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Abstract 

This thesis treats the design and implementation of a 6 degree of freedom 

(6DOF) Navigation System which integrates an Inertial Measurement Unit 

(IMU), magnetometer, and Global Positioning System (GPS). Observability 

properties of the kinematics are investigated. The proposed navigation system 

has the property of being observable for any vehicle trajectory. Simulation and 

actual data is used to validate the proposed navigation algorithm. 
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Chapter 1 

Introduction 

The Applied Nonlinear Controls Lab (ANCL) has an helicopter that will be 

operated as an Unmanned Aerial Vehicle (UAV). Several advantages can be 

found with these types of vehicles like vertical take-off, low speed flight and 

hover. Controlling this type of UAV is a challenging task because of its non­

linear dynamics characteristics and underactuated behavior. In order to ac­

complish the task of flight control, it is necessary to implement a Navigation 

System that provides reliable navigation data. 

Implementation of a Six Degree Of Freedom 6DOF Kalman Filter has been 

developed recently using Global Positioning System (GPS) as the only aiding 

measurement assuming the Inertial Measurement Unit (IMU) and the GPS 

sensors are placed at the same position [1]. The problems with this approach 

are: 

1. The GPS antenna is not co-located with the IMU. 

2. The UAV must undergo an observable trajectory and when it does not. 

unobservability causes the Extended Kalman Filter (EKF) estimates to 

diverge. 

The work in [2] investigates the observability of an eighteen state navigation 

model with single antenna GPS position information. The eighteen states 

estimated in [2] are position, velocity, attitude, accelerometer bias, gyroscope 

bias and lever arm. It was proven that this model is observable if the vehicle 

is maneuvering. 
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This thesis will present a fifteen state scheme. It will not try to estimate 

the lever arm and will assume this vector is known in body frame coordinates. 

With the new set of measurements (position, acceleration and magnetic field), 

we will show that the kinematics will always be observable. Experimental 

testing will validate the proposed EKF scheme. 

1.1 Thesis Contribution 

In this thesis the design of an EKF using GPS, accelerometers and magne­

tometers measurements is investigated. 

The main contributions of this thesis are: 

• Model the effect of lever arm between the GPS antenna and IMU sensor. 

This is an improvement over the EKF implemented in [1]. 

• Investigate the observability when GPS position is the only aiding mea­

surement. Previous work follows an eighteen state kinematic model [2]. 

Although the approach of investigating the observability properties is 

based on the latter reference, this thesis uses a fifteen state model and 

assumes the lever arm is known. 

• Design of an EKF that uses Magnetometer/GPS/Accelerometer as sen­

sor aiding measurements. This will ensure the system kinematics will 

always be observable. 

1.2 Thesis Outline 

• Chapter 2 treats a three degree of freedom (3DOF) navigation prob­

lem and investigates the observability of the kinematic model with GPS 

position as the only aiding sensor. 

• Chapter 3 explains the six degrees of freedom (6DOF) kinematic prob­

lem. A brief introduction to sensor noise modeling is given. It also 

presents the estimation of the fifteen navigation variables and derives a 

linear error model that is used in the EKF. 
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• Chapter 4 analyzes the observability of the 6DOF kinematic model for 

several UAV trajectories. 

• Chapter 5 discusses the inclusion of acceleration and magnetic fields 

as two extra aiding measurements for the EKF implementation. These 

added measurements makes the system observable. 

• Chapter 6 presents a comparison between single GPS-aided-INS and 

Magnetometer-GPS-aided-INS implementation with real data. It will 

explain the main advantage of using the magnetic and gravitational fields 

as extra measurements in the estimation of the navigation states. 

• Chapter 7 is the conclusion of this thesis. It will also provide potential 

future work. 

3 



Chapter 2 

3DOF Kinematics 

The vehicle can move in two dimensions on the horizontal plane. The x-

axis points towards True North and y-axis towards True East. The UAV 

moves in the forward (u) and rightward (v) directions and rotates about the 

downward direction (w). Accelerometers and gyroscopes measure the forward 

and rightward accelerations au, av and the downward gyro rate u>w. 

Downward acceleration (aw) as well as forward and rightward gyro rota­

tions (UJU, CJV) are movements that the UAV can not perform in a two dimen­

sional plane. Thus, neither gravity nor earth rotation vectors are taken into 

account when analyzing the kinematics of a confined two-dimensional vehicle. 

2.1 Reference Frames and Coordinate Systems 

The two frames of interest, as explained in [3, Sec. 2] are: 

• Geographic Frame (Earth Fixed Frame): The fixed frame that rotates 

with the earth. The fixed point is generally chosen at a known position 

in ECEF coordinates and taken as the origin of the Earth Fixed Frame 

Coordinate System. North, East and Down are the three orthogonal 

axes of the geographic frame. 

• Body Frame: The frame that is fixed to the body. The origin is generally 

at the center of mass of the vehicle. Forward, Rightward and Down are 

the three orthogonal axes of this frame. 
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Figure 2.1: 2D Reference Frames 

Two Dimensional Kinematic Equations 

This section will explain the two dimensional kinematic model. Much of the 

material in this section is based on the work in [3]. 

2.2.1 Actual Kinematic Model 

The component-wise equations for the 3DOF kinematic model are 

~pN(t)~] I" vN{t) 
Mt) • vE{t) 
VN{t) = au(t) cos tp(t) — av(t) sin ip(t) 
VE{t) au(t) sin i[) (t) + av(t) cos ip(t) 

uw(t) m. 
[2.r 

where PN,PE are north and east position components respectively. V^,VE are 

north and east velocity components respectively and tp is the yaw or heading 

of the vehicle with respect to true north. au,av represent the forward and 

rightward acceleration components of the vehicle respectively and uw is the 

rotation rate of the vehicle about the downward axis. 

The GPS antenna is placed off-center creating a lever arm between the 

center of mass (COM) of the vehicle and the GPS antenna. The actual GPS 

position equation in terms of the vehicle's COM position is 

[pw(t) + lucosip{t) - lvsinip(t)] 
y = 

PGPS,N(t) 

PGPSA1) PE(t) + L sin ip(t) + /„ cos tp(t) 

5 
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where PGPS,N,PGPS,E are the north and east position components of the GPS 

antenna, PN,PE
 a r e the north and east position components of the vehicle's 

COM and lu,lv are the forward and rightward components of the lever arm 

vector I6.. 

2.2.2 Introduction to Sensor Modeling 

Acceleration a and rotation rate u are measured by IMU sensors. These 

measurements are not perfect because they are usually corrupted by noise. 

Similarly GPS position PGPS is measured by a GPS receiver which is also 

corrupted with noise. 

The accelerometer measurement model used in this thesis is 

au(t) 
av{t) 

'Kit) 
kit). 

— 

where au, av are the forward and rightward acceleration measurements respec­

tively, 6™, bv
a represent the bias in the forward and rightward direction of the 

accelerometers respectively, v%, vv
a represent the white noise disturbance for the 

forward and rightward accelerometers respectively and u^, v^ are the random 

walk noise model for the forward accelerometer bias and rightward accelerom­

eter bias respectively. 

The gyroscope measurement model used in this thesis is 

uw{t) = Cuw{t) + bZ{t) + v™(t) (2.5) 

t = ^ (2.6) 

where CJW is the rotation rate measurement about the downward axis, b™ rep­

resents the bias in the downward direction of the gyroscope, i/™ is the white 

noise disturbance of the downward gyroscope and i v is the random walk noise 

model for the downward axis gyroscope. 

The GPS position measurement model used in this thesis is 

PGPS,N 

PGPS,E 

~au{t) + Kit) + <it) 
~av{t) + Kit) + Kit) 

(2.3) 

PGPS.N 

PGPS,E + 
vN 

vE 

(2.7) 

6 



where PGPS,N,PGPS,E represent the measurements of the north and east GPS 

antenna position, i/N, vE represent the white noise disturbance of the position 

measurement in the north and east directions respectively. 

2.2.3 Estimated Kinematic Model 

The complete model of the vehicle's kinematics including the noise models 

presented in the last section is: 

\ fPN(t)\ 
PE(t) 
VN{t) 
vE{t) 

m 
Kit) 
K(t) 

\K(t)J 

( vN(t) \ 
vE(t) 

{au + bu
a)cosiP{t) - {av + bv

a)smil;(t) 
{au + ^ ) s i n ^ ( t ) + {av + bv

a)cosi;(t) 

uw + bz 
0 
0 

V o J 

+ 

( ° 
0 

vu
a cos ip(t) — vv

a sin i)(t) 
v™ sin 7Jj(t) + vv

a cos ip(t) 

vZ 
VK 
VK 

\ VK 

The estimated version of (2.8) is: 

(PN\ 

PE 

vN 

vE 

CJ 

K 
K 

( VN 

VE 

\ 

au + blj cosV'(t) ~ [av + bv
a) sinV(0 

, au + bA sin i>(t) + (av + ti\ cos ^(t) 

CJW + i% 
o 

V 
0 
0 J 

(2.8) 

(2.9) 

The complete model of the GPS antenna position including the noise model 

presented in the latter section is: 

y 
PGPS,N 

PGPS,E 

PN + lu c o s v{t) ~ h< s m V-'(0 
PE + l-u s m w{t) + lv

 c o s V>(0 + vE 

(2.10) 

The estimated version of (2.10) is: 

y 
PGPS,N 

PGPS.E 
(2.11) 

PN + K cos tp(t) — lv sin tp(t) 
PE + K sin x/j(t) + lv cos ip(t) 

Where all "hat" symbols are estimates. Knowledge of lever arm vector lb — 

[lv, lv] in body frame coordinates is necessary. Reference [2] explains how 
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they est imate the lever arm lb increasing the order of the kinematic model 

to eighteen (i.e. x G M18), however the vehicle must perform complicated 

maneuvers t ha t are impossible to make in a three degree of freedom setup. 

2.2.4 Linear Error Kinematic Model 

Defining x = \pN,PE,VNivE>'tP,b'Z,b1,b™] as the actual s ta te , the estimated 

s ta te as x = \pN,pE,vN,vE^,b^,bv
a,bl 

state and subtract ing (2.9) from (2.8), 

order is: 

and 8x — x — x G R 8 as the error 

the kinematic s ta te error to the first 

5pN 

SpE 
5vN 

SvE 

8f 

sk 
5bw, 

0 0 1 0 
0 0 0 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 
0 0 

- ( a u + &«)sinV;- (o„.+ Sz) COS lp COS 1p 
(au + 6") costp - (av + bv

a J s i n ^ 

0 
0 
0 
0 

sin V* 
0 
0 
0 
0 

0 
0 

- sim/j 

cosi> 

0 
0 
0 
0 

0" 
0 

0 

0 

1 
0 
0 
0 

~5pN~ 
SpE 

5vN 

SvB 

<5V 
Sbu 

a 
5bv 

a 

L u) _j 

+ 

0 
0 

c o s ^ 
sinip 

0 
0 
0 
0 

0 0 0 0 
0 0 0 0 

-sinV> 0 0 0 0 
c o s ^ 

0 
0 
0 
0 

0 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

K 
K 
< (2.12) 

Defining y = \PGPS,N,PGPS,E]T as the actual output , y = [PGPS,N,PGPS,E}T a s 

the estimated output and 8y = y — y G M2 as the output error and subtracting 

(2.11) from (2.10) the output error equation to the first order is: 

5y 
1 0 0 0 - (/„ sin tjj + /„ cos ip) 0 0 0 
0 1 0 0 (lucosip - lysinip) 0 0 0 

5pN 

$PE 

5vN 

5vE 

Sip 

Sbw. 

(2.13) 

Notice tha t the s ta te , input and output matrices are dependent on ip which is 

unknown. 



2.3 3DOF Observability 

We investigate the observability of the linear error kinematic model of the 

3DOF system shown in the previous section (equations (2.12) and (2.13)) in 

order to find out whether a Kalman filter can be designed to estimate the 

UAV state totally or partially. If the system is observable partially, the class 

of trajectories for which the system is observable must be defined. 

2.3.1 Observability: Constant Acceleration 

Assuming the bias estimates and the sensor noise power spectral densities 

(PSD) are equal (i.e. au + 6" = au and av + bv
a = av), the non-zero entries of 

the observability matrix (defined in appendix B) of the system described by 

(2.12) and (2.13) are: 

O 

1 
0 
0 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 

0 
0 
0 
1 
0 
0 
0 
0 

— (lu sin tp + lv cosip) 
(/„ cos ip — lv sin tp) 

0 
0 

— (au sin tp + av cos tp) 
(a„ cos tp — av sin tp) 

0 
0 

0 
0 
0 
0 

costp 
smtp 

0 
0 

0 
0 
0 
0 

— sin ip 
cos^ 

0 
0 

0 
0 

— (/„ sin ip + lv cos ip) 
(lu costp — lv simp) 

0 
0 

— (au sin tp + av cos ip) 
[au cos tp — av sin tp) 

(2.14) 

The reduction of (2.14) into RREF gives the null space of the observability 

matrix q(O) as: 

Q(0) = ^ 

8pN 

5pE 

5vN 

5vE 

5'ip 

5bl 
5K 

L^J 

' 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 0 0 0 
0 0 0 0 0 0 

lu sin ip+lv cos ip 
au 

—lu cos j)+lv sin tp 
au 

0 
0 

0 
0 

5pN 

SPE 
5vN 

5VE 

5ip 

5K 
K 

M 

"0" 
0 
0 
0 
0 
0 
0 
0 

(2.15) 

The null space of O has dimension one if the vehicle's acceleration is constant. 

The subspace of the matrix affects the error states of position, attitude, and 
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bias vectors. A basis for the null space of O is: 
lu sinip+lv cosi/) 

—lu cos ip+lv sin xp 

span < 

0 
0 

a-v 

(2.16) 

1 
0 

Position, heading, forward accelerometer bias and rightward accelerometer 

bias error states will exhibit convergence problems while velocity and gyro 

bias error states will converge to zero. If the GPS antenna is placed exactly 

at the COM of the vehicle then the position error states will converge to zero, 

but the heading and rightward accelerometer bias error states will still exhibit 

convergence problems. 

When the vehicle's acceleration is zero, the observability matrix O becomes 

- (lusmw + IVCOSI/J) 

(lusmip — lvcosip) 
0 

0 = 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

0 
0 
0 

0 
0 
0 
0 

COS'?/' 

0 
0 
0 
0 

— sin-0 

0 
0 

- (lu sin ip + lv cos tp) 
(lusinip — lvcos^jj) 

0 
0 

(2.17) 

The dimension of the null space of O is two. A basis of this null space is the 

span of the following vectors: 

sin xjj cos xft 

span < 

(luSmip + lv cos ip) 
- (lu sin ip — lv cos?/;) 

0 
0 
1 
0 
0 
0 

0 
0 

(lusmi(; + lvcosip) 
— (lu sin ip — lv cos tjj) 

0 
0 
0 
1 

(2.18) 

Accelerometer bias error states are the only error states that will converge to 

zero. The rest of the error states are unobservable in the direction of the null 

space. The heading and gyro bias errors affect, respectively, the position and 

velocity errors. 
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2.3.2 LTI Results and Interpretation 

This section presents the simulation results for certain specific vehicle trajec­

tories. The LTI simulations consider the cases in which: 

1. The vehicle has constant velocity 

2. The vehicle has constant acceleration. 

In both scenarios, it is assumed the vehicle is aligned with true north and 

that the lever arm between IMU and GPS sensor is lb — [—0.7,0] m. 

KE 

i V 

t [seconds] 

(a) Position without lever arm 

t [seconds] 

(b) Position with lever arm 

Figure 2.2: Position Estimates and Errors 

! [seconds] 

(a) Velocity without lever arm 

t [seconds] 

(b) Velocity with lever arm 

Figure 2.3: Velocity Estimates and Errors 
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t [seconds] 

(a) Attitude and bias without lever arm 

t [seconds] 

(b) Attitude and bias with lever arm 

Figure 2.4: Attitude and Gyroscope bias Estimates and Errors 

\i—-~ - - ~ ~ ~ — — ~ — — — 

1 J ir i i i ; 

r~—!—i 
\ i £ i i £ i _ , 

l X X X X X J 

, r , , , 

t [seconds] 

(a) Accelerometer bias without lever arm 

t [seconds] 

(b) Accelerometer bias with lever arm 

Figure 2.5: Accelerometer bias Estimates and Errors 

When the vehicle has zero acceleration and is aligned with true north, 

%l> — 0 and [fl4j,a„] = [0,0]. The null space given in (2.18) suggests that 

only the accelerometer biases are going to be estimated correctly. Figures 2.2 

to 2.5 display the results. Figure 2.5 indicates that the accelerometer biases 

converge to their actual values. Other error states are unobservable when there 

is a lever arm. Without the lever arm, position and velocity states will become 

observable as seen in Figures 2.2(a) and 2.3(a). 
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Figure 2.6: Position Estimates and Errors 

5-» 
£ ° 

^: 
p • 

* - • 

< * 
i : 

„ 

^ ^ ^ 
If 

-
10 2 

' 

10 2 

V 

< ' i i 
r 

v - , • 

.0 2 

' - n " r ' • • ' " 

_ —_ 
~ 

0 30 40 50 & 

, 

0 30 40 50 6! 

0 30 40 SO 6 

• — - * • * - * - «-w— • - - " • " • • ' 
w - w — * -

-
~ ~ W - A ^ . 

-H 

II 
t [seconds] 

(a) Velocity without lever arm 
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(b) Velocity with lever arm 

Figure 2.7: Velocity Estimates and Errors 

t [seconds] 

(a) Attitude and bias without lever arm 

t [seconds] 

(b) Attitude and bias with lever arm 

Figure 2.8: Attitude and Gyroscope bias Estimates and Errors 

The simulation results given in figures 2.6 to 2.9 correspond to an acceler­

ation in the north direction ([a^. as] = [1, 0] ™). The heading of the vehicle is 
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(a) Accelerometer bias without lever arm 
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(b) Accelerometer bias with lever arm 

Figure 2.9: Accelerometer bias Estimates and Errors 

tangent to the direction of acceleration (-0 = 0). From (2.16), we know that the 

position, heading and accelerometer biases will have estimation errors, while 

the velocity and gyro bias states will be estimated correctly when the lever 

arm vector is considered. When the lever arm vector is zero, only the heading 

and accelerometer biases will have convergence problems. 

When the vehicle is accelerating, the dimension of the null space is one, 

whereas when it is not, the null space dimension is two. It is reasonable to think 

that more states would have convergence problems with the two dimensional 

rather than the one dimensional null space. However, the null space basis forms 

a direction where the state space can not be estimated and will affect those 

states that are different from zero in the basis, regardless of the dimension 

of the null space. A bigger nullity would provide higher chances of more 

states having convergence problems. Nevertheless, there could be cases where 

a smaller nullity affects as many states as a bigger null space dimension. 

If the vehicle is going at constant acceleration the null space dimension 

is one and the states affected are the position ([Sppj^Sps] ), heading (Sip) 

and acceleration biases ([£&", <56̂ ] )• If the vehicle is non-accelerating, the 

null space dimension increases to two and the states affected are the position 

\[5PN,8PE] J, velocity ([8vN, 8vE] ) , heading (Sip) and gyro bias(56";). Fig­

ures 2.6 to 2.9 present the results from the Kalman estimator without lever 

arm (left plots) and with lever arm (right plots). 
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2.3.3 Observability: Non Constant Acceleration 

In this section we show that the linear kinematic error model can be made ob­

servable by maneuvering the vehicle. Letting a(t) = — (lu sin ip(t) + lv cos tp(t)), 

b(t) = (lu cos ?[)(t) — lv sinifj(t)), c(t) = — (au(t) sin i/j(t) + av(t) cos 0(t)) and 

d(t) = (au(t) cos if)(t) — av(t) sin i^{t)), a truncated to the third order observ­

ability matrix (5y I is: 

O 

1 
0 
0 
0 
0 
0 

0 

0 

0 
1 
0 
0 
0 
0 

0 

0 

0 
0 
1 
0 
0 
0 

0 

0 

0 
0 
0 
1 
0 
0 

0 

0 

a(t) 
6(*) 
a(t) 

W 
c{t) + a(t) 
d(t) + b(t) 

c(t) + (a(t) 
(3) 

d(t)+ b{t) 

0 
0 
0 
0 

cos tl>(t) 

sir 

-j,(t 

m 

>m 
simp(t) 

cos ijj(t) 

0 
0 
0 
0 

— sin^(t) 

cos ip(t) 

—ip(t) cos ip(t) 

-ip{t)sini/j(t) 

0 
0 

a(t) 
b(t) 

2a{t) 
2b(t) 

c{t) + 3a(t) 

d\t) + 3b(t) 

A necessary condition for O to be of full column rank is that c(t) and d(t) must 

be differentiable. If the system is to be rendered unobservable and assuming 
( 3 ) , 

c(t) and d(t) are differentiable. then a(t) — —c(t), b(t) = —d(t), a(t) = —c(£), 
(3) 

b(t) = —d(t) and higher order derivatives of a(t), b(t), c(t), d(t) must vanish. 

•N 

Figure 2.10: Vehicle 2D Trajectory 

fau\ I a f j s i n ( f t + f ) \ 

0 

a^ S in( f t+f ) 

(2.19) 
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The trajectory shown in figure 2.10 is characterized by the acceleration and 

heading equations given in (2.19). The vehicle is moving in the east direction 

at constant velocity. With lh — [lu, lv] = [—0.7,0] and a = 2 then: 

a(t) — —lu sin ?&_—\* U— 2.20 

'*£(«* (f + f))7 

Vl+«2S(cos(f + f))V 

— ^ — ^ 2J-—~ (2.22) 25 V 5 ' 2 / 

l + a 2 g ( c o s ( f + f ) y 

7T2 . /7T. 7TN / a ^ s i n ( f i + § ) 

25 V5 2 
d(t) = a—sin - t + - cos ^ — ^ ^ ^ (2-23) 

l + a ^ ( c o s ( f + f ) y 

( 3 ) , ( 3 ) 

It is obvious that d(t) ^ -c(t), b(t) ^ -d(t), a(t) ^ -c(£), 6 (t) / -</(*) and 

the higher order derivatives of a(t), b(t), c(t) and d(t) do not vanish. Therefore 

the trajectory given in (2.19) is observable and the EKF will estimate all states 

correctly. 

Although all states can be estimated correctly, the lever arm vector de­

creases the rate of convergence of the EKF. In practice it is recommended to 

place the GPS antenna as close to the IMU as possible in order to improve the 

observability as long as it is the only aiding available. 
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Chapter 3 

6DOF Kinematic Model 

UAV are flying vehicles that have six degrees of freedom to move. Therefore 

UAV can translate in the forward, rightward and downward directions as well 

as rotate about the forward, rightward and downward directions ([u,v,w]). 

3.1 Reference Frames and Coordinate Systems 

The five reference frames of interest as explained in [1, Sec. 2] and [4, Ch. 2.1] 

are: 

• Ineriial Frame: This is a reference frame in which Newton's laws of 

motion apply. Therefore this frame must be non-accelerating. The vec­

tors decomposed in this frame will have the following notation: v1 = 

• ECEF Frame: Earth centered earth fixed. This frame is non inertial 

since the earth is rotating relative to the inertial frame and therefore 

accelerating. The origin is the geometric center of earth, Z-axis points 

to north, Y-axis points from the origin to 90° east of the greenwich 

meridian and lies at the equatorial plane, X-axis points from the origin 

to the intersection of the greenwich meridian with the equator. The 

vectors decomposed in this frame will have the following notation: ve = 

\ve. ve, ve]. 

• Geodetic Frame: By default most GPS instruments report position in 

this coordinate system. The height h is the closest distance from the 
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UAV to the surface of earth. Note that the vector from the surface of 

earth to the UAV is normal to the surface of the earth; the latitude 

$ is the angle formed by the extension of the height vector h to the 

equatorial plane; the longitude A is the angle formed from the projection 

of the position vector from origin to UAV into the equatorial plane with 

the greenwich meridian. 

• Body Frame: This frame is rigidly attached to the UAV. The origin 

is located at the COM of the UAV. The vectors decomposed in this 

frame will have the following notation: vb = [vu,vv,vw] where u is the 

forward component, v is the rightward component and w is the downward 

component. 

• Navigation Frame: All the data from the EKF is referenced to this frame. 

The origin is located at the ECEF position of the base station GPS 

antenna. The vectors decomposed in this frame will have the following 

notation: vn = [VN.VE.VD] where N is the true north component, E is 

the true east component and D points to the inside of the surface of the 

earth. 

