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ABSTRACT 

 The construction and use of a broadband Fourier-transform microwave 

spectrometer utilizing linear frequency sweeps will be presented along with a 

brief theoretical description of its operation principle. This instrument and a 

narrowband, cavity-based spectrometer were used to measure the high resolution 

microwave spectra of the J = 1–0 transitions of small HeN–H12C14N, HeN–

H13C14N, HeN–H12C15N, HeN–D12C14N, and HeN–D13C14N clusters produced in a 

supersonic jet expansion. Spectroscopic analysis revealed that the observed 

effective rotational constants, Beff, initially decreased with the number of the 

attached helium atoms before reaching a minimum at N = 3 helium atoms for all 

isotopologues. The subsequent increase in Beff for N ≥ 4 is indicative of the onset 

of microscopic superfluidity. Comparison of our experimental Beff constants with 

those from quantum Monte Carlo simulations reveals a nearly congruent trend in 

Beff up to N = 6. An analysis of the hyperfine structure of the 14N containing 

isotopologues and the isotopic data is also provided.  
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CHAPTER 1: INTRODUCTION 

1.1 A New State of Matter 

1.1.1 Superfluidity 

Under specific conditions, such as tremendously low temperatures or 

extremely high densities, a new state of matter emerges: the superfluid. This 

remarkable phase transition has been observed in liquid helium at temperatures 

approaching absolute zero [1-4] and its pervasiveness in nature is far reaching. 

For example, the concept of superfluidity has been used to explain phenomena 

related to the constituents of matter itself, like the pairing of nucleons within 

atomic nuclei [5], to even the behaviour of celestial bodies, as in the periodicity of 

pulsar emissions [6].  

Now as impressive as these statements are, they fail to satisfy the lingering 

question that undoubtedly plagues the uninitiated: what is a superfluid? Strictly 

speaking, a superfluid is characterized as having neither viscosity nor entropy and, 

thus, is a highly ordered and coherent system where all the individual constituents 

(whether they be protons, neutrons, atoms, or even molecules) can be described 

by a single macroscopic wavefunction [6]. In the case of liquid helium, 

specifically the helium-4 isotope, once the transition temperature ఒܶ has been 

reached, this coherent behaviour begins to manifest itself in the form of several 

bizarre properties, including the Fountain effect [7], Rollin film [8], quantized 

vortices and the propagation of additional sound modes [6, 9].  

So how is superfluidity achieved? It should come as no surprise that a 

rigorous treatment of such a puzzling phenomenon would be long, complicated 

and far beyond the scope of this work. So, for the sake of brevity, only a 

qualitative description will be given. It turns out the mechanism of superfluidity 

depends on which class the constituent particles fall under: fermions or bosons? 
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This classification represents a fundamental dichotomy of nature with the 

distinction being the spin quantum number. If the spin of a particle is half-integer 

valued, then it is classified as a fermion and, therefore, obeys Fermi-Dirac 

statistics [6]. Chemists are all too familiar with fermions as a few notable 

examples include protons, neutrons and, of course, electrons. Additionally, 

particles of half-integer spin, such as electrons, are described by an anti-

symmetric wavefunction with respect to exchange, which forbids two particles 

from occupying the same quantum state. This provides a more general extension 

of the Pauli Exclusion Principle to not just electrons, but to all fermions. 

Bosons, on the other hand, correspond to particles with integer spin and 

are governed by Bose-Einstein statistics. Succinctly put, bosons do not follow the 

Pauli Exclusion Principle, meaning that multiple particles can coexist in the same 

state. This is a direct result of the exchange symmetry of the bosonic 

wavefunction [6]. 

The contrasting behaviour of fermions and bosons is best exemplified by 

the two stable isotopes of helium at low temperatures. In fact, so far the only bulk 

superfluids observed at liquid-like densities have been 3He (its nuclear spin, I, is 

½ and it is thus a fermion) and 4He (a boson with I = 0). Therefore, a brief 

discussion on the inviscid phase of each helium isotope would provide an 

appropriate description of how superfluidity is achieved in these disparate 

systems. 

  

1.1.2 Liquid Helium 

Below 2.17 K liquid 4He begins to display non-classical behaviour. This 

transition is marked by a sharp increase in the specific heat capacity as the 

temperature drops and is aptly referred to as the lambda point, ఒܶ—since a plot of 

the specific heat versus temperature bears a striking resemblance to the Greek 

letter lambda. By convention, the normal liquid existing above ఒܶ is known as 

helium I, while the non-classical fluid that forms below the lambda point is 

referred to as helium II [6].  
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It was realised in 1938 that the behaviour of the He II phase was a result of 

superfluidity [1, 2] and that the transition at ఒܶ is closely related to Bose-Einstein 

condensation (BEC) [10]. To elaborate, BEC occurs when the individual particles 

of a weakly interacting boson gas begin to occupy the lowest energy level as the 

temperature approaches absolute zero. Since bosons do not abide by the Pauli 

Exclusion Principle, below a critical temperature, ஻ܶ, a significant portion of the 

ensemble condense into the ground quantum state. Consequently, the individual 

particles of the condensate become indistinguishable amongst the collective and 

are thereby described by a single macroscopic wavefunction [6].  

For the purpose of this study, the microscopic description of BEC provides 

a sufficient, qualitative mechanism for superfluidity in He II. However, it is worth 

noting that superfluid 4He is different than a Bose-Einstein condensate and the 

disparity lies in the non-ideal, attractive interatomic forces of helium-4. Reference 

[6] provides a more complete description of superfluidity in liquid 4He. 

As mentioned above, the helium-3 isotope is a fermion due to its half-

integer nuclear spin. The superfluid phases of 3He were discovered in 1972 by 

Osheroff et al. [3, 4], with a staggeringly low transition temperature of ~ 2.5 mK. 

At these low temperatures, the movement of the atoms begin to couple with one 

another through their nuclear magnetic moments and leads to pairing of 3He 

atoms. Consequently, the total spin for these coupled pairs becomes an integer 

value and they accordingly form a composite boson [6, 9]. (This is analogous to 

the formation of “Cooper pairs” of electrons in superconductors, according to the 

theory proposed by Bardeen, Cooper and Schrieffer [11].) The onset of 

superfluidity in helium-3 then occurs by condensation of these composite bosons 

as described above for BEC. 

 

1.1.3 Two-Fluid Model 

It is worthwhile to address the very strange and somewhat inconsistent 

behaviour observed in bulk He II. For example, a container of liquid 4He cooled 

to temperatures below ఒܶ will exhibit super flow if the contents are forced through 

a narrow capillary. However, if the viscosity of the liquid is determined by 
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another method, for example, by measuring the resistance of a moving object 

within the medium, then a rather different observation is made [9]. In fact, the 

drag force experienced by the object in liquid 4He is roughly the same just above 

and below the lambda point. 

These opposing observations can be explained phenomenologically in 

terms of the two-fluid model, where He II can be considered as a concoction of 

two different liquids: a classical, normal fluid and a superfluid. As previously 

mentioned, the superfluid has zero viscosity and no entropy and, for that reason, 

only the normal fluid possesses these properties. Each component has its own 

mass density and local velocity, and yet it is impossible to isolate either 

constituent from the mixture [6, 9]. 

In an experiment by Andronikashvili [12], however, it proved possible to 

actually measure the fraction of each fluid in He II as a function of temperature. 

This was accomplished by submerging a stack of thin discs, connected by a thin 

fibre, into a vessel containing liquid helium-4 and measuring the frequency of 

rotation. The spacing between discs was sufficiently narrow to trap any normal 

fluid, which would in turn oscillate with the assembly and contribute to the total 

moment of inertia—that is, its rotational resistance. As the temperature was 

lowered, Andronikashvili found that the oscillation frequency increased 

dramatically and that this response corresponded with a concomitant reduction of 

the normal fluid fraction. By simply relating the oscillator periodicity to its 

moment of inertia, the normal fluid fraction was determined and, by doing so, 

proved the validity of the two-fluid model. 

 

1.2 Microscopic Superfluidity 

1.2.1 Helium Nanodroplet Spectroscopy 

Without a doubt, the most significant application of superfluid helium to 

physical chemistry has been in its use in molecular beam experiments, such as 

helium nanodroplet isolation (HENDI) spectroscopy [13]. One of the key aspects 
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of the HENDI technique is the formation of microscopic droplets of helium that 

can be as small as several hundred and as large as several million atoms. Their 

diameter is given by the relation ݎ൫Հ൯ ൌ 2.22ܰଵ ଷ⁄ , and is in the nanometer range, 

hence the term nanodroplet. Creation of these nanodroplets is achieved through 

supersonic expansion of a cooled helium gas into an evacuated chamber [14]. The 

source of the molecular beam is provided by a cooled pinhole-nozzle (orifice 

diameter ~ 5μm, T < 40 K) with a backing pressure ranging from 20 to 100 bar.  

The composition of the nanodroplet can either be isotopically pure (i.e., 

consisting of only 3He or 4He) or mixed, and greatly influences the final 

temperature of the droplet. For example, pure nanodroplets of 4He reach a final 

temperature of 0.38 K, while mixed or pure 3He achieve temperatures of 0.15 K 

[14, 15]. What makes helium nanodroplets such an attractive matrix in which to 

perform isolation spectroscopy of solvated molecules, is the promise of ultra-cold 

temperatures, a weakly-interacting helium environment, an optically transparent 

solvent (for frequencies below vacuum UV) and the ability to study individually 

isolated impurity molecules [14-17]. 

In HENDI experiments, the molecular beam travels through a long 

evacuated chamber partitioned by several compartments. As the nanodroplets 

traverse the instrument, they capture an impurity molecule by crossing through a 

“pick-up” cell containing a dilute vapour of a particular molecular species (typical 

pressures are on the order of 0.1 μbar for pick-up cells only a few centimeters 

wide) [14]. The kinetic and internal energies of the embedded molecule are 

rapidly dissipated by evaporative cooling of He atoms. With a series of adjacent 

pick-up cells, each with different chemical species, the droplets can systematically 

be doped multiple times, allowing the formation of tailor-made clusters. A few 

examples of these novel complexes created in helium nanodroplets include ArN–

tetracene (N = 1–5) [18],  (H2)N–OCS (N = 1–16) [19, 20] and even end-to-end 

chains consisting of hydrogen cyanide (HCN) [21]. 

The rotational or vibrational spectrum of the impurity molecule or 

complex, for example, can be indirectly measured by monitoring the signal 

recorded by either a mass spectrometer or a bolometer. In one particular 



—  6  — 
 

instrument design [15], the seeded nanodroplets are probed by a collinear, 

counter-propagating laser beam of variable frequency. Absorption of a single 

photon by the embedded chromophore results in rapid evaporation of He atoms 

from the nanodroplet and, thus, a depletion of the mass spectrometer signal. 

 

1.2.2 Evidence of Microscopic Superfluidity 

One of the first indications that helium nanodroplets were potentially 

superfluid was in the high-resolution infrared (IR) spectrum of sulfur hexafluoride 

(SF6) embedded in approximately 3000 4He atoms [22]. Typically in condensed 

phase spectroscopic measurements, the fine rotational structure is ill-defined due 

to non-uniform interactions of solute molecules with their local environment, 

which, in turn, causes significant line broadening. However, in the helium 

nanodroplet study, not only were the rotational lines resolved, but the spacing 

between these transitions—which is dependent on the rotational constant, B, of 

the molecule—was significantly reduced when compared the gas phase spectrum 

of SF6. The former observation revealed that the local helium environment 

facilitated rotational coherence of the impurity molecule. Unfortunately, it was 

unclear at the time whether this behaviour of the 4He nanodroplets was due to the 

extremely weak interactions of the helium solvent or the existence of a superfluid 

phase [17]. 

The answer came a few years later in an elegant study by Grebenev et al., 

dubbed the “microscopic Andronikashvili experiment” [23]. The authors 

measured the high resolution IR spectrum of carbonyl sulfide (OCS) in pure 

nanodroplets of 4He and observed similar results as in the SF6 study—namely 

resolved rotational lines with narrower spacing when compared to the gas phase 

spectrum. However, when the same experiment was repeated with 3He 

nanodroplets, which is not superfluid under these experimental conditions, the 

sharp lines were replaced by a broad feature. The authors found that the rotational 

lines were restored with the addition of ~ 60 4He atoms to the nonsuperfluid 3He 

droplet and attributed this as the minimum number of 4He atoms required for the 

superfluid phase to manifest itself. This also showed that the embedded OCS 
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molecule was insulated from the bulk of the nanodroplet by approximately two 

solvation shells of superfluid 4He. 

Since these early pioneering studies, a considerable number of molecules 

embedded in superfluid helium nanodroplets have been investigated. Yet despite 

the rich spectroscopic information available, a complete proper description of the 

interactions between the 4He quantum solvent and the impurity is still lacking. 

This can be seen by the measured rotational dynamics of the embedded 

chromophores. As mentioned previously, the rotational constant B—which is 

inversely proportional to the moment of inertia—of helium solvated molecules 

can be considerably reduced, or renormalized, compared to the gas phase value. 

However, for other molecules the extent of renormalization can be negligible. 

Furthermore, it appears that in general the heavier molecules (termed heavy 

rotors; e.g., SF6 and OCS) experience greater renormalization than lighter 

molecules (light rotors; e.g., HF and H2O). 

For physical explanation of these results, two molecular properties of the 

chromophore can be considered: the magnitude of its gas phase rotational 

constant, B0, and the anisotropy of the He–molecule interaction potential energy 

surface (PES)—a measure of the interaction strength between solute and solvent 

as function of separation and orientation [24]. To elaborate on the second point, if 

there is a strong interaction between the impurity molecule and the superfluid He 

solvent, then a portion of the helium density will become localised near the 

molecule and dragged along with the molecular rotation [25]. Thus, the embedded 

molecule induces a local nonsuperfluid fraction. Now if the movement of the 

molecule is relatively slow, i.e., B0 is small, then the localised helium density can 

“adiabatically follow” the molecular rotation and, therefore, contribute to the 

effective moment of inertia [24]. In the case of light rotors, the rotation is too fast 

for the helium density to keep up. This description helps explain the previously 

noted trend for heavy and light rotors but fails to accurately predict the extent of 

renormalization.  

Theoretical studies utilizing path integral and diffusion Monte Carlo 

simulations on solvated molecules have provided considerable advances in our 
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understanding of microscopic superfluidity and quantum solvation [24-26]. 

