
Abstract As the sea-ice modeling community is shifting to advanced numerical frameworks, developing 
new sea-ice rheologies, and increasing model spatial resolution, ubiquitous deformation features in the Arctic 
sea ice are now being resolved by sea-ice models. Initiated at the Forum for Arctic Modeling and Observational 
Synthesis, the Sea Ice Rheology Experiment (SIREx) aims at evaluating state-of-the-art sea-ice models 
using existing and new metrics to understand how the simulated deformation fields are affected by different 
representations of sea-ice physics (rheology) and by model configuration. Part 1 of the SIREx analysis is 
concerned with evaluation of the statistical distribution and scaling properties of sea-ice deformation fields 
from 35 different simulations against those from the RADARSAT Geophysical Processor System (RGPS). 
For the first time, the viscous-plastic (and the elastic-viscous-plastic variant), elastic-anisotropic-plastic, and 
Maxwell-elasto-brittle rheologies are compared in a single study. We find that both plastic and brittle sea-ice 
rheologies have the potential to reproduce the observed RGPS deformation statistics, including multi-fractality. 
Model configuration (e.g., numerical convergence, atmospheric representation, spatial resolution) and physical 
parameterizations (e.g., ice strength parameters and ice thickness distribution) both have effects as important as 
the choice of sea-ice rheology on the deformation statistics. It is therefore not straightforward to attribute model 
performance to a specific rheological framework using current deformation metrics. In light of these results, we 
further evaluate the statistical properties of simulated Linear Kinematic Features in a SIREx Part 2 companion 
paper.

Plain Language Summary The ice in the Arctic Ocean is not continuous: it is broken into 
individual pieces of ice (floes). As the winds and ocean currents continually move these ice floes, they get piled 
up together or pushed away from each other, forming regions of increased ice thickness (ridges) or regions 
of open water (leads). These leads and ridges (ice deformations) are important features of the Arctic pack 
ice because they control the amount of energy that can be exchanged between the atmosphere and the ocean. 
Current climate models cannot simulate individual ice floes and their deformations. Instead, various methods 
are used to represent the movement and deformation of the Arctic sea-ice cover. The goal of the Sea Ice 
Rheology Experiment (SIREx) is to compare these different methods and evaluate the ability of a large number 
of sea-ice models to reproduce observed sea-ice deformations from satellite imagery. SIREx is divided in two 
parts. In Part 1 (this study), we evaluate how the intensity of ice deformations varies in space and time. In Part 
2 (companion paper), we track and evaluate the occurrence of specific deformation features. With this work, we 
show how to improve sea-ice models for realistic simulations of sea-ice deformations.
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•  Power law scaling and multi-fractality 

of deformations in space and time can 
be achieved by both plastic and brittle 
sea-ice rheologies

•  Scaling statistics of simulated sea-ice 
deformation fields depend on the 
model configuration and physical 
parameterizations

•  Finite-difference plastic models 
need to be run at higher resolution 
than observations to agree with the 
observed deformation statistics

Correspondence to:
A. Bouchat,
amelie.bouchat@mail.mcgill.ca

Citation:
Bouchat, A., Hutter, N., Chanut, 
J., Dupont, F., Dukhovskoy, D., 
Garric, G., et al. (2022). Sea Ice 
Rheology Experiment (SIREx): 1. 
Scaling and statistical properties of 
sea-ice deformation fields. Journal 
of Geophysical Research: Oceans, 
127, e2021JC017667. https://doi.
org/10.1029/2021JC017667

Received 15 JUN 2021
Accepted 4 MAR 2022

Author Contributions:
Conceptualization: Amélie Bouchat, 
Nils Hutter
Data curation: Amélie Bouchat
Investigation: Amélie Bouchat
Methodology: Amélie Bouchat, Nils 
Hutter
Project Administration: Amélie 
Bouchat, Nils Hutter
Resources: Amélie Bouchat, Nils 
Hutter, Jérôme Chanut, Frédéric Dupont, 
Dmitry Dukhovskoy, Gilles Garric, 
Younjoo J. Lee, Jean-François Lemieux, 
Camille Lique, Martin Losch, Wieslaw 
Maslowski, Paul G. Myers, Einar Ólason, 
Pierre Rampal, Till Rasmussen, Claude 
Talandier, Bruno Tremblay, Qiang Wang

10.1029/2021JC017667

This article is a companion to 
Hutter et  al.  (2022a), https://doi.
org/10.1029/2021JC017666.

RESEARCH ARTICLE

1 of 33

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8228-0426
https://orcid.org/0000-0003-3450-9422
https://orcid.org/0000-0002-9722-4478
https://orcid.org/0000-0002-9114-9796
https://orcid.org/0000-0002-5385-710X
https://orcid.org/0000-0002-2869-9680
https://orcid.org/0000-0003-2084-5759
https://orcid.org/0000-0002-8357-4928
https://orcid.org/0000-0002-3824-5244
https://orcid.org/0000-0002-5790-9229
https://orcid.org/0000-0003-4514-2654
https://orcid.org/0000-0001-7911-5713
https://orcid.org/0000-0002-1970-9621
https://orcid.org/0000-0003-2931-5180
https://orcid.org/0000-0002-5236-7707
https://orcid.org/0000-0002-2704-5394
https://doi.org/10.1029/2021JC017667
https://doi.org/10.1029/2021JC017667
https://doi.org/10.1029/2021JC017666
https://doi.org/10.1029/2021JC017666
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021JC017667&domain=pdf&date_stamp=2022-04-23


Journal of Geophysical Research: Oceans

BOUCHAT ET AL.

10.1029/2021JC017667

2 of 33

1. Introduction
Statistical properties of small-scale sea-ice dynamics derived from buoy records and synthetic aperture radar 
(SAR) imagery in the Arctic Ocean have been extensively documented in the last two decades. Observations from 
the RADARSAT Geophysical Processor System (RGPS) show that deformations in shear and divergence (positive 
and negative) define highly localized Linear Kinematic Features (LKFs—e.g., Kwok, 2001) and complex scaling 
laws describe their localization over a wide range of spatial and temporal scales (Marsan et al., 2004; Marsan & 
Weiss, 2010; Rampal et al., 2008; Stern & Lindsay, 2009). Specifically, the mean total deformation rates follow 
a power law with increasing spatial and temporal scales and the scaling exponent of this power law increases 
nonlinearly when considering higher moments of the deformation distribution, suggesting that very large defor-
mation rates significantly affect the mean deformation statistics (Rampal et al., 2019; Weiss & Dansereau, 2017). 
These properties are reminiscent of fully turbulent flows, which also exhibit strong heterogeneity and intermit-
tency and are characterized as multi-fractal processes (e.g., Benzi et al., 1984; Schmitt et al., 1994). As such, 
the observed sea-ice deformation characteristics might provide meaningful information about the underlying 
mechanisms governing the sea-ice mechanics. For example, the highly localized LKFs have been hypothesized 
to result from brittle compressive shear faulting (Schulson, 2004), while the sea-ice deformation multi-fractality 
and scaling laws are sometimes associated with the presence of a threshold/trigger, stress relaxation, and damage/
healing mechanisms (Dansereau et al., 2016; Marsan & Weiss, 2010; Weiss & Dansereau, 2017).

In sea-ice dynamical models, a rheology describes the relation between the applied load and resulting deforma-
tion, effectively representing the sea-ice mechanical response to the external forcing. The viscous-plastic (VP) 
rheology with elliptical yield curve (Hibler, 1979) and its elastic-viscous-plastic (EVP) variant (Hunke & Dukow-
icz, 1997, 2002) are the most widely used in regional and Global Climate Models (see e.g., Stroeve et al., 2014). 
In the standard VP rheology, sea ice is assumed to deform as a plastic material when the mechanical stresses reach 
prescribed critical loads in compression, shear, and tension (as defined by the elliptical yield curve), and as a 
creeping, highly viscous fluid for smaller stresses. The EVP variant assumes the same physical concepts but uses 
damped artificial elastic waves that allow for an explicit numerical implementation of the dynamical equations. In 
this sense, the EVP approach can be considered as an alternative numerical solver for the VP rheology. Since its 
formulation, extensive work has been done on improving the speed and stability of the numerical schemes used 
for solving the (E)VP equations (e.g., Bouillon et al., 2013; Kimmritz et al., 2016; Lemieux et al., 2010, 2008), 
but parallel work has also pointed out inconsistencies in its basic physical assumptions (e.g., Coon et al., 2007). 
This has led to reconsideration of the classical (E)VP rheology by, among others, adding tensile strength 
(König Beatty & Holland, 2010; Zhang & Rothrock, 2005) and developing sea-ice rheologies based on differ-
ent physical assumptions. Of these, the elastic-plastic-anisotropic (EAP—Tsamados et al., 2013; Wilchinsky & 
Feltham, 2006) builds upon the artificial elastic closure of the EVP approach, but represents anisotropy of the ice 
stress by parameterizing the interactions of diamond-shaped floes. Long-range elastic interactions have also been 
explicitly included in the elasto-brittle (EB) and Maxwell-elasto-brittle (MEB) rheologies, in which the classical 
plastic response of the ice was traded in favor of a brittle parameterization accounting for fracturing and sliding 
of ice along fault planes (Bouillon & Rampal, 2015b; Dansereau et al., 2016; Girard et al., 2011).

Sea-ice models (and sea-ice rheologies) have traditionally been evaluated by estimating the error between the 
simulated and observed large-scale features such as sea-ice drift, thickness, concentration, and extent (e.g., Flato 
& Hibler,  1992; Ip et  al.,  1991; Kreyscher et  al.,  2000; Ungermann et  al.,  2017; Zhang & Rothrock,  2005). 
Given that these large-scale error metrics can generally be minimized by tuning the model thermodynamics, the 
sea-ice modeling community has recently introduced additional metrics that specifically evaluate the small-scale 
deformation statistics with the goal of better discriminating/calibrating the different sea-ice rheologies. Rheol-
ogy and deformation metrics are of particular interest for modeling applications requiring accurate small-scale 
deformation statistics (e.g., short-term drift forecasting for navigation), but also potentially for climate projec-
tions since sea-ice deformations affect ice production, vertical heat and moisture fluxes, and salt rejection to the 
surface ocean. Using the observed sea-ice deformation statistics has now become common practice to validate or 
constrain sea-ice rheologies (e.g., Bouchat & Tremblay, 2017; Bouillon & Rampal, 2015b; Girard et al., 2009; 
Hutter et al., 2018; Spreen et al., 2017). Specifically, the observed strain rate probability density functions (PDFs) 
decay exponent and the spatio-temporal scaling exponents of the total deformation rates are used as metrics to 
assess the ability of sea-ice rheologies and models to reproduce large deformation events and their localization 
and multi-fractal properties.
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The application of these deformation metrics resulted in a debate about the ability of the VP sea-ice rheology 
to reproduce the observed deformation statistics, justifying the need for the new EB/MEB rheology (Girard 
et al., 2011, 2009; Rampal et al., 2016). It has since been shown that the VP rheology is able to reproduce similar 
deformation characteristics as the EB/MEB rheology based on the same deformation metrics (Bouchat & Trem-
blay, 2017; Hutter & Losch, 2020; Hutter et al., 2018; Spreen et al., 2017), leaving open the question as to whether 
those metrics can be used to robustly discriminate between sea-ice rheologies, and if the deformation metrics 
accurately capture differences in the underlying deformation statistics. Additionally, deformation fields of other 
sea-ice rheologies (e.g., EAP) have not been thoroughly evaluated using the new set of deformation metrics as for 
VP and MEB rheologies. A comprehensive assessment of the ability of different sea-ice models and rheologies 
to reproduce the observed deformation statistics and the sensitivity of the deformation metrics to model parame-
terizations was therefore identified by the sea-ice modeling working group at the Forum for Arctic Modeling and 
Observational Synthesis Annual Meeting 2017 as a priority for the sea-ice modeling community.

