as shown below: 

 

RMSE = √MSE (2.19) 

 

Mean absolute percentage error (MAPE): This is a measure of prediction accuracy [117] and 

is commonly used as a loss function for a regression problem, which is concerned with the ratio 

of error between est and act to est. Its advantage is that the presented results are ratios rather than 

absolute numbers, making it easy to compare models across units of magnitude. The details are 

shown as follows: 
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𝑄 =
1

𝑁
(∑ |

𝑒𝑠𝑡𝑘 − 𝑎𝑐𝑡𝑘
𝑒𝑠𝑡𝑘

|

𝑁

𝑘=1

) (2.20) 

 

For classification problems, cross-entropy is also often used as an effective evaluation tool. 

Cross entropy represents two probability distributions 𝒑 and 𝒒. 𝒑 is the represent concern of the 

data and 𝒒 is generated by the model. The representation is described as follows 

 

𝑄 = ∑𝒑𝑖

𝑖

log (
1

𝒒𝑖
) (2.21) 

 

In this study, we focus on regression problems and absolute error values and thus choose 

RMSE as the main evaluation criterion.  

2.8 Information granules 

Information granules were proposed by Zadeh in 1979 [118]. They are collections of entities 

(elements), usually originating at the numeric level, which is arranged together due to their 

similarity, functional adjacency and indistinguishability or alike. Given the similarity function to 

quantify the closeness between the samples, these data are clustered into certain granules, 

categories or classes [119]. Information granules are constructed in various formalisms: intervals, 

fuzzy sets, rough sets, etc. The process of forming information granules is referred to as 

information granulation [120]. 

When we design information granules on the basis of data, we need an effective design 

method. Thus, the principle of justifiable granularity was proposed as a carrier of granular 

computing [121]–[124], in which a justifiable information granule (interval) is expected to find to 
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contain the data as much as possible but without being too general. Pedrycz and Homenda 

abstracted a complex problem and obtained the interval through two parameters: coverage and 

specificity [125]. As coverage focuses on the extent of data being included and specificity is the 

extent that how ‘specific’ the interval is, which results in these two performance indexes being of 

a conflicting nature. The increase in coverage implies a decrease in specificity and vice versa. The 

optimal interval is determined by maximizing the product 𝑉 of coverage (𝑐𝑜𝑣) and specificity (𝑠𝑝). 

 

𝑉 = 𝑐𝑜𝑣 ∙ 𝑠𝑝 (2.22) 

 

We briefly illustrate it with an example. For one-dimensional data (𝑥1, 𝑥2, … , 𝑥𝑁), we can 

build an information granule interval taking the form 𝐴 = [𝑎, 𝑏]. The coverage and specificity are 

shown as follows: 

Coverage This measure is a simple count of data included in the corresponding intervals of 

respective elements. 

 

𝑐𝑜𝑣(𝐴) =
1

𝑁
𝑐𝑎𝑟𝑑{𝑥𝑘|𝑥𝑘 ∈ 𝐴} (2.23) 

where 𝑐𝑎𝑟𝑑(. ) denotes the cardinality of 𝐴. 

 

Specificity This index quantifies the precision of the result. Qualitatively it can be regarded 

as a decreasing function of the length of the interval, see (2.24). Such a function has to satisfy 

some obvious boundary conditions: an interval reduced to a single numeric value comes with the 

highest specificity of one and the interval expanded to the entire unit interval has the zero-
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specificity value, in other words, specificity indicates the degree of specificity of the data covered 

by the interval. 

 

𝑠𝑝(𝐴) = 1 −
|𝑏 − 𝑎|

𝑟𝑎𝑛𝑔𝑒
(2.24) 

where 𝑟𝑎𝑛𝑔𝑒 = max(𝑥1, 𝑥2, … , 𝑥𝑁) − min(𝑥1, 𝑥2, … , 𝑥𝑁). 

2.9 Conclusions 

This chapter covers the main methods and algorithms that are critical in the experimental 

design. First, we introduce the method, fuzzy clustering and fuzzy rule-based model used 

throughout the paper. Then we expose the idea of non-negative matrix factorization that will be 

applied in Chapters 3 and 4. Next, we focus on ensemble learning that will be used in Chapter 5. 

Finally, we briefly summarize the data distribution methods, model evaluation methods, and the 

concept of information granules used in the experiments. 

  



 

25 

 

Chapter 3 Fuzzy Relational Matrix Factorization and Its Granular 

Characterization in Data Description 

It is evident that decreasing the dimensionality of data is an effective way to enhance the 

effectiveness of the design of models and increase their performance. Dimensionality reduction 

has been a central area of studies in system modeling and there have been a number of well-

established methods such as autoencoders [126]–[130], nonnegative matrix factorization [131]–

[134], Principal Component Analysis (PCA) [135]–[137]. In this chapter, we will introduce the 

single-level and two-level factorization to reduce data dimensionality which has better 

performance and stronger interpretability than traditional non-negative matrix factorization. 

3.1 Single-level fuzzy relation factorization 

A collection of data organized in an 𝑁 by 𝑛 matrix 𝑋 = [𝑥𝑖𝑗], 𝑖 = 1, 2, … ,𝑁, 𝑗 = 1, 2, … , 𝑛, 

𝑋 is composed of vectors located in the [0,1]𝑛 hypercube. As we said in Chapter 2, the idea was 

to decompose it into two matrices. Here, we are making a substantial departure by treating these 

matrices as fuzzy relations and applying the calculation of fuzzy relations such as s-t 

decompositions. Therefore, the factorization problem is expressed in the formal way as follows: 

 

�̂� = 𝑟𝑒𝑙(𝐻, 𝑅) (3.1) 

 

where 𝐻 = [ℎ𝑖𝑗],  𝑖 = 1, 2, … ,𝑁 , 𝑗 = 1, 2, … , 𝑝 ,with 𝑝  being the number of decreased 

dimensionality and  𝑝 ≪ 𝑛, is an 𝑁 by 𝑝 matrix of reduced data and 𝑅 = [𝑟𝑖𝑗], 𝑖 = 1, 2, … , 𝑝, 𝑗 =

https://scholar.google.com/citations?view_op=view_citation&hl=zh-CN&user=N-Ql578AAAAJ&authuser=1&citation_for_view=N-Ql578AAAAJ:9yKSN-GCB0IC
https://scholar.google.com/citations?view_op=view_citation&hl=zh-CN&user=N-Ql578AAAAJ&authuser=1&citation_for_view=N-Ql578AAAAJ:9yKSN-GCB0IC
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1, 2, … , 𝑛, is a 𝑝 by 𝑛 matrix representing the fuzzy relation of dimensionality, and rel stands for 

some relational operators. 

 The dimensionality of 𝐻 is lower than that of the original data coming as a result of the 

reduction process. The objective of the factorization problem is to determine 𝐻 and 𝑅 such that �̂� 

is made as close to 𝑋  as possible. Realistically, the equality �̂� = 𝑋  is not feasible and the 

optimization is about minimizing some distance ||. || between 𝑋  and �̂�, say ‖𝑋 − �̂�‖
2
. This is 

realized by determining suitable fuzzy relations 𝑅 and 𝐻. Proceed with the detailed processing 

behind the relational factorization. The relational operator rel can assume two main forms where 

the underlying computing engages triangular norms (t) and triangular t-conorms (s). The following 

two composition operators coming from the relational calculus are encountered: 

s-t composition 

 

�̂� = 𝐻 ∘ 𝑅 (3.2) 

 

t-s composition 

 

�̂� = 𝐻 ⋅ 𝑅 (3.3) 

 

where ‘∘’ and ‘⋅’ are the corresponding s-t and t-s composition operators, respectively. 

Let us introduce the following vector notations: 
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𝑋 =

[
 
 
 
𝑥1

𝑇

𝑥2
𝑇

⋮
𝑥𝑁

𝑇]
 
 
 
;  𝐻 =

[
 
 
 
ℎ1

𝑇

ℎ2
𝑇

⋮
ℎ𝑁

𝑇 ]
 
 
 

(3.4) 

 

where 𝒙𝑖 is a vector located in the n-dimensional unit hypercube, say 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛] and 

𝒉𝑖  is a vector positioned in the p-dimensional unit hypercube, namely ℎ𝑖 = [ℎ𝑖1, ℎ𝑖2, . . . , ℎ𝑖𝑝], 𝑖 =

1, 2, … ,𝑁.  

Furthermore, let us arrange 𝑅 in the following way: 

 

𝑅 = [𝑟1, 𝑟2, … , 𝑟𝑛] ; 𝑑𝑖𝑚( 𝑟𝑗) = 𝑝; 𝑟𝑗 = [

𝑟1𝑗

𝑟2𝑗

⋮
𝑟𝑝𝑗

] (3.5) 

 

Accordingly, the factorization problem is transformed into a system of relational equations, 

where the (𝑖, 𝑗)𝑡ℎ element of �̂�, afternote by  𝑥𝑖𝑗, is expressed in the form for (3.2): 

 

�̂�𝑖𝑗 = 𝒉𝑖 ∘ 𝒓𝑗 (3.6) 

 

where ∘ is s-t factorization. 

In terms of the individual elements of 𝑅 and 𝐻, the above expression reads as follows: 

 

�̂�𝑖𝑗 = 𝑆
𝑙=1

𝑝

(ℎ𝑖𝑙 𝑡 𝑟𝑙𝑗) (3.7) 

 

For (3.3) 
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𝑥𝑖𝑗 = ℎ𝑖 ⋅ 𝑟𝑗;  �̂�𝑖𝑗 = 𝑇
𝑙=1

𝑝

(ℎ𝑖𝑙 𝑠 𝑟𝑙𝑗) (3.8) 

where 𝑖 = 1, 2, … , 𝑁, 𝑗 = 1, 2, … , 𝑛, and 𝑙 = 1, 2, … , 𝑝. 

 

In light of triangular norms and conorms, the processing is evidently logic-oriented because 

the operator between the matrices is a relation. 

To solve the above factorization problem, one has determined simultaneously the fuzzy 

relation R and the data relation 𝐻. There are two phases of the design process, namely the structural 

optimization followed by the parametric optimization. The former involves the optimization of 

dimensionality (𝑝) of the fuzzy relation and the choice of t-norms and t-conorms. The lather is 

concerned with the adjustment of the entries of the fuzzy relation 𝑅. The performance index 𝑄 

used in the optimization process is a sum of squared errors between the corresponding 𝑋 and �̂�: 

 

𝑄 = ∑∑(𝑥𝑖𝑗 − �̂�𝑖𝑗)
2

𝑛

𝑗=1

𝑁

𝑖=1

, 𝑖 = 1, 2, … ,𝑁, 𝑗 = 1, 2, … , 𝑛. (3.9) 

 

Consider formulas (3.7) and (3.8), for the factorization problem (3.9), one develops the 

following gradient-based iterative scheme (iter stands for the index of the iterative process): 

 

ℎ𝑏𝑐(𝑖𝑡𝑒𝑟 + 1) = ℎ𝑏𝑐(𝑖𝑡𝑒𝑟) − 𝛼𝛻ℎ𝑏𝑐
𝑄(𝑖𝑡𝑒𝑟) (3.10) 

𝑏 = 1, 2, … ,𝑁; 𝑐 = 1, 2, … , 𝑝. 

 

𝑟𝑐𝑑(𝑖𝑡𝑒𝑟 + 1) = 𝑟𝑐𝑑(𝑖𝑡𝑒𝑟) − 𝛼𝛻𝑟𝑐𝑑
𝑄(𝑖𝑡𝑒𝑟) (3.11) 
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𝑐 = 1, 2, … , 𝑝; 𝑑 = 1, 2, … , 𝑛. 

where 𝛼 is a positive learning rate. During the iterative process, the initial value is randomly 

generated, and we limit the value generated by the iterative process is limited to the interval [0, 1]. 

Proceed with details, and the pertinent formulas are as follows: 

 

𝛻ℎ𝑏𝑐
𝑄 = 2 ∑(𝑥𝑏𝑗 − �̂�𝑏𝑗)

𝑛

𝑗=1

𝜕�̂�𝑏𝑗

𝜕ℎ𝑏𝑐
;

𝛻𝑟𝑐𝑑
𝑄 = 2∑(𝑥𝑖𝑑 − �̂�𝑖𝑑)

𝑁

𝑖=1

𝜕�̂�𝑖𝑑

𝜕𝑟𝑐𝑑
(3.12)

 

 

The detailed formulas for the calculations of the gradient (3.12) are completed below. 

s-t composition: 

 

𝛻ℎ𝑏𝑐
𝑄 = 2∑(𝑥𝑏𝑗 − �̂�𝑏𝑗)

𝑛

𝑗=1

𝜕 { 𝑆
𝑙=1

𝑝

(ℎ𝑏𝑙 𝑡 𝑟𝑙𝑗)}

𝜕ℎ𝑏𝑐

= 2∑(𝑥𝑏𝑗 − �̂�𝑏𝑗)

𝑛

𝑗=1

𝜕 {[ 𝑆
𝑙=1,𝑙≠𝑐

𝑝

(ℎ𝑏𝑙 𝑡 𝑟𝑙𝑗)]  𝑠 (ℎ𝑏𝑐 𝑡 𝑟𝑐𝑗)}

𝜕ℎ𝑏𝑐
 

 (3.13)
 

𝛻𝑟𝑐𝑑
𝑄 = 2∑(𝑥𝑖𝑑 − �̂�𝑖𝑑)

𝑁

𝑖=1

𝜕 { 𝑆
𝑙=1

𝑝

(ℎ𝑖𝑙 𝑡 𝑟𝑙𝑑)}

𝜕𝑟𝑐𝑑

= 2∑(𝑥𝑖𝑑 − �̂�𝑖𝑑)

𝑁

𝑖=1

𝜕 {[ 𝑆
𝑙=1,𝑙≠𝑐

𝑝

(ℎ𝑖𝑙 𝑡 𝑟𝑙𝑑)]  𝑠 (ℎ𝑖𝑐 𝑡 𝑟𝑐𝑑)}

𝜕𝑟𝑐𝑑
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t-s composition: 

 

𝛻ℎ𝑏𝑐
𝑄 = 2∑(𝑥𝑏𝑗 − �̂�𝑏𝑗)

𝑛

𝑗=1

𝜕 { 𝑇
𝑙=1

𝑝

(ℎ𝑏𝑙 𝑠 𝑟𝑙𝑗)}

𝜕ℎ𝑏𝑐

= 2 ∑(𝑥𝑏𝑗 − �̂�𝑏𝑗)

𝑛

𝑗=1

𝜕 {[ 𝑇
𝑙=1,𝑙≠𝑐

𝑝

(ℎ𝑏𝑙 𝑠 𝑟𝑙𝑗)]  𝑡 (ℎ𝑏𝑐 𝑠 𝑟𝑐𝑗)}

𝜕ℎ𝑏𝑐
; 

 (3.14)
 

𝛻𝑟𝑐𝑑
𝑄 = 2∑(𝑥𝑖𝑑 − �̂�𝑖𝑑)

𝑁

𝑖=1

𝜕 { 𝑇
𝑙=1

𝑝

(ℎ𝑖𝑙 𝑠 𝑟𝑙𝑑)}

𝜕𝑟𝑏𝑐

= 2∑(𝑥𝑖𝑑 − �̂�𝑖𝑑)

𝑁

𝑖=1

𝜕 {[ 𝑇
𝑙=1,𝑙≠𝑐

𝑝

(ℎ𝑖𝑙 𝑠 𝑟𝑙𝑑)]  𝑡 (ℎ𝑖𝑐 𝑠 𝑟𝑐𝑑)}

𝜕𝑟𝑐𝑑
. 

 

If we confine ourselves to some particular t-norm and conorm, say the product and 

probabilistic sum, the formulas are written down in the following way: 

s-t composition:  

 

𝛻ℎ𝑏𝑐
𝑄 = 2∑(𝑥𝑏𝑗 − �̂�𝑏𝑗)

𝑛

𝑗=1

𝑟𝑐𝑗 (1 − [ 𝑆
𝑙=1,𝑙≠𝑐

𝑝

(ℎ𝑏𝑙𝑟𝑙𝑗)]) ; 

𝛻𝑟𝑐𝑑
𝑄 = 2∑(𝑥𝑖𝑑 − �̂�𝑖𝑑)

𝑁

𝑖=1

𝑦𝑖𝑐 (1 − [ 𝑆
𝑙=1,𝑙≠𝑐

𝑝

(ℎ𝑖𝑙𝑟𝑙𝑑)]) (3.15) 

 

t-s composition:  
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𝛻ℎ𝑏𝑐
𝑄 = 2∑(𝑥𝑏𝑗 − �̂�𝑏𝑗)

𝑛

𝑗=1

[ 𝑇
𝑙=1,𝑙≠𝑐

𝑝

(ℎ𝑏𝑙 + 𝑟𝑙𝑗 − ℎ𝑏𝑙𝑟𝑙𝑗)] (1 − 𝑟𝑐𝑗); 

𝛻𝑟𝑐𝑑
𝑄 = 2∑(𝑥𝑖𝑑 − �̂�𝑖𝑑)

𝑁

𝑖=1

[ 𝑇
𝑙=1,𝑙≠𝑐

𝑝

(ℎ𝑖𝑙 + 𝑟𝑙𝑑 − ℎ𝑖𝑙𝑟𝑙𝑑)] (1 − ℎ𝑖𝑐) (3.16) 

 

For other triangular norms and conorms, the general learning scheme exhibits the same 

structure; however, the computing details are modified to accommodate the derivatives of the 

triangular norms and conorms of interest.  