3.2 Actual Kinematic Model 

Assuming that the navigation frame: 

1. Is the plane tangent to the position of the base station antenna. 

2. Does not have motion relative to earth i.e. Q"n=0. 

The state equations for position, velocity and attitude are: 

pn\ I vn \ / vn \ 
vn = C6"/6 + 9n ~ (Men + 20™ ) vn = q \ f + gn - 2^v" (3.1) 

A) \ C^b
nb J \ cA ) 

where pn — [PN,PEIPD] € R3 represent the position decomposed in naviga­

tion frame coordinates which are north, east and down components. vn = 

[VN,VE: VD] G M3 is the velocity decomposed in navigation frame coordinates. 
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Cb is a Direction Cosine Matrix (DCM) that transforms vectors decomposed 

in body frame coordinates into navigation frame coordinates, this DCM is a 

function of the roll </>, pitch 6 and yaw ip. The vector ujfe represents the rel­

ative angular velocity of the ECEF frame with respect to the inertial frame 

decomposed in navigation frame coordinates. The vector ujb
nb represents the 

relative angular velocity of the body frame with respect to the navigation 

frame decomposed in body frame coordinates. 

For computing the relative angular velocity from the body frame to the 

navigation frame (i.e. uj^b), the following relation is useful [4, Ch. 6.2.2.3]: 

b, ji ujb
nb = u4 - Cb

n (o£ + u&) = u4 - C > . (3.2) 

In equations (3.1) and (3.2), fb is the specific force of the UAV decomposed 

body frame coordinates and tob
b is the attitude rate of the body frame relative 

to the inertial frame decomposed in the body frame coordinates of the UAV. 

The symbols Q"e and Qb
nb represent the skew symmetric matrix form of the 

vectors ujfe and uh
nb respectively. They are usually used to represent the cross 

product of two vectors. For example: 

< x vn fi>" 
0 

-UJi, 

-ijj. ten UJ; ieE 

0 -UJ. iejv 

UJi, 

VN 

VE 

I'D 

(3.3) 

The DCM Cfc" function of (p, 0, ip is: 

cos (il>) cos (ff) - sin (ip) cos (0) + cos (t/>) sin (0) sin (4>) sin (ip) sin (0) + cos (ip) sin (0) cos (0) 
sin (V>) cos (0) cos (i/>) cos (<j>) + sin (-0) sin (0) sin (0) — cos (V>) sin (0) 4- sin (yj) sin (0) cos (0) 

— sin (0) cos (0) sin (0) cos (0) cos (0) 

(3.4) 

The time derivative of the DCM Cb given in [4, Ch. 2.5.1] is: 

Cr
b
l = CTttb 

nb (3.5) 

A further simplification can be made to the state space model (3.1) if we 

neglect the earth rotation (i.e. S7"e = 0). The simplified model is: 

= \C?fb + g 
cwb

b 

(3.6) 
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The main states that the navigation system is supposed to estimate are the 

position, velocity and attitude, the latter given in Euler angles relative to the 

navigation frame. 

For the GPS position model, once the GPS base antenna's position [A0, $0, ho] 

is found (see Appendix D), then the origin of the navigation frame is defined 

and the relative position of the rover GPS antenna with respect to the base 

can be computed as follows: 

PGPS = C" {PGPSromr ~ PGPSbasJ (3-7) 

where p%pq ,VrPq are the position in ECEF coordinates of the base and 

the rover respectively. jf^PS represents the relative position between the rover 

with respect to the base decomposed in navigation frame. The DCM C™ is a 

function of A0 and $0- It is computed as follows: 

c: 
- sin Ao cos $ 0 — sin Ao sin $0 cos Ao 

— sin <£>0 cos <E>o 0 
cos A0 cos $ 0 ~~ c o s ^0 sin $ 0 — sin A0 

(3. 

The actual GPS position model in terms of the UAV's COM position is: 

V=PGPS=Pn + C%lb (3-9) 

where pGPS is the GPS rover antenna's position decomposed in navigation 

frame coordinates and lb = [lu,lv,lw]T is the lever arm vector decomposed in 

body frame coordinates. 

3.3 Sensors Models 

It is necessary to estimate noise in the INS measurements by augmenting the 

kinematic model in (3.6) which includes specific force and gyro attitude biases. 

IMU sensors measure the attitude rate and specific force in the body ref­

erence frame imperfectly. Thus, the measurements are modeled as their true 

values plus noise plus biases 

f" = fb-^a-bb
a (3.10) 
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where fb represents the measured specific force vector that is measured by 

the accelerometer sensors of the IMU, fb represents the actual specific force 

vector. Since the IMU is assumed to be rigidly attached to the UAV, this 

vector is decomposed in body frame coordinates. The symbol va represents 

white noise disturbance. The symbol bb
a represents the bias disturbance of the 

accelerometers. 

The symbol wfb represents the actual relative rotation of the body frame 

with respect to the navigation frame decomposed in body frame coordinates, 

Cb\h represents the measured relative rotation of the vector described before. 

The symbol vg represents the gyro white noise disturbance. The symbol b^ 

represents the bias disturbance of the gyroscopes. 

The specific force can be expressed as 

where p and g are position and gravitational field vectors respectively. There­

fore, the IMU accelerometers besides measuring the UAV acceleration, they 

also measure the gravity vector. The addition of the acceleration and gravita­

tional vectors is known as the specific force / . 

Typically the bias noise components of the IMU sensors are modeled as 

Gauss-Markov processes: ( 

a. = 

where ra, rw are the autocorrelation time constants of the accelerometers and 

gyroscopes respectively and v\ya, v^ are the driving white noise process for ac­

celerometer and gyroscopes respectively. A further simplification to (3.13) can 

be made if we assume the time constants of the accelereometer and gyroscope 

biases are infinity (i.e. ra = oo, rw = oo). This will reduce the "Gauss-Markov 

process" to a "Random Walk process": 

a. — 

Similarly, GPS sensors measure position in ECEF coordinates imperfectly. 

These measurements can be transformed to navigation frame by means of the 
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DCM C". The GPS position solution error is proven to be bounded and thus 

there is no need to include a bias term as with INS. The GPS position model 

decomposed in navigation frame coordinates is: 

POPS — PGPS + v\ PGPS 
(3.15) 

3.4 Estimated Kinematic Model 

Keeping (3.6) and (3.14) in mind, define x = pnT,vnT,c?T,y?x as the 

estimates of the state variables x "nT ubT tf>T 
„nJ „.rtJ / i n ' 1.6' u 

T 
The complete 

model of the UAV's kinematics including the noise model presented in last 

section is 
p" 
vn 

Ub 

bb
a 

bb, 

C'Zfb + gn-2ni 

Vba 

The estimated version of (3.16) is: 

r . 

%n 

4-
% 
lb 

= 

Vn 

Cffh + gn 

cA 
0 
0 

The complete output model including noise is 

(3.16) 

(3.17) 

nib y-pn
GPs-pn + c^i (3.18) 

The estimated version of (3.18) is 

nib y = Pn
GFS = Pn + CZt (3.19) 

where the lever arm I is assumed to be known. 
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3.5 First Order Error Equations 

The error state 8x = defined as 

/ 8pn \ ( pn - pn \ 

8vn 

[5px] 

Sbb
a 

\8K > 

vn — vn 

I - C?C% 

bb
a - bb

a 

V bi-hi 

The state equation for the error in position is 

(3.20) 

5pn = pn -pn = vn 8vr' (3.21) 

The state equation for the error in velocity is 

5v* ~ni i-b n r $b ~in fb 

c?f" + gn~ c?r -gn = c%6fb - cub x sp (3.22) 

The error in the rotation matrix estimation (i.e. Cb J is modeled as a skew 

symmetric matrix P = [8px] as shown in equation (3.20) in the third row: 

Cb = (I — P)Cb. A first-order dynamical model for the skew symmetric 

matrix P is 

&b
l = -PCI + (I-P) CI 

&A = -Pci + (I-P) c^l 

PCI = C^b -(I-P) C^b - PC^\h 

P = [8 px] = CZ8tt\bCf 

Equation (3.26) expressed in vector form is 

5p = C%5u,\h 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

The attitude error vector 8p is decomposed in navigation frame coordinates 

and represents misalignments between the axes of the true navigation frame 

with the computed navigation frame axes (see Figure 3.1). The following 

relations hold when the attitude error is small: 8p^ ~ 8(f), 8ps ~ 86 and 

8pD ^ 8t[). 
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8pE 
E 

Figure 3.1: Attitude Error 

The models for 5fb, 5ujb
b, f

b are not yet defined. Recalling equations (3.10) 

and (3.11) and defining their estimates as: 

fb = f + bb
a 

U), ib ul + t Jlb 

The sensor error models are: 

Sfh = fb-fb = Sbb
a + va 

5ul " * Cjb = 5bb, + va J\b 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

Recalling the last two rows of equation (3.20) and (3.14), the first-order dy­

namical model for the bias errors are: 

5bb
a = vba 

sit = ^ 

(3.32) 

(3.33) 

Collecting equations (3.21), (3.22), (3.27), (3.32) and (3.33), in matrix form: 

'8p" 
8vn 

5p 
5bb 

0 / 
0 0 
0 0 
0 0 
0 0 

0 0 
-[C-/6x] C? 

0 0 
0 0 
0 0 

0 
0 

Q1 

0 
0 _ 

'5jf' 

Svn 

5p 
5bb

a 

5bb, 

+ 

0 

c? 
0 
0 
0 

0 • 

0 
ci 
0 
0 

0 0" 
0 0 
0 0 
/ 0 
0 / 

p -J 

"a 

Vu 

"ba 

yb„_ 

F 
(3.34) 
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The GPS position aiding measurement is the UAV's center of mass position 

plus the lever arm vector: 

V = POPS = Pn + Cn
bl

b + < G P S 

An estimated version of equation (3.35) is: 

y = jT + CI? 

(3.35) 

(3.36) 

Subtracting (3.36) from (3.35), the following error output equation is obtained: 

8y=[l .0 -[C£lbx} 0 0] 

// 

'8pn' 
5vn 

5p 

K 
5bb 

POPS 
(3.37) 

The mechanization equations that are going to be used for the EKF are: 

• During the integration phase, the nonlinear update equation is: 

4" 
vn 

cAb 
0 
0 

(3.38) 

During the measurement update phase, the linear state space model is: 

5pn~ 
Svn 

Sp 

Sbb
a 

Ml 

= 

"0 
0 
0 
0 
0 

I 
-2fl 

0 
0 
0 

0 

- [cub 

u ie 

0 
0 

0 
c% 
0 
0 
0 

0" 
0 

Q1 

0 
0_ 

~5pn~ 
5vn 

5p 

H 
M. 

+ 

0 

0 
0 
0 

0 
0 

(~<n 

0 
0 

0 
0 
0 
I 
0 

0" 
0 
0 
0 
I 

vba 

Sy=[l 0 - [C£lbx] 0 0] 

V" 
5vn 

5p 

K 
5bb, 

+ K POPS 

(3.39) 

(3.40) 

When the lever arm is neglected (lb = 0) then the third entry of equation 

(3.40) is zero. 
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Chapter 4 

GPS aided INS Observability 

Kalman Filtering is used in the integration of Inertial Navigation System (INS) 

and Global Positioning System (GPS) technologies to provide reliable naviga­

tion data. An INS uses a state space kinematic model which is integrated 

over time, GPS provides the system's measurements. The total state of the 

kinematic model must be inferred with GPS position aiding because the mea­

surement dimensions (K3) is less than the system's state space order (K15). 

The states to be estimated are position, velocity, attitude, acceleration bias 

and gyroscope bias. With knowledge of the kinematic model, the sensors dy­

namical model and the GPS measurements, an EKF can be used to estimate 

the current state of a vehicle. Linear Observability analysis is necessary to de­

termine if the estimator will converge and if so, for which vehicle trajectories. 

4.1 UAV Observability Problem Statement 

The observability of the linear kinematic error model of a 6DOF UAV is dis­

cussed in this section. The UAV that will be used in our practical analysis is 

a helicopter. The rotor of the helicopter is located at the vertical axis that 

passes through its COM, making it difficult to place the antenna along this 

same axis. The most viable position for the GPS antenna is the tail of the 

helicopter and the lever arm vector is generally expected to have components 

in the forward u, and downward w directions. Figure 4.1 shows the lever arm 

lh between the UAV's COM and the GPS antenna. 
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GPS Antenna 

UAV's COM 

Figure 4.1: ANCL Helicopter 

The state matrix is: 

F(t) 

0 
0 
0 
0 
0 

I 
0 
0 
0 
0 

0 0 
-[C?/"x] Q' 

0 0 
0 0 
0 0 

0 
0 

ci 
0 
0 

The output measurement matrix is: 

H(t) = [I 0 - [C£lbx] 0 0] 

(4.1] 

(4.2) 

The observability matrix O is a function of matrices F and H. Appendix 

B describes how to compute O from F and H. Three cases are analyzed: 

1. The Linear Time Invariant (LTI) case where acceleration and attitude 

are constant. 

2. The Linear Time Variant (LTV) case with variable acceleration and con­

stant attitude. 
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3. The General LTV cases where acceleration and attitude of the vehicle 

changes. 

4.2 LTI Observabil i ty Analysis 

4.2 .1 LTI Observabi l i ty: U n b i a s e d M e a s u r e m e n t s 

Assuming all sensors are corrupted by white noise only, the biases are not 

taken into consideration and the linear error state equation becomes: 

'5pn' 

5p 

03 h 
0.3 0 3 

03 03 

o3 

[ q 1 / 6 * ] 
o3 

~5pn~ 
Svn 

> . 

+ 
"o3 

.03 

o3" 
o3 

ci 

r -1 

If 
^UJ 

(4.3) 

If the lever arm vector is not negligible, the output equation is: 

Sy 

The observability matrix is 

O 

\h 0, [cpb 

hx3 

03x.3 

o3x3 

0.3x3 

hx3 

03x3 

'5pn' 
8vn 

5p 

PS?*] 
J 3 x 3 

(4.4) 

- \Cjlfb 

0 18x9 

(4.5) 

The nullity of O is one independent of the value of lb, and a null space basis 

q(O) is: 

q(0) = span 
> X fn~ 

0 3 x i 

/ " 

\ 

> 

> 

(4.6) 

Thus the position of the center of mass of the UAV becomes unobservable as 

the GPS antenna is displaced from the COM of the UAV. However, in case 

the specific force / " = C£fb and the lever arm ln = C£lb are aligned (i.e. 

/" = afn), the position error states become observable. This is only possible 

when the specific force is the gravity vector (i.e. / " = [0, 0, —g]T) and the 

UAV is level relative to the local tangent plane. 

Figure 4.2 presents the simulation results for an EKF which estimates the 

UAV states assuming lb — 0. The UAV is hovering at a height of ten meters 

above the origin, with a roll angle of zero (& = 0), a pitch angle of zero (9 — 0) 

28 



V\fy&*£&^^ 

a-oJ- '* " ' l »' • V •• , >' ',' • H 

• ^ 

£ [seconds] 

(a) Position states pn 

V 
'• , • / . - ' • 

"̂.* *? ¥ # 
-'"* <-' 

,.', ^ 
/. . 
''v-? 

,; 
. >v >^* 

• • : 

i ?* y * ^ "^"^T; 

10 20 30 « 50 61 

" f 
••?-{;£ ii 

t ,. 

". >' "** 
v -' '.* 

V* '/" T-
\t. " 'A r< + 

>V 

. • . • - ; 

' ". t 

t [seconds] 

(c) Velocity states vn 

> 

- - C O S 

* 
^ . 

^ 

^ 

I 

^ 

X 

f ^ f ^ y V v , ^ ^ 

4^^^0%^^^ 

-

* 
([seconds] 

(b) Position error states 5pn 

M#*^*&U%Wm^^M 

^mhhrm ^j^ifirf/^^ 

1 [seconds] 

(d) Velocity error states 8vr' 

mm* v̂̂*" vy^^r^vrF.r^.T^-A-^fcjfi 

<[ s«w s] 

£^&jj^^W&f&^?&y 

l i W ^ ^ 

/[seconds] 

(e) Attitude states 0, 0, ̂  (f) Attitude error states 5p 

Figure 4.2: Sta te Estimation: No Lever Arm 

29 



n 

,h 

B-. n 
A_ 

/[seconds] 

(a) Position States pn 

/[seconds] 

(c) Velocity states vn 

V 
/[seconds] 

t • 

b) Position error states 5pn 

v ; " : _", " ' " 10 20 30 "0 50 01 

Sr-**t~-y*~»-*y»«*^^ 

10 10 30 JO 50 6 

V 

/[seconds] 

(d) Velocity error states Svn 

f\sp.conds\ 

6 - * 

•t*f* ^/^^wVv^^,->>-w%^V^ya^^J^*AA' >v^» 

,0 20 SO « 10 . 

? 

° V 

1 L 

^ 
I ^"»VvA;*>s'*\^^^>^/V\^V^/^/^'^^V"Vy-V^.A(V 

/•[sOfOllcls] 

(e) Attitude states <j>, 0, ip (f) Attitude error states dp 

Figure 4.3: State Estimation: Lever Arm 

30 



and a heading angle different than zero (ip = | ) . Thus the UAV is aligned 

with true east hovering ten meters above ground. 

Observing Subfigures 4.2(e) and 4.2(f), the yaw xp state has convergence 

problems. Recalling that: 

1. The null space (without the lever arm) of the unbiased system is in (4.6). 

2. The accelerometers are measuring the gravity vector (i.e. / " = [0,0, —g] 

3. The attitude error vector is: [8pN,8pE, 8pD]q ~ [5<j), S6,8ip]T. 

the attitude in the direction of gravity is unobservable. Therefore, the heading 

or yaw angle tp will be unobservable and its error is integrating the gyro sensor 

white noise (Angle Random Walk). 

Figure 4.3 displays the results of the UAV state when a lever arm vector 

equal to lb = [-0.7,0,0] m is assumed. Furthermore, the heading of the UAV 

is towards east (ip = | ) , the vehicle is hovering ten meters above ground, and 

the vehicle has zero roll angle (<f> — 0) and zero pitch angle (9 = 0). 

Looking at Subfigures 4.3(e) and 4.3(f), it can be inferred that the yaw 

(ip) has non zero steady state errors because the unobservable subspace is the 

span of [ln x / " , 0, /"] and the specific force is fn = [0,0, —g]T affecting the 

heading state (ip) only. 

From Subfigures 4.3(a) and 4.3(b), it can be observed that position states 

has non zero steady state errors in the north (Sp^) and east (8p%) directions. 

If the specific force vector is gravity (i.e. / " = [0,0, —g] ), then the yaw error 

state (Sip) is unobservable, the roll and pitch error states (8p, 86) are observ­

able, and the position measurement will be: 

8y = 8pn - Cllh x 8p (4.7) 

using the lever arm vector lb = [^,^,0] and [<p,9,tp] = [0,0, | ] , equation 

(4.7) becomes: 
8PN 

8PE 

8pD_ 

— 
" 0 

0 

^u 

0 
0 

by 

^U 

ty 

0_ 

" 0 " 
0 

8ip 
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the observability of the north and east position error states {6PN,6PE) is af­

fected. If the GPS antenna was placed at the vertical axis of the UAV and the 

UAV was hovering, then I" x / " = 0 and the position error states (5pn) would 

become observable. 

4.2.2 Observability with Bias: Constant Acceleration 

The linear system is described by (3.34) and (3.37) when the specific force fb 

and rotation matrix C^ are kept constant. The observability matrix is: 

O 

^3x3 

0 3x3 

03x3 

0 3x3 

03x3 

-^3x3 

0 3x3 

03x3 

- [C?/6x] 
03x3 

- [c?/*x] 
0 3 x3 

03 X3 

0 3x3 

0 3 X3 

03x3 

-[c?ibx]cz 
03 X3 

-\C?f»x]C% 
0 33x3 

(4.8) 

45x15 

The rank of O with or without the lever arm vector is eleven, and hence its 

nullity is four. Using 5x = 5pn .Svn ,5pT,Sbb
a ,8b^ 

space coordinates, a basis for the null space q(0) is: 

G.M15 as the state 

q(0) = span < 

03 x l 

7 ('" x 
0 3 x l 

0 3 x l 

/ " 

ib) 
, 

[CIH»] x 
"0" 
0 
1 

03X1 

"0" 
0 
1 

/ ' 
&fb] >< 

0 3x 1 

[Ct»J> x 

Osxl 
0" 
1 
0 

[cub] x 

03X1 

\ 

/ 

-
[Ct»/»] x 

r 0 
0 

0 3 x 1 

1 

1 
0 
0 

Cf 1 [Cf/*] x 

0 3 x 1 

(4.9) 

The state coordinates 5x have physical significance since they represent the 

error of the UAV's kinematics. Although the dimension of the unobservable 

subspace is unaffected by the value of the lever arm, the directions of unob-

servability is affected, and more states suffer convergence problems. 

With no lever arm the null space basis in (4.9) becomes 

span.< 

' 

ro3xr 
0 3 x 1 

0 3 x l 

Osxl 
L fb . cf 1 

03X1 
0 3 x 

y 
0 
0 

1 

f 

[CI 

0 3x 

>]x 

1 

• 

"ll 
0 
0 

\ 

) 
cf 

03X 1 
0 3 x 

"(f 
1 
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1 

/ 

0 
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3X 
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1 
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'o" 
1 
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\ 

) 

, 

cf 

0 3 x 
0 3x 

0' 
0 
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1 
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f 

[ci 

0 

V 

3x 

> ] x 

1 

"ol 
0 
1 

\ 

) 

• 

(4.10) 
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The LTI observability conclusions are: 

1. When lb = 0, position and velocity errors 5pn, 5vn will always converge 

to zero according to the null space basis in (4.10). On the contrary when 

lb ^ 0 position and velocity errors will exhibit convergence problems (see 

(4.9)). 

2. The projection of the gyro bias error 8b^ into the specific force fb vector 

is not observable. For example, when the vehicle is stationary, fb = 

[0, 0, —g] . The down gyro bias component 8bb
ww will be unobservable. 

3. The projection of the accelerometer bias 8bb
a into the cross product of 

specific force / " = C£fb with the attitude 8p of vehicle (i.e. fn x 8p) 
T 

when is rotated by C™ is unobservable. For example, when the vehicle 

is hovering, fb = [0, 0, —g] and furthermore, letting all attitude angles 

be zero, C% = /3X.3- The only observable state is the bias in the down 

direction 8bb
aw. 

State Space Decomposition 

As a case study, we consider the case where the UAV is leveled relative 

to the navigation frame (i.e. C^ = I). The original state coordinates 8x = 
r i f 

8pnT,8vnT,8pTJbbJ ,8bbJ are going to be transformed into a new set of 

state coordinates 8x = T8x. The new state coordinates are divided into ob­

servable and unobservable subspace. 

Theorem 6.06 of [5] can be used in the transformation of the coordinates of 

the linear state space given by equations (3.34) and (3.37). This transformation 

divides the system into observable and unobservable subsystems. The theorem 

states that it is necessary to find and stack the linear independent (LI) rows 

of the observability matrix. The difference between the state space dimension 

and the number of LI rows defines the number of vectors that have to be 

picked arbitrarily in order to make the similarity transformation matrix T 

nonsingular. The following relations are useful: 

8x = TSx 

33 



8x = TFT-15x + TBSu 
5y = HT-Hx 

The dynamics 5x = F5x is transformed into: 

5x0 _'F0 0 
5xNO 

5xo 
5xNO 

F2l F „ o J - - (4.U) 

It is necessary to find the matrix T that decomposes the system into observable 

and unobservable subsystems in order to determine the new set of states by the 

transformation 5x = T5x. Matrix T is attitude and acceleration dependent 

(C?i / " ) • I n the case of hovering, it is assumed the UAV reaches equilibrium 

at a pitch angle (9) of zero degrees and a roll angle (</>) of zero degrees. The 

yaw (tp) does not affect the hovering of UAV and can assume any value. Two 

examples are presented: 

1. The lever arm vector is equal to zero (i.e. lb = [0,0,0]7) 

2. The lever arm vector is different than zero (i.e. lh 
t,o,L}q 

Assuming the UAV is leveled, aligned and hovering, then C£ = /3X3 and 

f» = fb = [0,0, -g}1. Without lever arm, the coordinate transformation is 
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(4.12) 

Using a lever arm lb = [lu, 0, lw], the coordinate transformation is 
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Si: 

SpN + IwSpE 
&PE ~ lm$PN + luSpD 

$PD - luSpE 
&VN + lwSb^,v 

SVE - lv,5biu + L5biw 

5vD - luSt>lv 

-gSpE + Sbb
au 

gSpN + Sbb
av 

-g&blv 

(4.14) 

6pN + IW5PE - 9&b% 

-IwSpN + luSpD + SpE + gf>bb
au 

-lu&PD + SpD 

gluSvE - g5btm 

Observe that position and velocity states are completely observable in the 

absence of the lever arm vector, while there is only a specific direction where 

these states are observable when the lever arm vector is considered. 