To this end, the Sea Ice Rheology Experiment (SIREx) model intercomparison project was devised with the goal 
of a evaluating if the sea-ice deformation metrics, as currently applied, are useful to discriminate between the 
different sea-ice models/rheologies and formulate more appropriate metrics if found necessary, and (b) deter-
mining how different physical parameterizations and model configuration can impact the simulated deformation 
and LKFs statistics to formulate recommendations for improving the representation of sea-ice deformations in 
future model developments. SIREx takes the form of a diagnostic model intercomparison project in which partic-
ipating models are not constrained by the same configuration. This practical framework allows for low-level 
entry requirements, ensuring that a large number of modeling groups participate in the study. Most of the runs 
collected and analyzed here are sea-ice simulations that were in fact already performed for other studies, rather 
than mandated for SIREx specifically. This allows us to apply the deformation metrics to a wide range of sea-ice 
simulations to better determine their usefulness in a broader context, but it also limits the extent of what conclu-
sions can and cannot be firmly assessed by comparing such a large number of unconstrained simulations with 
limited output information. For example, given that only two winters of simulations are analyzed in SIREx, 
our investigation cannot distinguish if disagreement between models and observations (or in between models) 
originates simply from the models internal variability or if it truly represents shortcomings of the analyzed 
simulations. In this sense, the scope of SIREx as a model intercomparison project is to identify and quantify 
commonalities in the ability of a large number of sea-ice models to reproduce the observed sea-ice deformation 
statistics in the Arctic, but it cannot extend to explain all specific drivers of the underlying mechanisms governing 
the observed and simulated sea-ice dynamics. This would require extensive model output that was not asked of 
participating simulations (see e.g., the output priorities that were identified by the Sea Ice Model Intercompari-
son Project for identification of internal variability drivers—Notz et al., 2016). The work performed in SIREx is 
nonetheless a necessary first step in order to further our understanding of how to evaluate and compare simulated 
sea-ice deformation fields, which helps formulate specific questions for future inter-model rheological compari-
son work with informed constraints.

The SIREx analysis is divided in two parts. First, and the subject of the present publication, the statistical distribu-
tions (PDFs) and the spatio-temporal scaling properties of the deformation fields are analyzed. Second, a feature-
based comparison of the sea-ice deformation fields is performed using a recent LKF detection and tracking 
algorithm (Hutter et al., 2019) and is presented in a companion SIREx publication (Hutter et al., 2022a). In both 
parts, simulated sea-ice deformations for two winters (1997 and 2008) are compared to the full RGPS observa-
tional records, and all sea-ice rheologies commonly used in current sea-ice models (i.e., (E)VP, EAP, and MEB) 
are compared for the first time within the same framework.

The present article is organized as follows. The model specifications and observations used in this study are 
presented in Section  2. The methods used to obtain the simulated and observed deformation fields, as well 
as the deformation statistics and metrics used for comparison are detailed in Section 3. Results are presented 
in Section 4, followed by a discussion and recommendations for model development in Section 5. Finally, a 
summary and concluding remarks are presented in Section 6.
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2. Models and Observations
A total of 35 simulations from 11 different models contributed to SIREx Part 1. The participating models were 
not constrained to use the same atmospheric/oceanic representation (e.g., reanalysis with different spatial and 
temporal resolution vs. interactively coupled atmospheric/oceanic models), and they also vary in their spatial 
and temporal resolution, grid type (e.g., Eulerian vs. Lagrangian), physical parameterizations (e.g., ice strength 
parameters and ice thickness distribution), numerical convergence criterion, etc. A list of all simulations and key 
sensitivity parameters are given in Table 1 (see also Table A1 in Appendix A for a list of model, configuration, 
and reanalysis acronyms). Note that the MERCATOR model participates only to SIREx Part 1, while other runs 
from Part 2 are not analyzed here (i.e., FESOM2 model, and the MITgcm 2 km, ITD—1997 run). For more infor-
mation about the models, the reader can refer to the respective references in Table 1.

Daily sea-ice velocity, thickness, and concentration fields for January-February-March of 1997 and 2008 were 
requested from all participating models. Only two years (1997 and 2008) are considered in this study to allow 
for low-level entry participation, while at the same time sampling the available observational records over an 
extended period of time during which an accelerated sea-ice retreat and changing mechanical conditions could 
have led to different ice dynamical conditions (e.g., accelerated drift speeds and larger deformation rates—
Rampal et al., 2009). Note however that the observed inter-annual variability in RGPS scaling statistics during 
this period is small (Bouchat & Tremblay, 2020). The sea-ice velocity fields are used to compute the deforma-
tion estimates (see below and Section 3.2), while the ice thickness and concentration fields were investigated to 
evaluate the possible impacts of simulating different ice conditions on the deformation statistics (not shown). No 
clear correspondence was found between models showing good agreement with RGPS in terms of deformation 
statistics and models showing smaller bias with respect to sea-ice extent observations and with respect to the 
Arctic sea-ice volume estimated by the Pan-Arctic Ice Ocean Modeling and Assimilation System (Zhang & 
Rothrock, 2003). Additionally, conclusions of the evaluation of simulated deformation statistics were noted to 
be independent of initialization with different ice volume conditions (Bouchat & Tremblay, 2017). Details of the 
simulated sea-ice thickness and concentration fields are therefore not expected to play a major role in the compar-
ison of the simulated deformation statistics presented here. In the following, we specifically analyze the effects 
of sea-ice rheology jointly with spatial resolution (Section 4.1), ice strength (Section 4.2.1), ice thickness distri-
bution parameterization (Section 4.2.2), and atmospheric influence (Section 4.2.3) on the deformation statistics. 
As discussed in Section 5, we do not address the possible oceanic influence on the simulated deformation fields, 
and this should be evaluated in a dedicated experiment.

All participating models provided daily output on an Eulerian grid, except for neXtSIM which uses a Lagrangian 
grid and provided output directly as Lagrangian trajectories. While spatial scaling can be studied using either 
Eulerian or Lagrangian deformation fields, temporal scaling requires the deformation history of tracked elements 
and therefore needs to be performed in a Lagrangian framework. We, therefore, construct offline Lagrangian 
trajectories from the daily Eulerian model output, which are then used to compute the deformation statistics 
(see details in Section 3.2). The choice of daily output for performing the Lagrangian trajectory integration from 
Eulerian model output was done for practical reasons: we did not ask new runs to be made for SIREx, but rather 
collected simulations that already had output at this frequency. This implies that sub-daily processes influencing 
the simulated sea-ice drift are not resolved in our Lagrangian trajectory integration for Eulerian models. We have 
however verified, using a subset of the participating models, that the Lagrangian deformation statistics presented 
below are robust to using higher-frequency output for integrating the Lagrangian trajectories (i.e., hourly means 
vs. daily means) for both low- and high-resolution model runs (not shown). Note also that most model output 
were provided as daily means, but some groups provided daily snapshots at an instant in time such as noon. The 
deformation statistics are also robust to the choice of temporal averaging of the model output (i.e., snapshots or 
daily means—not shown).

The simulated deformation statistics are compared with those derived from the RGPS Lagrangian motion data 
set. The RGPS Lagrangian motion data set is given as a list of trajectories (time and position) for a 10 × 10 km 
grid that is initialized at the beginning of the winter season over the central Arctic Ocean for different satel-
lite passes (i.e., streams), tracked using sequential SAR images (Kwok,  1998). The nominal spatio-temporal 
resolution of the RGPS Lagrangian data set is T* = 3 days and L* = 10 km, however sampling of the RGPS 
Lagrangian data set is non-uniform given that trajectories are not always updated on the same days or at the same 
times or can be missing if the tracking on the SAR images was unsuccessful. For this reason, a pre-processing of 
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the trajectories (see Section 3.1) is necessary to eliminate temporal inconsistencies that can affect the resulting 
sea-ice deformation statistics (e.g., Bouchat & Tremblay, 2020).

3. Methods
3.1. Pre-Processing of RGPS Lagrangian Trajectories

To ensure temporal consistency of the RGPS deformation field, we use the Weighted-Average pre-processing 
method (Bouchat & Tremblay, 2020; Hutter & Losch, 2020), which consists in keeping only trajectories forming 
cells that have (a) simultaneous (±3 hr) start and end times for all fours corners, (b) an average time resolution 
for all corners that corresponds to the nominal temporal resolution of T* = 3 days, and (c) an area corresponding 
to the nominal spatial resolution of L* = 10 km. We also require that all corner positions remain at least 100 km 
away from land for the present analysis. The remaining trajectories are then used to compute the Lagrangian strain 
rates (see e.g., Equations 1–5 below) and the resulting time series of strain rates for each cell are then averaged in 
regular 3-day intervals (using a weighted-average of contributing strain rate estimates) starting on 1 January each 
year. For more information on the pre-processing of the RGPS Lagrangian trajectories and the resulting observed 
strain rate data set, we refer the reader to Bouchat and Tremblay (2020).

3.2. Constructing Simulated Lagrangian Trajectories and Deformation Fields

To construct simulated Lagrangian trajectories and deformation fields from Eulerian model output, we track arti-
ficial Lagrangian quadrangle cells that are initialized with the 10 km RGPS Lagrangian positions on 1 January 
1997 and 2008. Model trajectories are integrated in their respective grid projection using 1 hr time increments to 
prevent trajectories from crossing multiple grid cells during one integration step. At the beginning of each hour, 
the daily mean or snapshot sea-ice velocity field (u, v) is first linearly interpolated in time to the current integra-
tion time, and then spatially interpolated onto the trajectories' positions using a Great-Circle distance-weighted 
linear interpolation of the four nearest velocity components (e.g., Madec et al., 2019). Trajectories are integrated 
until 31 March, unless they drift to within 100 km of the model landmask in which case they are terminated. 
When the Lagrangian integration is done, the hourly model trajectories are sampled at the beginning of the same 
regular 3-day intervals as for the RGPS Weighted-Average data set. In the case of data gaps in the RGPS data 
set, we remove the corresponding simulated trajectory to minimize the effects of the different spatio-temporal 
coverage on the deformation statistics. Note that the neXtSIM trajectories used in this article were also initialized 
with the same RGPS cell positions on 1 January 1997 and 2008 and are sampled and masked to the corresponding 
RGPS coverage following the same constraints as described above for other model trajectories. The neXtSIM 
trajectories are however integrated within the model's native Lagrangian scheme. In both cases, the initialization 
of the model trajectories with RGPS positions and the 3-day temporal sampling ensure that the nominal spatial 
and temporal resolutions of the simulated Lagrangian deformation fields are the same as for the RGPS observa-
tions (i.e., L* = 10 km and T* = 3 days), regardless of the original resolution of the model.

The strain rates (velocity gradients) and cell area A are then computed for each cell using the line integral approx-
imations (e.g., Lindsay & Stern, 2003):

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

1

𝐴𝐴

4
∑

𝑘𝑘=1

1

2
(𝜕𝜕𝑘𝑘+1 + 𝜕𝜕𝑘𝑘) (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) , (1)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

−1

𝐴𝐴

4
∑

𝑘𝑘=1

1

2
(𝜕𝜕𝑘𝑘+1 + 𝜕𝜕𝑘𝑘) (𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘) , (2)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

1

𝐴𝐴

4
∑

𝑘𝑘=1

1

2
(𝜕𝜕𝑘𝑘+1 + 𝜕𝜕𝑘𝑘) (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) , (3)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

−1

𝐴𝐴

4
∑

𝑘𝑘=1

1

2
(𝜕𝜕𝑘𝑘+1 + 𝜕𝜕𝑘𝑘) (𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘) , (4)
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with,

𝐴𝐴 =
1

2

4
∑

𝑘𝑘=1

(𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘+1𝑦𝑦𝑘𝑘) , (5)

where (xk, yk) is the position of the cell vertex k at time t (k = 1, 2, 3, 4; counterclockwise with x5 = x1 and similar 

cyclical identities for y5, u5, and v5) and 𝐴𝐴 (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) =

(

Δ𝑥𝑥𝑘𝑘

Δ𝑡𝑡
,
Δ𝑦𝑦𝑘𝑘

Δ𝑡𝑡

)

 , their approximate velocity during the time inter-

val Δt. The spatial scale of the strain rate estimate is 𝐴𝐴 𝐴𝐴 =

√

𝐴𝐴 , and its temporal scale is T = Δt = T* = 3 days. 
Following Bouchat and Tremblay (2020), all cells where A ≤ 50, or A ≥ 200 km 2 are removed in order to only 
keep cells that are representative of the nominal spatial scale (L* = 10 km).