In both factorization schemes involving 𝑅 and 𝐻, for practical purposes, the generic learning 

scheme is augmented by admitting adaptive learning rates associated with individual optimized 

parameters as discussed in the ADAM stochastic optimization [113]. In what follows, we briefly 

elaborate on the details of the algorithm. 

Denote by 𝜽 a vector of parameters composed of elements of 𝐻 and 𝑅 organized in a linear 

way in the form of a single vector. The resulting gradient vector 𝒅𝒆 = [
𝛻𝐻𝑄
⋯⋯
𝛻𝑅𝑄

]is (𝑁𝑃 + 𝑝𝑛) 

dimensional. We complete the following computation with ADAM (2.16). 

Logic interpretation 

As noted, the composition operators come with a sound logic-oriented interpretation. 

Consider the 𝑖𝑡ℎ  row of matrix 𝐻 and the 𝑗𝑡ℎ column of the matrix 𝑅. The original input 𝑥𝑖𝑗 is 

factorized as described by (3.7) and (3.8). Then recall that any t-norm realizes an and operator 

while t-conorm realizes an or operator. We have: 
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𝑥𝑖𝑗 = [(ℎ𝑖1 𝑎𝑛𝑑 𝑟1𝑗)] 𝑜𝑟 …  𝑜𝑟 [(ℎ𝑖𝑝 𝑎𝑛𝑑 𝑟𝑝𝑗)] (3.17) 

 

Alternatively, we emphasize the contribution of entries of 𝒉𝑖  to the result 𝑥𝑖𝑗 by rewriting 

(3.17) as: 

 

𝑥𝑖𝑗 = ℎ𝑖1|𝑟1𝑗
𝑜𝑟 ℎ𝑖2|𝑟2𝑗

𝑜𝑟…𝑜𝑟  ℎ𝑖𝑝|𝑟𝑝𝑗
(3.18) 

 

In light of the boundary properties of t-norms, higher values of 𝑟1𝑗, 𝑟2𝑗, . . . , 𝑟𝑝𝑗 highlight the 

more essential contributions of the corresponding components of 𝒉𝑖 to the formation of 𝑥𝑖𝑗. 

The realization of 𝑥𝑖𝑗 completed through the t-s composition is achieved by looking at those 

terms in the expression: 

 

𝑥𝑖𝑗 = ℎ𝑖1|𝑟1𝑗
𝑎𝑛𝑑 ℎ𝑖2|𝑟2𝑗

𝑎𝑛𝑑…𝑎𝑛𝑑  ℎ𝑖𝑝|𝑟𝑝𝑗
(3.19) 

 

where the entries are associated with lower values of 𝑟1𝑗, 𝑟2𝑗, . . . , 𝑟𝑝𝑗. It means that in this logic 

expression, the essential components are the corresponding ℎ with lower values of 𝑟. 

Consider the fuzzy relation 𝑅, which quantifies the associations between variables present in 

the original and reduced data spaces. For the s-t composition, the values of 𝑅 closer to 1 exhibit 

high relevance. Given 𝑅, where one has entries of a certain column of 𝑅 close to 1, these high 

values of 𝑅 identify the variables in the reduced space that associated with a certain variable in the 

input space. In the case of the t-s composition, the entries of the fuzzy relation close to zero are of 

interest to identify the essential logic dependencies between 𝐻 and 𝑋. Formally, a single level 

factorization algorithm is structured as follows: 
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Algorithm1: Single level fuzzy relation factorization 

Input: Data matrix 𝑋 ∈ 𝑅𝑁×𝑛, parameters 𝛼, 𝛽1, 𝛽2, 𝛿, maxiteration 

Output: Data matrix �̂� and R 

Initialize H and R as arbitrary positive 𝑁 × 𝑝, 𝑝 × 𝑛matrices, respectively 

for 𝑝 ←1 to n do 

 while iter<maxiteration do 

  Update H and R with ADAM algorithm (2.13) 

  Construct �̂� = 𝐻 ⋅ 𝑅 or �̂� = 𝐻 ∘ 𝑅 

  end 

end 

Return the output �̂� and R 

 

3.2 Two-level fuzzy relation factorization 

A two-level factorization is the extension of the above constructs. We further factorize 𝐻. In 

the consecutive stages, the resulting logic expression results are shown as follows. The 

architectures of relational factorization discussed so far exhibit a single-level structure being either 

realized by the s-t or t-s composition. Their underlying logic structure is either guided by the and 

or or logic aggregation. The factorization can be realized through a two-level architecture (where 

the logic expressions are put together). Two variants of the structure are considered: 

 

�̂� = 𝐻 ⋅ 𝑅; �̂� = 𝑍 ∘ 𝐺 (3.20) 

 

and 

 

�̂� = 𝐻 ∘ 𝑅; �̂� = 𝑍 ⋅ 𝐺 (3.21) 
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In this two-level structure, one first factorizes 𝑋 producing the data of reduced dimensionality 

𝐻 and the fuzzy relation 𝑅. Then, 𝐻 is again factorized using the s-t composition, resulting in 

further reduction of 𝐻 thus yielding 𝑍 and producing the fuzzy relation 𝐺. 

In terms of the underlying logic exercised here, one has a factorization completed by the and 

aggregation followed by the or aggregation or vice versa. 

The arrangement of the composition operators following (3.20) and (3.21) is motivated by 

the logical nature of the processing implied by triangular norms, as shown in Fig. 3.1. 

 

Fig. 3.1. A two-level relational factorization. 

In light of the underlying logic processing completed by the and and or generalized logic 

expressions, it becomes evident that the values of R and G of Boolean nature are easily 

interpretable. In contrast, the entries of the fuzzy relation that are positioned close to 1/2 are more 

difficult to comprehend. 

Having this in mind, the learning process can be modified by accommodating a regularization 

mechanism. Using it, we tend to move the optimized parameters of R and G to be positioned closer 

1 or 0. This is accomplished by augmenting the minimized objective function: 

 

𝑄 = ∑∑(𝑥𝑖𝑗 − �̂�𝑖𝑗)
2 + 𝜆 ∑∑𝛷(𝑟𝑖𝑗)

𝑛

𝑗=1

𝑝

𝑖=1

𝑛

𝑗=1

𝑁

𝑖=1

(3.22) 
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where 𝜆 ≥ 0 and the second term-involving 𝛷 serves as the regularization term. In virtue of the 

Boolean requirements facilitating interpretability, the function 𝛷 used in the regularization part 

satisfies 𝛷(0) = 𝛷(1) = 0. We also require that 𝛷 should be an increasing function over [0,
1

2
], 

decreasing function over [
1

2
, 1] and 𝛷(

1

2
) = 1 is the maximal value over the unit interval. An 

example of 𝛷 comes as 𝛷(𝜉) = 4𝜉(1 − 𝜉), where 𝜉 ∈ [0,1]. The overall structure of the two-level 

decomposition algorithm is outlined below: 

 

Algorithm2: Two level fuzzy relation factorization 

Input: Data matrix 𝑋 ∈ 𝑅𝑁×𝑛, parameters 𝛼, 𝛽1, 𝛽2, 𝛿, maxiteration 

Output: Data matrix �̂� and R and G 

Initialize H, R, Z and G as arbitrary positive 𝑁 × 𝑝, 𝑝 × 𝑛,𝑁 × 𝑚,𝑚 × 𝑝 matrices, respectively 

for 𝑝 ←1 to n do 

 while iter<maxiteration do 

  Update H and R with ADAM algorithm (2.13) 

   end 

end 

for 𝑚 ←1 to p do 

  while iter<maxiteration do 

 Update Z and G with ADAM algorithm (2.13) 

Construct �̂� = 𝑍 ∘ 𝐺 or �̂� = 𝑍 ⋅ 𝐺 

Construct �̂� = 𝐻 ⋅ 𝑅 or �̂� = 𝐻 ∘ 𝑅 

  end 

end 

Return the output �̂� and R and G 

 

3.3 Granular relation factorization 

Evidently, the factorization process does not lead to the ideal results, which means that the 

optimized �̂�  is not equal to 𝑋 . To quantify this effect, we make the results be expressed as 

information granules rather than single numeric membership grades. In particular, we consider 

entries of 𝑅 to be information granules, in the form of the interval-valued membership grades. 

Briefly, by admitting interval-valued entries, we arrive at the granular fuzzy relation, 𝑅~ =
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[𝑅−, 𝑅+]. To emphasize the impact of the level of information granularity on the quality of the 

factorization results, we also use the alternative notation 𝑅𝜀 where 𝜀 is referred to as a level of 

information granularity which are the range from 0 to 1. This in turn makes the factorization result 

coming in the interval format, say  𝑋~ = [𝑋−, 𝑋+]. In virtue of monotonicity of t-norms and t-

conorms, we have: 

 

𝑋− = 𝐻 ⋅ 𝑅−, 𝑋+ = 𝐻 ⋅ 𝑅+ (3.23) 

 

or 

 

𝑋− = 𝐻 ∘ 𝑅−, 𝑋+ = 𝐻 ∘ 𝑅+ (3.24) 

 

The essence of injection of information granularity into the single-level and two-level 

factorization schemes is illustrated in Fig. 3.2.  

 

 (a)  (b)  

Fig. 3.2. Formation of granular fuzzy relation with the aid of the optimized level of information 

granularity. (a) a single level factorization structure, and (b) two-level factorization structure. 

Through the introduction of the level of information granularity, once the matrices 𝑅 and 𝐺 

have been determined, their entries are generalized to intervals. In light of the monotonicity of 

triangular norms, for each element of 𝑅𝜀 ,  one forms the following bounds 𝑟𝑖𝑗
− = 𝑟𝑖𝑗(1 − 𝜀) , 
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 𝑟𝑖𝑗
+ = 𝑚𝑖𝑛( 𝑟𝑖𝑗(1 + 𝜀),1).  Similar to the matrix 𝐺𝜏,  we have 𝑔𝑖𝑗

+ = 𝑔𝑖𝑗(1 − 𝜏), 𝑔𝑖𝑗
+ =

𝑚𝑖𝑛(𝑔𝑖𝑗(1 + 𝜏),1), where 𝜀 ∈ [0,1], 𝜏 ∈ [0,1]. 

Consider the two-level structures (3.20) and (3.21). Their granular generalizations are formed 

by introducing levels of information granularity to the fuzzy relations 𝑅 and 𝐺. For 𝑋~one has: 

 

𝑋~ = (𝑍 ∘ 𝐺𝜏) ⋅ 𝑅𝜀 (3.25) 

 

or 

 

𝑋~ = (𝑍 ⋅ 𝐺𝜏) ∘ 𝑅𝜀 (3.26) 

 

The quality of the granular model is evaluated by taking into account the performance of the 

information granule 𝑋~ vis-à-vis the original data 𝑋. The two criteria, coverage and specificity, 

are relevant here. Let us briefly recall their interpretation, see Section 2.8. One is interested in 

assessing how well the data 𝑋 are “covered” viz. included in 𝑋∼. Simultaneously one wishes to 

quantify how precise (specific) the generated information granule 𝑋∼ becomes. These two features 

are quantified by coverage and specificity as follows.  

 

𝑐𝑜𝑣 =
1

𝑁𝑛
∑∑𝑖𝑛𝑑(𝑥𝑖𝑗 , [𝑥𝑖𝑗

− , 𝑥𝑖𝑗
+])

𝑛

𝑗=1

𝑁

𝑖=1

(3.27) 

where 𝑖𝑛𝑑(𝑥𝑖𝑗 , [𝑥𝑖𝑗
− , 𝑥𝑖𝑗

+]) = {
1, if 𝑥𝑖𝑗 ∈ [𝑥𝑖𝑗

− , 𝑥𝑖𝑗
+]

0, otherwise       
. 
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𝑠𝑝 =
1

𝑁𝑛
∑∑(1 − |𝑥𝑖𝑗

+ − 𝑥𝑖𝑗
−|)

𝑛

𝑗=1

𝑁

𝑖=1

(3.28) 

 

The coverage and specificity are in conflict.  The optimization of information granularity is 

completed by maximizing the performance index 𝑉(𝜀) = 𝑐𝑜𝑣(𝜀) 𝑠𝑝(𝜀) , viz. 𝜀opt =

𝑎𝑟𝑔 max𝜀 [𝑐𝑜𝑣(𝜀)𝑠𝑝(𝜀)] for single level factorization schemes and  𝑉(𝜀, 𝜏) = 𝑐𝑜𝑣(𝜀, 𝜏)𝑠𝑝(𝜀, 𝜏) 

which is carried out for the two-layer architecture. 

3.4 Experimental studies 

The experimental study is concerned with the investigations focusing on the performance of 

factorization. In all experiments, t-norm has been specified as the product whereas the 

corresponding t-conorm is taken as the probabilistic sum. The reported performance index is the 

average of 𝑄 with �̄� = 𝑄/(𝑁𝑛). In the experiments, we use the ADAM algorithm to carry out 

optimization. The algorithm runs with the values of the parameters set up as follows: 𝛼 = 0.1, 𝛽1 

and 𝛽2 are 0.9 and 0.99, respectively, 𝛿 is 1𝑒 − 8. Here we set the maximal number of iterations 

to 300 which is enough to make the result changes flatten between iterations. 

For each dataset, the experiments are repeated 30 times and each time the dataset is randomly 

split into training and testing subsets: 70% of data are used for training while the remaining 30% 

of data form the testing set. When carrying out testing, one considers the already determined fuzzy 

relation 𝑅 and the original testing data 𝑋𝑡𝑒𝑠𝑡 to determine the corresponding 𝐻𝑡𝑒𝑠𝑡 such that we can 

obtain �̂�test and finally computes the distance between 𝑋test and �̂�test to quantify the performance 

achieved on the testing data. 
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Experiment 1: 

We consider the Boston housing data (https://archive.ics.uci.edu/ml/datasets.php). The data 

has 12 continuous input variables and a single discrete variable. To build the logic manifestation 

of these data, for each continuous variable, we use three triangular membership functions with an 

1/2 overlap between the two adjacent fuzzy sets. For the discrete variable, we make it evenly 

distributed, and for Boolean variable, the one hot encoding is used. There is a variable including 

only (0, 1), and we maintain this variable as same as the original data. In total, the transformed 

data are positioned in the 37-dimensional unit hypercube.  

The single-level architectures: 

(i) s-t factorization. The values of the resulting performance index �̄� obtained from 

consecutive values of 𝑝 are displayed in Fig. 3.3(a). The performance improves with the increasing 

values of 𝑝. Apparently �̄� is a monotonically decreasing function of this parameter; however, the 

decrease becomes slower for higher value of 𝑝. The inspection of this curve points at the choice 

of 𝑝 = 20 as a sound reduced dimensionality.  In this case, the convergence of the method is 

displayed in Fig. 3.3(b). Most of the learning occurs at the beginning of the learning process and 

this manifests through a significant drop of the values of �̄�  that are observed in the first 50 

iterations of the learning process. 
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             (a)  (b)  

Fig. 3.3. Performance index �̄� for s-t factorization. (a) �̄� as a function of p; �̄� = 0.0037 and 

0.0043 for the training and testing data for 𝑝 = 20. (b) convergence of the optimization process 

for 𝑝 = 20. 

Fig. 3.4 displays the values of the optimized fuzzy relation 𝑅; the most essential information 

is the high entries of the relation that assume values close to 1. The figure delivers an interesting 

view of the relationship revealed by the fuzzy relation. For each column of 𝑅 there are only a 

fraction of high entries of the relation; some of the columns come with only low values positioned 

close to zero. By looking at the rows of 𝑅, one can notice that there are a fraction of inputs forming 

the reduced space. Another interesting view at the reduction process is offered by Fig. 3.5. The 

matrix of reduced data 𝐻 is more homogenous (less dispersion of the values of its entries) than the 

entries of 𝑋. 
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             (a)  (b)  

Fig. 3.4. Fuzzy relation R produced through relational factorization. (a) 3-D display; (b) 2-D 

display. 

 

             (a)  (b)  

Fig. 3.5. Display of data. (a) original data X; (b) reduced data H. 

(ii) t-s factorization.  