In each case, the bottom four row vectors of the transformation matrix T 

belong to the null space of the observability matrices given in (4.8). To find 

a general expression for the transformation of the state space into observable 

and unobservable parts, it suffices to stack the first eleven LI row vectors of 

(4.8). The next four rows in these examples are taken from the basis of the 

null spaces (4.10) (lb = [0,0, 0]T) and (4.9) {lb = [L,0,lw]T) respectively. 

4.2.3 Eigenvalue Analysis 

This section considers the stability of the unobservable modes in LTI. The 

only eigenvalue in the state matrix that is given in equation (3.34) for any 

attitude and acceleration is zero. This is because the state matrix has zeros 

on its diagonal and is upper triangular. The multiplicity of the zero eigenvalue 
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is 15. The error state transition matrix transformed into Jordan form is 

= Q~lFQ = 
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(4.15) 

This Jordan form is not affected by the value of C^ and specific force vector 

/ " = C^fh. Solving Sx ~ Fj5x gives: 

1 t 
0 1 
0 0 
0 0 
0 0 

0 0 
0 0 

5x (t)= 0 0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

As expected we observe certain error states may diverge from their true values. 

However, it is difficult to describe which of the original error states 8x — 

5pn , 5vn , 5pT, 8bh
a , 6b^ diverge since the new error state 5x = QSx is some 

linear combination of 5x which depends on Cg and / " . 

Let's suppose that the UAV rests motionless on the ground and the body 

frame is leveled and aligned with navigation frame. In this state C£ = I. 

Transforming the state matrix into Jordan form as in (4.15), the coordinates 
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are changed into 8x = Q 18x. Then, the new system coordinates 8x are: 

Q~1Sx = 
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(4.17) 

From the homogeneous solution (4.16) and the new coordinates (4.17), we 

conclude 8b^v, 8bh
ulu, 8bb

aw, 8bb
bJW, 8bb

av, and 8bb
au will in general exhibit nonzero 

steady state values. Nine of the transformed states will in general diverge. We 

observe that 8pN and 8v^ are unstable. It can be inferred that 8ps ~ 89, 8PE, 

8VE, 8pN ~ 8(f>, Spu, 8VD, and 8po ~ 8IJJ are not convergent. 

The transformation given in (4.17) works only when the body frame is 

leveled and aligned with the navigation frame and there is no acceleration 

other than gravity. As discussed before, the transformation is dependent on 

the rotation matrix C£ and the acceleration vector / " and more complicated 

expressions may be found when C£ ^ I. 

4.2.4 Simulation and Physical Interpretation 

We Simulate an EKF with and without lever arm with a stationary UAV in 

order to check the observability of the states. We assume 

1. The vehicle is located at the origin (pn = 0) 

2. The vehicle is leveled with the local tangent plane ((</>,#) = (0,0)). 

3. The vehicle is aligned with true north (ip = 0). 

Looking at the left portions of figures 4.4 to 4.8, we see that, when lever 

arm is zero, the position error states 8pn, velocity error states 8vn, downward 

accelerometer bias error state 8bb
aw, forward gyro bias error state 8b^u and 

rightward gyro bias error state 8bb
iCV converge since these states are completely 
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Figure 4.4: Position Estimation 
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Figure 4.5: Velocity Estimation 
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Figure 4.7: Acceleration Biases Estimation 
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observable. On the other hand, the right portions of these figures show that 

convergence problems exist for all states except with the forward and right-

ward gyro bias error states Sb^u,8b^v, the downward accelerometer bias error 

state (Sbb
aw^j, downward position and velocity error states SpD,5vD and north 

velocity error state Svjy. 

4.3 LTV Observability: Zero Bias 

This is the most trivial case of LTV observability analysis. Recalling the linear 

nine state space equation: 

8pn 

5vn 

5p 

0 / 
0 0 
0 0 

0 
- [ / " x 

0 
] 

5pn 

Svn 

> . 

+ 
"0 

ci 
0 

0" 
0 

r -j 
va 
Vu. 

5y=[l 0 -[Znx]] 
Spn 

5vn 

5p 

The observability test is performed on 

/ 0 

0 / 

0 0 

O 

lnx 

inx 

0 0 

0 0 

/ n x 

(n-3) 

lnx\ 
(3) 

lnx 

(n-1) 

/" X 

The system is observable if there are at least two LI vectors from the set 
(3) (5) (7)^1 

/ n + in,fn + in,...,fn + r >. 

Rotation alone can produce a time varying lever arm (e.g. Z" = C^ft^bl
b 

and so on). The time derivatives of the lever arm might be in the opposite 

direction to the specific force time derivatives (i.e. / " + ln = 0 and so on) and 

the nullity dimension might be as high as three. 
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4.4 LTV Observability with Bias: Variable Ac­
celeration 

In this section we assume variable fb and constant Cg. The following fifteen-

state observability matrix is obtained: 

O 

' 1 0 -
0 / 
0 0 ^ 

0 0 -

0 0 -

0 0 -

0 0 -

[ClHbx] 
0 

]C?fbx\ 
C£fbx 

Cffbx 
(3) = 

C?fbx 

(12)" 

Cnfb 

0 
0 

0 

0 

0 

0 

0 
[C?l"x] C£ 

0 

[C£fbx} CI 

-2 

-3 

-12 

C?fbx 

C?/6x 

( ID 

C£fbx 

CV 

CV 

CV 

(\.\l 

The first three block rows of matrix (4.18) are almost in row echelon form 

(REF). Observe also that the first two block rows of O will always provide 

six LI rows regardless of the value of the lever arm. The addition of the lever 

arm vector when there is no rotation does not affect the rank of the matrix 

in (4.18). Thus it suffices to check for the rank of the block submatrix at the 

bottom (below the first two block rows and to the right of the first two block 

columns). Three cases are the most important in the analysis of the rank of 

O: 

1. When for all t, fb and all its time derivatives are linearly dependent, 

2. When for all t, fb is LI with one of its time derivatives, 

3. When for all t. fb is LI with at least two of its time derivatives. 
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4.4.1 fb and Time Derivatives are Linearly Dependent 

It suffices to check that the rank of the block sub matrix at the bottom of 

(4.18) is full column rank: 

Q/bx 
C-fbx 

cr/6x 

( 1 2 ) • 

C6
n/6x 

0 

0 

0 

0 

[C?/*x] CI 

-12 

CZfbx 

( i i ) 

Cn fb ; 

cr 

ci 

(4.19) 

In order to do so, it is necessary to reduce the matrix to an almost REF. It 

is assumed that fb is smooth and continuously differentiable at least to 12th 

order. 
f • ( 1 2 ) 1 When all the components of the set < fb, f b , . . . , fb > are linearly dependent, 

we can express all the terms as a linear combination of one of the components. 

Any vector valued function picked from the above set is thus a basis that spans 
(12) " 

this set. Letting fb be the basis of the set < fb, f b , . . . , fb j>, then by assumption 

all the vectors of the former set are in the same direction of fb. Thus, the set 

transforms to {fb,hfb
7k2f

b, ...,k12f
b}. The REF of (4.19) is: 

- [C£fbx} CI! 0 
0 
0 
0 

^b 

-kiCg 
0 
0 

- [C?/6x] C? 
-(2k*-k2)[C%fbx]CZ 

(4.20) 

0 0 -(12k1kn-k12)[Cb
lfbx]C?_ 

The first column of (4.20) factors attitude error states Sp. The second column 

of (4.20) factors accelerometer biases error states 5bb
a. The last cohimn of 

(4.20) factors gyro biases error states 8b^. 

Case 1 When any or all of ikik^i - fcj ^ 0, the nullity of (4.20) is 2. The 

null space is then spanned by two LI vectors in M9. The observability matrix 

in REF (matrix (4.20)) can be reduced to: 

"- [Q76x] 
0 
0 

0 

0 

0 
0 

-h [c?/6*] c?. 
(4.21) 
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where li, k\ are arbitrary constants. The system becomes unobservable when: 

1. The gyro bias error state vector Sb1^ is parallel to the specific force vector 

2. The accelerometer bias error state vector 5bb
a is equal to zero. 

3. The attitude error state vector §p is parallel to the specific force vector 

r = cuh-
If the lever arm vector is considered, the position and velocity error states 

(5pn,5vn) are unobservable. If the lever arm vector is zero, position and ve­

locity vectors are completely observable. 

Therefore, when ikjki-i — hi ^ 0, a basis for the null space of (4.18) is: 

span < 

ci [lb x f%xl -

0.3X1 

Cnfb 

0 3 xl 

0.3x1 

7 

0 3 xl 

<?(' 6 x Axl 

0 3 xl 

0 3 xl 

fb 
> 

(4.22) 

Case 2 When ik\ki-\ — k{ — 0 or equivalently ki — i\k\, reducing the matrix 

given in (4.20) will result in the following REF matrix: 

Cl'fx] 
0 

ci 0 

-kxcs -[cuh*)cl 
(4.23) 

Thus, the observability matrix (4.18) has rank 11, the dimension of its null 

space is 4, and its basis is: 
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span < 

l^\i» 

C'b
l | lb x 

- £ Ubx fcl 

- ^ C ? | Z 6 X 

C£ I lh x 

1 /^-n 

/ " x 

0" 
1 
0 

The Observability conclusions are: 

- £ c ? I J» x 

C " Z6 x 

* T > 6 * 

03X1 

C£ (lb x / 6 ) 
Osxl 
»3xl 
fb 

(4.24) 

• When the UAV moves with its derivatives in the same direction and 

satisfies the relation k{ — i\k\, the null space has dimension four. The 

projection of the accelerometer bias error state 5bb
a into the cross product 

of specific force fb with gyro bias 8bb
u is not observable. The projection 

of the attitude error state 5p into the specific force vector decomposed 

in the navigation frame coordinates (i.e. fn = C^fb) is not observable. 

• When the UAV does not move in the specific fashion described above, 

the unobservable subspace has dimension two. The projection of the 

gyro bias Sb^ into the specific force vector decomposed in body frame 

coordinates is not observable. The projection of the attitude error state 

5p into the specific force decomposed in navigation frame (i.e. C£fb) is 

also unobservable. 

• When lever arm is considered, the projection of the position pn into the 

cross product of the lever arm vector and specific force decomposed in 

navigation frame (i.e. C^ {lb x / b ) ) is unobservable. The same holds for 

velocity vn. 
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Figure 4.9: Position Estimation 

The vehicle has to be accelerating in a certain fashion so that the unob-

servable subspace dimension is 4. That is we require: 

(12) " 

fbT,-.-JbT\ = {fbl\---,knfT} (4.25) 

ki = i\k\; l<i<12 (4.26) 

otherwise, the null space dimension is 2. The bases for the null spaces are 

given in (4.22) and (4.24) respectively. 

It is possible to find a trajectory whose time derivatives are in the same 

direction. However, finding a trajectory which satisfies (4.25) and (4.26) is 

difficult. Define fj}AV as the UAV acceleration: 

r = i\ UAV + 
0 
0 (4.27). 
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Figure 4.10: Velocity Estimation 

49 
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(c) Attitude error states 5p 
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Figure 4.11: Attitude Estimation 
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Figure 4.12: Accelerometer Biases Estimation 
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(d) Biases error states 5b^: lever arm 

Figure 4.13: Gyroscope Biases Estimation 
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Figures 4.9 to 4.13 correspond to an acceleration vector ff}AV = [0, eklt, g\ 

and C£ = hxi- The specific forces (fb) and (/") are equal. The time deriva­

tives of fb satisfy (4.25) but (4.26) does not hold. It is thus expected that the 

nullity of the observability matrix is two. Problems with attitude and gyro 

bias determination may arise (see (4.22)) with and without lever arm. Besides 

attitude and gyroscope biases states, velocity and position states are expected 

to have convergence problems for nonzero lever arm. 

Without lever arm vector, it is evident from Figures 4.13(a) and 4.13(c) 

that the gyro bias error states 5b^ do not converge. Figures 4.11(a) and 4.11(c) 

confirm the attitude error states (dp) also do not converge. The remainingerror 

states are observable and they converge to zero. 

With the lever arm vector, the accelerometer biases error states (dbb) are 

the only observable states as seen in Figures 4.12(b) and 4.12(d). The rest of 

the figures (4.9(b),4.9(d), 4.10(b),4.10(d), 4.11(b),4.11(d); 4.13(b) and 4.13(d)) 

show non convergence of the error states and agree with (4.22). 

4.4.2 Two Time Derivatives of fb are Linearly Indepen­
dent 

Noting that the set < fb,fb,..., fb > is spanned by two LI vectors, there is a 

/13Y f ' (12)1 
total of I 2 ) = 78 possible sets < fb,fb,..., fb >, where two LI vectors are 
found. 

(m) (q) 

Let fb, fb be the vectors that spans such a set. All block submatrices of 

the observability matrix given in (4.18), excluding the position and velocity 

error states, can be expressed as a linear combination of the skew symmetric 
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(m) (q) 

matrix form of vectors fb, fb as 

"0,m 

a\,m 

0 2 , m 

" ( m ) • 

C£ fb x 

: (m) 
CJ> / 6 X 

: (m) : 

C« / 6 X 

. 

+ ao.q 

+<*1,9 

+ °2,9 

" (q) " 

C«/ 6 x 

: (q) : 

C t"/6x 

: (q) = 

C£fbX 

. 

C " 

-2 a 

(m) 
C? / 6 x 

(m) 

0 

+ ao,q 
(q) 

cr / 6x 
(q) 

&m+l,m 
(m) 

C l l f*> > 

Q<j+l,m 

ai2,j7 

(m) 
C?" / 6 x 

(m) 

+ % + l , j 

<q) 

+ Og+1, 

(q) 

(q) 

m a m - i : , 

' (m) " 
C6" J6 x 

-(m + 1) 

+ am-

• ( m ) -

Cn fb 

. 

1,9 

(q) " 
C"/ 6 x 

°6 

9 a < 3 - l , 

• ( m ) " 

Cgfbx 

- (9+1) 

+ ag_. 

" (q)" 

_ 

-g 

' (q) " 
C?/ 6 x 

c? 

" (m) ' 

+ a\2,q 

' ( q ) " 

G^/ 'x 

. 
-11 an. 

(m) 

+ an,9 
(q) 

C t " / 6 x 

(4.28) 

Assuming that all constants ai,m,aiq are different from zero we reduce (4.28) 

into REF: 

«0,i 

(m) 

q;fbx 

a0,q 

+ O0 ! 9 

(q) 

C£/6x 

0 

0 

0 

(q) 

Q76x en 

-c? i. 
(m) 

6 lg.O 

(m) 
° 6 K-9.9 

0 Jfe (m) 
9,0 

o «S 

0 
(m) " 

C£/6x 
(m) -

C?/6x 
(m) = 

C?/6x 
(q) ' 

Q/&x 
-

" 

c? 

U 6 

°6 
_ 

(4.29) 

where kq^ ,k^ ,111^,1^^10^ are constants obtained from row manipulations 

of the original constants a, m , at Q, [i — 1 .. . 12] and are of no importance in the 
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observability analysis. A further reduction of (4.28) into REF. gives 

-0-0,-n 

a0,q 

(m) 

(q) 

C£fhx 

' 0 

0 

0 

-ci 

0 

0 

-k 

-w 

(m) 
9,0 

(m) 
7,0 

0 

0 
( m ) • 

C6"/bx 

(q) 

C?fbx 

ci: 

en 

(4.30) 

With the assumption that all constants in matrix (4.28) are different from 

zero, we can conclude that the kinematic model is observable as long as: 

1. The specific force vector fb and all its time derivatives can be expressed 
(m) (q) 

as a linear combination of the basis (fh, fb) 

(m) (q) 
fb fb 2. In each of the linear combinations, the two LI vectors found f ,f are 

involved (coefficients different than zero) 

Therefore, for the system to be observable, there must be at least four 

vectors from < fb,fb,..., fb >. Two of the vectors from the former set must 

be LI while the other two vectors must lay in a linear combination of the 

basis chosen to make the observability matrix full column rank. It is almost 

impossible to find a specific force trajectory fb that has two time derivatives 

that are LI and the other time derivatives linearly dependent on the former 

two. 

Assume that from the set < fb, f b , . . . . fb >, fb and fb are LI and the rest of 

the time derivatives vanish. Then, the the observability submatrix is 

C£fbx 

0 

ci 
0 

0 

0 
C-f'x 

C£fbx fin 

(4.31) 

The rank of this submatrix is seven and the rank of the observability matrix 

(4.18) is thirteen. The observability matrix will not be of full column rank and 

thus the system would be unobservable. A basis for the unobservable subspace 
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IS 

span < 

cz{ibxfby 
Cl (lb x /6) 

0 

fb 

) 

Ct(lbxfb 

0 
Cnjb 

(f x /fc) 
0 

(4.32) 

Observability is improved when three time derivative vectors from the set 
(12)^ 

b fb fb / * , / " , . . . , / ^ are LI 

4.4.3 Three Time Derivatives of fb are Linearly Inde­
pendent 

It can be shown that O can be made full column rank if at least three vectors 

of the set i f, f\ f\ ..., fb 1 are LI. Without loss of generality, let j / < \ fb, fb 

be the vectors that span this set. It suffices to check that the rank of 

qfx 
a 

n fb N 

C?fbx 

rm Ub 

0 

0 - 2 

0 

[cn
bf

b] ci 
C"/ fcx ci 

(4.33) 

is 9 which implies full column rank. Thus, (4.18) is full column rank. There­

fore, when the attitude is kept constant the system can be made observable 

under the condition that the specific force and any set of two higher order 

derivatives are LI. 

4.5 LTV Variable Att i tude and Acceleration 

The LTV observability matrix given in (4.18) has a more complicated expres­

sion when the attitude of the vehicle is changing. A more general form is 

/ 0 

0 / 

0 0 

— 

-

lnx 

/"x 

-M- lnx 

0 

0 

lnx 

0 

- [Z"x]C? 

C?-[lnx]C?Wbx] 
(4.34) 

It is a complex task to determine the general conditions for the attitude rate 

and specific force when the analysis is performed in body frame coordinates. It 
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is then becomes necessary to pick nominal trajectories of the nonlinear system 

(i.e. equation (3.1)). Some nominal trajectories were taken from reference [2] 

and are presented in Table 4.1. 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

fN 
4.9f 

AM 

- 3 . 8 4 cos (^( t ) - f ) 

- 3 . 8 4 cos (V>(i ) - f ) 

- 3 . 8 4 cos (^(f) - f ) 

- 4 . 8 s m ( V > ( t ) - f ) 

- 3 . 8 4 (i + 1 ) 2 

c o s ( V ( t ) - | ) 

- 4 . 8 s i n ( ^ ( i ) - | ) 

- 3 . 8 4 (t + l ) 2 

c o s ( ^ ( t ) - | ) 

- 4 . 8 s i n ( # « ) - f ) 

- 3 . 8 4 (t + l ) 2 

cos(^(t)- f) 

/ £ 

0 

2.45<2 

- 3 . 8 4 sin (^ ( t ) - § ) 

- 3 . 8 4 s i n ( * / > ( i ) - § ) 

- 3 . 8 4 s i n ( i / > ( t ) - | ) 

-4 .8cos (V>(0 - f ) 

- 3 . 8 4 (i + I ) 2 

sin (i/>(t) - f ) 

- 4 . 8 c o s ( V - ( t ) - f ) 

- 3 . 8 4 (t + I ) 2 

sin (,/,(*) - f ) 

- 4 . 8 c o s ( V - ( t ) - f ) 

- 3 . 8 4 (t + l ) 2 

sin (< />(* ) -§ ) 

/ £ . 

9.8 

9.8 

9.8 

9.8 

9.8 

9.8 

9.8 

9.8 

<P 
0 

0 

0 

0 

Tit 
18 

0 

0 

Tit 
8 

e 
0 

0 

0 

Tit 
18 

0 

0 

Tit 
8 

0 

4> 
0 

0 

f + 0.8* 

§ + 0.8t 

| + 0.8f 

- + 2 ^ 

0 . 4 ( ( i + l ) 2 - l ) 

- + 
2 ^ 

0.4 ( ( i + 1 ) 2 - l ) 

- + 

0 . 4 ( ( t + l ) 2 - l ) 

Q(O) 

2 

0 

0 

0 

0 

0 

0 

0 

Table 4.1: Observability of Trajectories 

Trajectories above give quantities in navigation frame. Hence, the UAV 

acceleration should be interpreted as / " and not as fb. The attitude rate 

should be taken as the rate of change of the UAV's Euler angles and not as 

ujb
ib. The attitude rate expressed in body frame (uJh

nb) satisfies 

"1 0 -s in(0) 
0 cos(^) sin(0)cos(0) 
0 — sin(0) cos(0) cos(0) 

The first trajectory has constant attitude. The first two derivatives of specific 

force fn are LI and higher order derivatives vanish. The observability analysis 

reveals that the gyro bias does not converge to its true value using Kalman 

Filtering because the nullity of O is greater than zero. The null space basis 

found in equation (4.32) tells us: 

1. Gyro bias error 5b^ is unobservable in the direction of the specific force 

2. Attitude error 5p is unobservable in two directions which are C7
b
lfh and 

ci\fb. 
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3. Accelerometer bias error is unobservable in the direction of the cross 

product of specific force and its first order time derivative fb x fb. 

4. Without lever arm. position and velocity error states are completely ob­

servable. With lever arm position error is unobservable in the directions 

of C7
b
l (lb x / 6 ) and C^ (lb x . /M, velocity error is unobservable in the 

direction of Cb" (lb x fb\ 

In all other trajectories, it can verified that at least three time derivatives of the 

specific force in navigation frame / " are LI, rendering the system completely 

observable. A Kalman Filter should converge for trajectories 2 to 8. 

In order to obtain time varying accelerations (variable / " ) in practice, it 

is easier to rotate the UAV rather than increasing/decreasing the acceleration 

while vehicle moves along a straight line. 

Trajectories 3 to 5 are the easiest to perform in a real flight because there is 

constant angular velocity and the UAV is moving along a circle. Furthermore a 

UAV flying at constant speed around circles will give time varying accelerations 

and all fifteen states to be estimated. 

Trajectories I and 2 are difficult to perform because they involve an increase 

in the acceleration which makes the vehicle accelerate faster besides moving 

faster in each time instant. Trajectories 6 to 8 are problematic due to reasons 

similar to those explained for the first and second trajectories. Furthermore, 

the angular velocity iJ'nh is not constant and increases with time. 
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Chapter 5 

Magnetometer /GPS/INS 
Attitude Determination 

The observability analysis performed previously tells us that a UAV must 

maneuver to estimate its state correctly. The states that are affected the 

most are the attitude states (roll, pitch, yaw). A third sensor is needed in 

order to estimate the system's states for any vehicle trajectory. This chapter 

illustrates how a magnetometer is used to eliminate the observability problems 

of the GPS-aided approach. 

5.1 EKF With Raw Measurements 

Estimates of pitch 0 and roll 4> angles.can be obtained with accelerometer 

sensors [6, Sec. 9]. The specific force measured by the accelerometers is equal 

to gravity when the UAV is not accelerating. This situation happens when 

the UAV is on the ground, hovering, or going at a constant velocity, in other 

words if the UAV is stationary. Furthermore, letting the navigation frame of 

the UAV to be the local geographic plane, the specific force vector measured 

by strap-down sensors should be the gravity vector, which is well defined in 

this frame as [0, 0, —g] p and is rotated by the current attitude of the vehicle 

to obtain the gravity vector in body frame coordinates. 

Reference [4, Ch. 6.8.1.1] provides an explanation on how to estimate 9 

and 0 from accelerometer measurements. Knowing 0 and <fi, measurement of 

the earth's magnetic field suffices to determine the heading angle or yaw (ip). 
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We have 

ci 
cos (-0) cos (0) sin (-1/1) cos (8) — sin (0) 

- sin (-0) cos (0) + cos (-0) sin (#) sin (0) cos (^) cos (0) + sin (-0) sin (0) sin (0) cos (0) sin (0) 
sin (-0) sin (0>) + cos (ip) sin (0) cos (0) — cos (1/1) sin (0) + sin (i/>) sin (0) cos (0) cos [6) cos (0) 

(5.1) 

and so 

cv 
cos (1/1) cos (8) — sin (̂ />) cos (0) + cos (1/1) sin (S)sin (<j>) sin (1/;) sin (0) + cos (tp) sin (0) cos (0) 
sin (-0) cos (8) cos (i/>) cos (0) + sin (-0) sin (8) sin (0) — cos (-0) sin (0) + sin (tjj) sin (0) cos (0) 

— sin (0) cos (8) sin (0) cos (8) cos (0) 
(5.2) 

Accelerometers measure specific force in body frame fb. In case the UAV is 

accelerating, the specific force measurement will therefore be as in (3.12): 

dt2 r = ( ^ ) +f (5.3) 

It is necessary to subtract the vehicle's acceleration vector fyAV — (^p-) 

from the specific force vector by means of external sensors like differentiating 

a GPS velocity measurement. 