The strain rate invariants (i.e., divergence 𝐴𝐴 𝐴𝐴𝐴𝐼𝐼 , and shear 𝐴𝐴 𝐴𝐴𝐴𝐼𝐼𝐼𝐼 ) and total deformation rates 𝐴𝐴 (�̇�𝜖𝑡𝑡𝑡𝑡𝑡𝑡) are obtained as:

�̇�𝜖𝐼𝐼 =
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
, (6)

�̇�𝜖𝐼𝐼𝐼𝐼 =

[

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)2

+

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)2
]1∕2

, (7)

�̇�𝜖𝑡𝑡𝑡𝑡𝑡𝑡 =

√

�̇�𝜖2
𝐼𝐼
+ �̇�𝜖2

𝐼𝐼𝐼𝐼
. (8)

3.3. Deformation Statistics and Associated Metrics

We detail below the deformation statistics used in this study (i.e., PDFs of shear and divergence, spatio-temporal 
scaling of the mean total deformation rates, and multi-fractal scaling analysis) along with their usual comparison 
metrics.

3.3.1. Probability Density Functions (PDFs)

The observed RGPS PDFs of strain rate invariants are heavy-tailed and decay approximately linearly in log-log 
plots, suggesting that large deformations significantly affect the mean deformation statistics (e.g., Bouchat & 
Tremblay, 2017; Bouillon & Rampal, 2015b; Girard et al., 2011, 2009; Rampal et al., 2019). We investigate the 
ability of sea-ice models to reproduce the observed large deformation rates by comparing the RGPS and simu-
lated PDFs of shear and divergence. We separate the PDFs of positive divergence (opening) and negative diver-
gence (closing or convergence), as opposed to considering only the absolute divergence PDF as done in previous 
model evaluation studies (Girard et al., 2011; Lemieux et al., 2012; Rampal et al., 2019; Spreen et al., 2017). We 
show in Section 4.1.1 that compensation of errors in the positive and negative distributions can lead to a mislead-
ing agreement of the simulated absolute divergence PDFs with observations, such that separating the positive 
and negative divergence PDFs is a preferable way to evaluate the model's ability to reproduce large deformation 
events in both opening and closing as observed from RGPS.

The PDFs are obtained using logarithmic bins and the typical metric used to compare the observed and simulated 
PDFs is the decay exponent of the tail, obtained as the slope of a least squares linear fit in log-log space. We do 
not fix the fitting interval, but rather use an interval of one order of magnitude ending on the largest deformation 
bin available (or use the maximum available fitting interval if the PDFs spans less than one order of magnitude). 
We do this because models do not necessarily reproduce deformation rates as large as in the RGPS distributions. 
Note that, even if they decay approximately linearly in log-log space, it has recently been shown that the tail of 
the observed RGPS PDFs cannot be considered to follow power law distributions with sufficient evidence, based 
on a power law maximum likelihood estimator (MLE) fit and a goodness-of-fit test (Bouchat & Tremblay, 2020). 
Many heavy-tailed distributions that are not power laws can in fact show a tail that approximately follows a 
straight line in log-log space (e.g., log-normal, exponential, stretched exponential, etc.—Clauset et al., 2009). 
Trying to find the appropriate distributions representing the PDFs tails (using more rigorous or robust statistical 
methods such as MLE fits with goodness-of-fit tests) is out of the scope of this study. For this reason, we consider 
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the decay exponents found here with linear fits in log-log plot as general decay exponents that are only rough 
approximations of the tails decay, but that are sufficient to draw general conclusions on the usefulness of using a 
decay exponent as a metric to compare the observed and simulated PDFs.

3.3.2. Spatio-Temporal Scaling Analysis of the Mean Total Deformation Rates

We use the coarse-graining procedure with data-quality weights described in Bouchat and Tremblay (2020) to 
generate deformation fields at larger scales and investigate the spatial and temporal scaling of the mean total 
deformation rates, that is:

⟨�̇�𝜖𝑡𝑡𝑡𝑡𝑡𝑡(𝐿𝐿𝐿 𝐿𝐿 )⟩ ∼ 𝐿𝐿−𝛽𝛽 𝐿 (9)

⟨�̇�𝜖𝑡𝑡𝑡𝑡𝑡𝑡(𝐿𝐿𝐿 𝐿𝐿 )⟩ ∼ 𝐿𝐿 −𝛼𝛼 (10)

where 〈⋅〉 denotes the distribution weighted average, L and T are the spatial and temporal scales of the coarse-
grained deformation estimates, and β and α are the spatial and temporal scaling exponents.

The values of β and α characterize the degree of spatial and temporal localization of the mean total deformation 
rates, and are used as metrics to compare the observed and simulated spatio-temporal scaling. The spatial scaling 
exponent β varies between 0 (deformation field is homogeneous in space) and 2 (deformations are highly local-
ized in space), while the temporal scaling exponent α varies between 0 (deformations field is homogeneous in 
time) and 1 (deformations are highly localized in time). Here, β and α are obtained using least squares power law 
fits on the average total deformation rates 𝐴𝐴 ⟨�̇�𝜖𝑡𝑡𝑡𝑡𝑡𝑡(𝐿𝐿𝐿 𝐿𝐿 )⟩ for a given range of spatial and temporal scales. We restrict 
the spatial scaling to scales 10 ≤ L ≤ 600 km and the temporal scaling to scales 3 ≤ T ≤ 30 days to minimize the 
effects of the reduced spatio-temporal coverage at larger scales.

Using data-quality weights to obtain the distribution average at each scale results in giving more weight to the tail 
of the distribution where interesting sea-ice dynamical features are represented (e.g., LKFs) and where deforma-
tion rates have smaller relative errors. As discussed in Section 4.1.2, this improves the interpretation of the scaling 
exponent metrics as a measure of localization of deformations when applied to simulated deformation fields. The 
data quality is defined by the signal-to-noise ratios which are obtained by estimating the Lagrangian trajectory 
errors. The details of the signal-to-noise ratio calculations for RGPS and simulated Lagrangian trajectories can 
be found in Appendix B.

3.3.3. Multi-Fractal Analysis

The spatio-temporal scaling analysis described for the mean total deformation rate above is repeated for higher 
moments q to construct β(q) and α(q), the spatial and temporal structure functions, that is:

⟨

�̇�𝜖
𝑞𝑞

𝑡𝑡𝑡𝑡𝑡𝑡
(𝐿𝐿𝐿 𝐿𝐿 )

⟩

∼ 𝐿𝐿−𝛽𝛽(𝑞𝑞)𝐿 (11)

⟨

�̇�𝜖
𝑞𝑞

𝑡𝑡𝑡𝑡𝑡𝑡
(𝐿𝐿𝐿 𝐿𝐿 )

⟩

∼ 𝐿𝐿 −𝛼𝛼(𝑞𝑞) . (12)

It has usually been assumed that the structure functions β(q) and α(q) for sea-ice total deformation rates are quad-
ratic, for example, β(q) = aq 2 + bq, where a has been interpreted as the degree of multi-fractality of the scaling 
(e.g., Bouchat & Tremblay, 2020; Bouillon & Rampal, 2015b; Hutter et al., 2018; Rampal et al., 2019). However, 
following the universal multi-fractal formalism, the structure functions are not required to be quadratic and can 
have a varying degree of nonlinearity, which is then more correctly interpreted as the degree of multi-fractality 
(Lovejoy & Schertzer, 2007, 2013). Here, we do not assume a fixed degree of multi-fractality and instead find 
a general least squares fit for the structure functions of the following form (in full agreement with the universal 
multi-fractal formalism—e.g., Lovejoy & Schertzer, 1995, 2007; Weiss, 2008):

𝛽𝛽(𝑞𝑞) = 𝑞𝑞 − 𝜁𝜁 (𝑞𝑞), (13)

with,

𝜁𝜁 (𝑞𝑞) = 𝑞𝑞𝑞𝑞 −𝐾𝐾(𝑞𝑞), (14)

and
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𝐾𝐾(𝑞𝑞) =
𝐶𝐶1

𝜇𝜇 − 1
(𝑞𝑞𝜇𝜇 − 𝑞𝑞) , (15)

such that we can write:

𝛽𝛽(𝑞𝑞) =

(

𝐶𝐶1

𝜇𝜇 − 1

)

𝑞𝑞𝜇𝜇 +

(

1 −

(

𝐻𝐻 +
𝐶𝐶1

𝜇𝜇 − 1

))

𝑞𝑞𝑞 (16)

where H is a fluctuation exponent, K(q) is the universal multi-fractal moment scaling function, C1 (0 ≤ C1 ≤ 2) 
characterizes the degree of heterogeneity (or sparseness) of the field, and μ (0 ≤ μ ≤ 2) is the degree of multi-frac-
tality (μ = 0 for a mono-fractal process, and μ = 2 for a log-normal multiplicative model with maximal degree of 
multi-fractality). An equivalent formulation applies for the temporal structure function α(q).

In the following, the values of the three multi-fractal parameters H, C1, μ are used as metrics to compare the 
observed and simulated multi-fractal structure functions.

4. Results
Results for low-resolution model runs (Δx = 9–12 km) are presented separately from high-resolution model runs 
(Δx = 2–5 km), even if their Lagrangian deformation fields are reconstructed at the same nominal spatial scale of 
L* = 10 km. In fact, Eulerian models with finite-difference schemes will resolve the sea-ice dynamics with differ-
ent levels of complexity as their spatial resolution changes (e.g., Spreen et al., 2017; Williams & Tremblay, 2018). 
It is therefore expected that higher resolution runs will resolve finer deformation features in their Lagrangian 
deformation fields, affecting the result of the deformation metrics. For instance, consider the observed sea-ice 
deformation field sampled at L*  =  10  km. The deformation statistics at this scale are the result of underly-
ing  dynamics occurring at much finer scales (e.g., fractures at the sub-km scales). The observed deformation 
fields sampled at L* = 10 km are therefore much more rich in information than model deformation fields that are 
generated (rather than sampled) at the same nominal spatial scale, unless sub-grid parameterization are used and 
calibrated. Degrading the observed deformation fields to larger spatial scales could help minimizing this discrep-
ancy when comparing the observed and simulated deformation statistics, but only if the degraded spatial scales 
are much larger than the nominal spatial scales at which models are run (e.g., observations at L ∼50–100 km vs. 
models at L ∼10 km), in which case the range of scales available for determining the observed statistical charac-
teristics (e.g., spatio-temporal localization) becomes too small. Note that we also consider atmosphere-ice-ocean 
coupled model simulations with an interactive atmospheric model (i.e., RASM-WRF) separately from coupled 
ice-ocean models (or stand-alone ice models) forced with atmospheric reanalyses (see Section 4.2.3).

In the following sections, the agreement between models and observations is interpreted in terms of the RGPS 
interannual variability. That is, metrics are first obtained for all years in the RGPS record and, unless stated other-
wise, the full RGPS distribution is used as a range defining a good agreement between models and observations.

4.1. Effects of Sea-Ice Rheology

4.1.1. Probability Density Functions

Most of the simulated PDFs of shear and divergence decay approximately linearly in log-log plot, with a wide 
range of simulated decay exponents (Figures 1a–1c, 2a–2c, 3a–3c and 4a–4c). We note that very different distri-
butions can lead to very similar decay exponents, suggesting that this metric does not adequately capture differ-
ences in the deformation fields (e.g., compare RGPS with HYCOM-CICE (FSU) in Figure 3a, or with IFREMER 
(e = 1) in Figure 2a). We, therefore, define a new metric as the sum of the absolute difference between the 
simulated and observed PDFs in logarithmic scale, divided by the number of bins spanned by the simulated PDF. 
Dividing by the number of bins ensures that the metric penalizes models that do not simulate sufficiently large 
deformation rates and have a smaller number of bins. An advantage of this metric is that differences in the tail 
of the PDFs (i.e., where probabilities are small, but represent larger deformation rates that are likely to affect 
climate interactions or operational applications) are given more weight by using a logarithmic scale. To interpret 
the value of the metric, we compute its interannual variability for all available RGPS observations, using either 
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the RGPS PDFs of 1997 or 2008 as the reference and computing the difference metric with all other years in the 
RGPS data set. We then use the mean value of the RGPS PDFs difference metric for each comparison year (one 
value for 1997 and another for 2008) as an upper threshold defining a reasonable agreement between models and 
observations. These references mean values, as well as the mean difference per bin (in logarithmic scale) for the 
RGPS data set are shown in Figures 1d–1f, 2d–2f, 3d–3f, and 4d–4f for comparison.