However, the success of theoretical simulations in predicting the spectra of 

solvated species is greatly limited by the accuracy of the He–molecule and He–He 

PESs used [27]. It is of great importance to understand the delicate interplay 

between the molecular properties of a solvated impurity and the observed 

spectroscopic features. For one, this knowledge would provide a better 

interpretation of experimental results and allow the gas phase spectra of tailor-

made species, which typically cannot be synthesized by conventional methods, to 

be accurately predicted [27]. More importantly, the embedded chromophores can 

be used to probe the dynamics of the quantum solvent and provide valuable 

information on confined quantum systems and microscopic superfluidity [16]. 

 

1.2.3 From Clusters to Solvated Molecules 

Spectroscopic measurements of weakly bound molecular dimers can 

provide a wealth of information about the nature and strength of the 

intermolecular interactions between the two species [28, 29]. (By convention 

these systems are dubbed as dimers since the complex consists of two separate 

molecules or atoms, and with larger cluster sizes it is common to adopt a similar 

nomenclature, e.g., trimers, tetramers, etc.) Such weakly bound systems are often 

referred to as van der Waals molecules given that the complex is usually bound 

merely by London dispersion forces and are readily formed in seeded jet 

expansions, along with larger aggregates [30]. By monitoring the progression of 

spectroscopic constants as the number of binding partners increase and the weakly 

bound clusters evolve from a van der Waals molecule to a solvated molecule, one 

can track the emergence and evolution of certain bulk properties on microscopic 

scales. 

In a key study by Tang et al. [31], the microwave and high-resolution IR 

spectra of small HeN–OCS clusters (with N, the number of solvating helium 

atoms, from 2 to 8) were measured with the hope of detecting the spectroscopic 

signatures of microscopic superfluidity. Analysis of their data revealed that the 

rotational constants of the cluster monotonically decrease with the addition of 
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helium atoms. What was particularly remarkable about this trend was that the 

value of the rotational constants becomes lower than the measured nanodroplet 

limit (N ~ 104) for clusters with N > 5. This implied that at some point beyond N = 

8 the rotational constants must increase—in other words, the moment of inertia 

would have to decrease—in order to approach the asymptotic value measured in 

helium nanodroplets. Since such behaviour cannot be explained by classical 

mechanics, it must represent the emergence of a superfluid phase. 

Additional spectroscopic experiments on HeN–OCS clusters, with N 

reaching 72 4He atoms, were done in the IR and microwave ranges [32-35]. It was 

found that the effective rotational constants of the clusters decrease initially until 

a turnaround occurs at N = 9 with a following steep increase and subsequent 

oscillations. This non-classical behaviour clearly indicates decoupling of some 

helium density from the rotational motion of the OCS molecule and was taken as 

an indicator of the onset of microscopic superfluidity [31]. This interpretation was 

confirmed by subsequent theoretical simulations [36-38]. 

Suárez and coworkers [39] have suggested that the extent and the rate of 

renormalization in Beff of molecules embedded in helium nanodroplets falls in 

three different regimes: heavy rotors, with low B0-values, experience a 

pronounced renormalization; light rotors, with large B0-values, and hence small 

renormalization; and an intermediate regime where both B0 and the anisotropy of 

the interaction potential influence the degree of renormalization. It appears that 

this behaviour is also reflected in the characteristics of the smaller HeN–molecule 

clusters, where helium density decouples from the rotational motion of a 

relatively lighter rotor at much smaller critical N-values than in the case of heavier 

molecules. Such is the case for HeN–CO, with the observed turnaround point at N 

= 3 [40-45].  

The critical N-value and the evolution of B with N also depend sensitively 

on the He–molecule interaction potential, in particular its angular anisotropy. For 

example, the critical N values for HeN–CO2 [46, 47], HeN–N2O [48-52], and HeN–

HCCCN [53] are at N = 5, 8, and 9, respectively. There has also been significant 

theoretical work aimed at understanding which factors influence the 
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renormalization of the rotational constants. For example, the HeN–N2O and HeN–

HCCCN simulations [49, 51, 53] could reproduce the trends in the rotational 

constants well up to cluster sizes of N = 19 and 30, respectively. However, in the 

case of HeN–OCS, where experimental data are now available up to N = 72 [33], 

theory can reproduce the experimental trend only up to N ~ 8. In regards to HeN–

N2O [52], HeN–CO2 [46, 47], and HeN–OCS [33], the experimental rotational 

constants show oscillatory behaviour with N after the turnaround with a 

concomitant slow approach to the nanodroplet limit. As of yet, these oscillations 

and the rather slow approach to the nanodroplet limit (probably at N > 100) have 

not been reproduced by simulations. 

 

1.2.4 Hydrogen Cyanide: A Molecular Probe 

Hydrogen cyanide has earned significant attention in scientific research. In 

prebiotic chemistry, it is speculated that HCN played an important role in the 

origins of molecular life as many biologically relevant molecules, e.g., amino 

acids and purines, are directly synthesized by reactions of HCN with aldehydes in 

the presence of ammonia (known as the Strecker synthesis) or simply by HCN 

polymerization (i.e. in the case of adenine) [54, 55]. In radio astronomy, the J = 

1→0 emission line of HCN is used to trace dense molecular gas in the interstellar 

medium, which are regions strongly associated with star formation [56]. 

Astronomers are able to measure the density of molecular clouds by exploiting the 

prevalence of HCN in the cosmos, its relatively high critical density (astronomical 

spectroscopy parlance for the local particle density required for the rate of 

spontaneous emission to equal the frequency of collisional de-excitation [57]), 

and a relatively high electric dipole moment. 

In this study, however, hydrogen cyanide was chosen as a molecular probe 

to investigate the onset of microscopic fluidity in small clusters of 4He. The 

question remains, why HCN? Why helium clusters? These questions are 

particularly valid when it is noted that considerable work has already been done 

with OCS [31-35], N2O [50-52], CO2 [46, 47, 58], HCCCN [53], and CO [40, 41] 

as molecular probes. Simply put, of all these HeN–molecule systems only CO and 
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HCN fall within the intermediate size regime, as defined by Suárez and coworkers 

[39]. It is this class of rotors that proves to be the most difficult to model and, as 

experiments have shown, the extent of renormalization of these intermediate 

rotors shows the greatest variation of all the dynamical regimes [16]. Therefore, 

there is a clear need for more spectroscopic data on HeN–molecule clusters of this 

type. In the specific case of hydrogen cyanide, this is evidenced by the prediction 

of rotational energies for HeN–HCN clusters by three separate theoretical studies 

[59-61]. 

In addition, studying helium clusters seeded with hydrogen cyanide offers 

several significant experimental advantages. Measuring weakly bound clusters 

can be quite challenging as experimental conditions (e.g., concentration, backing 

pressure, molecular beam and microwave pulse duration, nozzle temperature, etc.) 

are critically important and must be each individually fine tuned to generate and 

detect clusters of a certain size distribution. To complicate matters further, the 

HeN–molecule clusters themselves are so weakly bound that typical probe–He 

distances are on the order of several angstroms and exhibit large amplitude 

bending motions. Consequently, predicting the rotational spectra of these van der 

Waals complexes and clusters is notoriously difficult and even state-of-the-art 

Monte Carlo simulations of rotational energies can be off by several GHz. 

Therefore, it is a significant advantage to choose a molecular probe with a high 

electric dipole moment like HCN, μ = 2.98 D (compared to μ = 0.72 D for OCS) 

[62], to increase signal intensity and, with that, the likelihood of discovering a 

cluster’s rotational transition in a vast ocean of noise.  

Another valuable property that HCN possesses is hyperfine splitting of 

rotational levels. The observed hyperfine structure is due to nuclear quadrupole 

coupling of the 14N nucleus (nuclear spin I = 1) with the molecular rotation. This 

topic will be discussed in more detail in the subsequent section; however, suffice 

it to say, nuclear quadrupole splitting can yield structural information of the 

cluster when compared to that of the bare molecule—a potentially important point 

that might provide experimental evidence for incremental changes in helium 

density around HCN. Hyperfine structure does provide another advantage in 
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searching for 4HeN–HCN rotational lines: a spectral fingerprint. This allows for 

one to immediately determine if the cluster contains a single HC14N molecule or 

not, what type of transition (i.e., J = 1–0 or higher) was detected, and whether the 

signal is real or an artifact due to frequency mixing.  

 

1.3 Outline of This Study 

In total, this dissertation is separated into four chapters. The following 

section, Chapter 2, consists of the relevant experimental details and is further 

divided into four main subsections. The first of these, §2.1, describes the synthesis 

of hydrogen cyanide and information regarding the formation of small clusters of 

HeN–HCN by means of a supersonic jet-expansion. Next, §2.2 provides a basic 

theoretical framework of microwave spectroscopy and transition dynamics that 

will be used through the remainder of this document. An overview of the 

narrowband, cavity-based Fourier-transform microwave spectrometer used in this 

study is given in §2.3, along with a brief theoretical description of its operation 

principle. A summary of the new broadband microwave spectrometer built as part 

of my Master’s research project, specifically the relevant theory of its operation 

and the experimental design, is provided in §2.4. 

The main focus of this study, probing microscopic fluidity in small 

clusters of HeN–HCN using rotational spectroscopy, is concentrated in Chapter 3. 

This portion of my thesis includes a brief overview of previous work pertinent to 

my research; results obtained from rotational spectra of various isotopologues of 

HeN–HCN, such as, rotational constants, hyperfine structure parameters, and 

isotopic substitution analysis; and a discussion of the findings, possible 

interpretations, and comparisons with theoretical work where applicable. Finally, 

a brief summary is given in Chapter 4. 
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CHAPTER 2: EXPERIMENTAL CONSIDERATIONS 

2.1 Sample Preparation 

2.1.1 Synthesis of Hydrogen Cyanide 

a) Dangers and safety precautions  

One of the first obstacles encountered in my graduate research project was 

getting a hold of a sample of HCN gas. Despite having important industrial 

applications, (HCN is, for example, used in the production of methyl methacrylate 

and adiponitrile, a nylon precursor), and being produced on a million tonnes-per-

annum scale globally [63], it is surprisingly difficult to purchase affordable, high 

purity HCN for research purposes. The only alternative was to produce my own—

a seemingly simple and straight forward synthesis. 

The challenge quickly became producing sufficient amounts of HCN without 

wiping out half of the Chemistry Department in the process, as poisoning is 

unquestionably a very real concern. HCN is readily absorbed through the skin and 

mucous membranes upon contact and can be immediately fatal if inhaled (270 

ppm) or ingested (50–100 mg) [63, 64]. Once in the blood stream, HCN rapidly 

spreads through the body, inhibiting various enzymes including cytochrome 

oxidase—the last of four mitochondrial protein complexes that comprise the 

electron transport chain—thereby disrupting oxidative phosphorylation, ceasing 

adenosine triphosphate (ATP) production and causing histotoxic anoxia (inability 

of cells to utilize available oxygen) [54, 65]. This is the source of the ruddy 

complexion attributed to the first signs of cyanide poisoning. However, certain 

areas of the body, like the central nervous system, brain, and cardiovascular 

system, are particularly sensitive to cyanide intoxication. Symptoms of acute 

cyanide toxicity have been divided into 3 stages [66] and can occur within 

minutes of exposure: 



—  14  — 
 

1. Initial rapid breathing followed by shortness of breath, headache, vertigo, 

weak and rapid pulse, nausea, vomiting, and a staggering gait. 

2. Convulsions, lockjaw, urination, and weaker and more rapid pulse rate. 

3. Irregular, slow heartbeat; decreased body temperature; cyanosis (bluish 

discolouring) of the lips, face and extremities; coma; bloody saliva 

frothing from the mouth; and eventually death. 

In fact, the rapid rate of poisoning essentially nullifies the use of an antidote 

after exposure to relatively large amounts of HCN—death can literally occur 

within minutes or even seconds. However, the body does have an endogenous 

cyanide detoxification mechanism in which the mitochondrial enzyme, rhodanese, 

catalyzes the conversion of cyanide (CN–) into thiocyanate (SCN–) which is 

roughly 300 times less toxic than HCN and is readily excreted in the urine [67].  

Therefore, as long as a person is removed from the source of HCN, given that the 

amount inhaled, absorbed or consumed is insufficient to cause immediate death, a 

full recovery is possible with essentially no permanent damage.  

Chronic exposure to cyanide, on the other hand, can result in optic nerve 

damage, hypertonia, and goiter formation [66]. It is interesting to note that when I 

started my graduate studies I had perfect vision whereas now, near the end of my 

degree, I wear glasses. (Not one to jump to conclusions, I am nervously waiting 

for the goiter to develop before confirming that this is due to cyanide poisoning.)  

As if the prospect of deformity, blindness, and death were not enough 

discouragement, HCN can also undergo violent polymerization. This can occur 

when liquid HCN is heated to temperatures ≥ 50 °C, in contact with alkalis, 

exposed to an ignition source, or even spontaneously if stored for an extended 

period of time [64, 68-70]. This last, terrifying point can typically be avoided if an 

acid inhibitor, such as phosphoric acid, is present in the sample. 

Now in light of all this unsettling information, it is obvious that the synthesis 

of HCN must be performed in contained reaction vessel with safety being a top 

priority. The apparatus constructed for synthesizing HCN is based on an original 

design provided by Gary Douberly (University of Georgia). The resulting 
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procedure and safety considerations, given below, were developed with the help 

of Eric Rivard (University of Alberta). 

 

b) Synthesis 

The HCN gas was produced under an inert helium atmosphere using the 

apparatus depicted in Figure 2.1. The amount of reagents used increased with 

each subsequent reaction. The most recent synthesis required over 4 grams of 

KCN and generated approximately 1.5 grams of HCN (or 86 % yield). The 

procedure for the initial reactions is given below. 

 Approximately 2.4 grams of KCN (Fluka Analytical, purity ≥ 97 %) were 

dissolved in 25 mL of distilled water in the 100 mL round bottom flask (RBF), 

see Figure 2.1). After flushing the apparatus repeatedly with helium gas (Praxair, 

purity 99.995 %), 25 mL of 20% w/w H2SO4 solution was then added drop-wise 

to the contents of the RBF. The subsequent reaction follows that given in Scheme 

1. A porous glass frit blowing helium gas was used to agitate the solution and help 

drive any evolving HCN gas through a drying tube, containing CaCl2 (Fisher 

Chemical), before being condensed in a sample cold trap immersed in liquid 

nitrogen.  

Scheme 1 KCN (aq)  +  H2SO4 (aq)  ሱሮ  HCN (g)  +  KHSO4 (aq) 

 

A gas bubbler system, consisting of three glass bulbs, was used to equalize 

the pressure inside the apparatus and maintain the inert atmosphere. The first is a 

mineral oil bubbler used to monitor the flow rate of helium gas, which is followed 

by an empty glass bulb and then a third bubbler containing a 10% w/w NaOH 

(Sigma-Aldrich, purity ≥ 97.0%) solution. The NaOH solution was a 

precautionary measure aimed at isolating any “escaping” HCN gas from the 

apparatus. The empty glass bulb was used to avoid any cross-contamination. 

