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ABSTRACT

The large deflections of inextensible elastic rods have always been of interest and
because 0" the severe nonlinearity of the problem. various numerical and analytical
formulations have emerged over the years.

In this study a general numerical method. the segmental shooting technique, is
employed to investigate the non-uniqueness of these nonlinear elastica problems. Specitic
problems, including cantilevers under free end concentrated load, distributed load and
normal load as well as deep arches loaded by concentrated loads and with various
boundary conditions are considered. Where other solutions are available. the segmental
shooting technique is shown to be in close agreement.

The determination of the number of possible deformed contigurations for a given
load is also investigated for cantilevers and arches. It is found in general, that the
number of multiple solutions increases as the applied load is increased. The stability of
these deformed configurations is examined by using the segmental approach based on the
criterion of minimum potential energy. This is possiblc as the segmental technique
employed is well suited to generate a series of kinematically admissible displacement

tields.



ACKNOWLEDGEMENT

The author would like to take this opportunity to express his deepest appreciation
to the people who contributed their valuable time. advice and resources towards this

thesis. These distinct individuals in random order include:

Dr. M. G. Faulkner for nis valuable advice, guidance and encouragement.
Dr. A. W. Lipsett for his utmost patience, innovation as well as his dedicaticn.
Dr. D. J. Steigmann for a continual fresh perspective into the subject.

Mr. S. P. Mckvoy for being my mentor and best friend while much has to be
learned from his confidence, enthusiasm and positivism.

Mr. R. T. Mah for his perpetual optimism and charm.

Ms. Carmen Chan for her tolerance, patience and admirable personality bearing
with me through the tough times.

Ms. Georgeana Wong for being one of my best friends as well as my good

teacher.

Lastly. thanks you to all other fine individuals including Dr. J. Wolffaardt, Kosay
El-Rayes. Don Raboud. Jeffery Kemps, the girls on the fourth floor (Helen, Betty, Gail,
Doris and Bettv-Ann), the machinists especially Al Muir and Max Schubert, the
techricians, the Department of Mechanical Engieering and anybody else that I might have

missed. It has been both my honour and pleasure working with them.



Table of Contents

CHAYTER ONE
INTRODUCTION !

1.1

3

1
=

Background |
Thesis Outline 4

CHAPTER TWO

THEORETICAL FORMULATION )
2.1  Equilibrium Equations 7
2.2 Segmental Technique 18
2.3 Shooting Method R}
CHAPTER THREE
VERIFICATION 36
3.1  Point Load 38
3.2 Uniform Distributed Vertical Load w, 4
3.3 Normal Load w, 16
3.4  Pin End Deep Arch 53
CHAPTER FOUR

RESULTS AND DISCUSSIONS 56
4.1  Minimum Potential Energy Criterion tor Stability 57
4.2 Energy Considerations of Cantilevers 59

4.2.1 Cantilever Under Free End Concentrated Load 59

4.2.2 Cantilever Under Distributed Load 64
4.3 Arches 66

4.3.1 Zero Load Solution 67

4.3.2 Arch with Concentrated End Load 71

4.3.3 Zero Solution(s) Revisited &5

4.3.4 Arch with Concentrated Crown Load 90

4.3.5 Pin-pin Supported Arch with Concentrated Crown Load 104



CHAPTER FIVE
CONCLUDING REMARKS 107
5.1 Summary
5.2 Recommendations
REFERENCES 112

APPENDIX A
ANALYTICAL SOLUTIONS OF THE CANTILEVER UNDER FREE

END CONCENTRATED LOAD 115
APPENDIX B

ANALYTICAL SOLUTIONS OF THE CANTILEVER UNDER UNIFORM

NORMAL LGAD 122
APPENDIX C

SURFACE PLOTS ACCURACY 127
APPENDIX D

SEGMENTAL SHOOTING TECHNIQUE SOURCE LISTING 130



Table 2.1

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 4.1

Table 4.2

LIST OF TABLES

alal

Nodal Connectivity between Successive Segments 22

Analytical Results of Cantilever Subject to a Free End Point Load P
(Geometry ot Free End) 41

Numerical Results of Cantilever Subject to a Free End Point Load P
(Geometry of Free End) 42

Analytical and Numerical Results of a Cantilever Subject to Uniform

Normal Load (Geometry of Free End) 49
Analytical and Numerical Results ot a Cantilever Subject to Unitorm
Normal Load g, = 10 & 15 (Geometry of Free End) 51
Muttiple Equilibrium Solutions of the Arch for q = [.0, 2.0 3.0
and 4.0 79

Multiple Equilibrium Solutions ot the Arch tor q = 4.0, 5.0
and 6.0 80



Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

LIST OF FIGURES

Free and Deformed Shape of the Rod

Intinitesimal Element Loaded by Horizontal and Vertical
Distributed Load

Infinitesimal Element Loaded by Normal and Tangential
Distributed Load

Application of the Segmental Approach

Local Coordinate System of an Element

19

20

Numerous Linear Segments Assembled to Form a Nonlinear Problem 21

Geometric Compatibility of Successive Segments
Force Compatibility ot Successive Segments
Flow Diagram of Numerical Shooting Technique
Cantilever Under Various Loading Conditions

Free Node Moment .\, vs Fixed Node Moment A, of the
Cantilever Under Coricentrated End Load

23

24

35

37

44

Multiple Equilibrium Solutions of a Cantilever Under Free End Load 44

Free End Moment A, vs Fixed End Moment A, of the Cantilever
Under Vertical Distributed Load

Multiple Equilibrium Solutions of Cantilever Under Vertical
Distributed Load

Mitchell's Notation for Cantilever Under Normal Load

Fixed Node Moment A, vs Fixed Node Slope +, of the Cantilever
Under Normal Load

Analytical and Numerical Results of the Cantilever Under Normal
LLoad

Analytical and Numerical Results of the Cantilever Under Normal
Load

45

46

48

50

51

52



Figure 3.10

Figure 3.11

Figure 3.12

Figure 4.1

Figure 4.2

Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Boundary Conditicns of the Semi-Circular Arch

Pin End Semi-Circular Arch Subject to Horizontal Mid-Span
Point Load

Free and Deformed Shape of the Arch Under Horizontal Crown
Load

Multiple Solutions of a Cantilever Urder Free End Point Load

Free End Moment A, and Energy II vs Fixed End Moment A,
For Cantilever Loaded at Free End

Potential Energy For Concentrated Loads

Multiple Solutions of the Cantilever Under Vertical Distribuied l.oad

Free End Moment A, and Energy II vs Fixed End Moment A,
of Cantilever Under Distributed Load

Potential Energy For Uniformly Distributed Loads
Semi-Circula Arch with Pin-Roller Supports

Possible Zero Load Solution(s) of Pin-Roller Supported Arch
Rigid Body Rotatioa of Arch with No Change in Strain Energy

Positive Prescribed Moments at Both Ends Satisfying Boundary
Condition Y, = 0

Potential Energy II of an Unloaded Arch

Semi-Circular Arch Subject to a Horizontal Point Load P Applied
at The Roller Support

Combined End Moment A,, Y./2R vs Start Slope «, of the
Pin-Roller Support Arch

Deformed and Undeformed Shape of the Arch ferq = 1.0

Positive and Negative Prescribed Moments at Both Ends
Satisfying Boundary Condition Y, = 0

Excessive Prescribed Positive Moinents Resulting in a "Spiral"

53

60

61

63

65

66

67

68

69

69

70

72

73

73

74

75



Figure 4.17
Figure 4.18
Figure 4.19

Figure 4,20

Figure 4.21

Figure 4.22

Figure 4.23
Figure 4.24

Figure 4.25

Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29
Figure 4.30

Figure 4.31

Potential Energy II of Arch for q = 0.0 and 1.0
Y,/2R vs Start Slope v, of the Arch for q = 2.0, 3.0 & 4.0.
A, vs Start Slope v, of the Arch for q = 2.0, 3.0 & 4.0.

Deformed and Undeformed Shapes of the Arch for q = 2.0, 3.0
and 4.0.

Potential Energy II vs Start Slope v, of the Pin-Roller Support Arch

Combined End Moment A,, Y,/2R vs Start Slope v, of the
Pin-Roller Support Arch

Deformed and Undeformed Shapes of Arch for q = 5.0
Potential Energy II of Arch forq = 5.0

Combined End Moment A,, Y,/2R vs Start Slope v, Plot of the
Pin-Roller Support Arch for q = 6.0

Deformed and Undeformed Shapes of Arch for q = 6.0

Potential Energy II of Arch for q = 6.0

Free Body of the Semi-Circular Arch atter Deformation
Possible Zern Load Solutions for the Pin-Roller Arch
Free Body Diagram of the Arch Under a Horizontal End Load

Semi-Circular Arch Under a Concentrated Crown Load

Figure 4.32a Contour Plot For q = 1.0 (7/30<+y,<29%/30)

Figure 4.32b Contour Plot for q = 1.0 (-297/30< v, <-#/30)

Figure 4.33

Multiple Solutions of the Arch With Crown Load q = 1.0

Figure 4.34a Contour Plot for q = 1.2 (7/30<+,<297/30)

Figure 4.34b Contour Plot for q = 1.2 (-297/30<+, <-7/30)

Figure 4.35a Contour Plot for q = 1.4 (7/30<+,<297/30)

Figure 4.35b Contour Plot for q = 1.4 (-297/30<+, <-%/30)

82

84
84
85
86

88

90
92
93
94
97
97
98
98



Figure 4.36a Contour Plot for q = 1.6 (7/30<+,<297/30)
Figure 4.36b Contour Plot for q = 1.6 (-297/30<+, <-7/30)

Figure 4.37 Multiple Solutions of the Arch with Crown Load q
and 1.6

Figure 4.38a Contour Plot for q = 1.8 (7/30 <+, <29%/30)
Figure 4.38b Contour Plot for q = 1.8 (-297/30 <y, <-7/30)
Figure 4.39 Multiple Solutions of the Arch with Crown Load q
Figure 4.40a Contour Plot for ¢ = 2.0 (#/30 <+, <297/30)
Figure 4.40b Contour Plot for q = 2.0 (-297/30 <1, <-7/30)
Figure 4.41 Multiple Solutions of the Arch with Crown Load q

Figure 4.42 Semi-Circular Arch Pinned at Both Ends

1.2, 1.4

2.0

Figure 4.43 Multiple Soiutions of the Pin-Pin Arch with Crown Load (a =

Figure 4.44 Multiple Solutions of the Pin-Pin Arch with Crown Load («

Figure C.1  Contour of a Hemisphere for Z = 0.5 and 1.0 using 100 X 100

Normal Search Grid

Figure C.2  Contour of a Hemisphere for Z = 0.5 and 1.0 using 200 X 200

Octant Search Grid

99

99

100

101

101

102

102

103

103

104

90°) 105

1359106

129



NOMENCLATURE

A A vector containing the initial knowns and unknowns at the initial node
B A vector containing the known boundary value(s) at the end node
b body force

C A vector containing the computed beundary value(s) at the end node
C, G Constants of integration

E Error function vector given by the difference of B and C

El The flexural rigidity of the rod

F Applied force

] Jacobian matrix

L Length of the rod; load potential of the rod

M Bending moment

P Applied concentrated load

R Radius of curvature

T Tension

A% Shear

w Strain energy of the rod

X Global X-axis, X-coordinate

Y Global Y-axis. Y-coordinate

] Segment number

k Index in power series expansion

p Modulus of the elliptic integral

Prin Lower bound of modulus p
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Gn

9y

Upper bound ot mudulus p

Non-dimensional applied concentrated load

Non-dimensional applied uniform distributed load normal to the rod
Non-dimensional applied uniform distributed load along the y-direction
Polar coordinate used in describing a cantilever beam

Arc length of the rod

Uniform distributed load normal to the rod

Uniform distributed load tangent to the rod

Unitorm distributed load along the x-direction

Uniform distributed load along the y-direction

Local x-axis. x-coordinate

Local y-axis, y-coordinate

Non-dimensional moment with respect to the length of the rod
Non-dimensional potential energy with respect to the length ot the rod
The angle of tangent with the local horizontal axis at the end of the rod
Modulus of the elliptic integral solution for a normal loaded cantilever
Non-dimensional tension with respect to the length of the rod

The angle of tangent with the local horizontal axis at the start of the rod;
the angle at location r in a polar coordinate system

Subtending angle of arch

The angle of the tangent with the global horizontal axis
Length of one segment

Non-dimensional uniform distributed load normal to the rod

The deformed shape of the rod
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Non-dimensional moment with respect to the length of a segment
Non-dimensional shear with respect to the length of a segment
Non-dimensional uniform distributed load tangent to the rod
Non-dimensional arc length of the rod

Non-dimensional tension with respect to the length of a segment

The unstressed shape of the rod

Non-dimensional uniform distributed load along the x-direction;
displacement

Non-dimensional uniform distributed load along the y-direction
Potential energy of the rod

Average rotation of the rod



CHAPTER
ONE

INTRODUCTION

1.1  Background

Considcrable attention has been focused on constructing light weight and tlexible
structures involving high radii of curvature. Applications of such structures can be secn
in space exploration, design of mechanical springs. pipeline problems, bridges and other
unique problems. These structures can often be treated as thin inextensible rods subject
to various boundary conditions. As many of these flexible structures allow large elastic
detormations, the conventional small deflection theory is inadequate and the nonlinearity
of the problem cannot be neglected.

Finite elastic deflections of bars have been investigated by numerous researchers
over the past two centuries and a vast literature can be found in Schmidt and DaDeppo
[1], Gorshi and Aust [2] and most recently by Wang [3]. The subject has been studied
often because of its inherent nonlinear nature and often because it has application in areas
as diverse as the deflections of trees. the characteristics of fabric thread, the laying of
pipelines and the deflection of orthodontic appliances. Due to the scope of the subject,
it is not the intention of this present investigation to give a complete survey of research
done in this area. This survey of literature is in no way exhaustive and is only a limited
indication of the available literature pertaining to this subject.

The study of large deformations of rods or bars is generally referred to as elastica

CHAPTER ONE
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problems. Gorshi and Aust [2] defined elastica as the deflection curve of an elastic bar
involving large deformations, however elastica usually implies an inextensible bar with
no shear deformation undergoing planar deflections co-planar with the applied loads.
The heavy elastica refers to large deflection of elastic bars under their own weight.

The study of the elastica usually begins with the Bernoulli-Euler equation which
states that the bending moment at any point along a rod is proportional to the change in
curvature of the rod (Frisch-Fay [4]). Since the analysis of a cantilever subject to
various loadings is one of the simplest elastica problems, numerous researchers [5,6]
have carried out the investigations of this problem (Gorshi and Aust [2]). For example,
Frisch-Fay [4] derived the analytical solutions of a cantilever under a free end load using
the method of elastic similarity and Mattiasson (7] later numerically computed the
solution based on Frisch-Fay’s formulation. Moreover, Mitchell [8] derived the closed-
form solution to a cantilever subject to a uniform normal load in elliptic integral form
by the direct integration method. While the method of solution of the above workers
relied on finding the analytical solutions, these are often impossible when the boundary
conditions become more complicated. As a result, one must resort to numerical
procedures for solving the nonlinear Bernoulli-Euler equations.

Numerical solutions to elastica problem involve solving the corresponding second
order nonlinear differential equation either directly or by applying an energy method with
variational calculus to arrive at the solution. Conway and Seames [9] presented an
iterative method approximating the bar using a number of circular arcs tangent to one

another at their points of intersection. The nonlinear problem can thus be linearized in

CHAPTER ONE
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a way similar to the segmental shooting technique used by Faulkner and Streudlinsky
[10]. Surana [11] implemented a nonlinear finite element formulation for analysing two
dimensional curved beam elements and he later modified this method to accommodate
general three dimensional curved shells [12] and curved beams [13]. This formulation
invokes the criterion of minimum potential energy where the tangent stiffness matrix is
evaluated using a nonlinear nodal displacement formulation and a Newton Raphson
iterative incremental loading path. Also using the energy principle, Somcrvaille [14]
developed a finite element method with an intrinsic coordinate element for computing not
only large deflections of elasticae but also for handling related buckling and vibration
problems. He then developed higher order transfer matrices [15] solving vibration and
column buckling problems.

Stability considerations of structures are always of extreme interesi and
importance. Elastic stability of curved beams was studied by Lo and Conway [16, 17]
who compared the linear and nonlinear extensible theory as weil as the nonlinear
inextensible theory. Lo and Conway [16, 17] were able to identify the threshold
buckling values for a curved beam hinged at fixed supports and subjected to equal but
opposite end moments. Furthermore, DaDeppo and Schmidt [18, 19] expressed the large
unsymmetric buckling of deep circular arches in elliptic integral form. Such analytical
solutions result in a set of nonlinear simultaneous equations which were difficult and
laborious to solve. The same difficulty is reported by Huddleston [20] when nonlinear
deflections of deep arches were investigated. Finally, Fried [21] utilized variational

principles in his finite element formulation to solve the stability of a cantilever under a
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INTRODUCTION 3



free end transverse load. The stability of the resulting deformed configuration is solved
as an eigenvalue problem which is a function of the energy tangent stiffness matrix.

For almost all of the studies mentioned, only one equilibrium configuration is
obtained for a given load. However, the elastica problem being solved is highly
nonlinear and multiple equilibrium solutions are possible as discussed by Fried [21] and
more recently by Navaee [22]. Navaee [22] employed examples of a cantilever under
different loadings to show the development of multiplicity of solutions as the loading is
increased. While the more complicated problems of analysing the stability of arches has
been inveitigated by many researchers [see for example 19, 20, 24-27], the muitiplicity
of solutions to nonlinear problems has received little attention. This was often due to the
numerical difficulties encountered at bifurcation points. As a result, various improved
iterative algorithms have been used to extend numerical procedures beyond the
bifurcation points [28-30].

It should also be noted that attempts to describe the stability of rods in general

terms have been done (see for example [31]). However, this type of analysis is beyond

the scope of this thesis.

1.2 Thesis Outline

The general nonlinear bending of rods is described quantatively by the
Bernoulli-Euler equation. Three properties of such problems are frequently of interest
and importance. These are the deformed configurations of the rod, the associated forces

and moments and the stability of the resulting deformed shapes. This current
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investigation is divided into five parts with this chapter reviewing and introducing the
problem. In Chapter Two, the basic nonlinear differential equations for the bending of
rods under concentrated, distributed and normal loading conditions are derived. The
solution technique for the resulting nonlinear differential equations is then found by
formulating a general numerical procedure, referred to here as the segmental shooting
technique. Chapter Three considers the verification of this procedure using several
cantilever problems with known solutions. The method of solution is further discussed
by examining the multiplicity of the solutions for each problem. In Chapter Four, more
complicated problems involving deep circular arches are investigated. The presence of
multiple solutions is pursued for each problem. As well, the stability of the deformed
configurations is evaluated in a limited sense using the criterion of minimum potential
energy. Finally, Chapter Five summarizes the findings as well as discussing the merits

and limitations of the numerical techniques used.
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CHAPTER

TWO

THEORETICAL FORMULATION

In this chapter, the basic derivation of the governing equilibrium equations for the
plane deformations of an inextensible rod are discussed. The general form of such
governing equations are presented. In addition, the segmental shooting technique used
in this thesis for analysing large deformations of rods subjected to various loading
conditions is discussed.

The segmental shooting technique is divided into the segmental approach and the
shooting procedure. The segmental approach involves dividing the rod into numerous
segments such that the linearization of the governing equations for each segment is
possible. The underlying assumption associated with this linearization technique is that
the relative rotation between the ends of each individual segment remains smali. The
technique by which these linearized segments are assembled to represent the non-linear
solution of the entire rod is shown. Often, numerous segments, in the order of hundreds,
are required to satisfy the above assumption.

An iterative method is employed to convert the original boundary value problem
into an initial value problem. The shooting procedure is used to satisfy the bouadary
conditions by this iterative method. Details of the iterative shooting technique used to

solve the initial value problem are illustrated and discussed.
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2.1 Equilibrium Equations

Frisch Fay [4] has derived the basic equilibrium equations tor the nonlinear
deformations of thin rods shown in Figure 2.1. The details of this derivation follow.
Let ¢(s) be the angle describing the free or unstressed shape ot the rod while 6(s) is the
slope of the deformed configuration of the rod at position s along the arc length. It is
assumed that the rod is inextensible so that the deformation is strictly bending. It is also
assumed that the rod is governed by the Bernoulli-Euler equation which means that the
bending moment M at any point in the rod is proportional to the change in curvature of

the rod,

Here EI is the flexural rigidity of the rod and

dd) 1 (’).’))

ds R

where the initial radius of curvature of the free shape is R(s).

CHAPTER TWO
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Deformed Shape
. = ,/_
a(s)
/— Free Shape
é(s)
R(s)
— X

Figure 2.1 Free and Deformed Shape of the Rod

Now consider an infinitesimal element of the rod of length ds shown in Figure 2.2. This
element has tension T, shear V, bending moment M, which can vary along its length as
well as horizontal and vertical distributed loads w, and w,. Furthermore, the directions
of the forces and moments shown in Figure 2.2 are positive using the sign conventions

adopted in this work.
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L%

\/ 6+de

V+dVv

= X

Figure 2.2 Infinitesimal Element Loaded by Horizontal and Vertical Distributed Load

Static equilibrium conditions on the element resui: in

~+ Y F_= 0 = (T+dT)cos(0+d6) + (V+dV)sin(6+d0) (2.3)
- Tcosf - Vsin® +w_ds,

1) F, = 0 = (T+dT)sin(6+d8) - (V+dV)cos(8+d0) 2.4)
-TsinB + VcosO + wyds,

+ M, - 0 - (V+d¥)(cosB)ds + (T +dT)(sin6)ds + M - (M+dM) + w sinfds>
A X 2

-w_cos9ds—,
4 2

(2.5)

CHAPTER TWO
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leading to

d d nge:
+ £ +W, = 2.6
(TcosB) + —(Vsin@) +w_ = 0, (2.6)

d . d
Td;('l‘sme) - E(Vcose) -w, - 0. 2.7

The moment equilibrium yields

v.M (2.8)

Integrating equations (2.6) and (2.7) over the rod with length s gives,

TcosO + VsinB + f wds - C, (2.9)
0
and
Tsin® - Vcos0 + f wds = C, (2.10)
0
CHAPTER TWO
10
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where C,; and C, are constants of integration. These equations can be combined by
multiplying equation (2.9) by sinf and adding to equation (2.10) multiplied by -cosf to

yield

s 3
V = C,sinf - C,cos0 - sinB [ w,ds + cosB [w,ds. (2.10)
0 0

Using equations (2.1), (2.2) and (2.8), equation (2.11) becomes

L2 _Ly) - sind - C cos0 - sind [w,ds
0

ds ds R(s) (2.12)

R}
+cosb f wxds.
0

Instead of using x and y components for the distributed forces, it is often convenient to

express them in terms of normal and tangential distributed loads, w, and w, respectively,

as shown in Figure 2.3.

Since
w, = wcosB +v: sinf (2.13)
and
w, = wsinf - w cosf, (2.14)
CHAPTER TWO
11
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M+dM
T+dT
’/8+d9
V+dV
>X

Figure 2.3 Infinitesimal Element Loaded by Normal and Tangential Distributed Load

equaticn (2.12) can be written as

d e 1 .
—[EI(=-——)] = C;sin - C,cos6
d & R (2.15)

A N
-sin® f(w(cose +w,_sinB@)ds + cos0 f (w,sin6 - w_cosB)ds.
0 0

If the flexural rigidity EI, radius of curvature R and prescribed distributed load w,, w,

or w,, w, are constant throughout a rod element. equations (2.12) and (2.15) simplify to

CHAPTER TWO
THEORETICAL FORMULATION 12



EI Z;? = C,sinf - C,cos0 - sw,sin6 +sw, cosd (2.16)

and

2 3 R}
EILY. - C,sind - C,cos0 - w,sin f castds - wsin [sin6ds
0 0

ds* 2.17)

Ry A
+w,cosf | sinBds - w_cos6 f cosOds
0 0

respectively. Equations (2.16) and (2.17) are the second order nonlinear differential
equations describing the deformed geometry 6(s) of the rod. The constants of integration
C, and C, are evaluated from the boundary conditions. Applying boundary conditions

T=T,V =V,and § = 8 ats = 0, which are the initial values of tension shear and

slope of the rod, equations (2.9) and (2.10) become

C, = T,cosp +V,sin, (2.18)

C, = Tsinp -V cosp. (2.19)

Equations (2.16) and (2.17) along with (2.18) and (2.19) determine the deformed shape
6(s) of the rod subjected to prescribed distributed loading. If the rotation, @, of a rod or
rod segment is small relative to a suitable local coordinate system, equations (2.16) and

(2.17) can be linearized by writing sinf = # and cos§ = 1. Discussion of this local

CHAPTER TWO
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coordinate system is deferred until later. With this approximation, equation (2.16)

becomes

B9 . co-C -swb (2.20)
E - L U-L,-sw, ",'SWy. .