Considering this new metric, we find that no low-resolution run is able to reproduce a reasonable agreement with 
the RGPS negative divergence PDFs, whereas only neXtSIM and McGill (e = 1, ↑S) agree with either the shear 
or positive divergence PDFs (Figures 1d–1f and 2d–2f). This reflects a clear underestimation of the range over 
which the PDFs extend (i.e., smaller number of bins), along with a drop in probabilities in the respective last bins. 
Modifying the (E)VP plastic elliptical yield curve parameters at low resolution helps increasing the range over 
which the PDFs extend and also reduces the drop in the tail (Figure 1—see also Section 4.2.1).

Increasing the spatial resolution of the models generally improves the agreement of simulated PDFs with observa-
tions, particularly in negative divergence (Figures 3 and 4). This can be attributed in part to a refinement of LKFs 
in which deformation rates increase at higher resolution (e.g., Spreen et al., 2017; Williams & Tremblay, 2018), 
and in part to an increased spatio-temporal LKF density (Hutter et al., 2022a). We find that high-resolution runs 
with the (E)VP rheology (i.e., the only rheology represented by the high-resolution runs) can reproduce PDFs that 
simultaneously agree with the RGPS shear and positive and/or negative divergence. In fact, the MITgcm (2 km) 
run agrees with all three RGPS PDFs (i.e., in shear, positive divergence, and negative divergence) for at least one 
year (2008—Figure 4). However, some EVP runs at high-resolution still poorly agree with the RGPS PDFs, even 
if the range of the simulated PDFs is improved compared to low-resolution EVP runs (see e.g., HYCOM-CICE 
(FSU) and ANHA 4 km). We hypothesize that this reflects a numerical artifact originating from insufficient 
subcycling with the EVP approach. In the EVP equations, an artificial elastic strain is added to the VP rheology to 
allow explicit solving of the momentum equations. Within each advective time step, small iteration steps (subcy-
cling) are used to explicitly advance the solution, while damping the artificial elastic waves in order to recover 
a solution that approximates a VP solution. When using too few subcycles with the EVP solver, the solution is 
noisy with large residual errors, and the probability of simulating large deformation rates is significantly reduced 
(Kimmritz et al., 2015; Lemieux et al., 2012). While we cannot explicitly check their numerical convergence, we 

Figure 1. Probability density functions (PDFs) of (a): maximum shear rate, (b): negative divergence, and (c) positive divergence, for low-resolution runs (Δx ≃ 10 km) 
and RADARSAT Geophysical Processor System (RGPS) observations (black) at L = 10 km and T = 3 days in January-February-March 1997. Insets give the decay 
exponents (𝐴𝐴 𝐴𝐴�̇�𝜖𝐼𝐼𝐼𝐼

 , 𝐴𝐴 𝐴𝐴�̇�𝜖𝐼𝐼𝐼0
 , 𝐴𝐴 𝐴𝐴�̇�𝜖𝐼𝐼𝐼0

 ), and each run is identified in panel (d) by a different color corresponding to its sea-ice rheology (Blue/Purple: VP, Pink/Red: EVP, Yellow: 
EAP, Green: MEB); (d–f): difference (per bin) between the logarithm of models and RGPS PDFs. The insets give the average absolute difference per bin, where bold 
font marks values that are equal to or less than the RGPS interannual average obtained using all other RGPS years in comparison to 1997.
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note that noise is present in the EVP deformation fields analyzed here (results not shown), and that the EVP runs 
poorly agreeing with the observed RGPS PDF consistently use a small number of subcycles (and vice-versa: EVP 
runs showing a good PDF agreement also use a large number of subcycles—see e.g., ANHA 4 km: 120 subcycles, 
vs. RIOPS: 900 subcycles in Figure 4). We, therefore, hypothesize that the high-resolution EVP runs showing a 
poor PDF performance here are also affected by large residual errors originating from undamped elastic waves 
and too few subcycles. This could explain the lower performance of EVP compared to VP for low-resolution runs 
as well, but it remains to be validated with further experiments.

We lastly note that the conclusions of the PDF analysis could be significantly different if the PDFs of absolute 
divergence were compared, as opposed to separating the negative and positive divergence PDFs as done here. 
For instance, simulations that closely agree with the RGPS PDF of absolute divergence may hide errors in their 
positive and negative divergence PDFs that compensate each other, suggesting that the conditions or processes 
giving rise to large opening vs. closing events are not well represented in the model and tend to overestimate one 
in favor of the other (see e.g., neXtSIM and MITgcm (2 km, e = 0.7, ↓P) in Figure 5). Similarly, simulations that 

Figure 2. Same as Figure 1 for low-resolution runs (Δx ≃ 10 km) in January-February-March 2008.

Figure 3. Same as Figure 1 for high-resolution runs (Δx ≃ 2–5 km) in January-February-March 1997.
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closely match the observed RGPS PDF in either positive or negative divergence but not in the other (see e.g., 
McGill, e = 1, ↑S in Figure 5) will be strongly penalized when comparing the absolute divergence PDF and good 
model performance may be missed. We argue that model evaluation or comparison should therefore be done by 
investigating both the negative and positive divergence PDFs, in order to better evaluate these subtle differences 
that are likely affected by the representation of sea-ice rheology (i.e., ice strength, yield curve, and flow rule).

4.1.2. Spatio-Temporal Scaling and Coupling

The spatio-temporal scaling analysis of simulated deformation rates has typically been investigated without 
using data-quality weights (Bouchat & Tremblay, 2017; Bouillon & Rampal, 2015a; Girard et al., 2009; Hutter 
et al., 2018; Spreen et al., 2017; Rampal et al., 2019). In this case, the spatio-temporal scaling exponents depend 
on the LKF density, such that runs with fewer LKFs have lower scaling exponents (Hutter & Losch,  2020). 
However, lower scaling exponents are also expected for diffuse deformation fields (see Section 3.3.2), compli-
cating the interpretation of low scaling exponents within an inter-model comparison analysis. For example, 
comparing runs with few LKFs but highly localized deformations (e.g., FESOM—Figure 6a) with runs showing 
obviously more diffuse deformations (e.g., HYCOM-CICE [FSU]—Figure 6b), we find here that the slope of the 
spatial scaling (i.e., the spatial scaling exponents) are comparable when the data quality (signal-to-noise ratio) is 
not used to weight the deformation estimates in the scaling analysis (Figure 6c). In contrast, using the signal-to-
noise ratios to weight the simulated deformation distribution helps to separate both cases, as the slope increases 
for simulations with highly localized deformation features, while it remains low for more diffuse deformation 
fields (Figure 6d). Implementing the scaling analysis with signal-to-noise ratio weights to compare observations 
and models therefore improves the interpretation of the scaling exponent metric as a measure of the localization of 
the deformation fields. It also allows us to investigate the presence of a spatio-temporal coupling of the spatial and 
temporal scaling exponents (i.e., a logarithmic decay of β and α when increasing T and L, respectively—Marsan & 
Weiss, 2010), which is otherwise absent for the observed RGPS mean total deformation rates when using weights 
equal to one (Bouchat & Tremblay, 2020). In the following, the scaling analysis is therefore performed with the 
signal-to-noise ratio weighting method. Note that, while the coupling and scaling exponents are affected,  we have 
verified that finding a power law scaling in space or time does not depend on the weights used to average the 
deformation distribution (i.e., signal-to-noise ratio weights vs. weights equal to one as in previous studies).

We find that all sea-ice rheologies produce a power law spatial scaling of the total deformation rates holding over 
∼1.5 orders of magnitude (i.e., 10 ≤ L ≤ 600 km—Figures 7a, 7b and 8a, 8b). However, the simulated spatial scal-
ing exponent β (i.e., the slope of the power law decay in log-log space) varies largely from run to run (Figures 7c, 
7d and 8c, 8d). We note that the only runs showing a spatial scaling exponent large enough to be within the 

Figure 4. Same as Figure 1 for high-resolution runs (Δx ≃ 2–5 km) in January-February-March 2008.
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Figure 5. Probability density functions (PDFs) of (a): negative divergence, (b): positive divergence, and (c) absolute divergence, for selected runs and RGPS 
observations (black) at L = 10 km and T = 3 days in January-February-March 1997; (d–f): difference (per bin) between the logarithm of models and RGPS PDFs. The 
insets give the average absolute difference per bin, where bold font marks values that are equal to or less than the RGPS interannual average obtained using all other 
RGPS years in comparison to 1997.

Figure 6. Top: Total deformation field snapshot for 28–30 January 1997 (in day −1) for (a): FESOM, and (b): HYCOM-CICE 
(FSU); bottom: spatial scaling of total deformation rates estimated at T = 3 days in January-February-March 1997, using 
either (c): weights equal to one, or (d): weights equal to the signal-to-noise ratios (data quality) of the deformation estimates.
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observed RGPS interannual variability or larger (i.e., neXtSIM, RIOPS, FESOM, and MITgcm—2 km runs) also 
showed a reasonable agreement in their PDFs of deformations. The presence of large deformation rates therefore 
appears as a necessary condition for also having a large degree of spatial localization. It is not sufficient however, 
since it is the spatial organization of these large deformation rates along well-defined features (i.e., LKFs) that is 
responsible for the spatial scaling (e.g., Marsan et al., 2004; Stern & Lindsay, 2009).

For low-resolution runs, the largest spatial scaling exponents are obtained with the MEB rheology (neXtSIM). 
While the neXtSIM deformation fields do show highly localized LKFs (Figure 9), this model uses an adaptive 
Lagrangian mesh as opposed to a static Eulerian grid as in all other runs. It is therefore not straightforward to 
attribute this stronger spatial localization of deformation to the rheology alone since moving meshes are known 
to be very efficient at capturing and preserving singularities or discontinuities in the solution (e.g., Ceniceros & 
Hou, 2001).

The lowest spatial scaling exponents are obtained with the EVP rheology, in both low- and high-resolution runs 
(Figures 7c, 7d and 8c, 8d). The deformation fields for these runs (i.e., DMI, IFREMER, HYCOM-CICE (FSU), 
ANHA 4 and 12 km) clearly underestimate the presence of well-defined deformation features (Figures 9 and 10 
and Hutter et al., 2022a). We again hypothesize that this could be due to insufficient damping of the artificial 
elastic wave and small numbers of subcycling steps, but the effects of the numerical convergence on the scaling 
statistics need to be further evaluated. We note, however, that more iterations to obtain more accurate VP and 
EVP solutions leads to additional lines of deformations in the solution (Bouchat & Tremblay, 2014; Koldunov 
et al., 2019; Lemieux et al., 2012; Wang et al., 2016), which should increase the spatial scaling exponent (or 
spatial localization).

We note that the RASM-WRF (EAP) runs simulate more localized deformations than its RASM-WRF (EVP) 
counterparts and all other low-resolution (E)VP runs, as indicated by the larger spatial scaling exponents and the 
presence of well-defined LKFs (Figures 7a, 7c, 8a, 8c and 10). While the larger number of elastic subcycles in 
the RASM-WRF runs may play a role in the improved scaling statistics as mentioned above, this may also hint 

Figure 7. (a, b): Spatial scaling for total deformation rates estimated at T = 3 days in January-February-March 1997. (c, d): Spatial scaling exponent β as a function of 
the temporal scale T at which the mean total deformation rates are estimated. (e, f): Coupling coefficient cβ obtained from least squares logarithmic fits β ∼ −cβ ln(T) for 
3 ≤ T ≤ 30 days. Dashed lines are the least squares power law fits used to obtain β. The solid black lines, dark gray, and light gray shaded areas are the mean, standard 
deviation, and min/max for the entire RGPS data set. Model results are separated with low-resolution runs in top panels, and high-resolution runs in bottom panels.
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at an advantage of the anisotropic sub-grid parameterization for a better localization of deformations. However, 
grid aliasing (i.e., orthogonal alignment of LKFs along the RASM atmospheric or ocean grid) is also present in 
the RASM deformation fields (Figure 10) and the impacts of such a preferred alignment of LKFs on the scaling 
statistics have not yet been investigated. The improved spatial localization for RASM-WRF (EAP) nonetheless 
suggests that a more detailed analysis of the potential advantages of using the EAP rheology compared to the 
classic (E)VP rheology would be a welcome contribution in the future.