The hydrogen cyanide was collected over a 2 hour period. After this time, 

the helium gas flow was stopped, the reaction vessel isolated (refer to stopcock 

“C” in Figure 2.1), and the excess vapour was removed using a mechanical 
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vacuum pump. The vacuum line itself also contained a cold trap to prevent any 

HCN gas from reaching the vacuum pump and leaching into the oil or laboratory. 

For such reasons, the laboratory was equipped with a sensitive HCN gas sensor 

which would alarm if concentrations over 4.7 ppm were detected. 

 

 

Figure 2.1 Diagram of apparatus used in the synthesis of HCN. The 

stopcocks, labelled A through G, were used to: introduce H2SO4 (aq) to 

KCN (aq) in the round bottom flask (A), control the flow rate of helium 

gas (B), isolate evolved HCN (C, D, E and F), and toggle between vacuum 

system and mineral oil bubbler (E). The cold traps, located directly above 

Dewar flasks #1 and #2, were used to condense any evolved HCN gas. 

 

After sufficient pumping, the contents of the sample cold trap were 

expanded into an evacuated 3 L glass bulb for storage. The large volume and the 

high vapour pressure of HCN (0.88 bar at ~22 °C [69]) prevented any liquid 

hydrogen cyanide from forming or any HCN gas leaking out. As mentioned 

above, the former case is a serious concern as liquid HCN can polymerize 
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explosively. The outlined procedure provides nearly pure HCN gas with water 

being the only detectable impurity. The extent of H2O contamination is assessed 

by monitoring the J = 2–1 transition of the HCN–H2O dimer [71].  

 

c) Isotopologues 

The carbon-13 and nitrogen-15 containing isotopologues of HCN were 

synthesized by using isotopically enriched potassium cyanide, K13CN (Isotec Inc., 

99.1 atom % 13C) and KC15N (Isotec Inc., 99.4 atom % 15N), respectively. The 

deuterated isotopologue was initially synthesized using sulfuric acid-d2 solution in 

D2O (Sigma Aldrich, purity 96-98 wt. % with 99.5 atom % D); however, it was 

discovered that the D13CN isotopologues could be generated by conditioning the 

gas-handling system of the instrument with D2O, as a result of H/D exchange 

between H13CN and the surface bound D2O.  

 

d) Disposal 

Given the high acute toxicity of cyanides and the hazards they pose to the 

environment, containment and proper disposal of HCN and KCN were serious 

concerns. To reduce the release of HCN to the environment, all excess gas 

samples were first fed through a bubbler containing a 10% w/w NaOH solution 

before being vented into the fume hood. The contents of the RBF in Figure 2.1, 

likewise, had to be neutralized with NaOH (aq) after each reaction.  

The pH values of both mixtures were required to be ≥ 10 before 

proceeding with the oxidation of cyanide (Scheme 2) [64]. This involved cooling 

the alkali solutions, with a salt-ice-water bath, to 4–10 °C and slowly adding 1.5 

equivalents of household bleach (containing at least 0.75 M sodium hypochlorite). 

This mixture was typically left to stand overnight before being poured down the 

drain with excess water. Note that the cyanate produced in this reaction is 

harmless to the environment and essentially nontoxic to organisms. 

Scheme 2 NaCN (aq)  +  NaOCl (aq)  ሱሮ  NaOCN (aq)  +  NaCl (aq) 
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e) Alternate synthesis 

Another common procedure for producing HCN gas involves heating 

equal molar amounts of dry stearic acid and potassium cyanide in vacuo to 350 K 

(refer to Scheme 3) [72-74]. The subsequent collection process follows the same 

procedure outlined above. In fact, this method can easily be implemented using 

the same apparatus represented by Figure 2.1 and is advantageous in its 

simplicity, easy cleanup, and high yield. However, common impurities 

encountered include H2O [74] and CO2 [72, 73], which still persist even after 

purification. 

Scheme 3 KCN (s)  +  CH3(CH2)16COOH (s)  
∆
ሱሮ  HCN (g)  +  CH3(CH2)16COOK (s) 

 

2.1.2 Generation of Clusters 

a) Sample concentrations 

In order to form HeN–HCN clusters, hydrogen cyanide had to be 

transferred to a stainless-steel gas cylinder and then diluted with helium. In 

previous studies, the typical sample concentrations were on the order of ~0.1% 

[31, 33, 35, 40, 41, 48, 50, 53, 75]. However, preliminary experiments with HeN–

HCN clusters indicated that this concentration was still too high and led to the 

formation of aggregates of HCN—this was confirmed by measuring the J = 3–2 

transition of the HCN–HCN dimer [76]. Instead, concentrations of ~20–75 ppm 

(or 0.0025–0.0050%) were needed to generate clusters with relatively high 

backing pressures of 40–100 bar helium.  

 

b) Supersonic jet-expansion 

The main components required for a supersonic jet-expansion, produced 

in a pulsed molecular beam experiment, include: a gas reservoir, a valve, and an 

evacuated sample cell. The gas reservoir, in this case, is the sample mixture 

mentioned in the preceding section with a stagnation pressure between 40 and 100 

bar and a temperature of ଴ܶ ~ 300 K; while the valve used in these experiments 
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was actually a pulsed nozzle (General Valve Series 9) with an orifice diameter of 

0.8 mm.  

Prior to an experiment, the atoms and molecules in the reservoir possess a 

range of random atomic and molecular motion with zero net velocity. Since the 

concentration of HCN is on the order of 10 ppm, the expansion properties of the 

sample can be safely assumed to be dictated by the carrier gas helium [77, 78]. 

Consequently, the range of atomic velocities is described by a Maxwell 

distribution, with the most probable speed of [79]: 

∗ݒ ൌ ටଶ௞ಳ బ்

௠
	.	 2.1

 

Equation 2.1 represents the velocity of the Maxwell distribution peak, where ݇஻ is 

the Boltzmann constant and ݉ represents the mass of a single carrier gas atom, 

e.g., 4He.  

When the nozzle is opened (typically only for 500–800 μs), the random 

kinetic energy of the reservoir gas is transformed into directed forward motion 

through binary collisions [77, 80]. The valve is opened only briefly to ensure that 

the vacuum pump is not overloaded [77]. As the gas expands into the evacuated 

sample cell, ݒ∗ decreases, the Maxwell velocity distribution narrows and in turn 

the translational temperature of gas decreases rapidly.  

The internal degrees of freedom of the seed molecule—i.e., the rotational 

and vibrational energies of HCN—relax through collisional cooling with the cold 

gas atoms [80]. However, during the expansion the density of particles decreases 

with increasing distance from the nozzle and so does, therefore, the number of 

collisions. As a result of this, equilibrium is not fully achieved between the 

translational, rotational and vibrational modes. As such, typical translational, 

rotational and vibrational temperatures in a supersonic jet-expansion are ௧ܶ௥ = 

0.1–1 K, ௥ܶ௢௧ = 0.1–1 K, and ௩ܶ௜௕ ≳ 50 K, respectively [78, 81].  

Analysis of the Doppler splitting of transition lines by Campbell et al. 

[82], revealed that the velocity of the dopant molecules is equal to the carrier gas 

speed. If the internal energy of the dopant was completely converted into the 
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translational energy of the directed flow, then the terminal velocity of the 

expansion would be [77] 

்ݒ ൌ ට
ଶఊ

ఊିଵ

௞ಳ బ்

௠
	,	 2.2

 

with the heat capacity ratio ߛ ൌ ௏ܥ/௉ܥ 	ൌ 5/3 for rare gases. Using Equation 2.2, 

the terminal velocity of helium atoms and HCN molecules in a supersonic 

expansion is 1.77	ൈ	103 m/s. However, the term “supersonic” refers to the Mach 

number, M, of the expansion and is defined as the ratio of the gas velocity to the 

speed of sound in the medium. As the temperature drops, the local speed of sound 

decreases and, thus, M increases rapidly. The Mach number for supersonic jet-

expansions can reach M > 50 [80]. 

 

c) Complex Formation 

The formation of clusters in supersonic jet-expansion proceeds through 

three-body kinetics [77], following Scheme 4, which dominates within 4 mm (or 5 

orifice diameters) from the nozzle [80]. The third body, M	≡	4He, is required to 

remove the excess kinetic energy. Given the extent of dilution, the species A and 

B correspond to 4He and HCN, respectively. The rate constants, ݇ଵ and ݇ଶ, are 

dependent on the three- and two-body collision frequencies [77].   

Once formed, the weakly bound 4HeN–HCN clusters persist due to the low 

translational temperatures of the jet-expansion. The rapid drop in number density 

(a 500-fold decrease in the first 8 mm [80]), creates a collisionless environment 

for the clusters to exist in isolation until they reach the opposite wall of the sample 

cell. 

Scheme 4 A  +  B  +  M  
݇ଵ
⇌
݇ଶ

  A–B  +  M* 
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2.2 Microwave Spectroscopy 

Microwave radiation spans the electromagnetic spectrum from 

approximately 1 to 10-4 meters (0.3 to 3000 GHz; 0.01 to 100 cm-1) and 

predominantly interacts with matter by driving transitions between molecular 

rotational quantum states as is done in rotational spectroscopy. Microwave 

radiation is also used in electron paramagnetic resonance (EPR) and even in 

electronic spectroscopy (between near-degenerate electronic states), while, in a 

few exceptional cases, infrared light can rotationally excite low mass molecules, 

such as hydrogen chloride. Although EPR does fall under the umbrella of 

“microwave spectroscopy”, microwave spectra owe their vast richness to the 

plethora of rational energies that lie in the microwave region. 

  

2.2.1 Theory 

a) Rigid rotor 

The derivation of rotational energy levels of a polyatomic system is best 

introduced through the “rigid rotor” model [83-85] which considers the end-over-

end rotation of two point masses about their center of mass (c.o.m.) and separated 

by a fixed distance—as in a rotating diatomic molecule with a rigid bond. To 

obtain the eigenfunctions which describe the stationary states of an isolated rigid 

rotor, the time-independent Schrödinger equation can be used (Equation 2.3) with 

the energy operator ܪ෡଴ written in spherical coordinates for convenience, see 

Equation 2.4 [85]: 

 

ሻݍ෡଴߰ሺܪ ൌ 	,ሻݍሺ߰ܧ 2.3

െ԰మ

ଶூመ
ቂ ଵ

௦௜௡ఏ

డ

డఏ
ቀsin ߠ డ

డఏ
ቁ ൅ ଵ

ୱ୧୬మ ఏ
ቀ డమ

డథమ
ቁቃ߰ሺߠ, ߶ሻ ൌ ,ߠሺ߰ܧ ߶ሻ,	 2.4

መ௚ܫ ൌ ∑݉௜ݎ௜
ଶሺ݃ሻ. 2.5



—  22  — 
 

Where ܫመ௚ is the moment of inertia, a measure of a body’s resistance to rotation; 

݉௜ is the mass of the ith particle and ݎ௜ሺݍሻ is its distance to the c.o.m. 

perpendicular to the g-axis.  The set of eigenfunctions, ߰ሺߠ, ߶ሻ, that satisfy 

Equation 2.4 and the rigid rotor model are the spherical harmonics, ௃ܻ
௠ሺߠ, ߶ሻ, 

defined by: 

௃ܻ
௠ሺߠ, ߶ሻ ൌ ݅௠ା|௠| ቂ

ሺଶ௃ାଵሻ

ସగ

ሺ௃ି|௠|ሻ!

ሺ௃ା|௠|ሻ!
ቃ
½

௃ܲ
|௠|ሺcos 			,ሻ݁௜௠థߠ

	J	ൌ	0,	1,	2,	...,	
m	ൌ	0,	േ1,	...,	േJ	;	

2.6

 

where ௃ܲ
|௠| are the associated Legendre functions. The above spherical harmonic 

wavefunctions yield the following energies, 

௃ܧ
௥௥ ൌ ԰మ

ଶூመ
ܬሺܬ ൅ 1ሻ ൌ 				.൅1ሻܬሺܬܤ 2.7

 

These ܧ௃
௥௥ are the energies of the discrete, quantized rotational states of 

the rigid rotor. In Equations 2.6 and 2.7, the variables ܬ and ݉ (or ܯ௃) are the 

rotational and magnetic quantum numbers, respectively, that define rotational 

quantum states, while ܤ is the rotational constant (in Joules) and is inversely 

proportional to the moment of inertia—thus, it is a measure of the ease at which a 

molecular system rotates. Note that the magnetic quantum number ݉ does not 

influence the energy of an isolated rigid rotor (Equation 2.7), and, consequently, 

each rotational state is (2ܬ ൅ 1)-fold degenerate. This degeneracy can be fully (or 

partially) removed in the presence of an external magnetic or electric field in what 

is known as the Zeeman or Stark effects, respectively. 

 

b) Transition dipole moment 

The energies of these rotational states can be determined by probing the 

system with light (nearly) matching the energy difference between states. The 

strength of the interaction between a rotor and radiation depends on the transition 

dipole moment: 
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௚ሬሬሬሬറ௙←௜ߤ ൌ ൻ߰௙หߤ௚ሬሬሬሬറห߰௜ൿ ൌ ௙߰׬
				.௚ሬሬሬሬറ߰௜߲߬ߤ∗ 2.8

 

Here, ߤ௚ሬሬሬሬറ is the projection of the electric dipole operator along the g-axis (where g 

can be replaced by the Cartesian coordinate axes x, y, and z). Equation 2.8 states 

that in order for any type of rotor to interact with radiation, it must possess a 

permanent electric dipole moment and that the projection of this dipole moment, 

along the axis of the electric field, must be nonzero. This is the “handle” at which 

the radiation grabs onto the rotor and applies a torque—the larger the handle, the 

greater the interaction. Another requirement is based on the orthogonality of the 

initial and final states’ wavefunctions, ߰௜ and ߰௙, and limits the number of 

allowed transitions to those that result in ∆J = ±1, i.e., between adjacent levels. 

 

c) Semi-rigid linear rotor 

Despite being a reasonable approximation, the rigid rotor model tends to 

overestimate rotational energies of even simple diatomic molecules. This is due to 

the bond stretching under centrifugal distortion and can become quite significant 

for weakly bound systems like van der Waals complexes [86-91]. The spectra 

become even more complicated for polyatomic molecules.  