The results of this factorization are collected in Fig. 3.6. As before �̄�, is a decreasing function 

of p with some saturation region, which suggests the choice of 𝑝 = 23 as a cut off value. 
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             (a)   (b)  

Fig. 3.6. Performance index �̄� obtained for t-s model. (a) Performance index �̄� versus varying 

values of 𝑝. �̄� = 0.0015 and 0.0022 for the training and testing data for 𝑝 = 23; (b) 

Convergence of the optimization process for 𝑝 = 23. 

Fig. 3.7 contains a bar plot of the values of the optimized fuzzy relation 𝑅. The most essential 

entries are the low entries of the fuzzy relation (assuming values close to 0). By scanning the values 

of this relation, the number of essential entries is a small fraction of all entries. Some input 

variables (columns with light color entries) have a very limited contribution to the reduced data. 

Fig. 3.8 shows the relation 𝐻 of reduced data. Compared with original data 𝑋 in Fig. 3.5(a), it 

shows that some certain variable's limited contribution 

 

             (a)  (b)  

Fig. 3.7. Fuzzy relation 𝑅 obtained through the t-s factorization. (a) 3-D display; (b) 2-D display. 
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Fig. 3.8. Fuzzy relation 𝐻. 

For a complete analysis, we considered the standard method of non-negative matrix 

factorization (NMF). With the same performance index being used, the results are displayed in Fig. 

3.9. For comparison with the s-t composition, considering 𝑝 = 20 , one has �̄� = 0.0056  and 

0.0067 for the training and testing data, respectively. Comparing the values of the performance 

index on the testing data for these two models, we conclude that the s-t factorization is better than 

the NMF producing 35.8% decrease of �̄�. For the t-s factorization, when 𝑝 = 23, the improvement 

is 46.3% in comparison with the results produced by the NMF method. 

 

Fig. 3.9. �̄� as a function of 𝑝 obtained for the NMF algorithm. 
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Two level relational factorization: 

In the construction of the two-level factorization, we follow the method described in Section 

5. As in the previous experiment, the optimal values of 𝑝  associated with the s-t and t-s 

factorization are equal to 20 and 23, respectively. Then 𝐻  is used as the data for further 

factorization and the optimization is carried out for successive values of 𝑚. The obtained results 

are presented in Figs. 3.10(a) and 3.10(b). The optimal values of 𝑚 are 14 and 16 for the s-t and t-

s factorization, respectively. In Fig. 3.11, we show the relation 𝐺 obtained for the optimal value of 

m. For Figs. 3.11(a) and (b), the most essential are the low entries of the fuzzy relation. In Figs. 

3.11(c) and (d), each column of 𝐺 has only a fraction of high entries of the relation. Those input 

variables with dark entries exhibit the limited contribution to the reduced data. 

 

             (a)  (b)  

Fig. 3.10. �̄� as a function of 𝑚. (a) s-t factorization. (b) t-s factorization. 
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             (a)  (b)  

 

             (c)  (d)  

Fig. 3.11. Optimal relation 𝐺 with 𝑅 being optimized. (a) and (b) are the 3-D and 2-D view of 𝐺 

for the s-t factorization; (c) and (d) are the results for the t-s factorization. 

Granular relational factorization: 

For the single-level architecture, the granular augmentation of the factorization results leads 

to the granular model, and fuzzy relation 𝑅 is realized by admitting some level of information 

granularity 𝜀. This value is determined experimentally by maximizing the product of coverage and 

specificity. In the experiment, its optimal value for s-t factorization model is determined by 

maximizing the product 𝑉(𝜀) for the training data; the obtained value 𝜀opt = 0.4; as illustrated in 

Fig. 3.12. The corresponding values of 𝑉 are 𝑉train = 0.4503; 𝑉test = 0.4496. The results for the 
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t-s factorization are included in Fig. 3.13. In this case 𝜀opt = 0.09, while 𝑉train = 0.485; 𝑉test =

0.463. 

 

             (a)   (b)  

Fig. 3.12. Granular augmentation of the s-t factorization through the maximization of the product 

of coverage and specificity V. (a) training data, (b) testing data 

 

             (a)   (b)  

Fig. 3.13. t-s factorization: coverage, specificity and 𝑉 regarded as functions of 𝜀. (a) training 

data, (b) testing data. 

As for the NMF algorithm, we also use granular factorization based on the selected value of 

𝑝 = 19 (see Fig. 3.9). The optimal level of information granularity is 𝜀 = 0.34, 𝑉𝑡𝑟𝑎𝑖𝑛 = 0.355, 

and 𝑉𝑡𝑒𝑠𝑡 = 0.356. 
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For the two-level factorization, we admit information granularity distributed across the entries 

of 𝑅 and 𝐺. The optimization is completed for the pairs of values of 𝜀 and 𝜏. The obtained results 

of 𝑉 are contained in Fig. 3.14. The optimal level of information granularity is (a) 𝜀𝑜𝑝𝑡 = 0.03; 

𝜏𝑜𝑝𝑡 = 0.19, and the corresponding 𝑉𝑡𝑟𝑎𝑖𝑛 = 0.424; 𝑉𝑡𝑒𝑠𝑡 = 0.416. (b) 𝜀𝑜𝑝𝑡 = 0.18; 𝜏𝑜𝑝𝑡 = 0.01, 

and the corresponding 𝑉𝑡𝑟𝑎𝑖𝑛 = 0.382; 𝑉𝑡𝑒𝑠𝑡 = 0.378 which is worse than the result of relational 

factorization. Both factorization methods perform better than the NMF algorithm with individual 

optimal parameters in terms of granular results. The maximal improvements are 30.06% and 

16.85%, respectively when considering testing data. 

 

 (a)  (b)   

Fig. 3.14. V as a function of 𝜀 and 𝜏. (a) The s-t factorization; (b) The results for t-s factorization. 

Repeat the experiments for different number of fuzzy sets, say 5 and 7 of Boston Housing 

data. The results are shown in Fig. 3.15. 
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 (a) i.  (a) ii.  

 

 (b) i.  (b) ii.  

 Fig. 3.15. Results for Boston Housing dataset. (a). Comparison of s-t factorization and NMF; 

(b). The results comparison of t-s factorization and NMF. (i) �̄�; (ii) 𝑉. 

In the above table we conclude that for s-t factorization, when 𝑐 = 5 and 𝑐 = 7, �̄� decreases 

by 14.4% and 7.8% in comparison with the results produced by the NMF, respectively. For t-s 

factorization, when 𝑐 = 5 and 𝑐 = 7, the decreases of �̄� are 49.3% and 63.1%, respectively.  

Experiment 2:  

Here we consider a number of publicly available data coming from the Machine Learning 

repository (https://archive.ics.uci.edu/ml/datasets.php). In other words the data we use for the 

experiments are generated by transforming real-world data into unit hypercubes with 3, 5 and 7 

fuzzy sets. The results are reported in the following figures.  

https://archive.ics.uci.edu/ml/datasets.php
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MAGIC Gamma Telescope DataSet (19,020 data with 10 input variables). Fig. 3.16 depicts 

the results of MAGIC Gamma Telescope Data Set with 3, 5 and 7 fuzzy sets. 

 

 (a) i.  (b) ii.  

 

 (b) i.  (b) ii.  

Fig. 3.16. Results for MAGIC Gamma Telescope dataset. (a). The results comparison of s-t 

factorization and NMF; (b) The results comparison of t-s factorization and NMF. (i) �̄�; (ii) 𝑉. 

For s-t factorization, when 𝑐 = 3, 𝑐 = 5 and 𝑐 = 7, �̄� decreases by 39.3%, 21.2% and 36.5% 

in comparison with the performance results produced by the NMF, respectively. For t-s 

factorization, the decrease in the value of �̄� amounts to 44.6%, 57.6% and 15.4%, respectively. 

Wine Quality Data Set (4,898 data with 11 input variables). Fig. 3.17 includes the results for 

3, 5 and 7 fuzzy sets. 
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 (a) i.  (a) ii.   

 

 (b) i.  (b) ii.  

Fig. 3.17. Results for Wine Quality Dataset. (a). The results of comparison of s-t factorization 

and NMF; (b). The results of comparison of t-s factorization and NMF. (i) �̄�; (ii) 𝑉. 

For s-t factorization, when 𝑐 = 3, 𝑐 = 5 and 𝑐 = 7, �̄� decrease by 12.0%, 17.1% and 4.0% 

in comparison with the results produced by the NMF, respectively. For t-s factorization, �̄� 

decreases at the level 56.3%, 57.1% and 15.4% respectively. 

Experiment 3: 

Here we use NMF, s-t factorization and t-s factorization to extract the image and compare the 

reconstruction image. 
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 (a)  (b)  

 
 (c)  (d)  

Fig. 3.18. The image of letters. (a) the original picture; (b) the reconstruction picture by NMF; 

the reconstruction picture: (c) s-t factorization; (d) t-s factorization. 

 
 (a)  (b)  

 
 (c)  (d)  

Fig. 3.19. The image of numbers. (a) the original picture; (b) the reconstruction picture by NMF; 

the reconstruction picture: (c) s-t factorization; (d) t-s factorization. 
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In order to highlight the advantages of the developed model, we completed a comparative 

analysis with the MinMaxNMF algorithm [138] using the CBCL facial data. The data set consists 

of 2,429 faces and each image is composed of 19*19 pixels. The dimensionality of each datum is 

361 (19*19 pixels). Then through relational factorization we reduce the dimensionality to 49. The 

performance index is the MSE. Table 3.1 contains the results of the comparative analysis. As is 

shown, the model has a significant improvement in terms of the reconstruction error. 

Table 3.1. The comparison of results developed. (MinMaxNMF and relational factorization) 

Algorithm Error 

MinMaxNMF 2.3e-3 

t-s factorization 1.7e-4 

s-t factorization 1.6e-4 

 

In general, we can see that the performance for fuzzy relation factorization is better than the 

NMF. Especially for the s-t factorization, the error has decreased by 93%. 

3.5 Conclusions 

In this chapter, we have introduced a concept of the relational matrix factorization. The 

factorization process reduces the dimensionality of the original data by engaging mechanisms of 

logic processing involving generalized and and or processing completed with weighted (calibrated) 

t-norms and t-conorms. The optimization is realized by learning the logic expressions. The two-

level structure reveals the essential ways of logic-oriented mapping of the original input variables 

and can find the essence of data by multiple logic. The reduced space of output variables is 

essential to the realization of a variety of models (say classifiers and rule-based models). The 

quantification of the quality of the relational factorization is completed through a construction of 

granular (interval-valued) relations which exhibit a direct impact on the ensuing models in the 
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sense the data of reduced dimensionality are made granular and as such are next being used in the 

construction of the models. 
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Chapter 4 Design of Fuzzy Rule-Based Models with Fuzzy Relational 

Factorization 

As mentioned above, when faced with high-dimensional data, we can adapt the high-

dimensional data by modifying and enhancing the model. Based on the relational factorization 

proposed in Chapter 3, we develop a new structure of fuzzy rule-based models with the fuzzy 

relation factorization. In this chapter, we briefly discuss the overall architecture and elaborate on 

the main functional modules and the development process. As illustrated in Fig. 4.1, the model is 

composed of three key functional modules, namely (i) encoding, (ii) fuzzy relational factorization, 

and (iii) a collection of rules along with the mapping process producing a numeric output of the 

model. 

 

Fig. 4.1. Structure of fuzzy rule-based model based on fuzzy relation factorization. 

Encoding Here input data are transformed (encoded) into their representations located in the 

unit hypercube. Each input variable defined is a collection of c information granules (fuzzy sets or 

intervals), with the use of which the variable is transformed to a collection of the corresponding 

membership degrees. This gives rise to a cn-dimensional vector positioned in the hypercube 

[0,1]𝑐𝑛 . In the case of categorical variables, 1-out-of 𝑐  encoding is completed. The encoding 
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produces a nonlinear transformation of input data and forms a broad representation of the original 

data. The original data composed of x1, x2, . . . , x𝑁  build a data array 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]  of 

dimensionality 𝑁  by 𝑛 , which gives rise to the array of encoded data �̇� = [�̇�1, �̇�2, . . . , �̇�𝑐𝑛] of 

dimensionality 𝑁 by 𝑐𝑛. 

Fuzzy relational factorization In the factorization process, �̇� is decomposed (factorized) into 

data of lower dimensionality 𝐻 and a relation (linkages) 𝑅, where dim(𝐻) = 𝑝, 𝑝 ≤ 𝑐𝑛 and 𝑅 is 

a 𝑝  by 𝑐𝑛  matrix. This process effectively reduces the dimensionality of the original data. 

Formally, the factorization is expressed as �̇� = 𝐻 ∘ 𝑅, and the detailed process is discussed in 

Chapter 3. 

Rule-based model The results of factorization conveyed by 𝐻  are treated as vectors of 

activation levels of the rules of the model. The number of rules is 𝑝 and the output of the model 

for any x is determined in a standard way as a weighted sum of 𝒉 and local functions 𝐿𝑖(x; a𝑖), 

𝑖 =  1,2, … , 𝑝, say �̂� = ∑ ℎ𝑖𝐿𝑖(x; a𝑖)
𝑝

𝑖=1
. In the successive sections, we introduce step by step the 

details of the processing. 

4.1 Encoding of input variables 

The original input x is encoded with the aid of information granules defined for each variable. 

The essence of encoding is to represent any coordinate (variable) 𝑥𝑖 in x through the corresponding 

collection of information granules (reference information granules) defined in the i-th variable. 

Formally speaking, assuming that for each variable there are c information granules, the n-

dimensional vector x in R𝑛 gives rise to a cn-dimensional vector of membership grades, forming 

a vector �̇� located in [0,1]𝑐𝑛. The representation is sparse with a significant number of entries of 

�̇� equal to zero. 
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The reference information granules act as modules transforming original data in a nonlinear 

way. There are a number of possible ways of forming information granules. In this study, we 

consider several options. 

(i) uniformly distributed triangular fuzzy sets with 1/2 overlap between two adjacent fuzzy 

sets. This alternative is straightforward not requiring any optimization overhead. The result of 

encoding is a vector with entries in [0,1], where up to two successive entries are nonzero and their 

values sum up to 1.  

(ii) uniformly distributed intervals. The intervals form a partition of the space. The encoding 

returns a vector with a single entry equal to 1 and all others are set to 0. 

(iii) equal probability intervals. The intervals are of unequal length – the lengths are selected 

in such way that each interval associates with the distribution of data; thus, there is the same 

probability of occurrence (1/𝑐) of each interval. 

If some variable are categorical and take on 𝑐’ values, the encoding results in one hot encoding, 

viz. a vector with 𝑐’ coordinates with only one entry being equal to 1. 

Once the encoding has been completed, the encoded data x1, x2, . . . , x𝑁 form a fuzzy relation 

�̇� of dimensionality 𝑁 by 𝑐𝑛. 

4.2 Relation factorization 

Relational factorization is a logic-oriented way, see Chapter 3. The striking feature is in the 

realization of the underlying idea which exploits fuzzy relational calculus and as a consequence 

produces interpretable logic expressions. In turn they are used in conditions of the rules. Given 

data �̇�  produced by the encoding module, we have �̇� = [0,1]𝑐𝑛 . The factorization process 

decomposes �̇� into two fuzzy relations 𝐻 and 𝑅, see Section 3.1. 
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The matrix of relationships among original and reduced space is interpretable and gives rise 

to the logic expression describing new variables in 𝐻 as a logic combination of input variables �̇�. 

Consider the j-th column of 𝑅. Its entries identify contributions of the input variables to the j-th 

variable used next as a condition of the rule. In light of the composition operator, we have two 

interpretations depending on the composition operator being used: 

For s-t composition: the j-th variable is an or combination of weighted input variables, where 

the weights are located in the j-th column of 𝑅. The values of 𝑅 close to 1 indicate essential 

contributions of the corresponding input variable. The values of 𝑅 that are assumed close to 0 show 

a limited contribution of the input variable. 

For t-s composition: the j-th variable is an and combination of weighted input variables, 

however a high relevance (contribution) of the input variable is noticeable for the entries of 𝑅 

assuming values close to 0. 

The detailed calculations completed for selected t-norms and t-conorms are covered in 

Chapter 3. To sum up, the factorization returns a set of data in the space of lower dimensionality 

(p) and the fuzzy relation of linkages among the variables in the original and reduced space. 

Once the factorization procedure has been completed, which results in the fuzzy relation 𝑅, 

for any new testing input data �̇�𝑡𝑒𝑠𝑡 with dim(�̇�𝑡𝑒𝑠𝑡) = 𝑐𝑛, we determine the corresponding h𝑡𝑒𝑠𝑡 

by minimizing the distance ‖�̇�𝑡𝑒𝑠𝑡 − h𝑡𝑒𝑠𝑡 ∘ 𝑅‖2.  