Ignoring the runs with a smaller number of subcycles mentioned above, the spatial scaling exponent for (E)VP 
runs generally increases as the grid is refined. This is consistent with a refinement of the spatial localization 
of deformation lines with increasing spatial resolution in Eulerian plastic sea-ice models (Williams & Trem-
blay, 2018). In contrast, the spatial scaling exponent was shown to be approximately resolution-independent for 
neXtSIM (MEB) when tested on a range of spatial resolutions from 30 to 7.5 km (Rampal et al., 2019). It is still 
unclear whether this is a consequence of using a Lagrangian mesh that better adapts to discontinuities in the 
solution (regardless of the resolution), or of using a brittle rheology. We can however conclude that a large spatial 
localization of deformation is possible for both visco-plastic ((E)VP) and brittle visco-elastic (MEB) rheologies, 
as long as Eulerian sea-ice models are run at high spatial resolution. Modifying the ice strength parameters and 
coupling with an atmospheric model can also have a large effect on increasing the scaling exponents as discussed 
later in Sections 4.2.1 and 4.2.3.

Interestingly, both low- and high-resolution runs span a similar range of temporal scaling exponents that overlaps 
with the RGPS interannual variability, showing that a strong degree of temporal localization of deformations is 
reproduced by all models, at least for the range of temporal scales considered in this study (i.e, [3–30] days—
Figures 11 and 12). Here, it is important not to confuse strong temporal localization with strong intermittency. 
A field can be highly localized in time, but it is the change of localization within the data set (or with changing 
deformation magnitude) that reflects the intermittency (or heterogeneity). The intermittency of the deforma-
tion field is indicated by its (nonlinear) moment scaling function (or structure function) which is investigated 
in Section  4.1.3. Temporal scaling (or localization in time) of the deformation rates is assumed to originate 
from the presence of long-ranged temporal correlations in the time series of deformations. We have verified 
that when randomly re-ordering the times series of deformation, the power law temporal scaling is lost for both 

Figure 8. Same as Figure 7 for total deformation rates in January-February-March 2008.
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RGPS observations and simulated deformation fields (results not shown). This is analogous to the presence of 
long-ranged spatial correlation (for instance, LKFs) giving rise to the spatial scaling. The origin of these tempo-
ral correlations in models and observations remains to be identified. We note however that a larger simulated 
temporal scaling exponent does not necessarily correlate with the use of a smaller advective time-step, nor with 
higher spatio-temporal resolution of the atmospheric reanalysis. Preliminary analysis with the MEB rheology 
(not shown) also shows that the choice of damage propagation scheme can significantly affect the spatio-temporal 
scaling and could be used to tune this rheology against observations.

Finally, a logarithmic reduction in the spatial and temporal scaling exponents when increasing the temporal 
and spatial scales of the deformation estimates (i.e., β ∼ −cβ ln(T) and α ∼ −cα ln(L), the so-called space-time 
coupling) is achieved by all sea-ice rheologies, regardless of the original spatio-temporal resolution of the model 
runs (Figures 7, 8, 11, 12c and 12d). This indicates that the simulated deformation fields appear less and less 
localized as the spatial and temporal scales are increased, consistent with the smoothing of deformation features 
when averaged at larger and larger scales. The strength of the observed RGPS coupling, evaluated by the coupling 
constants cβ and cα (i.e., absolute value of the slope in semi-log plot), is also well reproduced by all rheologies at 
both low- and high-resolution Figures 7, 8, 11, 12e and 12f). Runs for which the space-time coupling is system-
atically absent or very weak (e.g., IFREMER e = 2 and ANHA 12 km) are low-resolution EVP runs and already 

Figure 9. Total deformation rate snapshots (in day −1) for selected runs for the period of 21-22-23 February 2008.
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have smoother deformation fields to start with. Marsan and Weiss (2010) suggested that a space-time coupling of 
sea-ice deformation scaling can emerge from brittle dynamics and a possible chain-triggering deformation mech-
anism similar to that observed for earthquakes. We show here that sea-ice rheologies that do not assume brittle 
parameterizations also reproduce such a coupling.

4.1.3. Multi-Fractal Analysis

As the moment q of the total deformation distribution increases, the scaling exponents β(q) and α(q) also increase, 
given that the scaling still holds. For mono-fractal systems, the increase in localization is linear with increasing 
moment, while for multi-fractal systems, the increase in localization with increasing moment deviates from line-
arity. Multi-fractality then reflects a large variability of the scaling exponent within the field. For sea-ice defor-
mation fields, multi-fractality can be interpreted as larger deformation rates being more localized (in space and 
time) than smaller deformation rates (Rampal et al., 2019; Weiss & Dansereau, 2017).

Using the universal multi-fractal formalism, the nonlinear multi-fractal structure functions are described by three 
variables: the degree of multi-fractality μ, the degree of heterogeneity C1, and the fluctuation exponent H (see 
Equation 16). The spatial scaling exponent of the mean total deformation rates evaluated in the previous section 

Figure 10. Total deformation rate snapshots (in day −1) for selected runs for the period of 10-11-12 January 1997.
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Figure 11. (a, b): Temporal scaling for total deformation rates estimated at L = 10 km in January-February-March 1997. (c, d): Temporal scaling exponent α as a 
function of the spatial scale L at which the mean total deformation rates are estimated. (e, f): Coupling coefficient cα obtained from least squares logarithmic fits α ∼−cα 
ln(L) for 10 ≤ L ≤ 300 km. Dashed lines are the least squares power law fits used to obtain α. The solid black lines, dark gray, and light gray shaded areas are the mean, 
standard deviation, and min/max for the entire RGPS data set. Model results are separated with low-resolution runs in top panels, and high-resolution runs in bottom 
panels.

Figure 12. Same as Figure 11 for total deformation rates in January-February-March 2008.
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is equal to β(1)  =  1  −  H and therefore, the larger the H, the smoother (or less localized) the field appears. 
Interpretation of the effects of μ and C1 on the observable fields are less intuitive. Generally, a larger value of μ 
characterizes a field dominated by singularities of larger values, and a larger C1 indicates that these singularities 
are more sparsely grouped (Lovejoy & Schertzer, 2007, 2013). However, for the same values of μ, C1, and H the 
field-to-field variability can be large (Lovejoy & Schertzer, 2013) and it is not straightforward to visually distin-
guish the effects of the different parameters. We can nonetheless identify a few general points below regarding 
the use of the structure functions and the multi-fractal parameters as deformation metrics for evaluating sea-ice 
models. Note that the universal multi-fractal formalism requires 0 ≤ C1 ≤ 2 and 0 ≤ μ ≤ 2, but there is no theo-
retical constraint on H. However, in practice, the way that the fluctuations of the analyzed field are obtained 
at different scales (e.g., using first-order differences, or wavelets analysis, etc.) will limit the range of H over 
which multi-fractality can be detected (see e.g., Lovejoy & Schertzer, 2013). For velocity derivatives obtained 
with first-order differences such as in our case, this range is 0 < H < 1. Given that all scaling exponents found 
for models and observations correspond to an equivalent H within this range, we can therefore expect to detect 
multi-fractality, if it applies. As such, we do not constrain the least squares fits used to obtain the multi-fractal 
parameters to return values in those theoretical intervals, allowing us to evaluate the validity of the multi-fractal 
hypothesis for the observed and simulated deformation fields.

All sea-ice rheologies reproduce nonlinear structure functions in space and time, suggesting that multi-fractality 
(i.e., μ ≠ 0) and heterogeneity (C1 ≠ 0) are not exclusive to a specific rheology assumption (Figures 13 and 14 
and Figures 15 and 16). In general, the conclusions of the previous section based on the scaling of the mean 
(q = 1) total deformation rates also apply to q > 1. These conclusions include: higher scaling exponent for MEB 
and high-resolution models, lower scaling exponents for EVP runs with fewer subcycles, larger variability of 
spatial scaling exponents compared to temporal scaling exponents. We note however that agreement with the 
RGPS interannual variability for q = 1 does not necessarily carry over to higher moments (see e.g., α(q) for 
RIOPS in Figure 14). In fact, models agreeing with the RGPS distribution for the fluctuation exponent H (i.e., 
for the scaling of the mean, or q = 1) do not necessarily agree in the other multi-fractal parameters describing the 
structure functions, and vice-versa (Figures 15 and 16). Models agreeing with the RGPS distribution of β(q) or 
α(q) for all q's and for at least one year (i.e., McGill (e = 0.7, ↓P), IFREMER (e = 1), neXtSIM, MITgcm (2 km), 
MITgcm (2 km, e = 1, ↓P), and RIOPS), also generally agree in their multi-fractal parameters (i.e., μ, C1, and 
H). Other models with all three multi-fractal parameters within the RGPS inter-annual variability for at least one 
year include McGill (e = 1, ↑S), RASM-CORE2 (EAP), and MERCATOR. However, we note that the spatial 
and temporal multi-fractality hypothesis for RGPS observations is not robust since the distribution of the fitted 
degree of multi-fractality (μ) reaches values outside the theoretical range, which complicates the comparison and 
interpretation of the observed and simulated multi-fractal parameters (e.g., in 2008—Figure 16). In this case, the 
usefulness of the multi-fractal structure functions to evaluate sea-ice deformation fields is not clear and more 
work is required to better understand why the multi-fractal hypothesis is not valid for certain years. Nevertheless, 
we note that the degree of multi-fractality (μ) for other years of the RGPS records is generally not quadratic (i.e., 
μ ≠ 2). This confirms that all three multi-fractal parameters should be used as metrics for the structure functions, 
as opposed to considering a fixed (e.g., quadratic) degree of multi-fractality and using only the degree of heter-
ogeneity as a metric.

4.2. Effects of Model Configuration and Other Parameterizations

Results from the previous section show that deformation statistics have a run-to-run variability that can be as 
large or larger than the effects of the choice of a given sea-ice rheology. In the present section, we explore model 
parameterizations that could explain part of this variability.

4.2.1. Ice Strength Parameters

In the classical two ice-categories (E)VP rheology, the ice strength is parameterized using an elliptical yield curve 
and a compressive ice strength parameter P*, which defines the maximum isotropic compressive stress that can 
be supported by ice for a given thickness and concentration (Hibler, 1979). The elliptical yield curve then implic-
itly defines the shear strength parameter S* of the ice through the ratio of the major to minor axes, that is, the 
ellipse ratio e (Bouchat & Tremblay, 2017). Calibration of the ellipse ratio and compressive ice strength param-
eter have usually been performed by minimizing the drift and/or thickness errors (e.g., Hibler & Walsh, 1982; 
Miller et al., 2006; Ungermann et al., 2017). However, the PDFs of sea-ice deformation rates are sensitive to 
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independent changes of P* or S*, and therefore it has been suggested that observed RGPS PDFs of deformation 
rates can be used to calibrate the ice strength parameters in sea-ice models (Bouchat & Tremblay, 2017). Specif-
ically, increasing the ratio of shear-to-compressive ice strength parameters (i.e., reducing the ellipse ratio from 
e = 2, P* = 27.5 kNm −2 to e = 1, P* = 13.8 kNm −1) significantly improved the agreement between observed and 
simulated PDFs of deformation rates for VP gridded deformation fields at low (10 km) resolution. Other studies 
using the (E)VP rheology with a reduced ellipse ratio (i.e., 0.7 ≤ e ≤ 1.8) at low resolution also showed improved 
landfast ice and ice bridges simulation, as well as reduced ice thickness bias (Dumont et al., 2009; Lemieux 
et al., 2016; Miller et al., 2005). Whether these conclusions are configuration-dependent (e.g., resolution, forcing, 
ridging scheme, etc.) has however not been tested.