After proper compensation for UAV's acceleration or if the UAV is station­

ary, the IMU's accelerometers measure the gravity vector decomposed in body 

frame as follows: 

f = 

Thus, <fi and 9 are obtained from 

Ju 

h 
Jw_ 

= -cb
n 

"0" 
0 

_9_ 
= 

gsin(9) 
—g cos (0)sin (</>) 
— (/cos (9)cos((/)) 

(5.4) 

e 

arctan 2 I JVI JU 

arctan2 fu,\ fv+ fl 
(5.5) 

The Earth "s magnetic field is modeled as a magnetic dipole. Magnetic field 

lines converge to magnetic north and diverge from magnetic south. 

Define a magnetic coordinate frame as the rotation of the fixed tangent 

plane frame about its down axis by a declination angle A. Therefore the 

fixed tangent plane and the magnetic frames differ in their x and y axes. 

The tangent plane frame north aims towards the true north of earth whereas 

the magnetic frame north aims to the magnetic north. Figure 5.1 shows a 

magnetic field vector measurement in magnetic frame coordinates hm. Assume 
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the symbols x, y, z are the axes of the magnetic frame, h™ represents the 

projection of h into the fixed tangent plane frame, h™, h™ and h™ represent 

respectively the forward, rightward and downward magnetic components of the 

sensor measurement. The symbol a represents the angle between the magnetic 

frame's forward £1X1S X and h™. The symbol A represent the declination angle 

and the symbol 5 the inclination angle of the magnetic field. 

The angle made between earth's true north and earth's magnetic north 

axes is known as declination and is approximately 16.3b°E in Edmonton. The 

declination angle is computed based on the earth's magnetic field model. 

Inclination 5 and declination A angles have to be taken into account for 

an accurate computation of the heading or yaw ip with respect to the true 

north. Following the right hand rule, the rotation measured by the gyroscopes 

is positive when counterclockwise. Therefore, in order to keep this convention 

with the compass sensor, a positive angle a will have h™ to the east of x. 

Conversely a negative a will have h™ to the west of x. 

Magnetometers measure the magnetic field intensity in its orthogonal axes 

which are assumed to be parallel to the body frame axes. The horizontal 

components of the magnetic field decomposed in geographic frame determine 

the heading direction with respect to the magnetic north. To determine the 

yaw -0 with respect to the true north, subtract a from 16.35° as follows [6]: 

16.35°TT [ K \ 
'i> = arctan 2 ( - M (5.6) 
' 180° \h™J v ' 

To determine the magnitude of the magnetic field in the direction perpen­

dicular to the gravity vector, it is necessary to combine the roll <p and pitch 9 

estimates given by the accelerometer measurements (equation (5.5)) with the 

earth's magnetic field given by the magnetometer measurements. Reference 

[6, Sec. 9] shows the computation of the horizontal earth field components 

perpendicular to the gravity vector. These components are computed from 

the measured body frame quantities using the following formulas: 

h™ = hb
u cos (0) - hh

v sin (6) sin (0) - hb
w sin (9) cos (0) (5.7) 
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Figure 5.1: Earth Magnetic Field 
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h™ = hb
vcos((j)) + hb

wsm^) (5.8) 

The attitude of the UAV is fully determined without the integration of the 

gyro rates. This method of determination works if UAV is not accelerating. 

If vehicle is maneuvering, the incorporation of gyro rate integration is needed. 

If the UAV is not accelerating, the INS sensor can combine the accelerometer 

and magnetometer readings and compute the attitude of the vehicle using 

equations (5.5) to (5.8). 

When the navigation system is able to measure the position and attitude, 

the linear error states of the kinematic model, including gyro and accelerometer 

biases, become fully observable. As opposed to gyroscopes and accelerometers, 

magnetometer readings are not integrated over time. Therefore, the magne­

tometer readings can be used as an aiding source in the attitude determination 

along with GPS because of their bounded error characteristics. 

This approach is not reliable because of the error sources discussed thor­

oughly in references [7] and [8]. Example of such sources are: 

• Sensor offset is a constant bias at the output 

• Scale factor miss match is another source of error where the triaxial 

measurements are slightly coupled. 

• Non orthogonality errors occur when the axes of magnetometers are not 

perfectly orthogonal. 

• Sensor tilts occur when the magnetometers are not perfectly leveled with 

the local geographic coordinate frame. 

An EKF will improve in a covariance sense the attitude determination. 

The following section will describe one EKF approach. 

5.1.1 Kalman Filtering 

The fifteen navigation states can be determined using the IMU's accelerom­

eter and magnetometer measurements and the GPS position measurements. 
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The measurement update phase is done at the rate of the GPS system. The 

algorithm which is based on the one written in reference [4, Ch. 4.7.5.2] is 

presented: 

1. Determine the input noise covariance matrix Q. 

2. Define the state 

X = 

p 
vn 

CI 
k 

(5.9) 

3. Determine the initial conditions of the state £(0). They could assume 

any value. One alternative is ]5"(0) = 0, vn(0) = 0, C£(0) = IZx3, 

bb
a(0) = 0, %,(0) = 0. 

4. Determine the initial condition of the predicted covariance matrix P~(0). 

One alternative is P~{0) — 0i5Xi5-

5. The UAV attitude is determined by the Microstrain sensor as follows: 

I I v > ]u arctan 2 

arctan2 [fU:\fv + fl 

h™ = hb
vCos{4>\+K,sm 

~ 16.35°7r h™ 
ib — arctan 2 ^~ 

180 I h™ 

(5.10) 

h™ = hb
u cos (#) - hb

v sin (fy sin (£) - hb
w sin (0) cos (fy (5.11) 

(5.12) 

(5.13) 

6. Every time there is a GPS measurement, define the measurement equa­

tion as: 
{PGPS\ 

y (5.14) 

V ^ / 
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e 
(5.15) 

7. Every time there is a GPS measurement, define the estimated measure­

ment equation as 1: 

fpn + C£lb\ 

y = 

\ * J 
8. Every time there is a GPS measurement, define the error as 5y — y — y. 

9. Every time there is a GPS measurement, define the Output matrix as 

H = 
I 0 

0 0 

C%lbx 0 0 

0 0 
(5.16) 

10. Every time there is a GPS measurement, update the Kalman gain as 

K = P-HT[R + HP-HT]"~1 (5.17) 

11. Every time there is a GPS measurement, correct the predicted state as 

x — x~ + K5y. 

12. Every time there is a GPS measurement, correct the predicted state 

covariance matrix as P = (I — KH) P~. 

13. Every time there is a GPS measurement, define the state matrix F as: 

F = 

0 

0 

0 
0 
0 

I 

~ 2 ^ e -

0 
0 
0 

0 

C?fbx 
- n ? e 

0 
0 

0 

0 
0 
0 

0 

0 

Q 
0 
0 

(5.1* 

14. Every time there is a GPS measurement, define the input noise matrix 

B as: 

B = 

' 0 0 0 0' 

ci o o o 
0 Q 1 0 0 
0 0 / 0 
0 0 0 / 

(5.19) 

Appendix A explains how to estimate roll, pitch and yaw (<p,0,ip) from direction cosine 
matrix C? 
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15. Every time there is a GPS measurement, define matrix A as: 

A = 
-F BQBT 

0 FT (5.20) 

16. Every time there is a GPS measurement, compute T — e(
AATGPs)_ Then 

find <E> and Qd. 

17. Every time there is a GPS measurement, propagate the predicted covari-

ance matrix as P~ = <J>P<l>r + Qd-

18. Every time there is an IMU measurement, propagate the state using 

any numerical integration method of the following first order differential 

equation: 

Clf + gn 
2^ev

ri 

0 
0 

(5.21) 

19. Go back to step 5. 

5.1.2 Final Remarks 

A navigation system must provide reliable position, velocity and orientation 

(attitude) data. However position and velocity estimation can be separated 

from attitude determination with GPS sensors. Attitude is a more complex 

problem to solve. 

Existing work reduce the order of the navigation equations, use more mea­

surements than what are available at the ANCL Lab or deal with the attitude 

as a separate problem. References [9] and [10] explain how to solve the at­

titude determination problem based on: (1) Magnetic field and specific force 

measurements and (2) Multiple GPS antenna. References [11] and [12] solve 

the same fifteen state navigation estimation problem described in this thesis 

based on: (1) Magnetometer and GPS measurements and (2) Multiple GPS 

antenna, with a tightly coupled approach. Reference [13] analyzes a reduced 

order navigation problem excluding position states. 
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This thesis uses magnetometers, accelerometers and GPS measurements in 

order to aid a fifteen state INS in a loosely coupled approach. For the scheme 

of attitude determination described above, it is assumed that all Euler angles 

are measured. Equations (5.10) to (5.13) are used to determine the measured 

values of the euler angles ((/>, 9, ip). The approach described in 5.1.1 will work 

only if the UAV is stationary. In case the UAV is accelerating or rotating, the 

specific force vector fb is not gravity and attitude can not be determined. 

Furthermore the latter approach assumes that the measurements of specific 

force and magnetic field are unbiased and corrupted preferably by white noise 

or any other source of stable noise in the covariance sense (the covariance of 

random walk noise is unbounded for large time). The IMU sensor being used 

by the ANCL Lab has DC offset bias in all its sensors. This is the biggest 

source of error because the integration over time will result in an unbounded 

solution. 

5.2 Magnetometer/Accelerometer/GPS EKF 

5.2.1 Attitude Linear Error State 

The attitude kinematics are 

CI = CrA (5.22) 

The estimated version for attitude kinematics are 

4" = CA (5-23) 

The rate of change of the attitude is the rotation vector of the body frame with 

respect to the fixed tangent plane frame flb
nb. This vector is partially measured 

by the gyroscopes of the IMU. However, it is necessary to compensate the earth 

rotation with respect to the inertial frame Q™, since the measurements made 

by the sensors are inertial. This vector decomposed in body frame is 

Vb
nb = * 4 " Cfrl (5-24) 
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The estimated version of the rotation vector mentioned above, assuming the 

earth rotation vector is known is 

hb
nb = nb

b - cb
nnz (5.25) 

Recalling that x - x = Sx, Cb
n = Cf and C% = (I - [Spy]) C£, where [Spx] 

is the skew symmetric form of error in angle deviation of the computed body 

frame coordinate system with the actual body frame coordinate system. A 

linear model for attitude rate of change can be found in terms of gyro sensor 

readings. From (5.23): 

(/ - [Spx]) CZQb
nb - [Spx] Cl = (I~ {5px}) C A (5.26) 

Solving for [Spx] and neglecting small terms involving products of differential 

quantities (i.e. [Spx] CbSQ!'nb)) a first order approximation of attitude error 

between computed and real body frames is 

[Spx] = CZSnb
nbC

b
n (5.27) 

To determine an error model for the rotation rate SVtb
nb, it suffices to subtract 

(5.25) from (5.24) and notice that Cb
n = Cb

n{I + [Spx]): 

snb
nh = snb

b - c X e PPX] (5.28) 

The model for gyro rate Clb
b is: 

nb
b = nb

b+[bix] + [^x] (5.29) 

where the tilde sign indicates sensor measurement and v indicates sensor noise. 

The estimated version of (5.29) is 

Ob — O6 bb,x (5.30) 

Subtract ing (5.30) from (5.29) and replacing this result into (5.28) wc obtain: 

Snb
nb = -Cb

nttl+[Sblx] + [vux] (5.31) 

Finally, (5.27) expressed in vector form is: 

Sp = -u>l xSp + C£5bt + C X (5.32) 
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Sensor biases are typically modeled as Gauss-Markov processes, however for 

the sake of simplicity in the observability analysis, they will be modeled as 

random walk processes. Letting 

linear error state equation is 

5p-
Mb

a 

K_ 
= 

~-K 
0 
0 

0 Cf 
0 0 
0 0 

> • 

8% 
K 

+ 
°6 
0 
0 

0 0" 
/ 0 
0 / 

^ 
vba 

J\, 

5pT,5bb
a ,5b^ be the state variables, the 

(5.33) 

5.2.2 EKF Implementation with Lever Arm 

The output will include magnetic and acceleration measurements. As opposed 

to the acceleration measurement, the magnetic measurement is not integrated 

over time and bounded biased solutions of attitude can be obtained. The 

accuracy depends on the low frequency components of noise from the magne­

tometer sensor, which will not be corrected online, and they will be assumed 

equal to zero or in other words, our designed EKF will not make any effort in 

trying to estimate the magnetometer noise. 

Data on the real earth magnetic field at any position (latitude, longitude, 

altitude) can be found at several references. The National Oceanic and At­

mospheric Administration (NOAA) and the International Association of Ge­

omagnetism and Aeronomy (IAGA) are examples of online databases that 

provide the earth magnetic field vector decomposed in geographic frame at 

any location on the planet with maximum resolution of arcseconds or 30m of 

distance. The earth's magnetic field vector does not vary significantly within 

a few hundred of kilometers. Thus, this vector is assumed to be known and 

constant near the location where the UAV is flying. 

In order to find the earth's magnetic field, the position of the base station 

GPS antenna needs to be determined. Once the geodetic coordinates are 

obtained (latitude, longitude and height), the magnetic field can be determined 

by applying the gradient of a scalar potential V represented by a truncated 

series expansion2. Given the latitude (53° 31'37"N) longitude (113°31'49"M'r) 

and height (707m) parameters, the NOAA online calculator will compute the 

2http://www.ngdc.noaa.gov/IAGA/ vmod/igrf.htm] 
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magnetic field vector. Scalar potential V computation and GPS positioning 

are explained in appendix C and D of this thesis. 

There will be three output vectors: the GPS position (PQPS), the gravi­

tational field vector (gn), and the earth magnetic field vector at the point of 

origin of the tangent plane of interest (hn((f),\,h)). Keep in mind that the 

GPS antenna is shifted from the IMU sensor by a vector called the lever arm 

lb, which should be known and specified in body frame coordinates. 

y (5.34) 

From (5.34), the only measured quantity is the position. The gravity and 

magnetic field vectors (gn, hn respectively) are known quantities and equal to: 

9" 

hn 

0 
0 

-9.8 

'0.139 
0.041 
0.562 

m2 

s 

Gauss 

(5.35) 

(5.36) 

When the UAV accelerates, it is necessary to compensate for these motions 

since the specific force vector fb measured by the accelerometers will no longer 

be equal to the gravity vector gn. 

First Order Accelerometer Output Equation 

Letting f{}AV be the UAV acceleration vector decomposed in navigation frame, 

then the gravity vector gn is equivalent to 

gn = Cnfb _ fnAv (537) 

The UAV acceleration vector can be obtained indirectly from GPS sensors. 

The GPS sensor position PQPS is 

plPS=Pn + C^lb (5.38) 

The first order time derivative of equation (5.38) is the GPS sensor velocity 

JCPS 

VGPS = Pn + CI K , x l") 
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The first order time derivative of equation (5.39) is the GPS sensor acceleration 

i)n 
VGPS 

*GPS =Pn + CI K & x ( u 4 x lb)) + Cn
h {iob

nb x lb) (5.40) 

pn is the UAV position, then pn is the UAV acceleration. Solving (5.40) for 

pn, the UAV acceleration equation is 

fuAv = VGPS ~ CI (Jnb x {J>nb x lb)) - C% (u& x lb) (5.41) 

The estimated version of the UAV acceleration vector fyAV is 

fdAv = *GPS ~ Cn
b K f e x (ul x lbj) - C? (u& x />) (5.42) 

The specific force vector as read by the accelerometer sensors (fb) is corrupted 

by a DC offset, random walk noise and white noise. Only DC offset can 

be compensated for off-line. The random walk noise corruption is neglected 

as long as its variance is much smaller than the white noise variance during 

the time the UAV is operating (i.e.al t <C (J2
b). The sensor measurement 

after DC offset compensation can be approximated by the actual specific force 

corrupted by white noise (i.e. fb — fb—vh
a). This same argument applies for the 

gyroscope sensor measurements (£b\b) and magnetometer sensor measurements 

(hb). 

The estimated gravity vector is: 

9n = Cn
b (g

b + fb
UAV) - (i>GPS - CI (a& x (a& x lb)) - &b (ub

nb x l»)) 

f n 
J UAV 

(5.43) 

Further developing (5.43) results in 

gn = (/ - [5px]) Cr9
b + (/ - [SPx})Clf^y-fJ}AV (5.44) 

f&AV 

Equation (5.42) can be expressed as 

IUAV = *GPS -(I- M ) CI (cvb
nb x (ub

nb xlb))-(I- [Spx]) CI ( ^ x lb) 

(5.45) 
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Reducing equation (5.44) gives 

gn = (I- [Spx]) Cn
b~gb - [5px] ^GPS = (I - [5px]) gn - [5px] ££ F 5 (5.46) 

Finally the linear residual part due to accelerometers is 

5gn = gn-gn = - (gn + vn
GPS) xSP-ua - ^ p (5.47) 

And the estimated output gravity vector is 

9n = C%fb-ftAV (5.48) 

First Order Position Output Equation 

The UAV center of mass position is indirectly measured by the GPS sensor. 

Recalling equation (5.38): 

POPS = P" + Cn
hl

h = P
n + C^t + vp (5.49) 

The estimated version of (5.49) is 

Pn
Gps=Pn + C^lb (5.50) 

Which can be expressed as 

ftps=F + (I-[8px])(%lb (5.51) 

Finally subtracting (5.51) from (5.49) results in the residual output due to the 

GPS sensor: 

8Plps = Spn - (C£lb) x5p+up (5.52) 

The estimated output position vector is: 

pn
GPS=pn + C"bi

h (5.53) 

First Order Magnetometer Output Equation 

The earth magnetic field model as stated before is known. The magnetometer 

measures the earth magnetic field vector decomposed in body frame coordi­

nates. As with the accelerometers, these measurements are corrupted by DC 
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offset bias, white noise and other sources of noise such as random walk, flick­

ering noise, quantization noise, rate ramp noise and Gauss Markov process 

noise. 

DC offset bias can be easily compensated for off line. However, compensa­

tion for noise requires an augmentation of the state space. For example, the 

state space will have dimension eighteen when the magnetic measurements are 

assumed to be corrupted by random walk noise. All states will not be esti­

mated correctly because the system will become unobservable, in particular 

the magnetic measurement biases. 

It is therefore required to assume that the magnetometer sensor measure­

ments are corrupted by white noise plus a Gauss-Markov noise process. The 

Earth magnetic field vector is: 

hn = C£hb (5.54) 

The estimated earth magnetic field vector is 

in, b hn = Cn
hh

b = (J - [5px]) C£hb -{I- [5px]) CM 

The residual magnetic field output vector is 

(5.55) 

5hn = hn - hn = [5px] C£hb - i £ = -hn x5p-u\ (5.56) 

The estimated output magnetic field vector is 

hn = CZh" (5.57) 

State Space Implementation 

The complete linear error state model is 

5pn' 
Svn 

sP 

K 
5bb, 

• = 

"0 
0 
0 
0 
0 

I 

-2f i? e 

0 
0 
0 

0 

- [cvhx] 
- ^ e 

0 
0 

0 
fin 

0 
0 
0 

0 " 
0 

c? 
0 
0 

~6pn~ 
8vn 

dp 

K 
K 

+ 

" 0 

Q1 

0 
0 
0 

0 
0 

ci 
0 
0 

0 0" 
0 0 
0 0 
7 0 
0 / 

va 

^UJ 

VK 
VK 

(5.5? 
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the complete output error model is 

7 0 
0 0 
0 0 

- [C?lbx] 
-[(9n + *GPs)*] 

-\hnx] 

0 0" 
0 0 
0 0 

~5pn~ 

8vn 

dp 
Sbb

a 

5bb, 

+ 
7 o 
0 C6" 
0 0 

0 
0 

ci 
5y 

and the estimated output model is 

(5.59) 

/ Cllh 

Cnfb _ 

\ 

~vncps ~ C? Hb x ( o 4 x I*)) - CI (u& x V) (5.60) 

Cfhh 

where uta(t) and vtm{t) accounts for the total noise that is corrupting the 

acceleration and magnetic field measurements. Observe that when the UAV is 

not accelerating or rotating the accelerometers will measure the gravity vector 

gn only. However, when the vehicle is either rotating or accelerating, this 

effect should be subtracted in order to compare the well known gravity vector 

gn with its estimate gn. The LTI observability matrix is: 

o = 

I 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
/ 
0 
0 
0 
0 
0 
0 

- [C?/6x] 
- [(<?" + vn

GPs) x] 
~[hnx] 

0 
0 
0 

- [C?/*x] 
0 
0 
0 

0)01x15 

0 
0 
0 
0 
0 
0 

ci 
0 
0 
0 

0 
0 
0 

- [C?lbx] CI 
- [ ( < ? " + < > S P S ) X ] C 7 ? 

- [ / z " x ] C b
n 

0 
0 
0 

-\ClJhx\Cl 

(5.6 ) 

Again, regardless of the presence of lever arm, the matrix is still full column 

rank. To prove O is full column rank, wc perform a few row manipulations to 
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obtain its REF: 

O RREF 

I 
0 
0 
0 
0 
0 
0 

0 
I 
0 
0 
0 
0 
0 

0 
0 

-[(gn + VGPS) 
- [ / i n x ] 

0 
0 
0 

x] 

0 
0 
0 
0 

ci 
0 
0 

-l(gn 

0 
0 
0 
0 
0 

+ fe)x]qi 

-[hnx}C£ 
-"104x15 

(5.62) 

Input Output and State Covariance Matrices 

The initial state covariance matrix is set to zero (i.e. P = 0i5Xis). Allan 

variance was used in the determination of the input and output covariance 

matrices. The IMU sensor noise parameters that were found experimentally 

(Ref. [3]) are presented in Tables 5.1 to 5.9. 

Parameter 

Value 

Qau [ s j 

1.94e-4 

N 
1 y au 

s 

0.0034 

•Dau [ s2 J 

0.0016 

K 
• rn -

7.98e-5 

P-au [ssJ 

2.9e-4 

Table 5.1: Forward Accelerometer Noise Coefficients 

Parameter 

Value 

Qav [ s J 

1.76e-4 

Nav 

rn 
s 

0.0032 

B a v [s2J 
0.0014 

K 7? 

1.02e-4 

7? \rn~\ 

2.62e-6 

Table 5.2: Rightward Accelerometer Noise Coefficients 

Parameter 

Value 

Qaw [ s j 

2.9e-4 

N 
1 v aw 

m 

0.0034 

R [ml •Daw I s2 j 

0.0018 

K 
1 * aw 

7? 

1.35e-4 

**jaw 
' m l 
.S3\ 

3.516-6 

Table 5.3: Downward Accelerometer Noise Coefficients 

Parameter 

Value 

QUJU [rad] 

3.47e-5 

N 
1 yijJU 

rad 

7.34e-4 

R [rad] 
D « L s J 

2.07e-4 

K 
1 VUJU 

1.06e-5 

r> [rarfl 

2.75e-7 

Table 5.4: Forward Gyroscope Noise Coefficients 

The input covariance matrix is therefore: 

Q = J- / r 2 2 2 2 2 2 2 2 2 2 2 2 

diag [a , a , a ,av , a , a , a b , a b , a b , a b , a b , a 
b 
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Parameter 

Value 

Quv [rad] 

4.33e-5 

N 
1 yLJV 

rad 

8.22e-4 

z~> \ rad~\ 
B^ LTJ 
2.27e-4 

K 
rad "1 

s 

1.19e-5 

fkjJV [ s2 J 

2.34e-7 

Table 5.5: Rightward Gyroscope Noise Coefficients 

Parameter 

Value 

Quw [rad] 

3.48e-5 

N 
1 Y U>U> 

7.31 

rad 

e-4 

ra<T 
. s . 