In microwave spectroscopy, molecules are classified into five categories 

based on their principle moments of inertia: linear molecules (ܫመ௔ ൌ መ௕ܫ ,0 ൌ  ,(መ௖ܫ

spherical-tops (ܫመ௔ ൌ መ௕ܫ ൌ መ௔ܫ) መ௖), prolate symmetric-topsܫ ൏ መ௕ܫ ൌ  መ௖), oblateܫ

symmetric-tops (ܫመ௔ ൌ መ௕ܫ ൏ መ௔ܫ) መ௖), and asymmetric-topsܫ ൏ መ௕ܫ ൏  መ௖). Since HCN isܫ

linear and the spectra of HeN–HCN clusters resemble that of a linear system, I will 

forgo any discussion on the nonlinear categories; however, References [83] and 

[84] provide rigorous and comprehensive description for each of the above 

classifications. 

The energies and transition frequencies for a semi-rigid linear rotor are 

given below. As can be seen from Equation 2.9, the energies differ from those of 

the rigid rotor by the inclusion of centrifugal distortion constants: D, H, and even 

higher order distortion terms when applicable. Dropping the higher order terms 
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and abiding by the selection rules governed by Equation 2.8, the transition 

frequencies of a linear rotor are conveniently given by Equation 2.10. (Note: to 

differentiate between units, constants unaccented are typically in energy units, 

unless otherwise stated, while those with a tilde accent are in frequency units.) 

௃ܧ ൌ ܬሺܬܤ ൅ 1ሻ െ ܬଶሺܬܦ ൅ 1ሻଶ ൅ ܬଷሺܬܪ ൅ 1ሻଷ ൅ ⋯ 2.9

௃ାଵ←௃ߥ ൌ ܬ෨ሺܤ2 ൅ 1ሻ െ ܬ෩ሺܦ4 ൅ 1ሻଷ 			 2.10

 

d) Population of states 

At any temperature above absolute zero, a whole range of possible energy 

levels can be occupied. If an ensemble of molecules is in thermal equilibrium the 

number of molecules occupying the ith quantum state, ௜ܰ, can be determined via 

the Boltzmann distribution [79]: 

௜ܰ ൌ
௚೔ே

௤
݁ିா೔/௞ಳ்,	 2.11

ݍ ൌ ∑ ݃௜݁ିா೔/௞ಳ்௜ . 2.12

 

The terms ݍ and ݃௜, in Equations 2.11 and 2.12, represent the molecular partition 

function and the number of states with energy ܧ௜, respectively.  

 Equation 2.11 can be used to determine the relative populations, ௃ܰ/ ௃ܰାଵ, 

and most occupied rotational level, ܬ∗, for a rigid rotor: 

௃ܰ/ ௃ܰାଵ ൌ
ଶ௃ାଵ

ଶ௃ାଷ
݁ଶ԰஻ሺ௃ାଵሻ/௞ಳ்,  2.13

∗ܬ ൌ ට௞ಳ்

ଶ԰஻
െ ଵ

ଶ
.	 2.14

 

For a rigid rotor, with a rotational constant comparable to HCN, ܬ∗ reaches ~ 21 

while ଴ܰ/ ଵܰ ~ 0.33 for ଴ܶ ~ 300 K. However, in the case of a rigid rotor in a 

supersonic jet-expansion (see §2.1.2 on page 18), where temperatures reach ௥ܶ௢௧ ~ 
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0.1 K, the most probable occupied state becomes 0 = ܬ with ଴ܰ/ ଵܰ ~ 300. As will 

be shown later (§2.3.1), this substantial population difference plays an important 

role in modern microwave spectroscopy. 

 

e) Hyperfine structure 

As mentioned above, applying an external magnetic or electric field to a 

rotor will split the rotational levels into m sublevels—where the degree of 

splitting is dependent on the field strength. However, the microwave spectra of 

certain rotors reveal small splitting patterns or shifts in energy levels, even in the 

absence of an external field (apart from the probe field). This “hyperfine 

structure” can be due to a wide range of interactions occurring within the 

molecule that may be electrostatic or magnetic in origin. If, for example, a 

molecule is in a 1Σ state (typically the case for most molecules in their electronic 

ground state [84]), then the hyperfine splitting can occur through nuclear electric 

quadrupole coupling (an electrostatic interaction that requires a nucleus to have a 

nuclear spin ܫ ൐ ½), through magnetic nuclear spin-molecular rotation interaction 

(I > 0), or through nuclear spin-nuclear spin interactions (for two or more nuclei 

with	ܫ ൐ 0). On the other hand, if the molecule has at least one unpaired electron 

(i.e., is not in a 1Σ state); then, in addition to the above interactions, the spin of the 

electron can couple with: the molecular rotation, the nuclear spin (for any nuclei 

with	ܫ ൐ 0), or the spin of another unpaired electron to produce hyperfine 

splittings.  

 Only the first interaction mentioned above, nuclear electric quadrupole 

coupling, is relevant to HCN and HeN–HCN clusters (ܫ ൌ 1 for 14N) at the 

resolution and accuracy achieved in these studies. The origin of this interaction is 

in the nonspherical nuclear charge distribution (found in atomic nuclei with spins 

ܫ ൐ ½) which leads to an electric quadrupole moment, Q. Generally speaking, in 

an inhomogeneous electric field, the energy of an electric quadrupole depends on 

its orientation and the electric field gradient, ݍ ≡ డమ௏

డ௧మ
 (where V is the electrostatic 

potential)—such as those generated by the valence electrons surrounding 
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molecular nuclei; this is the means by which the nuclear spin couples with the 

molecular rotation [92]. Changes to the quadrupole’s orientation relative to the 

molecular axis can alter the total angular momentum and, thus, also the 

interaction energy. A new quantum number can be introduced to describe this 

coupling, the total angular momentum (including nuclear spin): ܨ ൌ ܬ ൅ ,ܫ ܬ ൅

ܫ െ 1, … , ܬ| െ  .[84 ,83] |ܫ

The nuclear quadrupole interaction energy for a linear rotor is given by 

ொܧ ൌ െ݂݁ܳݍሺܫ, ,ܬ ሻܨ ൌ െ߯଴݂ሺܫ, ,ܬ .ሻܨ 2.15

 

Where e is the electron charge, ߯଴ ≡  is the nuclear quadrupole coupling ܳݍ݁

constant, and ݂ሺܫ, ,ܬ  ሻ is Casimir’s function which is defined asܨ

݂ሺܫ, ,ܬ ሻܨ ൌ ¾஼ሺ஼ାଵሻି௃ሺ௃ାଵሻூሺூାଵሻ

ଶሺଶ௃ିଵሻሺଶ௃ାଷሻூሺଶூିଵሻ
, 2.16

 

with ܥ ൌ ܨሺܨ ൅ 1ሻ െ ܫሺܫ ൅ 1ሻ െ ܬሺܬ ൅ 1ሻ. For HCN, the J = 1 rotational state is 

split into 3 hyperfine levels (with F = 2, 1, and 0) and the 14N nuclear quadrupole 

coupling constant, ߯଴, is –4.70789(8) MHz [62]. Since the ground rotational state 

itself (J = 0, F = 1) is not split, the J = 1–0 transition reveals three hyperfine lines 

with relative intensities of 3:5:1 for the F = 1–1, 2–1, and 0–1 transitions, 

respectively; whereas all higher order transitions are split into six lines with 

different relative intensities [83, 84].  

This unique splitting pattern for J = 1–0 transitions served as an invaluable 

fingerprint for easy identification of HeN–HCN clusters in the course of this study. 

Furthermore, in the case of weakly bound clusters, such as van der Waals 

complexes, the magnitude of the hyperfine splitting typically decreases upon 

complex formation and this change in the coupling constant is related to the 

structure of the complex [29, 93-96]. Therefore, the hyperfine structure of HeN–

HCN clusters could provide experimental evidence of solvation dynamics as a 

function of cluster size. 
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f) Kraitchman coordinates 

Analysis of nuclear quadrupole hyperfine splitting is not the only method 

to investigate molecular structure. Owing to its high resolution, microwave 

spectroscopy allows for the determination of bond lengths, and angles to an 

extremely high degree of accuracy. One established method of investigating 

molecular structure from microwave spectra, developed by Kraitchman [97], 

involves comparing the moments of inertia (determined from the experimental 

rotational constants) of one molecular system with that of other, singly- or 

multiply-isotopically substituted ones.  

 By assuming that the substituted heavy atom lies along the symmetry axis 

of the cluster—a reasonable assumption given the fact that the rotational spectra 

of the HeN–HCN clusters follow that of a linear system—the distance of the 

substituted atom from the cluster’s center of mass, measured along the symmetry 

z-axis (or the a-axis using the principle coordinate system), is given by 

|ݖ| ൌ ටିߤଵ൫ܫመ௑
ᇱ െ ,መ௑൯ܫ

2.17

ߤ ൌ ெ∙∆௠

ெା∆௠
,	 2.18

 

where ܫመ௑
ᇱ ≡ መ௒ܫ

ᇱ  and ܫመ௑ ≡  መ௒ are the moments of inertia of the substituted andܫ

original molecular species along either the principle b- or c-axes, respectively; ܯ 

is the mass of the original species and ∆݉ is the “mass change” upon isotopic 

substitution. 

 Solving Equation 2.17 yields the position of each nucleus within the 

molecular complex and can subsequently be used to determine bond lengths. In 

spite of the merits of this substitution analysis, Kraitchman acknowledged several 

important approximations that this procedure relies on. The most important 

assumption is that the equilibrium structures of a family of isotopologues are 

equivalent and, thus, the equilibrium rotational constants must be used. In the case 

when equilibrium values of B are not available, but instead the ground state 

constants are used, the resulting effective moments of inertia calculated are 
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averaged over the zero-point energy motion of the complex (or more specifically, 

 ଶ of Equation 2.5 is averaged over this vibrational motion) and, as a result, theݎ

atomic coordinates will be in error by some amount [97]. 

 

2.2.2 Transition Dynamics 

a) Relevance 

The above theory gives a basic understanding of microwave spectroscopy 

in terms of line positions and splitting, but fails to explain the mechanism of 

spectroscopic transitions. Does a quantum system instantaneously jump to and 

from eigenstates or does its wavefunction constantly evolve during the transition? 

The answer to this seemingly philosophical question is typically overlooked 

during undergraduate physical chemistry courses. However, insight into the 

behaviour of quantum systems, from a single particle to an ensemble, and their 

response to an applied perturbation is necessary to understand which experimental 

parameters govern the transition dynamics and how they can be adjusted to 

optimize signal strength. Before jumping to specific applications in microwave 

spectroscopy, a brief overview of the underlying principles is required. The 

following is merely a summary of several important topics relevant to my 

discussion and are by no means comprehensive. For significantly more detailed 

explanations, the reader should consult References [98-103]. 

 

b) Superposition states 

As mentioned above, the eigenstates of Equation 2.3 are often referred to 

as stationary states, so named because their probability densities, ߰௜
∗߰௜, are 

constant over time. However, these are not the only states the quantum system is 

allowed to exist in. In fact, any state represented by a linear combination of 

eigenstates is not only permissible but necessary for a transition to occur [98].  

To illustrate this point, consider an isolated, nondegenerate, two-level 

quantum system existing in one of these superposition states, 
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,ݍ௦ሺߖ ሻݐ ൌ ܿଵߖଵሺݍ, ሻݐ ൅ ܿଶߖଶሺݍ, 	;ሻݐ 2.19

 

where Ψ௜ሺݍ,  ,ሻ represents the total wavefunction of the state (with both spatialݐ

߰௜ሺݍሻ,  and temporal, ݁ି௜ா೔௧/԰, dependencies); ܿ௜ are the probability amplitudes 

which, in the absence of radiation, are constant and can be thought of as the 

“amount” of  ߖ௜ contributing to the overall wavefunction. The absolute square of 

the probability amplitudes, ܿ௜
∗ܿ௜, represents the likelihood of observing the system 

in eigenstate ߰௜ and, therefore, the sum of ܿ௜
∗ܿ௜ must equal unity [103]. 

௦ߖ∗௦ߖ ൌ ௦|ଶߖ| ൌ |ܿଵ|ଶ|ߖଵ|ଶ ൅ |ܿଶ|ଶ|ߖଶ|ଶ ൅ 2Reሼܿଵ
∗ܿଶߖଵ

		ଶሽߖ∗ 2.20

ଵߖ
ଶߖ∗ ൌ 	߰ଵ

∗ሺݍሻ߰ଶሺݍሻ݁ି௜ఠమభ௧ 2.21

߱ଶଵ ൌ 	
ாమିாభ
԰

		 2.22

 

The probability density of the above superposition state is given by 

Equation 2.20. It can be seen from Equation 2.21 that ߖ௦∗ߖ௦ has an explicit, 

undulating time dependency and, furthermore, it must oscillate at a frequency ߱21 

proportional to the energy difference of eigenstates ߖଵ and ߖଶ (see Equation 

2.22). 

To illustrate this point, Figure 2.2 contains several snapshots of ߖ௦∗ߖ௦ for a 

rigid rotor with |ܿଵ|ଶ equal to 0.98, 0.75, 0.50, 0.25, and 0.02. Each of these ߖ௦∗ߖ௦ 

distributions oscillate at the same frequency, ߱21, and shown in Figure 2.2 is half 

a period. By comparing the first row to the last, it is clear that the greatest change 

in amplitude occurs when |ܿଵ|ଶ ൌ |ܿଶ|ଶ ൌ 0.50. Now, if these rigid rotors possess 

a permanent electric dipole, then Figure 2.2 actually depicts several oscillating 

dipoles that can interact with an applied electromagnetic field. In fact,  ߖ௦∗ߖ௦ is 

the physical representation of the transition dipole moment defined in Equation 

2.8. More importantly, since accelerating charges emit radiation, a quantum 

particle in a superposition state is, in a classical picture, a nanoscale antenna 
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broadcasting at a steady frequency	߱21. The intensity of the emitted light would 

be greatest for the particle in the superposition state with	|ܿଵ|ଶ ൌ |ܿଶ|ଶ.  

 

c) Rabi frequency and detuning 

In the presence of light the behaviour of ߖ௦∗ߖ௦ becomes slightly more 

complicated as the probability amplitudes are no longer independent of time. 

Instead, ܿ௜ are very much dependent on the polarization of light and its pulse 

shape; phase,	߶; electric field strength,	ࣟ଴; and its frequency, ߱—some of which 

may or may not vary with time. A linearly polarized light, for example, can be 

described by Equation 2.23; with the wavevector, ሬ݇ሬറ, containing information about 

the wavelength of light and the direction of propagation (see Equation 2.24). 