Neglecting small terms of order * and using linearized forms of equations (2.18) and

(2.19) for the constants of integration results in

d-o

i T, - P)+V,-sw 0 +sw,, (2.21)

EI

where 6 = B ats = 0. Similarly, equation (2.17) becomes

2 5 s
B4 _T0-p)-V,-wos-w0 [ods+w,[0ds-w;s. (2.22)
ds” 0 0

Define

Bs - f Bds, (2.23)
0

where O represents an average rotation, equation (2.22) becomes

d-o

" TO-p V- w6 -8)s - w_(60 + 1)s. (2.24)

EI

CHAPTER TWO
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Neglecting the higher order terms finally resuits in

d*e

EI=— - T,(6-B)+V,+w(0-0)s-w_s (2.25)
dsZ

which is the linearized form of equation (2.17).

Introducing the following dimensionless parameters,

o =S oo T2 Ve
8’ El’ EI’
Md L} do 1 dao &
- 22 . 2EE L - (B, 2.26
p - X EI[(ds R)] -2 (2.26)
w, & w,d? w &3 wy63
n = ’ = = X - - > w - ’
El EI EI El

the dimensionless form of equations (2.21) and (2.25) become respectively,

d-? = 1(0-B)+v,-pxB+py, (2.27)
dp-
and
;i-e’ - r1(6-ﬁ)+vl+Ep(5—6)—np. (2.28)
o2

The solution of these equations is achieved using a power series along with

appropriate boundary conditions as follows

CHAPTER TWO
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6 - Y ayok 2.29)
k-0

0o - B, | 2.30
do o
e - e, 2.31)
Ly - 2.32)
p

For the rod loaded by uniform horizontal and vertical loads then

4’6 5
'(};p-o = Tl(l‘l*E)—Xﬁ*‘w- (2.33)
Similarly, if the rod is loaded by uniform normal and tangential loads then
4o 8
— oo = T+ )N (2.34)
gpre-0 T TR Tn

Substituting equations (2.30), (2.31), (2.32), and (2.33) or (2.34) into (2.27) and (2.28)
results in the coefficients ¢, being given by

ay = B. (2.35)

CHAPTER TWO
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a - e, (2.36)

R
Y (2.37)
)
R
, - (v,a,-xP w)’ (2.38)
6
or
_ (e -m) (2.39)
3 6 ’
and
PP = e £ VY P S (2.40)
k k(k- 1)
or
1
- Tlak-2_5ak-3(l—i__3) L - 456 (2.41)
y k(k-1) A

Equations (2.38) and (2.40) are the coefficients of the power series in terms of
distributed horizontal and vertical loads w,, w, while equations (2.39) and (2.41) are

expressed as a function of distributed normal and tangential loads w,, w, to the rod

CHAPTER TWO
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segment. Equations (2.29) and (2.35) through (2.41) give the solution for a linearized

rod segment in terms of the values of the forces, moments and distributed load at the

beginning of the rod segment.

2.2 Segmental Technique

In the previous section, the basic equilibrium equations of a rod undergoing large
deformations are formulated. The resulting nonlinear second order differential equations
are linearized by assuming a small relative rotation between the ends of the rod.
However, many problems involve large deformations resulting in large relative rotations
between the ends of the rod. As a result, in such a case the previous assumption that
sinf = 6 and cosf = 1 are invalid. However, if the rod is divided into numerous
segments, each segment having a small relative rotation between the ends, the linearized
solution can then be used. A linear second order differential equation has the advantage
of being easily solved by standard numerical techniques. Large deformations of the rod
can thus be computed easily by assembling a sequence of linearized solutions for each
segment in a continuous manner.

This numerical procedure, referred to here as the segmental technique, was
developed and first applied to problems associated with laying of offshore pipelines by
Faulkner and Stredulinsky [10] and later modified by El-Rayes [33] to problems
associated with investigating forces and moments generated by orthodontic appliances.
Both investigations involve structures that differ vastly in physical size but the same

technique was used to analyze nonlinear problems associated with large deflections. The

CHAPTER TWO
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subsequent derivations of this numerical procedure closely follow their works.

Tn & Mn
*\’\7\ M(n+1)
~J.,
\' e’ -~
/n ,’ T(n+1)
P d V(n+1)
e

W

<— Deformed Shape

Figure 2.4 Application ot the Segmental Approach

In order to illustrate the linearization technique of the segmental approach,
consider as an example a cantilever loaded at the free end as shown in Figure 2.4. The
load P applied is sufficiently large such that the cantilever undergoes nonlinear
deflections which are governed by the previously derived second order nonlinear
differential equation. The cantilever is then divided into segments with the relative
rotation between the ends of each segment being small. Each segment has its initial
values as shear V,, tension T, and moment M,. The linearization technique allows
computing of the corresponding shear V, ., tension T,,, and moment M, ,, at the end of
a segment. While maintaining continuity of force and geometry between segments, this

Process is repeated for all segments forming the rod. In other words, the segmental

CHAPTER TWO
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approach essentially solves a nonlinear rod problem by computing and assembling a
sequence of linearized rod problems. Therefore, the overall deflections of the rod can
be large and linearized solutions can still be used given a sufficient number of segments.

Consider a segment of the rod of finite length 8 as shown in Figure 2.5. In order
to employ the linear solution to the segment, a coordinate system x and y is defined to
ensure that the relative rotations between the two ends of the segment is small. As
previously stated the number of segments used is chosen so that , the angle with respect

to the local coordinate system, remains small over any one segment.

Y

Figure 2.5 Local Coordinate System of an Element

Here v is the tangent angle of the segment with respect to the global X-axis. 8 and $
are respectively the tangent at the start and end of the rod with respect to the local x-
axis. The use of the powcr series expansion to solve the linearized equation numerically

requires the problem to be treated as an initial value problem instead of a boundary value

CHAPTER TWO
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problem. That is, complete knowledge is required at the start of the rod. Since the
segmental approach is examining the rod as a series of small segments, the problem can
be handled as a series of initial value problems on a segment to segment basis. The
solution of the rod can then be constructed by preserving force and geometric
compatibility between segments as shown in Figure 2.6 for the case of a cantilever with
end load. The problem thus requires solving a linear differential equation for each

segment in which the following six initial conditions are required;

X, Global X Coordinate at Start of Segment

Y, Global Y Coordinate at Start of Segment

Y Angle of Tangent with Global X axis at Start of Segment
T, Start node Tension Value at Start of Segment

vV, Start node Shear Value at Star of Segment

M, Start node Moment Value at Start of Segment

T TN Mn

T

B Min+i)

. i
va T~ Min+1)
! Tnel) we_ ™ .
~— Mine2)

Vinel) ‘\-\
Va1 — ez
j 4 X

i N Vin+2)

- Ueformed Shape

Figure 2.6 Numerous Linear Segments Assembled to Form a
Nonlinear Problem
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Given all of the above six initial conditions, the corresponding force and geometric

properties at the end of each segment are computed. Finally, the six variables at the end

of the rod are determined by appropriately assembling the segments together.

Figures 2.7 and 2.8 depict the assembling of successive segments. Figure 2.7

shows the geometric compatibility while Figure 2.8 demonstrates the force compatibility

of the segments. Segment j and (j + 1) are shown with nodes (i - 1), i and (i + 1).

Each segment consists of two nodes and node / is common to both segments.

For

simplicity of illustration, distributed loading is omitted. Six parameters are defined at

each node as shown in Table 2.1.

Table 2.1 Nodal Connectivity between Successive Segments

NODE/SEGMENT I

Xnn Yxm 4T
Tlm Vlm Mlu)

x:u) Yzm Y2
Topy Vo My,

Xw+1) Ywm Yig+n
Tl(j+1) vl(j+1) Ml(j+1)

Xz(,'+1) Yzq+1> Yi+0
Tagen Vagen Magey
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Continuity between segments is achieved by equating

2 " Tigenr Voe = Yiaery Mag = Mg, (2.42)
X = Xy Yan = Yigery Y20 = Yigien

Six parameters T\;), Vi,» Myj) Xyj) Yy, and vy, are required at node (i - 1) to
compute Ty;), Vajy, Magjy, Xajys Yaj) and 7y, for element j. Then the six parameters
at node i for segment j are equated to those for segment j + 1 using equation (2.42).
This sequence of computation is repeated for all segments used to define the rod. The
flexural rigidity EI, radius of curvature R and the length & of each segment allows the

non-dimensionalizing of the six specified parameters as given in equation (2.26).

Therefore,
M, 8
i b (2.43)
M g
2
. 0o (2.44)
! El
v, - (2.45)
EI

As mentioned previously, the relative rotation § within each segment is assumed to be
small, and therefore a local coordinate system (x.y) is selected for each segment so that
|#] << 1 is guaranteed. The orientation of the coordinate system (x,y) is optimized

by selecting the initial slope. 3, so that (§°),y¢ is kept approximately minimum. Recall
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that the deformed shape of the element is given by the power series expansion as,

v. , (me-xB-¥)
0 - B+(u,+—§)p+—7—'pz+ - p3+

6
N (T e = X% _3) K, (2.46)
kk-1)
k - 4,5,6,...
or
) v, , T,0,-1
8 - B"(Pl“"Ij:I‘)P*‘—2—19”+————l é pi+...
(T) @y~ Eak.3(1 = "1—)) (2.47)
- k pk+...
kk-1)
k - 4,5,6,...0

depending whether horizontal/vertical or normal/tangential loading is specified. The first
three terms are equal for both equations and the fourth term is in the order of p* where

0 < p < 1. Consequently, 8 can be approximated by considering the first three terms

of either series,

V1 o2, (2.48)

o
6 ~ Bl )P+
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The average of 6° over the length of the segment is given by

1 1

’ 3 5 8
GZAVG = {f)zdp = j(ﬁ2+2ﬁ(pl+—ﬁ)p *(V15+P12+2Px§*—)9
V ‘)
*Vl(uﬁ—)p e p')dp (2.49)
5 z
= =+ +_v +pe2p =+ 2y L —+—-.
B+ P, += (113 Bt 20 o R) 4(111 ) 0
Minimizing (6%),vg With respect to 3.
dezAVG 5 v
— = 2B + +—+-=) =0 (250)
ap B+(p, )
yields
)
= —_( +—_— e — (2.51)
p SHr g 3)

Therefore, the local coordinate system (x,y) is located at the start of each segment using
B trom equation (2.51) as shown both in Figures 2.5 and 2.7.

In addition, the transformation between the global and local coordinate system is
required to maintain overall continuity. The slope at the end of the segment with respect

to the local axis is given by,
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® -6, -Yap  -Ya (2.52)
k-0 k=0

As shown in Figure 2.7, v, and +; are the tangent of the angle between the start and
end point of the segment with the global X axis. Therefore, the end point of the segment
would make an angle with respect to the global X axis given by

Y, - yi_l—pj+d>j_ (2.53)

On a per segment basis, the local coordinates of the end node are given by using

geometric relations,

s s
X = fcoseds‘ ~[ds -5 X -op, (2.54)
0 0 o
and
s § s P - k+1
- (sinbds ~ [0ds = 2 -fﬁdg - [odp - &P ess)
’ [ { 5 06 0 ko k+l .

Since six parameters are specitied at the start node (i - 1) of a segment, it is possible to
express the parameters at end node (/) as a function of the start node parameters. Using

geometric relationships, the nodal points of a segment can be resolved relative to the

global X and Y coordinate,
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Xi = Xi-l +xzc°S(Yi_1 = B) ‘)’2Sin(Yi-1 - p):

Y, - Y, +xsin(y;_, - B) +y,cos(y;_, - B)

and thus global continuity can be maintained. At the end point of a segment

(i.e., p = 1), equation (2.55) becomes

and equations (2.56) and (2.57) simplify to

X - Xi-1+6°°S(Yi-1‘ﬁ)‘5hjsin(Yi_;‘9),

Y, = Y,_, +&sin(y;,_,-B) +5hjcos(yi_l - B).

1 1

Recall that the dimensionless bending moment and shear are respectively

we G (gl (et - 2
and

v - d—‘i(g—g—%) ]g:zkﬂ(—l)akp"'z
CHAPTER TWO
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The bending moment p and shear v at the end of a segment (i.e., at p = 1) can thus be

written as

b - Y -2, (2.63)
k-1 R

v, - ik(k—l)ak. (2.64)
k-2

The dimensionless tension force at the end of a segment is computed by considering

equilibrium along the local x-axis.

+ =Y f. -0~ t,cos®+v,sin® -t ,cosp - v sinp +x, (2.65)

or

1

+ = Y f. = 0 = 7,c05 +v,s5in® - r,cosB -y sinf + £ + l sinddp.  (2.66)

Equations (2.65) and (2.66) represent static equilibrium along the local x-axis of the rod
under horizontal/vertical and normal/tangential distributed load respectively and again
using the fact that the relative rotation between the start and end of a segment is small,

these simplify to
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T, = T+, B-v, @ -y, (2.67)

T, = Tl+ulB—1/2¢—§’—~th. (2.68)

Consequently, the corresponding moment, shear and tension at the end of a segment are

K, El

. BE (2.69)
M

v, - 28 (2.70)
62

T, - 22 @.7)
62

Given the forces, slope and position of the start node of a segment, the corresponding
values at the end of the segment can be determined. The continuity of the rod is
maintained by referencing the local segment coordinates (x,y) with the global coordinates
(X,Y). Theretore, the successive segments throughout the rod are assembled based on

geometric and force compatibility.

2.3  Shooting Method
If X, Yy, v1, My, V, and T, for the first segment are given a priori then the
segmental technique is able to provide the corresponding values at the end of the rod.

A false position Newton Raphson method (regula falsi) is employed to correct or improve
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the assumed values(s) at the start.

Assuming that there are N unknowns at the start node, then N knowns are
required at the end. Let A be a vector containing the initial values for the unknowns of
the initial node. Let B and C respectively represent the vector with the known boundary

values and the computed boundary values at the end node respectively.

That is,
A (B Cieo
1) 1) 1%
Ay By, Coy 272)
- . N . i . (2.
) P B‘(k) .0 Q(k)
AN(k)J By CNa:))

Now the error function E,, = By, - C,,, 1s defined where k is an iteration counter so that

E(k) - f(Am) = £(Aq Apy - - - Anay (2.73)

The functional dependency of the error vector on the initial unknown values follows
because the computed values at the end of the rod depend on the values assumed at the
start of the rod. The objective is to find Ay, such that f(A4,) = E,) = 0. Therefore,

the problem requires solving a set of N non-linear simultaneous equations in the form,
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Ejg = fi(A Ay - - - Ang)~ 0
Eygy = (A1) Asgy - - - Ang)~ 0
: (2.74)

Enw = Ay Ay - - - Ang)~ 0

The usual Newton Raphson method for many variables is based on a first order Taylor

series [32] which when expanded in matrix form yields

By By OE,q |
L | A Ay
Eie.n] [Eiw 5 5E E Ay - A
E. Ez Ez(k) 2(k) L 2(k) Az _ A2
20k +1) ® 0Ayqy 9Agy Ang (&-+1) )
. r-J'p . L e ' ((2.75)
Bl Bl op g, By | {0 T o
L aAl(k) aA:‘.(k) aAN(k)J
or
~E. - By DB, - Ay)- (2.76)

Setting Eq ), = 0 and solving for A, ,,, which are the new or improved estimates of the

initial unknowns at the beginning of the rod results in
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= -1 2.77
A(N) By H(k)] E(k)‘ @.77)

Since E is not an analytical function, the elements in the Jacobian {J] can only be
evaluated numerically. A false position backward difference formulation is used to

evaluate the partial derivatives of E with respect to A. Two initial guesses per unknown

are thus required.

Jiw = ;g - Ei(Ag) "EAqy - Ay - Anay) ) (2.78)
J 9 Ajw ~Ajx-1)
Rearranging equation (2.77)
E(k) = -[l(k)]Dm (2.79)

where

= -A (2.80)

D =A .
= kD T

Equation (2.79) can now be solved for Dy, using a standard Gauss elimination procedure.
The corrected or improved vector is given by A, + Dg, where Ay, is the initial vector.

A flow diagram of this numerical procedure is illustrated in Figure 2.9.
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Figure 2.9 Flow Diagram of Numerical Shooting Technique

1t is important to understand that tinding roots of nonlinear equations or systems
of nonlinear equations is a very difficult task in general. Root finding techniques such
as the Newton Raphson false position algorithm described above only work well when
good initial estimates of the solution are used or when the funciion is "well behaved".
How close the initial estimate must be to the correct solution depends on the complexity
of the functions involved in a given problem. For example, as will be discussed in detail
later, many problems require initial estimates of the solution to be very close to the

correct solution in order for the above false position method to converge to the solution

desired.
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CHAPTER

THREE

VERIFICATION

In Chapter 2, the segmental solution technique for analyzing large deflections of
a rod was introduced. In order to verify the accuracy of this method, rod problems with
point loads, uniform horizontal and vertical loads w,, w, as well as uniform normal and
tangential loads w,, w, are considered in this chapter. The segmental technique was
previously developed for analyzing large deflections of a rod with only one equilibrium
shape. However, the problems being considered here are ones which admit multiple
solutions. Uniqueness is not guaranteed and multiple equilibrium shapes are possible for
a given load, (see for example Navaee [22]). Consequently, it is necessary to confirm
the presence of multiple equilibrium configurations of a rod under various loading
conditions. In the following sections, multiple solutions of a cantilever obtained using
the segmental solution technique are compared with their analytical counterparts for a
single concentrated end load P, a uniform distributed vertical load w, and a uniform
distributed normal load w,. Loading conditions of the cantilever are shown in Figure
3.1. The origin of the cantilever for a particular loading is chosen so as to simplify the
problem. The reason for doing so will become apparent in later sections. Also, a semi-
circular arch subject to a horizontal concentrated load P at mid-span is investigated and
compared with an analytical solution. In all cases it was found that the segmental
solution technique gives an accurate description of the nonlinear deformation of the
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cantilever, as long as a sufficient number of segments is used. The number of segments
required to provide an accurate description of the problem depends on the amount of
deformation involved and is discussed in later sections. In addition, the segmental

solution technique is able to identify multiple equilibrium solutions when they exist.

3.1 Point Load P

Frisch-Fay [4] has derived an analytical solution for the large deformations of a
horizontal cantilever under a vertical point load at the free end as shown in Figure 3.1(a).
The details of this solution follow. Let ¢ be the angle of the tangent of the cantilever
with respect to the X-axis a distance s away from the fixed end and ¥, be the

corresponding angle at the free end. Introducing the variable ¢, and the parameter p,

which satisty the following equations

1 +sing = (1 +sinyy)sin’d, (B.1)
and
2 a +Sinlllo)’ 3.2)
2
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the solution to this problem can then be written in terms of standard elliptic integral as

and

where

and

CHAPTER THREE
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q - f_‘m’_l_ - K(p) - F(p,sin"'—— 3.3
1 3
" (1-psin’9) /2
S - [F(P,d))‘F(P,d’l)]’ (34)
k
x = h(cos¢, -cosd), (3.5
y - [2E(ps¢1)_F(p’¢|)+F(p’¢)_2E(ps¢)]’ (36)
k
&, - sin"H(—), 3.7
pv2
P.3 (3.8)
k =\ 3
(EI)
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2 PL? 3.9)

Here x and y are respectively the horizontal and vertical displacement of the cantilever
at a distance s away from the iixed end. The non-dimensionalized applied concentrated
load is given by q in equation (3.9). K(p), E(p,$) and F(p,¢) are respectively the
complete elliptic integral, the elliptic integral of the first kind and second kind. From
equation (3.3), for a given load q, the only unknown is the modulus p. A bisection root
finding method with a lower bound of p,,=(1/2)° and upper bound of
Pmax =-99999999999999999 is employed to numerically compute p. A value of p <
(1/2)* results in equation (3.7) being undefined and p = 1 leads to K(p) unbounded in
equation (3.3). Physically, a modulus of p = 1 implies that the free end tangent with
respect to the x-axis y,=90° indicating that the slope at the free end is vertical. Using
p found from equation (3.3), equation (3.4) is used to solve for the slope ¢,, for any
position s along the rod. Also, equations (3.5) and (3.6) respectively yield the vertical
and horizontal coordinates of the cantilever at any location s.
Consider, as an example, the horizontal cantilever shown in Figure 3.1(a) with

the tollowing properties,

L =1.0m, EI = 10.78125 N.m?,

I/R = 0 m", q = (PLYED? = 5.
Using the bisection method. the modulus p was found to be p = 0.9999376728424472.

The horizontal and vertical coordinates at the free end of the rod evaluated using
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equations (3.5) and (3.6) are tabulated in Table 3.1. Also shown is the slope y, at the
free end of the beam given by the appropriate rearrangement of equation (3.1). In all
cases, Y, is equal to the notation v, used in the derivation of the segmental approach.
Table 3.2 shows the numerical results obtained using the segmental technique for
different numbers of segments. The numerical results approach the analytical solutions
monotonically as the number of segments increase. The segmental technique with 2000
segments differs the analytical results by a maximum of 0.16%. Even though 2000
segments are used, numerical efficiency of this procedure is illustrated by the fact that
the whole numerical iterative process is completed using a PC type computer in only a
few minutes. Given a reasonable estimation of the initial unknowns, only a few
iterations are required to converge to the desired solutions. Therefore, it can be
concluded that the segmental technique agrees satisfactorily with the analytical solution

and 1s numerically efficient in solving problems of this kind.

Table 3.1  Analytical Results of Cantilever Subject to a Free End Point Load P
(Geometry of Free End)

Y/L

0.2828074538111195 -0.882730526.82732 -1.54846647144117
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Table 3.2 Numerical Results of Cantilever Subject to a Free End Point Load P
(Geometry of Free End)
# Segments X/L Y/L Ya
75 0.2696513066468 -0.8857840129169 -1.562961266457
123 0.2750562189956 -0.8845511770331 -1.556990954204
250 0.2789833514671 -0.8836363311167 -1.552666633891
500 0.2809079763399 -0.8831822670900 -1.550551443571
750 0.2815438996930 -0.8830314258671 -1.549853135693
1000 0.2818608204750 -0.8829561027265 -1.549505231364
2000 0.2823349087472 -0.8828432405612 -1.548984926246

Frisch-Fay’s [4] derivations consider only one solution. In order to locate all
possible equilibrium configurations, a plot is made of the non-dimensional moment
(A = ML/EI) computed by the segmental technique at the free end of the cantilever (A,)
against the dimensionless moment initially guessed at the start of the cantilever (A,;) as
shown in Figure 3.2 for a dimensionless ivad q = 5.0. Since the moment at a free end
of the cantilever is identically zero, the three equilibrium configurations correspond to
points where the ordinate A, is zero. It is essential to note that this function is quite
complex and has a very steep gradient near A, = -7.08. This behaviour makes it
imperative that the initial estimate of this root be very good if the false position algorithm
described in the previous chapter is to be successful. From Figure 3.2, the three A,
intercepts correspond to A, = -7.08. -4.32 and +7.07 indicate three possible
equilibrium configurations within the range of A, used. If one considers the physical

arrangement of the cantilever. the maximum moment at the fixed end due to the applied
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load P at a lever arm of length L must be less than or equal to PL. To see if any more
cases where A, = 0 exist, the segmental method was used with values of A, from
-PL%/EI to PLYEI. No additional A, intercepts were found. It can thus be concluded
that for ¢ = 5.0 only three equilibrium configurations are possible and these are shown
in Figure 3.3.

Also shown in Figure 3.3 are the shapes found by Navaee [22]. There is no
apparent difference between his shapes and those found from the segmental solution
technique. Note that the shapes obtained by Navaee [22] were computed via elliptic
integral similar to the solution in equations (3.1) - (3.9). The exact number of multiple
equilibrium solutions depends on the load parameter q. For q < 3.214 only one
equilibrium solution occurs while if q = 3.214 two equilibrium solutions are present.
If 3.214 < q < 7.142 then there are three solutions and further increases in q result in
more equilibrium solutions. One of the ways to determine the exact number of solutions
for a given loading is to inspect a plot of fixed end moment versus tree end moment and
look for the zero free end moment conditions as illustrated in Figure 3.2.