1.91e-4 

-I*-DW 

" rad 
s 

1.47e-5 

J^LOW 
rad 

L s 2 J 

4.91e-7 

Table 5.6: Downward Gyroscope Noise Coefficients 

Parameter 

Value 

Qhu [Gauss - s] 

3.94e-6 

Nhu [Gauss - y/s] 

7.39e-5 

Bhu [Gauss] 

5.04e-5 

J^ftu 
Gauss 

2.5e-6 

Rhu [^] 
8.34e-8 

Table 5.7: Forward Magnetometer Noise Coefficients 

Parameter 

Value 

Qhv [Gauss - s] 

1.54e-6 

Nhv [Gauss -- ^ 
6.8e-5 

J3/„ [Gauss] 

2.83e-5 

Kkv 
Gauss 

\/5 
3.5e-6 

/*/,„ [ ^ ] 
1.04e-7 

Table 5.8: Rightward Magnetometer Noise Coefficients 

Parameter 

Value 

Qhw [Gauss - s] 

2.43e-5 

Nhw [Gauss - y/s\ 

1.54e-4 

Bhw [Gauss] 

1.36e-4 

Khw 
Gauss 

1.15e-5 

r> [Gauss! 
H-hw [—J—J 

3.06e-7 

Table 5.9: Downward Magnetometer Noise Coefficients 

= d i a g ( [ 0 . 0 3 4 2
! 0 . 0 3 2 2

! 0 . 0 3 4 2
i 0 . 0 0 7 3 3 2 , 0 . 0 0 8 2 2 , 0 . 0 0 7 3 2 , 0 . 0 0 1 4 2 , 0 . 0 0 1 8 2 , 0 . 0 0 2 3 2 , 3 . 3 9 e ~ 8 , 4 . 2 8 e " 8 , 6 . 5 e " 8 ] ) 

(5.63) 

The output covariance matrix is composed of GPS. accelerometer and mag­

netometer sensor noise disturbances. The GPS sensor is corrupted by white 

noise only. Accelerometer and magnetometer measurements are corrupted by 

a complex source of noise. Their output noise models are assumed to have a 

white and Gauss-Markov process noise components. Assuming both type of 

noises are uncorrelated, the output covariance matrix will be 

R = d i a g ( [O2
GPSN , a2

GPSE, aGPSo, a2
Vau, o2

Vav, o2
VaK + < 2 2 2 , 

CM • uh«' "hv' "hw °^cj) 
= d i a g ( j 0 . 0 3 2 . 0 . 0 3 2 , 0 . 0 3 2 , 0 . 0 3 4 2 , 0 . 0 3 2 2 + 0.00242 , 0.0342 . ( 7 . 3 9 e ~ 4 ) 2 , ( 6 . 8 e " 4 ) 2 , ( l 5 e ~ 4 ) 2 + ( 2 . 0 2 e ~ 4 ) 2 A 

(5.64) 

Notice that accelerometer sensor noise is modeled as random walk for state 

update but is modeled as a Gauss-Markov process noise at the output equation. 

The reason for this is to avoid an unbounded output covariance matrix for large 

time (a KaJj.) t + aln). The magnetometer sensor noise is modeled 
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as a Gauss - Markov process for the same reason explained above. 

EKF Algorithm 

The EKF Algorithm proposed is the following: 

1. Align and level the UAV. 

2. Determine the DC offset bias of magnetometers, gyroscopes and ac-

celerometers. 

3. Determine the input noise covariance matrix Qi2xw-

4. Determine the output noise covariance matrix R 9x9-

5. Define the state x as: 

vn 

ci (5.65) 

6. Determine the initial conditions of the state x(0). They could assume 

any value. One alternative is pn(Q) = 0, u"(0) = 0, C£(0) = J3X3, 

^ ( 0 ) = 0 , ^ ( 0 ) = 0. 

7. Determine the initial condition of the predicted covariance matrix P~(0). 

One alternative is P~(0) — 0i5Xi5. 

8. Every time there is a GPS measurement, define the measurement equa­

tion as 
(pnGPS\ 

(5.66) 

9. Every time there is a GPS measurement, subtract the DC offset bias of 

the gyroscope found in Step 2 from the attitude rate measurement dr ~,b . 
ib-

^ib — &ib - KDC (5.67) 
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10. Every time there is a GPS measurement, subtract the DC offset bias of 

accelerometer found in Step 2 from the specific force measurement fb: 

f = f - b, O-DC (5.68) 

11. Every time there is a GPS measurement, subtract the DC offset bias of 

magnetometer found in Step 2 from the magnetic field measurement hb: 

hb = hb-b. hDC (5.69) 

12. Every time there is a GPS measurement, define the estimated measure­

ment equation as 

pn + C£lb \ 
V = | CZf" - (VZPS - Cn

h (a& x (u& x l»)) - CI (ub
nb x /" ) ) 

Cfhb J 
(5.70) 

13. Every time there is a GPS measurement, define the error as 8y = y — y. 

14. Every time there is a GPS measurement, define the Output matrix as 

7 0 - [C£lbx] 0 01 
H o o -[(<7n + i&PS)x] o o 

0 0 - [ /? n x] 0 0 

(5.71) 

15. Every time there is a GPS measurement, update the Kalman gain with 

K = P~HT[R + HP~HT T l - l (5.72) 

16. Every time there is a GPS measurement, correct the predicted state 

using x = x~ 4- K8y 

17. Every time there is a GPS measurement, correct the predicted state 

covariance matrix using P = (I — KH) P~. 

18. Every t ime there is a GPS measurement, define the state matr ix F as 

ro / o o o" 

F 
0 

0 
0 
0 

-2S% -

0 
0 
0 

U 6 ( / > -

ie 

0 
0 

bb
a) X cz 

0 
0 
0 

0 

ci 
0 
0 

(5.73) 
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19. Every time there is a GPS measurement, define the input noise matrix 

B as 

B = 

20. Every time there is a GPS measurement, define matrix A as 

A 

0 
"in 
yb 

0 
0 
0 

urei 

-F 
0 

0 
0 

c? 
0 
0 

0 0 
0 0 
0 0 
I 0 
0 / 

neni , UBH 

BQB1" 
FT 

(5.74) 

(5.75) 

21. Every time there is a GPS measurement, compute T = e(~AATcps\ Then 

find $ and Qd 

22. Every time there is a GPS measurement, propagate the predicted covari-

ance matrix as: P~ = &P$T + Qd 

23. Every time there is an IMU measurement, propagate the state using 

any numerical integration method of the following first order differential 

equation: 

(Pn\ ( vn \ 

Cz{~fb-b\)+gn-2ttlV 

ci 

CO, nb 

nnf)b 

0 
0 

Cui - bt) - CtcoZ - (4 -1) 

(5.76) 

(5.77) 

(5.78) 

24. Go back to step 8 

5.2 .3 S imula t ion R e s u l t s w i t h and w i t h o u t Lever A r m 

The fifteen states (pn,vn,(j),9.ip,ba,b^,) should converge to their actual values 

in both cases (with/without lever arm) independent of the UAV trajectory. 

The system is completely observable if position, magnetic field and acceleration 

measurements are taken. 
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(a) Position states pn 
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(c) Position error states Spn 

? 4/w-
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(b) Position states pn: lever arm 

\v 
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(d) Position error states 5pn: lever arm 

Figure 5.2: Position Estimation 
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C^~ 

t [seconds] 

(a) Velocity states vn 

/[seconds] 

(b) Velocity states vn: lever arm 

/[seconds] 

(c) Velocity error states 5vn 

/[seconds] 

(d) Velocity error states Sv11: lever arm 

Figure 5.3: Velocity Estimation 
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(d) Attitude error states Sp: lever arm 

Figure 5.4: Attitude Estimation 
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(b) Biases states bb
a: lever arm 
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Figure 5.5: Accelerometer Bias Estimation 
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Figure 5.6: Gyroscope Bias Estimation 

Figures 5.2 to 5.6 depict the simulation of the EKF with (right plots) and 

without (left plots) lever arm. 

As can be seen the vehicle was hovering ten meters above the origin. Thus 

velocity vectors are zero. The roll <f) and pitch 9 angles were zero. The vehicle 

was heading west ip = — | . The trajectory parameters are 

l" = 
-0.7 
0 
0 

[m\, p 

0 
0 
10 

\m\, v 

[ol 
0 
0 

rn 

L s J 
r 

0 
0 

-9 .8 

m 
i s2 J 

[01 
e 

m 
= 

' o " 
0 

7T 

_ 2_ 

[rad). ujh
n 

rad 

(5.79) 

(5.80) 

Because the observability matrix in (5.61) is full column rank, it is expected 

that all states converge to their actual values. There is no difference other 

than the convergence time of the filter and more pronounced overshoot in the 

response when lever arm lh is considered. 
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Chapter 6 

Kalman Filter Results 

Position States 

a. . N/\/\ 
Position States 

/.[seconds] 

(a) GPS position states ;;" (b) Mag/GPS position states p" 

Figure 6.1: Position Estimation 

The Magnetometer/GPS-aided-INS algorithm described in the last section 

of chapter 5 was tested with real data. These results are going to be compared 

with the previous GPS-aided-INS EKF design [1]. This will show that when 

magnetometer and accelerometer samples are included in the measurement 

equation, the kinematics will always be observable regardless the trajectory 

the UAV is going through. 

Observing Figure 6.1, GPS-aided-INS EKF (left) and Magnetometer/GPS-

aided-INS EKF (right) display similar position estimation results. This is ex­

pected since the main measurement for position estimation is the GPS report. 

Figure 6.2 shows that the estimation of the velocity states is done bet­

ter with the GPS-aided-INS design. The particular reason for this is that 

the Magnetometer/GPS-aided-INS system, is using CDGPS velocity and gy-
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(a) GPS velocity states vn 

* [seconds] 

(b) Mag/GPS velocity states vn 

Figure 6.2: Velocity Estimation 

roscope time derivatives in order to estimate the earth's gravity field vector. 

As it is well known a time derivative will amplify high frequency noise. Nev­

ertheless these time derivatives are needed to guarantee a fully observable 

estimator. 

Attitude State Attitude States 

^f-^r^ hW|< *|Mi*i|*4N*rVYu>MM«y*t*^ 

f [seconds) 

~""~~w^~\! 

f [seconds 

H(*^»t|K**^ i^^ww»"V^*Vv<H^tf^fi 

/[seconds] r^___ 

• mi kvW l 

/[seconds] 

|t<W\A WM 
WM 

AA/V 

kA/WV 

/[seconds] 

(a) GPS attitude states 0,0,-0 

/ [seconds] 

(b) Mag/GPS attitude states <f>, 9, tp 

Figure 6.3: Attitude Estimation 

Similar reasoning applies to the attitude estimation when the vehicle is 

moving as seen in Figure 6.3. When the vehicle is stationary however, it is 

interesting to notice that the GPS-aided-INS Kalman estimator is incapable 

of observing the heading or yaw ip of the vehicle. Looking at the first hundred 

seconds of Figure 6.3. the GPS-aided-INS EKF assumes the heading angle is 

correct as it is initialized. On the other hand with the Magnetometer-GPS-

aided-INS. the heading is correctly estimated and equal to —2.88rad. When 
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magnetometer and accelerometer measurements are included in the Kalman 

Filter, it is expected that all states are estimated correctly independent of the 

trajectory taken by the vehicle. 

3:: 

r ° 

Accelerometer Bias States 

. . . ^ 

^^^^--^j-~: 

t [seconds] 

: i > • • ' ' . 
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r y v ^ r . A 
^ h A ^ 

/[seconds] 

([seconds] 

(b) Mag/GPS bias states 6bb
a 

Figure 6.4: Attitude Estimation 
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J L < « > M r V v A w * » s ^ w » r t ^ ^ 

/[seconds] /[seconds] 
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(a) GPS bias states Sb^ (b) Mag/GPS bias states 5bb
u 

Figure 6.5: Attitude Estimation 

The biases are important for the Kalman Filter estimator but have no sig­

nificance for navigation. The bias estimation of accelerometers and gyroscopes 

are shown in Figures 6.4 and 6.5 respectively. 

The right plots of Figures 6.4 to 6.5 correspond to Magnetometer/GPS-

aided-INS.testing. The lever arm between the GPS antenna and IMU sensor 

was assumed equal to lh = [0.05, 0, —0.02]m. Left plots correspond to GPS-

aided-INS testing. The lever arm between GPS antenna and IMU sensor was 

assumed equal to lb = [0,0, 0]m. 
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The lever arm distance in this particular cart test is negligible. However, 

in the helicopter the IMU sensor and GPS antenna will have considerable 

distance and the lever arm vector in the helicopter's body frame coordinates 

should be accurately determined. 
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Chapter 7 

Conclusion and Future Work 

7.1 Summary of Research and Conclusion 

Observability problems of a loosely coupled single antenna GPS-aided-INS 

navigation were identified. An EKF was used in the estimation of UAV navi­

gation states. It happened that whenever the linearized kinematic model was 

unobservable the EKF could not estimate correctly some or in the worst case 

all of the navigation states. The observability analysis presented in Chapter 4 

of this thesis stated that with a single GPS antenna: "The UAV's specific 

force and its first and second order time derivatives (i.e. fn. fn, fn) should 

be linearly independent" as a sufficient condition for the UAV's trajectories 

to completely estimate the fifteen navigation states with an EKF. If the men­

tioned condition was not satisfied, the null space basis of the observability rank 

test matrix determined in which direction the linearized kinematic model was 

unobservable and which states will be affected the most. 

To overcome the problem of unobservable trajectories, the measurement 

equation was augmented from a three to a nine dimensional vector. The 

measurement vector included the Earth's magnetic field and the Earth's grav­

itational field. Unlike the position vector, which was measured by the GPS 

system, the Earth's magnetic and gravitational fields were known but un­

measured. This augmentation rendered the linearized fifteen state navigation 

problem completely observable. 

To estimate the magnetic and gravitational fields of earth, the IMU's mag­

netometers and accelerometers were used in conjunction with the GPS velocity 

89 



measurement and its time derivative. The necessary condition for complete ob­

servability of the Magnetometer-GPS-aided-INS setup is that the magnetome­

ter and accelerometer measurements must not have DC offset bias. Off-line 

determination of these DC offset bias remedies the observability issue. 

To prove the augmented output filter works, an EKF was simulated, imple­

mented and tested with real data. A comparison between the loosely coupled 

GPS-aided-INS and Magnetometer-GPS-aided-INS Kalman was presented and 

discussed in Chapter 7. 

7.2 Future Work 

The EKF used a loosely coupled GPS system. The main reason for this is that 

the provider NovAtel has invested time in developing reliable GPS systems 

and its sensor must provide reliable position and velocity data. It will be 

time consuming though interesting to develop a tightly coupled Magnetometer-

GPS-aided-INS. 

It is assumed that the Earth's magnetic field model is constant in the 

region where the UAV is flying. If the UAV is going to fly large distances, 

a new magnetic field vector must be found. The Earth's magnetic model 

presented in Appendix B can be used to determine the magnetic field at any 

location, however it is computationally expensive and probably not practical 

to implement. For real time applications it would be more practical to use a 

look up table. 

90 



Bibliography 

[1] David Kastelan. Loosely coupled 6-DOF GPS-aided INS by Kalman fil­

tering. Technical report, ANCL, University of Alberta, 2007. 

[2] Sinpyo Hong, Man Hyung Lee, Ho-Hwan Chun, Sun-Hong Kwon, and 

Jason L. Speyer. Observability of error states in GPS/INS integration. 

IEEE Transactions on Vehicular Technology, 54:731-743, Mar. 2005. 

[3] David Kastelan. Loosely coupled 3-DOF GPS-aided INS by Kalman fil­

tering. Technical report, ANCL, University of Alberta, 2007. 

[4] Jay A. Farrell and Matthew Barth. The Global Positioning System & 

Inertial Navigation. McGraw-Hill, New York, NY, 1999. 

[5] Chi Tsong Chen. Linear System Theory and Design. Oxford, 1999. 

[6] Thomas Stork. Electronic Compass Design using KMZ51 and KMZ52. 

Technical report, Phillips Semiconductors, Systems Laboratory Hamburg, 

Germany, March 2000. 

[7] Microstrain. 3DM-GX1 HardlronCalibration. Technical report, Micros-

train, Inc, 2005. 

[8] Giri Baleri. AHRS 400 Series Installation and Troubleshooting Guide. 

Technical report, Crossbow Technology, Inc, 2005. 

[9] Demoz Gebre Egziabher, Roger C. Hayward, and J. David Powell. Design 

of Multisensor Attitude Determination Systems. IEEE Transactions On 

Aerospace and Electronic Systems, 40:627 - 649, April 2004. 

91 



[10] Demoz Gebre-Egziabher. Design and Performance Analysis of a Low 

Cost Aided Dead Reckoning Navigator. PhD thesis, Stanford University, 

2001. 

[11] Yunchun Yang and Jay A. Farrell. Two Antennas GPS-Aided INS for 

Attitude Determination. IEEE Transactions on Control Systems Tech­

nology, 11:905-918, 2003. 

[12] Yunchun Yang. Tightly Integrated Attitude Determination Meth­

ods for Low-Cost Inertial Navigation: Two-Antenna GPS and 

GPS/Magnetometer. PhD thesis, University of California Riverside, 2005. 

[13] D. Goshen-Meskin and I.Y. Bar-Itzhack. Observability Analysis of Piece 

Wise Constant Systems Part II: Application to Inertial Navigation In-

Flight Alignment. IEEE Transactions on Aerospace and Electronic Sys­

tems, 28:1068-1075, 1992. 

[14] Robert G. Brown and Patric Y.C. Hwang. Introduction to Random Signals 

and Applied Kalman Filtering. Wiley, 1997. 

[15] Wilson J. Rugh. Linear System Theory. Prentice Hall, 1996. 

[16] Susan Macmillan. International Geomagnetic Reference Field. IAGA, 

[Online] Available http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html, 

March 2005. 

[17] TheMathWorks. Associated Legendre Functions. [Online] Available 

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/ 

access/helpdesk/help/techdoc/ref/legendre, January 2008. 

[18] Novatel. OEM4 Family of Receivers - Command and Log Reference Man­

ual. Novatel, 2005. 

[19] Wikipedia. IEEE 15 J, - 1985. Wikipedia, [Online] Available 

http://en.wikipedia.org/wiki/IEEE_754, January 2008. 

92 

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
http://www.mathworks.com/access/helpdesk/help/techdoc/index
http://en.wikipedia.org/wiki/IEEE_754


[20] Wikipedia. Binary Numeral System. Wikipedia, [Online] Available 

http://en.wikipedia.org/wiki/Binary_numeraLsystem, February 2008. 

[21] Novatel. OEM4 Family of Receivers Installation & Operation Manual. 

Novatel, 2005. 

[22] Susan Mclean. Compute Earth's Magnetic Field Values. Na­

tional Geophysical Data Center (NGDC), [Online] Available 

http://www.ngdc.noaa.gov/seg/geomag/magfield.shtml, February 

2008. 

[23] F. Landis Markley and Itzhack-Y. Bar-Itzhack. Unconstrained optimal 

transformation matrix. IEEE Transactions on Aerospace and Electronic 

Systems, 34:338-340, January 1998. 

[24] D. Li, J. Wang, and S. Babu. Nonlinear Stochastic Modeling for INS 

Derived Doppler Estimates in Ultra-Tight GPS/PL/INS Integration. 

[25] Niklas Hjortsmarker. Experimental System for Validating GPS/INS In­

tegration Algorithms. Master's thesis, Lulea University of Technology, 

2005. 

93 

http://en.wikipedia.org/wiki/Binary_numeraLsystem
http://www.ngdc.noaa.gov/seg/geomag/magfield.shtml


Appendix A 

Notation, Symbols, Acronyms 
and Useful Formulas 

A.l Notation 

1. Any translational vector is expressed as: fh. The superscript "b" is the 

coordinate frame where the vector is decomposed, in this case the body 

frame. 

2. Any rotational vector is expressed as: ub
ib. The subscript "ib" means 

the rotation of frame "b" with respect to frame "i", the superscript "b" 

again is the coordinate frame where the vector is decomposed. 

3. Any vector measurement has a "tilde" sign. E.g. fb means specific 

force vector measured in coordinate frame "b". E.g. uj\h means the 

relative rotation of frame "b" with respect to frame "i" measured in the 

coordinate frame "b". 

4. Any vector estimation has a "hat" sign. E.g. pn means the position 

vector estimation in coordinate frame "n". 

5. The sensor that solves a physical measurement is referenced with a sub­

script. E.g. The GPS position measurement is pg.FS. E.g. The ac-

celerometer sensor bias is bb
a where "a" stands for "accelerometer". E.g. 

The gyroscope sensor bias is b^ and "a;" stands for "gyroscope". 
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6". Any vector component is referenced with a subscript, i.e. bb
au means the 

uuth" component of vector bb
a. 

7. The notation Qb
nb is the skew symmetric matrix form of uh

nb and is used 

to express vector cross-products. For e.g.: 

cob
nb x ^ nbjb = 

8. The notation [o;^6x] is equivalent to Qb
nb. i.e. is another way to represent 

the skew symmetric form of a vector. 

A. 2 Symbols 

The coordinate frame symbols used in this thesis were: 

Symbol 
b 
n 
t 
e 

Frame 
Body frame coordinates 
Navigation frame coordinates 
Fixed tangent plane coordinates 
ECEF coordinates 

Table A.l: Coordinate Frames 

The main variable symbols used in this thesis were: 

OJ'. nbw 

-u: nbv 

-U). nbw 

U), nbu 

UJ, nbv 

-UJ. nbu (A.l) 
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Symbol 
pn 

vn 

°6 

cn 

t 
bt 
p 

Q 
R 

P~ 

«k 

[hnx] 
F 
B 
H 
lb 

[5px] 

Description 
Position in navigation frame 
Velocity in navigation frame 
Direction Cosine Matrix. Transforms vectors from body frame 
to navigation frame 
Direction Cosine Matrix. Transforms vectors from navigation frame 
to body frame 
Accelerometer bias 
Gyroscope bias 
Actual State covariance matrix 
Input covariance matrix 
Output covariance matrix 
Predicted state covariance matrix 
Relative rotation of body frame with respect to navigation frame 
decomposed in body frame coordinates 
Relative rotation of body frame with respect to the inertial frame 
decomposed in body frame coordinates 
Relative rotation of the earth frame with respect to the intertial frame 
decomposed in navigation frame coordinates 
Magnetic field vector decomposed in navigation frame coordinates 
State transition matrix 
Input to state matrix 
State to output matrix 
Lever arm vector decomposed in body frame coordinates 
Attitude error vector of Direction Cosine Matrix 
(DCM) Cg 

Table A.2: Variable Definitions 

A. 3 Acronyms 

The following is a list of acronyms used in this thesis: 
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Acronym Definition 
GPS 

DGPS 
CDGPS 

IMU 
INS 

DCM 
UAV 
REF 

RREF 
3D0F 
6DOF 
EKF 
LTI 
LTV 

Global Positioning System 
Differential-GPS 
Carrier phase Differential - GPS 
Inertial Measurement Unit 
Inertial Navigation System 
Direction Cosine Matrix 
Unmanned Aerial Vehicles 
Row Echelon Form (Matrices) 
Reduced Row Echelon Form (Matrices) 
Three Degrees of Freedom 
Six Degrees of Freedom 
Extended Kalman Filter 
Linear Time Invariant 
Linear Time Varying 

Table A.3: Acronyms 

A.4 Useful Formulas 

1. Gyroscopes are inertial sensors that measure rotation rate of body with 

respect to inertial frame. The true rotation rate can be expressed as: 

4> = ^ +t + vw (A.2) 
measurement 

2. Accelerometers are inertial sensors that measure specific force. The true 

specific force can be expressed as: 

f= J^ +bb
a + va (A.3) 

measurement 

3. C£ is a DCM that rotates vectors from body frame coordinates to navi­

gation frame coordinates. Roll ((f)), pitch (9) and yaw (4>) are computed 

from C'l using the following formula[4, Ch. 2.5.3.1]: 

<j> = arctan 2(C6
n[3,2], C6

n[3,3]) 

e = arctan ( , °"[3A] J] 

i> = arctan 2(C£[2,1], G£[\, 1]) (A.4) 
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4. The autocorrelation of a stochastic signal is[14, Ch. 2.5]: 

Rx{ti,t2) = E[x(t1)x(t2)] (A.5) 

5. The Power Spectral Density function of a stochastic signal is[14, Ch. 

2.7]: 

/

+oo 

Rx(r)e-^dr (A.6) 
-oo 

6. The mean square value of a stochastic signal is[14, Ch. 2.7]: 

E{x2\ = — / Sx(ju)dw = — / S*x(s)ds (A.7) 
^ J^oo 27TJ J , ^ 

7. The autocorrelation function of a linear filtered stochastic signal f(t) 

is[14, Ch. 3.8]: 

Rx{k,t2)= / g(u)g{v)Rf(u - v + t2 - U)dudv (A.8) 
Jo Jo 

8. The mean square value of a linear filtered stochastic signal f(t) is[14, 

Ch. 3.8]: 

E[x2] = g(u)g(v)Rf{u - v)dudv (A.9) 
Jo JO 

9. The mean square value of a Gauss-Markov process is: 

£?[x2] = ^ ( l - e - " ) . (A.10) 

10. The mean square value of a Random-Walk process is: 

E[x2] = crlt (A.ll) 
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Appendix B 

Observability Test 

Given a linear dynamic system in state space form 

x(t) = F{t)x{t) + G{t)u{t) 

y = H{t)x(t) + D(t)u(t) 

We define an observability matrix 

O 

N0 

iVi 
N2 

N, ra-l 

where 

(B.1) 

(B.2) 

(B.3) 

Nk+1{t) 

N0(t) = H(t) 

Nk(t)F(t) + ^ > , 0 < k < n - 1 

(B.4) 

(B.5) 

Three types of observability exist when analyzing LTV systems. Complete 

observability, differential observability and instantaneous observability. Com­

plete observability over an interval [to,^i] requires the rank of the matrix O is 

n for some t 6 [io>^i]- Differential observability on [t0,ti] requires the rank of 

O is n for any subinterval in [i0, ij]. Instantaneous observability states that 

the rank of matrix O is n for every t G [to, ̂ i] [15, Ch. 11]. Evidently, instanta­

neous observability is the strongest observability condition. For LTI case the 

three criterions are equivalent. 
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Appendix C 

Earth's Magnetic Field 

In source free regions, the magnetic field of the earth is modeled as the negative 

gradient of a scalar potential V which is represented by a truncated series 

expansion [16]: 

Nmax / p \ n + l n 

V(r, 6, A, t) = J2 {- ) E (»"(*) C 0 S ( m A ) + hnH) sin(mA)) Sn
m(6) 

n=l ^ ' m=0 

(C.l) 

Where "r" is the distance from the center of the earth, "R" is the reference 

radius (R = 6371.2 km). The term "0" is the colatitude (i.e. 90° minus 

latitude). 