4.3 Construction of rule-based model 

Consider the rule-based model with the structure 

 

−if x is ℎ𝑖 then 𝑦 = 𝐿𝑖(x) (4.1) 
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The output for any given x is taken as a weighted sum of local functions in the following form 

 

�̂� = ∑ ℎ𝑖𝐿𝑖(x)
𝑝

𝑖=1
(4.2) 

 

where 𝐿𝑖(x) is a local (usually linear) function. The activation levels of the local functions are 

organized in the vector form 𝒉 = [ℎ1, ℎ2, . . . , ℎ𝑝], is computed on the basis of x that is encoded 

and afterwards obtained by the factorization process. A certain generalization of (4.2) is involved 

by admitting a certain transformation of the activation levels, namely, where 𝑖 = 1,2, . . . , 𝑝. 

 

�̂� = ∑ Φ(ℎ𝑖)𝐿𝑖(x)
𝑝

𝑖=1
(4.3) 

 

Alone this line, the three alternatives of Φ are considered: 

Method 1: identity function Φ(𝒉) = 𝒉. 

Method 2: normalized version of 𝒉, here Φ(𝒉) is a vector whose maximal entry is equal to 1; 

the entries are specified as [ℎ1/ℎ
∗, ℎ2/ℎ

∗, . . . , ℎ𝑝/ℎ∗], where ℎ∗ = ∑ ℎ𝑖
𝑝
𝑖=1 . 

Method 3: similar to (Method 2) except that the maximal value of h is retained and all others 

are set to zero. Say, 𝑖0  is the entry of h, where the highest value is observed with 𝑖0 =

argmax𝑖(ℎ𝑖). Φ(𝒉) is a vector in the form [0 0. . .0 1 0. . .0], where 1 occurs at the 𝑖0
𝑡ℎ entry 

of this vector. 

Let us look in detail at the learning of the local functions. The learning is completed in the 

supervised model on the basis of the training data already used to complete relational factorization. 
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Denote by 𝒉𝑘 the 𝑘𝑡ℎ row of 𝐻 and subsequently Φ(𝒉𝑘). For the local functions, their parameters 

are estimated by minimizing the root mean square error. 

The local functions are considered to be linear functions, (2.9) and constants 𝐿𝑖(x) = 𝑏𝑖0. In 

both cases, the optimization problem is solved in an analogous manner. The optimal parameters 

for these two situations are determined as follows: 

-linear function: 

 

a𝑖 = (𝐹𝑇𝐹)−1𝐹𝑇target (4.4) 

 

where 

 

𝐹 =

[
 
 
 
 f

1
𝑇(x1) f

2
𝑇(x1) ⋯ f

𝑝
𝑇(x1)

f
1
𝑇(x2) f

2
𝑇(x2) ⋯ f

𝑝
𝑇(x2)

⋮ ⋮ ⋱ ⋮
f
1
𝑇(x𝑁) f

2
𝑇(x𝑁) ⋯ f

𝑝
𝑇(x𝑁)]

 
 
 
 

;

f
𝑖
(x𝑘) = [

Φ(ℎ𝑘𝑖)
Φ(ℎ𝑘𝑖)𝑥1

⋮
Φ(ℎ𝑘𝑖)𝑥𝑛

] a = [

a1

a2

⋮
a𝑝

]

 

 

-constant function: 

 

b = (Φ𝑇Φ)−1Φ𝑇target (4.5) 

 

where 
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Φ =

[
 
 
 
Φ(ℎ11) Φ(ℎ12) ⋯ Φ(ℎ1𝑝)

Φ(ℎ21) ⋱ ⋮

⋮ ⋱ ⋮
Φ(ℎ𝑁1) ⋯ ⋯ Φ(ℎ𝑁𝑝)]

 
 
 

 

 

For comparison, we use the TS (Takagi-Sugeno) model designed in the standard way. The 

condition part is built with the use of the (fuzzy c-means) FCM with the fuzzification coefficient 

𝑚 being 2. Through the FCM clustering algorithm in [59], we obtain the membership grade 𝐴𝑖 

and prototypes (v𝑖 , 𝑤𝑖), 𝑖 = 1,2, . . . , 𝑝. The local linear models forming the conclusion are in the 

form  (2.9)  or the constant model in the form 𝐿𝑖(x) = 𝑏𝑖0 whose parameters are estimated by 

minimizing the  Least Squares Error (LSE) criterion. 

In addition, when it comes to the testing data transferred to the rule-based model, the structure 

of each rule comes from the above process, such as the selection of fuzzification coefficient and 

the number of clusters as well as the optimization of parameters in local models or the prototypes 

of output space. That is to say, we input testing data to the obtained rule-based model, generating 

the testing model output. Then the performance index 𝑄  is also considered as an evaluation 

criterion. 

4.4 An illustrative example 

In this section, we elaborate on the detailed design process by using the dataset 

YearPredictionMSD dataset (https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd). It 

consists of 51,5345 data with 89 input variables and a single output assuming values in range 

[1922, 2011]. The experiments are carried out in a 10-fold cross validation mode. 
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Encoding of data The input variables are encoded with the aid of information granules as 

described in Section 3. The number of granules for each variable is three, which in total yields 267 

(89 ∗ 3) input variables to be considered in the factorization procedure. 

Fuzzy relational factorization The optimization problem completed here invokes the 

ADAptive moment estimation (ADAM) version of the gradient-based algorithm [113]. The 

number of iterations is set to 60, which is enough to reach the convergence of the method. We 

consider both the t-s and s-t compositions with the t-norm selected as product and t-conorms 

specified as the probabilistic sum. 

We select the dimensionality of the reduced space obtained by the factorization to be 𝑝 = 20.  

The obtained fuzzy relations (first 50 of 267 columns) are exposed in Fig. 4.2. 

 

(a) 

 

(b) 

Fig. 4.2. Heatmaps of the fuzzy relation (weight matrix 𝑅). (a) s-t factorization; (b) t-s factorization. 

 

From Table 4.1 we can see that the linear model has significant improvement compared with 

the constant model. The performance index of Method 1 is similar the Method 2 but better than 

Method 3. 
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Table 4.1. Performance index of the rule-based model obtained for training and testing data when 

𝑝 = 20. 

Triangular 

membership 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:10.143±0.001 

Qtest: 10.149±0.091 

Qtrain:10.143±0.001 

Qtest: 10.149±0.091 

Qtrain:10.249±0.003 

Qtest: 10.271±0.105 

Qtrain:9.246±0.006 

Qtest: 9.536±0.026 

Qtrain:9.246±0.006 

Qtest: 9.536±0.026 

Qtrain:9.259±0.009 

Qtest: 9.449±0.064 

t-s 
factorization 

Qtrain:10.197±0.003 

Qtest: 10.215±0.109 

Qtrain:10.197±0.003 

Qtest: 10.215±0.109 

Qtrain:10.359±0.007 

Qtest: 10.376±0.063 

Qtrain:9.207±0.001 

Qtest: 9.632±0.116 

Qtrain:9.207±0.001 

Qtest: 9.632±0.116 

Qtrain: 9.530±0.005 

Qtest: 9.830±0.050 

 

Uniform 

distribution 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:10.298±0.002 

Qtest: 10.384±0.050 

Qtrain:10.298±0.002 

Qtest: 10.384±0.050 

Qtrain:10.316±0.002 

Qtest: 10.367±0.038 

Qtrain:9.433±0.002 

Qtest: 9.723±0.074 

Qtrain:9.433±0.002 

Qtest: 9.723±0.074 

Qtrain: 9.449±0.002 

Qtest: 9.729±0.076 

t-s 

factorization 

Qtrain:10.374±0.003 

Qtest: 10.439±0.053 

Qtrain:10.374±0.003 

Qtest: 10.439±0.053 

Qtrain:10.493±0.004 

Qtest: 10.563±0.035 

Qtrain:9.695±0.003 

Qtest: 10.185±0.269 

Qtrain:9.695±0.003 

Qtest: 10.185±0.269 

Qtrain: 9.679±0.003 

Qtest: 10.041±0.104 

 

Equal 
probability 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:10.456±0.005 

Qtest: 10.489±0.105 

Qtrain:10.456±0.005 

Qtest: 10.489±0.105 

Qtrain:10.506±0.003 

Qtest: 10.536±0.094 

Qtrain:9.381±0.008 

Qtest: 9.657±0.073 

Qtrain:9.381±0.008 

Qtest: 9.657±0.073 

Qtrain:9.471±0.008 

Qtest: 9.733±0.112 

t-s 

factorization 

Qtrain:10.474±0.003 

Qtest: 10.477±0.096 

Qtrain:10.474±0.003 

Qtest: 10.477±0.096 

Qtrain:10.532±0.005 

Qtest: 10.560±0.096 

Qtrain:9.413±0.004 

Qtest: 9.645±0.135 

Qtrain:9.413±0.004 

Qtest: 9.645±0.135 

Qtrain:9.593±0.003 

Qtest: 9.846±0.127 

 

For the obtained s-t model, most of inputs associate with the entries of the relation are equal 

to 0, and only a few entries of R exhibit values close to 1. For instance, when inspecting the first 

row, see Fig. 4.3(a), only 9 weights are close to 1, while others assume values close to zero.  In 

contrast for the t-s model, the situation is opposite: the original inputs contributing to the formation 

of the results of factorization are those, whose corresponding entries of R assume values close to 

zero. In both cases, we note that only a fraction of inputs contributes to the results of factorization. 

For example, for the s-t factorization, the columns 5, 8, 11, 20 and 23 play a key role. The 9, 12, 

15 and 18 columns are more important. 

Optimization of the rules in the reduced space of fuzzy factorization. The rules are considered 

in the form (2.5). Both the constant and linear conclusions are considered. Also the three 

transformation functions Φ are involved. The results are collected in Table 4.1. 



 

63 

 

 As a comparison, we introduce the TS model with the same dataset. The results shown in 

Fig. 4.3 are the performance index 𝑉 as a function of number of clusters. In Table 4.2, we depict 

the specific results with 𝑝 = 20. 

 

 (a)  (b)  

Fig. 4.3. Values of performance index 𝑉 for TS model obtained in successive values of 𝑝. (a) 

constant local functions; (b) linear local functions. 

Table 4.2. Performance index of the TS model obtained for training and testing data. 𝑝 = 20. 

TS model 

p Constant model Linear Model 

20 
Qtrain:22.000±0.001 

Qtest: 22.001±0.004 

Qtrain:17.226±4.3e-04 

Qtest: 17.670±0.035 

 

Compared with the TS model, we can see that the error 𝑄 of the rule-based model involving 

factorization is better than the one obtained for the TS model. For the constant model, the constant 

function is considered for the conclusion part when 𝑝 = 20. The performance of our new model 

improves by 53.9% regarding the testing result. For this linear model, the improvement is 46.0%. 
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4.5 Experimental studies 

In the subsequent experiments, we use a number of data Parkinsons Telemonitoring, Concrete 

Compressive Strength, coming from UCI machine learning datasets 

(https://archive.ics.uci.edu/ml/index.php) and LightGBM’s regression examples from Kaggle 

datasets (https://www.kaggle.com). In the reported results, we use 𝑝 = 10 as an example to show 

the improvement of our model. 

Table 4.3. The list of datasets. 

Dataset Size of Data 
Size after encoding 

(c=3) 

Range of 

output 

Parkinsons Telemonitoring 5875×17 5875×49 [7, 54.99] 

Concrete Compressive Strength 1030×9 1030×25 [2.33, 82.6] 

LightGBMs regression example 7000×29 7000×85 [0.489, 4.316] 

Appliances energy prediction 19735×25 19735×73 [10, 1080] 

Impact of News on the Share closing value 

(Apple) 
2517×9 2517×25 [-0.997, 0.999] 

 

  

https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/
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Parkinsons Telemonitoring (48 inputs with 1 output (total_UPDRS) after encoding) 

(https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring) 

Table 4.4. Performance index of the rule-based model for training and testing data when 𝑝 = 10. 

Triangular 

membership 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:20.314±0.065 

Qtest: 20.591±4.288 

Qtrain: 20.314±0.065 

Qtest: 20.591±4.288 

Qtrain:20.731±0.040 

Qtest: 20.758±4.481 

Qtrain:8.886±0046 

Qtest: 9.646±3.380 

Qtrain:8.886±0046 

Qtest: 9.646±3.380 

Qtrain:9.224±0.154 

Qtest: 10.134±5.104 

t-s 
factorization 

Qtrain:20.251±0.056 
Qtest: 20.609±4.848 

Qtrain:20.251±0.056 
Qtest: 20.609±4.848 

Qtrain:21.151±0.038 
Qtest: 21.305±3.905 

Qtrain:8.947±0.032 
Qtest: 9.738±1.996 

Qtrain:8.947±0.032 
Qtest: 9.738±1.996 

Qtrain:9.405±0.034 
Qtest: 10.609±1.590 

 

Uniform 

distribution 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 
factorization 

Qtrain:20.899±0.121 
Qtest: 20.973±5.414 

Qtrain:20.899±0.121 
Qtest: 20.973±5.414 

Qtrain:21.215±0.137 
Qtest: 21.225±6.215 

Qtrain:9.447±0.028 
Qtest: 9.600±4.119 

Qtrain:9.447±0.028 
Qtest: 9.600±4.119 

Qtrain:9.706±0.036 
Qtest: 9.800±4.635 

t-s 

factorization 

Qtrain:20.712±0.085  

Qtest: 20.734±5.201 

Qtrain:20.712±0.085  

Qtest: 20.734±5.201 

Qtrain:21.368±0.105  

Qtest: 21.209±4.456 

Qtrain: 9.091±0.028 

Qtest: 10.419±4.272 

Qtrain: 9.091±0.028 

Qtest: 10.419±4.272 

Qtrain:9.745±0.067 

Qtest: 10.890±5.168 

 

Equal 
probability 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:20.659±0.146 

Qtest: 20.704±5.323 

Qtrain:20.659±0.146 

Qtest: 20.704±5.323 

Qtrain:20.905±0.166 

Qtest: 20.947±5.974 

Qtrain:9.418±0.021 

Qtest: 10.772±4.889 

Qtrain:9.418±0.021 

Qtest: 10.772±4.889 

Qtrain:9.897±0.054 

Qtest: 10.145±4.103 

t-s 
factorization 

Qtrain:20.737±0.114 
Qtest: 20.749±5.096 

Qtrain:20.737±0.114 
Qtest: 20.749±5.096 

Qtrain:21.415±0.138 
Qtest: 21.842±5.530 

Qtrain:9.155±0.038 
Qtest: 10.842±4.936 

Qtrain:9.155±0.038 
Qtest: 10.842±4.936 

Qtrain:9.948±0.040 
Qtest: 10.182±4.275 

 

TS model 

Constant model Linear Model 

Qtrain:21.637±0.092 

Qtest: 22.791±7.583 

Qtrain:15.424±0.019 

Qtest: 17.270±2.012 

 

  

https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
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Concrete Compressive Strength (24 inputs with a single output) 

(https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength) 

Table 4.5. Performance index of the rule-based model for training and testing data when 𝑝 = 10. 

Triangular 

membership 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:12.193±0.307 

Qtest: 12.521±0.815 

Qtrain:12.193±0.307 

Qtest: 12.521±0.815 

Qtrain:13.006±0.202 

Qtest: 13.469±0.787 

Qtrain:6.595±0.051 

Qtest: 7.742±0.593 

Qtrain:6.595±0.051 

Qtest: 7.742±0.593 

Qtrain:6.649±0.053 

Qtest: 7.885±0.857 

t-s 
factorization 

Qtrain:11.914±0.188 
Qtest: 12.158±0.566 

Qtrain:11.914±0.188 
Qtest: 12.158±0.566 

Qtrain:13.623±0.359 
Qtest: 13.943±0.547 

Qtrain:6.518±0.044 
Qtest: 7.546±0.560 

Qtrain:6.518±0.044 
Qtest: 7.546±0.560 

Qtrain:6.980±0.200 
Qtest: 7.821±0.390 

 

Uniform 

distribution 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 
factorization 

Qtrain:13.971±0.066 
Qtest: 14.192±0.488 

Qtrain:13.971±0.066 
Qtest: 14.192±0.488 

Qtrain:14.764±0.043 
Qtest: 15.274±0.714 

Qtrain:7.638±0.023 
Qtest: 8.751±0.460 

Qtrain:7.638±0.023 
Qtest: 8.751±0.460 

Qtrain:8.028±0.014 
Qtest: 9.398±1.063 

t-s 

factorization 

Qtrain:14.413±0.211 

Qtest: 14.484±1.170 

Qtrain:14.413±0.211 

Qtest: 14.484±1.170 

Qtrain:15.274±0.090 

Qtest: 15.740±0.569 

Qtrain:7.953±0.080 

Qtest: 9.293±1.405 

Qtrain:7.953±0.080 

Qtest: 9.293±1.405 

Qtrain:8.372±0.076 

Qtest: 9.908±2.172 

 

Equal 
probability 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:11.041±0.750 

Qtest: 11.200±0.789 

Qtrain:11.041±0.750 

Qtest: 11.200±0.789 

Qtrain:12.966±0.285 

Qtest: 13.315±0.786 

Qtrain:6.075±0.411 

Qtest: 6.926±0.748 

Qtrain:6.075±0.411 

Qtest: 6.926±0.748 

Qtrain:6.659±0.320 

Qtest: 7.982±0.262 

t-s 
factorization 

Qtrain:12.576±0.881 
Qtest: 12.577±1.220 

Qtrain:12.576±0.881 
Qtest: 12.577±1.220 

Qtrain:14.322±0.145 
Qtest: 14.369±0.958 

Qtrain:6.493±0.082 
Qtest: 7.814±0.752 

Qtrain:6.493±0.082 
Qtest: 7.814±0.752 

Qtrain:7.444±0.032 
Qtest: 9.261±0.978 

 

TS model 

Constant model Linear Model 

Qtrain:15.318±0.017 

Qtest: 15.387±0.828 

Qtrain:8.229±0.052 

Qtest: 9.067±0.847 
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LightGBM’s regression examples (84 inputs with a single output) 

(https://www.kaggle.com/cccccao/regression) 

Table 4.6. Performance index of the rule-based model for training and testing data when 𝑝 = 10. 