We revisit the McGill runs (with the same parameters as in Bouchat & Tremblay, 2017) in order to investigate 
the sensitivity of the deformation statistics to the ice strength parameters with our updated deformation metrics, 
which now include temporal scaling, multi-fractal structure functions, and the new PDF-difference metric. 
We also extend this analysis to the IFREMER runs (low-resolution) and MITgcm 2 km runs (high-resolution), 
where only the compressive ice strength parameter P* and the ellipse aspect ratio e were modified. At low 
resolution (McGill and IFREMER runs), the results confirm that increasing the ratio of shear-to-compressive 
strength parameter can improve the agreement of all simulated deformation statistics with RGPS observations, 
independently of the model configuration. The PDF-difference metric reveals that reducing the ice strength in 
compression even lower than suggested in Bouchat and Tremblay (2017) provides a better agreement with the 
RGPS distributions, at least in shear and positive divergence (see e.g., McGill e = 0.7, ↓P in Figure 1). We also 
note that the spatio-temporal scaling analysis of Lagrangian trajectories with signal-to-noise ratios as weights 
is more conclusive than the gridded scaling analysis in Bouchat and Tremblay (2017). The results show that an 

Figure 13. Left: RGPS (black) and simulated (colors) spatial structure functions β(q) for total deformation rates estimated at T = 3 days in January-February-March 
1997. Right: temporal structure functions α(q) for total deformation rates estimated at L = 10 km in January-February-March 1997. Dashed lines are the least squares fit 
to Equation 16 used to derive the degree of multi-fractality μ, the degree of heterogeneity C1, and the fluctuation exponent H. The solid black lines, dark gray, and light 
gray shaded areas are the mean, standard deviation, and min/max for the entire RGPS data set. Model results are separated with low-resolution runs in top panels, and 
high-resolution runs in bottom panels.
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Figure 14. Same as Figure 13 for total deformation rates in January-February-March 2008.

Figure 15. Multi-fractal parameters (μ, C1, H—see Equation 16) for the spatial structure function β(q), and for the temporal structure function α(q), for runs in 1997 
and RGPS inter-annual variability (boxplots). Dashed areas represent parameters outside the valid range predicted by the multi-fractal formalism. Model results are 
separated with low-resolution runs in top panels, and high-resolution runs in bottom panels.
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increase in the shear-to-compressive strength ratio (either by reducing P* or increasing S*) systematically leads 
to spatial and temporal scaling exponents closer to those for the RGPS observations for both the McGill and 
IFREMER low-resolution runs (Figures 7, 8, 11, and 12). The analysis of the structure functions also reveals that 
the degree of heterogeneity and intermittency (C1) in space and time is sensitive to changes in the shear-to-com-
pressive strength ratio with the (E)VP rheology (Figures 15 and 16).

At high-resolution (MITgcm 2 km runs), increasing the shear-to-compressive strength ratio can also improve 
the sea-ice deformation statistics (Figures 3, 4, 7, 8, 11, 12, 13 and 14). However, the effects on the degree of 
heterogeneity and multi-fractality are less clear than at low resolution (Figures 15 and 16). We also note that the 
same changes in e and P* or S* that improve the positive divergence PDFs in low-resolution runs instead result 
in a clear overestimation of positive divergence in high-resolution runs (Figures 3 and 4). In this sense, it is not 
clear that the combination of ice strength parameters that provides the best model-observation agreement for 
low-resolution runs are also indicated for high-resolution runs. These results point at the need to better understand 
how sea-ice parameterizations should (or not) change with changing model resolution given the intricate links 
that exist between the (E)VP yield curve (and flow rule), the deformation fields, the energy dissipation, and the 
model resolution.

Finally, we note that the yielding shear, compressive, and tensile strength are much larger for the Mohr-Coulomb 
yield curve in the neXtSIM model than for typical plastic elliptical yield curves (see Table 1). In VP models at 
low-resolution, a higher shear strength allows the stress level to increase within the ice and to be relieved along 
well-defined and less frequent (more intermittent) deformation features, which helps improving the simulated 
deformation statistics (Bouchat & Tremblay, 2017). Whether this is also the case in the MEB rheology and could 
also partly explain the better deformation statistics of the neXtSIM model at low resolution compared to other (E)
VP models remains to be verified.

4.2.2. Ice Thickness Distribution

The simplest way to represent the presence of ice in a continuum sea-ice model is to use two categories of ice 
thickness: thick ice, and thin or no ice. The ice is then characterized by its mean thickness (h) and concentration 
(A) per grid cell, and the ice strength is typically assumed to depend linearly on h (Hibler, 1979). However, as 
multiple sub-grid scale processes in the Arctic climate system are affected by the local presence of thick vs. thin 
ice (e.g., albedo, conductive heat fluxes, etc.), it is now common practice to use an ice-thickness distribution 

Figure 16. Same as Figure 15, for runs 2008.
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(ITD) with more than two thickness categories (Thorndike et al., 1975). In this case, the ice strength can instead 
be parameterized as a function of the change in potential energy during the ridging process (Rothrock, 1975), 
which explicitly depends on the thinnest ice category and on the local distribution of ice in the different thickness 
categories. This change in the ice strength formulation was shown to increase the spatial heterogeneity of the 
simulated ice strength and to significantly increase the deformation rates in convergence for thick multiyear ice in 
a very-low resolution (Δx ∼ 36 km) coupled ice-ocean model (Ungermann et al., 2017). On the other hand, ITD 
runs with the simpler ice strength parameterization of Hibler (1979) perform better than runs with the strength 
parameterization of Rothrock (1975) at reproducing large-scale observations of sea-ice concentration, drift, and 
thickness (Ungermann et al., 2017). Hutter and Losch (2020) recently showed that using the ice strength parame-
terization of Rothrock (1975) with a multiple-category ITD results in a larger number of LKFs in high-resolution 
runs compared to using a two-category model, however, there was no comparison to an ITD run with the strength 
parameterization of Hibler (1979). A thorough discussion of the effects of using an ITD and of the different ice 
strength parameterizations on the sea-ice deformation statistics is therefore still needed.

Here, the 2008 MITgcm 2 km runs (one with two thickness categories and the other with an ITD) allow us to 
investigate the effects of introducing multiple sub-grid ice categories on the deformation statistics within the 
same model, in light of the new PDF-difference metric introduced in Section 4.1.1 and the updated scaling anal-
ysis with signal-to-noise ratio weights. However, we still cannot firmly comment on the effects of the different 
ice strength parameterizations because the MITgcm (2 km, ITD) run uses the Rothrock (1975) strength formula-
tion and the two-category MITgcm (2 km) run uses the Hibler (1979) formulation and no other model provided 
ITD runs with both strength formulations. On the one hand, we find that there is no clear improvement in the 
agreement of the simulated PDFs of shear rates and divergence with observations when introducing an ITD at 
high resolution (Figure 4). On the other hand, using a multiple-category ITD significantly increases the spatial 
scaling exponent for the mean total deformation rate (Figure 8), apparently because there are more LKFs that 
can be initiated in the thicker pack ice (Hutter et al., 2022a). We note however that the temporal scaling exponent 
remains unchanged by the introduction of multiple categories in the ITD (Figure 12), suggesting that the local 
sub-grid redistribution of ice in the ITD that can initiate the formation of new LKFs does not affect the long-range 
temporal correlations giving rise to the temporal scaling, or at least that the temporal effects of this process are 
not resolved at the 3-day scale. We also note that the spatial scaling exponents for both runs are more similar for 
larger moments q (Figure 14). This indicates that the multiple-category ITD mostly increases the spatial local-
ization of smaller deformation rates. We, therefore, hypothesize that the effects of the ITD on the deformation 
statistics might be more important at lower resolution since strain rates are smaller to start with, but this remains 
to be verified.

We finally note that the use of an ITD in itself does not guarantee a better spatio-temporal localization of defor-
mations. For instance, the HYCOM-CICE (FSU) runs have a five-category ITD, but the localization of the simu-
lated deformation fields remains low compared to other high-resolution runs. In this case, too few EVP subcycles 
and large residual errors on the solution may again partly explain the poor localization of deformations.

4.2.3. Atmospheric Influence

Kwok (2001) showed that LKF patterns in the observed RGPS deformation fields can remain very similar for 
long periods of time (∼months) suggesting that pack ice deformations occur independently of variability in the 
wind patterns. However, the majority of LKFs are active on much shorter time scales and LKF lifetimes show 
an exponential tail (Hutter et al., 2019). Thus, one can question the importance of the atmosphere in setting the 
observed and simulated small-scale deformation statistics. On the one hand, the majority of the energy input 
that sets the ice cover in motion originates from the atmospheric wind stress (e.g., Bouchat & Tremblay, 2014; 
Steele et al., 1997). It could therefore be expected that the simulated deformation scaling statistics are inher-
ited from the turbulent/multi-fractal scaling properties of the atmosphere (e.g., Schmitt et al., 1994). For exam-
ple, Hutter (2015) showed that the spatial scaling exponent in idealized numerical experiments depends on the 
spatial resolution of the reanalysis wind forcing, suggesting that the simulated small-scale deformation statistics 
are, in part, limited by the representation of the atmosphere-ice interactions. On the other hand, the observed 
scaling properties of sea-ice deformations were shown to hold down to temporal scales much smaller than the 
atmospheric mesoscale or synoptic temporal scale using ship-based radar observations (Oikkonen et al., 2017). 
Weiss (2017) suggests this to be a confirmation that the mechanical response of the ice cover is not controlled by 
the atmosphere, at least not at the mesoscale or synoptic temporal scale.
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Here, we note that the degree of temporal multi-fractality and heterogeneity for turbulent wind (i.e., μ = 1.45 ± 0.1, 
C1 = 0.25 ± 0.1; Schmitt et al., 1994) is close to that for RGPS deformation rates (see e.g., Figures 15a and 15b). 
While this does not confirm that the observed multi-fractality of RGPS deformation rates originates from that 
of the wind stress, it nonetheless shows that we cannot assume a specific lowest cutoff scale for the atmospheric 
influence, such that observed sea-ice deformation scaling statistics could well be influenced by the atmosphere 
below the mesoscale and synoptic scale. We further note that the deformation statistics in the fully coupled 
atmosphere-ice-ocean RASM-WRF (EAP) runs with higher spatial and temporal resolution of the atmospheric 
conditions are closer to RGPS observations compared to runs with the same model but forced with an atmos-
pheric reanalysis (i.e., RASM-CORE2 (EAP)—see Figures 1, 2, 7, 8, 11 and 12). Larger deformation rates appear 
in the PDFs (especially in shear, where the PDF difference metric reduces by ∼50%), and the spatio-temporal 
scaling exponents for the mean total deformation rate also increase. However, we cannot firmly attribute these 
improvements to the increased complexity of the atmosphere-ice-ocean interactions only, since the fully coupled 
runs also have an increased number of elastic subcycles (i.e., smaller subcycling time step for the same advective 
time step) which suggest a better numerical convergence of their solution, although this is not directly quantifia-
ble with the numerical implementation of the EAP rheology.