The terms g™(t) and h™(t) are coefficients as a function of time and 

are tabulated in reference[16]. This model assumes the coefficients variation 

(i.e. g™(t),h™(t)) are linear in time within a 5 year interval. The last year 

these coefficients were determined was 2005. 

Generally the magnetic potential model for V is truncated to degree ten 

(i.e. iVmo.T = 10). The P£,(0) terms are the Schmidt semi-normalize associated 

Legendre functions of degree n and order m. 

The Legendre polynomial of degree n is [17]: 

S„(9)= 1 

2nn\ 
(C.2) 
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The Associated Legendre function of (C.2) is: 

dT 
S™(6) = (-ir{l-92)i-~Sn(0) 

d9r> 
(C.3) 

It is difficult to calculate the gradient of the scalar function "V" since it 

involves expressing the cartesian coordinates [x, y, z] in terms of the curvilinear 

coordinates [r, 0, A]. 

The radius (r) is computed with the position in ECEF coordinates of the 

vehicle as follows: 

r = y/x2 + y2 + z2 (C.4) 

The longitude (A) is computed with the vehicle's position in ECEF coordinates 

as follows: 

A = arctan 2(y, x) (C5) 

It is more involved to compute latitude. The semi-major axis of the WGS84 el­

lipse is a = 6378137m. The eccentricity of the ellipsoid is e = 8.1819190842622 x 

10 2. The semi-minor axis of the WGS84 ellipse is thus b = yfa2 (1 — e2). 

The following coefficients are used: 

p — \/x2 + y2 

a = arctan 2(a * z, b * p) 

(C.6) 

(C.7) 

(C.8) 

The co-latitude is computed as follows 

e 
n z + e bsm (a) 

arctan ——-
2 p ~~ e2acoss(a) 

(C.9) 

Now that the curvilinear coordinates (r, A, 9) are expressed as a function 

of the cartesian coordinates (x, y, z), the gradient of the magnetic potential is: 

he = VV = 

'&V{x,y,. 

V{x,y,z) 

£v(^y^). 

(CIO) 
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The magnetic field found in equation (CIO) is expressed in ECEF coor­

dinates. To transform it into local tangent plane the following equation is 

used: 

hn 
sin A cos <fi 
— sm<j) 

cos A cos 6 

— sin A sin <fi 
COS0 

— cos A sin d> 

cos A 
0 

— sin A 
(C.ll) 
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Appendix D 

Novatel Commands 

There are two stations which are the Base Station and the Rover Station. 

The purpose is to exploit the precision of the Novatel Devices. Setting up the 

"Novatel ProPak G2plus" as the base station and the "Novatel FlexPak" as the 

rover station by configuring these devices properly and the whole Carrier phase 

Differential GPS (a.k.a. CDGPS) system will report position with accuracies 

as good as three centimeters. 

Binary format is the preferred communication method with both receivers 

(i.e. Base Station and Rover Station) mainly because the throughput of data 

is the minimum, allowing more time to process data between consecutive data 

packets that arrive to the interpreter and finally to the Kalman Filter. 

There are two types of commands that can be written to the Base Sta­

tion's and Rover Station's devices. The first type of commands is for device 

configuration. The second type of commands is to request information from 

the device such as position, velocity or any other GPS data. 

This chapter is going to be divided into: Header of Messages, Base Station 

Messages and Rover Station Messages. 

D.l Header of Messages 

Refer to the device manual [18] for further information on the matter. All 

binary messages must have headers for establishing communication with either 

the Base Station or the Rover Station. All headers have the same length which 

is 28 bytes. The header itself has 16 fields, and each field has a fixed size 
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in bytes which added together result in 28 bytes. There are four fields that 

together indicate the beginning of a new message and are at the very beginning 

of the header. 

Table D.l shows a description of every single field that belongs to the 

header: 

Field Number 
1 
2 
3 
4 
5 
6 
7 

8 

9 

10 

11 
12 
13 

14 

15 
.16 

Field Name 
Sync 
Sync 
Sync-
Header Length 
Message ID 
Message Type 
Port Address 

Message Length 

Sequence 

Idle Time 

Time Status 
Week 
Milliseconds 

Receiver Status 

Reserved 
Receiver S/W 
Version 

Field Type 
Char 
Char 
Char 

Uchar 
Ushort 

Char 
Uchar 

Ushort 

Ushort 

Uchar 

Enum 
Ushort 
GPSec 

Ulong 

Ushort 
Ushort 

Description 
Hexadecimal OxAA 
Hexadecimal 0x44 
Hexadecimal 0x12 
Length of header 
ID number of the command 
0x00: Binary Message 
Which port is the 
processor connected to 
Length in bytes 
of the body of message 
This does not include 
the header nor the CRC 
Multiple related logs. Most 
logs only come out one at 
a time in which case this 
number is 0 
Time processor is idle in 
the last second between 
successive logs with the 
same message ID 
Quality of GPS Time 
GPS week number 
Milliseconds from beginning 
of GPS week 
32 bits representing the 
status of various hardware 
and software components 
Reserved for internal use 
software build number 

Binary Bytes 
1 
1 
1 
1 
2 
1 

1 

2 

2 

1 
1 
2 

4 

4 
2 

2 

Table D.l: Header of Binary Messages 

The most important fields to be careful about when writing to the Base or 

Rover stations are the 5th field (i.e. Message ID), the 6th field (i.e. Message 

type), the 7th field (i.e. Port Address) and the 8th field (i.e. Message Length). 

Other fields can be written with 0 as the hexadecimal value. The Message 

ID is the hexadecimal conversion of the ID number that is given in each of 

the commands [18, Ch. 2.6] and each of the logs [18, Ch. 3.4]. Log itself is 
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a command with message ID equal to one (i.e. 0x01). It logs any response 

message made by the receiver (Base or Rover) which are sent to the Navigation 

Estimator. 

D.2 Base Station Messages 

The following set of messages need to be written in the same order to configure 

the Base Station: 

1. Com com2 19200 n 8 1 n off off. 

2. Interfacemode com2 none rtca off. 

3. Fix position latitude longitude height. 

4. Log com2 rtcaobs ontime 1. 

5. Log com2 rtcaref ontime 10. 

6. Log com2 rtcal ontime 10 3. 

7. Log com2 rtcaephem ontime 10 7. 

D.2.1 "Com" Command 

The "Com" command header in binary format is presented in Table D.2: 
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Hexadecimal Command 
OxAA 
0x44 
0x12 
Oxl C 

0x04,0x00 
0x00 
OxCO 

0x20,0x00 

0x00,0x00 

0x00 

0x00 

0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

0x00,0x00 
0x00,0x00 

Description 
Beginning and present in all Headers 
Beginning and present in all Headers 
Beginning and present in all Headers 
Total length of Header 
Command ID for Corn 
Means the message is going to be in binary format 
Means the processor is connected to "This port" of the receiver 
Length of the message not taking into account the header length 
nor the 4 extra bytes of the CR.C32 checksum 
Sequence number for multiple related Logs to be filled in with 
zeros 
Idle time in the last second between successive logs with same 
message ID, to be filled in with zeros 
Time status of GPS, because is a request from the processor it 
can be filled in with zeros 
GPS week number, not to be considered when requesting a log 
Milliseconds from beginning of GPS week 
Receiver Status ignored when writing data 
For internal use of the device ignored when writing 
Software version ignored when writing 

Table D.2: Header of "Com" command 

Just after the header the body of the message must be written, its values 

are shown in Table D.3: 

Hexadecimal Command 

0x40,0x00,0x00,0x00 

0x00,0x4B,0x00,0x00 

0x00,0x00,0x00,0x00 

0x08,0x00,0x00,0x00 

0x01,0x00,0x00,0x00 

0x00,0x00,0x00,0x00 

0x00,0x00,0x00,0x00 

0x00,0x00,0x00,0x00 

Description 

Por t of t h e receiver t h a t is going to b e configured 

Th i s case is "com2" 

Communica t ion b a u d r a t e (bps) . This case is 19200bps 

Par i ty of message. Th i s case it has no par i ty 

N u m b e r of da t ab i t s . Th i s case it has 8 bi ts 

Number of s top bi ts . Th i s case is 1 s top bit 

Handshake . Th i s case it has no handshake 

Echo. 0 value means "off' 

Break. 0 value means "off' 

Table D.3: Body of "Com" command 

All messages should end with a checksum. The protocol of the checksum is 

the CRC32. When Header and Body are stacked together the CRC32 check­

sum is: 0x24,0x97,0xF8,0xA0. The "Com" command message must have 

in the same order the "Header" then the "Body" and the CRC32 checksum 

just computed. 
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D.2.2 "Interfacemode" Command 

The "Interfacemode" command header in binary format is presented in Table 

D.4: 

Hexadecimal Command 
OxAA 
0x44 
0x12 
OxlC 

0x03,0x00 
0x00 
OxCO 

0x10,0x00 

0x00,0x00 

0x00 

0x00 

0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

0x00,0x00 
0x00,0x00 

Description 
Beginning and present in all Headers 
Beginning and present in all Headers 
Beginning and present in all Headers 
Total length of Header 
Command ID for Interfacemode 
Means the message is going to be in binary format 
Means the processor is connected to "This port" of the receiver 
Length of the message not taking into account the header length 
nor the 4 extra bytes of the CRC32 checksum 
Sequence number for multiple related Logs to be filled in with 
zeros 
Idle time in the last second between successive logs with same 
message ID, to be filled in with zeros 
Time status of GPS, because is a request from the processor it 
can be filled in with zeros 
GPS week number, not to be considered when requesting a log 
Milliseconds from beginning of GPS week 
Receiver Status ignored when writing data 
For internal use of the device ignored when writing 
Software version ignored when writing 

Table D.4: Header of "Interfacemode" command 

The body of the "Interfacemode" command is the following: 

Hexadecimal Command 

0x40,0x00,0x00,0x00 

0x00,0x00,0x00,0x00 

0x03,0x00,0x00,0x00 

0x00,0x00,0x00,0x00 

Description 

Por t of the receiver t h a t is going to be configured 

Th i s case is "com2" 

Reception type . Th i s case is None 

Transmission type . This case is R T C A 

Response Generat ion. This case it is O F F 

Table D.5: Body of "Interfacemode" command 

The CRC32 checksum of header and body is: 0x0A,0xDF,0x44,0x23. 

D.2.3 "Fix" Command 

The position of the Base Station antenna must be fixed in order for the system 

to operate in CDGPS mode. If the geodetic coordinates of the place of base 

station operation is known, fix the position to that particular value. Like in 
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most cases this position is unknown and must be requested to the GPS base 

station. The accuracy of the measurement will be at most 3m because the 

position computation is single point type[18, Ch. 3.4.3]. 

The GPS processor's manufacturers strongly recommend that the position 

entered to the command "Fix position" be good to within few meters. In case 

the position is unknown, the Base should request the position of the "Base 

station" antenna. A high accuracy in the position computation is obtained 

once more than six satellites are being tracked[18, Ch. 2.6.21]. Let's assume 

for now that the position is known to within the specifications. An algorithm 

will be given in the section "Fix Position Algorithm" that fixes the "Base 

station" position by software at any location. 

Assuming for now the "Base station" antenna is positioned at (\,(f),h) — 

(53.525950°, -113.528049°, 690.434756[m]), the header of the "Fix position 

53.525950° -113.528049° 690.434756" command is shown in Table D.6 and 

its body is shown in Table D.7. 

For the body of the message, it is necessary to transform the decimal 

numbers of latitude (A), longitude (<p) and height (h) into the binary numerical 

standard IEEE-754. References [19] and [20] provide an explanation on how 

to convert decimal numbers into the IEEE standard and vice-versa. 
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Hexadecimal Command 
OxAA 
0x44 
0x12 
Oxl C 

0x2C,0x00 
0x00 
OxCO 

0xlC,0x00 

0x00,0x00 

0x00 

0x00 

0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

0x00,0x00 
0x00,0x00 

Description 
Beginning and present in all Headers 
Beginning and present in all Headers 
Beginning and present in all Headers 
Total length of Header 
Command ID for Fix 
Means the message is going to be in binary format 
Means the processor is connected to "This port" of the receiver 
Length of the message not taking into account the header length 
nor the 4 extra bytes of the CRC32 checksum 
Sequence number for multiple related Logs to be filled in with 
zeros 
Idle time in the last second between successive logs with same 
message ID, to be filled in with zeros 
Time status of GPS, because is a request from the processor it 
can be filled in with zeros 
GPS week number, not to be considered when requesting a log 
Milliseconds from beginning of GPS week 
Receiver Status ignored when writing data 
For internal use of the device ignored when writing 
Software version ignored when writing 

Table D.6: Header of "Fix" command 

Hexadecimal Command 
0x03,0x00,0x00,0x00 
0x64,0xAA,0x60,0x54 
0x52,OxC3,Ox4A,0x4O 
0xDE,0x6B,0x08,0x8E 
0xCB,0x61,0x5C,0xC0 
0xEA,0x8D,0x5A,0x61 
0x7A,0x93,Ox85,0x4O 

Description 
Means that the Fix type is position i.e. "Fix position" 
Latitude position data 

Longitude position data 

Altitude position data 

Table D.7: Body of "Fix" command 

Latitude, longitude and height fields are already given in big endian format. 

The CRC32 checksum of the latter message is: 0xE9,0xA8,0xB6,0xC7. 

D.2.4 "Log" Command 

The most important command to the user point of view. It can request any 

type of GPS data information of the antenna. In the base station the list of 

requests are: 

1. Log com2 rtcaobs ontime 1 

2. Log com2 rtcaref ontime 10 
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3. Log com2 rtcal ontime 10 3 

4. Log com2 rtcaephem ontime 10 7 

The header for all four messages is presented in Table D.8: 

Hexadecimal Command 
OxAA 
0x44 
0x12 
0x1 C 

0x01,0x00 
0x00 
OxCO 

0xlC,0x00 

0x00,0x00 

0x00 

0x00 

0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

0x00,0x00 
0x00,0x00 

Description 
Beginning and present in all Headers 
Beginning and present in all Headers 
Beginning and present in all Headers 
Total length of Header 
Command ID for Log 
Means the message is going to be in binary format 
Means the processor is connected to "This port" of the receiver 
Length of the message not taking into account the header length 
nor the 4 extra bytes of the CRC32 checksum 
Sequence number for multiple related Logs to be filled in with 
zeros 
Idle time in the last second between successive logs with same 
message ID, to be filled in with zeros 
Time status of GPS, because is a request from the processor it 
can be filled in with zeros 
GPS week number, not to be considered when requesting a log 
Milliseconds from beginning of GPS week 
Receiver Status ignored when writing data 
For internal use of the device ignored when writing 
Software version ignored when writing 

Table D.8: Header of "Log" command 

The body of the first message looks like in Table D.9: 

Hexadecimal Command 
0x40,0x00,0x00,0x00 

0x06,0x00 
0x00 
0x00 

0x02,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0xF0,0x3F 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

Description 
This log is loaded at Com2 of "Base Station" device 
Message ID for "rtcaobs" log 
Means that the message type is in binary format 
This field is reserved and can be filled in with zeros 
Means the log is going to be triggered ("ontime") 
The period of time the log is going to be trigged is 1 second 

Offset time of message when logged 

This log can be removed by "Unlogall" command 

Table D.9: Body of "Log rtcaobs" Message 

The second message's body will look like in Table D.10. Table D. l l show 

the body of third message. In Table D.12 it is shown the body of the fourth 

and last message. 
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Hexadecimal Command 
0x40,0x00,0x00,0x00 

0x0B,0x00 
0x00 
0x00 

0x02,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x24,0x40 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

Description 
This log is loaded at Com2 of "Base Station" device 
Message ID for "rtcaref' log 
Means that the message type is in binary format 
This field is reserved and can be filled in with zeros 
Means the log is going to be triggered ("ontime") 
The period of time the log is going to be trigged is 10 seconds 

Offset time of message when logged 

This log can be removed by "Unlogall" command 

Table D.10: Body of "Log rtcaref Message 

Hexadecimal Command 
0x40,0x00,0x00,0x00 

0x0A,0x00 
0x00 
0x00 

0x02,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x24,0x40 
0x00,0x00,0x00,0x00 
0x00,0x00,0x08,0x40 
0x00,0x00,0x00,0x00 

Description 
This log is loaded at Com2 of "Base Station" device 
Message ID for "rtcal" log 
Means that the message type is in binary format 
This field is reserved and can be filled in with zeros 
Means the log is going to be triggered ("ontime") 
The period of time the log is going to be trigged is 10 seconds 

Offset time of message when logged (3 seconds) 

This log can be removed by "Unlogall" command 

Table D. l l : Body of "Log rtcal" Message 

Hexadecimal Command 
0x40,0x00,0x00,0x00 

0x5B,0x01 
0x00 
0x00 

0x02,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x24,0x40 
0x00,0x00,0x00,0x00 
0x00,0x00,0x1 C,0x40 
0x00,0x00,0x00,0x00 

Description 
This log is loaded at Com2 of "Base Station" device 
Message ID for "rtcaephem" log 
Means that the message type is in binary format 
This field is reserved and can be filled in with zeros 
Means the log is going to be triggered ("ontime") 
The period of time the log is going to be trigged is 10 seconds 

Offset time of message when logged (7 seconds) 

This log can be removed by "Unlogall" command 

Table D.12: Body of "Log rtcaephem" Message 

1. The CRC32 checksum of the first message is: 0x2C,0x7A,0xAD,0xBE. 

2. The CRC32 checksum of the second message is: 0 x 7 8 , 0 x 9 9 , 0 x 3 0 , 0 x 9 4 . 

3. The CRC32 checksum of the third message is: 0x41,0xBE,0x25,0x21. 

4. The CRC32 checksum of the fourth message is: 0xBF,0x43,0x92,0xA0. 
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D.3 Rover Station Messages 

The following messages need to be written in the same order to configure the 

rover station: 

f. Com com2 57600 n 8 1 n off off 

2. Interfacemode com2 rtca none off 

The header and body of "Com" message are in Tables D.13 and D.14 

respectively: 

Hexadecimal Command 
OxAA 
0x44 
0x12 
0x1 C 

0x04,0x00 
0x00 
OxCO 

0x20,0x00 

0x00,0x00 

0x00 

0x00 

0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

0x00,0x00 
0x00,0x00 

Description 
Beginning and present in all Headers 
Beginning and present in all Headers 
Beginning and present in all Headers 
Total length of Header 
Command ID for Com 
Means the message is going to be in binary format 
Means the processor is connected to "This port" of the receiver 
Length of the message not taking into account the header length 
nor the 4 extra bytes of the CRC32 checksum 
Sequence number for multiple related Logs to be filled in with 
zeros 
Idle time in the last second between successive logs with same 
message ID, to be filled in with zeros 
Time status of GPS, because is a request from the processor it 
can be filled in with zeros 
GPS week number, not to be considered when requesting a log 
Milliseconds from beginning of GPS week 
Receiver Status ignored when writing data 
For internal use of the device ignored when writing 
Software version ignored when writing 

Table D.13: Header of "Com" command 

Hexadecimal Command 
0x40,0x00,0x00,0x00 
0x00,0xEl, 0x00,0x00 
0x00,0x00,0x00,0x00 
0x08,0x00,0x00,0x00 
0x01,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

Description 
Port of the receiver that is going to be configured This case is "com2" 
Communication baud rate (bps). This case is 57600bps 
Parity of message. This case it has no parity 
Number of databits. This case it has 8 bits 
Number of stop bits. This case is 1 stop bit 
Handshake. This case it has no handshake 
Echo. 0 value means "off' 
Break. 0 value means "off' 

Table D.14: Body of "Com" command 

CRC32 checksum: 0xED,0x71,0xBD,0x9D. 
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The header and body of the "Interfacemode" command message are pre­

sented in Tables D.15 and D.16 respectively: 

Hexadecimal Command 
OxAA 
0x44 
0x12 
OxlC 

0x03,0x00 
0x00 
OxCO 

0x10,0x00 

0x00,0x00 

0x00 

0x00 

0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

0x00,0x00 
0x00,0x00 

Description 
Beginning and present in all Headers 
Beginning and present in all Headers 
Beginning and present in all Headers 
Total length of Header 
Command ID for Interfacemode 
Means the message is going to be in binary format 
Means the processor is connected to "This port" of the receiver 
Length of the message not taking into account the header length 
nor the 4 extra bytes of the CRC32 checksum 
Sequence number for multiple related Logs to be filled in with 
zeros 
Idle time in the last second between successive logs with same 
message ID, to be filled in with zeros 
Time status of GPS, because is a request from the processor it 
can be filled in with zeros 
GPS week number, not to be considered when requesting a log 
Milliseconds from beginning of GPS week 
Receiver Status ignored when writing data 
For internal use of the device ignored when writing 
Software version ignored when writing 

Table D.15: Header of "Interfacemode" command 

Hexadecimal Command 

0x40,0x00,0x00,0x00 

0x03,0x00,0x00,0x00 

0x00,0x00,0x00,0x00 

0x00,0x00,0x00,0x00 

Description 

Por t of the receiver t h a t is going to be configured 

Th i s case is "com2" 

Reception type . Th i s case is R T C A 

Transmission type . This case is None 

Response Generat ion. This case it is O F F 

Table D.16: Body of "Interfacemode" command 

CRC32 checksum: 0xl9 ,0x0A,0x55,0xDA. 

After configuration, any log request can be reported such as: 

1. Log bestpos ontime 1. 

2. Log bestvel ontime 1. 

3. Log rtkpos ontime 1. 

4. Log rtkvel ontime 1. 
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5. Log rtkxyz ontime 1. 

All headers are the same as the one shown in Table D.8. The "Log" exam­

ples in the list presented request position and velocity. Position is requested by 

"bestpos", "rtkpos" and "rtkxyz". Velocity is requested by "bestvel", "rtkvel" 

and "rtkxyz". The "bestpos" and "rtkpos" logs report position vectors in 

earth's geodetic coordinate frame. The "bestvel" and "rtkvel" logs report ve­

locity vectors in local tangent coordinate frame (a.k.a. geographic frame). The 

"rtkxyz" log reports position and velocity vectors in ECEF coordinate frame. 

D.3.1 "Bestpos" and "Rtkpos" logs 

Their response format is similar. The main differences reside in the message ID 

and that "Bestpos" can compute single point positioning whereas "Rtkpos" 

can not even be requested unless Base and Rover stations are operating in 

CDGPS mode. This section is going to explain how to request to the NovAtel 

device these logs, and later how to interpret the NovAtel device responses. 

Reques t Posi t ion 

It is assumed Rover and Base are in CDGPS mode. The body of the log 

message will look like in Table D.17: 

Hexadecimal Command 
0x20,0x00,0x00,0x00 

Ox2A,0xOO/0x8D,0xOO 
0x00 
0x00 

0x02,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0xF0,0x3F 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

Description 
This log is loaded at Coml of "Rover Station" device 
Message ID for "bestpos" / "rtkpos" log 
Means that the message type is in binary format 

. This field is reserved and can be filled in with zeros 
Means the log is going to be triggered ("ontime") 
The period of time the log is going to be trigged is 1 second 

Offset time of message when logged 

This log can be removed by "Unlogall" command 

Table D.17: Body of "Log bestpos/rtkpos" Message 

• The checksum for "bestpos" command is: 0x66,0xA3,0xBD,0xCC. 