Triangular 

membership 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:0.281±7.5e-05 

Qtest: 0.281±8.6e-05 

Qtrain:0.281±7.5e-05 

Qtest: 0.281±8.6e-05 

Qtrain:0.295±2.1e-05 

Qtest: 0.296±1.5e-04 

Qtrain:0.121±1.8e-06 

Qtest: 0.123±1.1e-04 

Qtrain:0.121±1.8e-06 

Qtest: 0.123±1.1e-04 

Qtrain:0.119±1.3e-06 

Qtest: 0.123±1.1e-04 

t-s 
factorization 

Qtrain:0.305±3.2e-05 
Qtest: 0.306±1.7e-04 

Qtrain:0.305±3.2e-05 
Qtest: 0.306±1.7e-04 

Qtrain:0.303±3.7e-05 
Qtest: 0.305±2.4e-04 

Qtrain:0.124±1.2e-06 
Qtest: 0.126±1.1e-04 

Qtrain:0.124±1.2e-06 
Qtest: 0.126±1.1e-04 

Qtrain:0.123±1.2e-06 
Qtest: 0.125±1.1e-04 

 

Uniform 

distribution 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 
factorization 

Qtrain:0.315±5.3e-06 
Qtest: 0.316±2.8e-04 

Qtrain:0.315±5.3e-06 
Qtest: 0.316±2.8e-04 

Qtrain:0.315±4.1e-06 
Qtest: 0.316±3.1e-04 

Qtrain:0.124±2.1e-06 
Qtest: 0.126±1.6e-04 

Qtrain:0.124±2.1e-06 
Qtest: 0.126±1.6e-04 

Qtrain:0.122±1.9e-06 
Qtest: 0.126±1.5e-04 

t-s 

factorization 

Qtrain:0.314±5.7e-06 

Qtest: 0.314±2.8e-04 

Qtrain:0.314±5.7e-06 

Qtest: 0.314±2.8e-04 

Qtrain:0.315±3.4e-06 

Qtest: 0.315±2.7e-04 

Qtrain:0.125±2.2e-06 

Qtest: 0.126±1.7e-04 

Qtrain:0.125±2.2e-06 

Qtest: 0.126±1.7e-04 

Qtrain:0.122±2.1e-06 

Qtest: 0.127±1.7e-04 

 

Equal 
probability 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:0.238±9.2e-06 

Qtest: 0.239±4.0e-04 

Qtrain:0.238±9.2e-06 

Qtest: 0.239±4.0e-04 

Qtrain:0.254±1.8e-05 

Qtest: 0.254±4.5e-04 

Qtrain:0.123±1.4e-06 

Qtest: 0.125±9.5e-05 

Qtrain:0.123±1.4e-06 

Qtest: 0.125±9.5e-05 

Qtrain:0.121±1.6e-06 

Qtest: 0.125±1.0e-04 

t-s 
factorization 

Qtrain:0.248±5.7e-06 
Qtest: 0.248±3.1e-04 

Qtrain:0.248±5.7e-06 
Qtest: 0.248±3.1e-04 

Qtrain:0.276±8.9e-06 
Qtest: 0.277±3.8e-04 

Qtrain:0.116±2.4e-06 
Qtest: 0.125±1.3e-04 

Qtrain:0.116±2.4e-06 
Qtest: 0.125±1.3e-04 

Qtrain:0.119±2.0e-06 
Qtest: 0.128±1.3e-04 

 

TS model 

Constant model Linear Model 

Qtrain:0.316±5.5e-06 

Qtest: 0.326±4.9e-04 

Qtrain:0.176±1.5e-06 

Qtest: 0.184±1.3e-04 
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Appliance’s energy prediction (72 inputs with a single output (Appliances, energy use in Wh)) 

(https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction) 

Table 4.7. Performance index of the rule-based model for training and testing data when 𝑝 = 10. 

Triangular 

membership 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:100.468±0.29 

Qtest:101.562±27.43 

Qtrain:100.468±0.29 

Qtest: 101.562±27.43 

Qtrain:100.838±0.31 

Qtest:100.632±26.15 

Qtrain:91.776±0.32 

Qtest: 92.153±23.81 

Qtrain:91.776±0.32 

Qtest: 92.153±23.81 

Qtrain:90.545±0.29 

Qtest: 91.234±22.83 

t-s 
factorization 

Qtrain:100.403±0.27 
Qtest:101.339±27.61 

Qtrain:100.403±0.27 
Qtest: 101.339±27.61 

Qtrain:100.069±0.32 
Qtest:101.022±28.67 

Qtrain:94.214±0.30 
Qtest: 94.281±27.01 

Qtrain:94.214±0.30 
Qtest: 94.281±27.01 

Qtrain:93.088±0.29 
Qtest: 93.332±26.71 

 

Uniform 

distribution 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 
factorization 

Qtrain:100.780±0.13 
Qtest:101.900±10.51 

Qtrain:100.780±0.13 
Qtest: 101.900±10.51 

Qtrain:100.203±0.11 
Qtest:101.177±10.34 

Qtrain:91.977±0.19 
Qtest: 92.415±9.26 

Qtrain:91.977±0.19 
Qtest: 92.415±9.26 

Qtrain:90.950±0.20 
Qtest: 91.711±9.14 

t-s 

factorization 

Qtrain:100.699±0.21 

Qtest:101.795±10.20 

Qtrain:100.699±0.21 

Qtest: 101.795±10.20 

Qtrain:100.597±0.17 

Qtest:101.634±10.31 

Qtrain:94.037±0.10 

Qtest: 94.197±9.22 

Qtrain:94.037±0.10 

Qtest: 94.197±9.22 

Qtrain:92.709±0.09 

Qtest: 93.312±9.43 

 

Equal 
probability 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:100.791±0.85 

Qtest: 101.082±66.95 

Qtrain:100.791±0.85 

Qtest:101.082±66.95 

Qtrain:100.954±0.782 

Qtest: 101.234±66.49 

Qtrain:92.201±0.68 

Qtest: 92.504±50.68 

Qtrain:92.201±0.68 

Qtest: 92.504±50.68 

Qtrain:91.209±0.77 

Qtest: 92.074±48.91 

t-s 
factorization 

Qtrain:100.551±0.89 
Qtest: 101.779±65.86 

Qtrain:100.551±0.89 
Qtest:101.779±65.86 

Qtrain:100.054±0.76 
Qtest: 101.345±65.81 

Qtrain:92.961±0.59 
Qtest: 93.984±53.86 

Qtrain:92.961±0.59 
Qtest: 93.984±53.86 

Qtrain:92.601±0.81 
Qtest: 92.987±49.95 

 

TS model 

Constant model Linear Model 

Qtrain:126.295±1.05 

Qtest: 135.306±30.496 

Qtrain:116.621±2.372 

Qtest: 120.242±60.017 
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Impact of News on the Share closing value (Apple) (24 inputs with a single output) 

(https://www.kaggle.com/BidecInnovations/stock-price-and-news-realted-to-it) 

Table 4.8. Performance index of the rule-based model for training and testing data when 𝑝 = 10. 

Triangular 

membership 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:0.355±0.001 

Qtest: 0.556±0.001 

Qtrain:0.355±0.001 

Qtest: 0.556±0.001 

Qtrain:100.838±0.31 

Qtest:100.632±26.15 

Qtrain:0.316±9.3e-05 

Qtest: 0.319±3.9e-04 

Qtrain:0.316±9.3e-05 

Qtest: 0.319±3.9e-04 

Qtrain:0.308±4.8e-05 

Qtest: 0.314±5.9e-04 

t-s 
factorization 

Qtrain:0.337±4.1e-04 
Qtest: 0.344±9.9e-04 

Qtrain:0.337±4.1e-04 
Qtest: 0.344±9.9e-04 

Qtrain:100.069±0.32 
Qtest:101.022±28.67 

Qtrain:0.344±4.8e-05 
Qtest: 0.347±4.1e-04 

Qtrain:0.344±4.8e-05 
Qtest: 0.347±4.1e-04 

Qtrain:0.328±1.5e-05 
Qtest: 0.331±5.7e-04 

 

Uniform 

distribution 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 
factorization 

Qtrain:0.519±8.4e-05 
Qtest: 0.529±7.1e-04 

Qtrain:0.519±8.4e-05 
Qtest: 0.529±7.1e-04 

Qtrain:0.540±2.3e-04 
Qtest: 0.549±7.6e-04 

Qtrain:0.311±1.2e-04 
Qtest: 0.323±5.9e-04 

Qtrain:0.311±1.2e-04 
Qtest: 0.323±5.9e-04 

Qtrain:0.311±1.2e-04 
Qtest: 0.331±9.4e-04 

t-s 

factorization 

Qtrain:0.526±3.3e-05 

Qtest: 0.528±2.1e-04 

Qtrain:0.526±3.3e-05 

Qtest: 0.528±2.1e-04 

Qtrain:0.593±4.8e-05 

Qtest: 0.594±2.8e-04 

Qtrain:0.346±2.9e-06 

Qtest: 0.349±1.9e-04 

Qtrain:0.346±2.9e-06 

Qtest: 0.349±1.9e-04 

Qtrain:0.339±2.0e-05 

Qtest: 0.350±2.7e-04 

 

Equal 
probability 

Constant Linear 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

s-t 

factorization 

Qtrain:0.479±0.001 

Qtest: 0.497±0.005 

Qtrain:0.479±0.001 

Qtest: 0.497±0.005 

Qtrain:0.522±9.2e-04 

Qtest: 0.538±0.002 

Qtrain:0.314±5.4e-05 

Qtest: 0.315±5.2e-04 

Qtrain:0.314±5.4e-05 

Qtest: 0.315±5.2e-04 

Qtrain:0.310±6.7e-05 

Qtest: 0.319±1.9e-04 

t-s 
factorization 

Qtrain:0.451±3.0e-04 
Qtest: 0.452±9.4e-4 

Qtrain:0.451±3.0e-04 
Qtest: 0.452±9.4e-4 

Qtrain:0.531±7.3e-04 
Qtest: 0.538±0.001 

Qtrain:0.341±6.9e-06 
Qtest: 0.342±6.1e-04 

Qtrain:0.341±6.9e-06 
Qtest: 0.342±6.1e-04 

Qtrain:0.322±1.5e-05 
Qtest: 0.328±5.9e-04 

 

TS model 

Constant model Linear Model 

Qtrain:0.625±6.3e-05 

Qtest: 0.628±2.7e-04 

Qtrain:0.339±2.4e-05 

Qtest: 0.363±1.4e-04 

 

From the above tables, we conclude that the linear model is better than the constant model. 

Among the three different membership functions that we adopt, triangular membership has better 

performance than Uniform distribution and Equal probability; while the improvement of s-t 

factorization and t-s factorization ultimately depends on the different data and the chosen method, 

but in most cases, the s-t factorization performs better. For the parameter 𝑝, the increase of 𝑝 will 

significantly reduce the error of the model. 

Table 4.9 is the improvement between our new model and TS model for each data when 𝑝 =

10. 
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Table 4.9. The improvement obtained for each dataset. 

Data Constant model Linear model 

Parkinsons Telemonitoring  25% 24% 

Concrete Compressive Strength 21% 17% 

LightGBMs regression 27% 33% 

Appliance’s energy prediction 26% 24% 

Impact of News on the Share closing value (Apple) 45% 14% 

 

Overall, for the constant model, our model is optimized by an average of 28.8%, and for the 

linear model, the optimization reaches an average of 22.4%. 

4.6 Conclusions 

In the study, the design process of rule-based models augmented with the mechanism of 

relational factorization is presented. The construction of the rules required to be completed in the 

presence of high-dimensional data is facilitated by the formation of the condition part as logic 

expressions formed by the factorization process. In the experiments, we adopted three encoding 

schemes and combined three different methods to compare the s-t and t-s models, and we designed 

experiments for the constant and linear models respectively. Finally, the feasibility of the model 

is confirmed by multiple sets of data. 
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Chapter 5 Distributed Rule-Based Models with Large Data 

In the previous two chapters, we have shown the methods for dealing with high dimensional 

data by preprocessing the data (dimensionality reduction) and extracting the underlying 

relationships of the data, respectively. In this chapter, we report on the research on the fuzzy rule-

based model with high-dimensional data and propose a new method based on the idea of ensemble 

learning. We develop a fuzzy rule-based model based on a distributed model to circumvent high-

dimensional data, and the performance of the model is improved. 

5.1 An architecture of the model and its underlying processing 

When faced with big data problems, we usually divide it into two different problems, namely 

large-scale data problems and large-dimensional data problems. Given a large amount of data, we 

can usually take random sampling to extract a certain amount of data for analysis. The process of 

random sampling can ensure the integrity of the data to the greatest extent. For high-dimensional 

data, the problem becomes complicated due to the concentration effect. This is because in the case 

of high dimensions, the indicator of distance becomes no longer reliable. Since high-dimensional 

data is unavoidable in the current environment. In this chapter, we continue to discuss how to solve 

the problem of fuzzy rule-based models based on high-dimensional data. 

The structure of the overall model is composed of a collection of rule-based models that are 

built on a basis of randomly selected subsets of data. 
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Fig. 5.1. Overall structure of the model and its functioning. 

The main steps of processing completed by each module as outlined in Fig. 5.1 are carried 

out as follows: 

(i) training of the rule-based models completed on a basis of randomly selected data. A subset 

of training data is composed of randomly selected data and randomly selected features. 

(ii) for each subset of data formed above, the standard design process of the TS rule-based 

model is completed. First, the data are clustered which leads to the condition parts of the rules. 

Next the local linear functions forming the conclusions of the rules are optimized by minimizing 

a sum of squared errors. 

(iii) the above design process is augmented by enhancing the performance of the models by 

engaging its gradient boosting. 

(iv) finally, the results of the constructed models are aggregated by the aggregation module; 

here a linear weighted aggregation scheme is usually considered. 

Dtrain

M1

D1

Mp

Dp

Aggr

Gradient
Boosting

Gradient
Boosting



 

73 

 

5.2 The design of main modules of the model 

In what follows, we proceed in detail with an optimization associated with the architecture in 

Fig. 5.1. As usual, in the overall design process, the available data 𝑫 are split into the training 

𝑫𝑡𝑟𝑎𝑖𝑛 and testing 𝑫𝑡𝑒𝑠𝑡. 

Generic rule-based model 

The rules come in the standard format as (2.9). For the design of the rule-based model, the 

number of rules varies across the models. The parameters of the local functions are determined by 

minimizing the sum of squared errors 

 

𝑒𝑟𝑟𝑜𝑟 =
1

𝑁∗
∑(𝑡𝑎𝑟𝑔𝑒𝑡𝑗 − 𝐿𝑖(𝑥𝑗))

2
𝑁∗

𝑗=1

(5.1) 

 

where the above sum is taken from the corresponding randomly selected data. 

 In total, we consider p rule-based models. An interesting question arises as to the usage of 

all features in 𝑫𝑡𝑟𝑎𝑖𝑛 across the subsets of training data  𝑫𝑡𝑟𝑎𝑖𝑛,𝑗, 𝑗 = 1, 2, … , 𝑝. Note that along 

with the data, we are also randomly picking up a subset of r out of n features. Thus, it is of interest 

to assess how many models (𝑝) have to be built to involve all features in the construction of the 

aggregated model. The probability prob of this event (stating that each variable being chosen) is 

expressed as [139] 

 

𝑝𝑟𝑜𝑏 = 𝑟 + (1 − 𝑟)𝑟 + (1 − 𝑟)2𝑟 + ⋯+ (1 − 𝑟)𝑝𝑟 = 𝑟 (
1 − (1 − 𝑟)𝑝

1 − (1 − 𝑟)
) (5.2) 
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If we require a certain level of probability (prob) to be achieved, for a given value of 𝑟, the 

above relationship helps determine how many models 𝑝 have to be built. 