Navaee [22] examined this problem of multiple solutions using a few different
methods. Some of these methods involve evaluating the closed form analytical solution
using elliptic integral. However, since it is often not possible to compute the exact

solutions to a problem. the segmental approach is a feasible and efficient option.
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3.2 Uniform Distributed Vertical Load w,

Navaee [22] also compiled solutions of a cantilever beam under uniform
distributed vertical loading w, as shown in Figure 3.1(b) and validated them
experimentally. Figure 3.4 shows the end moment vs start moment plot similar to the
previous case for a non-dimensional load parameter g, = (w,L*EI)* = 8.5. Three
separate equilibrium solutions are evident here because of the three zeros for A, which
are labelled 1, 2, 3. Again the exact number of equilibrium configurations depends on

the load parameter q,.
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Figure 3.4 Free End Moment A, vs Fixed End Moment A, of the
Cantilever Under Vertical Distnbuted Load

Figure 3.5 shows the resulting three equilibrium configurations computed by the

segmental solution method. Also shown are the shapes computed numerically by Navaee
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[22]. Again there is no observable difference between these solutions.
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Figure 3.5 Multiple Equilibrium Solutions of Cantilever Under
Vertical Distributed Load

3.3 Normal Load w,

Mitchell [8] derived the analytical solution of a cantilever subject to a uniform
normal load q, = (w,L¥EI)* as shown in Figure 3.1(c). The deformed shape of the

cantilever is given by

30 - sin"!(q,p?) -4sin"(q,p}) +3P
(3.10)
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and

1
F(Q.k) - 2q."3)*

where

Q - cos¥( ——
1+(/3-1q."p

and

1-(/3 + 1)q§’395)

(3.1

(3.12)

(3.14)

(3.13)

where F(Q,k) is the elliptic integral of the first kind. The polar coordinate system as

well as the physical representation of § are shown in Figure 3.6. In this case, 3 is the

angle at location r and 6 is the angle at the free end of the cantilever. p, in equation

(3.12) is the dimensionless form of r at the clamped end of the cantilever.
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Figure 3.6 Mitchell's Noiat:on for Cantiléﬁcr Uader Normal Load

Table 3.3 compares the results obtained using the 1000 segments with the
segmental approach and the analytical solution. Instead of defining the origin at the fixed
end of the cantilever, the origin is selected at the free end of the beam which simplifies
the problem for the segmental solution. That is, the origin is defined at the free end of
the cantilever as indicated in Figure 3.1(c). Since the deformed shape of the beam is not
known before hand, the moment, tension and shear at the fixed end are unknowns.
However, moving the origin to the free end means that only the free end slope v, is
unknown with the free end tension, shear and moment being identically zerc. With
tewer initial unknowns, the problem is thus simplified. Since the slope at the fixed end
is zero, the equilibrium solutions correspond to points where vy, = 0. If one used the
same approach as for the cases with cantilevers, that is prescribing different values of the
kinematic variable v, at the tree end and computing the corresponding slope +, at the

fixed end without changes in tension, shear and moment this would essentially invoke a
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rigid body rotation of the cantilever by an angle of y,. This would not provide any
information pertaining to the multiplicity of the solutions to the problem. To overcome
this difficult, the problem is posed with a couple M, applied at the free end. For various
values of initial slope v,, the shooting technique is used to find the free end moment M,
(A, in non-dimensional form) which ensures v, = 0. A plot of Free End Moment A, vs
Free End Slope v, with the condition y, = 0 for different values of g is shown in F igure
3.7. Only one equilibrium solution (A,-intercept) for each load was found for the range
considered. The prescribed free end rotation «, has been computed for the range

0 < 4, < 4m. As the prescribed rotation v, is increased, the value of free end moment
A, continues to decrease. This presents strong evidence that the cantilever loaded under
a normal load has only one equilibrium solution regardless of the magnitude of the

applied load.

Table 3.3 Analytical and Numerical Results of a Cantilever Subject to Uniform
Normal Load (Geometry of Free End)

ANALYTICAL SOLUTION SEGMENTAL TECHNIQUE "
X/L Y/IL X/L Y/L

0.922005 -0.35395 0.922554 -0.35098

3.7882 -0.00206 -0.82349 0.000534 -0.82256

5 -0.40269 -0.47883 -0.38827 -0.48909

10 -0.04690 -0.00006 -0.04531 -0.00548

15 0.194960 -0.04521 0.194110 -0.05414
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Table 3.4 Analytical and Numerical Results of a Cantilever Subject to Uniform
Norma! Load g, = 10 and 15 (Geometry of Free End)
qa ANALYTICAL SOLUTION SEGMENTAL #
TECHNIQUE Segments

X/L

Y/L

-0.04690
0.194960

-0.00006
-0.04521

-0.04604
0.195815

Figure 3.9 represents the deflected geometry of the cantilever with 2000 segments for

q, = 10 and 15 respectively. The deformed shapes are n~w i.1 better agreement with the

analytical solution as shown graphically and as listed in Table 3.4.
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Normal Load

The minimum number of segments required to produce acceptable answers is dependent
on the amount of deformation which directly relates to the loading conditions. For an
applied load parameter g, = 10, the segmental solution agrees satisfactorily with its
analytical counterpart only when more than 2000 segments are used. The deflected shape
of the cantilever undergoes 239.7° rotation. Therefore, as an overall average, 8 or 9

s:gments per degree change of rotation is recommended to achieve acceptable resuits.
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3.4 Pin End Deep Arch

Large deformations of rods with only one initial unknown have been examined
so far. However, there are numerous problems where more than one initial value is not
known. Consider a semi-circular arch pinned at both ends as shown in Figure 3.10. The

arch is subject to a horizontal point load P applied at the crown.

P—__

A

T T
e 2K - -1

X1 =0 X, = 2R
Yi=0 Yz =90
Mi = 0 Mo =0
7i= 2 Y2 o= ?
Tl:? T2:9
Vi = » Vo, = 2

Figure 3.10 Boundary Conditions of the Semu-Circular Arch

With the origin of the coordinate system at the pin on the left, the initial knowns are

X, =0,Y, =0, M, =0 and the corresponding unknowns are T,, V, and v,. In this
case. three end or known boundary conditions at the pin on the right have to be satisfied,
namely X, = 2R. Y, = O and M, = (. Specifically the deformation of deep arches is
an often studied problem. DaDeppo and Schmidt [19] investigated the sideways

detlections of deep circular arcnes under cencentrated loads.
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Figure 3.11 Pin End Semi-Circular Arch Subject to Horizontal
Mid-Span Point Load

For example is a semi-circular arch with properties as shown in Figure 3.11, pinned at
both ends and loaded at the crown. DaDeppo and Schmidt [19] employed a nonlinear
analysis based on the classical Bernoulli-Euler theory of the elastica. The solution to the
problem is expressed in terms of elliptical integrals of the first and second kind, however
the solution involves the simultaneous satisfaction of equations for *he left and right sides
of the arch. A system of ten equations, five of which are transcendental, must be solved
simultaneously. DaDeppo and Schmidt [19] reported that solvicg a system of
transcendental equations was a difficult task and a digital computer was used to perform
the numerical computation. Numerically examining this arch using the segmental
approach requires the technique to accommodate an externally applied point load between
segments.  Figure 3.12 depicts the free and deformed shape of the arch under a

horizontal concentrated applied load at its crown. The corresponding deformed
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configuration is essentially the same as with DaDeppo’s analytical solutions. However,
the fact that there may be multiple equilibrium solutions was not discussed by these

authors. Those found using the segmental technique are discussed in Chapter Four.
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Figure 3.12 Free and Deformed Shape of the Arch Unde:
Horizontal Crown Load

The segmental approach to the above problem not only yields very accurate
results for large deflections of rods bu: can also be used to identify multiple solutions if
they are present. This is very straightforward when there is only one initial unknown.
However, finding muitiple solutions for problem that have severz unknowns require
special modifications of the shooting procedure. These are discussed in the following

chapters.
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CHAPTER
FOUR

RESULTS AND DISCUSSIONS

In Chapter Three, the segmental approiich was used to examine the multiplicity
of solutions for a cantilever subject to various loading conditions. Also, it was suggested
that structures such as deep arches exhibit multip!s =quilibrium solutions for various
loading conditions. Even though some of the computed deformed configurations were
verified using analytical solutions, many of them are "counter-intuitive" prompting
questions of their stability.

This chapter begins by introducing the notion of stability using the minimum
poiential energy theorem. This notion of stability will be used as a basis for a limited
evaluation of the stakility of the computed deformed configurations. In addition to
evaluating the stability of the solutions, the deformed configurations not verified by the
analytical solutions were checked by ensuring overall static equilibrium. The
investigations of cantilevers under different loadings are again discussed using this
restricted concept of stability. Arches with different support and loading conditions are
also consigered to illustrate the realization of multiple solutions using the segmental
approach. In all rases. the segmental technique has been able to identify multiple
solutions if prescut. The evaluation of the stability of the solution using the potential
energy criterion is used to provide indications of the relative stability of the multiple
solutions.
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4.1  Minimum Potential Energy Criterion for Stability

While a complete and precise definition of stability is given using the Lyapounov
definition |34], the more widely used energy criterion is utilized in the following. It is
realized that only in certain circumstances is the energy criterion a necessary condition
for Lyapounov stability. An expression of the energy criterion for stability is given by
Knops and Wilkes [34] as:

"For an elastic body under conservative loads and subject to

isothermal conditions, a necessarv and sufficient condition for

stability of an equilibrium position is that the porential energy of

the system ussumes ar the equilibrium position a weak relutive

minimum in the clasy of virtual displacements satisfving the

kinemaric constraints."

From this definition it is further interpreted that

(1) Since the precise definition of virtual is not stated and can be a

very ambiguous concept. all kinematically admissible displacement

fields should be considered. These are not necessarily
infinitesimal.
(i1) As not all possible kinematically admissible fields are considered,

the above condition is treated only as a necessary one.

(1i1) The idea of a weak relative minimum will be imprecisely
interpreted as being a "local" minimum in some sense which will
be described.

(v) The kinematically admissible displacement fields will be found

from a static analysis. This is all that can be provided by the
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segmental technique outlined above.

V) For the planar rods considered, the potential energy is given by

E-W-L “.1)

where

W = ;(‘l_r"i_z.ds, 4.2)
) 2 HI

L - [pobex(s)ds+Y E,ox (). 4.3)
0 i-1

Here E is the potential energy of a conservatively loaded elastic
rod. W is the corresponding strain energy and L is the load
potential due to the applied forces F; and body force b through
displacement x at position s.

In the present investigation, the potential energy is calculated for various
configurations of the rods. by considering, in some consistent manner, other equilibrium
conditions which satisfy the kinematic constraints on the boundaries. This is done by
“perturbing” the initial conditions of the known solution. These perturbed conditions can
result in displacement fields which are different from the actual solution. Even though
the perturbed conditions will not generate all kinematically admissible displacement

fields. it does give at least a partial understanding of the stability of these solutions.

CHAPTER FOUR
RESULTS AND DISCUSSIONS 58



4.2  Energy Considerations of Cantilevers

In Chapter Three several solutions for the cantilever under various loads were
verified by comparison with the corresponding analytical solutions. In addition to the
possibility of these solutions. the stability of conservatively loaded cantilevers can be
assessed using the Criterion of Minimum Potential Energy. The potential energy defined
in equation (4.1) - (4.3) is evaiuated using the segmental approach for the cantilever
under concentrated and distributed vertical load. The computed potential energy values

will form the basis for evaluating the stability of the computed solutions.

4.2.1 Cantilever Under Free End Concentrated Load

The horizontal cantilever under a vertical concentrated non-dimensional load
q = 5.0 was shown in Figure 3.1(a) and is reproduced in Figure 4.1 where the values
of non-dimensional clamped end moments A, are included.

In the solution technique described. free end moment A, was found as a function
of the fixed end moments A,. Solutions to the actual boundary value problem were
determined when the condition of zero free end moment, A, = 0, was established. Since
the loading is conservative. the potential energy E of the cantilever can also be evaluated.
Instead of plotting A, vs A,, the non-dimensional potential energy II of the system can

be plotted against A,.
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Figure 4.1 Multiple Solutions of a Cantilever Under Free End
Point Load

From equation (4.3), the load potential L is given by,

L = Eex(s) = Fy@L) (4.4)

since the body force b = 0 is considered. According to the energy criterion, an
equilibrium configuration is stable if it corresponds to a local minimum in the potential
cnergy.  Such an “"emergy plor" is shown (the A, vs A, plot of Figure 4.2 is also

included) Figure 4.2 using dimensionless parameters A, A, and IT where

EL 4.5)
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The three equilibrium shapes in Figure 4.1 correspond exactly to the three local
minima of the energy curve and to the three zeros of the moment curve. As might be
expected the energy corresponding to shape #1 is both a global and local minimum.
Shape #3, while being a distinct local minimum, has a higher potential energy than Shape
#1. The third shape, #2. has a somewhat indistinct local minima which can be
interpreted to mean that it would be quite sensitive to disturbances (i.e., small changes
in the boundary conditions or loading). Overall, this energy curve implies that shape #1
is globally the most stable while shape #3 appears locaily stable. Shape #2. while being
locally stable, appears very sensitive to the type of variations which have been considered

in this analysis.
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Figure 4.2 Combined Free End Moment A, and Energy [T vs Fixed End Moment
A, For Cantilever Loaded at Free End
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It must be remembered that the energy plot was determined by considering a
particular class of kinematically admissible displacements. This class of kinematically
admissible displacement fields involves only cases where the cantilever is in static
equilibrium satisfying the kinematic boundary conditions. Here the kinematic boundary
conditions are X, = 0, Y, = 0 and vy, = 0. Note that all the kinematic constraints are
imposed at the start of the rod eliminating the necessity to satisfy kinematic constraints
at the end of the rod. This will again be discussed below in conjunction with other
problems in which kinematic boundary conditions exist at both boundaries. In this case,
the energy plot was generated by considering different values of the fixed-end moment
parameters A,. By doing so, it is in effect "perrurbing" the rod by prescribing end
moments (i.e.. A, # 0) w:ich resuit in different displacement fields other than the
solution of interest. This is. of course only a subset of all kinematically admissible
displacement fields necessary to completely evaluate the energy criterion.

It is also of interest to note that Fried [21] considered the stability of a similarly
loaded cantilever using a finite element computation. In his discussion. the eigenvalues
of the tangent siiffness matrix were evaluated for each of the three configurations
discussed above. If the eigenvalues were all positive, the configuration was pronounced
stable and unstable if any one of them were negative. In his investigation, the cantilever
is modelled using a total of seven quadratic elements each consisting of three nodal
points. However, by evaluating the sign of the lowest eigenvalues, he judged that shapes
#1 and #3 are stable while #2 is unstable. In spite of this result, Navaee [22] reports that

configuration #2. while difticult to maintain, was possible to produce experimentally.
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To detail the progression of the potential energy of the cantilever for ascending
load parameters Figures 4.3 is included. As indicated in Chapter Three, three
equilibrium solutions are found for q > 3.71 and only one when q < 3.71. Figure 4.3
shows only ~ne local minimum for q ranging from 1.0 to 3.0. However, as the load
increases the shape begins to form a very distinct notch. At q = 4.0 (Figure 4.3), three
local minima in the potential energy are found and these becomes more distinct as q is
raised from 4.0 to 5.0. This shape remains qualitatively the same until @ = 7.45 after
which two additional local minima are found. These additional minimum values

correspond identically to the next two equilibrium shapes described bv Navaee [22].
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Figure 4.3 Potential Energy For Concentrated Loads
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4.2.2 Cantilever Under Distributed Load

A similar analysis can be done for the horizontal cantilever under uniform vertical
distributed loading (Figure 3.1(b) and Figure 3.5). Again three deformed configurations,
labelled 1, 2 and 3, are found at q, = 8.5 (see Figure 4.4). The corresponding energy
plot (Figure 4.5) shows a form qualitatively like that of the concentrated load case
(Figure 4.2) with similar interpretations. Again superimposed on this curve is the fixed
end moment A, versus free-end moment .\, curve showing the three solutions. It is also
interesting to note that Navaee [22], who reported experimerita! results for this case,
comments that shape #2 was difficult to obtain and appeared to be "reutrally stable".
This is interpreted to mean that this shape was very sensitive to perturbation and would
easiiy 1yve toward one of the other two equilibrium configurations. Again, the
deformed configuration having the lowest minimum energy is shape #1 whereas shape
#2 corresponds to the highest energy of the three equilibrium configurations.

The development of these local minima can again be seen by considering the
energy plots as the distributed load parameter increases. Figure 4.6 shows the curves
for g, = 2.0, 4.0 and 8.5. The single equilibrium position for q, = 2.0 corresponds to

the single minimum of this curve. As the load increase, first to 4.0 and then to 8.5, the

development of the three local minima are seen.
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Figure 4.6 Potential Energy For Coneentrated Loads

4.3 Arches

The analysis of the large deformation of arches is a popular class of structure to
study because of their engineering significance. The following sections analyse arches
with differsnt support conditions using the segmental approach. The multiplicity of
soiutions and stability of the deformed configurations are examined. It is found that the
method of solutions employed for analysing cantilevers can also be used when examining
arches. The limitations of the segmental approach in realizing multiole solutions are
illustrated through the formulation of different arch problems. The evaluation of the

stability of the solutions using the minimum energy criterion analysis is alsc explored.
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1.3.1 Zery Load Solution(s)
Consider a semi-circular arch (& = 90°) pinned at one end. with a roller support

at the other as shown in Figure 4.7,

Figure 4.7 Semi-Circular Arch with Pin-Ruller Supports
By inspection. the supports of the arch allow at least two possible equilibrium ::nloaded
configurations (i.e.. zero load solutions) as shown in Figure 4.8. Since some of the
possible deformed configurations investigated later do riot 2;pear to be obvious, realizing
that there are two zero load solutions assists in visualizing the development of certain

shapes. The zero load solutions labelled #1 and #2 will be referred to in the following

sections.

CHAPTER FOUR
RESULTS AND DISCUSSIONS 67



¥ ~= Zero load Solutron #l
N

~

iy

e \
\

Zero Load Solution #2 —

Figure 4.8 Possible Zero Load Solution(s) oi Pm-Roher supported Arch

Regardless of how the arch is loaded. this [ oblem is somewbat different than
those of the cantilevers above. This 1s due to the fact that there are kinematic constra:nts
on both boundaries. While this fact is not overly important when considering the
segmental technique to find the equilibrium configurations, it is important when
developing a class of kinematically admissible displacem:~t fieids for the energy
considerations. The init'al values of the archare X, =0, Y, = 0, M; = 0 and
T, = V, = 0 for the untwaued arch. If the arch is unloaded (i.e., undeformed) the initial
value v, is /2 for zero load solution #1 and 3x/2 for zero load solution #2. In order
10 consider the potential energy plot fo. the arch, the additional kinematic constraint,
Y. = 0 must also be satisfied. This adds a complication since the segmental approach
solves an initial value problem and the Y, = O condition would not normaily be satistied.

Varying the kinematic variable vy, without satisfying the kinematic end constraint
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Y, = 0 allows a rigid body rotat‘on with no change in strain energy. For instance. by
prescribing v, = /4. the computed deform.d shi,. of the arch under no load condition

is shown in Figure 4 ¥ with Y, # 0. The undeformed shane «f the arch is also shown

for comparison.

T ML

/
/
/
B AN . _ ,
Figure 4.9 Rigid Body Rotation of Arch Figure 1.10 ‘ositive Prescribed Moments at
with no Change in Strain Bo.h Ends Satistying Boundary
Energy Condition Y, = 0

In order to impose .ue kinematic boundary condition Y, = 0, moments M, and
M, (see Figure 4.10) are applied at the supports of the arch. The raticnale for selecting
applied momeris instead of applying a tension or shear is simply because that the applied
moments can easily be visualized as "bending" the arch to meet the desired end
conditions. In this case, no vertical deflection of the roller support (Y, = 0) is the only
required kinematic end condition. Even though the force boundary conditions
M, = M, = 0 are not satisfied. the computed displacement fieid is kinematically
admissible. While the segmental technique can solve the problem znd satisfy all the
boundary conditions. the solution for M, # 0. M, # 0 allows a class of kinematically

admissible displacement fields to be generated and the potential energy calculated.
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Figure 4.11 Potential Energy . of an Un'v. «. d Arch

The potential energy plet shown in Figure 4.11 is deicrminec by selecting a series
of iitiai angles. y,. and then using the segmental shooting technique to find M, and M,
such that all kinematic constraints are satisfied. As expected, the potential energy of the
deflected shapes show very distinct minima at y, = /2 and v, = 37/2. Any other
prescribed -y, results in a higher potential energy which is the necessary stavility
condition for the minimum energy criterion. Moreover due to its periodic nature, the
range of v, considered "sweeps" through all possible initial slopes. Thus the iwo zero
solutions in Figure 4.8 are the only possible shapes and are locally stable.

As described in Section 2.3, the segmental shooting technique requires six

parameters at the start of a rod (o initiate the procedure. As previously discussed these
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six parameters are X,. Y,. 7;. M,. T, and V,. Since only some of the initial values are
known for a particular problem. a Newton Raphson false position routine is employed
to correct or predict the initial unknown vatues. The number of initial unknowns is one
of the factors that determine the com:’:xity of the problem, especially when the
determination of multiple solutions to the problem is required. This is illustrated in the
following sections in which various arch problems having different numbers of *snknowr.

are formulated.

4.3.2 Arch with Concentrated End Load
Consider the arch subject to a horizontal point load P applied at the roller support

as illustrated in Figure 4.12. Static equilibrium on the arch requires that in the deformed

configuration

+~ Y F = 0 = -Tcosy, -V siny, «P, (4.6)

+1y F, =0 - -Tsiny, + V,cosy,. (4.7)

Here these two equations involve three unknowns so that the initial tension T, nd initial
shear V, can be thought of as functions of the initial slope y,. As a result -y, is the only
initial unknown. One kinematic constraint Y, = O and one force constraint M, = 0 are

imposed at the end ot the arch.
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Figure 4.12 Semu-Circular Arch Subject to a Horizontal Doint Load P
Applied at The Foller Support

rhe initial siope -, is varied and plotted against either Y, = 0 or A, = 0, the
result is shown in Figure 4.13 {or a dimensionless load g = 1.0. The locations of
Y./2R = 0 coincide with points of A, = Q. This implies that both kinematic and force
constrainis are satisfied at those points. The coriesponding deformed configurations are
shown in Figure 4. i4 where the dash lines indicate the zero load sclutions shown earlier.
In this instance, the deformed configurations foilow from the two unloaded shapes. Note
that the slope v, is varied form 0 to 27 meaning that all possible initial slopes, v,, of the

arch have been considered and only two solutions are found for q = 1.0.
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The potential energy is again computed by considering a particular class of
kinematically admissible displacements which in this case tulfill the kinematic boundary
conditions X, = 0. Y, = O and Y, = 0. The first two kinematic constraints are
automatically satisfied as initial values. The constraint Y, - 0 is realized by applying
moments at the ends of the rod similar to what was done wnen evaluating the energy for
the no lnad case This means that when considering any value of the initial slope ¥,, the
shooting technique is used to determine the values of M,, the initial moment, which
results in Y, = 0. In order to determine a reasonable set of kinematically admissible
displacements, care must be exercised when "artificially” imposing moments on the arch.
Figure 4.15 exhibits the results of what can occur when the moment is incorrectly chosen
to begin this search. In this case vy, = /4. however, by assuming an initia! guess with

iifferent signs leads to an entirely different deformation while still s2isfying the

kinematic boundary conditions Y, = 0.

Positive End
” Moments

-~ Negat:ve End Moments

Figure 4.15 Positive and Negative Prescribed Moments at Both
Ends Satistying Boundary Condition Y, = 0
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The .'rain «miergy and the corresponding load potential for 1}:e+ two solutions are quite
¢t Thus if the moments are not applied in a consistent manner, the computed
energies may be very much greater than that of the original problem, i.e., the one with
M, = M, = 0 and therefore. of not much practical value. If the moments are too
excessive, the arch could "coil" up forming a spiral which has a very high strain energy
due to its high curvature (e.g. see Figure 4.16). Although kinematically admissible
displacement fields are still computed. the resulting deformed shapes are very different
from the desired shape. As such they are not representative of being "local" to the

desired solution. Therefore. care must be taken in prescribing the end moments M, in

order to consider only "local" deformed shapes.