5. Discussion
In the previous sections, both plastic and brittle sea-ice rheologies have shown the potential for reproducing the 
observed RGPS deformation scaling statistics, even if plastic rheologies do not use specific assumptions that were 
hypothesized to give rise to the observed scaling of sea-ice deformations (e.g., long-range elastic interactions, 
damage and healing mechanism, etc.—Weiss & Dansereau, 2017). In particular, a non-zero temporal scaling, 
intermittency, and temporal multi-fractality are observed for practically all sea-ice models, independently of 
their spatial scaling. It has previously been assumed that the temporal correlations (or a certain form of memory 
resulting in time clustering of deformations) giving rise to the temporal scaling and intermittency of defor-
mations should be inherent to the imposed sea-ice mechanical behavior (e.g., Hutter et  al.,  2018; Weiss & 
Dansereau, 2017). For instance, Weiss and Dansereau (2017) suggested that plastic sea-ice rheologies cannot 
reproduce temporal scaling because they do not include stress relaxation, such that temporal correlations cannot 
develop in their deformation fields. Well-defined LKFs in high-resolution models could also provide such a 
“memory” via local weakening and divergence of the ice along LKFs (Hutter et al., 2018). Here, we show that 
plastic sea-ice rheologies, even those without well-defined LKFs, do reproduce a strong temporal localization of 
deformations and a degree of temporal multi-fractality and intermittency similar to that of the observed RGPS 
deformation fields. The origin of the multi-fractal temporal scaling in both observed and simulated deformation 
fields remains to be identified. We note however that we find no significant correlation between simulated tempo-
ral scaling exponents and LKFs growth rates or lifetimes (not shown). We hypothesize that temporal correlations 
in the simulated deformation field could emerge from persistent synoptic atmospheric wind forcing at the basin 
scale, loading the ice and re-opening recently frozen leads, keeping the ice pack active for several days at a 
time followed by periods of rest. This is in agreement with RGPS observations showing that deformation of the 
multiyear ice pack is accommodated by long-lasting LKFs (e.g., Coon et al., 2007). This hypothesis remains to 
be tested in future work.

We also note that the role of the ocean in setting the observed and simulated deformation statistics has not yet 
been fully evaluated, even though eddies (e.g., Cassianides et al., 2021), tides (e.g., Heil et al., 2008), and ocean 
circulation patterns (e.g., Wang et al., 2021; Willmes & Heinemann, 2016) are known to impact sea-ice dynam-
ics. A major difficulty in assessing the role of varying ocean model complexity in coupled ice-ocean simulations 
resides in the fact that the spatial (and temporal) resolution of the sea-ice model is closely tied, if not the same, 
to that of the ocean model. In this case, an increased ocean complexity (e.g., eddies) is only resolved together 
with an increased complexity in sea-ice dynamics (e.g., heterogeneity of the ice strength), such that it becomes 
difficult to unambiguously separate the effects of refining the sea-ice model resolution from the effects of using 
a higher-resolution oceanic model without studying the ocean fields in more detail. This is outside the scope of 
the present study and we, therefore, refrain from providing a quantitative analysis related to the oceanic influ-
ence. We note however that the dynamical impacts of eddies on the sea ice is generally limited to the marginal 
ice zone, where low ice concentration and a highly fractured ice pack allows for a reduced importance of the 
rheology in the sea-ice dynamics (e.g., Manucharyan & Thompson, 2017). In this sense, we hypothesize that 
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resolving ocean eddies (or not) would not lead to major differences in the simulated sea-ice deformation statistics 
evaluated in the Central Arctic Ocean consolidated winter pack ice, such as presented in SIREx. On the other 
hand, the ocean  configurations in current sea-ice models vary widely in their choice of other numerical and 
physical parameterizations (e.g., choice of ocean coordinate system, mixing schemes, inclusion of tides, etc.) and 
the effects of these parameterizations on the sea-ice deformation fields also remain to be evaluated. From our 
experience, however, we argue that the effects on the deformation fields should be small as most of the ocean 
parameterizations affect thermodynamics more than dynamics. An exception may be the ice-ocean drag param-
eterization, because ice-ocean drag removes a large portion of the energy input by the atmosphere (Bouchat & 
Tremblay, 2014), but this happens on different (larger) spatial scales than the deformation. The stress divergence 
(rheology) term may still be more important on short spatial and temporal scales. A detailed evaluation of the role 
of the ocean on the simulated sea-ice deformation statistics using dedicated numerical experiments is undoubt-
edly needed in future studies.

In light of the results presented in this first part of the SIREx analysis, a few recommendations for model devel-
opment and implementation emerge for improving the representation of sea-ice deformation statistics by sea-ice 
models. First, a spatial resolution of Eulerian models higher than that of the observations is required in order 
to better localize the deformations and capture their heterogeneity at the observation scale. In Eulerian models, 
several grid cells are always required to represent a velocity discontinuity (e.g., a lead opening or a shear fracture 
line). Specifically, in VP finite-difference models, the number of grid points required to resolve a discontinuity 
forming under the same forcing conditions remains approximately the same with increasing model spatial reso-
lution (5–7 grid points; Williams & Tremblay, 2018), leading to a spatial refinement of LKFs and an increased 
spatial localization of deformations with increasing resolution. The spatial resolution of Eulerian models should 
therefore be at least 5–7 times that of the observations for a fair comparison of their deformation field. Note that 
as the spatial resolution increases (Δx ≲ 100 km), the continuum assumption (requiring the presence of a large 
number of ice floes within one grid cell) is technically no longer valid. However, current sea-ice models remain 
able to capture the observed deformation statistics because the simulated deformations are shown here to be 
scale-independent.

We further note that it is not expected that models (Eulerian or Lagrangian) reproduce the observed deformation 
statistics when run at the same nominal scale as the RGPS observation scale. The observed Lagrangian defor-
mation fields are obtained from the motion of tracers at a 10 km spatial scale, but displacement at this scale is 
closely tied to processes acting on much finer scales that can act as initiation for larger-scale deformations (e.g., 
micro-fractures, thermal cracking and bending, etc.). These fine-scale processes are sub-grid-scale processes and 
are usually not resolved or parameterized by sea-ice models, with the exception of neXtSIM which uses a damage 
parameterization that can represent sub-grid brittle fracturing to some extent. Developing and including well-
tuned parameterizations of sub-grid-scale mechanical processes could help with the representation of larger-scale 
sea-ice deformations in future model developments. For example, the inclusion of a multi-category ice thickness 
distribution improves the simulated deformation scaling statistics and can also partly improve the LKFs statistics 
(see also Hutter et al., 2022a). A sub-grid fracturing parameterization (e.g., using a damage formulation) can 
also be implemented in plastic rheologies, which will help better understand its role on the simulated deforma-
tion statistics. New developments in discrete-element models (or hybrid discrete-continuum) and applications of 
Machine Learning to sea-ice observations may also provide an interesting avenue for the definition and calibra-
tion of new sub-grid parameterizations for continuum sea-ice models.

Second, calibrating the yield curve parameters proves to be an efficient solution to improve the deformation 
statistics, even if sea-ice models are not run at very-high resolution or do not include sub-grid scale mechanical 
parameterizations. Specifically, we find that increasing the ratio of shear-to-compressive strength provides a 
better agreement with observed RGPS deformation statistics for both the VP and EVP rheologies. We provided 
here a new quantitative metric, the sum of the absolute difference of PDFs in logarithmic scale, that is useful for 
such a calibration of the yield curve parameters. Development and implementation of new yield curves or flow 
rules (e.g., non-normal flow rule, or adding a time-dependent granular dilatancy—Tremblay & Mysak, 1997; 
Ringeisen et al., 2019, 2021) may also allow for a better representation of the observed distribution of defor-
mation rates. The spatio-temporal scaling exponents of the mean total deformation rates could also be used for 
further calibrating new or existing yield curves, however, the usefulness of the scaling of higher moments of the 
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deformation distribution (i.e., the structure functions) is not clear since the multi-fractality assumption is not 
robust for all years in the RGPS records.

Third and finally, ensuring a numerically converged solution without remaining noise appears to be critical for 
the small-scale deformation statistics when using an explicit numerical solver such as originally designed in the 
EVP and EAP rheologies, although this could not be directly assessed with the available runs. Results nonethe-
less suggest that using an increased number of iterations in the numerical solver along with a small dynamical 
time step (i.e., reducing the subcycling time step) improves the EVP deformation scaling statistics. The impact of 
the numerical convergence and noise with the EVP solver (but also in VP, EAP, and MEB rheologies), and the 
impact of using the modified or adaptative EVP solvers (i.e., mEVP or aEVP—Bouillon et al., 2013; Kimmritz 
et al., 2016; Lemieux et al., 2012) remains to be further evaluated. We also note that recent findings suggest that 
details in the numerical implementation of sea-ice models (e.g., grid discretization) can have significant impacts 
on LKFs patterns in idealized simulations (Mehlmann et al., 2021). The impacts of using different numerical 
schemes and numerical implementation of sea-ice models on the deformation statistics in the context of pan-Arc-
tic simulations also needs to be further evaluated and considered for future model developments.

6. Concluding Remarks
The first part of the SIREx, with a total of 11 different models, 35 simulations, three different sea-ice rheologies 
((E)VP, EAP, and MEB) and a wide range of other model parameterizations, allowed us to investigate how differ-
ent sea-ice representations affect the deformation statistics using existing and new deformation metrics, namely, 
the sum of the absolute difference of observed and simulated PDFs of deformation rates, the spatio-temporal 
scaling exponents, and the multi-fractal parameters describing the structure functions. It is found that the sea-ice 
rheology, as well as the model configuration (e.g., resolution, atmospheric coupling, numerical convergence, etc.) 
and physical parameterizations (e.g., ITD and ice strength parameters) can affect the deformation statistics to a 
similar extent. For this reason, we argue that the aforementioned deformation metrics do not only evaluate the 
effect of the sea-ice rheology, and that it is important to analyze both the effects of the model configuration or 
parameterizations along with the effects of the rheological parameters in order to discuss the appropriateness of 
a given sea-ice rheology in terms of deformation statistics.

We find that a power law scaling and multi-fractality of deformations in both space and time can be achieved 
by all sea-ice rheologies evaluated in this study, showing that these metrics are not sufficient to favor the use of 
a given rheology, and closing the debate on whether plastic rheologies can reproduce the observed deformation 
properties. However, the VP/EVP rheologies implemented in an Eulerian framework need to be run at higher 
resolution than that of the observations to yield spatial scaling exponents as high as those observed, because 5–7 
grid cells are necessary to spatially resolve discontinuities with such a numerical scheme. It is also expected that 
spatial scaling exponents in agreement with the RGPS distribution could be obtained with the EAP rheology at 
very-high spatial resolution, given that its spatial scaling exponents are on the same order as for VP/EVP simu-
lations at high-resolution. On the other hand, the spatial localization of MEB (brittle) simulations is larger than 
for the plastic rheologies when run at the same resolution as observations. Since these simulations (neXtSIM) are 
performed on a Lagrangian mesh that can better localize and follow discontinuities, it is not clear if the higher 
spatial scaling exponents are attributable only to the difference in sea-ice rheology.

Interestingly, a strong temporal scaling is better resolved by all rheologies compared to the spatial scaling, inde-
pendently of the models' temporal resolution. While the origin of the observed and simulated temporal scal-
ing remains to be identified, this confirms that there is not only one set of specific rheological assumptions 
that can give rise to strong temporal correlations in the deformation fields. We further note that increasing the 
shear-to-compressive strength ratio of the ice in elliptical plastic rheologies significantly increases the scaling 
exponents, while the addition of multiple ice categories in the ITD does not have a large influence on the temporal 
scaling. Coupling the ice model with an atmospheric model instead of forcing with a reanalysis also appears to 
significantly affect the temporal (and spatial) multi-fractal parameters and scaling. However, due to a different 
number of elastic subcycles in the runs with these variations (likely leading to a difference in numerical conver-
gence of the solution), we cannot firmly attribute this only to a change in the atmospheric forcing/coupling 
resolution.
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The present study also allowed us to evaluate the usefulness of the scaling metrics to discriminate between differ-
ent sea-ice models, as per SIREx's goal. First, we showed that the decay exponent of the tail of the deformation 
PDFs does not efficiently characterize departure from reference PDFs and cannot be used to extract information 
on the agreement of the simulated PDFs with observations. We, therefore, introduced a new quantitative metric 
that evaluates the sum of the bin-wise absolute differences between the observed and simulated PDFs in loga-
rithmic scale. This metric better characterizes the ability of models to reproduce deformations as large as in 
RGPS observations since the logarithmic scale puts more weight on differences in the tail of the PDFs. We also 
showed that PDFs of both positive and negative divergence should be preferred to PDFs of absolute divergence 
when evaluating model deformation fields, since errors in the negative and positive divergence distributions 
may compensate each other to show a (misleading) good agreement with observations in the absolute diver-
gence PDFs. Second, we showed that the spatio-temporal scaling of the mean total deformation rates as usually 
implemented does not capture differences in localization of deformations when the density of LKFs also changes 
between different simulations. For example, simulated deformation fields with few, but highly localized LKFs 
return similarly low scaling exponents as more diffuse deformation fields. We showed that using the signal-to-
noise ratios as weights in the scaling analysis (as introduced by Bouchat & Tremblay, 2020) helps to distinguish 
both cases and improves the interpretation of the scaling exponents as a measure of localization of deformations. 
This also allows the space-time coupling of the scaling exponents for the mean (q = 1) total deformation rates 
to emerge in RGPS observations (Bouchat & Tremblay, 2020) and to be used as an additional metric to evaluate 
the simulated deformation fields. Third, we found that the degree of multi-fractality for observed and simulated 
deformation fields is generally not quadratic as previously assumed, and that the multi-fractality hypothesis is not 
robust for all years of the RGPS records. Our results also show that multi-fractality in both space and time can be 
achieved without assuming specific “cascade-like” models for the deformation of the sea-ice cover, which leaves 
open the question of what physical/mechanical parameterizations common to all the tested sea-ice models are 
critical in producing the multi-fractality. In this sense, it is unclear whether the multi-fractal analysis is appropri-
ate to calibrate or evaluate sea-ice rheologies, since the observed deformation multi-fractality could emerge from 
parameterizations other than the rheology (e.g., atmospheric turbulent momentum transfer).