From the practical perspective, we may request that the value of 𝑟 should not be too low. If 

so, each rule-based model cannot capture the input-output dependencies. On the other hand, the 

excessively high dimensionality 𝑟  may lead to the deterioration of the rules because of the 

concentration effect (and this has a detrimental impact on the clustering results). Therefore, a 

model built for a smaller (such as 2-3) number of input variables translate into the corresponding 

value of 𝑟. The plot of probability that all the variables have been selected displayed as a function 

of p for the selected values of 𝑟 is shown in Fig. 5.2. This relationship helps determine the number 

of models once the value of 𝑟 has been specified and the required minimal probability 𝑝 has been 

fixed. 

 

Fig. 5.2. Probability prob versus 𝑝 for selected values of 𝑟.  

From Fig. 5.2, we see that when 10% of the original features is selected each time, it becomes 

necessary to construct 90 models with randomly selected feature to use all of them. If the 

probability prob has been set up as 0.7, 12 models are required with 𝑟 = 0.1 while 2 models in the 

case of 𝑟 = 0.5. 

Gradient boosting of the rule-based model 
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Each rule-based model is further refined by applying gradient boosting. The objective here is 

to improve the performance of the initially constructed models. Here we follow a well-known 

scheme of updates for the output of the model, guided by the error values [102]. 

Consider the 𝑗𝑡ℎ  model 𝑀𝑗  is constructed on the basis of 𝑫𝑡𝑟𝑎𝑖𝑛,𝑗 . One determines the 

corresponding errors 𝑒𝑘 , 𝑘 = 1,2, … , 𝑐𝑎𝑟𝑑(𝑫𝑡𝑟𝑎𝑖𝑛,𝑗) produced by this model and constructs an 

auxiliary model 𝑀𝑗
~ on the basis of input-output pairs in the format (𝒙𝑘, 𝑒𝑘), and then aggregates 

the result of the model and the auxiliary construct in the additive form 𝑀𝑗(𝒙𝑘) + 𝜆𝑀𝑗
~(𝒙𝑘) such 

that the sum of errors between the data and the aggregate above is minimized by choosing a 

suitable value of 𝜆 . The above boosting process is repeated 𝐾  times by forming successive 

refinements of the augmented models to obtain the optimized model result 𝑀𝑜𝑝𝑡,𝑗.  

Aggregation of partial results 

The results produced for the already gradient boosted p models 𝑀𝑜𝑝𝑡,1, 𝑀𝑜𝑝𝑡,2, … ,𝑀𝑜𝑝𝑡,𝑝 are 

aggregated by taking a weighted average in the form 

 

�̂� = 𝑤1𝑀𝑜𝑝𝑡,1(𝒙) + 𝑤2𝑀𝑜𝑝𝑡,2(𝒙) + ⋯+ 𝑤𝑝𝑀𝑜𝑝𝑡,𝑝(𝒙) (5.3)  

 

where 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝑝]
𝑇

 is a vector of adjustable weights of the aggregation process; the 

process is subject to optimization. In this optimization, the performance index is taken as a sum of 

squared errors. Taken from all data 𝑫𝑡𝑟𝑎𝑖𝑛. As the above optimization problem concerns a standard 

objective function, there is an analytical solution to the optimal weights 𝒘𝑜𝑝𝑡. The objective is to 

minimize the distance (sum of squared errors) between the training target 𝒕𝒂𝒓𝒈𝒆𝒕 and the output 

of the model. With the aid of the LSE minimization algorithm, the optimal weight is: 
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𝒘 = (𝑀𝑇𝑀)−1𝑀𝑇𝒕𝒂𝒓𝒈𝒆𝒕 (5.4) 

 

where 𝑀 is an 𝑁 × 𝑝 matrix 

 

𝑀 = [

𝑀𝑜𝑝𝑡,1(𝒙1) 𝑀𝑜𝑝𝑡,2(𝒙1) … 𝑀𝑜𝑝𝑡,𝑝(𝒙1)

⋮ ⋮
𝑀𝑜𝑝𝑡,1(𝒙𝑁) 𝑀𝑜𝑝𝑡,2(𝒙𝑁)

⋱ ⋮
… 𝑀𝑜𝑝𝑡,𝑝(𝒙𝑁)

] (5.5) 

 

Then with the optimal parameter 𝑤𝑖, the performance index 𝑄 evaluates the quality of the 

aggregation of rule-based models, see (5.3). 

5.3 Experimental studies 

In this section, we report on the results obtained for the rule-based model designed as 

discussed in the previous sections. The performance of the model is reported in terms of its RMSE 

value. The data are linearly normalized to [0,1]. In the slew of experiments, we set up the following 

values of the parameters: 

FCM: 𝑚 = 2, the number of iterations is 100. The number of clusters 𝑐 was varied from 2 to 

10. We optimized the performance of the overall model by choosing the optimal number of clusters 

for each model. We also tried more values of 𝑐  positioned in the range 2-20; no visible 

improvement has been reached for the values over 10. Subsequently, the range 2-10 has been 

selected. 

Randomization: the values of 𝑟  were selected as 0.1, 0.2, 0.3, 0.4, and 0.5. With the 

probability, 𝑝𝑟𝑜𝑏 = 0.999,  the results coming from the theoretical analysis are 𝑝 =

 84, 40, 25, 18, 𝑎𝑛𝑑 13 models, respectively. The random selection of data was governed by a 
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uniform probability distribution. In the experiment, in order to ensure the data integrity, we set 

𝑝 =  100 for all percentage values of 𝑟. 

The experiments were completed for the UCI machine learning dataset Super conductivity 

(https://archive.ics.uci.edu/ml/datasets/superconductivty+data), consisting of 21,263 80-

dimensional data. 

Following the overall design process, we randomly select some data and use them to train the 

individual fuzzy rule-based model. Then, the models are refined with the use of gradient boosting, 

see Fig. 5.3. These plots are reported with the selected percentage 𝑟 being 0.5 and the number of 

models 𝑝 being 100. It is apparent that for successive values of 𝐾 , the performance index 𝑉 

decreases. However, the decline is reported some initial values of 𝐾, say 5-10 and then the values 

of the index stabilize. It is noticeable that the averaging of the outputs of the models lead to some 

improvement. The optimized weighted aggregation leads to better performance, as visibly 

displayed in Fig. 5.3. 

 

Fig. 5.3. Performance index 𝑄 obtained for each distributed model and the aggregation results 

(𝑟 = 0.5). 
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Fig. 5.4. Optimal values of the weights used in the weighted aggregation of the models. 

By inspecting Fig. 5.4, we conclude that there is only a handful of models that contribute to 

the aggregation process while most of them exhibit a very limited impact as the values of the 

corresponding weights are close to zero. In Fig. 5.5(a), we show the values of the performance 

index (RMSE) for several selected values of 𝑟.  

For comparative analysis, as a reference model, we consider a standard TS model. As before, 

FCM was run for 100 iterations and 𝑚 was set to be 2; the results are shown in Fig. 5.5(b). The 

distributed rule-based model led to the improvement over the TS model; on average (across all 

experiments) the improvement was around 12.8%. In Fig. 5.5(c), we depict the prototypes with 

black circles for the TS model when 𝑐 is 2 and 10. The prototypes are in the range [0, 1] since the 

data are normalized. From the figure we see that the prototypes are close to each other. This shows 

that the TS model cannot effectively cluster the data, thus affecting the performance of the model. 
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 (a)  (b)  

 

(c) 

Fig. 5.5. Experimental results obtained for Super conductivity data set. (a) performance index - 

distributed model; (b) performance index - TS model; (c) TS model -prototypes. 

5.4 Further experimental results with selected machine learning data 

In this section, we report on experimental results obtained for some machine learning datasets 

coming from UCI machine learning datasets (https://archive.ics.uci.edu/ml/index.php) and Kaggle 

(https://www.kag-gle.com/), especially the high dimensional data: Online news popularity, Year 

prediction MSD and Geographical original of music. 

https://www.kag-gle.com/
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 Our intent is to show the impact of the main parameters on the performance of the obtained 

models as well as contrast their performance vis-à-vis a TS model constructed for all data. The 

details of the data are covered in Table 5.1. It is worth noting that we selected the data of the largest 

dimensionality of the input space as those are quite challenging in the design of rule-based models. 

For each data set, in order to facilitate comparison, we focus on showing the results for the gradient 

boosting distributed rule-based model and the reference TS model. We show the prototypes, where 

𝑐 is equal to 2 and 10. 

Table 5.1. Data sets used in experiments. 

Data 

(number of data, 

dimensionality of 

input space) 

Online news popularity 

(https://archive.ics.uci.edu/ml/datasets/online+news+popularity) 

(39,644; 58) 

Year prediction MSD (first 30K data points) 

(https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd) 

(30,000; 90) 

Parkinson’s telemonitoring 

(https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring) 

(5,875; 17) 

Geographical original of music 

(http://archive.ics.uci.edu/ml/datasets/geographical+original+of+music) 
(1,059; 117) 

 

The results are displayed in a series of plots shown in Fig. 5.6. 

 

 (a) i.   (a) ii.  
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(a) iii. 

 

 

 (b) i.  (b) ii.  

 

(b) iii. 
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 (c) i.  (c) ii.  

 

(c) iii. 

 

 (d) i.   (d) ii.  
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(d) iii. 

Fig. 5.6. The results for different datasets. (a) Online news popularity; (b) Year prediction MSD; 

(c) Parkinson’s telemonitoring; (d) Geographical original of music. The plots from left to right 

display: i. performance index - distributed model; ii. performance index - TS model; iii. radar 

plots present prototypes produced by the TS model. 

Table 5.2 summarizes improvements of the proposed model obtained for each dataset and we 

compared it with the TS model with the number of clusters set to 10 (for this number of rules, the 

TS model produced the best results). 

Table 5.2. Improvement obtained for each dataset. 

Data 

Improvement (%) 

Train Test 

min max average min max average 

Super conductivity 6.4 16.8 12.9 8.8 17.3 13.4 

Online news popularity 5.3 33.0 18.3 3.9 31.1 16.0 

Year prediction MSD 61.9 65.8 64.4 65.2 69.9 68.0 

Parkinson’s telemonitoring 1.6 11.6 8.2 2.7 14.4 10.2 

Geographical Original of Music 1.8 7.6 4.9 23.8 27.3 25.4 

Average improvement 

(across all data) 
15.4 27.0 21.7 20.9 32.0 26.6 
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5.5 Conclusions 

In this study, we have introduced a distributed model which is developed by integrating the 

ideas of ensemble learning and the gradient boosting algorithm. In this process, we demonstrate 

how to ensure integrity of the data by randomly sampling and repeating the experiment. The 

distributed model obtained through the sampling process and the fuzzy rule-based model is further 

improved by the gradient boosting algorithm, and the improved results are aggregated. In this way, 

we avoid the problem of the curse of dimensionality in the face of large-dimensional data. 

Compared with the traditional TS model, the performance of our model has been significantly 

improved. In terms of accuracy, for different datasets, our optimization has reached a maximum 

of 31% for the gradient boosting TS model. 
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Chapter 6 Enhancements of Rule-Based Models through 

Refinements of Fuzzy C-Means 

In the previous chapters, we have shown three ways to deal with high-dimensional data with 

fuzzy rule-based models. In this chapter, we analyze the principle of fuzzy clustering, intervene in 

the clustering process by adding constraints and other means, and propose a variety of effective 

optimization methods to improve the clustering process. 

6.1 Fuzzy rule-based models and fuzzy clustering: some design highlights 

In the classical rule-based model, it builds on the basis of fuzzy clustering, in particular FCM, 

exhibit some advantages that are associated with their modularity and interpretability since in 

traditional clustering algorithms, directions are not considered. However, in fuzzy modeling we 

are concerned about the direction. When running the clustering algorithm, we must consider 

distinctions between input and output variables. The underlying structure of the rules in their 

generic version was expressed by (2.8). These rules form a so-called 0-order Takagi-Sugeno model. 

The fuzzy sets forming the condition part of the rules are defined in the n-dimensional input space. 

It is apparent that the clustering algorithm determines the structure of the rule-based model. The 

number of rules (c) is equal to that of clusters. The fuzzification coefficient impacts the shape of 

the membership functions and in the sequel implies the levels of activation of the rules and the 

way in which the rules interact among themselves when producing the output of the model. 

Typically, the FCM algorithm is realized in the (𝑛 + 1)-dimensional  space (yielding a 

concatenation of the input variables and the output one). This produces (𝑛 + 1)-dimensional 

prototypes in the following format [𝒗𝑖 𝒘𝑖]
𝑇  𝑖 = 1,2, . . . , 𝑐 . It is clear that both the fixed 

https://scholar.google.com/citations?view_op=view_citation&hl=zh-CN&user=N-Ql578AAAAJ&authuser=1&citation_for_view=N-Ql578AAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=zh-CN&user=N-Ql578AAAAJ&authuser=1&citation_for_view=N-Ql578AAAAJ:u-x6o8ySG0sC
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conclusions and fuzzy sets contribute to the quality of the model and any possible improvements 

through the refinements of these two functional components of the model. 

6.2 The accommodation of extreme values in the output space 

As noted, the FCM clustering (as any other clustering mechanism) is direction-free 

(relational), implying that in carrying out the optimization of the prototypes and the partition 

matrix we do not distinguish between input and output variables (even though they play a different 

role in any modeling pursuits). In virtue of the current form of the objective function minimized 

during the FCM optimization process, the prototypes realize a sort of average of the data located 

in the input and output spaces. By inspecting (2.4), one notes that the output of the model cannot 

produce the results beyond the range [𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥] implied by the minimal and maximal values 

of the prototypes 𝑤𝑚𝑖𝑛 = min𝑤𝑖, 𝑤𝑚𝑎𝑥 = max 𝑤𝑖, which, in light of the previous observation, is 

included in the interval [𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑖𝑛 , 𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑎𝑥] , where 𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑖𝑛  and 𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑎𝑥  are 

respectively the extreme values assumed by the output variable that is 𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑖𝑛 =

𝑎𝑟𝑔𝑀𝑖𝑛𝑘=1,2,…,𝑁𝑡𝑎𝑟𝑔𝑒𝑡𝑘 ,  𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑀𝑎𝑥𝑘=1,2,…,𝑁 𝑡𝑎𝑟𝑔𝑒𝑡𝑘 . This leads to a lack of 

approximation capabilities of the model in some range of output values and yields higher values 

of error generated by the model. 

To alleviate the problem, one has to augment the distribution of the prototypes in the 

clustering process by (i) distributing prototypes located in the output space across the entire output 

space, and (ii) incorporating this knowledge hints in the clustering algorithm. Some ideas along 

this line were presented with the use of so-called viewpoints, see [140]. We consider the extreme 

values of the output space as the entries of all prototypes constructed during the optimization 

process. In particular, the prototypes are given in the form 
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[
𝒗1

𝑤1
] [

𝒗2

𝑤2
]… [

𝒗𝑐−2

𝑤𝑐−2
] [

𝒗𝑐−1

𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑖𝑛
] [

𝒗𝑐

𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑎𝑥
] (6.1) 

  

These two extreme entries (𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑖𝑛 and 𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑎𝑥) are not optimized (updated) during 

the FCM optimization. They are kept intact. As a consequence, the obtained prototypes involve 

the extreme values as the bounds 𝑤𝑚𝑖𝑛 = 𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 = 𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑎𝑥 are retained. 

6.3 Reduction of spurious activation levels of rules 

The membership functions produced by the FCM algorithm satisfy the obvious requirements 

(implied by the partition requirement) stating that for any input 𝒙 a sum of membership grades is 

equal to 1, i.e., ∑ 𝐴𝑖
𝑐
𝑖=1 (𝒙) = 1. This is one of the fundamental requirements imposed on the 

partition matrix. While in the description of the data through a collection of clusters, this 

requirement does not exhibit any essential implications as to the nature of the revealed clusters.  

One encounters a far-reaching implication in the context of rules. The reason is the following. The 

above requirement states that the membership functions of 𝐴𝑖 obtained through clustering are not 

unimodal but exhibit some rippling effect. The intensity of these ripples is dependent upon the 

values of the fuzzification coefficient used in the clustering method. Higher values of m intensify 

the obtained ripples. As the degrees of membership are in effect the activation levels of the rules 

and in turn produce the partial output 𝐴𝑖(𝒙)𝑤𝑖 (for rules in the form given by (2.8)), for some 𝒙 

being positioned quite remotely from the prototype of the 𝑖𝑡ℎ  rule 𝒗𝑖 , there still might be a 

significant impact of this rule on the overall output. 