• The checksum for "rtkpos" command is: 0x l5 ,0x7D,0xF5,0x24 
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Device Response 

The NovAtel will respond with the same format used at the requisition. It will 

first produce a response that is common to all logs and latter it will respond 

with the information requested. If the "Log" command was received correctly 

the "Log" response should look like in Tables D.18 and D.19: 

Hexadecimal Command 
OxAA 
0x44 
0x12 
0x1 C 

0x01,0x00 
0x82 
0x20 

0x06,0x00 

0x00,0x00 
OxFF 

0xB4 
0xEE,0x04 

Ox60,Ox5A,Ox05,Oxl3 
0x0O,0x00,0x4C,0xO0 

0xFF,0xFF 
0x5A,0x80 

Description 
Beginning and present in all Headers 
Beginning and present in all Headers 
Beginning and present in all Headers 
Total length of Header 
Command ID for Log 
Means this is a response message 
Means the device is connected to "coml" of the receiver 
Length of the message not taking into account the header length 
nor the 4 extra bytes of the CRC32 checksum 
Sequence number for multiple related Logs 
Idle time in the last second between successive logs with same 
message ID 
Time status of GPS, means it is "fmesteering" 
GPS week number, not important 
Milliseconds from beginning of GPS week 
Receiver Status, Everything OK 
For internal use of the device ignored when reading 
Software version ignored when reading 

Table D.18: Header of "Log" command response 

Hexadecimal Command 
0x01,0x00,0x00,0x00 

0x4F,0x4B 

Description 
Command was received correctly 
Message was received correctly 

Table D.19: Body of "Log" Response Message 

The CRC32 checksum of this "Log" response is: 0xDA,0x86,0x88,0xEC. 

Once the "Log" response is sent by the NovAtel device, the information mes­

sage (e.g. "Bestpos", "Rtkpos") is sent. Like in all messages, it has a header 

at the beginning and a checksum at the end. 

In order to interpret the message, it is necessary to begin checking fields 

4, 5, 8 and 11 of Table D.l. Later check the CRC32 checksum of header and 

body coincides with the CRC32 checksum emitted by the NovAtel device. 

• Field 4 is the header length 
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• Field 5 is the message ID which in case of "Bestpos" is "0x2A,0x00" and 

in case of "rtkpos" is "0x8D,0x00" 

• Field 8 is the length of the body of the message (72 bytes). This added 

with the header length and the four bytes of the CRC32 checksum gives 

the total length of the binary message. 

• Field 11 is the time status of the device. 

The format of "Bestpos" and "Rtkpos" responses are equal. Table D.20 

shows such format. The information was taken from reference [21, Ch. 3.4.3, 

Ch. 3.4.81] 

Field Number 
1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 

17 

18 

19 
20 
21 
22 
23 

Field Name 
Header 
SoLStatus 
pos_type 
lat 
Ion 
hgt 
undulation 

datum i d # 
lat a 
Ion a 
hgt a 
stn id 
difLage 
soLage 
#obs 
#GPSL1 

# L 1 

# L 2 

-
-
-
-
-

Field Type 

-
Enum 
Enum 

Double 
Double 
Double 

Float 

Enum 
Float 
Float 
Float 
Char 
Float 
Float 

Uchar 
Uchar 

Uchar 

Uchar 

Uchar 
Uchar 
Uchar 
Uchar 

Hex 

Description 
"Bestpos" / "Rtkpos" Header 
Solution status 
Position type 
Latitude position 
Longitude position 
Altitude above mean sea level 
Relationship between geoid 
and WGS84 ellipsoid 
Datum ID, lookup table 
Latitude standard deviation 
Longitude standard deviation 
Height standard deviation 
Base station ID 
Differential age in seconds 
Solution age in seconds 
Number of observations tracked 
Number of GPS LI ranges used 
in computation 
Number of GPS LI ranges above 
the RTK mask angle 
Number of GPS L2 ranges above 
the RTK mask angle 
Reserved 
Reserved 
Reserved 
Reserved 
CRC32 checksum 

Binary Bytes 

28 
4 
4 
8 
8 
8 

4 
4 
4 
4 
4 
4 
4 
4 
1 

1 

1 

1 
1 
1 
1 
1 
4 

Table D.20: Body of Bestpos/Rtkpos Message Responses 
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D.3.2 "Bestvel" and "Rtkvel" logs 

Data format of "Bestvel" and "Rtkvel" are equal though "Bestvel" can com­

pute single point velocity and "Rtkvel" operates only in CDGPS mode. 

Request Velocity 

The body to request the messages "Bestvel" and "Rtkvel" is shown in Table 

D.21: 

Hexadecimal Command 
0x20,0x00,0x00,0x00 
0x63,0x00/0xD8,0x00 

0x00 
0x00 

0x02,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
OxOO,0xOO,OxF0,Ox3F 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

Description 
This log is loaded at Coml of "Rover Station" device 
Message ID for "bestvel" / "rtkvel" log 
Means that the message type is in binary format 
This field is reserved and can be filled in with zeros 
Means the log is going to be triggered ("ontime") 
The period of time the log is going to be trigged is 1 second 

Offset time of message when logged 

This log can be removed by "Unlogall" command 

Table D.21: Body of "Log bestvel/rtkvel" Message 

• The checksum for "bestvel" command is: 0xD3,0xFl ,0xD8,0xAD. 

• The checksum for "rtkvel" command is: 0xEC,0xE2,0xB7,0x55 

Device Response 

The device will respond with a "Log" response as explained before. Check 

fields 4, 5, 8 and 11 of Table D.l. Later check the CRC32 checksum of header 

and body coincides with the CRC32 checksum emitted by the NovAtel device. 

• Field 4 is the header length 

• Field 5 is the message ID which in case of "Bestvel" is "0x63,0x00" and 

in case of "rtkvel" is "0xD8,0x00" 

• Field 8 is the length of the body of the message (44 bytes). This added 

with the header length and the four bytes of the CRC32 checksum gives 

the total length of the binary message. 
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• Field 11 is the time status of the device. 

The format of "Bestvel" and "Rtkvel" responses are equal. Table D.22 

shows such format. The information was taken from reference [21, Ch. 3.4.5, 

Ch. 3.4.82]. 
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Field Number 
1 
2 
3 
4 
5 
6 
7 

8 

9 
10 

Field Name 
Header 
SoLStatus 
veLtype 
latency 
age 
hor spd 
trk gnd 

vert spd 

-
-

Field Type 
-

Enum 
Enum 
Float 
Float 

Double 
Double 

Double 

Float 
Float 

Description 
"Bestvel"/"Rtkvel" Header 
Solution status 
Velocity type 
Latency time of velocity 
Differential age in seconds 
Horizontal speed [^] 
Direction of motion over ground 
with respect to true north 
measured in degrees 
Vertical speed [~] 
positive (up) indicates increasing 
altitude and negative (down) 
decreasing altitude 
Reserved 
CRC32 checksum 

Binary Bytes 
28 

4 
4 
4 
4 
8 

8 

8 
4 
4 

Table D.22: Body of Bestvel/Rtkvel Message Responses 

D.3.3 "Rtkxyz" Log 

This "log" reports position and velocity information in ECEF coordinates and 

operates only in CDGPS mode. 

Request "Rtkxyz" Log 

The body to request the message of "Rtkxyz" is shown in Table D.23: 

Hexadecimal Command 
0x20,0x00,0x00,0x00 

0xF4,0x00 
0x00 
0x00 

0x02,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0xF0,0x3F 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00.0x00 

Description 
This log is loaded at Coml of "Rover Station" device 
Message ID for "rtkxyz" log 
Means that the message type is in binary format 
This field is reserved and can be filled in with zeros 
Means the log is going to be triggered ("ontime") 
The period of time the log is going to be trigged is 1 second 

Offset time of message when logged 

This log can be removed by "Unlogall" command 

Table D.23: Body of "Log rtkxyz" Message 

The checksum of "Rtkxyz" request is: 0xD0,0x5D,0x70,0x68. 

Device Response 

The device will respond with a "Log" response as explained before. Check 

fields 4, 5, 8 and 11 of Table D.l. Later check the CRC32 checksum of header 
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and body coincides with the CRC32 checksum emitted by the NovAtel device. 

Field Number 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

24 

25 

26 
27 
28 
29 
30 

Field Name 
Header 
P-sol status 
pos type 
P-X 
P-Y 
P-Z 
P-Xcr 
P - Y C T 

P-Zcr 
V-sol status 
vel type 
V-X 
V-Y 
V-Z 
V-X a 
V-Y a 
V-ZCT 

stn ID 
V-latency 
difLage 
soLage 
#obs 
#GPSL1 

# L 1 

# L 2 

-
-
-
-
-

Field Type 
-

Enum 
Enum 

Double 
Double 
Double 

Float 
Float 
Float 

Enum 
Enum 

Double 
Double 
Double 

Float 
Float 
Float 
Char 
Float 
Float 
Float 

Uchar 
Uchar 

Uchar 

Uchar 

Uchar 
Uchar 
Uchar 
Uchar 

Hex 

Description 
"Rtkxyz" Header 
Solution status 
Position type 
X-coordinate position 
Y-coordinate position 
Z-coordinate position 
Standard deviation of P-X 
Standard deviation of P-Y 
Standard deviation of P-Z 
Solution status 
Velocity type 
Velocity along X-axis[^"-] 
Velocity along Y-axis[^] 
Velocity along Z-axis[^jr] 
Standard deviation of V-X[^r] 
Standard deviation of V-Y[-~] 
Standard deviation of V-Z[^] 
Base station ID 
Latency of velocity in seconds 
Differential age in seconds 
Solution age in seconds 
Number of observations tracked 
Number of GPS LI ranges used 
in computation 
Number of GPS LI ranges above 
the RTK mask angle 
Number of GPS L2 ranges above 
the RTK mask angle 
Reserved 
Reserved 
Reserved 
Reserved 
CRC32 checksum 

Binary Bytes 
28 
4 
4 
8 
8 
8 
4 
4 
4 
4 
4 
8 
8 
8 
4 
4 
4 
4 
4 
4 
4 
1 

1 

1 

1 
1 
1 
1 
1 
4 

Table D.24: Body of "Rtkxyz" Message Responses 

• Field 4 is the header length 

• Field 5 is the message ID which in case of "Rtkxyz" is "0xF4,0x00". 

• Field 8 is the length of the body of the message (112 bytes). This added 

with the header length and the four bytes of the CRC32 checksum gives 

the total length of the binary message. 

• Field 11 is the time status of the device. 
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Table D.24 shows such format. The information was taken from reference [21, 

Ch. 3.4.83]. 

D.4 Fix Position Algorithm 

Record: 

Latitude! A ) 

Longitude! 0 J 
Height ( f t ) 

Unlog 

Best Posit ion 

Fix position with 

data recorded 

Figure D.l: "Fix position" Algorithm 

The application will wait until the antenna has a view of at least six satel­

lites (SVs) in order to fix the base station's position. The log "Bestpos" is 

synchronous, and if it is left unlogged, unnecessarily it will report the base an­

tenna's position to the base station device. To unlog "Bestpos" one proceeds 

121 



as follows: 

Hexadecimal Comm,and 
OxAA 
0x44 
0x12 
0x1 C 

0x24,0x00 
0x00 
OxCO 

0x08,0x00 

0x00,0x00 

0x00 

0x00 

0x00,0x00 
0x00,0x00,0x00,0x00 
0x00,0x00,0x00,0x00 

0x00,0x00 
0x00,0x00 

Description 
Beginning and present in all Headers 
Beginning and present in all Headers 
Beginning and present in all Headers 
Total length of Header 
Command ID for Unlog 
Means the message is going to be in binary format 
Means the processor is connected to "This port" of the receiver 
Length of the message not taking into account the header length 
nor the 4 extra bytes of the CRC32 checksum 
Sequence number for multiple related Logs to be filled in with 
zeros 
Idle time in the last second between successive logs with same 
message ID, to be filled in with zeros 
Time status of GPS, because is a request from the processor it 
can be filled in with zeros 
GPS week number, not to be considered when requesting a log 
Milliseconds from beginning of GPS week 
Receiver Status ignored when writing data 
For internal use of the device ignored when writing 
Software version ignored when writing 

Table D.25: Header of "Unlog" command 

Hexadecimal Command 
0x20.0x00,0x00,0x00 

0x2A,0x00 
0x00 
0x00 

Description, 
This log is loaded at Coml of "Base Station" device 
Message ID for "Bestpos" log 
Means that the message type is in binary format 
This field is reserved and can be filled in with zeros 

Table D.26: Body of "Unlog bestpos" Message 

Unlog message CRC32 checksum is 0x9A,0xA8,0xE5,0x7A. The last 

step is to fix the position with the position data recorded from the "Bestpos" 

log with the format explained in this appendix. Latitude, longitude and height 

data are already given in ieee 754 standard and "Big Endian" format. 
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Appendix E 

Sensor Calibration 

The calibration process is done off-line. It is assumed that the GPS system 

is unbiased and its measurements will only be corrupted by white noise thus 

no calibration is needed. However, the magnetometers, accelerometers and 

gyroscopes sensors of the IMU need to be calibrated in order to obtain a 

measurement as unbiased as possible and to be able to use equation (5.71) in 

the Kalman Filter algorithm. 

The main tasks of the calibration process are: (1) To determine all sensor 

DC offset bias parameters (a.k.a. "turn-on to turn-off' or "null shift" in any 

sensor datasheet [10, Ch. 3.2]) and (2) To find all sensor variances in order to 

determine the input covariance "Q" and the output covariance "R" matrices. 

As it should be well known by now, there are three vectorial sensors incorpo­

rated in the IMU which are accelerometers, gyroscopes and magnetometers. 

Calibration of accelerometer and gyroscope sensors is much more straight­

forward than magnetometer calibration and therefore they will be explained 

first. 

E. l Accelerometer and Gyroscope Calibration 

Let sm(t) be the signal measured by a sensor. Let st(t) be its true signal. 

Let b(t) be the noise component of the true signal. A simplified model of the 

measured signal in terms of the true signal is: 

sm{t) = st(t) + b(t) (E.l) 
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Where the noise component b(t) is modeled as in reference [10, Ch. 3.2]: 

b(t) = bDC + h(t) + u(t) (E.2) 

bi(t) represents the random walk component and v{t) represents the white 

noise component of either accelerometer or gyroscope sensor. 

The model for the random walk component is described by the following 

equation: 

ih{t) = uj(t) (E.3) 

Where oj(i) is a white noise process. The variance of the process noise u{t) 

is usually much smaller than the variance of v(t). However, the variance of a 

random walk process is unbounded and grows as time passes {a\ = <J^,t). The 

model in equation (E.3) could be physically unrealistic because it has an ever 

increasing variance[10, Ch. 3.3.1]. Gauss-Markov process, is another way to 

model the time varying bias component b\(t) using the following equation: 

b1(t) = -~b1(t) + u;(t) (E.4) 
r 

Both models seem to each other, in fact the Gauss-Markov process ap­

proaches the random walk in the limit as r approaches infinity. Allan variance 

chart might be used to determine roughly at what time will the b\ (t) dominate 

over u(t)[10, Ch. 3.3.1]. Let that time be t0. 

Zero input response data collection (i.e. UAV is static) with the vehicle 

leveled and aligned to true north is necessary to determine the DC offset 

bias (i.e. 6DC) of accelerometers and gyroscopes. The time average of the 

measurements should be taken until it reaches the time determined at the 

allan variance chart (t0). 

For the case of accelerometers equation (E.5) is used: 

blDC(kTms) = ( l - £ ) bb
aDC((k - l)Tms) + I (fb(kTms) - (f) (E.5) 
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and for the case of gyroscopes equation (E.6) is used: 

b'm™) = 1 - T tnn((k - l)Tms) + Trtb{kT.ms) (E.6) 1 \ 1 

It should be noted that the gravity vector gn was subtracted from the 

accelerometer measurement fb because the IMU devices measure specific force. 

The vehicle is leveled and stationary therefore the specific force measured by 

the IMU sensor is the gravity vector (i.e. fb = gn). 

The advantage of using recursive equations relies on the fact that less 

computational memory is required than computing the average of the batched 

data. Any initial condition could be used for bb
aDc(0) and bb

JDC(0). The solution 

will converge to the average of the data collected [4, Ch. 4.2] and will be an 

unbiased estimate of the DC offset of gyroscope and accelerometer sensors. 

The other main task in the calibration process of accelerometer and gy­

roscope sensors is to find the variance of the band limited white noise v{t). 

There are two methods of finding v{i). Both methods use the data collected 

when the UAV is static, leveled and ideally aligned with true north. 

E . l . l Standard Deviation Method 

The first method consists in removing the DC offset bias found in equations 

(E.5) and (E.6) for accelerometers and gyroscopes respectively. Then the 

square of the standard deviation computed for the data collected from time 

zero to to is an unbiased estimate of the variance of u(t). 

To compute the standard deviation of accelerometers use the following 

equation: 

afb \ JT~J it ((/"" - 9n)i - if" - 9n))2 (E-7) 

To compute the standard deviation of gyroscopes use the following equa­

tion: 
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The variance found using equations (E.7) and (E.8) assumes the data is 

previously taken and therefore the process is done offline. 

E.1.2 Allan Variance Method 

Viewed as the time domain equivalent of power spectrum density. It gives 

power as a function of averaging time [10, App. C]. From the collected data 

set, and preferably but not necessary removing the DC offset values of the 

sensors, define a vector of time averages r = [T\ , T2,. . . , r^} . 

Each of these time averages divide the total time "T" of data collection 

into Mj subintervals (Mj = ^ \. Where j = 1 , . . . , N. Compute the mean 

value of each subinterval "i" of each time average r,-, where i — 1 , . . . , Mj. Let 

each mean value be Xj}i. 

The Allan variance is computed as follows: 

°2{*Tj) = 2 ( M - - 1 ) ^ ^ + 1 ~ ^ ^E'9S) 

On a log-log scale, plot the allan variance CF(TJ) of each time average against 

its average time. It is recommended to use more than nine time averages Tj, 

also that every time average should be less or equal to half the total time of 

data collection (i.e.Tj < \ Vj) . 

Table C.l of reference [10, App. C] provide typical noise process models 

and how they should look like in an Allan Variance Chart. Figure E.l displays 

the allan variance charts of white noise, random walk and gauss-markov noise 

processes. 
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Figure E.l: Allan Variance Charts 

It is assumed that other source of noise aside of white noise affects the 

measurement significantly several seconds after. In a sensor there is a com­

bination of errors. Usually the sensor measurement is modeled as the true 

value corrupted by white noise and random walk noise or white noise and 

Gauss-Markov process noise. To evaluate the white noise variance of a sensor 

it suffices to look at the Allan variance chart for the value of the standard 

deviation when the average time is one second (i.e. <r(l)) and later scaling this 

value properly. The scaled value of the standard deviation found is also known 

in sensor datasheets as the "angle random walk" because it is integrating the 

gyro measurement in time in order to determine the attitude of the sensor. 

It is interesting to see why at an average time of one, the allan variance 

defines the variance of the noise disturbance in the sensor measurement. The 

relation between the Allan variance and the Power Spectral Density (PSD) is 

[10, App. C.3]: 

9 / \ 4 f°° „ ( u \ sin4 u , _ 
o2 (rav) = / S( — — du (E.10 
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Variance of White Noise 

The PSD of a white noise process is a fiat line with an amplitude equal to the 

noise power. Let that amplitude be the variance of the white noise a^ then 

the PSD will be S(jfl) = al Vfi. Using equation (E.10): 

^^r^.at* * (E.„) 
7TTa„ J0 U2 7TTav 4 Tav 

The variance of the white noise process is therefore computed when rav = 1. 

However, this variance must be properly scaled by the sampling time of the 

sensor. In case of white noise corruption, the scaling to the standard deviation 

of a (rav = 1) is -4=. For example looking at the top plot of figure E.l, which is 

a typical representation of a measurement corrupted by white noise only, the 

value of the variance at an average time of one second is a (rav = 1) = 0.3146. 

The sampling time of the band limited white noise is T = 0.1s. The standard 

deviation of the white noise process is therefore a^ = ^4=^- = 1 • 

Variance of Random Walk Noise 

A random walk process as explained before, is obtained by integrating white 
2 

noise. Its PSD is therefore S(jQ) — § j . Using equation (E.10): 

o [T„„) = / K—^d-u = —-— (E-12) 

3 

\2 „2 KTav Jo (2-K^Y U 

The scaling factor to the standard deviation of a (rav = 1) is J^,. For 

example looking at the middle plot of figure E.l, which is a typical represen­

tation of a measurement corrupted by random walk noise only, the value of 

the variance at an average time of one second is a (rav = 1) = 0.1828. The 

sampling time of the band limited white noise is T = 0.1s. The standard de­

viation of the white noise that produces the random walk process is therefore 

a„ = 0.1828*. AS = 1 . 
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Variance of Gauss-Markov Noise 

The PSD of a Gauss-Markov process is: 

2 2 O tot1 

S{jQ) = T T T T ^ (E-13) 
1 + (ail) 

There is no close expression for the scaling factor to the standard deviation 

of a (rav = 1) with a Gauss-Markov process noise. The integral in equation 

(E.10) must be solved numerically. For example for a = 1000s and T = 0.1s, 

the integral value is 1.96e — 7 and equation (E.10) reduces to: 

airm = i)=lMe-7mm°« (E.14) 

Looking at the bottom plot of figure E.l, the value of the variance at an 

average time of one second is a (rav = 1) = 0.1828. The sampling time of the 

band limited white noise is T = 0.1s. The standard deviation of the white 

noise that produces the gauss-markov process is therefore: 

<7a, = 0.1828* W « 1 (E.15) 
V 4e5 x 1.96e - 7 v ' 

E.2 Magnetometer Calibration 

A similar procedure as with the gyroscopes and accelerometers is followed 

for magnetometer calibration. Determining the DC offset bias as well as the 

white noise covariance and correlated noise models for the magnetometer sen­

sor follows a similar procedure as explained in the last section. However, these 

sensors have other type of disturbances and a stochastic model won't suffix for 

calibration purposes because they are deterministic perturbations. Further­

more initial alignment is necessary in order to determine the DC offset bias 

component accurately. 

E.2.1 Alignment Argument 

Similar to the accelerometer sensors, the magnetic field vector (hn) is different 

than zero. It is necessary to subtract the magnetic field vector from the sensor 

measurements in order to determine accurately its bias model. Contrary to 
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the accelerometer sensor case, when decomposing the earth magnetic field 

vector in a local geographic frame, all three components of the frame will be 

involved. As a consequence, in order to determine the DC offset bias of the 

magnetometers accurately, the IMU must be aligned and leveled. 

Let's assume that IMU axes are parallel to UAV's. The magnetic field mea­

sured by the magnetometers assuming zero external disturbances will be the 

earth's magnetic field decomposed in its sensitive axes components. Assume 

also these axes represent the body frame coordinate reference. At 53°31'37" 

latitude north, 113°31/37" longitude west and 707m of altitude, it can be ver­

ified that the magnetic field vector is hn = [0.138849; 0.04076; 0.56231] Gauss 

with any online magnetic field calculator such as in [22]. Appendix C explains 

in detail how to compute such vector. 

The magnetic field vector is known when is decomposed in navigation frame 

coordinates (i.e. geographic frame), however the attitude of the vehicle is 

unknown. The magnetic field vector sensed by the IMU sensor (hb) and the 

earth's magnetic field vector (hn) must match, thus a Rotation of the measured 

hb by a Direction Cosine Matrix (DCM) is needed. Wabah's vector matching 

problem can be used in the determination of the vehicle's attitude along with 

the measured specific force (i.e. fb) and the cross product of specific force and 

magnetic field (i.e. fb x hb). In reference [23] it is stated that the Wabah's 

attitude determination problem is: 

1 N 

L(A) =-Y, {v> ^ Cb
nUl) (E.16) 

Where Ui is the set vectors decomposed in geographic frame coordinates 

which are theoretically known, vi is the set of vectors that are measured by 

the IMU sensor and thus decomposed in body frame coordinates. Note that 

fb, hb, fb x hb 

fb
1 hb, fb x hb 

e {vt}, [r, hn, r x k% e H I , cb
n [r, hn, r x h% = 

and hn, fn and / " x hn are the earth magnetic field vector, 

the gravity field vector and the cross product of gravity field and magnetic 
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field vectors respectively which are known. Let: 

U _ Ui : u2 : • . . : uN 

V ~ \ • • 

The Optimal solution to (E.16) is[23]: 

(E.17) 

Cb
n = VR-lUT (UR^UT) 1 (E.18) 

In case the vectors [fb, hb, fb x /ib]. are averaged then the DCM matrix 

will be[4, Ch. 6.8.8.1]: 

CI r hn fn x hn\ \fb I hb •: fb xhb (E.19) 

Note that Cb = C£ . The matrices found in equations (E.18) and (E.19) 

need to be normalized. Furthermore it assumes unbiased measurements. What 

can be done at most is to have unbiased measurements of fb because the 

magnetic field measurement have not been calibrated yet. Thus the DCM 

will not be a good estimate in order to determine the DC offset bias of the 

magnetometers. 