Keeping in mind that the MEB and EAP rheologies are under-represented in the participating sea-ice models, the 
conclusions presented here should be tested using a larger number of experiments including more MEB and EAP 
runs, or ideally, by running a unique model configuration with different sea-ice rheologies. Specifically, to elim-
inate the potential differences associated with using a Lagrangian mesh, the deformation statistics of MEB runs 
implemented on a Eulerian grid (as recently done by Plante et al., 2020) should be evaluated. Nevertheless, this 
study shows that the (E)VP rheology—used in a majority of climate models—does generate large deformation 
rates that are highly localized in space and time, albeit by using a higher spatial resolution than currently used in 
GCMs and CMIP-type climate models. Generating large, localized deformation rates is a necessary condition for 
sea-ice models to achieve before their effect on the Arctic climate system can be assessed. While a thorough study 
of the impacts of sea-ice deformations and rheology in Global Climate Model runs remains to be performed, the 
analysis of LKFs statistics (and their link to ice thickness and concentration anomalies) presented in the second 
part of the SIREx analysis offers a complementary step to the present analysis toward improving the representa-
tion of sea ice in climate projections.

Appendix A: List of Model, Configuration, and Reanalysis Acronyms
Table A1 details the meaning of most acronyms relating to models, configurations, and reanalyses used in the 
runs participating in this study.
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Appendix B: Strain Rate Error Estimation
Trajectory errors and boundary-definition errors affect both the observed and simulated Lagrangian deforma-
tion estimates. Following Bouchat and Tremblay (2020), we consider only the trajectory errors to compute the 
signal-to-noise ratio of the deformation estimates and use this ratio as weight when averaging the deformation 
distribution for the scaling analysis. Trajectory errors result from uncertainty on the Lagrangian position of 
the cell vertices used to compute the strain rates (ux, uy, vx, vy). When using the line integral approximations of 
Equations 1–4 to evaluate the strain rates between time t and t + Δt, the trajectory error on the strain rates can be 
approximated using the propagation of uncertainty as in Bouchat and Tremblay (2020):

𝜎𝜎2
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(
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Acronym Meaning

Models

 MITgcm Massachusetts Institute of Technology General Circulation Model

 McGill-SIM McGill University Sea Ice Model

 NEMO Nucleus for European Modeling of the Ocean Model

 LIM3 Louvain-la-Neuve Sea Ice Model v3

 LIM2 Louvain-la-Neuve Sea Ice Model v2

 HYCOM Hybrid Coordinate Ocean Model

 CICE4 Los Alamos Sea Ice Model v4

 RIOPS Regional Ice Ocean Prediction System Model

 FESOM Finite-Element/volume Sea ice-Ocean Model

 RASM Regional Arctic System Model

 WRF Weather Research and Forecasting Model

Configurations

 CREG4 CONCEPTS Regional configuration—1/4°

 CREG12 CONCEPTS Regional configuration—1/12°

 ANHA4 Arctic and Northern Hemisphere Atlantic configuration—1/4°

 ANHA12 Arctic and Northern Hemisphere Atlantic configuration—1/12°

Reanalyses

 JRA55 Japanese 55 yr Reanalysis

 ERA-Interim ECMWF Re-Analysis, third-generation

 NCEP/NCAR National Centers for Environmental Prediction/National Center for Atmospheric Research

 DFS Drakkar Forcing Sets

 CFSR/CFSv2 Climate Forecast System Reanalysis v2

 CGRF Canadian Meteorological Centre's Global Deterministic Prediction System Reforecasts

 CORE Common Ocean–Ice Reference Experiment

 CORE2 Common Ocean–Ice Reference Experiment v2

Table A1 
Definition of Acronyms Relating to Models, Configurations, and Reanalyses Found in Table 1
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and σA, the error on the cell area A at time t, is also derived from the propagation of uncertainty as (e.g., Lindsay 
& Stern, 2003):

𝜎𝜎2
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where σx and σx′ are the position errors at time t and t + Δt respectively, and (xk, yk), (uk, vk) are the position and 
velocity of the cell vertex k at time t. The error on the total deformation rate 𝐴𝐴 (�̇�𝜖𝑡𝑡𝑡𝑡𝑡𝑡) and strain rate invariants 𝐴𝐴 (�̇�𝜖𝐼𝐼 , �̇�𝜖𝐼𝐼𝐼𝐼 ) 
is also derived from the propagation of uncertainty and is proportional to Equations B1–B4 (see e.g., Bouchat & 
Tremblay, 2020). Note that we have ignored timing uncertainties (i.e., σt) in Equations B1–B5 above.

The position errors σx and σx′ contributing to Equations B1–B5 can originate from (a) geolocation errors (σgeo) 
that are due to uncertainty of the recording instrument or acquisition method, and/or (b) tracking errors (σtrack) that 
occur when the position of tracked features on images are misidentified at the pixel level on satellite images. For 
RGPS strain rates derived from the tracking of ice features in consecutive SAR images, we can assume that the 
geolocation error is zero and that the position of a tracked feature on the first SAR image at time t is always known 
exactly, that is, 𝐴𝐴 𝐴𝐴RGPS

𝑥𝑥 = 𝐴𝐴RGPS

geo = 0 (see e.g., Bouchat & Tremblay, 2020; Dierking et al., 2020). The position of 
that feature on the second image at time t + Δt is however affected by a tracking error of one pixel in the SAR 
images, that is, 𝐴𝐴 𝐴𝐴RGPS

𝑥𝑥′
= 𝐴𝐴RGPS

track
= 100 m (Lindsay & Stern, 2003). In this case, 𝐴𝐴 𝐴𝐴2 RGPS

𝐴𝐴
= 0 and the uncertainty on 

the RGPS strain rates is reduced to a single summation, for example:
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track
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For the reconstructed model Lagrangian trajectories, no tracking is done, but tracers are instead advected using 
the model velocity fields. Model tracking errors are therefore zero (i.e., 𝐴𝐴 𝐴𝐴model

track
= 0 ), but geolocation errors accu-

mulate in time with every Lagrangian integration step n due to uncertainty on the model velocity fields, such that 
𝐴𝐴 𝐴𝐴model

𝑥𝑥𝑛𝑛
= 𝐴𝐴model

geo, n ≠ 0 . To see this, consider the case where the initial position of a tracer at time t0 = 0 is known 
perfectly (i.e., 𝐴𝐴 𝐴𝐴model

𝑥𝑥
0

= 𝐴𝐴model
geo, 0

= 0 ). At time t1 = Δt, the position of the advected tracer is x1 = x0 + U0Δt, where 
U0 is the model velocity in the x-direction at t0. At time t2 = 2Δt, the position is x2 = x1 + U1Δt = x0 + (U0 + U1)
Δt and similarly, at any number n of subsequent integration steps Δt, we have:

�� = �0 + (�0 + �1 +… + ��−1) Δ�. (B7)

Using the propagation of uncertainty and again neglecting timing uncertainties, the uncertainty 𝐴𝐴 𝐴𝐴model
𝑥𝑥𝑛𝑛

 on the 
model Lagrangian trajectory position at time tn, is therefore given by:

𝜎𝜎model
𝑥𝑥𝑛𝑛

= 𝜎𝜎model
geo, n =

√

𝑛𝑛 𝜎𝜎𝑈𝑈Δ𝑡𝑡𝑡 (B8)

where we assume that the uncertainty on the model velocity remains the same in time (i.e., 𝐴𝐴 𝐴𝐴𝑈𝑈𝑛𝑛
= 𝐴𝐴𝑈𝑈 for all n). 

The error on the model Lagrangian trajectory positions therefore grows with the square-root of the number of 
integration steps. Assuming that the error on the model velocity in the y-direction is the same as in the x-direction, 
it is also straightforward to show that 𝐴𝐴 𝐴𝐴model

𝑦𝑦𝑛𝑛
= 𝐴𝐴model

𝑥𝑥𝑛𝑛
 .

Here, we conservatively assume that all the points on the model trajectories have the largest error possible, that is, 
the error of the last point after the full integration is done. Other than for simplicity in our calculations, this also 
ensures that earlier deformation estimates (e.g., in January) will not be weighted more in the model scaling anal-
ysis than later ones (e.g., in March). This allows for a better comparison with the RGPS signal-to-noise weighted 
scaling analysis, given that the uncertainty on the RGPS deformation estimates does not explicitly depend on 
time (see e.g., Equation B6). For Δt = 1 hr time steps and a 90-day integration period (i.e., n = 2,160 steps—1 
January to 30 March), we therefore fix 𝐴𝐴

√

𝑛𝑛Δ𝑡𝑡 = 1.7 × 105 seconds, and for any point along the trajectory we have:

𝜎𝜎model
𝑥𝑥 = 𝜎𝜎model

𝑥𝑥′
= 𝜎𝜎model

𝑥𝑥2160
=
(

1.7 × 105
)

𝜎𝜎𝑈𝑈 . (B9)
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The error on the ice velocity σU is due to an interpolation error of gridded model velocity fields to the trajectory 
positions, as well as to the numerical error on the dynamical solution resolved by the sea-ice models. The latter 
source of error depends on the model time step and spatial resolution, the choice of numerical solver and number 
of iterations performed to solve the nonlinear dynamical equations (i.e., convergence of the solution), on the 
numerical regularization methods and parameterization schemes used, etc (e.g., Bouillon et al., 2013; Kimmritz 
et al., 2015, 2017; Lemieux et al., 2012, 2010, 2008; Plante et al., 2020). The values of σU are therefore expected 
to vary within the participating simulations, however, those values are unknown and a complete convergence/
error analysis is outside the scope of the present study. We, therefore, assume an upper bound of σU = 0.006 m/s 
for all simulations regardless of their specific configurations and parameterizations, which corresponds to a typi-
cal velocity error for high-resolution EVP simulations with a default number (120) of elastic subcycles and a time 
step of 20 min (Lemieux et al., 2012), and should also largely encompass the interpolation error. This corresponds 
to a position uncertainty of 𝐴𝐴 𝐴𝐴model

𝑥𝑥 = 𝐴𝐴model

𝑥𝑥′
≃ 1000  m for simulated Lagrangian trajectories. Note that this error 

is especially overestimated for very-high resolution models which generally have a much smaller time step and a 
larger number of elastic subcycles.

Data Availability Statement
All published code and data products originating from the SIREx is organized in the SIREx data collection: 
https://zenodo.org/communities/sirex/: this includes the model output in netCDF format (Bouchat et al., 2022a), 
the model Lagrangian trajectories and deformation data (Bouchat et  al.,  2022b), and the RGPS Lagrangian 
composite deformation data (Bouchat and Hutter, 2022), as well as the LKF data (Hutter et al., 2022b).
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