[
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Figure 4.16 Excessive Prescribed Positive Moments Resulting in a "Spiral"

By using appropriate moments, the resulting potential energy IT vs v, for ¢ = 1.0 is

shown in Figure 4.17. Also shown in Figure 4.17 is the potential energy for the
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unloaded case (bioken line). It is observed that locations of local minimum potential
energy exactly correspond to points where Y,/2R and A, are zero. Using the minimum
potential energy criterion, shape #1 (see Figure 4.14) with an initial slope vy, = 1.53 is
globally more stable than shape #2 having an initial slope v, = 4.81. In order to
develop these curves, the shapes and moments used to maintain them were found by
starting from the known solutions and working from these to the entire range of initial
slopes. This is accomplished by changing the resultant end moment A, by a small
percentage after each iteration using this as initial guess for computing the next small
increment of the start slope +, for the next iteration. Maintaining sm2i: variations in the
estimated moments allows the shooting procedure to generate only “socal" kinematically
admissible displacement fields. The situation wiiere the arch coils up < the arch 15
"henr" the opposite way can then be avoided. As will be indicated later, it :: crucial to
maintain configurations deformed similarily for identifying multiple solutions which
occur for increased applied loads. For this reason. it is difficult to use the po: .ial
energy of the rods to find multiple solutions. It can only act as a limited indication of

the relative stability of the solutions determined after the solutions are known.
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Figure 4.17
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As the load parameter q is increased, more than two solutions are anticipate
To search for these solutions, the shooting technique is again used with either the fin
v position, Y, or the final moment, A,, being the target as the initial slope is varie
Plots of Y,/2R vs v, and A, vs v, for q = 2.0, 3.0 & 4.0 are illustrated in Figure 4.1
and Figurc 4.19 respectively. Two zero crossings are found for q = 2.0, 3.0 & 4.
implying only two equilibrium solutions ¢- ¢. The corresponding deformed geometrie
are shown in Figui~ 4.20. Using the same approach, the potential energy of th
deformed configurations is computed while satistying the kinematic boundary conditions
Stabniity of the arch under various loads q is evaluated by nouing that two iocal minim;

are found as shown in Figure 4.19. Finally, Table 4.1 summarizes the above findings.
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Figure 4.21 Potential Energy IT vs Start Slope v, of the Pin-
Roller Support Arch

Table 4.1 Multiple Equilibrium Solutions of the Arch for g = 1.0, 2.0 3.0 and 4.0

I q l ¥, (radians) IT ||

-0.0229
1.248
-0.3271
4.633
-1.315
9.031
0.9 -3.228

6.1 13.32

1.0
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For q = 5.0, the plot of Y,/2R and A, versus v, facilitates in locating additicnal multiple
solutions as shown in Figure 4.22. Four zero crossings indicating four equilibrium
solutions are found. Both kinematic constraint Y,/2R = 0 and force constraint A, = 0

are satisfied at these points.

17.5

15.0 q = (PL3/EI)® = 5.0

12.5
10.0 4
7.5
5.0

2.5

alasrabasealygyg
i
AN
\\
AN
AN

A2 Yz/2R

o
o)

I
[¢]]
(=]

~1

o

|
[\
[41]
NSRRI YRR AYN!
n
)

—_ ;
=
3

I
—
o
o

T T T rr oot ey et

1
1.0 20 30 40 50 6.0
7]

o
o1

Figure 4.22 Combined End Moment A,, Y./?R vs Start Slope v, of the
Pin-Roller Support Arch

Table 4.2 Multiple Equilibrium Solutions of the Arch for q = 4.0, 5.0 and 6.0

[ o |

4.0

Solution at v,
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Table 4.2 summarizes the multiplicity of solutions for ¢ = 4.0, 5.0 and 6.0. Recall
that two solutions are present for q ranging from 1.0 to 4.0. As the load is increased to
5.0, first three then at immediately higher loads four equilibrium solutions are found and
at q = 6.0, two more solutions have become pssible fbrming a total of six. Each time

when bifurcation occurs, first one then two "new" shapes are formed.
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Figure 4.23 Deformed and Undeformed Shapes of Arch for q = 5.0

As shown in Figure 4.23 for q = 5.0, the dashed line indicates the two possible zero
solutions whereas the solid lines, labelled #1. #2, #3 and #4, are the deformed
configurations and correspond to the shape numbers in Table 4.2. The corresponding
potential energy of the deformed configurations are shown in Figure 4.24. Recall that

when the potential energy IT of an unloaded arch is investigated, caution must be used

CHAPTER FOUR
RESULTS AND DISCUSSIONS 81



when prescribing end moments to satisfy kinematic boundary conditions. The same
approach is taken here to compute the potential energy associated with multiple shapes.
Each deformed configuration shown in Figure 4.23 has a different energy level. In order
to evaluate the stability of the deformed configurations using the segmental approach,
prescribed end moments must be applied in such a way tha. the deformed configurations
retain geometric similarity. The scenario where the arch "ceils" up due to excessive

prescribed moments must be avoided.
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Figure 4.24 Potential Energy II of Arch forq = 5.0

The local minimum in energy corresponding to the deformed shapes are marked on the
plot. It can be seen that shape #1 has the lowest potential energy with shape #2 being

the second lowest. This is consistent for the cases of the lower loads discussed before.
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That is, shape #1 is at a lower energy and hence more stable configuration than shape
#2. Morcover. two new deformed shapes not observed in the lower load case are found
with higher energy levels. It must be noted that in the range 4.0 < q < 5.0, there
exists a load g such that the arch has only three deformed configurations. At this point
shapes #3 and #4 are coalesced. Once the load is increased, the two new shapes (#3 and
#4) emerge. These new solutions are at similar energy level as shown in Figure 4.24.
The potential energy curve associated with shape #2 is very flat suggesting that shape #2
would require only a small disturbance to perturb it. Therefore, shape #2 exhibits an
almost "neutral stabiliry" condition.

The fact that the energy curve near shape #2 is exceptionally flat means it is not
surprising that further equilibrium shapes of the structure at higher loads occur with
shapes and energy levels similar to shape #2. This is shown in Figure 4.25 and 4.26 for
q = 6.0 where two new shapes. #5 and #6 have developed from the shape at similar
energies to #2 (Figure 4.24). It is also noticed that as the load parameter q is increased,
the location of local minima in energy for shapes #3 and #4, compared to q = 5.0, are
at points more widely separated and the difference in energy level between them is
increased. It must be emphasized that only a partial determination of the stability of the
various equilibrium solutions discussed above has been given. This is due to the fact that
all kinematically admissible displacement fields have not been considered. The limited

determination of stability for the above equilibrium shapes seems intuitively correct but

this may just be fortuitous.
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Figure 4.27 Potential Energy IT of Arch for q = 6.0
As mentioned, six deformed configurations are found with #2, #5 and #6 having

both similar shapes and energies.

4.3.3 Zero Load Solutions(s) Revisited

Before proceeding to the investigation of the arch loaded by a horizontal
concentrated load at the crown, the zero load solutions are reconsidered. Consider again
the arch pinned at one end and roller support at the other as shown previously in Figure
4.7. Let the arch assume a deformed configuration and the associated free body diagram
is shown in Figure 4.28 with horizontal and vertical reaction forces F,, F, applied at both

ends regardless of the loading considered.
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s Leformed Shape of the Arch
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Figure 4.28 Free Body of the Semu-Circular Arch Atter Deformation

Static

equilibrium on the arch yields.

- EF)( -0- (Fl)x*(Fl)x (48)
=) F, - 0 - (F),+(F), (4.9)
- ZMA - 0 - -X,(Fy), (4.10)

Since a roller support is used at the end of the arch. an additional constraint is found in

equation (4.11).

(F), -0 4.11)

Using equations (4.8) and (4.11) leads to (F;), = 0 and considering equations (4.9) and

(4.10) results in.

CHAPTER FOUR
RESULTS AND DISCUSSIONS 86



(F), - 0
X, -0

0 - “x:(Fz)y - | 4.12)

For (F)), = 0 and (F,), = 0 given by equation (4.9), static equilibrium is satisfied.
However, if X, = 0, then (F,), = -(F,), and they are not necessarily equal to zero. In
both cases thi. equilibrium equations (4.9), (4.10) and (4.11) are satisfied. In other
words, if the ends of the arch do not coincide (i.e., X, # 0), (F}), = (F,), = 0 whereas
(F), = -(F), # 0 for X, = 0. Since it is assumed that both the forces and
deformations are planar. static equilibrium of the arch can be established when the ends
coincide after deformation. This means that any arbitrary values of (F,), and (F,), satisfy
cquilibrium in the y-direction and hence an infinite number of zero load solutions exist.
As an illustration, consider an unloaded arch (q = 0.0) evaluated using the segmental
approach. However this time. instead of initiating the segmental procedure with initial
tension or shear being close to zero (the known solution), a large value is given as the
initial assumptions. It is possible that the solution would converge to a deformed
configuration in which both ends coincide and the resultant reaction forces cancel each
other. Consequently, in addition to the two zero load solutions (#1 and #2) discussed
before. any number of other zero load solutions such as #3 and #4 shown in Figure 4.29
can be generated. It is observed that the "newly found" zero load solutions are formed
with both ends coincident. Contrary to the expected zero horizontal and vertical forces

at both ends for an unloaded arch, the vertical forces for zero load at each support

solutions #3 and #4 are found to be quite high. Even though the arch retains a deformed
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configuration and reaction forces other than the ones expected. static equilibrium
conditions are still established. The presence of these zero load solutions poses
difficulties when attempting to locate all multiple equilibrium solutions for the arch under

a given load.
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Figure 4.29 Possible Zero Load Solutions for the Pin-Rolier Arch

It is noted that when the concentrated load is applied at the roller end, these
configurations with both ends coincident do not occur. This is because the tension T,
and shear V, at the roller support are replaced by the applied horizontal load P as shown

in Figure 4.30. Pertorming static equilibrium on the arch leads to

V, - Pcosy, (4.13)
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and

T, - Psiny,,

which are only functions of the start slope v, instead of functions of the forces at tne

roller end. Therefore, one cannot select arbitrary values of the forces at the roller end

such that equilibrium is established. Hence, a finite number of equilibrium solutions are

present if the arch is loaded by a horizontal load at the roller support. If the externally

applied load is at a position other than the roller support. an infinite number of

equilibrium solutions are present because of the possibility of them assuming a deformed

equilibrium geometry with both supports coincident.

Deformed Shape of the Arch

Figure 4.28
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4.3.4 Arch with Concentrated Crown Load
Consider a semi-circular arch subject to a horizontal concentrated load applied at

its crown as shown in Figure 4.31.

Figure 4.31 Semi-Circular Arch Under a Concentrated Crown Load

Performing static equilibrium along the X-axis and using the fact that the horizontal

reaction in the X-direction at the roller support is zero. the tension at the start is,

_ P-Vsiny, (4.15)

1
cosy,

As a result, the tension at the start T, of the arch is given as a function of the start slope
v, and start shear V,. This enables the problem to be tformulated as a two initial
unknowns problem where v, and V, are the initial unknowns. Because of the discussion

in the previous section, it is thus realized that an infinite number of equilibrium solutions
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are possible it the ends of the arch are allowed 2 coincide. When the arch is loaded as

shown in Figure 4.31. the known boundary conditions to this problem are;

X, = (). Y_) = (,
Y, = 0. M, = 0, 4.16)
M, =0

T, = (P - Vsiny,)/cosy,.
The start shear V, and slope 7, are the two initial unknowns needed to initiate the
segmental procedure. In order to locate all the solutions. an extension of the method for
locating multiple solutions for the one variable case is employed. Since there are two
initial unknowns and two corresponding known constraints at the ena boundary, a data
set is generated for initial values v, and T, which lead to final values for Y, ana M,. A
solution to the problem is found when certain values of v, and T, lead to the end
conditions Y. and M, equal to zero. The shooting technique is able to search for a
solution given initial guesses for y, and V,, iiowever, the problem is to find all the
solutions by ensuring that the proper ranges of these input quantities are all evaluated.
To this end. contour plots are used to graphically represent the functional dependence.
Contours of constant Y, = 0 and M, = 0 are superimposed on plots which allow
variations of the input variable v, and T,. A commercial package (see Appendix C) was
used to interpolate these data points and form the required contour olots. For an applied
load q = 1.0. contours of A, = 0 and Y./2R = 0 on 7, vs T, is shown in Figures 4.32a
and 4.32b. Since the denominator in equation (4.15) is zero at 4, = 0 and , the

contours shown in Figure +.30a and +.30b are generated with a range of 297/30 < 7,
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< -m/30 and -297/30 < v, < /30 to avoid this singularity. Here, the tension is non-

dimensionalized as T with respect to the length of the arch using

. TL .17)

EI

Since different contours are superimposed on each plot, a legend is employed with solid

line and different length dashed lines denoting the contours of A, = 0, Y,/2R = 0 and
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Figure 4.32a  Contour Plot for q = 1.0 (7/30 < v, < 297/30)
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Figure 4.32b  Contour Plot for @ = 1.0 (-297/30 < v, < -7/30)

A solution to the problem is found when the A, = 0 and Y,/2R = O contours intersect.
The values of v, and T, can then be obtained directly from the plot and V, is computed
using equation (4.15).

In addition to the contours A, = 0 and Y»/2R = 0, the contour of X,/2R = 0 is
also shown in Figures 4.32a and 4.32b. Since an infinite number of solutions are present
when both ends of the arch meet. the additional contour X,/2R = 0 serves as an
indication of when the ends of the arch coincide. That is, at the intersections of
A, = 0. Y,/2R = 0 and X,/2R # 0. it is concluded that these two solutions represent

desired deformed configurations as shown in Figure 4.33 for q = 1.0.

CHAPTER FOUR
RESULTS AND DISCUSSIONS 93



q = (PL*/EI)® = 1.0

[.1

0.8

0.6

IS RN SN B

0.3

0.1

Y/2R

-0.2

-0.4

-0.7

-1.0

IR NN NS SO Nl NN EE NS B

—1.2 LENLIENA L S S S N ML S I S O S B AL N N N N A A A B

-1.2-1.0-0.7-04-02 0.1 03 0.6 0.8 1.1
X/2R

Figure 4.33 Multiple Solutions of the Arch With Crown Load q = 1.0

The range of non-dimensional tension T, considered is approximately three times the
nondimensional applied load q. Itis felt that equilibrium of the arch with resultant forces
more than plus or minus three times the applied load is possible only when the ends of
the arch meet. No definitive argument could be drawn in deciding the range of T, to be
considered. Attempts have been made with a T, range of more than plus or minus ten
times the applied load, however, it was found that the additional solutions beyond the
"three times the applied load" range are all deformed configurations with both ends
coincident. As a result, the range of T, considered was restricted to a maximum of plus
or minus three times the applied load.

The intersection of the different zero contours of constant A,, Y,/2R and X,/2R
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point to the desired solution. The stability of these deformed configurations, however,
was not evaluated. Since there are two initial unknowns, the minimum in potential
energy associated with a stable configuration would be represented by a minimum point
in a three dimensional plot. That is, IT is considered a function of T, and v,. A three
dimensional interpretation of the potential energy function is possible but proved to be
quite difficult to obtain. Furthermore, when a commercially available surface rendering
routine was used, its accuracy was unknown. Efforts have been made to consider cross-
sections of the three dimensional surface generated by slicing the three dimensional
surfaces and producing plots of A; vs vy, and A, vs T, to help locate local minima in the
potential energy. If a local minimum was found at the same location for both slices, then
a (an actual) minimum point was defined. It should be noted that performing this slicing
of a three dimensional surface required a very detailed data set and was quite laborious.
Furthermore, visualizing such a minimum is very difficult especially when the potential
energy minimum is extremely localized and might be very shallow. This technique is
able to quantify the energy of these deformed configurations, however, this approach is
of the "brute force rvpe" and therefore requires considerable effort.

It should also be noted that representative contours shown in Figures 4.32a and
4.32b require a vast amount of data to generate. A total of 7200 data points per contour
were generated requiring two hours of CPU time on an IBM® 80386/387 personal
computer. Since a commercial package (see Appendix C) is employed to form the
contours. its accuracy and reliability are not known. For numerical efficiency reasons,

it was decided to first employed a coarser data set (3600 data points) in such a way that
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the contour plots serve only as a good indication of where the solutions occur. From this
contour plot, estimations of the initial input to the segmental procedure allowed
convergence to more accurate solutions. In all cases. the shooting procedure used in
conjunction with the segmental technique converged to the desired solution.

To follow the progression of the solutions, contour plots of T, vs v, for constant
contours of A;, Y»/2R and X,/2R for q = 1.2, 1.4 and 1.6 (see Figures 4.34, 4.35 and
4.36). For each of these loads there were only two deformed configurations as shown
in Figure 4.37. It should be noticed that as the applied load parameter q is increased,
the contours become more difficult to interpret even though there are only two solutions
in each case. These more complex patterns are analogous to the more complicated
functional forms shown in Figure 4.18 for the arch loaded at its end. In this case the
shapes were developing towards ones which led to more solutions of the equilibrium

equations.

CHAPTER FOUR
RESULTS AND DISCUSSIONS 926



-43 -33 -23 -1.3 -0.3 0.7 1.7 2.7 3.7

v T T

[ v (l T\\ A L4 1"--L~..l. T
2.8 ™ Tty2.8
— o 4
. \ J
2.5 "\ 25
L- \\ -
22 12.2
1.9 41.9
-1.6 N S °-J1.6
C oo\ ]

1.3 |+ 41.3
1.0 , 41.0
~ IQ -

0.7 | : 40.7
- ‘ 1/0/!

0.4 - ) == 40.4
o.lr—\i’"‘l 1\1‘~x l’l’l TR SU B 1—0'1

-4.3 -3.3 -2.3 -1.3 -0.3 0.7 L7 2.7 3.7

T,
Figure 4.3da  Contour Plot for q = 1.2 (7/30<y, <297/30)
-4.3 -33 -2.3 -1.3 -0.3 0.7 1.7 27 37

R T v L T v ] T v 1T T T ‘I'-.]_.:E.‘I h
'0.8 - > ~ o T = _0.3
-0.6 | /_—;‘8‘ -4-06
-09 | {-0.9
-1.2 + ] -1.2
--1.5 L e e g -1.5

] --0-" -

- 2/ :
-1.8 | LT - -1.8

L K 4
-2.1 F 4-2.1
-2.4 F ] 2.4
-2.7 - "o, \ 0= o {-2.7
I_\l\ X l\\‘ i H L /1 1 1 1 ¥ -3.0

-3.0
-4.3

[ 1
-33 -2.3 -13 -03 07 1.7 27 3.7
Ty

Figure 4.34b  Contour Plot for q = 1.2 (-297/30 <, <-7/30)

CHAPTER FOUR
RESULTS AND DISCUSSIONS

97



Figure 4.35a

Figure 4.35b
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Figure 4.37 Multiple Solutions of the Arch with Crown
Load q = 1.2, 1.4 and 1.6

As the applied load is increased, more equilibrium solutions are present as shown
in Figure 4.38. At q = 1.8. tour intersections of the contours A, = 0 and Y,/2R =0
are found as shown in Figure 4.38a and 4.38b (1, 2, 3, 4). The deformed configurations
are shown in Figure 4.39. Note that the ends of the arch are not coincident with each
other. Even though #4 appears to have coincident ends, this is not the case. This is
further indicated on the contour plots where the contour X,/2R = 0 does not intersect
any of the solutions 1, 2, 3 or 4. However, if the applied load parameter q is raised to
2.0, five intersections are found in Figures 4.40a and 4.40b. The intersections of A, =
0 and Y./2R = 0 contour are labelled 1 to 5. It is also seen that for #5, the contour
X,/2R = 0 also intersects at that point. As a result, one can conclude that the deformed
configuration of the arch corresponding to intersection #5 is one in which both ends of

the arch coincide. The resuiting deformed configurations are shown in Figure 4.41.
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Deformed shape #4 is also a deformed configuration where both ends of the arch are
very close together both do not coincide. This fact is difficult to see in Figure 4.41. It
is clearly shown at the intersections of A, and Y,/2R = 0 in Figure 4.40b and the
contour of X,/2R = 0 is extremely close. The actual numerical data shows that the ends

are not coincident.

4.4.5 Pin-pin supported Arch with Concentrated Crown Load

Pin-roller supported deep arches under different loadings were considered in
previous sections and these generated problems with one and two initial unknown
parameters. A three initial unknown problem occurs for a semi-circular arch pinned at
both ends and loaded horizontally at its centre (see Figure 4.42). The known boundary

conditions of this problem are

Y X, = 0,
X, = 2R
Y, =0, (4.18)
Y, =0,
M, = 0,
M, = 0

Figure 4.42 Semi-Circular Arch Pinned at Both Ends
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This lcaves the tension T,, shear V, and slope v, as the three initial unknowns. As
mentioned previously, with two initial unknowns, visualizing such nonlinear funciions
in three dimensions posed great difficulties. In this case, in order to find all the solutions
using the same brute force method used previously, an extension of three dimension data
set would be required. Interpretation of such data is beyond the scope of this study.
However, given some reasonable estimates of the initial unknowns, the segmental
shooting technique can find some of the multiple solutions. As an example, consider the

solutions of the arch as shown in Figure 4.43 for q = 7.69.
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Figure 4.43 Multiple Solutions of the Pin-Pin Arch with Crown Load
(a = 90)

Again, the deformed configurations are labelled #1 and #2 while the undeformed shape

is shown in broken lines. Two cquilibrium configurations were found. As shown at the
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end of Chapter Three, shape #1 was verified with DaDeppo’s {19] analytical solution.
Furthermore, the segmental approach was able to find one other equilibrium solutions to

this problermi.
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Figure 4.44 Multiple Solutions of the Pin-Pin Arch with Crown Load
(a = 1359
In addition, a pin-pin support arch having a subiending angle o = 135° was also
investigated. DaDeppo and Schmidt [19] found a single solution #1 (Figure 4.44)
analytically. However, a few other equilibrium solutions were found using the segmental
approach in this case (see Figure 4.44). It is not suggested that these are all the

solutions, simply, that there are several.
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CHAPTER

FIVE

CONCLUDING REMARKS

5.1  Summary

The objective of this research project was to analyse large deflections of various
structures including cantilevers and arches. As large deformations are involved, multiple
equilibrium configurations are possible for certain loading conditions. The multiplicity
of solutions as well as their corresponding stability was considered.

Numerous investigators have examined large deflection rod problems using
different analytical and numerical techniques. The segmental shooting technique used
in this thesis. however uses a unique technique to analyse nonlinear Jarge deformation
rod problems by dividing the rod into numerous small linearized segments. Asa result,
the nonlinear nature of such problems is directly avoided using a linearized formulation
where standard numerical methods are available. Furthermore, this segmental approach
converts a boundary value problem into an initial value problem. The problem is then
solved by assembling the segments together using force and geometric compatibility
conditions. A false position iterative procedure is then employed to find a sequence of
solutions which converge to the solution of the boundary value problem.

The segmental shooting technique, when compared to other techniques, has
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several features which distinguish it and are worth mentioning. Since the rod of interest
is divided into many segments and each segment, being an initial value problem, is
treated one at a time, this numerical procedure thus requires minimal computer memory.
It can even be executed on a small handheld programmable calculator. Also, the
segmental approach is less computationally intensive when compared with, for instance,
the finite element formulation. A desktop personal computer with limited memory can
optimally execute this procedure. For example, one of the multiple deflected shapes as
well as the associated resultant forces and moments of a loaded arch was computed using
an IBM" 80386/387 personal computer in less than one minute. Because the problem is
posed in terms of initial values it is more adaptable to finding multiple roots of the
nonlinear functions. This has been used to advantage in the present study.

As an introduction to the analysis of the multiplicity of solutions to large
deformation nonlinear rod problems, the simplest case of a cantilever under various
loading was examined. The presence of one initial unknown in the false position
procedure characterizes it as a one variable iterative problem. The deformed shapes of
the cantilever under free end concentrated load, distributed load and normal load
compared favorably with other known solutions. It was found that in problems which
have multiple solutions that the initial estimates ot the solution needed to be very close
to the correct solution in order for the shooting procedure to converge to the desired
solution. Interestingly, while multiple solutions are found for the cantilever under
concentrated and vertically distributed loads, under a normal load there was only one
unique deformed configuration for a given load.
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To examine the stability of these solutions, the potential energy was evaluated
using the segmental technique and by considering a subset of all kinematically admissible
displacement fields. These were all static equilibrium states of the rod. Thus, the
potential energy evaluated using this numerical techniue provided some insight into the
necessary conditions for stability. This allows the shapes to be ranked relatively by
¢xamining their corresponding potential energy. It should be noted that this procedure
allows large perturbations instead of only infinitesimal variations which have been used
in other studies.

After verifying the procedure using cantilever problems, an arch with pin support
at one end and roller support at the other under horizontal concentrated load at the crown
or at the roller support is considered. It was noticed that if the arch is pin-roller
supported, there exist an infinite number of solutions when the two ends of the arch
coincided. When the concentrated load is applied at the roller support, the problem is
essentially a one initial unknown problem where a solution technique similar to that used
for the cantilevers is applicable. When the applied load is at the crown of the arch, the
problem becomes one with two initial unknowns and contour plots instead of a graph are
necessary to locate all the solutions. Due to the vast amounts of data necessary to
produce a representative contour, a coarse data set was first made to provide an initial
approximation of the solutions. This initial approximation is then used as input into the
segmental shooting technique to obtain a precise final solution. In all cases, the estimates
obtained from the contour plots were able to allow the segmental shooting technique to

converge to the solution. The stability of the deformed configurations was not evaluated
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for the two initial unknown problem. This is because such evaluation requires a three
dimensional visualization of a minimum point.