To diminish or substantially eliminate the impact of the membership grades of the prototypes 

(fuzzy sets) positioned quite far from a certain input for which the rule-based mapping is realized, 
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we introduce a thresholding mechanism through which lower membership grades are “filtered” 

out and made equal to zero. This results in a so-called 𝜆-level fuzzy set 𝐴𝜆 constructed on a basis 

of 𝐴 and expressed as: 

 

𝐴𝜆(𝒙) = {
𝐴(𝒙)   if  𝐴(𝐱) ≥ 𝜆
0,         otherwise

(6.2) 

 

Using A

 instead of the original membership functions, we reduce the impact of the rules (and 

conclusions) whose activation levels are below some adjustable (optimized) threshold level 𝜆 i.e. 

 

�̂� =

∑ 𝐴𝑖(𝑥)𝑐
𝑖=1
𝐴𝑖≥𝜆

𝑤𝑖

∑ 𝐴𝑖(𝒙)𝑐
𝑖=1
𝐴𝑖≥𝜆

(6.3) 

 

To illustrate the thresholding effect and its impact on the computing, let us consider one-

dimensional membership functions 𝐴1, 𝐴2, 𝐴3, and 𝐴4 defined over 𝑋 = [0, 10] and described by 

the prototypes 𝑣1 =  1,  𝑣2  =  3.5, 𝑣3  =  4, and 𝑣4  =  7. Using the formula for membership 

functions resulting from the FCM algorithm (with the values of the fuzzification coefficient m 

equal to 1.5, 2, and 3, respectively), the corresponding plots are displayed in Fig. 6.1. 
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 (a)  (b)  

 

(c) 

Fig. 6.1. Membership functions 𝐴1, 𝐴2, … , 𝐴4 obtained for different 𝑚. (a)1.5, (b) 2.0 and (c) 3.0. 

By inspecting the plots shown in Fig. 6.1, it is evident that the ripples become visible, 

especially for higher values of 𝑚 . Now we complete a granulation-degranulation process 

(commonly referred to as fuzzification and defuzzification) realized as follows. We take any value 

of 𝑥 coming from 𝑋, determine their corresponding membership grades 𝐴1(𝑥), 𝐴2(𝑥), 𝐴3(𝑥), and 

𝐴4(𝑥) and then reconstruct it using the formula  

 

�̂�(𝑥) =
∑ 𝐴𝑖

𝑚(𝑥)𝑣𝑖
4
𝑖=1

∑ 𝐴𝑖
𝑚(𝑥)4

𝑖=1

(6.4) 
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The value of 𝑚 is the same as being used in the formation of the membership functions. When 

using the thresholding mechanism, the reconstructed output is described as follows where the 

result directly depends on the threshold: 

 

�̂�(𝑥, 𝜆) =
∑ (𝐴𝑖

𝜆(𝑥))𝑚𝑣𝑖
4
𝑖=1

∑ (𝐴𝑖
𝜆)𝑚(𝑥)4

𝑖=1

(6.5) 

 

The integral 𝑅 = ∫ |𝑧 − �̂�(𝑥, 𝜆)|
10

0
 serves as the reconstruction error, where the original 

output is 𝑧(𝑥) = 𝑥. Given the adjustable value of the threshold 𝜆 one regards 𝑅 as a function of 

𝜆;  𝑅(𝜆)  and the optimal value 𝜆𝑜𝑝𝑡  can be easily determined as 𝜆𝑜𝑝𝑡 = arg𝑀𝑖𝑛𝜆𝑅 . The 

corresponding plot of 𝑅 is included in Fig. 6.2 with the optimal values 𝜆𝑜𝑝𝑡 equal to 0.17, 0.24 and 

0.25 for m being 1.5, 2, and 3, respectively. 

 
 (a)  (b)  

 
(c) 

Fig. 6.2. 𝑅 as a function of 𝜆 for different 𝑚. (a) 1.5, (b) 2.0 and (c) 3.0. 
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The results of reconstruction shown in the 𝑥 − �̂� coordinates are displayed in Fig. 6.3. The 

optimal values of threshold obtained for 𝑚 = 1.5, 2, 3 are 0.17, 0.24, 0.25, respectively. 

 

 (a)  (b)  

 

(c) 

Fig. 6.3. Reconstruction results in 𝑥 − �̂� coordinates. 

dotted line is 𝜆 = 0  and solid line is optimal 𝜆𝑜𝑝𝑡 . (a) 𝑚 = 1.5, 𝜆𝑜𝑝𝑡 = 0.17;  (b) 𝑚 =

2.0, 𝜆𝑜𝑝𝑡 = 0.24; (c) 𝑚 = 3.0, 𝜆𝑜𝑝𝑡 = 0.25. 

6.4 Quality of induced granular rules 

The rules partition the input and output space into corresponding regions. The parts of regions 

where the membership grades are low (recall that the membership functions have infinite supports) 

are to be identified as not fully supported by the rules. In contrast, the regions where the 

membership grades are high, the regions of the spaces are fully described by the rules. To tell apart 

these regions from the entire space, it becomes essential to construct cores of the fuzzy rules. The 
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involvement of information granules in the design and analysis of rule-based models, see [70], 

[122], [141]–[144]. To realize this, we build set-based information granules implied by the fuzzy 

sets standing in the rules. Starting with numeric prototypes 𝒗1, 𝒗2, . . . , 𝒗𝑐 and 𝑤1, 𝑤2, … , 𝑤𝑐, we 

form information granules using the principle of justifiable granularity [121], [145]–[147]. This 

yields interval-valued information granules 𝒗𝑖 and 𝑤𝑖 with radii 𝜌𝑖  and 𝜏𝑖 , respectively. The 

principle of justifiable granularity is realized as follows. For each 𝒗𝑖 , we determine the product of 

coverage cov(𝜌𝑖) and specificity sp(𝜌𝑖) defined as follows: 

 

𝑐𝑜𝑣( 𝜌𝑖) =
1

𝑁
∑ 𝑢𝑖𝑘

𝑁

𝑘=1;

𝑘:||𝑥𝑘−𝑣𝑖||
2≤𝑛𝜌𝑖

2

(6.6)
 

where ||𝒙𝑘 − 𝒗𝑖||
2 = ∑

(𝑥𝑘𝑗−𝑣𝑖𝑗)
2

𝜎𝑗
2

𝑛
𝑗=1 , and 

 

𝑠𝑝(𝜌𝑖) = 1 − 𝜌𝑖 , 𝜌𝑖 ∈ [0,1] (6.7) 

 

The information granule is produced by maximizing the product of coverage and specificity 

with respect to radius 𝜌𝑖  that is 𝑚𝑎𝑥𝜌𝑖
(𝑐𝑜𝑣(𝜌𝑖)𝑠𝑝(𝜌𝑖)). The same process is realized for the 

prototype 𝑤𝑖. Thus, we obtain the corresponding information granules in the following form 𝑉𝑖 =

(𝒗𝑖, 𝜌𝑖) and 𝑊𝑖 = (𝑤𝑖, 𝜏𝑖), 𝑖 = 1, 2, . . . , 𝑐. 

The quality of the rule is assessed by looking at the specificity values of the granules 𝑉𝑖 and 

𝑊𝑖. The relationship between specificity values of the condition and conclusion part entails the 

quality of the rule. Low specificity of the condition part associated with the high specificity of the 

conclusion implies a high-quality rule: this rule is general (the condition embraces a lot of data 
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whereas the conclusion is highly detailed, viz. specific). The opposite situation, namely a high 

specificity of the condition part aligned with the conclusion of low specificity entails a rule of low 

quality. This rule applies only to a few cases and at the same time produces conclusion that is of 

low specificity. In light of the above observations, we express the quality of the rule qi as follows: 

 

𝑞𝑖 = {

1   if  𝜌𝑖 ≥ 𝜏𝑖
𝜌𝑖

𝜏𝑖 
if 𝜌𝑖 < 𝜏𝑖

(6.8) 

 

The higher the value of 𝑞𝑖, the better the quality of the rule. In this way, given the values of 

𝑞𝑖, one can organize the rules in a linear way. Also, one can plot the values of 𝑞𝑖 and build a 

histogram, which delivers an overall view at the rules. This could be done by varying the numbers 

of rules (the values of c are changed). 

6.5 Experimental studies 

Through the series of experiments, we demonstrate the impact of the refinements of the rule-

based models on their performance; a special focus is on the condition part. 

Let us consider one of the publicly available Machine Learning data sets, say Boston housing. 

(http://archive.ics.uci.edu/ml/index.php) There are several input variables and a single output 

variable. The dataset is randomly split into a training and testing subsets (60% for training, 40% 

for testing). The performance of the rule-based model is described by the Q in (2.19). 

We vary the values of 𝑐 from 2 to 10. The values of 𝑚 varying from 1.05 to 3.0 with a step 

of size 0.2. The experiments are organized in the following way:  

http://archive.ics.uci.edu/ml/index.php
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(i) Using the standard FCM, the results are collected in a tabular format showing the values 

of the performance index (training and testing data) for different numbers of rules; for each 𝑐, the 

optimal value of 𝑚, 𝑚𝑜𝑝𝑡, is reported.  

Table 6.1. 𝑄 as a function of 𝑐 with optimized 𝑚. 

𝑐 2 3 4 5 6 7 8 9 

𝑚𝑜𝑝𝑡 1.65  1.25  1.25  1.65  1.65  1.65  1.45  1.65  

𝑄𝑡𝑟𝑎𝑖𝑛 53.81  40.30  32.15  25.71  24.72  25.81  23.87  22.85  

𝑄𝑡𝑒𝑠𝑡 72.66  62.71  43.35  41.24  40.99  42.10  38.80  37.46  

 

(ii) Now the experiment is repeated for the included extreme values of the output 𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑖𝑛 

and 𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑎𝑥. The results are reported in the table having the same structure as the one shown 

above. 

Table 6.2. 𝑄 as a function of 𝑐 with optimized 𝑚 and changed prototypes. 

𝑐 2 3 4 5 6 7 8 9 

𝑚𝑜𝑝𝑡 2.85  2.85  2.85  2.25  2.25  2.25  2.05  2.05  

𝑄𝑡𝑟𝑎𝑖𝑛 98.83  36.43  37.04  21.84  22.96  24.26  24.69  24.98  

𝑄𝑡𝑒𝑠𝑡 109.55  52.30  54.03  34.47  37.13  38.90  39.53  40.71  

 

Compare these two tables, when 𝑐 is 3,5,6,7, 𝑄 with the changed prototypes is lower than that 

of the original FCM. We can see that this method has improved the FCM algorithm a little, and 

we also use this method for other datasets in the following datasets, and the results are satistied.  

In Fig. 6.4, we show the change of prototypes, where the circle stands for the original 

prototypes, and the star means the changed prototypes. 
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Fig. 6.4. The distribution and change of prototypes. 

(iii) Here we consider the clipping effect by introducing a certain value of 𝜆. Note that 𝜆 

cannot exceed a certain maximal value such that the sum of membership functions is greater than 

zero. The results are reported in Table 6.3 as before (by varying the values of 𝑚 and 𝑐); in the table 

one reports the best value of 𝑄 for the training and testing data (viz. the one obtained when varying 

the values of 𝜆). 

Table 6.3. Performance of original and clipping models with optimized 𝜆. 

𝑚/𝑐   2 3 4 5 6 7 8 9 

1.05 

𝑄𝑡𝑟𝑎𝑖𝑛 56.37  40.61  34.85  33.72  33.27  29.21  25.31  27.65  

𝑄𝑡𝑟𝑎𝑖𝑛𝑐𝑢𝑡  56.37  40.61  34.84  33.65  33.27  29.21  25.31  27.65  

𝑄𝑡𝑒𝑠𝑡 76.63  64.33  46.20  47.92  45.86  49.40  40.28  43.17  

𝑄𝑡𝑒𝑠𝑡𝑐𝑢𝑡 76.63  64.33  46.21  48.02  45.86  49.40  40.28  43.17  

𝜆 0.00  0.00  0.06  0.21  0.00  0.00  0.00  0.00  

1.25 

𝑄𝑡𝑟𝑎𝑖𝑛 55.09  40.30  32.15  31.18  29.61  28.21  25.21  26.09  

𝑄𝑡𝑟𝑎𝑖𝑛𝑐𝑢𝑡  55.09  40.20  32.15  31.18  29.61  28.21  25.21  26.09  

𝑄𝑡𝑒𝑠𝑡 74.65  62.71  43.35  43.77  46.71  46.71  41.43  40.47  

𝑄𝑡𝑒𝑠𝑡𝑐𝑢𝑡 74.65  62.85  43.35  43.77  46.71  46.71  41.43  40.47  

𝜆 0.00  0.05  0.00  0.00  0.00  0.00  0.00  0.00  

1.45 
𝑄𝑡𝑟𝑎𝑖𝑛 54.12  41.82  44.95  26.42  24.74  26.41  24.88  23.75  

𝑄𝑡𝑟𝑎𝑖𝑛𝑐𝑢𝑡  53.98  41.59  44.71  26.41  24.71  26.40  24.88  23.66  
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𝑄𝑡𝑒𝑠𝑡 73.11  63.09  66.91  41.58  41.54  43.66  41.57  38.90  

𝑄𝑡𝑒𝑠𝑡𝑐𝑢𝑡 73.05  63.33  66.81  41.52  41.72  43.83  41.57  39.05  

𝜆 0.02  0.12  0.05  0.01  0.04  0.03  0.00  0.03  

1.65 

𝑄𝑡𝑟𝑎𝑖𝑛 53.81  43.47  46.48  25.71  24.72  25.81  23.87  22.85  

𝑄𝑡𝑟𝑎𝑖𝑛𝑐𝑢𝑡  53.24  42.88  45.60  25.25  24.15  25.16  23.44  22.25  

𝑄𝑡𝑒𝑠𝑡 72.66  63.94  67.70  41.24  40.99  42.10  38.80  37.46  

𝑄𝑡𝑒𝑠𝑡𝑐𝑢𝑡 72.16  63.65  67.26  41.31  41.89  42.99  40.44  38.30  

𝜆 0.08  0.12  0.09  0.08  0.13  0.10  0.09  0.09  

1.85 

𝑄𝑡𝑟𝑎𝑖𝑛 54.08  44.88  46.51  26.46  25.43  26.24  25.55  25.59  

𝑄𝑡𝑟𝑎𝑖𝑛𝑐𝑢𝑡  52.83  43.53  45.18  24.94  23.69  24.78  23.93  24.01  

𝑄𝑡𝑒𝑠𝑡 72.98  64.96  67.07  42.28  41.77  42.58  41.91  41.57  

𝑄𝑡𝑒𝑠𝑡𝑐𝑢𝑡 71.96  64.19  67.17  40.31  41.70  42.02  42.69  39.42  

𝜆 0.13  0.17  0.18  0.13  0.15  0.11  0.12  0.07  

2.05 

𝑄𝑡𝑟𝑎𝑖𝑛 54.72  46.16  47.36  28.23  27.13  27.98  27.64  28.00  

𝑄𝑡𝑟𝑎𝑖𝑛𝑐𝑢𝑡  52.75  43.96  45.14  24.97  23.51  24.60  24.03  24.57  

𝑄𝑡𝑒𝑠𝑡 73.73  66.10  67.95  44.57  43.82  44.78  44.46  45.66  

𝑄𝑡𝑒𝑠𝑡𝑐𝑢𝑡 71.83  65.48  69.40  40.11  42.62  40.86  43.12  42.14  

𝜆 0.18  0.22  0.22  0.16  0.17  0.12  0.13  0.10  

2.25 

𝑄𝑡𝑟𝑎𝑖𝑛 55.54  47.39  48.47  29.50  29.59  30.64  30.53  31.19  

𝑄𝑡𝑟𝑎𝑖𝑛𝑐𝑢𝑡  52.73  44.48  45.43  23.86  23.54  24.60  24.28  24.05  

𝑄𝑡𝑒𝑠𝑡 74.70  67.29  69.13  45.60  46.81  48.11  48.02  48.96  

𝑄𝑡𝑒𝑠𝑡𝑐𝑢𝑡 72.13  65.78  68.97  40.25  42.55  40.55  39.56  41.53  

𝜆 0.22  0.23  0.22  0.18  0.18  0.13  0.10  0.12  

2.45 

𝑄𝑡𝑟𝑎𝑖𝑛 56.46  48.59  49.69  32.46  32.35  33.58  33.46  33.45  

𝑄𝑡𝑟𝑎𝑖𝑛𝑐𝑢𝑡  52.77  44.70  46.17  24.02  23.67  24.64  24.40  24.50  

𝑄𝑡𝑒𝑠𝑡 75.78  68.51  70.41  49.01  50.17  51.73  51.62  52.46  

𝑄𝑡𝑒𝑠𝑡𝑐𝑢𝑡 72.28  66.31  67.69  40.44  41.62  42.32  41.26  43.03  

𝜆 0.25  0.24  0.16  0.19  0.18  0.14  0.13  0.11  

2.65 

𝑄𝑡𝑟𝑎𝑖𝑛 57.42  49.74  50.93  35.53  35.12  36.47  35.73  35.35  

𝑄𝑡𝑟𝑎𝑖𝑛𝑐𝑢𝑡  53.59  44.93  46.43  24.41  24.05  25.07  24.71  24.57  

𝑄𝑡𝑒𝑠𝑡 76.87  69.70  71.69  52.58  53.52  55.24  54.36  54.09  

𝑄𝑡𝑒𝑠𝑡𝑐𝑢𝑡 73.34  66.53  70.91  40.21  41.71  42.64  42.01  42.08  

𝜆 0.26  0.25  0.25  0.20  0.18  0.16  0.13  0.11  

2.85 

𝑄𝑡𝑟𝑎𝑖𝑛 58.37  50.85  52.12  38.51  37.83  39.34  34.85  33.24  

𝑄𝑡𝑟𝑎𝑖𝑛𝑐𝑢𝑡  54.89  45.10  46.65  24.84  24.54  25.37  23.47  22.39  

𝑄𝑡𝑒𝑠𝑡 77.96  70.85  72.93  56.04  56.74  58.63  52.89  51.41  

𝑄𝑡𝑒𝑠𝑡𝑐𝑢𝑡 73.13  67.00  71.08  43.52  42.43  43.21  39.08  39.99  

𝜆 0.26  0.25  0.25  0.21  0.18  0.16  0.14  0.12  
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From Table 6.3, we can see that the performance index of the original FCM is higher than 

that one encounters in the case of using an optimal value of 𝜆; the improvements are in the range 

of 0- 35.5 %, and the small improvements only exist for small 𝑚. With the increase of 𝑚, 𝑄 

decreases a lot. Table 6.4 reports the details on the improvements of Q regarded as a function of c 

and m. 