റࣟሺݐሻ ൌ ࣟ଴	cos	ሺሬ݇റݖ െ ݐ߱ ൅ ߶ሻ 2.23

หሬ݇റห ≡ ݇ ൌ ଶగ

ఒ
		 2.24

 

Continuing with this example, the probability density for a quantum 

particle interacting with a linearly polarized pulse is described by two coupled 

linear differential equations (see Equations 2.25a-b) [103]. The evolution of the 

probability densities over time are completely dependent on just two parameters: 

the Rabi frequency, ߗሺݐሻ, and the detuning, ∆ሺݐሻ—both of which may have either 

an explicit time dependence or not.   

ܿଵሶ ሺݐሻ ൌ െ ௜

ଶ
ሻݐሻ݁௜థܿଶሺݐሺߗ

ܿଶሶ ሺݐሻ ൌ െ ௜

ଶ
ሻݐሻ݁௜థܿଵሺݐሺߗ െ ሻݐሻܿଶሺݐሺ߂݅

ቑ 2.25a-b

ሻݐሺߗ ൌ
ఓ೜ሬሬሬሬሬറ೑←೔∙

റࣟሺ௧ሻ

԰
		 2.26

	∆ሺݐሻ ൌ ߱ሺݐሻ െ ߱ଶଵ ൌ ଴߂ ൅ ݐߙ 2.27
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Figure 2.2 A comparison of various superposition states composed of 

the J = 0 and J = 1 stationary states of a rigid rotor. A series of 

snapshots of one half-cycle of the oscillating probability density of Ψs 

described by Equation 2.19 with |c1|2  equal to 0.98 (purple), 0.75 (blue), 

0.50 (green), 0.25 (yellow), and 0.02 (red). The time step between each 

successive row is ∆t	=	1/8ω21.  

 

As seen in Equation 2.26, the Rabi frequency is a measure of the strength 

of interaction between the quantum system and the electric field of the light, റࣟሺݐሻ. 

Furthermore, since the probability amplitude explicitly depends on ߗሺݐሻ, the Rabi 

frequency is sometimes referred to as the flip-flop frequency and is the rate at 

which the superposition state evolves from	ߖଵ, through ߖଶ, and then back to ߖଵ. 

The detuning is simply the difference between the frequency of light, ߱ሺݐሻ, and 
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the transition frequency, ߱ଶଵ, and can be set to a constant value, ߂଴, or vary 

linearly with a sweep rate ߙ. 

A few important notes on Equations 2.25a-b need to be made. First, 

several approximations were made in the derivation of these coupled differential 

equations. These include transforming to a rotating frame and invoking the 

rotating wave approximation (RWA) and neglecting the nonresonant, high 

frequency terms. Second, these approximations are valid when the detuning is 

negligible relative to ߱ሺݐሻ and ߱ଶଵ—the near resonance condition—and, 

furthermore, the Rabi frequency is significantly lower than ߱ሺݐሻ—the weak field 

condition.   

The difficulty in dealing with these coupled differential equations is that 

they typically can only be solved analytically for a few specific cases, such as on 

resonance (∆	ൌ 0) and constant electric field (ߗሶ ൌ 0ሻ, whereas, under different 

circumstances, one must rely on numerical integration methods. In either way, 

these equations describe the evolution of the state of a quantum system as it is 

perturbed by a classical pulse of radiation and are vital in understanding the 

generation of superposition states. 

 

d) Ensemble average and density matrix 

The theory above dealt with a single quantum particle, which is quite 

useful and necessary, but most spectroscopists typically do not study a single 

particle. Instead, there is a myriad of particles—say, in a molecular beam 

experiment—each prepared in a slightly different way. A few examples include 

different orientations, velocities, quantum states, and local environments. 

Therefore, what is observed during an experiment is an ensemble average, or 

expectation value, of some property of the bulk system. 

Consider an ensemble of N two-level quantum particles each potentially 

existing in a unique state, as described below by Equation 2.28 (for the sake of 

brevity, the spatial and temporal dependencies are implied): 
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ேߖ ൌ ܿଵ,ே߰ଵ݁ି௜ாభ௧/԰ ൅ ܿଶ,ே߰ଶ݁ି௜ாమ௧/԰ ൌ ܽଵ,ே߰ଵ ൅ ܽଶ,ே߰ଶ	.	 2.28

 

(Note that ܽ௜,ே is the collection of all time-dependent factors.) To understand the 

behaviour of the ensemble in response to an electromagnetic field, the average 

transition dipole moment, 〈ߤറ〉, must be determined—and with limited information 

of the system. This is achieved by taking the resulting trace of the density matrix 

and transition dipole matrix dot product [98-103], i.e., 

〈റߤ〉 ൌ ଵ

ே
∑ റ௜ߤ
ே
௜ୀଵ ൌ Tr ቄߩ ∙ .ቅߤ 2.29

 

Where the density matrix, ߩ, carries all the time-dependent information of the 

ensemble (Equation 2.30) and ߤ is merely the matrix representation of the 

transition dipole moments for the system (Equation 2.31). 

ߩ ൌ ቂ
ଵଵߩ	 ଵଶߩ
ଶଵߩ	 ଶଶߩ

ቃ ൌ ቎
	ଵ
ே
∑ ܽଵ,௜
ே
௜ୀଵ ܽଵ,௜

∗ ଵ

ே
∑ ܽଵ,௜
ே
௜ୀଵ ܽଶ,௜

∗

	ଵ
ே
∑ ܽଶ,௜
ே
௜ୀଵ ܽଵ,௜

∗ ଵ

ே
∑ ܽଶ,௜
ே
௜ୀଵ ܽଶ,௜

∗
቏ 2.30

ߤ ൌ ൤
0 റଶ←ଵߤ

റଵ←ଶߤ	 0
൨		 2.31

 

As seen in Equation 2.30, the diagonal elements of the density matrix, i.e., ߩ௜௜, are 

the populations of state ߖ௜; while the off-diagonal elements, ߩ௜௝, are referred to as 

the coherences and describe the phase relation between the two eigenstates.  

Determining the average transition dipole moment, 〈ߤറ〉, can be taken one 

step forward by calculating the net induced dipole moment, otherwise known as 

the macroscopic polarization, ሬܲറ. This is possibly the most important parameter to 

an experimentalist as the signal strength is completely dependent on the 

magnitude of ሬܲറ. As is made evident by Equation 2.32 below, the polarization is 

greatest at maximum coherence of the ensemble. This is not surprising, as the 
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strength of a signal emitted by a myriad of nanoscale antennas is greatest when 

they are broadcasting in unison. 

ሬܲറ ൌ 〈റߤ〉ܰ ൌ ଵଶߩറଶ←ଵሺߤ	ܰ ൅ ଶଵሻߩ
2.32

 

e) Optical Bloch equations 

To understand how coherence is generated, the time-dependent 

Schrödinger equation must be solved, for example, in the density matrix 

formalism: 

݅԰ డఘ

డ௧
ൌ ቂܪ෡, ቃߩ ൌ ߩ෡ܪ െ 	.෡ܪߩ 2.33

 

Where ܪ෡  is the matrix representation of the Hamiltonian operator and is 

comprised of two parts: ܪ෡0, the time-independent Hamiltonian (equivalent to the 

energy operator in Equations 2.3 and 2.4); and ܪ෡1, which describes the time-

dependent perturbation caused by an external oscillating electromagnetic field 

(see Equation 2.35). 

෡ܪ ൌ ෡଴ܪ ൅ 		෡ଵܪ 2.34

෡ଵܪ ൌ െߤ	 റࣟሺݐሻ ൌ െߤ	ࣟ଴ cosሺሬ݇റݖ െ ݐ߱ ൅ ߶ሻ 2.35

 

The elements of ߩ can be solved through expansion of Equation 2.33. By 

switching the coordinates of 	ߩ௜௜ and 	ߩ௜௝ to a rotating reference frame and 

applying the RWA, the following coupled first-order differential equations can be 

derived [99]: 

ሶݑ ሺݐሻ ൌ ሻݐሺ߂ ∙ ,	ሻݐሺݒ

ሶݒ ሺݐሻ ൌ െ߂ሺݐሻ ∙ ሻݐሺݑ െ ሻݐሺߗ ∙ ,	ሻݐሺݓ

ሶݓ ሺݐሻ ൌ ሻݐሺߗ ∙ .	ሻݐሺݒ

		ൢ		 2.36a-c
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These variables are the optical analogs of the Bloch equations of nuclear magnetic 

resonance (NMR) [104] and provide a description of the interaction of an 

ensemble of two-level quantum particles with a classical electric field (so long as 

the near resonance and weak field conditions are met). The variables ݑሺݐሻ and 

 ሻ is the populationݐሺݓ ሻ represent the coherence of the ensemble, whileݐሺݒ

difference between eigenstates ߰ଵ and ߰ଶ. Despite the simplicity of Equations 

2.36a-c, analytical solutions are only possible for a few specific cases and, even 

still, approximations must be made.  

 The Bloch variables can also be used to redefine the macroscopic 

polarization originally given by Equation 2.32. By compensating for the rotating 

reference frame and change of variables, the polarization is described by 

ሬܲറ ൌ ሻݐሺݑറଶ←ଵሾߤ	ܰ ∙ cosሺ߱ݐሻ ൅ ሻݐሺݒ ∙ sinሺ߱ݐሻሿ.	 2.37

 

To help visualize the dynamics of the ensemble, the Feynman-Vernon-

Hellwarth (FVH) representation [105] of Equations 2.36a-c is required. In 

essence, the variables	ݑሺݐሻ, ݒሺݐሻ, and ݓሺݐሻ represent the procession of the Bloch 

vector, ߆ሬറሺݐሻ, acted on by a torque Υሬሬറሺݐሻ as described by Equations 2.38 to 2.40 

[102, 103]. The Bloch and torque vectors exist in a three-dimensional space 

defined by the coordinate axes u, v, and w. 

ௗ

ௗ௧
ሻݐሬറሺ߆ ൌ ሻݐሬറሺߓ ൈ 	,ሻݐሬറሺ߆ 2.38

ሻݐሬറሺߓ ≡ ൮	

ሻݐሺߗ

0

െ߂ሺݐሻ

	൲	,		 2.39

ሻݐሬറሺ߆ ≡ ൮	

ሻݐሺݑ

ሻݐሺݒ

ሻݐሺݓ

	൲.		 2.40
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In this ideal example, the length of ߆ሬറሺݐሻ is equivalent to the initial 

population difference, ݓ଴, and thus traces a path along a sphere of radius ݓ଴. 

When the Bloch vector lies in the ݒݑ-plane there is maximum coherence and, as a 

result, maximum polarization of the ensemble. Since the only adjustable 

parameters available to the experimentalist, once the ensemble is created, are 

those pertaining to the radiation (i.e., frequency, amplitude, polarization, pulse 

shape and length, etc.); it is, therefore, crucial to understand the effects of each 

parameter on the coherence of the sample in order to exploit the potential of any 

given spectroscopic method. 

 

f) Relaxation processes 

Up to this point, the above theory has intentionally avoided the inclusion 

of relaxation terms. This omission is valid so long as the time period of the 

perturbation is much shorter than the time of the relaxation processes, which can 

be described by relaxation parameters ଵܶ and ଶܶ. The former decay time, ଵܶ, 

relates the relaxation of the generated population difference to the Boltzmann 

equilibrium value, ݓ௘௤ ≡  ଴ [99, 101, 106], while the latter decay time, ଶܶ,  isݓ

related to the loss of the coherence of the ensemble. Both ଵܶ and ଶܶ can be 

phenomenologically included the optical Bloch equations by rewriting Equations 

2.36a-c as: 

ሶݑ ሺݐሻ ൌ ሻݐሺ߂ ∙ ሻݐሺݒ െ ௨ሺ௧ሻ

మ்
,

ሶݒ ሺݐሻ ൌ െ߂ሺݐሻ ∙ ሻݐሺݑ െ ሻݐሺߗ ∙ ሻݐሺݓ െ ௩ሺ௧ሻ

మ்
	 ,

ሶݓ ሺݐሻ ൌ ሻݐሺߗ ∙ ሻݐሺݒ െ
௪ሺ௧ሻି௪೐೜

భ்
.

		

ۙ
ۖ
ۘ

ۖ
ۗ

		 2.41a-c

 

Subsequently, the FVH representation of the Bloch vector can be described by 

[102]: 

ௗ

ௗ௧
ሻݐሬറሺ߆ ൌ ሻݐሬറሺߓ ൈ ሻݐሬറሺ߆ െ Γ ∙ ሾ߆ሬറሺݐሻ െ 	,ሬറ௘௤ሿ߆ 2.42



—  37  — 
 

Γ ≡

ۉ

ۈ
ۇ
	

ଵ

మ்
0 0

0 ଵ

మ்
0

0 0 ଵ

భ்

	

ی

ۋ
ۊ
	,		 2.43

ሬറ௘௤߆ ≡ ൮	

0

0

௘௤ݓ

	൲	.		 2.44
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2.3 Balle-Flygare Cavity Fourier-Transform Microwave 

Spectrometer 

The pursuit for greater sensitivity and resolution in microwave 

experiments, necessary to measure the rotational spectra of ions and transient 

species, led to the development of the Fourier-transform microwave (FTMW) 

spectrometer by Ekkers and Flygare [107]. This instrument relies on an intense 

microwave pulse, of frequency ߱ and of length ߬, to generate a macroscopic 

polarization of a gas sample contained in an absorption cell. That is to say, if ߱ is 

resonant or near resonant with a molecular transition of the sample and, 

additionally, if ߬ is short relative to any relaxation process. Once the incident 

pulse has dissipated, the induced polarization then decays at a rate governed by ଶܶ 

while emitting radiation at the characteristic molecular transition frequency. It is 

this time domain signal that is detected, phase-coherently averaged with 

subsequent emission signals, and converted to the frequency domain via a 

Fourier-transformation. 

As is the case in Fourier-transform NMR spectroscopy [108], FTMW 

spectroscopy in its most basic application is concerned with the response of an 

ensemble of two-level quantum particles cast in an electromagnetic field that is 

suddenly brought into or out of molecular resonance such that ߬ ≪ ଵܶ, ଶܶ. These 

short-lived responses are termed transient phenomena and are described by the 

optical Bloch equations (Equations 2.41a-c) [109]. When the system is quickly 

brought into resonance, transient absorption (or transient nutation in NMR) 

occurs. On the other hand, when the system is taken out of resonance abruptly, 

transient emission (or free-induction-decay in NMR) is observed.  

To allow the study of dimers and van der Waals complexes, Balle and 

Flygare replaced the gas cell of the FTMW spectrometer with an evacuated 

cavity, containing a Fabry-Pérot resonator, and instead introduced the sample as a 

supersonic beam generated by a pulsed nozzle [77]. This new spectrometer, herein 

referred to as a Balle-Flygare FTMW spectrometer, allows for even greater 

signal-to-noise ratio (S/N), increased resolution, the generation of clusters of 
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various sizes and constituents, and the formation of molecular systems with very 

low translational, rotational and even vibrational temperatures. A brief description 

of the Balle-Flygare FTMW spectrometer used in the Jäger group is provided 

below. A more detailed description of the experimental design and theoretical 

considerations are given in References [102], [77] and [78].  