The contour method is not teasible with more than two initial unknowns. As a
result, deformed configurations of a pin-pin arch under various loads were only presented
to illustrate the capability ot this numerical technique. No immediate conclusion can be
drawn in terms of finding all the multiple solutions.

In summary, the segmental shooting technique was used not only to analyse large
deflection elastica problems, but also to evaluate the multiplicity and stability of these
solutions. Even though it is somewhat limited when interpreting the stability ot these
solutions, it appears superior to other methods used to solve problems of this class. This
thesis has illustrated that the segmental shooting technique is able to solve large
deflections in much generality. These include arches with different support conditions
and various loading conditions. Despite the fact that only horizontal concentrated load
arch problems are examined, the segmental shooting technique is capable of solving
problems under distributed and normal loads as shown in the former chapter. Moreover,

boundary value problems with one, two and three initial unknowns have been examined

with relative ease.

5.2 Recommendations
Although it is demonstrated that large deflections of inextensible planar rods can
be solved efficiently using the segmental shooting technique, continual enhancement on

the interpretation of these nonlinear functions involving more than one initial unknown
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needs to be done. This includes an improved iterative shooting method for finding roots
and a more flexible and efficient visualization of the function in multi-dimensions.

It is felt that an extension of this technique for solving large deflection rod
problems in three dimensions would be useful for studying out of plane deformations.
However, achieving such an extension will require development of a more efficient

numerical iterative shooting procedure when more than three variables are involved.
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APPENDIX
A

ANALYTICAL SOLUTIONS OF THE CANTILEVER
UNDER FREE END CONCENTRATED LOAD

In order to verify the segmental shooting technique, knowns solutions were used.
For a horizontal cantilever under free end vertical concentrated load, Frisch-Fay’s [4]
analytical solutions in terms of elliptic integrais of the first and second kind were
employed. A bisection root finding procedure was implemented in Microsoft

QuickBASIC® to numerically computed this analytical solutions. The following details

the source listing.
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DECLARE SUB ParameterP (p#. q#, TOLM

DECLARE FUNCTION Fct# (q#. p#. CAN

DECLARE SUB ModulusP (p#, q#. TOL®

DECLARE SUB SlopePHI (s#, p#. PhiBDeg#, PhiDeg#, k#. TOLYH
DECLARE FUNCTION ELLIP1# (p#, PHII#, CAN

DECLARE FUNCTION CELLIP1# (p#, CA¥)

DECLARE FUNCTION ASin¥ (A#)

DECLARE FUNCTION CELLIP2# (p#, CA#)

DECLARE FUNCTION ELLIP2# (p#, PHI1#, CA#)

This program is designed to evaluate the tinal geometry ot a horizontal cantilever beam subjected to a vertical point load

at the end using the anaiytical solution detailed in "Flexible Bars™ by Frisch Fay.

The program would be required to evaluate Elliptic Intergrals of the First and Second Kind. The Elliptic Integrals were

computed numerically using an infinite serics expansion detailed in "Numerical Recipies”.

Version 1.0 Victor Tam July 6, 1990

DEFDBL A-Z
CLS : COLOR 15, 1
‘*** Define Constants

Pl = 3.141592653589793#

NumSeg% = 750 ‘No. ot STEPS used

L1l = 150 ‘Length of Beam

E = 3E+07 ‘Young's Modulus
I=1/12*25*.25"3 'Cross Section Moment of Inertia
TOL = IE-12 ‘Numerical Tolerence

CA = .0001 *Sgr(Accuracy) for Elliptic Integrals
Phi=0

‘e*+  Compute Parameters
EI=E*Il ‘Flexural Rigidity

FORq = 1 TO 8 STEP .5

OutFile$ = "d:\qb\gbsegtecidata\Frisch™ + RIGHTS(STRS(q * 10), LEN(STRS(q * 10)) - 1} + ".Out”

OPEN OutFile$ FOR OUTPUT AS #1
F=q"2*El/(L1"2)

k = SQR(F/ED

ParameterP p, q, TOL

h=2+*p/k

SIO = ASin((p~2)*2-1) ‘in Radians
PhiB = ASin(1!/ (p * SOR(2Y)) ‘in Radians
Delta = L1 - h * COS(PhiB)

PRINT #1, OutFile$

PRINT #1, "Time Started: ", TIMES, DATES
PRINT #1,

PRINT #1,"q = ", q

PRINT #1, "p = ", p

PRINT #1, “F = ", F; “lbs"

PRINT #1, "E = ", E; "Ib/in"2°

PRINT #1, "1 = ", I, "in"4"

PRINT #1, "El = ", EL: "Ib.in"2"
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PRINT #1, "Length = °, LI: "in”
PRINT #1, °k = ",
PRINT #1, h = ~,
PRINT #1, "PhiB = ~, PhiB
PRINT #1. "Deita = °, Delta
PRINT #1, "Tolerence = *, TOL

OPEN "d:\qb\gbsegtec\data\Frisch™ + RIGHTS(STRS(q * 10), LEN(STRS(q * 10)) - 1) + ".Gem" FOR OUTPUT AS #2

Vary the position of the arc s along the beam and evaluate the corresponding Phi at s.
FORs = 0 TO 149.8 STEP L1 / NumSeg%

SlopePHI s, p, PhiB, Phi, k, TOL

X! = h * (COS(PhiB) - COS(Phi))

Y! = (2 * ELLIP2(p, PhiB, CA) - ELLIP1(p, PhiB. CA) + ELLIPI(p, Phi, CA) - 2 ¢ ELLIP2(p, Phi, CA) /k
PRINT X!, Y!. s

s8! =3

PRINT #2, X!, -Y!, ss!
NEXT s

PRINT #1, "X = ", X!; "in"
PRINT #1,°Y = ", -Y " in"
PRINT #1., "Phi = ", Phi
PRINT #1, "Time Completed: ", TIMES. DATES
CLOSE
SOUND 8000, !
NEXT q

SOUND 4000, 1

END ‘e*+ End MAIN ***

FUNCTION ASin (A)

A function to compute the ArcSine of a8 Number in terms of ArcTangent

ASin = ATN(SQR(A*2/(1-A"2))
END FUNCTION

FUNCTION CELLIP1 (p, CA)

A function to compute the Complete Elliptic Integral of the First Kind

QQC =SQR(1 -p * D)
QC = ABS(QQO)
Pl = 3.141592653589793#
A=l
=1
pp =1
E=QC
EM = 1|
= A
=A+B/pp
E/pp

I

[N |
i
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B=B+F*G
B=B+8B
pp =G + pp
G = EM
EM = QC + EM
IF ABS(G - QC) > G * CA THEN
QC = SQR(E)
QC=QC+QC
E = QC * EM
GOTO |
END IF
CELLIP! = (PL/2)* (B + A * EM)/ (EM * (EM + pp))
END FUNCTION

FUNCTION CELLIP2 (p, CA)

A function to compute the Complete Elliptic Integral of the Second Kind

QQC = SQR(1 -p " 2)
QC = ABS(QQC)

PI = 3.141592653589793¢
A=l

QQC'B = |

w
"

A
A+ B/pp
E/pp
B+F*G
B+B
p=G+pp
G = EM
EM = QC + EM
IF ABS(G - QC) > G * CA THEN
QC = SQR(E)
QC =QC + QC
E=QC*EM
GOTO 3
END IF
CELLIP2 = (PI/2)* (B + A * EM) / (EM * (EM + pp))

L T

END FUNCTION

FUNCTION ELLIPI (p, PHII, CA)

A function to compute the Elliptic Integral of the First Kind

* The desired accuracy is the square of CA.

Pl = 3.141592653589793#
CB=.01*CA"2
QQC =SQR(1-p "~ 2)
X = TAN(PHII)
IF X = 0 THEN
ELLIP1 =0
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ELSEIF QQC < > 0 THEN

QC = QQC
A=
B=I
C=X"2
D=1+¢C
pp = SQR((1 + QC*2*C)/ D)
D=X/D
C=D/(2*pp)
Z=A-B
EYE = A
A=5*B+A)
Y = ABS(1/X)
F=0
L=0
EM = |
QC = ABS(QC)

2 B=B+ EYE*QC
E = EM * QC
G=E/pp
D=D+F*G
F=C
EYE = A
pp=pp +G
C=5*D/pp+ 0O
G=EM
EM = EM + QC
A=5*B/EM + A)
Y=Y-E/Y

IFY =0THENY = SOR(E) * CB
{F ABS(G - QC) > CA * G THEN
QC = SQR(E) * 2
L=L+L
IFY <OTHENL =L + 1
GOTO 2
END IF
IFY <OTHENL =L + 1
E=(ATN(EM/Y)+Pl*L)* A/ EM
IFX < OTHENE = -E
ELLIPl = E+C*Z
ELSE
PRINT “Failure of ELLIP1. argument zero ™
END IF

END FUNCTION

FUNCTION ELLIP2 (p, PHIl, CA)

.

A function to compute the Elliptic Integrai of the Second Kind

* The desired accuracy is the square of CA.

PI = 3.141592653589793#
CB=.01*CA"2
QQC = SQR(1 -p " 2)
X = TAN(PHII)
IF X = 0 THEN
ELLIP2 =0
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ELSEIF QQC < > 0 THEN

QC = QQC
A=l
B=QQC"2
c=X"2
D=1+C
PP =SQR({(1 + QC"2* O ' DY
D=X/D
C=D/@Q*pp
Z=A-B
EYE = A
A=.5%B+A)
Y = ABS(1 /' X)
F=0
L=20
EM = |
QC = ABS(QC)

4 B=B+ EYE*QC
E=EM*QC
G =E/pp
D=D+F*G
F=C
EYE= A
pp=pp+G
C=.5*{D/pp +0C)
G = EM
EM = EM + QC
A= 5*B/EM + A)
Y=Y-E/Y

IFY = 0THEN Y = SQR(E) * CB
IF ABS(G - QC) > CA * G THEN
QC = SQR(E) * 2
L=L+L
IFY <OTHENL =L + 1
GOTO 4
END IF
IFY <OTHENL =L + 1
E=(ATN(EM/Y) + PI*L)* A/ EM
IFX <OTHENE = -E
ELLIP2=E+C*Z
ELSE
PRINT "Failure of ELLIP2, argument zero "
END IF

END FUNCTION
SUB ParameterP (p, q, TOL)

** lterative Module used to find the parameter p using the following eqn.
- q = K(p) - F[p.ASin(1/p*sqr(2)]
'* A Bisection lterative Procedure is Employed

Pl = 3.141592653589793#

pL = 17/ SQR(2) ‘Lower bound of p guess --> p<i/sqr(2) --> invalid ArcSine
pR = .99999999999999994#  "Upper bound of p (p=1 --> infinitely long beam)

CA = .0001#

5%0)
pM = (L + pR) / 2
1l = q - CELLIP1(pM. CA) + ELLIPI(pM. ASin(l / (pM * SQR(2))), CA)
12 = q - CETLIP1(pR, CA) + ELLIPI(pR. ASin(1 / (pR * SQR(2))), CA)
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[F it} *12) > O THEN pR = pM ELSE pL = pM
LOOP UNTIL (ABS(l) < = TOL)
p = pM

END SUB
SUB SlopePHI (s, p, PhiB, Phi. k, TOL)

‘e terative Module used to find the slope PHI at any point using the tollowing eqn. *
. s = [F(p.Phi) - F(p.PhiB)l/k .

Pl = 3.1415926535897934

Stp = 14

FLAG =0

CA = .0001

PhiL = 0 ‘initial guess
PhiR = PI /2

hh = Phi ¢ .01

DO

PhiM = (PhiL + PhiR) / 24

tl = k * s - ELLIP1(p, PhiM, CA) + ELLIPI(p, PhiB. CA)
12 = k * s - ELLIPl{p, PhiR, CA) + ELLIPI(p, PhiB, CA)
IF (il *12) > 0 THEN PhiR = PhiM ELSE PhiL = PhiM

LOOP UNTIL (ABS(1]) <= TOL)
Phi = PhiM

END SUB
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APPENDIX
B

ANALYTICAL SOLUTIONS OF THE CANTILEVER
UNDER UNIFORM NORMAL LOAD

In order to verify the segmental shooting technique, knowns solutions were used.
For a horizontal cantilever under uniform normal load, Mitchell's [8] analytical solutions
in terms of elliptic integrals ot the first and second kind were employed. A bisection
root finding procedure was impiemented in Microsoft QuickBASIC® to numerically

computed this analytical solutions. The following details the source listing.
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Py

‘esee

This program is designed to evaluate the final geometry of a horizontal cantilever beam subjected to a vertical point load
at the end using the analytical solution formulated by Mitchell.

The program would be required to evaluate Eliiptic Integrals of the First and Second Kind. The Elliptic Integrals were
computed numerically using an infinite series expansion detailed in "Numerical Recipies”.

Version 1.0 Victor Tam July 6, 1990

DECLARE FUNCTION ASin# (A#)

DECLARE FUNCTION CELLIP1# (P#, CA#)
DECLARE FUNCTION ELLIP1# (P4. PHII#, CA#)

DEFINT I-N
DEFDBL A-H, 0-Z

‘¢s* Define Constants

COLOR 15, 1
CLS
Q=25"2
CA = .000001

CONST PI = 3.141592653589793#
Dk = (15 * PI/ 180)

pL =0

pR = 10*PI

TOL = 1E-12

Stp = .001

DO
flag = 0
LOCATE i, 1: PRINT pM
pM = (pL + pR) /2
IF (pL >= (90 * P/ 180)) THEN
s! = INT(pL / PD
IFs! = 0 THEN s! = |
ss = ABS(pL - s! * PD
Sign = SGN(pL - s! * PD
IF (ss > = (90 * P1/ 180Y) THEN
sl! = INT(ss/ PI}
IF sl! = OTHEN si! = |
ssl = ABS(ss- si!'* PD
Signl = SGN(ss - 51! * P
flag = 1
END IF
Dk = (15 * PI/ 180
IF flag = 1| THEN

*we* Applied Load Parameter
»** Sar(Accuracy) for Elliptic Integrals

‘e** | ower Bound
‘#*+ Upper Bound

*e®* 1arative Step Size

1l =2 *s!* CELLIPI(Dk. CA) + Sign * (2 * sl! * CELLIPI(Dk. CA) + Signl * ELLIP1(Dk, ssl, CA)) - 3~ .25+

Q (/3
ELSE

11 = 2 *s!* CELLIPI(Dk. CA) + Sign * (ELLIP{(Dk,ss. CA) -3~ .25+ Q" (1/3)

END IF
ELSE

tl = ELLIPI(Dk, pL,CAY- 3" 25*Q " (1/3)

END IF

IF (pM > = (90 * P1/ 180)) THEN
s! = INT(M / PD
IFs! = OTHEN s! = |
ss = ABS(pM - s! ¢ P
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Sign = SGN(pM - s! * PD)

IF (ss > = (90 * P1/ 180)) THEN
sl! = INT(ss / PD
IF s1! = Q THEN sl! = |
ssl = ABS(ss -sl!* PI)
Signl = SGN(ss - sl1! * PD
flag = 1

END IF

Dk = (15 * PI/ 180)

IF tlag = | THEN

12 = 2 * 5! * CELLIPI(Dk. CA) + Sign* (2 * st! * CELLIPI(Dk, CA) + Signl * ELLIPI(Dk, ssl, CA)) -3~ 25+

Q7 (1/3)
ELSE

12 = 2 * s! * CELLIP1(Dk, CA) + Sign* (ELLIPI(Dk.ss, CA) -3~ .25*Q" (1 /)

END IF
ELSE
12 = ELLIPI(Dk, pM, CA) -3~ .25 * Q ~ (1 / 3)
END IF
LOCATE 2, !: PRINT 12
IF (i1 *12) > O THEN pL = pM ELSE pR = pM

LOOP UNTIL (ABS(tl) <= TOL)
Omcga = pM
tMAX =2/(@Q " (1/3)
PRINT Omega: SOUND 5000, 1

rL = SQR((4 * (1 - COS(Omega))) / (Q " (27 3) * ((SQR(I) - 1) * COS(Omega) + SQR(I) + 1))

Thetal = PI + ASin(Q*rL “3/38)
Gamma = 4 / 3 * Thetal

h = rL * COS(Thetal)

d = rL * SIN(Thetal)

PRINT Gamma

PRINT rL, h, d

QQ =INT(Q*10)/ 10

OutFile§ = "¢:\Streu.tmp”

OPEN OutFile$ FOR OUTPUT AS #1

FOR Theta = (Gamma) TO 0 STEP -Stp
Signl = SGN(8 * SIN(3 * (Gamma - Theta)) / Q)
r = ABS((8 * SIN(3 * (Gamma - Theta)) / Q)) " (1 / 3)
IF Signl = -1 THEN ¢ = -r
h = r * COS(Theta)
d = r * SIN(Theta)
PRINT #1, CSNG(h), CSNG(d)

NEXT Theta

END

FOR Theta = Gamma TO PI / 2 STEP Stp
Signl = SGN(8 * SIN(3 * (Gamma - Theta)) / Q)
r = ABS((8 * SIN@3 * (Gamma - Theta)) / Q)) ~ (1 / 3)
IF Signl = -1 THENr = r
h = r * COS(Theta)
d = r * SIN(Theta)
PRINT #1, CSNG(h). CSNG(d)

NEXT Theta

SOUND 3000, |

END

FOR r = 0 TO tMAX STEP Stp
Theta = Gamma - 1 /3 * ((ASin(Q *r ~ 3/ 8)))
h = r * COS(Theta)' + PI/2)
d = r * SIN(Theta)' + P1/2)
PRINT #1, CSNG(h). CSNG(d). CSNG(Theta), CSNG(r)
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NEXT r
FOR r = tMAX - tMAX * .00l TO -rL STEP -Stp
Theta = Gamma - } /3 * (Pl - (ASin(Q * r* 3/ 8)))
h = r * COS(Thew)
d = r * SIN(Thets)
PRINT #1, CSNG(h), CSNG(d), CSNG(Theta), CSNG(r)
NEXT r
Theta = Gamma - | /3 * (Pl - (ASin(Q * rL. = 3 / 8)))
h = rL * COS(Theta)
d = rL * SIN(Theta)
SOUND 4000, |

FUNCTION ASin (A)

A function to compute the ArcSine of a Number in terms of ArcTangent

ASin = ATN(SQR(A “2/(1-A"2))
END FUNCTION

FUNCTION CELLIP] (P, CA)

A function to compute the Complete Elliptic Integral of the First Kind

QQC = SQR(1 - P~ 2)
QC = ABS(QQC)
=
B=I
PP = |
E=0QC
EM = |
IIF=A
A=A+B/PP
G=E/PP
B=B+F*G
B=B+B
PP =G + PP
G = EM
EM = QC + EM
IF ABS(G - QC) > G * CA THEN
QC = SQR(E)
QC = QC + QC
E = QC*EM
GOTO 11
END IF
CELLIPL = (PI/2)* (B + A * EM)/ (EM * (EM + PP))
END FUNCTION

FUNCTION ELLIPI (P, PHIIL, CA)

A function to compute the Complete Elliptic Integral of the Second Kind

* The desired accuracy is the square of CA.
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CB=.0i*CA"2
QQC = SQR(1- P~ 2)

X = TAN(PHI)
IF X = 0 THEN
ELLIP! = 0
ELSEIF QQC < > 0 THEN
QC = QQC
A=1
B=1
C=X"2
d=1+¢C
PP = SQR((l + QC~2*C)/d)
d=X/d
C=d/@Q2*PP)
Z=A-B
EYE = A
A=5"(B+A)
Y = ABS(1/X)
F=0
L=0
EM =1
QC = ABS(QO)
| B=B+EYE*QC
E=EM*QC
G=E/!PP
d=d+F*G
F=C
EYE = A
PP=PP+G
C=.5%Wd/PP+C)
G =EM
EM = EM + QC
A=.5*B/EM+ A)
Y=Y-E/Y

IFY =0THEN Y = SQR(E) * CB
IF ABS(G - QC) > CA * G THEN
QC = SQR(E) * 2
L=L+1L
IFY <OTHENL =L + |
GOTO 1
END IF
IFY <OTHENL =L + 1
E=(ATN(EM/Y) + PI*L)*A/EM
IFX < OTHENE = -E
ELLIPl =E+C*Z
ELSE
PRINT "Failure of ELLIP}, argument zero °
END IF
END FUNCTION
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APPENDIX

C

SURFACE PLOT ACCURACY

A commercial package SURFER"® by Golden Software’ is employed to generate
contour plots based on data from the segmental approach. Since the accuracy of such

commercial packages is not known, a hemisphere with governing equation

X%+Y2+2% - 1 (C.1)

is produced numerically for-1 < X < 1,-1 < Y<land0 < Z < |. A total of
3600 discrete data points were generated in order to form a reasonable representation of
the hemisphere. The corresponding contour plot was produced using SURFER® in much
the same way the contours in this thesis were constructed. The contours of Z = 0.5 and
Z = 1.0 are shown in Figure C.1. Since interpolations of the given discrete data points
are involved. comparing known boundary points of the hemisphere would provide
indication of the software’s accuracy. The contour of Z = 0 was compared at X = -1
and 1. It is expected thatat X = -1 and 1, Y = 0. However. as shown in Figure C.1,
this is clearly not the case. Furthermore, the contour of Z = 0 appears to be "jagged"

at the borders prompting possible interpolation errors.
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Figure C.1 Contour of a Hemisphere for Z = 0.5 and 1.0 using

100 X 100 Normal Search Grid

A few methods are available to improve the accuracy of the contour plot. These methods
are to increase the grid size of the plot and increasing the search radius of the
interpolation. Both of these method would directly result in an increase in computing
time. The plot shown in Figure C.1 was produced with a 100 X 100 normal grid and
a search radius of 10 data points. Another contour, shown in Figure C.2 with a 200 X
200 octant grid and a search radius of 10 data points were made. An octant grid
searches the data point within an octant in all directions. This will allow a more accurate
interpolation of the function. However, as shown in Figure C.2, the extra effort does

not lead to apparent improvements of the plot.
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Figure C.2 Contour of a Hemisphere for Z = 0.5 and 1.0 using
200 X 200 Octant Search Grid
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APPENDIX

D

SEGMENTAL SHOOTING TECHNIQUE SOURCE LISTING

The segmental shooting technique source code is implemented in MicroSoft
QuickBASIC 4.5°. The programming language features modular programming and is
employed here. The source listing is divided into various different modules, each of
which has a brief explanation of its functions. A substantial portion of the source listing
consists of a plotting routine as well as data I/O routines so as to make it more general
and robust. The segmental method of solutions can be found in subroutine
SolveForcePtLd, SolveForceNORMLD and SolveForceDISTLD. The Newton Raphson
shooting procedure is implemented in modules NewRapl, NewRap2 and NewRap3

denoting one, two and three variables iterative procedure.
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DECLARE SUB SolveForcePtLd (Parameters#(), Delta#, EI#, RadCur#, INumSeg%, TOL#, Energy#,
y#)

DECLARE SUB Screen3 (Length#(), RadCur#(), INumSeg %(), E#(), DInertia#(), TOL#(), StartNode#(),
StartNode$(), IFlagStartNode %(), ISecNum %, INumSections %)

DECLARE SUB PlotGeom (INumSeg %, TOL#)
DECLARE SUB NewRap2 (Z2#(), Parameters#(), SecondKnown 1#, SecondKnown2#, INumSeg % (), EI#(),

RadCur#(), Length#(), TOL#(), IFlagStartNode %(), IFlagEndNode %(), StartNode#(), ILoadCond %, q#(),
1SecNum%, INumSections %)

DECLARE SUB NewRapl (Z1#(), Parameters#(), SecondKnownl#, INumSeg%(), EI#(), RadCur#(),
Length#(), TOL#(), IFlagStartNode %(), IFlagEndNode %(), StartNode#(), ILoadCond %, q#(), ISecNum %,
INumSections %)

DECLARE SUB NewRap3 (Z3#(), Parameters#(), SecondKnownl#, SecondKnown2#, SecondKnown3#,
INumSeg %(), EI#(), RadCur#(), Length#(), TOL#(), IFlagStartNode % (), IFlagEndNode % (), StartNode#(),
ILoadCond %, q#(), ISecNum%, INumSections %)

DECLARE SUB NewRap (Z1#(), Z2#(), Z3#(), Parameters#(), SecondKnownl#, SecondKnown2#,
SccondKnown3#, INumSeg %(), EI#(), RadCur#(), Length#(), TOL#(), IShootDim %, IFlagStartNode %(),
IFlagEndNode %(), StartNode#(), ILoadCond %. q#(), ISecNum%, _

INumSections %)

DECLARE SUB SolveForces (ILoadCond %, Parameters#(), Delta#, EI#, RadCur#, INumSeg %, TOL#,
Energy#, q#)

DECLARE SUB Screen2 (g#(), ILoadCond %, 1SecNum %)

DECLARE SUB SolveForceDistLd (Parameters#(), Delta#, EI#, RadCur#, INumSeg %, TOL#, Energy#,

q#)
DECLARE SUB SolveForceNormLd (Parameters#(), Delta#, EI#, RadCur#, INumSeg %, TOL#, Energy#,

q#)

DECLARE SUB NoYes (Answer%, Message$, LocateY %)

DECLARE SUB DefColour ()

DECLARE SUB InputEndKnown (EndNode#(), EndNode$(), [Known2%, IFlagEndNode%(),
IFlagStartNode %(), IShootDim %, [SecNum %)

DECLARE SUB InitBnd (Z1#(), Z2#(), Z3#(), SecondKnownl#, SecondKnown2#, SecondKnown3#,
IShootDim %, StartNode#(), EndNode#(), IFlagStartNode %(), IFlagEndNode %(), ISecNum %)
DECLARE SUB SelectParStart (1%, Z1#(), Z2#(), Z3#(), IShootDim %, StartNode#(), IFlag2 %())
DECLARE SUB Screenl (Length#{(}, RadCur#(), INumSeg%(), E#(), Dlnertia#(), EI#(), TOL#(),

INumSections %, ISecNum %)

DECLARE SUB Gauss (A#(), X#(), B#())
DECLARE SUB FirstNode3 (Parameters#(), ZZ#(), IFlagStartNode %(), StartNode#(), ISecNum %)

DECLARE SUB FirstNodel (Parameters#(), ZZ#, [FlagStartNode %(), StartNode#(), ISecNum %)
DECLARE SUB Centre (Text$, YCoord %)

DECLARE SUB DetStartNode (StartNode#(), StartNode$(), IFlagStartNode %())

DECLARE SUB InputStartKnown (StartNode#(), StartNode$(), IUnKnown %, 1FlagStartNode %())
DECLARE SUB InputStartUnKnown (StartNode#(), StartNode$(), IUnKnown %, IFlagStartNode %())
DECLARE SUB SelectParEnd (i %, SecondKnowni#, SecondKnown2#, SecondKnown3#, IShootDim %,

EndNode#(), IFlag3 %())

DECLARE SUB Screen0 (INumSections %)

DECLARE SUB FirstNode2 (Parameters#(), ZZ#(), IFlagStartNode %(), StartNode#(), ISecNum %)
DECLARE SUB Marquee (X$. Row %, Colr%)

DECLARE SUB Scroll (Message$, IRow %. Icolor%)

DECLARE SUB Pause (Ticks %)

DECLARE SUB QPrint (X$, Colr%. Page%)

DECLARE FUNCTION Monitor% ()

DECLARE FUNCTION EGAMem% ()
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t~ SEGMENTAL SHOOTING TECHNIQUE
'~ UNIVERSTIY OF ALBERTA, EDMONTON ALBERTA

. VICTOR TAM

** SEGMENTAL TECHNIQUE - A numerical method for analysing large deformation nonlinear
planar ro. problems under various loading. This numerical
technique is divided into the segmental approach and the
shooting technique.