Table 6.4. Performance improvements of fuzzy model with the clipping effect. 

m/c   2 3 4 5 6 7 8 9 

1.05 
train 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 

test 0.0% 0.0% 0.0% -0.2% 0.0% 0.0% 0.0% 0.0% 

1.25 
train 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

test 0.0% -0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

1.45 
train 0.3% 0.6% 0.5% 0.0% 0.1% 0.0% 0.0% 0.4% 

test 0.1% -0.4% 0.1% 0.1% -0.4% -0.4% 0.0% -0.4% 

1.65 
train 1.1% 1.4% 1.9% 1.8% 2.3% 2.5% 1.8% 2.6% 

test 0.7% 0.5% 0.6% -0.2% -2.2% -2.1% -4.2% -2.2% 

1.85 
train 2.3% 3.0% 2.9% 5.7% 6.8% 5.6% 6.3% 6.2% 

test 1.4% 1.2% -0.1% 4.7% 0.2% 1.3% -1.9% 5.2% 

2.05 
train 3.6% 4.8% 4.7% 11.5% 13.3% 12.1% 13.1% 12.3% 

test 2.6% 0.9% -2.1% 10.0% 2.7% 8.8% 3.0% 7.7% 

2.25 
train 5.1% 6.1% 6.3% 19.1% 20.4% 19.7% 20.5% 22.9% 

test 3.4% 2.2% 0.2% 11.7% 9.1% 15.7% 17.6% 15.2% 

2.45 
train 6.5% 8.0% 7.1% 26.0% 26.8% 26.6% 27.1% 26.8% 

test 4.6% 3.2% 3.9% 17.5% 17.0% 18.2% 20.1% 18.0% 

2.65 
train 6.7% 9.7% 8.8% 31.3% 31.5% 31.3% 30.8% 30.5% 

test 4.6% 4.5% 1.1% 23.5% 22.1% 22.8% 22.7% 22.2% 

2.85 
train 6.0% 11.3% 10.5% 35.5% 35.1% 35.5% 32.7% 32.6% 

test 6.2% 5.4% 2.5% 22.3% 25.2% 26.3% 26.1% 22.2% 

 

(iv) At this phase, granular rules are considered. We choose the best values of 𝜌 and 𝜏 for 

(𝒗𝑖, 𝜌𝑖) and (𝑤𝑖, 𝜏𝑖), where 𝑖 = 1, 2, 3, … , 𝑐. Here we show the result of Boston housing data (when 

𝑐 is 5 with the optimized 𝑚 = 2) as an example, see Fig. 6.5. Firstly, we obtain the best values of 

𝜌𝑖  and 𝜏𝑖  by maximizing the values of 𝑉  (recall that we take the product of coverage and 

specificity). Then we use the obtained parameters to calculate the quality of the granular model. 
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Figs. 6.6 and 6.7 visualize two different forms of results. Fig. 6.6 shows the contrast of 𝜌 and 𝜏, 

and Figs. 6.7 depicts the quality of the individual rules.  

Fig. 6.5(a) and (b) show the performance of information granules (namely coverage, 

specificity and 𝑉) regarded as a function of 𝜌𝑖 and 𝜏𝑖. 

 

(a) 

 

(b) 

Fig. 6.5. Information granular performance with 𝜌𝑖 and 𝜏𝑖. (a) 𝜌𝑖 (b) 𝜏𝑖 
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Fig. 6.6 depicts the relationship between 𝜌𝑖 and 𝜏𝑖 obtained for the training data with 𝑐 being 

set to 5. In light of (2.19), the more points are located below main diagonal, the better the quality 

of the model is. Fig. 6.7 displays the quality of the models for various values of 𝑐. 

 

Fig. 6.6. Values of 𝜏 versus the associated values of 𝜌 

 
Fig. 6.7. Quality of models for selected numbers of rules. 

Considering Figs. 6.6 and 6.7, when we divide Boston data into 3 clusters, the performance 

𝑞 is always equal to 1; that is to say, the quality of the granular rule model is very nice, and in Fig. 

6.6, we have given an example of the relationship between 𝜌 and 𝜏 when 𝑐 is 5 (general case). It 
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is obvious that most points in the figure are below the straight line, which is another way of saying 

that for most rules 𝑞 is equal to 1. 

Then we do the same experiments and same process for other datasets in the following part. 

As mentioned in the introductory section, there are three improved models: (i) extreme values of 

the output stands for the prototypes of output with FCM, (ii) elimination of spurious activation 

levels of the rules, (iii) introduction of granular rules to evaluate the quality of rules. For each 

dataset, we present the results:  

(a) Values of 𝑄 shown as a function of 𝑐 with optimized 𝑚 and the model with the original FCM;  

(b) 𝑄 as a function of 𝑐 with certain 𝑚 and 𝜆 for (ii) and the original model without clipping;  

(c) 𝜏 as a function of 𝜌 for training data, each point stands for the quality criterion for each rule, 

and as we mentioned, more points below the straight line means that the quality is good.  

(d) The quality of models for each cluster. 
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MAGIC Gamma Telescope Data Set 

(https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope). In Fig. 6.8(b), 𝑚 is 2.05 

and 𝜆 is 0.06. In Fig. 6.8(c), 𝑐 is 20. 

 
 (a)  (b)  

 
(c) 

 
(d) 

Fig. 6.8. The results for MAGIC Gamma Telescope Data Set. 𝑄 as a function of 𝑐 with 

optimization of FCM: (a) Extreme values; (b) Clipping. (c) Values of 𝜏 versus the associated 

values of 𝜌 (d) Quality of models. 
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Wine Quality Data Set 

(https://archive.ics.uci.edu/ml/datasets/wine+quality). The results are shown in Fig. 6.9 for 

several selected values of 𝑚. 

 
 (a)  (b)  

 
 (c) 

 
(d) 

Fig. 6.9. The results for Wine Quality Data Set. Performance 𝑄 as a function of 𝑐 with 

optimization of FCM: (a) Extreme values; (b) Clipping. (c). Plot of values of 𝜏 versus the 

associated values of 𝜌 (d) Quality of models for selected values of 𝑐. 

https://archive.ics.uci.edu/ml/datasets/wine+quality
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Wall-Following Robot Navigation Data Data Set 

(https://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+Navigation+Data). The 

results are displayed in Fig. 6.10. 

 
 (a)  (b)  

 
(c) 

 
(d) 

Fig. 6.10. The results for Wall-Following Robot Navigation Data Set. 𝑄 as a function of 𝑐 with 

optimization of FCM: (a) Extreme values; (b) Clipping. (c) Values of 𝜏 versus the associated 

values of 𝜌 (d) Quality of models. 
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Banknote authentication Data Set  

(https://archive.ics.uci.edu/ml/datasets/banknote+authentication). The corresponding results 

are displayed in Fig. 6.11. 

 
 (a)  (b)  

 
(c) 

 
(d) 

Fig. 6.11. The results for Banknote authentication Data Set. 𝑄 as a function of 𝑐 with 

optimization of FCM: (a) Extreme values; (b) Clipping. (c) Values of 𝜏 versus the associated 

values of 𝜌 (d) Quality of models. 

https://archive.ics.uci.edu/ml/datasets/banknote+authentication
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Image Segmentation Data Set 

(http://archive.ics.uci.edu/ml/datasets/image+segmentation). The obtained results are 

reported in Fig. 6.12.  

 
 (a)  (b)  

 
 (c) 

 
(d) 

Fig. 6.12. The results for Image Segmentation Data Set. 𝑄 as a function of 𝑐 with optimization of 

FCM: (a) Extreme values; (b) Clipping. (c) Values of 𝜏 versus the associated values of 𝜌 (d) 

Quality of models. 

http://archive.ics.uci.edu/ml/datasets/image
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Pima Indians Diabetes Data Set 

(https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/). In Fig. 

6.13(b), 𝑚 is 2.05 and 𝜆 is 0.14. In Fig. 6.13(c), 𝑐 is 10. 

 
 (a)  (b)  

 
 (c) 

 
(d) 

Fig. 6.13. The results for Pima Indians Diabetes Data Set. 𝑄 as a function of 𝑐 with optimization 

of FCM: (a) Extreme values; (b) Clipping. (c) Plot of values of 𝜏 versus the associated values of 

𝜌 (d) Quality of models. 

https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/
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Wine Data Set 

(https://archive.ics.uci.edu/ml/datasets/wine). The results are reported in Fig. 6.14. 

 
 (a)  (b)  

 
(c) 

 
(d) 

Fig. 6.14. The results for Wine Data Set. 𝑄 as a function of 𝑐 with optimization of FCM: 

(a) Extreme values; (b) Clipping. (c) Values of 𝜏 versus the associated values of 𝜌 (d) Quality of 

models. 

  

https://archive.ics.uci.edu/ml/datasets/wine
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Seeds Data Set 

(https://archive.ics.uci.edu/ml/datasets/seeds). The obtained results are reported in Fig. 6.15. 

 
 (a)  (b)  

 
 (c) 

 
 (d) 

Fig. 6.15. The results for Seeds Data Set. 𝑄 as a function of 𝑐 with optimization of FCM: 

(a) extreme values; (b) clipping. (c) Values of 𝜏 versus the associated values of 𝜌 (d) quality of 

models. 
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Based on Figs. 6.8 – 6.15, it becomes clear that the proposed refinements made to the design 

process give rise to the improvements of the results.  The levels of improvement can vary, though 

and might be associated with the nature of the data. In what follows, Table 6.5, summarizes the 

main results where the approaches studied so far have been carefully assessed (method 1—

incorporation of minimal and maximal values of the output space; method 2 - clipping spurious 

activation levels of the rules). The improvement level is quantified by reporting the maximal (max) 

and the average (mean) improvement levels.   

Table 6.5. Percentage of improvement achieved for different datasets. 

  Method 1 Method 2 

  max mean max mean λ range 

MAGIC Gamma Telescope Data Set 35.0% 13.2% 16.6% 6.4% 0-0.14 

Wine Quality Data Set 51.5% 11.2% 24.3% 12.5% 0-0.06 

Wall-Following Robot Navigation Data  26.3% 17.8% 8.9% 5.1% 0-0.06 

Banknote authentication Data Set 47.0% 22.4% 21.0% 12.2% 0-0.21 

Image Segmentation Data Set  63.2% 41.4% 10.3% 5.2% 0-0.13 

Pima Indians Diabetes Data 52.9% 34.1% 25.1% 17.1% 0-0.22 

Wine Data Set  43.0% 15.1% 36.5% 18.3% 0-0.13 

Seeds Data Set 37.0% 21.8%○1  19.0% 11.6% 0-0.13 

*calculations are completed for the number of clusters varying from 4 to 8. 

6.6 Conclusions 

Fuzzy rule-based models have been a subject of intensive design along with a variety of 

development strategies.  In light of the central role played by fuzzy clusters in the structurization 

of “if-then” rules, enhancements of clustering methods can effectively improve the performance 

of the fuzzy rule-based model. The research reported here embarks on the pursuits cast within this 

general framework by offering several key augmentations of fuzzy artifacts delivered by the Fuzzy 

C-Means algorithm, namely an incorporation of extreme values of the output space and elimination 

of undesired spurious activation levels of the individual rules. The idea of granular rules, which 



 

110 

 

constitutes another interesting alternative to enhance the transparency of the rules by building a 

family of information granules of limited supports, sheds light on the most essential regions in the 

data space and identifies the most crucial relationships between input and output spaces.  
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Chapter 7 Conclusions and Future Works 

In this chapter, we cover the main conclusions of the study and identify a number of 

suggestions for future research. 

7.1 Conclusions 

Overall, regarding the limitation of rule-based models in the high-dimensional systems 

mentioned in the introduction, we have proposed some improved algorithms and models and 

obtained a number of interesting conclusions: 

(1) The matrix factorization is a commonly used method of dimensionality reduction of data. 

In our study, we proposed a concept of relational matrix factorization which reduces the 

dimensionality by engaging mechanisms of logic operations t-norms and t-conorms and 

improving the model interpretability. In addition, the comparative experimental studies 

demonstrate that our algorithm exhibits better reconstruction performance. 

(2) Link fuzzy relational factorization and fuzzy rule-based models to prevent the model form 

dealing directly with high dimensional data. The condition part of the rules in the model 

is formed by the factorization process, instead of the fuzzy clustering, which improves the 

reliability of the fuzzy rule-based model for the high-dimensional system. 

(3) Using random sampling and ideas from the random forest algorithm and gradient boosting 

algorithm, we developed a distributed rule-based model. Each distributed model 

processes the data in a small module, thus reducing the load of the model. Experiments 

demonstrate that our model has a certain improvement over the traditional TS model when 

being designed in the presence of high-dimensional data. 
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(4) Since the construction of rule-based models is usually accompanied by fuzzy clustering 

(FCM); an improved FCM can help the rule-based models to obtain better results. In this 

study, we proposed some augmentation methods for FCM with the use of extreme values 

of output space and the information granule, etc. These enhancements have been shown 

successful as exemplified through a series of carefully structured experiments. 

In general, our research revolves around high-dimensional data and fuzzy rule-based models. 

The constructed model is adapted to high-dimensional systems through dimensionality reduction 

and the improvement of algorithms. 

7.2 Future studies 

Based on our current research, the following topics deserve further studies and exploration: 

We propose a model based on the rule-based model in combination with fuzzy relation 

factorization. While the study has covered the concepts, algorithms, and delivered experimental 

studies along with some comparative studies (which demonstrated the usefulness of the approach), 

there are a number of directions worth further exploration. Parametric studies along the line of 

experimenting with various triangular norms and conorms could lead to additional improvements. 

The encoding process has been discussed, yet there is more room here to optimize families of 

reference information granules to enhance the performance of the constructed rules. 

In our research, through the process of matrix decomposition, we effectively extract the 

information hidden in the data and make use of it in the fuzzy rule-based model. Consequently, 

the fuzzy rule-based model can be combined with other means of data decomposition to develop 

a new model. 
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A particularly important step in our distributed model is random sampling. In this study, 

sampling was random. Next, we can optimize the sampling process to further refine the model by 

incorporating methods such as clustering. At the stage of random sampling, we used some certain 

proportion to sample the features. However, with the increasing sampling percentage, the 

dimensionality of the data we input into the model increases. Therefore, this model can be further 

optimized. For example, we can reduce the number of repetitions and find the optimal parameter 

combination. At the same time, one may envision applying the data with similar features to a 

distributed model through similarity analysis. In addition, in the process of optimizing the 

aggregation, we can consider further optimization of the model by incorporating information 

granularity into the parameters of the constructed model. 

Consider we have the concept of information granules, Interval-valued fuzzy sets used in our 

previous research. Thus, the combination of the rule-based models with information granules 

deserves more attention, namely granular rule-based models. 
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