 

2.3.1 Theoretical Description 

a) Single rigid rotor 

Despite knowledge on the behaviour of a single quantum particle in an 

external electromagnetic field being important, its significance is limited in 

experiments considering an ensemble of N quantum particles. Since the density 

matrix explicitly contains this behaviour (see Equations 2.30 and 2.28), as do the 

optical Bloch equations, a detailed description for a single rigid rotor will be 

skipped. Suffice to say, the emission signal detected in these FTMW experiments 

result from the oscillating probability density of a superposition state, Equation 

2.20, and the signal is the largest when |ܿଵ|ଶ ൌ |ܿଶ|ଶ ൌ 0.50. 

 

b) Transient absorption 

In order to generate maximum polarization, the molecular ensemble must 

first absorb energy from the microwave radiation to convert its initial Boltzmann 

equilibrium population difference (§2.2.1(d) on page 24), ݓ௘௤, to maximum 

coherence—this is achieved through transient absorption. This behaviour can be 

modeled using the optical Bloch equations which can be solved analytically under 

the following assumptions: ߬ ≪ ଵܶ, ଶܶ such that all relaxation process can be 

neglected; the near resonance and weak field conditions are satisfied such 

that	Ωሺݐሻ ≫ ∆ሺtሻ (i.e., a strong pulse); both the Rabi frequency and the detuning 

are constant during ߬; and initially the system has zero coherence and a population 

difference of ݓ௘௤. Under these circumstances the Bloch variables that describe 

transient absorption in a FTMW spectrometer are: 
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ሻݐሺݑ ൌ 0	,

ሻݐሺݒ ൌ െݓ௘௤ sinሺݐߗሻ ,

ሻݐሺݓ ൌ ௘௤ݓ cosሺݐߗሻ .

ൢ 2.45a-c

 

It is clear by inspection of Equations 2.45a-c that the coherence of the ensemble is 

at its greatest when ߬ߗ ൌ ߨ 2⁄  (or any half-integer ߨ value) and is nonexistent 

when ߬ߗ ൌ  The length of a pi-half pulse is dependent .(value ߨ or any integer) ߨ

on the transition dipole moment and the field strength of the external radiation.  

To better understand this phenomenon, consider an ensemble of HCN 

molecules, predominantly residing in their ground rotational states, suddenly 

stimulated by a strong microwave pulse inside a Fabry-Pérot resonator. For the 

sake of simplicity, if HCN is considered a rigid rotor, then the transition dipole 

moment for J = 1←0 becomes ߤ௭ሬሬሬሬറଵ←଴ = 1.72 D. Assuming the field strength inside 

the resonator is roughly 180 V/m and homogeneous, then the corresponding Rabi 

frequency is given by 9.8	ൈ	106 rad/sec (or 1.56 MHz). Therefore, the necessary 

pi-half pulse to achieve maximum coherence would be ߬గ ଶ⁄ ൌ	160 ns long. Note 

that the actual length of  ߬గ ଶ⁄  depends on the system being studied, the specific 

transition, and the electric field strength.  

Figure 2.3 depicts the evolution of each Bloch variable, for the above 

example, during a 2 μs microwave pulse. The pi-half pulse, population inversion 

and population return (also known as a Rabi cycle) are clearly seen at time 

multiples of 160 ns, when the microwave pulse is on resonance with the rotational 

transition. It is worth pointing out that maximum coherence can still be achieved 

if the frequency of the radiation is near, but not equal to, the resonance 

frequency—i.e., when |Δሺݐሻ| ൑ Ωሺݐሻ. Under such circumstances, the ensemble’s 

rate of oscillation from ݓ௘௤, to some nonequilibrium value, back to ݓ௘௤ is no 

longer described by Ωሺݐሻ but instead by Υሺݐሻ, the generalized Rabi frequency. 

(Note that Υሺݐሻ is also the length of the torque vector Υሬሬറሺݐሻ as seen in Equation 

2.39.) The coherence is then maximized at some fraction of the generalized Rabi 

cycle. 
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Figure 2.3 The Bloch variables of an ensemble of HCN molecules 

exposed to a monochromatic pulse of radiation. On the left, the 

radiation is on resonance (∆ = 0) with the J = 1←0 transition frequency. 

On the right, the detuning is equal to the Rabi frequency with maximum 

coherence still obtainable (see text for details). The Bloch variables have 

been normalized with respect to the initial population difference, weq, and 

all relaxation processes have been neglected. 

 

Perhaps a more intuitive method to visualize the transition dynamics is to 

employ the FVH representation, characterized by Equations 2.38 to 2.40. In 

Figure 2.4a, the Bloch vector rotates in the vw-plane in response to on resonance 

radiation. The concept of pi-half and pi-pulses becomes quite clear in this 

depiction as the coherence is created or destroyed, respectively, at the expense of 

the population difference. This also seen in Figure 2.4b, where the frequency of 
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the perturbation is detuned by Ω from molecular resonance. Despite the 

qualitatively different transition dynamics of Figure 2.4b, maximum coherence 

can still be achieved.  

 

 

Figure 2.4 The Feynman-Vernon-Hellwarth representation of the 

response of an ensemble of HCN molecules to a microwave pulse 

either (a) on resonance or (b) near resonance. The Bloch vector ߆ሬറሺݐሻ 

traces a closed path along a sphere of radius weq. The red line representing 

the torque vector ߓሬറሺݐሻ has been scaled to fit into this diagram. Note that all 

relaxation processes have been neglected. 

 

c) Transient emission 

At the end of the initial pi-half pulse, the Bloch equations need to be 

solved for the field free case (i.e., Ω ൌ 0) using the result from the previous 

transient absorption example as the initial boundary condition. By ignoring 

relaxation terms, the ensemble is described by 

ᇱሻݐሺݑ ൌ െݓ௘௤ sinሺΔݐᇱሻ ,

ᇱሻݐሺݒ ൌ െݓ௘௤ cosሺΔݐᇱሻ ,

ᇱሻݐሺݓ ൌ 0.

ൢ 2.46a-c
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Where ݐᇱ ൌ 0 is equivalent to ݐ ൌ ߬గ ଶ⁄  and corresponds to the time the radiation 

is turned off. According to Equations 2.46a-c, the coherence terms will oscillate at 

the detuning frequency. By substituting ݑሺݐሻ and ݒሺݐሻ into Equation 2.37, the 

induced macroscopic polarization of the ensemble is therefore defined as 

	 ሬܲറ ൌ ௘௤ݓറଶ←ଵߤ	ܰ sinሺ߱ଶଵݐᇱሻ.	 2.47

 

 As can be seen from Equation 2.47, the magnitude of ሬܲറ is directly proportional to 

the population difference ݓ௘௤, which, thanks to the use of a pulsed supersonic jet-

expansion, can be of considerable magnitude, especially for low J transitions 

(refer to §2.1.2 and §2.2.1). Furthermore, ሬܲറ will undulate at the molecular 

transition frequency ߱ଶଵ and, in turn, this oscillating net charge will generate an 

electromagnetic field. More accurately, each molecule within the ensemble is 

residing in a superposition state and is, therefore, emitting radiation at the 

characteristic transition frequency coherently with respect to the rest of the 

ensemble. It is this molecular signal—known as transient emission—that is 

detected during an FTMW experiment. Note, if relaxation terms are considered, 

the emission signal will decay with the relaxation time ଶܶ.  

 

2.3.2 Instrument Design 

The Balle-Flygare FTMW spectrometer of the Jäger group has been 

described previously in the literature [110]. The instrument setup follows closely 

the original design proposed by Balle and Flygare [77] with a few notable 

exceptions. These include orientation of the pulsed-nozzle parallel with respect to 

the Fabry-Pérot resonator axis to yield a coaxial propagation of the molecular 

beam [111] and an automated step-scan capability [112]. A brief explanation of 

several of the key components is given below and a schematic diagram of the 

instrument is given in Figure 2.5. 
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Figure 2.5 A schematic diagram of the Balle-Flygare Fourier-

transform microwave spectrometer. The components of the above 

circuit diagram are defined as follows: (1) continuous-wave microwave 

synthesizer, (2) power divider, (3) isolators, (4) single-pole-single-throw 

PIN diode switches, (5) double balanced mixers, (6) microwave power 

amplifier, (7) circulator, (8) low noise microwave power amplifier, (9) 

image rejection mixer, (10) radio frequency power amplifier, (11) 20 MHz 

bandpass filter, (12) 15 MHz bandpass filter, (13) analog-to-digital 

transient recorder, (14) personal computer, (15) Schottky diode detector, 

(16) oscilloscope, (17) 2-fold frequency multiplier, (18) 3.5-fold frequency 

multiplier, (19) 5-fold frequency multiplier, and (20)  pulse generator. The 

dashed black lines represent the radio frequencies used in the double 

superheterodyne detection that are phase-locked to the 10 MHz internal 

clock of the microwave synthesizer (1). The colored lines originating from 

#20 are the TTL trigger signals used to control the nozzle (purple), 

microwave pulse (light blue), the protective PIN diode switch (green), and 

the data acquisition (orange). 

Σ

1

2

1

3.5

1

5

1

2

3a 4a

5a 6

4b

7

4c893b

17

20

16 15

10a 11 5b 12 10b 14
13

18 19



—  45  — 
 

 

 

Figure 2.6 A typical pulse sequence used in the Balle-Flygare Fourier-

transform microwave spectrometer. The top trace represents the 

“molecular pulse” (a), which triggers the nozzle to open for only 500–800 

μs. The molecular pulse is triggered at half the repetition rate compared to 

the other triggers—this allows background scans to be measured with each 

experiment cycle. The “microwave pulse” (b) is subsequently generated, 

after a 10 μs delay, by switching two PIN switches into the low loss state 

for 0.5–3.5 μs. To protect the sensitive detection system, a third PIN 

switch is simultaneously set into the high loss state for 6–12 μs (c). Once 

the protective switch goes into low loss, data acquisition begins (d). Note, 

the top and bottom regions of each pulse trace represents that the device is 

activated and deactivated, respectively, and not the true electrical TTL 

signals produced by the pulse generator. 

(a) molecular pulse

(b) microwave pulse

(c) protective PIN switch

(d) transient recorder

time



—  46  — 
 

a) Fabry-Pérot cavity 

The premade sample mixture (discussed in §2.1.2) is pulsed into an 

evacuated vacuum chamber containing a Fabry-Pérot resonator. This particular 

type of cavity resonator consists to two spherical aluminum mirrors (diameter 26 

cm and radius of curvature 38 cm) separated by a length of 20–40 cm. The 

position of one of the mirrors can be adjusted along the resonator axis, by a 

computer controlled motor, in order to tune the cavity to generate a standing wave 

of the incident microwave radiation. Tuning is monitored by an L-shaped antenna, 

protruding from the center of the adjustable mirror, which transmits the 

microwave signal to a Schottky diode detector (#15 in Figure 2.5) and 

oscilloscope (#16; Tektronix 2220). 

The second mirror’s position is held fixed and it is conveniently mounted 

into one of the vacuum chamber flanges. The microwave radiation is coupled into 

and out of the resonator through the center of this mirror via another L-shaped 

antenna. The vacuum inside the chamber is maintained by a 12 inch diffusion 

pump (Edwards Diffstak 250), with a pumping speed of 2000 L/s, supported by a 

mechanical pump (Edwards E2M40). 

The merits of this sample cell design are significant. The quality factor, ܳ, 

of this cavity resonator—the ratio of the total stored electromagnetic energy to the 

power dissipation—is high with typical values of ܳ ~ 104 [77, 78, 82, 113]. (Note, 

this quality factor includes power loss from non-ideal coupling and imperfections 

in the aluminum mirrors.) Furthermore, the open construction of the Fabry-Pérot 

resonator is perfectly suited for studying weakly bound clusters generated in a 

supersonic jet-expansion. If this expansion proceeds parallel to the resonator axis, 

versus the original perpendicular orientation of Balle and Flygare [77], a 

significant increase in signal intensity is obtained along with a concomitant 10-

fold decrease in linewidths [100, 111]. 

The increased resolution and sensitivity of the coaxial orientation does 

come at a price: each transition is Doppler split by an amount േଵ

ଶ
 ஽. The widthߥ∆

of the Doppler splitting is given by the relation [102] 
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஽ߥ߂	 ൌ 2 ௩

௖
		,௃ାଵ←௃ߥ 2.48

 

where ܿ is the speed of light in a vacuum and ݒ is the velocity of the dopant 

molecules (i.e., HCN). Assuming that 1.77 = ்ݒ = ݒ	ൈ	103 m/s (see Equation 2.2 

on page 20), the extent of Doppler splitting encountered in this study is predicted 

to be between ∆ߥ஽ = 0.09 MHz and 0.31 MHz in the frequency region 8–26 GHz. 

The issues associated with Doppler splitting are simply complicated rotational 

spectra and the weaker lines of hyperfine structure potentially being buried by 

more intense peaks (this is especially a concern when the hyperfine splitting is 

comparable in magnitude to the Doppler splitting). 

 Another concern regarding this particular cavity resonator is the rate of 

dissipation of the stored energy. In order to protect the sensitive electronics used 

in the detection system, a single-pole-single-throw (SPST) PIN diode switch (#4c 

in Figure 2.5) is used to block the high power radiation from reaching the detector 

over a period time that includes the pulse duration and a suitable delay period. 

However, since the Fabry-Pérot resonator has a particularly large quality factor, 

the energy dissipates much more slowly and the delay period must be longer. The 

rate of dissipation is governed by the cavity decay constant, ߬௖ [77, 113]: 

	߬௖ ൌ
ொ

ఠ
ൌ ொ

ଶగజ
.		 2.49

 

More specifically, ߬௖ is the time for the stored energy to reduce to 1 ݁⁄  of its 

original value (or ~ 37%) [77, 84, 113]. For the frequency range of this study (8–

26 GHz), calculated decay times using Equation 2.49 yield ߬௖ ≈ 60 ns to ~ 200 ns. 

By far the greatest drawback to the Fabry-Pérot resonator is its extremely 

narrow bandwidth. Only a frequency range of ߭ േ ଵ

ଶ
Δ߭ can be excited, where   

ߥ߂	 ൌ ఔ

ொ
			 2.50

 



—  48  — 
 

and ߭ is the incident radiation frequency [77, 84, 113]. Equation 2.50 effectively 

limits the experiment bandwidth to Δ߭ ~ 1 MHz. Considering that rotational 

constants of molecules are typically expressed in GHz and the spacing between 

rotational lines is on the order of 2ܤሺܬ ൅ 1ሻ, refer to Equation 2.10, the majority 

of rotational spectra consist of vast desolate spans of noise. The situation is dire 

for weakly bound clusters where theoretical predictions of rotational transitions 

can be ~ GHz off.  

b) Excitation pulse 

Macroscopic polarization of the generated HeN–HCN clusters is achieved 

through a short microwave pulse of length ߬. The pulse is generated through two 

switches (#4a and #4b in Figure 2.5) located downstream from the continuous-

wave microwave synthesizer (HP 83711A). The switches are set to low loss only 

for a short period (߬ = 0.5–3.5 μs). The input power of the pulse is typically a few 

mW which, given the above quality factor, generates a field strength of ~ 180 V/m 

inside the Fabry-Pérot cavity [82, 113]. 