‘* SEGMENTAL APPROACH - This approach involves dividing a larzely deformed into
numerous small segments. The nonlinear rod problem is then
solved segment by segment using a linear approximation on
each segment. The segments are assembled together using
geometric and force compatibility conditons.

** SHOOTING TECHNIQUE - The linearization procedure in conjunction with the solving of
the linear differntial essentially converts a boundary value
problem into an initial value problem. Consequently, a false
position shooting procedure is employed to iterative to the
desired solutions(s).

Various Sub-Modules are employed to solve large deformation rod problems in much generatlity.
Generality involving different curvatures, various loading conditons (concentrated, distributed and normal
load), strain energy and total potential energy considerations ... etc. Much efforts have been put in to
generate computer codes that automates the problem definition process. solution convergence and data
generation. This computer code is neither an illustration of optimized computer programming nor designed
to optimally execute the numerical procedure. The codes would require much improvemnts for speed,
accuracy and efficiency. The correct execution of this code requires the complete understanding of the
underlying theroies pertaining to the segmental shooting technique as well as knowldege regarding the
design of this program. Faliure to do so will resuit in erronous solutions. The author of this computer
code is not responsible for any damage direct or indirect, mental or physical induced because of its use.
The author reserves the right to make any modifications to the code without notification.

ey

Sub-Modules
ek GENTEC e

GENTEC - Main program for solving a GENeral problem under vanious loading using the Segmental
Shooting TEChnique

Center - centers a character string on screen.

DefColour - Maps colour number with corresponding colour name.
DefStartNode - Define initial parameters at the start node of the rod.
FirstNodel - Assign one initial known value at the start node.
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FirstNode2 - Assign two initial known values at the start node.

FirstNode3 - Assign three initial known values at the start node.

Gauss - Gauss Elimination subroutine for solving systems of equations.

InitBnd - Define flags for each initial start node value.

InputEndKnown - Input the known end conditions.

InputStartKnown - Input the known start conditons.

InputStartUnknown - Input the guess for the unknown start conditions.

Marquee - Text Scrolling routine.

NewRap - invoke 1, 2 and 3 varibales Newtwon Raphson shooting procedure.

NewRapl - invoke | variable Newtwon Raphson shooting procedure.

NewRap2 - invoke 2 variables Newtwon Raphson shooting procedure.

NewRap3 - invoke 3 variables Newtwon Raphson shooting procedure.

NoYes - Prompt for Yes or No answer and return corresponding reply.

PlotGeom - Plot geometry of the deflected shape.

Screen0 - First text screen of this program.

Screenl - Second text Screen of this program.

Screen2 - Third text screen of this program.

Screen3 - Fourth text screen of this program.

Scroll - Scrolling of text.

SelectParEnd - Compare the computed parameter and known parameter at the end node.
SelectParStart - initial a small perturbation of the start guess(es) for Newton Raphson procedure.
SolveForceDistLd - Segmental Approach for solving rods under distributed load.
SolveForceNormLd - Segmental Approach for solving rods under normal load.
SolveForcePtLd - Segmental Approach for solving rods under point load.

SolveForces - Subroutine for invoking different solving routine for different loading conditions.

DEFINT I-K +** Define Interger Variables I to K.
DEFDBL A-H. L-Z *#k Define Double Precision Variables A to H and L to Z.
OPTION BASE 0 “ex* Assign Array to Start at Index 0

Ly o 3¢ ot i ok

LIST OF VARIABLES USED IN MAIN():

Nomenclature:
Each structure of interset is divided into sections, each section having constant material properties,

radius of curvature, number of segments. The individual section of the structure is then divided
into numerous segments. Therfore. a structure can be composed of sections with different
material properties, numeber of segments, radius of curvature ... etc.

=% ARRAYS

Z1() - guesses for | dimension shooting

Z2() - guesse for 2 dimension shooting

Z2() - guessed for 3 dimension shooting

StartNode() - Initial vaiues at the start (X, Y, Gamma, T, V, M)
StartNode$() - Strings (Descriptions) of each elemcnt for the initial values
IFlagStartNode() - Flags (ones or zeros) indicating the status of each entry
EndNode() - End values at the start (X, Y, Gamma, T. V. M)
EndNode$() - Strings (Descriptions) of each element for the initia values
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I[FlagEndNode() - Flags (ones or zeros) indicating the status ot each entry
Length() - Length of the rod for various sections

RadCur() - Radius of Curvature of the rod for different sections
INumSeg() - Number of segments used for each section

E() - Yound's Modulus for each section

DInertia() - Inertia of each section

EI() - Modulus of Rigidity of each section

TOL() - Numerical Tolerance for each section

Parameters() - a copy of StartNode() for the iterative procedure

q() - Load parameter for each section

VARIABLES:
[SecNum - the total number of sections defined on a structure
Answer - a boolean return to the answer of a prompt (1 =Yes, 0=NQO)

20t 3 230 2 ol

DIM Z1(30), Z2(30, 30), Z3(30, 30), [FlagStartNode(6)
DIM StartNode(6), StartNode$(6), IFlagEndNode(6)

DIM EndNode(6), EndNode$(6). Length(20), RadCur(20), INumSeg(20), E(20)

DIM Dlnertia(20), EI(20), TOL(20), Parameters(6), 4(20)

a8 3 5 b o 2 e e ok sk oo oK

) * ** Main Program *
CLEAR , , 2000 *#%k Clear All Memory and Set Stack Size
Answer% = 1
WHILE Answer %
CLEAR , , 2000
DefColour ve*x Invoke Define Colour Routine

KEY(7) ON: ON KEY(7) GOSUB BreakOut  "*** Set EXIT Key F7 Trap

Screen0Q INumSections  "*** [nvoke First Text Screen

*#** | oop the Data Input Screens | and 2 until all sections defined are exhausted ***

FOR [SecNum = 1 TO [NumSections STEP 1

Screenl Length(), RadCur(), INumSeg(), E(), DInertia(), EI(), TOL(), INumSections, [SecNum

Screen? (), ILoadCond. 1SecNum
IF ISecNum = 1 THEN
DefStartNode StartNode(), StartNode$(), [FlagStartNode()

InputStartKnown StartNode(), StartNode$(), IUnKnown, [FlagStartNode()
InputStartUnKnown StartNode(), StartNode$(), [UnKnown, IFlagStartNode()

END IF
NEXT ISecNum

[SecNum = 1|

ok Input and Initialize the Initial Known Boundary Conditions ***

InputEndKnown EndNode(), EndNode$(), iIKnown2, IFlagEndNode(), IFlagStartNode), 1ShootDim.
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[SecNum
InitBnd Z1(), Z2(), Z3(), SecondKnown 1, SecondKnown2, SecondKnown3, 1ShootDim, StartNode(),

EndNode(), IFlagStartNode(), IFlagEndNode(), ISecNum
Screen3 Length(), RadCur(), INumSeg(), E(), Dlnertia(), TOL(), StartNode(), StartNode$(),

IFlagStartNode(), ISecNum, INumSections

"w#x Invoke Newton Raphson Routine based on the number of initial unknowns ***
“#%* Within the Newton Raphson Procedure, the segmental approach is called ***

NewRap ZI(), Z2(), Z3(), Parameters(), SecondKnownl, SecondKnown2, SecondKnown3,
INumSeg(), EI(), RadCur(), Length(), TOL(), IShootDim, IFlagStartNode(), [FlagEndNode(), StartNode(),
ILoadCond, (), ISecNum, INumSections

kk* Exit Segmental's Approach and prompts for another run  ***

NoYes Answer%. "ReStart?”, 15
WEND

"#4% Terminate Program Execution and Close all File once Exit Key (F7) is trapped ***

BreakOut:

CLOSE

END
RETURN
END

END MAIN *
¥ ke 2he e ot ¢ ¢ 0 afe o e o
** CENTRE - Given a string Text$ and vertical position YCoord, the text Text§ is
automatically centered horizontally on vertical the vertical position YCoord

Sk o b 246 20 e o 3K e e * X

SUB Centre (Text$, YCoord %)

TextLength = LEN(Text$)
XCoord% = (80 - TextLength) \ 2
LOCATE YCoord%. XCoord %
PRINT Text$:

END SUB

* skl ¢ 30 3K e 0 20¢ 4E K

** DefColour - Define the colour on screen according to the corresponding names.
* ok ok ek A2l ok
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SUB DetColour

SHARED IBlack, IBlue, IGreen, ICyan, IRed, IMagenta, IBrown. [White, IDarkGrey, ILightBlue,

ILightCyan, ILightRed, ILightMagenta, ILightYellow, IBrWhite, IBlink AS INTEGER
Div ~uy$(10)
Key$(1) = " HELP "

"M =Monitor % *get the monitor type
‘Memory = EGAMem% * 64 ‘if it's an EGA, get its memory
**call clock(1,1,15,6)

SELECT CASE M

CASE 1
'Monochrome adapter”
SCREEN 0

CASE 2
*"Hercules card”
SCREEN 0

CASE 3
*"CGA adapter or an EGA emulating a CGA"
'SCREEN 2

CASE 4
'EGA card with a monochrome monitor, "
SCREEN 10

CASE 5
"EGA card with a COLOR monitor,"
'SCREEN 9

CASE 6
*VGA adapter with a monochrome monitor”
SCREEN 10

CASE 7
'VGA adapter with a COLOR monitor"
SCFEEN 11

END SELECT

IBlack = 0

[Blue = 1

IGreen = 2
ICyan = 3

IRed = 4
IMagenta = 5
IBrown = 6
IWhite = 7
[DarkGrey = 8
ILightBlue = 9
ILightGreen = 10
LightCvan = 11
iLightR.d = 12
[LightMaygenta = 13
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[LightYellow = 14
IBrWhite = 15
[Blink = 16

'KEY ON
‘COLOR 1, 15: KEY 1, Key$(1)

END SUB

T

"% DefStartNode - Initialize the Initial values array and assign a text description to each initial vaiue

Yok

T StartNode(1) = X1 value

e StartNode(2) = Y1 value

o StartNode(3) = Gamma value
b StartNode(4) = M1 value

e StartNode(5) = V1 value

b StartNode(6) = T1 value

ek

s e s e o ool 0 o o o oK N R R oo KKK

.

SUB DefStartNode (StartNode(), StartNode$(), IFlagStartNode())

StartNode$(1) = "X1"
StartNode$(2) = "Y1"
StartNode$(3) = "Gammal”
StartNode$(4) = "M1"
StartNode$(5) = "V1*
StartNode$(6) = "T1"

FORi=1TO6®6
StartNode(i) = 0#
IFlagStartNode(i) = 0

NEXT 1

END SUB

ke 90300 53¢ 4 3 4 e e 3¢ 3 o 3 3 3 3 2 2 2 e 3 30 2 3 2 3 e e 3 o0 ¢
** FirstNodel - Assign initial values to the StartNode array for 1-D shooting

™ e 2t e

SUB FirstNodel (Parameters(), ZZ. [FlagStartNode(), StartNode(), [SecNum)

‘StartNode(1) = X1 value: Parameters(1)
‘StartNode(2) = Y1 value: Parameters(2)
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‘StartNode(3) = Gamma value; Parameters(3)
‘StartNode(4) = M1 value; Parameters(4)
*StartNode(5) = V1 value; Parameters(3)
‘StartNode(6) = T1 value; Parameters(6)

[SecNum = 1
FORi=1TO6

IF IFlagStartNode(1) = 1 THEN
Parameters(i) = StartNode(i)

END IF

IF IFlagStartNode(i) = 2 THEN
Parameters(i) = ZZ

END IF

NEXT i

*XGlobal = 0#

'YGlobal = 0#

‘M1 = 0#

‘Gamma = ZZ ‘Guess Slope
‘Tl = -(P * COS(Gamma))

‘V1 = ~(P * SIN(Gamma))

END SUB
" ekt SRl SRR R R s e R Ko R R SR R R o AR e

“*  FirstNode2 - Assign initial values to the StartNode array for 2-D  shooting

™ »

SUB FirstNode2 (Parameters(), ZZ(), |FlagStartNode(), StartNode(), ISecNum)

*StartNode(1) = X1 value: Parameters(1)
‘StartNode(2) = Y1 value: Parameters(2)
‘SuartNode(3) = Gamma value; Parameters(3)
‘StartNode(4) = M1 value; Parameters(4)
‘StartNode(5) = V1 value; Parameters(5)
‘StartNode(6) = T1 value: Parameters(6)

[Flag2 = O
[SecNum = 1
FORi=1TO6

IF IFlagStartNode(1) = | THEN
Parameters(i) = StartNodeQ1)
END IF
IF IFlagStartNode(i) = 2 AND [Flag2 = 0 THEN
Parameters(i) = ZZ(1)
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IFlag2 = IFlag2 + 1

ELSE
IF IFlagStartNode(i) = 2 AND IFlag2 = | THEN

Parameters(i) = ZZ(2)
IFlag2 = [Flag2 + |
END IF
END IF

NEXT i

04
o#

*XGlobal
"YGlobal
‘M1 = O#

V1 = ZZ(1) *Shoot for Tension
‘Gamma = ZZ(2) ‘Shoot for Slope
‘dummyl = P~ 2-V1“2

'IF dummy}l >= 0 THENTI =
Tl = -SQR(P*2-VI "2

END SUB

2o 2t 3¢ 3h¢ k¢ 3¢

-SQR(P “ 2- V1~ 2)ELSE Tl = SQR(ABS(P " 2 -Vl *2))

LpuproprpraprRprIpreprapragTp gl e o 3¢ 3¢ 0 e 3 3 e

“* FirstNode3 - Assign initial values to the StartNode array for 3-D shooting

Jregrgeo) i she 2 3¢ 3

‘*.*****************-******mmm********
SUB FirstNode3 (Parameters(), ZZ(), IFlagStartNode(), StartNode(), [SecNum)

“StartNode(1) = X1 values: Parameters(1)
*StartNode(2) = Y1 value: Parameters(2)
*StartNode(3) = Gamma value:  Parameters(3)
*St. - Node(4) = M1 value: Parameters(4)
*StartNode(5) = V1 value: Parameters(5)

*StartNode(6) = T1 value; Parameters(6)
IFlag3 = 0

ISecNum = 1

FORi =1TO6

IF IFlagStartNode(t) = 1 THEN
Parameters(i) = StartNode(1)
END IF
IF IFlagStartNode(i) = 2 AND IFlag3 = 0 THEN
Parametersti) = ZZ(1)
IFlag3 = [Flag3 + |
ELSE
IF IFlagStartNode(i) = 2 AND IFlag3 = | THEN
Parametersii) = ZZ(2)
IFlag3 = [Flag3 + 1
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ELSE
IF IFlagStartNode(i) = 2 AND IFlag3 = 2 THEN
Parameters(i) = ZZ(3)
IFlag3 = IFlag3 + |
END IF
END IF
END IF

NEXT i

‘XGlobal = 0#

'YGlobal = 0#

‘Ml = 0#

‘'V1 = ZZ(1) *Shoot for Tension
'Gamma = ZZ(2) 'Shoot for Slope
*Victor = ZZ(3)

‘dummyl = P~ 2-VI*2
‘IF dummyl >= 0 THEN T1 = -SQR(P “ 2 - V1 " 2) ELSE Tl = SQR(ABS(P * 2 - V1 " 2))
Tl = -SQR(P*2-V1 " 2)

END SUB

SUB Gauss (A(), X(), B0))

. o * 24 3K ¢ i ¢ i 2 2 e e E T 3

Yok

x GAUSS is a matrix solver routine that returns the values of the unknowns in the B() vector.

* 3¢k sl 5206 3¢ K 5K A e e e 246 3¢ 24 ¢ ¢ A » 24 2 e 35 3¢ 3% 246 24 206 e 2bs s 3he oo 3 3 2 2 e o ofe 200 e o o o

Row = UBOUND(A, 1}
COL = UBOUND(A, 2) + 1
LAST = Row - |
DIM MATRIX(Row, COL)
FORi = 1 TO Row
FORj=1TO(COL- 1)
MATRIX(, j) = A(. )

NEX1 j
MATRIX(i, COL) = X(i)
NEXT i
* seopolon
T Start overall loop for (ROW-1) pivots
* ek

FOR1i = 1 TO LAST

* koK
o Find the largest remaining term in the I-th column for pivot
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* e ok

BIG =0
FOR k = { TO Row
TERM = ABS(MATRIX(k, 1))
IF (TERM - BIG) < 0 OR (TERM - BIG) = 0 THEN 6510 ELSE 61000

61000 BIG = TERM

I =k
6510 NEXTk
¥ oo
. Check whether a non-zero term has been found
e

IF BIG < 0 OR BIG > 0 THEN 6530 ELSE 6520
6520 GOTO 6580

Aok
- L-th row has the biggest term --is [ = L

AT L2

6530 IF(i-1) < 0OR(i-1) > 0 THEN 6540 ELSE 6550

ke e
- I is not equal to L so switch rows [ and L

° o

6540 FORj = 1 TO COL
TEMP = MATRIX(. j)
MATRIX(. j) = MATRIX(. j)
MATRIX(l. j) = TEMP

NEXT

ok

. Now start pivotal reduction
kR

6550 PIVOT = MATRIX(. 1)

NEXTR =1 + 1
Rk
T For each of the rows after the I-th
ok g e e

FOR ) = NEXTR TO Row
o2k e 2l

T Multiplving constant for the J-th row is...

Sl
CONNST = MATRIX(. 1)/ PIVOT
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* ek

e Now reduce each term of the J=th row
© 5k e 2

FOR k = i TO COL
MATRIX(j, k) = MATRIX(j, k) - CONNST * MATRIX(i. k)

NEXT k
NEXT j
NEXT i
¥ koo
Tk End of pivotal reduction,
T now perform back substitution
© g e

FORi = 1 TO Row

* koo
x IREV is the backward index. going trom ROW back to 1

® ko koK

IREV = Row + | -

& she e e 2

* Get Y(!REV) in preparation

o ek

Y = MATRIX(IREV. COL)
IE (IREV - Row) < 0 OR (IREV - Row) > 0 THEN 6560 ELSE 6570

ok o 2E

e Not working on last row. [ is 2 or greater
* ek

6560 FORj =2TOi

* sk
* Work backwards tor B(COL), B(COL-1)---.
Tk substituting previously found values
* sk

k=COL +1-j

Y = Y - MATRIX(IREV, k) * B(k)

NEXT j

° ek Rk
e Finally compute B(IREV)
* ok

6570 B(IREV) = Y / MATRIX(IREV. IREV)
NEXT i
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6580 EXIT SUB

END SUB

* %

'* [nitBnd - Initialize the start and end boundary conditions and assign the guess(es) to the corresponding

parameters

\r3

SUB InitBnd (Z1(), Z2(), Z3(), SecondKnown1, SecondKnown2, SecondKnown3, IShootDim, StartNode(),
EndNode(), 1FlagStartNode(), IFlagEndNode(), 1SecNum)

DIM IFlag2(3), IFlag3(3)

FORi=1TO3
IFlag2(i) = 0
IFlag3(i) = O

NEXT i

FORi = 1TO6
IF IFlagStartNode(i) = 2 THEN SelectParStart i, Z1(), Z2(), Z3(), IShootDim. StartNode(),

IFlag2()
IF IFlagEndNode(i) = | THEN SelectParEnd i, SecondKnownl, SecondKnown2, SecondKnown3,

1ShootDim, EndNode(), IFiag3()
NEXT i

END SUB

** InputEndKnown - Input screen for the knowns at the end node

SUB InputEndKnown (EndNode(), EndNode$(), IKnown2, IFlagEndNode(), IF lagStartNode(), IShootDim,
[SecNum)

DIM McenuEnd$(7)
SHARED IBlack, IBlue, IGreen, ICvan. [Red. IMagenta, 1Brown, IWhite, IDarkGrey, ILightBlue,

ILightCyan. ILightRed. ILightMagenta, ILightYellow, IBrWhite, IBlink AS INTEGER

CLS

IFlagl = 1

[ShootDim = 0

IKnown2 =

Entry$ = ""

StartRow = 6

Centre "Select Item(s) and Plcase inout End Node Parameters”, 3

FORi =1TO®6
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IF IFlagStartNode(1) = 2 THEN IShootDim = IShootDim + 1|
NEXT i

LOCATE 4, 12
PRINT "At Least"; IShootDim: " Distinct Parameters be Known at the EndNode!"”