The vehicle should be leveled and aligned because the IMU sensor measures 

magnetic field decomposed in body frame coordinates and any change in the 

UAV's orientation will be seen as a rotation of the magnetic field vector by 

the IMU sensor unless all its Euler angles are zero (i.e. (f> = 0, 6 = 0, ip = 0). 

E.2.2 Alignment Procedure 

A flat surface guarantees that the roll and pitch of the vehicle are zero (i.e.cj) — 

0, 6 — 0). The GPS system has the option of reporting the heading of its 

antenna with respect to true north. Alignment is the process of setting the 

heading of the vehicle at zero degrees with respect to true north. 

The GPS system consist of two antennas and two processors. For in depth 

instructions on how to use the system, the interested reader is encouraged to 

check references [18] and [21]. The objective is to set up the two antennas to 

operate in carrier-phase differential mode (CDGPS) improving the system's 
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accuracy. In order to do so, it is necessary to divide the system into base and 

rover station. 

Base Station 

The base station consists of an antenna and a processor unit. It is possible to 

communicate with the processor unit if properly formatted messages are sent 

to it. The base station antenna position must be determined. 

If a survey of the geodetic coordinates of the specific place where the UAV 

is going to fly was done before, its results can be used to fix the base station 

antenna position. If there is no knowledge of the coordinates, they can be 

requested to the base station processor unit using the "Bestpos" command. 

After position is fixed, the base station should report: (l)satellite observa­

tion information, (2)position information, (3)computed corrections and (4)raw 

satellite ephemeris information with the "Rtcaobs" command every second, 

the "Rtcaref command every ten seconds, the "Rtcal" command every ten 

seconds and "Rtcaephem" command every ten seconds respectively[21]. Ap­

pendix D explains in detail the main commands used to communicate with 

the Novatel processor devices. 

Rover Station 

The rover station is the UAV. The other GPS antenna and its processor are 

going to be mounted on it. After proper configuration of the base station, the 

rover can request any position and/or velocity information. 

In order to take advantage of the CDGPS precision, the commands "Rtk-

pos", "Rtkvel" and "Rtkxyz" are used to report position and velocity in dif­

ferent coordinate frames. For alignment purposes the "Rtkvel" command is 

the most important because it reports the actual direction of motion of the 

antenna over ground with respect to true north in degrees[18]. This is the 

heading angle ip. The UAV must be rotated while in CDGPS mode until the 

heading angle report is zero. The flat surface in conjunction with the heading 

angle equal to zero guarantees the required leveling and alignment for sensor 

calibration. 
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Figure E.2: Alignment Process 

E.2.3 Hard Iron Compensation 

Besides the stochastic errors presented in the magnetometers, there are deter­

ministic errors that will bias the measurements of these sensors. Hard Iron 

errors are common in magnetometers and are the most predominant source of 

interference. 

Hard Iron errors consist on the superposition of any time invariant mag­

netic field to the earth's magnetic field in the measurements. Any material 

can cause interference if magnetized, but for hard iron interference to occur, 

the magnetized object must keep the same distance and attitude towards the 

magnetometer sensors and have a time invariant magnetic field source. Sev­

eral examples for hard iron interference present in UAV exist such as current 

carrying wires and permanently magnetized thin metals fixed in the UAV. 

The locus of outputs for an error free magnetometer triad set is a sphere 

centered at the origin. The radius of the sphere will be equal to the strength 

of the earth's magnetic field vector[10, Ch. 3.11.3]. The measurement model 

of the magnetometers considering hard iron interference only is: 

hb ^hb + 5hb (E.20) 

In a local area, the magnetic field magnitude is constant. It will vary 
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slightly if long distances are covered. Thus the sum of the squares of the 

components of the magnetic field will result in a shifted-center sphere described 

by the following equation[10, Ch. 3.11.3]: 

\hn\2 = {hi - 5hb
u0)

2 + (hb
v - Shb

v0)
2 + {hb

w0 - 5hbJ (E.21) 

Least square algorithm of the linearized model around the measurement 

bias due to hard iron effects (i.e. 5hb) will estimate the center of the sphere. 

Detailed explanation is given in [10, Ch. 3.11.3]. 

In [7] Hard iron compensation is made by spinning the UAV around its 

three orthogonal axes with the IMU sensor strapped down into it. In each 

spin, a software collects data. When the data, collection is ready, for each spin 

it finds the minimum and maximum values. A minimum will occur when the 

earth's magnetic field component is off-phased by 180° from the sensitive axis 

of the magnetometer and a maximum when they are in phase. The average of 

minimum and maximum values without hard iron interference should be zero. 

Each average will represent a coordinate of the center of the sphere. 

E.2.4 Soft Iron Compensation 

Soft iron interference consists in the generation and superposition of an artifi­

cial magnetic field to the earth's magnetic field due to materials that generate 

their own magnetic field in response to an external source of magnetic field. 

The most common external source is the Earth's magnetic field. Depending 

on the UAV's attitude, the ferromagnetic material will generate a magnetic 

field in response to the earth's source. The measurement model of the magne­

tometers including soft iron interference only is[10, Ch. 3.6.2]: 

11 u 

~K 
hi. 

= 
™xx 
ayx 

Q-zx 

&xy 

ayy 

&zy 

®-xz 
ayz 

0-zz_ 

K 
K 
ht 

(E.22) 

The terms axx, axy,..., azz represent the effective soft iron coefficients. They 

are the constants of proportionality between the applied magnetic field and 

the induced magnetic: field in the material [10, Ch. 3.11.1]. The effect that soft 
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iron interference has on the locus of the measurement is to: 

1. Re-shape locus into an ellipsoid instead of an spheroid. 

2. Change the orientation of the ellipsoid. 

It is easier to see the effect in two dimensions because there is only one 

degree of freedom and thus one angle, however in three dimensions there are 

three degrees of freedom and three euler angles should be used to express the 

rotation of the locus (i.e. ellipsoid) of the magnetometer measurements due 

to soft iron interference. 

E.3 Sensor Parameter Results 

Data of specific force, rotation rate and magnetic field vectors was collected 

from the IMU sensor for 1800s. The main tasks were: (l)To find the DC offset 

bias of the vector measurements to each axis and (2)To determine the input 

covariance and output covariance matrices "Q" and "R" respectively. The 

nine DC offset biases are easily determined during warm up while the vehicle 

is leveled and aligned. Matrices "Q"(??) and "R"(??) given in section 5.2.2 

were approximations that assumed equal parameters for the three orthogonal 

axes of each vector measurement, therefore they must be determined. 

The methods used in the determination of the covariance matrices were the 

Allan Variance and the signals auto-covariances. There were seventeen allan 

averaging times. Quantization, white, flickering, random walk and rate ramp 

are well known modeled sources of noise that corrupts a sensor measurement. 

The allan variance as a function of averaging time is given by[24]: 

3Q* N* 2B'ln(2) K*r &r> * 
o (r) = —— + V V —— + —— = > CnT (E.23) 

Tz T IT 6 1 A—' 
n=-2 

Least square estimation (LSE) method is used in conjunction with the 

allan variance plots to asses noise in the measurements and determine the 

noise constants Q, N, B, K and R. 
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The LSE problem will minimize the square error given by the difference 

between the allan variances [i.e. a2(r1) , cr2(r2) , . . . , <T2(TI7)] computed from the 

data taken and the allan variances computed from equation (E.23) as follows: 

X = 
To 

'17 '17 

1 Ti T{ 

1 T2 T2
2 

1 Tn r2
7 

0 = 

Y = 

Gx 

(E.24) min (YT - 6TXT) (Y - X6) 

The optimal solution to (E.24) is 0 = (XTX)~1 XTY. Noise coefficients 

Q, N, B, K and R are then easily solved equating the coefficients in (E.23). 

E.3.1 Accelerometers 

Figure E.3 shows the allan variance and auto-covariance plots of specific force 

vector data. 

Forward Axis Noise Model 

Figure E.3(a) shows roughly that during the first tenths of seconds, the ac­

celeration measurement is corrupted mostly by white noise (—\ slope until 

r ~ 20s). After twenty seconds, the measurement is corrupted mostly by 

flickering noise. After two hundred seconds the measurement starts being 

corrupted by random walk process noise. 

Performing a LSE over the Allan standard deviations and Solving the LSE 

problem the following noise constants are obtained: 
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Forward axis acceleroraeter Forward accelerometer autocovariance 

r [seconds] 

Forward Allan Variance aau{T) 

Rightward axis accelerometer 

[sccomlhl 

(b) Forward Auto-Covariance Tavu (r) 

Rightward accelerometer autocovariance 

(c) Rightward Allan Variance aav (d) Rightward Auto-Covariance T„v 

Downward axis accelerometer Downward accelerometer autocovarianee 

(e) Downward Allan Variance aaw (f) Downward Auto-Covariance r a 

Figure E.3: Accelerometer Covariance Determination 
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Parameter 

Value 

Qau [ s J 

1.94e-4 

N 
1 vat t 

m 
s 

0.0034 

Bau [si\ 

0.0016 

K 
• m • 

7.98e-5 

-Raw [1,3 J 

2.9e-4 

Table E . l : Forward Accelerometer Noise Coefficients 

T h e sampl ing frequency of t h e forward accelerometer is 100Hz (i.e. T = 0 . 0 1 s ) , 

therefore t h e whi te noise s t anda rd deviat ion is given by: 

Na 0.0034 m aau = i^L = ^ ^ = 0.034 ^ (E.25) 
Vf v/O0l U2J v ; 

To determine the random walk standard deviation (which is needed for 

matrix "Q"), the following equation is used: 

°bau = Ka 7.98e - 5 
0.01 

0.0014 m (E.26) 

T h e auto-covariance plot of t h e forward axis acceleration signal displayed 

in figure E.3(b) , shows t h a t t h e measurement is mainly corrupted by white 

noise because it looks like a sha rp impulse. Therefore, it will be assumed t h a t 

for t h e o u t p u t covariance ma t r ix "R" there will be no source of noise other 

t h a n whi te noise. 

Rightward Axis Noise Model 

Figure E.3(c) shows roughly t h a t whi te noise is t h e pr imary source of dis­

t u rbance in the measurement of acceleration dur ing the first twenty seconds. 

After twenty seconds it is impossible t o infer from the plot wha t types of noises 

are affecting the measurements . 

Performing a LSE over the Allan s t anda rd deviat ions and Solving the LSE 

problem the following noise cons tants a re obta ined: 

Parameter 

Value 

Qav [ s J 

1.76e-4 

1 yav 

• m 

.5 

0.0032 
l^av 

m.~ 
, s 2 . 

0.0014 

K 1L 

1.02e-4 
s^av 

m~ 
.s3. 

2.62c-6 

Table E.2: Rightward Accelerometer Noise Coefficients 

T h e auto-covariance plot of the r ightward axis acceleration signal displayed 

in figure E .3(d) , shows t h a t the measurement is corrupted by other sources 
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besides white noise because it does not look like a sharp impulse but like a 

decaying function. 

For state update (i.e. Matrix "Q") a random walk noise disturbance is 

assumed. For measurement update (i.e. Matrix "R") a Gauss-Markov noise 

process is assumed. The reason for this is that the random walk noise process 

is modeled in the bias error state (i.e. b = u) but since the EKF uses the 

same set of accelerometers as the aiding measurement, the output covariance 

would look like R = K2t which is unstable. With a Gauss-Markov process 

noise assumption, the output covariance will be R = o2
GM = ^~ [9] which is 

stable(r is the correlation time). Furthermore, a random walk is "possibly a 

limiting case of an exponentially correlated noise with long correlation time" 

[25, Ch. 5.2.1]. 

The white noise standard deviation is given by: 

Nav 0.0032 
aav = - ^ = -== = 0.032 

VT /̂aoT 

m 
S 2 J 

(E.27) 

To determine the random walk standard deviation (which is needed for 

matrix "Q"), the following equation is used: 

^ , = Kav^j| = 1.02e - 4 ^ 0 ^ ! = ° " 0 0 1 8 (E.28) 

The Gauss-Markov process is characterized by an exponentially decaying 

autocorrelation function as shown in equation (E.29). Thus it is necessary 

to fit the plotted autocovariance given in figure E.3(d) with the exponential 

autocorrelation. 

RUr) = o2
GMave-^ (E.29) 

The autocovariance of the acceleration measurement is normalized so that 

Tavv(r = 0) — 1. A sharp impulse is seen in figure E.3(d) at r = 0. However, 

the curve starts decaying from ravv(r = 0) = 0.24. Therefore, in order to find 

the autocorrelation time constant a, it suffices to find the time at which the 

magnitude of the autocovariance of the signal reaches Tavv(r) = ^ ^ which is 

a = 1071.7s. 
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To determine the Gauss-Markov standard deviation (needed for matrix 

"R"), the following equation is used: 

®GMav — Ka 

'1071 7 
1 . 0 2 e - 4 \ / — — = 0.0024 m (E.30) 

Downward Axis Noise Model 

Figure E.3(c) shows roughly that white noise is the primary source of dis­

turbance in the measurement of acceleration during the first twenty seconds. 

After twenty seconds it is impossible to infer from the plot what types of noises 

are affecting the measurements. 

Performing a LSE over the Allan standard deviations and Solving the LSE 

problem the following noise constants are obtained: 

Parameter 

Value 

O [—1 
Varo L s J 

2.9e-4 

N 
1 "aw 

m ~l 

0.0034 

BaW [̂ 2 J 

0.0018 

K 
lvaw 

• m • 

1.35e-4 

E> [ m 1 
flaw i s'i J 

3.51e-6 

Table E.3: Downward Accelerometer Noise Coefficients 

The white noise standard deviation is given by: 

Nn 0.0034 
On 0.034 . , (E.31) 

To determine the random walk standard deviation (which is needed for 

matrix "Q"), the following equation is used: 

aban Kn 1.35e-4 
0.01 

0.0023 m 
LS° 

(E.32) 

The auto-covariance plot of the forward axis acceleration signal displayed 

in figure E.3(f), shows that the measurement is mainly corrupted by white 

noise because it looks like a sharp impulse. Therefore, it will be assumed that 

for the output covariance matrix "R" there will be no source of noise other 

than white noise. 

Input and Output Covariance Submatrices 

The input covariance matrices due to accelerometer measurements are: 
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Qabu — 

Ot 

= 

2 

0 
0 

<n 

0 
_ 0 

0 
aL 

0 

0 0 

*L o 
o *L\ 
o " 
0 = 

— 
0.034 

0 
0 

"0.00142 

0 
0 

2 0 
0.0322 

0 

0 
0.00182 

0 

0 
0 

0.0342 

0 
0 

0.00232 

(E.33) 

(E.34) 

The output covariance matrix due to accelerometer measurements is: 

Ra 

' 2 

0 
_ 0 

0 

°av + °GM 
0 

0 
0 

°ir 

0.0342 0 0 
0 0.0322 + 0.00242 0 
0 0 0.0342 

(E.35) 

E.3.2 Gyroscopes 

Figure E.4 shows the allan variance and auto-covariance plots of specific force 

vector data. 

Forward Axis Noise Model 

The allan variance plot displayed in figure E.4(a) shows roughly that after 

twenty seconds the flickering noise starts corrupting the rotation measurement. 

Before that, white noise is the dominant source of disturbance. 

Performing a LSE over the Allan standard deviations and Solving the LSE 

problem the following noise constants are obtained: 

Parameter 

Value 

Quu [rad] 

3.47e-5 

N 

7.34 

rad 

te-4 

r> Trac/1 
£>uu [ s J 

2.07e-4 

K 
rad ' 

s 

1.06e-5 

*\jU 
rod] 

L s2 J 
2.75e-7 

Table E.4: Forward Gyroscope Noise Coefficients 

The white noise standard deviation is given by: 

N„ 7Me - 4 rad, 
,- , 0.0073 — - (E.36) 

To determine the random walk standard deviation (which is needed for 

matrix "Q"), the following equation is used: 

% = K ^ - = ime 0.01 
1 .84e-4 

rad 
(E.37) 
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Forward axis gyroscope Forward gyro autocovariance 

(a) Forward Allan Variance (7W U(T) 

Rightward axis gyroscope 

• • • • • 11 

T [seconds] 

(b) Forward Auto-Covariance TUJUU(T) 

Rightward gyro autocovariance 

. . - . . . iL . . . - , 

Tomb) 

(c) Rightward Allan Variance Ouv{T) (d) Rightward Auto-Covariance rUvv (T) 

Downward axis gyroscope Downward siyro autocovariance 

(e) Downward Allan Variance CTWU.(T) (f) Downward Auto-Covariance TUxum (T) 

Figure E.4: Gyroscope Covariance Determination 
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The auto-covariance plot of the forward axis acceleration signal displayed 

in figure E.4(b), shows that the measurement is mainly corrupted by white 

noise because it looks like a sharp impulse. Therefore, it will be assumed that 

for the output covariance matrix "R" there will be no source of noise other 

than white noise. 

Rightward Axis Noise Model 

The allan variance plot displayed in figure E.4(c) shows roughly that after one 

hundred seconds the flickering noise starts corrupting the rotation measure­

ment. Before that, white noise is the dominant source of disturbance. 

Performing a LSE over the Allan standard deviations and Solving the LSE 

problem the following noise constants are obtained: 

Parameter 

Value 

Quv [rad] 

4.33e-5 

N 
1 'LJV 

rad 

8.22e-4 
t>wv [ — J 

2.27e-4 

K 
rad 

s 

1.19e-5 

- * \ j 1 / 
rad 1 

L s2 J 
2.34e-7 

Table E.5: Rightward Gyroscope Noise Coefficients 

The white noise standard deviation is given by: 

N,, 8.22e - 4 
<7„ 

T 
= 0.0082 

rad 
, ~- (E.38) 

V'OOl 

To determine the random walk standard deviation (which is needed for 

matrix "Q"), the following equation is used: 

Vbwv = Kuv 1 .19e-5 
0.01 

2.07e 
rad 

(E.39) 

The auto-covariance plot of the forward axis acceleration signal displayed 

in figure E.4(d), shows that the measurement is mainly corrupted by white 

noise because it looks like a sharp impulse. Therefore, it will be assumed that 

for the output covariance matrix "R" there will be no source of noise other 

than white noise. 

Downward Axis Noise Model 

The allan variance plot displayed in figure E.4(e) shows roughly that after fifty 

seconds the random walk noise starts corrupting the rotation measurement. 
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Before that, white noise is the dominant source of disturbance. 

Performing a LSE over the Allan standard deviations and Solving the LSE 

problem the following noise constants are obtained: 

Parameter 

Value 

Quw [rad] 

3.48e-5 

TV 
1 yuiw 

rad 

7.31e-4 

r> [rad] 

1.91e-4 

K 
rad 
s 

1.47e-5 

p [rod] 
f^ww [ s2 J 

4.91e-7 

Table E.6: Downward Gyroscope Noise Coefficients 

The white noise standard deviation is given by: 

N„: 7.31e 
o-„. 

rad 
. 0.0073 — (E.40) 

To determine the random walk standard deviation (which is needed for 

matrix "Q"), the following equation is used: 

/ 3 / 3 \rad~ 
^ , = K ^ - = 1.47e - 5 ^ 0 0 1 = 2-55e - 4 — (E.41) 

The auto-covariance plot of the forward axis acceleration signal displayed 

in figure E.4(f), shows that the measurement is mainly corrupted by white 

noise because it looks like a sharp impulse. Therefore, it will be assumed that 

for the output covariance matrix "R" there will be no source of noise other 

than white noise. 

Input Covariance Submatrices 

The input covariance matrices due to gyroscope measurements are: 

Qu 

\<y. 

Q, ubu, 

K„ o 
o oL 
0 0 

L o 
0 < , 
0 0 

0 
0 

°L 
0 
0 

°l 

= 

= 

"0.00732 

0 
0 

3.39e - 8 
0 
0 

0 
0.00822 

0 

0 
4.28e -

0 

0 
0 

0.00732 

0 
8 0 

6.5e 

(E.42) 

(E.43) 
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Figure E.5: Gyroscope Covariance Determination 
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E.3.3 Magnetometers 

Figure E.5 shows the allan variance and auto-covariance plots of specific force 

vector data. 

An important fact to point out is that the EKF designed in this project 

will not try to estimate the noise of the magnetometers as opposed with the 

gyroscopes and accelerometers. Therefore there is no need to find the input 

covariance matrix. It is only necessary to find the output covariance matrix. 

Forward Axis Noise Model 

The allan variance plot displayed in figure E.5(a) shows that during the first 

five seconds the measurement is mostly corrupted by white noise. After five 

seconds the measurement starts being disturbed by other sources of noise. 

Performing a LSE over the Allan standard deviations and Solving the LSE 

problem the following noise constants are obtained: 

Parameter 

Value 

Qhu [Gauss --s] 
3.94e-6 

Nhu [Gauss - y/s\ 

7.39e-5 

Bhu [Gauss] 

5.04e-5 
Khu 

Gauss 

2.5e-6 

D \ Gauss 1 H-hu [ s J 
8.34e-8 

Table E.7: Forward Magnetometer Noise Coefficients 

The white noise standard deviation is given by: 

&hv 
Nh* 7.39e - 5 

7.39e - 4 [Gauss] (E.44) 

The autocovariance plot displayed in figure E.5(b) shows that the main 

source of disturbance is white noise. Therefore, at the output covariance ma­

trix there will not be any disturbance covariance other than white noise. 

Rightward Axis Noise Model 

The allan variance plot displayed in figure E.5(c) shows that during the first 

three seconds the measurement is mostly corrupted by white noise. After three 

seconds the measurement starts being disturbed by other sources of noise. 

Performing a LSE over the Allan standard deviations and Solving the LSE 

problem the following noise constants are obtained: 
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Parameter 

Value 

Qhv [Gauss — s\ 

1.54e-6 

Nhv [Gauss — y/s] 

6.8e-5 

Bhv [Gauss] 

2.83e-5 

Khv 
Gauss 

3.5e-6 

D F Gauss 1 
Khv[ s ] 

1.04e-7 

Table E.8: Rightward Magnetometer Noise Coefficients 

The white noise standard deviation is given by: 

N, 
&hv 

hv 6.8e - 5 
= 6.8e — 4 [Gauss] (E.45) 

IT v/OOl 

The autocovariance plot displayed in figure E.5(d) shows that the main 

source of disturbance is white noise. Therefore, at the output covariance ma­

trix there will not be any disturbance covariance other than white noise. 

Downward Axis Noise Model 

The allan variance plot displayed in figure E.5(e) shows that during the first 

hundred and eighty seconds the measurement is mostly corrupted by white 

noise. After this the measurement starts being disturbed by Gauss-Markov 

process noise. 

Performing a LSE over the Allan standard deviations and Solving the LSE 

problem the following noise constants are obtained: 

Parameter 

Value 

Qhw [Gauss - s] 

2.43e-5 

Nhw [Gauss - y/s] 

1.54e-4 

Bhw [Gauss] 

1.36e-4 

Khw 
Gauss 

1.15e-5 

T> {Gauss} 
Rhw [ s J 

3.06e-7 

Table E.9: Downward Magnetometer Noise Coefficients 

The white noise standard deviation is given by: 

N, 
ahu 

hw 1.54e 
0.0015 [Gauss] (E.46) 

The autocovariance of the acceleration measurement is normalized so that 

Thww(r = 0) = 1. A sharp impulse is seen in figure E.5(f) at r = 0. However, 

the curve starts decaying from Thwv,{
T = 0) = 0.65. Therefore, in order to find 

the autocorrelation time constant a, it suffices to find the time at which the 

magnitude of the autocovariance of the signal reaches Thww (r) = ^ which is 

a = 620s. 
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To determine the Gauss-Markov standard deviation (needed for matrix 

"R"), the following equation is used: 

oGMhw = KhwXj- = 1.15e - 5 J — = 2.02e - 4 [Gauss] 

Output Covariance Submatrix 

The output covariance matrix due to magnetometer measurements is: 

(E.47) 

Rh 
~°lu 

0 
_ 0 

0 

4v 
0 

0 
0 

a\w + °GM. 

= 

(7.39e-4)2 0 0 
0 (6.8e - 4)2 0 
0 0 (15e - 4)2 + (2.02e - 4)2 

(E.48) 

E.3.4 Input and Output Covariance Matrices 

The input covariance matrix is 

Q = 

L o o o 
0 Q^ 0 0 
0 0 Qab^ 0 
0 0 0 QubL 

(E.49) 

The output covariance matrix is: 

R: 
RGPS 0 0 

0 Ra 0 
0 0 Rh 

(E.50) 

Where the GPS covariance matrix is computed by the NovAtel device 

online while the UAV is operating. 
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