Besides the pulse length and power, there are other specifications of the 

microwave pulse that are set based on the detection method. For example, to 

ensure that the emission signals are properly averaged together with the correct 

phase, all microwave sources and radio frequencies (RF) are phase-locked with 

respect to a high accuracy frequency standard—for the Balle-Flygare FTMW 

spectrometer the internal 10 MHz internal clock of the microwave synthesizer is 

used. This internal reference has a stability of 1.5	ൈ	10-9 parts per day.  Note the 

additional technical considerations regarding the incident pulse given below. 

 

c) Double superheterodyne detection 

Since the transient emission signals are extremely weak—field strengths 

created by the oscillating net dipole of the sample are on the order of 1	ൈ	10-3 V/m 

[99]—a sophisticated detection system is required. This is achieved through a 

double superheterodyne detection scheme. In order to properly implement this 

method of detection, the microwave frequency coupled into the cavity is actually 
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a sideband, offset by 20 MHz from the original microwave frequency, which is 

generated using a double balanced mixer (#17 in Figure 2.5). 

Following a pi-half pulse, the transient emission signal is received through 

the same L-shaped antenna and is directed, via a circulator (#7), past the 

protective PIN diode switch (#4c) onto a low noise microwave amplifier (#8). The 

molecular emission signal can be represented by ߥ௠ ൌ ߥ െ 20	MHz ൅  ,௠ߥ∆

where ∆ߥ௠ represents the offset of the molecular signal relative to the incident 

radiation. An image rejection mixer (#9) generates an intermediate frequency (IF) 

of 20	MHz ൅  ௠, with the originalߥ ,௠ by mixing the molecular emission signalߥ∆

microwave frequency, ߥ. The IF signal is subsequently amplified (#10a) before 

transmitted through a 20 MHz bandpass filter (#11). 

The resulting IF is then heterodyned a second time with another reference 

frequency of 35 MHz (produced by component #18). This procedure likewise 

produces a second IF of 15	MHz ൅  ௠, which is also bandpass filtered at 15ߥ∆

MHz (#12) and amplified (#10b) prior to detection. Note, the prefix in the term 

superheterodyne refers to the supersonic frequency of the IF [114]. 

The 15	MHz ൅  ௠ signal is digitized by an 8 bit analog-to-digitalߥ∆

converter (A/D) transient recorder (#13) with built-in 32 k on-board memory and 

a sampling rate of 50 MHz, i.e., a sampling interval of 20 ns. The digitized time-

domain signal is then transferred to a personal computer (#14), averaged with 

additional spectra, before being fast Fourier-transformed to yield the frequency 

power spectrum. Background corrections are included in the averaging process by 

recording the emission signal with the nozzle closed (this is achieved by only 

firing the nozzle every other cycle) and changing the sign of the double down-

converted RF signal. 

 

d) Timing 

The magnificence of this architecture hinges on the precise control of 

several key events performed during each experiment cycle. This responsibility 

falls on the transistor-transistor logic (TTL) pulse generator (#20; BNC M555). A 

typical pulse sequence used in this study is given in Figure 2.6. Essentially the 
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sequence begins with a molecular pulse of ~ 700 μs length (nozzle triggered every 

second cycle) that is followed by a delay time of 10 μs before broadcasting the 

sample with the incident microwave pulse (controlled by two SPST switches; ߬ ≈ 

2 μs). During this pulse, a third, protective switch remains in the high loss state 

until the power inside the Fabry-Pérot resonator has sufficiently dissipated. This 

additional delay before the protective switch is set to low loss is usually between 

5–8 μs. At this point, the A/D transient recorder is triggered and the time-domain 

signal is acquired. 
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2.4 Chirped-Pulse Broadband Fourier-Transform Microwave 

Spectrometer 

The element that gives the Balle-Flygare FTMW spectrometer 

unsurpassed sensitivity and resolution, is the very same that limits its bandwidth: 

the Fabry-Pérot resonator. To reiterate, the spectral window observable per 

measurement on this type of spectrometer is effectively less than 1 MHz wide and 

the time required to survey a region of only ~ 100 MHz can easily take over 12 

hours using an automated step-scanning method. A significant portion of this time 

is used to tune the cavity mirrors for the excitation frequency and is sadly 

unavoidable.  

The need for broadband techniques in microwave spectroscopy is 

undeniable. One such method, akin to the transient phenomena discussed in §2.3, 

occurs when the frequency of an external radiation field is swept through 

molecular resonance in a time span comparatively short with respect to ଵܶ and ଶܶ. 

Remarkably, by simply chirping the microwave pulse a considerable amount of 

polarization is created in the sample. This process is known as fast passage and 

one of the first experimental investigations and complete theoretical descriptions 

in rotational spectroscopy was provided by McGurk et al. in 1974 [115]. In their 

study, however, the authors held the frequency of the applied radiation constant 

and instead swept the molecular resonance frequency by means of the Stark 

effect.  

Despite the groundbreaking work by the Flygare group, fast passage 

rotational spectroscopy did not actually come into fruition until ~ 30 years later. 

The reason for this lag is ascribed to several technical requirements, vital for this 

method to be properly utilized, which were only made available within the last ten 

years. These include a waveform generator capable of producing chirps spanning 

frequencies on the order of GHz in as little time as 1 μs, which must also be 

phase-stable to allow coherent signal averaging. Additionally, a high-performance 

detection system is necessary in order to collect and process the massive amounts 

of data acquired in a single chirped-pulse experiment. 
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By exploiting recent breakthroughs in digital electronics, Brown et al. 

[116] developed the first chirped-pulse broadband Fourier-transform microwave 

(CP-FTMW) spectrometer, in 2006. Several of the key components used in 

instrument design by the Pate group are as follows. An arbitrary waveform 

generator (AWG) is used to produce a 1 μs chirp initially spanning 9.5 GHz, 

which is extended via a series of frequency multipliers, low-pass filters, and 

mixers to produce a 12 GHz chirp. The excitation pulse is amplified by a high-

power 2 kW traveling wave tube amplifier to induce sufficient sample 

polarization over the spectral width of the chirp. The fast passage emission signal 

is recorded for 20 μs and phase-coherently averaged via a digital oscilloscope 

with a digitization rate of 50 Gsamples/s and a hardware bandwidth of 16 GHz. 

The phase-stability of each component is provided by an external rubidium 

frequency standard [116-118].  

With the introduction of this new broadband FTMW spectrometer, the 

Pate group have sparked a recent resurgence in microwave spectroscopy. 

Consequently, my first task as a graduate student was to build a CP-FTMW 

spectrometer. Working alongside a post-doctoral fellow in the Jäger group, 

construction and optimization on the broadband instrument was completed within 

one year and was one of the first instruments of its kind in Canada. 

 

2.4.1 Theoretical Description 

a) Fast passage 

The behaviour of a molecular ensemble in response to a chirped pulse of 

radiation can be modelled by means of the optical Bloch equations. Since the 

detuning frequency has an explicit time-dependence, analytical solutions to 

Equations 2.36a-c can be derived for fast passage, as shown by McGurk and 

coworkers [115]. However, the solutions obtained are far too convoluted and only 

limited information can only be extracted by solving the equations in the limit of 

infinite detuning or sweep rate.  

An alternative method to solving the optical Bloch equations is to use 

numerical integration procedures, such as the Runge-Kutta method, which are 
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typically available with most scientific computational software packages. By 

varying several parameters such as sweep rate, α; Rabi frequency, Ω; pulse length, 

τ; and initial detuning, ∆଴; it becomes quite clear that the transition dynamics are 

most sensitive to changes in ߙ and Ω. In fact, the ideal values of either parameter, 

relatively speaking, can be approximated by ߙ ൎ Ωଶ and, therefore, any change in 

the transition dipole moment must be matched by a more significant change in the 

sweep rate. 

To highlight this sensitivity, consider two separate chirped-pulse 

experiments: one probing the J = 1←0 transition of OCS, ߤ௭ሬሬሬሬറଵ←଴= 0.42 D, and 

another measuring the same transition but of an ensemble of HCN molecules, 

 ௭ሬሬሬሬറଵ←଴= 1.72 D (the transition dipole moments are calculated using the rigid rotorߤ

approximation). If the electric field strength of the microwave chirp is roughly 

2100 V/m, then the Rabi frequencies are approximately 2.8	ൈ	107 rad/sec (4.4 

MHz) and 1.1	ൈ	108 rad/sec (18.2 MHz), respectively. In order to optimally excite 

either species, the sweep rates must be significantly different for these two 

molecular systems.  

In Figure 2.7 the transition dynamics of both species are plotted under the 

exact same conditions. However, the sweep rate has been set to 1.73 = ߙ	ൈ	1015 

rad/sec2 (275 MHz/µs), which is optimized for the OCS transition. In both cases, 

the J = 1←0 transition frequency is swept through the 2 µs pulse at t = 1 µs. As 

seen in Figure 2.7, the pulse generates a substantial amount of coherence almost 

immediately after t = 1 µs, which persists for the remainder of the chirp. This is in 

stark contrast to the HCN plots where the greater Rabi frequency and slower 

sweep rate effectively yields coherent population inversion of the molecular 

system through rapid adiabatic passage (RAP) [102]. Despite this, the HCN 

sample does in fact become slightly polarized and, thus, will still produce a weak 

emission signal at the resonance frequency. The fact that a signal is still detectable 

under far-from-ideal conditions illustrates the strength of this technique. 

The unique transition dynamics of OCS and HCN in the above example 

can easily be seen by their FVH representations in Figure 2.8. During the chirp for 

OCS, the torque vector inverts at such a rate that ߆ሬറ cannot follow its movement 
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completely and by the end of the passage the precession of the Bloch vector 

around ߁റ happens to occur in the uv-plane. However, for HCN the interaction 

between the electric dipole and the radiation is notably stronger and the Bloch 

vector can easily follow the torque vector during its transition. As mentioned 

above, this process is RAP and is undesirable in chirped-pulse microwave 

spectroscopy owing to the loss of population difference. As a general rule of 

thumb, RAP occurs when ߙ ≪ Ωଶ [102]. 

 

 

Figure 2.7 The Bloch variables of an ensemble of OCS (left) and HCN 

(right) molecules in response to identical chirped-pulses optimized for 

the OCS J = 1←0 transition. The slower sweep rate (275 MHz/µs) 

induces maximum coherence in the OCS sample almost immediately after 
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the resonance frequency is reached at t = 1.0. The same sweep rate drives 

the HCN population into the excited J = 1 rotational state. 

 

 

Figure 2.8 A Feynman-Vernon-Hellwarth representation of the 

transition dynamics of (a) OCS and (b) HCN molecules during a 

chirped-pulse optimized for the OCS J = 1←0 transition. The paths of 

both the Bloch vector ߆ሬറ (blue) and torque vector ߁റ (red) for t = 900–1100 

ns are shown. The rate of motion of each vector is captured by the opacity 

of their 200 ns paths—e.g., the diffuse regions represent relatively rapid 

movement, as seen in (a).  

 

In order to optimize the HCN J = 1←0 emission signal the sweep rate 

must be increased to roughly 2.98 = ߙ	ൈ	1016 rad/sec2 (4750 MHz/µs), which is 

modelled in Figure 2.9. What is important to note is how the chirp still produces a 

considerable amount of coherence in the OCS ensemble, even though the sweep is 

over 16 times faster! This prediction has been confirmed by the pioneering work 

by the Pate group [117], who measured the JK = 10-00 transition of 1-propyne 

(CH3C≡CH) and monitored the response of signal intensity to various sweep rates 

from less than 6	ൈ	1013 rad/sec2 to nearly 2	ൈ	1016 rad/sec2 (10 MHz/µs to 3000 

MHz/µs, respectively). 
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Figure 2.9 The Bloch variables of an ensemble of OCS (left) and HCN 

(right) molecules in response to identical chirped-pulses optimized for 

the HCN J = 1←0 transition. The faster sweep rate (4750 MHz/µs) 

generates maximum polarization in the HCN sample almost immediately 

after the resonance frequency is reached at t = 1.0 µs. Notice that the same 

chirp for the OCS ensemble still generates coherence. 

b) Emission signal 

The emission signal resulting from a fast passage induced polarization can 

be treated in essentially the same manner as the transient emission in §2.3.1(c). 

The state of the system at the end of the chirped microwave pulse defines the 

boundary conditions for the optical Bloch equations in the field free case. If the 
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sweep rate has been optimized for the molecular system and the transition—i.e., 

 ሻ ≈ 0 at the end of the chirp—then the solutions to the Bloch equations will beݐሺݓ

identical to Equations 2.46a-c and, therefore, the polarization will also be 

described by Equation 2.47.  

In the more likely scenario where the sweep rate has not been optimized, 

then conversion of the Boltzmann population difference into coherence was either 

incomplete or resulted in coherent population inversion through rapid adiabatic 

passage. Under such circumstances, the Bloch vector will no longer oscillate in 

the uv-plane, but instead will repeatedly trace a closed, circular path along either 

the positive or negative w-hemisphere as described by: 

ᇱሻݐሺݑ ൌ െඥݓ௘௤ଶ െ ௙ଶݓ ∙ sinሺ߂௙ݐᇱሻ ,

ᇱሻݐሺݒ ൌ െඥݓ௘௤ଶ െ ௙ଶݓ ∙ cosሺ߂௙ݐᇱሻ ,

ᇱሻݐሺݓ ൌ .௙ݓ ۙ
ۘ

ۗ
2.51a-c

 

Here ݓ௙ and ∆௙ represent the final population difference and detuning frequency, 

respectively. It is easily seen that the above set of equations are identical to 

Equations 2.46a-c if ݓ௙ equals zero. Consequently, the polarization created during 

a non-ideal chirp is nearly identical to Equation 2.47 with the exception that ݓ௘௤ 

is replaced by ඥݓ௘௤ଶ െ  .௙ଶݓ

 

2.4.2 Instrument Design 

The setup of our CP-FTMW spectrometer is modelled after the design of 

Grubbs II et al. and their “search accelerated correct intensity” Fourier-transform 

microwave spectrometer (SACI-FTMW) [119]. The main difference between the 

SACI-FTMW and CP-FTMW spectrometers are: the inclusion of a Fabry-Pérot 

resonator for coupling to a second microwave source for double resonance 

experiments, a 5 W solid state amplifier, and an AWG and digital oscilloscope 

with lower sampling rates. The first point makes the SACI-FTMW instrument 

more versatile as it is essentially two microwave spectrometers in one. The 

remaining modifications were simply aimed at bringing the total cost of the 
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instrument down, as these three components are by far the most expensive. For 

example, the current cost of state-of-the-art AWGs, digital storage oscilloscopes, 

or traveling wave tube amplifiers are approximately $100k; $300k, and $1.3M, 

respectively. 