MenuEnd$(1) = "1)  End Node X Coordinate"
MenuEnd$(2) = "2) End Node Y Coordinate”
MenuEnd$(3) = "3)  End Node Slope”
MenuEnd$(4) = "4) End Node Moment Value"
MenuEnd$(5) = "S)  End Node Shear Value"
MenuEnd$(6) = "6) End Node Tension Value"
MenuEnd$(7) = "7)  Retumn to Previous Menu”

FORi=1TO6
LOCATE StartRow + 2 * (1 - 1), 20
PRINT MenuEnd$(i)

NEXT i

PRINT

PRINT "Select Item:":

WHILE (IFlagi OR (IKnown2 < > IShootDim))

WHILE (Entry$ = "*)
Entry$ = INKEYS
WEND

SELECT CASE Entry$
CASE "1°
IF IFlagEndNode(1) = 0 THEN
PRINT
INPUT “Please Enter End Node X Coordinate"; EndNode(1)
[Known2 = [Known2 + 1
IFlagEndNode(1) = 1|
COLOR IGreen
LOCATE StartRow. 20
PRINT MenuEnd$(1)
COLOR IBrWhite
END IF
CASE "2"
IF IFlagEndNode(2) = 0 THEN
PRINT
INPUT "Please Enter End Node Y Coordinate”; EndNode(2)
IKnown2 = IKnown2 + 1|
IFlagEndNode(2) = 1
COLOR IGreen
LOCATE StartRow + 2 * (1), 20
PRINT MenuEnd$(2)
COLOR IBrWhite
END IF
CASE "3"
IF IFlagEndNode(3) = 0 THEN
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PRINT
INPUT "Please Enter End Node Slope”; EndNode(3)

IKnown2 = IKnown2 + 1
IFlagEndNode(3) = 1
COLOR IGreen
LOCATE StartRow + 2 *(2), 20
PRINT MenuEnd$(3)
COLOR IBrWhite

END IF

CASE "4"
IF IFlagEndNode(4) = 0 THEN

PRINT
INPUT "Please Enter End Node Moment Value"; EndNode(4)

IKnown2 = IKnown2 + 1
IFlagEndNode(4) = !
COLOR IGreen
LOCATE StartRow -
PRINT Menutnd%(4)
COLOR IBrWhit
END IF
CASE "5"
IF IFlagEndNode(S) = 0 THEN
PRINT
INPUT "Please Enter End Node Shear Value"; EndNode(S)
IKnown2 = [IKnown2 + 1
IFlagEndNode(5) = 1
COLOR IGreen
LOCATE StartRow + 2 * 4, 20
PRINT MenuEnd$(5)
COLOR IBrWhite
END IF
CASE "6"
IF IFlagEndNode(6) = 0 THEN
PRINT
INPUT "Please Enter End Node Tension Value"; EndNode(6)
IKnown2 = IKnown2 + 1
IFlagEndNode(6) = 1
COLOR IGreen
LOCATE StartRow + 2 *§, 20
PRINT MenuEnd$(6)
COLOR [BrWhite
END IF
‘case 7
CASE ELSE
SOUND 6000, |
PRINT
Centre “Invalid Entry, Please Re-enter”, 20
IF IKnown2 > = IShootDim THEN IFlagl = 0 ELSE IFlagl = 1
END SELECT

Entry$ = ""
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LOCATE StartRow + 2 *(1- 1), 1

PRINT "Select Item:";

LOCATE StartRow + 2 *(1-1) + 1. 1

PRINT " ;
LOCATE StartRow + 2 *(i- 1), 1

PRINT "Select Item:":

IF IKnown2 > = [ShootDim THEN IFlagl = 0

WEND

END SUB

)

. * * 300 24 240 300 200 2 2 000 3R R R N

** InputStarti nown - Input screen for the knowns at the start node
* g 200 540 2 3 o o 2 5 o e o

SUB InputStartKnown (StartNode(), StartNode$(), IlUnKnown. [FlagStartNode())

DIM MenuStart$(7)
SHARED IBlack, IBlue, IGreen, ICyan, IRed. IMagenta, [Brown, |White, IDarkGrey, ILightBlue,

ILightCyan, ILightRed. ILightMagenta. [LightYcliow, IBrWhite, IBlink AS INTEGER

CLS

IFlagl = 1

[UnKnown = 0

Entry$ = ™"

StartRow = 6

Centre "Select Item(s) and Please Input Start Node Parameters”, 3
Centre "At Least 3 Distinct Parameters be Known!”, 4

MenuStart$(1) = "1) Start Node X Coordinate”
MenuStart$(2) = "2) Start Node Y Coordinate”
MenuStart$(3) = "3)  Start Node Slope”
MenuStart$(4) = "4)  Start Node Moment Value”
MenuStart$(5) = "5)  Start Node Shear Value”
MenuStart$(6) = "6)  Start Node Tension Value”
MenuStart$(7) = "7) Exit Input Known Start Node Parameters"
'StartNode(1) = X1 value

‘StartNode(2) = Y1 value

*StartNode(3) = Gamma value

‘StartNode(4) = M1 value

*StartNode(5) = V1 value

*StartNode(6) = T1 value

FORi=1TO7
LOCATE StartRow + 2 * (i - 1), 20
PRINT MenuStart$(i)

NEXT i
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PRINT
PRINT "Select Item: ",

WHILE (IFlagl)

WHILE (Entry$ = ")
Entry$ = INKEYS
WEND

SELECT CASE Entry$
CASE "1"
IF [FlagStartNode(1) = 0 THEN
PRINT
INPUT "Please Enter Start Node X Coordinate”; StartNode(1)
[UnKnown = [UnKnown + 1
IFlag QUTPUT AS #4
FOR 1SecNum = 1 TO INumSections STEP 1
SolveForces [LoadCond, Parameters(), Delta(ISecNum), EI(ISecNum), RadCur(ISecNum),
INumSeg(ISecNum), TOL(ISecNum), Energy, 4(ISecNum)
NEXT ISecNum
CLOSE #1, #4

FORj=1TO6
IF IFlagEndNode()) = 1| THEN
SELECT CASE IFlag3
CASE 0
FI1F10l = Parameters(:) - SecondKnownl
IFlag3 = [Flag3 + |
CASE |
F2F101 = Parameterstj) - SecondKnown2
IFlag3 = [Flag3 + |
CASE 2
F3F101 = Parameters(j) - SecondKnown3
[Flag3 = [Flag3 + |
END SELECT
ENDIF
NEXT j

IFlag3 = 0

® i e a2 o e 2 a0 3 3 o3¢ S 3 2 2 2 e 5 e e ¢ 2 e e e ok ke ke e 3 e Th“-d PHSS *

LZ(Y)y = Z230-1, D

2Z2(2) = Z3(i, 2)

ZZ(3) = 733, 3)

LOCATE 2, 54

PRINT "Third Pass » » » "

FirstNode3 Parametersi). ZZ(), 1FlagStartNode(). StartNode(), 1SecNum
OPEN "d:\~Geom.Tmp” FOR OUTPUT AS #1

OPEN “d:\curve.dat" FOR OUTPUT AS #4

FOR ISecNum = | TO INumSections STEP |
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SolveForces [LoadCond. Parameters(), Delta(1SecNum), EI(ISecNum), RadCur(lSecNum),
INumSeg(ISecNum), TOL(ISecNum), Energy, 4(ISecNum)
NEXT ISecNum
CLOSE #1, #4

FORj =1TO6
IF IFlagEndNode(j) = | THEN
SELECT CASE [Flag3
CASE 0
F1FO11 = Parameters(}) - SecondKnownl
[Flag3 = IFlag3 + 1
CASE 1
F2F011 = Parameters(j) - SecondKnown2
IFlag3 = IFlag3 + 1
CASE 2
F3F011 = Parameters(j) - SecondKnown3
[Flag3 = IFlag3 + 1

END SELECT
END IF
NEXT j
[Flag3 = 0
Aok sk Final Pass  #ofoksonsorokosior koo sl sor ok ookok R ko ook

ZZ(1) = Z3(, D

ZZ(2) = 7233, 2)

ZZ(3) = Z3(i. 3)

LOCATE 2, 54

PRINT "Final Pass » » » »”

FirstNode3 Parameters(), ZZ(), iFlagStartNode(), StartNode(), ISecNum

OPEN "d:\~Geom.Tmp"” FOR OUTPUT AS #1

OPEN "d:\curve.dat" FOR OQUTPUT AS #4

FOR ISecNum = 1 TO [NumSections STEP 1|

SolveForces 1LoadCond. Parameters(), Delta(ISecNum), EIl(ISecNumj). RadCur(ISecNum),

[NumSeg(ISecNuin), TO_{!SecNum), Energy, q(ISecNum)

NEXT ISecNum

CLOSE #1, #4

FORj=1TO®6
IF 1FlagEndNode(j) = 1 THEN
SELECT CASE IFlag3
CASE 0
F1F111 = Parameters(j) - SecondKnownl
[Flag3 = IFlag3 +~ |

CASE |
F2F111 = Parameters(}) - SecondKnown2
[Flag3 = IFlag3 - 1

CASE 2

F3F111 = Parameters(j) - SecondKnown3
[Flag3 = {Flag3 + 1
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END SELECT

END IF
MNEXT j
[Flag3 = 0

IF (ABS(FIF111) < TOL(1)) AND (ABS(F2F1'1) < TOL(1)) AND (ABS(F3F111) < TOL(1))
THEN
FirstNode3 Parameters(). ZZ(), IFlagStartNode(), StartNode(), [SecNum
OPEN "d:\~Geom.Tmp" FOR OUTPUT AS #1
FOR ISecNum = | TO INumSections STEP 1
SolveForces 1LoadCond, Parameters(), Delta(ISecNum), EI(ISecNum), RadCur(ISecNum),
INumSeg(1SecNum), TOL(ISecNurm), Energy, q(ISecNum)
NEXT ISecNum

CLOSE #1, #4
END IF
Iteration$ = “lteration #" + ST/ S$(Iteration#} + * Completed”

Centre lteratuon$. 16; PRINT
PRINT "Moment 2 = ",
PRINT USING " +#. 888080804088 """ " . Purameters(4);
PRINT .
PRINT "Tension 2 = °
PRINT USING " +#.###8#a00nr44” """, Parameters(6)
PRINT "Slope 2 = "
PRINT USING "+ #. ##4nunsngsay” """, Parameters(3):
PRINT .
PRINT "Shear 2 = "
PRINT USING " +#.£##saE00E8#48™ """ " Parameters(3)
PRINT "X2 = "
PRINT USING "+ #.####4ntas##™" """, Parameters(1):
PRINT .,
PRINT "Y2 = ™
PRINT USING " +#. #ER§#REREKHR™ """ Parameters(2)
FOR}j = 1TO®6
IF {FlagStartNode(j) = 2 THEL
SELECT CASE IFlag3
CASE 0
PRINT StartNodeS(j): * = "
PRINT USING " - & #upsuangaas” """ 2Z(1)
'PRINT .
IFlag3 = [Flag3 - |
CASE 1
PRINT StartNode$(j); " = ™
PRINT USING " ~#.##unpsnann”"""" Z2(2)
‘PRINT .
IFlag3 = [Flag3 -~ 1
CASE 2
PRINT StartNode$()): " = ™
PRINT USING " = #.###stangpass™" """ 22(3)
‘PRINT .
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IFlag3 = IFlag3 + 1
END SELECT

END IF
NEXT)
IFlag3 = 0O
PRINT
LOCATE 4. 45
PRINT "Accuracy 1 = ™
PRINT USING " -#.###ssssnnann”""" " FIF111
LOCATE . 45
PRINT "Accuracy 2 = *;
PRINT USING " +#.###snussinnn™ """ F2F111
LOCATE . 45
PRINT "Accuracy 3 = "
PRINT USING "+ #.5###unsasnza™ """ F3F111

Iteration$ = “fteration #" - STRS(Iterations) -~ " Completed”

Centre terationS. '4: PRINT

Dlacobiant ], | = +FIF111 - FIFOL1) / (Z3u. ) - Z3(i
Diareron(l, 2) = (FIF111 - FIF101) /1 (Z30. ) - Z3(i
Dlacebiantl, 3» = (FIFI1L - FIF110) / (Z3i1. 3) - 230

Dlacobiam ), 1) = (F2F111 - F2F01 D ¢ (230, 1y - 23
DJacobian(2, 2} = (F2F111 - F2F101) : «Z361. 2y - 231
Dlacobian(2, 3) = (F2F111 - F2F110) 1 (Z3(1. 3) - 230

DJacohan(3. 1) = (F3F111 - F3F011) . (230, 1) - Z3G
DJacobiant3, 2) = (F3F111 - F3F101) /230, 2) - 231
DJacobiant3. 3) = (F3FL11 - F3F110) / (Z30. 3) - 23

Func(l) = -1# * FiFl111
Func(2) = -1# * F2F111
Func(3) = -1# * F3F111

Gauss DJacobian(), Func(). Dift()
23 + 1. 1) = Z3(i. 1) - Dift(1) = WeightFactorl

2331 + 1. 2) = Z3(i. 2) + Diff(2) * WeightFactor2
Z3(i ~ 1. 3) = Z3(1, 3) - Dift(3) = WeightFactord

i

t=1+1

SOUND 5000, 1

FirstNode3 Parameters(), Zw(), [FlagStartNodet), StartNode(), [SecNum

OPEN "d:\ ~Geom.Tmp" FOR OUTPUT 8§ #1
OPEN "d:\curve.dat” FOR QUTPUT AS #4
FOR ISecNum = 1 TO INumSections STEP |
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SolveForces ILoadCond. Parameters(), Delta(ISecNum), EI(ISecNum), RadCur(ISecNum),

INumSeg(1SecNum), TOL(ISecNum), Energy, ¢(ISecNum)
NEXT ISecNum
CLOSE #1, #4

LLOCATE 17, 1
PRINT "Moment 2 =
PRINT USING " +#.84#B8414ERARH" """ Paraineters(4);
PRINT ,
P"'NT "Tension 2 = 7,
i T USING " +#.#RE0RRERRMRH" 277D “ters(6)
PRINT "Slope 2 = ™:
PRINT USING " +#.###uunsissan"""", Parameters(3):
PRINT ,
PRINT "Shear 2 = ",
PRINT USING " +#.48#84s884808" """, Parameters(S)
PRINT "X2 = ™
PRINT USING " +#.#8#snnasnsen™" """ Parameters(1):
PRINT , .
PRINT "Y2 = "
PRINT USING " +#. #4888 u8" """, Parameters(2)
FOR) =1TOG6
IF iFlagStartNode(j) = 2 THEN
SELECT CASE iFlag3
CASE 0
PRINT StartN:"e$(): " =
PRINT USING "+ #.gunugaryg” """ ZZ(1)

"

'PRINT .
IFlag3 = IFlag3 + |
CASE |
PRINT StartNode$(j): " = "
PRINT USING "~ #.8¢unstsnns™"""" L ZZ2(2)
‘PRINT .
IFlag3 = IFlag3 + |
CASE 2

PRINT StartNode$()); " = ™
PRINT USING " < #.###suunian”"""". Z2(3)

‘PRINT .
IFlag3 = IFlag3 + |
END SELECT
END IF
NEXT
IFlagd = 0
PRINT

LOCATE 4. 45

PRINT "Accuracy | = ":

PRINT USING " +#. ##8unsaassn”"""". FIF111
LOCATE . 45

PRINT "Accuracy 2 = ";

PRINT USING " + #.g#tpissntisis™" """ F2F111
LOCATE . 45
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PRINT "Accuracy 3 = ",

PRINT USING " +#. #r##unatsstn™"""" F3IF11

OPEN "d:\segtec.out” FOR output AS #3
PRINT #3, "X2 = "
PRINT #3. USING " +#.#850R8FBREGH" """,
PRINT #3. "Y2 = "
PRINT #3, USING " +#.###nneansnn """,
PRINT #3, "Slope 2 =~
PRINT #3, USING " +#. ###npssnssge """
PRINT #3, "Moment 2 = ";
PRINT #3, USING " +#. #HBHEHHERRRET" """,
PRINT #3, "Shear 2 = ",
PRINT #3, USING " +#.###nphansnn """,
PRINT #3, "Tension 2 = °
PRINT #3, USING "+ #.#4#80RaRRGHER"""" ",
FORj=1TO6
IF [FlagStartNode(j) = 2 THEN
SELECT CASE I[Flag3
CASE 0
PRINT #3. StartNod--$¢1): " =

PRINT #3. USING "+ # . #n#rasspiy™" """ ZZ(1)

'PRINT ,
IFlag3 = [Flag3 + |
CASE |
PRINT #3, StartNode$(j); " = ™

PRINT #3. USING " +#.#r#patgn”"""". Z2(2)

'PRINT .
IFlag3 = IFlag3 + 1
CASE 2
PRINT #3. StartNode$(j): " = ™

PRINT #3, USING " ~#.guggsisuag™ """ LL(3)

'PRINT .
IFlag3 = [Flag3 + 1
END SELECT
END IF
NEXT j
IFlag3 = O
PRINT #3, "Accuracy 1 = "

PRINT #3, USING " +#.#asnusasssn""""",

PRINT #3. "Accuracy 2 = "

PRINT #3. USING " +#.#assantsaan"""":

PRINT #3, "Accuracy 3 = ™

PRINT #3. USING "~ #.######EMRE" """,

‘call clock(l, 1, 14, 0)
SOUND 4000. 1
LOCATE 24, 1: PRINT #3, Timeldx$
SLEEP

CLOSE

PlotGeom [NumSeg, TOL(1)
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END SUB

"‘***—***#***##**#***#************* Aok e ok

"« NoYes - prompt for answer (Answer%) to a question (Message$) at location LocateY %

'ﬁ#*#*#**##************#***********4#***** a0 aje 2 e 200 o e 3 e e 2k 2 afe 20 oK ook

SUB NoYes (Answer%, Message$, LocateY %)

Centre Message$, LocateY %
A$ = INKEY$

Answer% = -999
WHILE (Answer% < 0)
AS$ = INKEYS
WHILE (A$ = "")
AS$ = INKEYS
WEND
SELECT CASE AS$
CASE "Y”
Answer %
CASE "y"
Answer% =
CASE "N”
Answer %
CASE "n”
Answeré% =
CASE
*do nothing
Answer% = -999
CASE ELSY
Centre “InVahid Entry, Please Re-Enter”. LocateY% + 1
Answer% = -999
END SELECT
WEND

i

0

It

i
<

END SUB

‘-n#m#*mm*****t*mmm***m*******u#***********-***** e okon L

"= PlotGeom - plot geometry of the deflected shape on screen

'l.###!*****‘*!ﬁ**l#*#***J**lt#*********-*** ah 200 246 ¢ 0 30 24 e 0 2k

SUB PlotGenn (INumSeg, TOL)

SHARED Biack. IBlue. iGreen. ICvan. [Red. IMagenta. 1Brown, [White, IDarkGrey, ILightBlue.
iLightCyan, ILigniRed. iLightMagenta, ILightYellow. IBrWhite, IBlink AS INTEGER

M =Moniter# “vet the monitor tyvpe
Answerse = |
CLS
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CLOSE
SELECT CASE M
CASE 3
SCREEN 2
VIEW (20. 20)-(590, 180)", IBlue. ILightBlue
LINE (0. 0)-(540. 0)
LINE (540. 0)-(540, 130y
LINE (540. 130)-(0. 130}
LINE (0, 130)-(0. U)
SemWidth% = 1000
ScrnHeight% = 120
OffSetX% = 0
OffSetY% = S
CASE 4
SCREEN 9
VIEW (55, 55)-(595. 265), 1BrWhite, [BrWhite
VIEW (50. 50)-(590. 260). IBlue. ILightBlue
LINE (0. 0)-(540. 0)
LINE (540, 0)-(540. 210}
LINE (540. 210)-(0. 210)
LINE (0. 210)-(0. 0y
ScmWidth% = 1000
ScrmHeight% = 180
OffSetX% = 0
OftSetY % = ScrnHeight% * 2
CASE 5
SCREEN 9
VIEW (55, 55)-(595. 265). |BrWhite, IBrWhite
VIEW (50, 50)-(590. 260), IBlue. ILightBlue
LINE (0. 0)-(340. Oh
LINE (540, 0)~(340. 210)
LINE (540, 210)-(0, 210)
LINE (0. 210)-(0. 0)
SernWidth% = 1000
ScmHeight% = 180
OffSetX% = 0
OftSetY % = Scrnheight% \ 7
END SELECT
WHILE Answer %

crmHeight% \ 2

OPEN "d:\segtec.dat” FOR OUTPUT AS 42

IF INumSeg > | THEN

OPEN "d:\ ~Geom.tmp” FOR INPUT AS #1

INPUT #£1, MaxX. MaxY

MinX = MaxX

MinY = MaxY

FORi = 1| TO INumSeyg - 1
INPUT #1, TmpX. TmpY
IF ABS(TmpX) > = ABS(MarX) THEN MaxX = TmpX
IF ABS(TmpX) < ABS(MinX; THEN MinX = TmpX
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IF ABS(TmpY) > = ABS(MaxY) THEN MaxY = TmpY
I[F ABS(TmpY) < ABS(MinY) THEN MinY = TmpY
NEXT i
ScaleX = (ScrnWidth% / (MaxX - MinX))
ScaleY = (ScrnHeight% / (MaxY - MinY)) / 2
CLOSE #1
OPEN "d:\ ~Geom.tmp"” FOR INPUT AS #1
FOR i = | TO [INumSey
INPUT #1, TmpX, TmpY
CIRCLE (INT(TmpX * ScaleX) + OffSetX %, INT(TmpY * ScaleY) + OffSetY %), 1
PRINT #2, USING "###.#a##~ """, CSNG(TmpX);
PRINT #2, USING " ###.####" """, CSNG(TmpY)
NEXT i
LLOCATE 22, |
PRINT "XMax = "; MaxX, "YMax = "; MaxY
PRINT "XMin = "; MinX. "YMin = ": MinY
CLOSE
NoYes Answer%, "RePlot Geometry?”, 2
IF Answer% = | THEN CLS : Answer% = -999 ELSE OPEN "d:\ ~Geom.tmp™ FOR OUTPUT
AS #5: CLOSE #5
WENI

END SUB

‘**#**#*******N****#*********************ﬂ$*A****************************m*************

"~ Screent - First Screen detailing the title and daie of revision
* x0e 330 e 30 0 36 6 3 200 e 24 2 o 3 20 AR K ‘

afe e ol e e A ke e e e o e ke

SUB ScreenV (INumSections)

SHARED IBlack, [Biue. IGreen. ICyan. IRed. IMagenta. [Brown, IWhite, IDarkGrey, ILigntBlue.
[LightCyan, ILightRed. ILightMagenta. ILightYcllow, 1BrWhite, IBlink AS INTEGER

COLOR 15. 1: CLS

"M =Monitor % ‘get the monitor type

If M = 3 THEN COLOR IBrWhite, |Blue, [Blue ELSE COLOR [BrWhite, 1Blue

'COLOR IBrWhite. [Blue

Centre "University of Alberta™, 3

COLOR 11. 1: Centre "JJEES$:: SEGMENTAL TECHNIQUE :::3fll". 6: COLOR 15. |

Cen're "August, 1990 Version 2.0". 10

Centre ""P Strike a Key to Begin "Q". 22

Message$ = " SEGMENTAL SHOOTING TECHNIQUE ... Segmental Shooting Tecl.nique ..."
Scroll Message$. 14, 112

CLS
LLOCATE 10. 15
INPUT "Please Input Number of Sections on Structurd: {1] ", INumSections

IF INumSections = 0 THEN INumSections = |
END SUB
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** Screenl - Second Screen inputing matenial properties, length, radius of curvature, modulus
of
Tk rigidity, numerical tolerance, and number of segments

* e 24 4 29 6 30 26 2 3¢ 2 o 2 2 3 ¢ 2 0 2 246 2 3 6 2 0 2 2 20 20 20 2 e 2 H 30 40 20 5 e 3 e 3 29 3 2 e a3 3 300 o 2 30 46 2 206 2 596 3 2000 30 20 0 o s e o 3 3 3 a3 30 3 o e o e e o ol 2 o

SUB Screenl (Length(), RadCur(), INumSeg(), E(), Dinertia(), EI(), TOL(). INumSections, ISecNum)

SHARED IBlack, IBlue, IGreen. ICyan. IRed. [Magenta. 1Brown, IWhite, IDarkGrey, ILightBlue,
ILightCyan, ILightRed. ILightMagenta. ILigntYellow, IBrWhite, [Blink AS INTEGER

CLS

Centre "University of Alberta”. 3

COLOR 11, 1: Centre "JRER¥:: SEGMENTAL TECHNIQUE ::33fffll", 5: COLOR 15, |
Centre "R Victor Tam June. 1990 ::: 300N, 7

COLOR 11, 1: Centre "Section”, 9

PRINT ISecNum: COLOR 15. |

Centre "Please lnput Structure Geometry & Material Properties”, 11

PRINT : PRINT

vexx Set up Defaults tor Section | ==*

IF ISecNum = 1 THEN
INPUT "Please Input Length in metres: |1.0m] ", Length(ISecNum)
IF Length(ISecNum) = 0 THEN Length(ISecNum) = |
INPUT "Please Input Young's Modulus in Pa {207000E + 06", E(1SecNum)
IF E(ISecNum) = C# THEN E(ISecNum) = 207000000000#
INPUT "Please Input Moment of Inertia in m”~4 [5.208E-11]", DInertia(I1SecNum)
IF DInertiatISecNum) = 04 THEN DlnertiatISecNum) = (.005 * 4) / 12
INPUT "Please Input Number ot Segments [1000] ", INumSeg(ISecNum)
IF INumSeg(ISecNum) = 0 THEN INumSeg(ISerNum) = 1000
INPUT "Please Input Radius of Curvature { IE65] ". RadCur(ISecNum)
IF RadCur(1SecNum) = 0 THEN RadCur(ISecNum) = ID+65
INPUT "Please Input Iteration Tolerance {1E-12] ", TOL(ISecNum)
IF TOL(ISecNum) = 0 THEN TOL(ISecNum) = .000000000001#
EI{ISecNum) = E(ISecNum) * DInertia(1SecNum)
ELSE
PRINT "Please Input Length in metres: *: "[": RIGHTS(STRS$(Length( 1)), LEN(STRS(Length(1)))
- DI
INPUT Length(ISecNum)
IF Length(ISecNum) = 0 THEN Length(ISecNum) = Length(1)
PRINT "Please Input Young's Modulus in Pa "; "["; RIGHTS(STRS$(E(1)), LEN(STRS(E(1))) - 1};

INPUT E(ISecNum)

IF E(ISecNum) = 0# THEN E(ISecNum) = E(l)

PRINT “Please Input Momeznt of Inerta in m”4 " “[": RIGHTS$(STRS$(DIncrtia(l)),
LEN(STR$(DInertiac 1))) - 1): "™

INPUT DlInertia(1SecNum)

{F Dlnertia(ISecNum) = 0# THEN DlnertiatISecNum) = Dlinertia(l)
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PRINT “Please Input Number of Segments " "[": RIGHT$(STR$(INumSeg(1)).

LEN(STRS$(INumSeg(1))) - 15 "™,

INPUT INumSeg(ISecNum)

[F INumSeg(ISecNum) = 0 THEN [INumSeg(ISecNum) = [NumSeg(1)

PRINT “"Please Input Radius of Curvature " "[" RIGHTS$(STR$(RadCur(1)),
LEN(STRS(RadCur(1))) - 1): "™

INPUT RadCur(ISecNum)

IF RadCur(ISecNum) = O THEN RadCur({SecNum) = RadCur(1)

PRINT "Please Input Iteration Tolerance ": "[": RIGHTS(STRS$(TOL(1)), LEN(STR$(TOL(1))) -
| DFI
INPUT TOL(ISecNum)

IF TOL(I1SecNum) = 0 THEN TOL(ISecNum) = TOL(1)
El(ISecNum) = E(ISecNum) * DInertia(ISecNum)
END IF

END SUB
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"* Screen2 - Third Screen prompting input pertaining to the loading conditions.
A 3

| - Uniform Distnbuted Load

2 - Unitorm Normal Load

3 - Concentrated Load
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SUB Screen2 (y(), ILoadCond. [SecNum)

DIM Menuload$(3). [Flagload(3)
SH *RED IBlack. IBlue, IGreen. ICyan, IRed. [Magenta. [Brown, IWhite, IDarkGrey, ILightBlue,

ILi.. «Cyan. ILightRed. ILightMagenta, ILightYellow. [BrWhite. IBlink AS INTEGER

CLS

[Flagl = 1
Entry$ = ""
StartRow = 10

‘[LoadCond = Loading Conditions: 1 = Uniform Distnbuted Load
) 2 = Umiform Normal Load
3 = No Uniform Load

Centre "Select [tems) and Please Input Loading Conditions”. 6
“1)  Non-Dimension Unitform Distributed Load q”

“2)  Non-Dimension Uniform Normal Load q"
"3)  No Distnibuted Load”

MenuLoad$(D)
MenubLoad$(2)
MenuLoad$(3)

i

‘StartNodet 1) = X1 value
‘StartNode(2) = Y1 value
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‘StartNode(3) = Gamma value
‘StartNode(4) = M1 value

‘StartNode(5) = V1 value
‘StartNode(6) = T1 value
FOR1 =1TO3

LOCATE StartRow ~ 4 * (1 - 1), 20
PRINT Menuload$(i)

NEXT i

PRINT

PRINT "Select [tem:":

WHILE (IFlagl)

WHILE (Entrv$ = ")
Entry$ = INKEYS
WEND

SELECT CASE Entrv$
CASE "1

IF [Flagbload(]l) = 0 THEN
PRINT
INPUT "Unitorm Bistnibuted Load (Heavy Elastica)”; g(1SecNum)
[UnKnown = [UnKnown + 1
IFlagLoad(l) = |
COLOR I[Green
LOCATE StartRow. 20
PRINT MenuLoad$(1)
COLOR IBrWhite
[Flagl = 0
ILoadCond = 1|

END IF

CASE 2"

IF 1FlagLoad(2) = 0 THEN
PRINT
INPUT "Uniform Normal Load": gtlSecNum)
q(ISecNum) = SQR(q(ISecNum:
[UnKnown = [UnKnown + 1
IFlagload(2) = 1
COLOR IGreen
LOCATE StartRow + 2 * (1), 20
PRINT MenuLoad$(2)
COLOR IBrWhite

[Flagl = 0
ILcadCond = 2
END IF
CASE "3"
IF IFlagLoad(3) = 0 THEN
PRINT

IFlagLoad(3) = 1
COLOR IGreen
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L. OCATE StartRow + 2 * (1), 20
PRINT MenuLoad$(2)
COLOR IBrWhite
IFlagt = 0
[LoadCond = 3
y=20
END IF
CASE ELSE
SOUND 6000. 1
PRINT
Centre "Invalid Entry, Please Re-enter”, 20
[Flagl = 1
END SELECT

Entry$ = "~

LOCATE StartRow + 4 * (1 -1)-2, 1
PRINT "Select Item:":

LOCATE StartRow + 4 * (1 - 1) + I, 1
PRINT "

LOCATE StartRow + 4 *(1- 1) -2, 1
PRINT "Select ftem:™:

WEND

END SUB

N
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** Screen3 - Fourth Screen showing the input data for confirmation
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SUB Screen3 (Lengtht), RadCur(), INumSeg(), E(). Dinertia(), TOL(), StartNode(). StartNode$(),
IFlagStartNode(), 1SecNum. [NumSections)

SHARED Timeldx AS STRING

CLS : Length = 0
OPEN "d:\segtec.out” FOR OUTPUT AS #3
LOCATE 2. |
FOR i = | TO INumSections STEP 1
COLOR 11, 1: PRINT "Section”; i: COLOR 15, 1
PRINT
PRINT "Length = ™
PRINT USING "##.##": Length(1):
PRINT " m”"
PRINT "Young's Modulus = "; E(i) / 1000000#: " MPa"
PRINT "Moment of Inertia = "
PRINT USING " ##.##": Dinertia¢i) * 1000 * 4:
PRINT " mm*4"
PRINT "Total Number of Sexments = “; INumSeg(1)
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PRINT "Radius of Curvature = "
PRINT USING " ##.##": RadCur(1);
PRINT " m"

PRINT "Tolerance = "

PRINT USING "+#.##~"""". TOL()

PRINT
IFi <> |

THEN

IF(1/2-1\2)=0THEN
Centre "Strike Any Kev", 20
SLEEP

CL3

END IF

END IF
NEXT i

IFG@-1/72)-(i-1\2 > 0THEN
Centre “Strike Any Key To Initiate Execution”, 20

SLEEP
CLS
END IF

LOCATE 1, 1

PRINT "Datd: *; DATES

Timeldx$ = TIMES

PRINT "Time Start: "; Timeidx$

LOCATE 8, 1

PRINT "Known Parameterts)”. ., "UnKnown Parameter(s)”
FOR i = 1 TO INumSections STEP 1|

PRINT #3,
PRINT #3.
PRINT #3,
PRINT #3,
PRINT #3.
PRINT #3,
PRINT #3.
PRINT #3,
PRINT #3,
PRINT #3,
PRINT #3,
PRINT #3,
PRINT #3,
PRINT #3.
PRINT #3,
PRINT #3,
PRINT #3,
PRINT #3,
PRINT #3,
PRINT #3.
NEXT i

il =1
i2=1

APPENDIX D

"Datd: "; DATES
“Time Started: *; Timeldx$
"Section”; t

"Length = ™
USING "##.##". Length(i);

" L]

m
"Young's Modulus = ": E(i) / 1000000#: " MPa"
"Moment of Inertia = *

USING " ##.#%#"; Dlnertiatt) * 1000 * 4;
" mm*4"

“Number of Segments = ", INumSeg(1)
"Radius ot Curvature = "

USING " ##.##": RadCur(1);

" m"

"Tolerance = "

USING " +#.##°°"""; TOL(1)
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FORi=1TO6O6
SELECT CASE [FlagStartNode(1)

CASE 1
LOCATE 10 + )i, 1
PRINT StartNode$(i); " = “;
PRINT USING " +#.#u#apunsaniy™ """, StartNode(i)
‘PRINT #3, StartNodeS$(1); " = "; :
'PRINT #3, USING " +#.###n#untnsisn™ """ StartNode(i)
gl =j1 + 1

CASE 2
LOCATE 10 + j2, 44
PRINT StartNode$(i); " = "
PRINT USING " +#.4#4###81 #0444~ """ StartNode(i)
‘PRINT #3. StartNode$(i); " = ";
* PRINT #3, USING " +#.##u#nsnunist”" """, StartNode(i)

2=j2+1
END SELECT
NEXT i
END SUB

SUB Scrcll (Message$., IRow. Icolor)

DO

X$ = INKEYS
arquee Message$, IRow, Icolor  'do it on row 24 in black on white 112

) «IP UNTIL LEN(X$)

END SUB
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** SelectParEnd - Assign the known boundary conditon(s) to the corresponding array(s).

ok T

SUB SelectParEnd (i. SecondKnown 1. SecondKnown2, SecondKnown3, IShootDim, EndNode(), IFlag3())

SELECT CASE IShootDim
CASE 1
ScecondKnown! = EndNode(1)
1Flag3(l) = |
CASE 2
IF IFlag3(2) = 0 THEN
SecondKnownl = EndNodeti)
IFfag3(2) = 1Flag3(2) + 1
ELSE
SecondKnown2 = EndNode(i)
IFlag3(2) = [Flag3(2) ~ |
END IF
CASE 3
SELECT CASE IFlag3(3)
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CASE 0
SecondKnown! = EndNode(i)
IFlag3(3) = IFlag3(3) + |
CASE 1
SecondKnown2 = EndNode(i)
iFlag3(3) = IFlag3(3) + |
CASE 2
SecondKnown3 = EndNode(i)
[Flag3(3) = [Flag3(3) + 1

CASE ELSE
PRINT "Something 1s Wrong"
END SELECT
END SELECT
END SUB
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"* SelectParStart - Assign the known boundary conditon(s) to the corresponding array(s).
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SUB SelectParStart (i, Z1(), Z2(), Z3(). 1ShootDim, StartNode(), [Flag2())

CONST SmallDiff = .005#

SELECT CASE I[ShootDim
CASE 1
Z1(0) = StartNode(1)
Z1(1) = StartNode(i) + StaitNode(i) * SmallDitt
[Flag2(1) = !
CASE 2
IF IFlag2(2) = 0 THEN
Z2(0, 1) = StartNode(i)
Z2(1. 1) = StartNode(1) + StartNode(i) * SmallDiff
IFlag2(2) = IFlag2(2) + 1
ELSE
Z210 2) = StartNode(i)

2205, 2) = StartNode(i) + StartNode(i) * SmallDiff
IFlag2(2) = IFlag2(2) + |
END IF
CASE 3
SELECT CASE IFlag2(3)
CASE O

Z3(0. 1) = StartNode(i)
Z3(1, 1) = StartNode(1) + StartNode(i) * SmallDifr
IFlag2(3) = IFlag2(3) + 1

CASE 1
Z23(0, 2) = StartNodet(1)
Z3(1, 2) = StartNode(i) + StartNode(i) * SmaliDiff
IFlag2(3) = IFlag2(3) + |
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CASE 2
7310, 3) = StartNode1)
23(1, 3) = StartNode!i) + StartNode(i) * SmallDiff
1Flag2(3) = IFlag2(3) + |

CASE ELSE
PRINT "Something 15 Wrong”

END SELECT

END SELECT

END SUB
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*= SolveForceDistLd - The scpmental approach for solving rod problems with Distribuf -4 Loading.

'ﬂ**************************ll"‘"k***************l"’K***********************l‘" 2 e e afe s ¢ 2 e e k¢ e e
SUB SolveForceDistLa (Parameterst), Delta, El, RadCur. INumSeg. TOL. Energy, ¢)

DIM Alpha( 1000)

‘StartNode(1) = X1 value: Parameters(1)
‘StartNode(2) = Y1 value: Parameters(2)
*StartNode(3) = Gamma value:  Parametersi3)
‘StartNode(4) = M1 value: Parameters(4)
‘StartNode(5) = VI value; Parameters(3)
‘StartNode(6) = T1 value: Parameters(6)

OPEN "d:\curve.dat” FOR OUTPUT AS #4

g = 8.5

ww = q "~ 2= El 7 (Delta = INumSey) ~ 3°-1 "Weight/Unit
Length
W = ww * (Delta * INumSeg) ~ 3 / Ei "Non-Dimensional Weight/Unit Lei:gth (N.B.

Delta*INumSeg = Length)
‘Parameterst3) = Parameters(3) — -ww * Dcita * livumSeg
Load
.Energy = 04 ‘Initiiaize Strain Energy Variable
1 =0 ‘Initilaize Segment# Looping Index

*Assign V1 to account ior Distributed

‘IF INumseg > | THEN OPEN "d:\ ~Geom.Tmp" FOR OUTPUT AS #1
WHILE (j < INumSeyg)
p=1 e+l
Txx%  Non-Dimensionalize Parameters
Mul = Parametersid) * Delta - El

Nul = Parameters(5) * (Delta * 2) / El
Taul = Parameters(6) * (Delta ® 2) / El
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X = Parameters(l) / Delta

Y = Parameters(2) ' Delta

MuE = Mul + Delta - RadZur

Beta = <(3 * MuE -~ Nul)/ 6

Wx = -ww * SIN(Parameters(3) - Reta)
Wy = ww * COS(Parameters(3) - Beta)
DKai = Wx * (Delta * 3) : El

Sa. - Wy * (Delta ® 3) EI

non

Temwe Agsign Power Sens - Terms AlphaO - Alpt3

k=4

Alphatk - 4) = Beta *Alpha0
Alnha(k - 3) = Mul - Uelta / RadCur *Alphal
Alphatk - 2) = Nul /2 *Alpha2

Alpha(i - 1© ¢Taul * (Mul + Delta s RadCur) - DKai * Beta - Sun /6 "Alphal
Phi = Alpha.. 4) ~ Alpha(k - 3) ~ Alpha(k - 2) -~ Alphatk - 1)

Mu2 = Alpha(k - 3) = 2 * Alphatk - 2) + 3 = Alphak - 1)

Nu2 = 3 *2 * Alpha(k - 1) = 2 = Alphatk - 1)

DeltaH = Alphatk - 3) = Alphwk - 3) 7 2 « alphak - 2) ¢« Alphatk - 1) - 4

Du

Alpha(k) = (Taul = Alpha(tk - 2) - DKat = Alphatk - 3) / (k *(k - In
Phi = Phi + Alphatk)

Mu2 = Mu2 + k * Alpha(k)

DeltaH = DeltaH + Alphatk) / (k + 1)

Nu2 = Nu2 + k =(k - 1) * Alphatk)

Alpha(k - 3) = Alphatk - 2
Alphatk - 2) = Alphatk - 1)
Alphaik - 1) = Alphatk)
k=k~+1

LOOP UNTIL (ABS(Alphatk - 1) + Alphatk - ) + Alphaiky) < TOL)

Miu2 = Mu2 - Delta s RagClur

X = X + (COS(Parameters(3) - Beta) - DzltaH * SIN(Parameters(3) - Beta))
VY = Y + (SIN(Parameters(3) - Beta) + DeltaH * COS(Parameterst3) - Beta))
Rho2 = X' / Delta

Tau2 = Taul + Nul = Beta - Nu2 * Phi - DKa1 ‘Rho2 = 1? (EndNode?)
Parameters(3) = Parameters(3) + Phi - Beta

M2 = Mu2 * EI / Delta

T2 = Tau2 * EI / (Deita * 2)

V2 = Nu2 * EI / (Delta * 2)

Parameters(l) = X * Delta

Parameters(2) = Y * Delty

Parameters(4) = M2

Parameters(6) = T2

Parameters(3) = V2

LOCATE 1, 54

IF( /50-(0\350) =0 THEN

]
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SELECT CASE kk

CASE O
PRINT - SEGMENT# ", i "
kk = k¢ - i

CASE |
PRINT " SEGMENT# ", ;"
kk = kk - 1|

CASE 2
PRINT ™! SEGMENT# ": j: "
kk = kk + 1

CASE 3
PRINT "/ SEGMENT# ", ;"
kk =0

CASE ELSE

PRINT "Something 1s Wrong!"
END SELECT

END IF

PRINT #4. ). CSNG(NonDCurvature), CSNG. DCurvaiure)

PRINT #1, Parameterst 1), Pavameters(2)

WEND

LOCATE 7, !
END SUB
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"= SolveForceinoimld - The segnientz! approach for solving rod problems with Normal Loading.
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SUB SolveForceNormLd (Parameters(), Delta. EI, RadCur, INv. -La, TOL, Energy, q)

N Alpha(1000)

‘StartNode(1) = X1 value: Parameters( 1)
“StartNode(2) = Y1 value: Parameters(2)
‘StartNode(3) = Gamma value:  Paramet rs(3)
“StartNode(4) = M1 value: Parameters(d)

‘StartNode{5) = V1 value: Parameters(3)
‘StartNode(6) = T1 value: Darameters(6)

Pp =4q 2 *Fl/(Delta = [NumSeg) * 3 *Weight/Unit Length
Energy = O# ‘Initilaize Strain Energy Vanable
1=0 ‘Initilaize Segment# Looping Index
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WHILE (j < INumSeyp)
j=j+1
Bkt Non-Dimensionalize Parameters

Mul = Parametcis(d) * Delta 7 El

Nul = Paramcrtors(5) * (Delta © 2) 7 El

Taul = Par ~wrers(6) * (Delta * 2) 7 El

X = Parameters 1) / Delta

Y = Paramecters(2) / Delta

MuE = M . + Dclita 7 RadCur

Beta = (3 * MuE + Nul)/ 6

Wt = 0 "Tangential Component
V¥n = pp ‘Normal Component
Eta = Wn * (Delta * 3) / El

Zeta = Wt = (Delta * 3) / El

ek Assign Power Series Terms AlphaO - Alphal

k=4

Alphatk - 4) = Beta "Alpha0

Alpha(k - 3) = Mul - Delta / RadCur “Alphal

Alphatk - 2) = Nul / 2 “Alpha2

Alphatk - 1) = (Taul = (Mu! + Delta s RadCur) - E'a) / 6 *Alpha3

Phi = Alpha(k - 4) ~ Alpha(k - 3) ~ Alphatk - 2) + Alphatk - 1)

Mu2 = Alphatk - 3) + 2 * Alphatk - 2) + 3 * Alphatk - 1)

Nu2 = 3 *2 * Alphatk - 1) + 2 * Alpha(k - 2)

DcitaH = Alphatk - 4) + Alphatk - 3) /2 Alphatk - 2) /3 + Alphatk - 1)/ 4

13]¢]

Alpha(k) = (Taul = 2lphatk - 2) - Zeta = (1 - 1/ (k - 2)) * Alphatk - 3 / (k * (k - 1))

Fu1 = Phi + Alphatk)
Mu? = Mu2 + k * Alpha(k)
Deltad = DeltaH + Alpha(k) 7/ (k + 1)
Nu2 : Nu2 + k = (k - 1) * Alphatk)
Alpha(k - 3) = Alpha(k - 2)
Alphatk - 2) = Alphatk - 1)
Alpha(k - 1) = Alpha(k)
k=k + 1
LOOP UNTIL (ABS(Alpha(k - 1) + Alpha(k - 2} + Alpha(k)) < TOL)

Mu2 = Mu2 - Delta / RadCur

X = X + (COS(Parameters(3) - Beta) - DeltaH * SIN(Parameters(3) - Beta))
Y = Y + (SIN(Parameters(3) - Beta) + DeltaH * COS(Parameters(3) - Beta))
Rho2 = X

Tau2 = Taul = Nul * Beta - Nu2 * Phi - Zeta - £ta * Alphatk - 1) / k’* Y / Delta
17 (EndNode?)

Parameters(3) = Parameters(3) + Phi - Bets

M2 = Mu2 * El / Delta

T2 = Tau2 * EI / (Delta * 2)
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V2 = Nu2 « El / (Dela = 2)
Parameters(]) = X # Delta
Parameters(2) Y * Delta
Parameters(4) M2
Parameters(6) = T2
Parameters(S) = V2
LOCATE 1, 54
IF (3 /50 - (j1 50)) = 0 THEN
SELECT CASE kk
CASE C
PRINT ~- SEGMENT# ". ). "
kk = kk + 1|
CASE 1
PRINT "t SEGMENT# ", j; "
kk = kk + 1
CAST 2
p «INT "| SEGMENT# "; "~
kk = kk + 1
CASE 3
PRINT "/ SEGMENT# ". 11 "
kk =0
CASE ELSE
PRINT "Something 15 Wrong!”
END SELECT
CNDIF

it

PRINT #1. Parameters(1), Parameters(-)
WEMD
LOCATE 17,1

END SUB
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“* SoiveForcePtLd - The sepmental approach for solving rod problems with Concentrated Loading.
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SUB 8. ForcePtLd (Parameters(), Delta, El, RadCur. INumSeg. TOL. Energy, q)

DIM Alpha(500)

‘StartNode(1) = X1 value: Parameters( 1
‘StartNode(2) = Y1 value: Parameters(2)
‘StartNode(3) = Gamma value:  Farameters(3)
‘StartNode(d) = M1 value: Pa.ameters(4)
‘StartNode(3) = V1 value: Purameters(d)
“StartNode(6) = T1 value: Parameters(6)

Energy = 04
1=0
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WHILE () < INumSeyg)

i+l
Mui = Parameters(4) * Delta / El

Nul = Parameters(5) * (Delta * 2) / EI

Taul = Parameters(6) * (Delta * 2) / El

X = Pacameters(1) / Delta

Y = Parameters(2) / Delta

MuE = Mul + Delta / RadCur

Beta = -(3# * MuE + Nul) / 6#

k=3

Alpha(k - 3) = Beta

Alpha(k - 2) = Mul + Delta / RadCur

Alpha(k - 1) = Nul / 2#

Fay = Alpha(k - 3) + Alpha(k - 2) + Alpha(k - 1)

Mu2 = Alphatk - 2) + 2# * Alpha(k - 1)

Nu2 = 2# * Alpha(k - 1)

DeltaH = Alphatk - 3) + Alphack - 2) / 24 + Alphatk - 1) / 3#

DO
Alpha(k) = Taul * Alphatk - 2) / (kK = (k - 1))
Fay = Fay + Alpha(k)
Mu2 = Mu2 + k * Alpha(k)
DeltaH = DeltaH + Alphatk)/ (k + 1)
Nu2 = Nu2 + k * (k - 1) * Alphatk)
k=k+1
LOOP UNTIL (ABS’Alphatk - 1) + ~iphatk - 2) + Alpha(k - 3)3 < TOL)

Mu2 = Mu2 - Delta /+ RadCur
Tau2 = Taul = Nul * Beta - Nu2 * Fay
X = X + (COS(Parameters(3) - Beta) - DeltaH * SIN(Pasminete~s(3) - Beta))
Y = Y + (SIN(Parameters(3) - Ecta) + DeltaH * COS(Parameters(3) - Beta))
Parameters(3) = Parameters(3) + Fay - Beta
M2 = Mu2 * El / Delta
T2 = Tau2 * El / (Delta * 2)
V2 = Nu2 * El / (Deltz * 2)
Parameters(l) = X * Delta
Parameters(2) = Y * Delta
Parameters(4) = M2
Parameters(6) = T2
Parameters(5) = V2
LOCATE 1, 54
IF(g/50-(H1350M)) =0 THEN
SELECT CASE kk
CASE 0
PRINT "- SEGMENT# "; j. "
kk = kk + |
CASE 1
PRINT "\ SEGMENT# " 3. "
kk = kk + |
CASL 2

APPENDIX ™
SEGMENTAL SHOOTING TECHNIQUE SOURCE LISTING I 68



PRINT | SEGMENT# ": j; "

kk = kk + |
CASE 3
PRINT "/ SEGMENT# "; ). "
kk =0
CASE ELSE
PRINT "Something is Wrong!"
END SELECT
END IF
WRITE #1{, Parameters(l), Parameters(2)
WEND
LOCATE 17, ]
END SUB
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Invoke the corresponding solveing subroutine base cn the Loading Condition

(Point,
- Distnbuted and Normal Load)
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** SolveForces

«Forees (ILoadCond, Parameters(), Celta, EI, RadCur, INumSeg, TOL, Energy, q)

. ~ASE il.oadCond

E2
SolveForceNormLd Parameters(), Delta, El. RadCur, INumSeg, TOL. Energy, q
CASE |
SolveForceDistld Faramsters(), Delta. El. RadCur, INumSeg, TOL. Energy, q
CASE 3

SolveForcePtLd Parameterst), Delta, El. RadCur, {NumSeg, TOL, Energy, q
END SELECT

END SUB
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