 

 

Figure 2.10 A schematic diagram of the broadband chirped-pulse 

Fourier transform microwave spectrometer. The components of the 

above circuit diagram are defined as follows: (1) microwave frequency 

synthesizer, (2) power divider, (3) 3.96 GHz PDRO, (4) AWG, (5) double 

balanced mixer, (6) 20 W solid state amplifier, (7) high-gain horn antenna, 

(8) power limiter, (9) PIN diode switch, (10) low noise amplifier, (11) low 

pass filter, (12) digital storage oscilloscope, (13) personal computer, (14) 

Rb-frequency standard, and (15) pulse generator. The dashed lines 

represent the frequency standards used to phase-lock components #1, #3, 

#4, #12, and #15. The colored lines originating from #15 represent the 

TTL signals used to control the pulsed-nozzle (purple), the AWG and 

high-power amplifier (blue), the protective PIN diode switch (green), and 

the data acquisition (orange). 
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For the broadband FTMW spectrometer in the Jäger group it was not 

necessary to include a cavity resonator, which allowed the use of a smaller 

vacuum chamber and diffusion pump. Furthermore, to increase the likelihood of 

detecting signals with low transition dipole moments, we opted to use a 20 W 

high-power solid state amplifier instead. Barring these two modifications, our 

broadband spectrometer is nearly an identical copy of the design by Grubbs II et 

al. [119] and only brief description of several essential components is given 

below. A schematic diagram of the CP-FTMW spectrometer is given in Figure 

2.10. 

 

a) Chirp excitation pulse 

The chirp pulse is generated by a 4.2 Gsample/s AWG (#4 in Figure 2.10; 

Tektronix AWG710B) that is referenced to an external 3.96 GHz signal generated 

by a phase-locked dielectric resonator oscillator (PDRO; #3). The AWG produces 

a 4 μs chirped pulse,	∆ߥ௖௛, spanning 0.2 GHz to 1 GHz. The chirped pulse is then 

mixed with a fixed frequency, ߥ, produced by a microwave synthesizer (#1; 

Agilent Technologies E8257D) via double balanced mixer (#5a). Upconversion of 

the pulse produces a chirp, ߥ േ  ௖௛, with a spectral width of 2 GHz centered onߥ∆

ߥ and a blackout window of 400 MHz (this corresponds to the range ߥ േ 200 MHz 

that is not explicitly covered by the chirp). The chirped microwave pulse is then 

amplified to 20 W by means of a high-power solid state amplifier (#6; Microwave 

Power L0818-43) before being broadcast into an evacuated chamber through a 

horn antenna.  

 

b) Sample chamber 

Instead of a Fabry-Pérot cavity, the sample cell of the CP-FTMW 

spectrometer consists of a six-way cross aluminum chamber with the molecular 

beam propagating downward, along the vertical axis. As was the case for the 

Balle-Flygare FTMW spectrometer, the sample is introduced into the chamber by 

a pulsed-nozzle and the formation of weakly bound clusters is facilitated by the 
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supersonic jet-expansion of the molecular beam (refer to §2.1.2). The vacuum 

chamber is maintained by a 1300 L/s diffusion pump (Edwards Diffstak 160) that 

is supported by a rotary-vane mechanical pump (Edwards E2M30). 

On an axis perpendicular to the molecular beam are two identical, wide-

band, high-gain, microwave horn antennas (RF/Microwave Instrumentation 

ATH7G18) used to broadcast the high-power microwave chirp (#7a) and receive 

the fast passage emission signal (#7b). The antennas, facing toward one another, 

are separated by approximately 30 cm and their perpendicular orientation relative 

to the jet-expansion significantly reduces the extent of Doppler splitting. 

Unfortunately, this also limits the amount of the time the molecular sample can 

spend in the active region of the chamber.  

By broadcasting such a breadth of frequencies into an aluminum vessel, it 

is not surprising that a series of spurious microwave signals can be detected in an 

emission spectrum. To help eliminate these artifacts, the inside of the vacuum 

chamber is lined with tiles of microwave absorbing foam. Additionally, a 

background scan is measured before an experiment to help identify spurious 

signals originating from several of the microwave electronics. 

 

c) Detection system 

The broadband fast passage emission signal following coherent excitation 

is measured via a single downconversion superheterodyne detection method. The 

detection system includes a power limiter (high-power PIN diode; #8) and SPST 

PIN diode switch (#9) that protects the low noise amplifier (#10) from the high 

power microwave pulse. The amplified emission signal, ߥ േ  ௖௛, is thenߥ∆

heterodyned by another double balanced mixer (#5b) with the same microwave 

frequency ߥ, produced by the power divider (#2). This generates an IF of |േ∆ߥ௖௛|, 

which results in folding of the rotational spectrum about the center frequency ߥ. 

An example of this process is given in Figure 2.11. In order to remove the 

ambiguity in the observed data, another spectrum must be recorded with a center 

frequency offset by +10 MHz, for example, and noting whether the peaks are 

either blue- or red-shifted. 
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Figure 2.11 A comparison of an actual rotational spectrum during a 

0.2–1 GHz chirp pulse centered on ࣇ and the “folded” spectrum 

observed after mixing down the broadband signal with ࣇ. The red and 

blue peaks correspond to transition frequencies that are less or greater than 

the center frequency ߥ, respectively. The grey area represents the blackout 

window of ߥ േ 200 MHz that is not covered by the chirp. 

 

The IF is filtered with a 4.4 GHz low pass filter (#11) to remove any high 

frequency artifacts. The final signal is detected by the digital storage oscilloscope 

(#12; Tektronix TDS6124C), which has a hardware bandwidth of 12 GHz. The 

oscilloscope both records the time domain signal for 20 μs with a digitization rate 

of 40 Gsamples/s for a single pulse and averages it with subsequent pulses during 

the course of an experiment. At the end of the experiment, the averaged time 

domain signal is transferred to a personal computer (#13) and is fast Fourier-

transformed to generate the power spectrum using scientific software. Since only 

1 GHz of bandwidth is being utilized, the resulting spectrum typically has to be 

truncated. The point-to-point separation of frequencies is only 50 kHz and is 

defined by the measurement time of 20 μs. Consequently, to obtain the high-

resolution spectra of molecular transitions the Balle-Flygare FTMW must still be 

used.  

ν+1GHzν-1GHz ν 1 GHz0 GHz
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Figure 2.12 A typical pulse sequence used in the chirped-pulse 

Fourier-transform microwave spectrometer. The top trace represents 

the “molecular pulse” (a), which triggers the nozzle to open for roughly 

300–400 μs. Next, the “chirped microwave pulse” (b) is generated, after a 

100–200 μs delay, by activating both the AWG and high-power amplifier 

for approximately 4μs. The considerably longer delay between (a) and (b) 

is necessary to allow time for the jet-expansion to move into the active 

region of the spectrometer. To protect the low noise amplifier from the 

high power pulse, a PIN switch is simultaneously set into the high loss 

state for roughly 5 μs (c). Once the protective switch goes into low loss, 

data acquisition begins (d). Note, the top and bottom regions of each pulse 

trace represents that the device is activated and deactivated, respectively, 

and not the true electrical TTL signals produced by the pulse generator. 

(a) molecular pulse

(b) chirped microwave pulse

(c) protective PIN switch

(d) digital storage oscilloscope

time
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d) Timing 

The precise control of the pulsed-nozzle, AWG, hi-power amplifier, 

protective switch and digital oscilloscope is provided by TTL signals generated by 

a pulse generator (#15; Stanford Research Systems DG645). An example of the 

pulse sequence used in the CP-FTMW spectrometer is given in Figure 2.12. The 

first TTL signal activates the pulsed-nozzle, which opens for 300–400 μs. Since 

the nozzle is located approximately 20 cm above the horizontal axis of the 

vacuum chamber, a delay of 100–200 μs is required to allow sufficient time for 

the jet-expansion to reach the active region between the two horn antennas. At 

this point the generation of the 4 μs chirped microwave pulse is initiated. A 

protective switch is used to prevent the high-power pulse from damaging the low 

noise amplifier. Approximately 1 μs after the pulse, the switch is set to low loss 

and the oscilloscope is triggered to record the molecular emission signal. 

Given the wide frequency ranges used in this instrument, it is crucial that 

all signals are phase-locked with respect to a high accuracy frequency standard. 

For this reason the 10 MHz reference signal from a benchtop rubidium frequency 

standard (#15; Stanford Research Systems FS725) is used. The Rb oscillator of 

the frequency standard has a short-term stability of less than 2	ൈ	10-11 parts per 

second. 

 

2.4.3 Optimization 

Within the last year there have been several welcomed modifications made 

to the CP-FTMW spectrometer in our group. The first was simply using a second 

microwave synthesizer (Agilent Technologies E8257D) in the superheterodyne 

downconversion step to solve the aforementioned problem of folding observed in 

our recorded spectra (see Figure 2.11). The second synthesizer is typically set to 

ߥ ൅ 1.5 GHz, but any frequency greater than ߥ ൅ ߥ ௖௛ or belowߥ∆ െ  ௖௛ willߥ∆

suffice. Caution must still be exercised, as strong transitions can still be excited 

outside the chirp spectral range and depending which side of the offset frequency 

they fall, these transitions can be folded into the measured spectrum. 
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Thanks to the tireless efforts of one particularly industrious summer 

student, the interface and programming of the CP-FTMW spectrometer have been 

greatly enhanced. This includes control of the pulse generator timing scheme, the 

oscilloscope digitization parameters, and control of the waveform editor used by 

the AWG. An additional pulse generator (Stanford Research Systems DG535) 

was also introduced to independently control the pulsed-nozzle. This has allowed 

background scans to be measured immediately before a single experiment cycle 

and for multiple of microwave chirps, or bursts, to be measured for a single 

molecular pulse. These improvements have greatly improved the S/N ratio of 

molecular signals and reduced measurement times considerably, while almost 

completely eliminating all artifacts in our microwave spectra. 
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CHAPTER 3: THE STUDY OF HYDROGEN CYANIDE 

EMBEDDED IN SMALL HELIUM-4 CLUSTERS 

USING FOURIER-TRANSFORM MICROWAVE 

SPECTROSCOPY* 

3.1 Introduction 

3.1.1 Previous Work  

Prior experimental spectroscopic studies of Kr–HCN [86, 89], Ar–HCN 

[88, 91, 121-125], Ne–HCN [90], and He–HCN [87, 126], have revealed several 

unusual properties of these van der Waals complexes. They are highly non-rigid, 

have exceptionally high DJ centrifugal distortion constants which are unusually 

sensitive to isotopic substitution, require a sixth order centrifugal distortion term 

for a satisfactory spectroscopic fit, have large amplitude bending angles, show a 

J-dependence on the 14N nuclear quadrupole coupling constant ߯௔௔ [89, 90, 124], 

and have unusually short bond lengths.  

Ab initio calculations of the potential energy surfaces for the rare gas 

(Rg)–HCN complexes by Toczylowski and coworkers [127] revealed global 

minima at the linear, H–bonded configuration and local minima near the T-shaped 

structure.  These results agree with experiment as rotational spectra of Rg–HCN 

follow that of a linear rotor, with the exception of Ne–HCN, for which Gutowsky 

et al. [90] reported transitions with K ≠ 0, thus supporting a bent equilibrium 

structure.  However, this assignment is surprising considering previous analyses 

                                                 
* The work presented here has been reproduced in part from Ref. [120] S.P. Dempster, O. 

Sukhorukov, Q.-Y. Lei, W. Jäger, "Rotational spectroscopic study of hydrogen cyanide embedded 

in small 4He clusters", submitted to J. Chem. Phys., 2012. 
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of Ar–HCN [91, 127] and the authors of Reference [90] acknowledged the 

difficulty in differentiating rotational K doublets from vibrational l-type doublets.  

To date, two experimental studies of HCN doped into helium nanodroplets 

with N > 103 were reported. Nauta and Miller [128] determined the rotational 

constants of HCN and DCN in 4He nanodroplets in the ν(CH stretch) = 1 

vibrational state, using Stark spectroscopy. Conjusteau et al. [129] measured 

microwave spectra of the ground state, J = 1–0 transition of HCN and DCN in 
4He nanodroplets and obtained approximate values for their rotational constants 

(Beff  = 1.204(3) cm-1 and 0.999(1) cm-1 for HCN and DCN, respectively). These 

studies revealed a decrease of only 19% in the gas phase rotational constant of the 

bare HCN, B0 = 1.47822183(4) cm-1 [130]. This small change in Beff is attributed 

to a breakdown of adiabatic following of the normal-fluid helium density [24, 

129, 131]. 

 

3.1.2 Theoretical Predictions 

Several theory groups have predicted the trend in Beff of 4HeN–HCN 

clusters in the range from N = 1 to N ≥ 20 using quantum Monte Carlo methods 

[59-61]. The first of these predictions was provided by Viel and Whaley [61] 

using mixed-frame rigid body diffusion Monte Carlo (RBDMC) and their 

projector operator imaginary-time spectral evolution (POITSE) implementation. 

By comparison of the wavefunction amplitudes for the 4He-HCN dimer, both 

rotating and nonrotating, the authors suggest that there is negligible adiabatic 

following of the helium density and, therefore, it cannot be the cause of the 19% 

reduction in Beff of HCN, but instead claim that this is a result of the proximity of 

the 4He–HCN ground state to the potential barrier. 

The POITSE simulation also predicts a turnaround in Beff at N = 3; which 

is followed by a gradual, relatively slow approach to the nanodroplet rotational 

constant limit of HCN—in fact, the authors claim the asymptotic value of Beff will 

not be reached until well after the first solvation shell. However, the value for Beff 

at N = 25 point is suspiciously large. Not only does it lie well above that of the 



—  67  — 
 

nanodroplet limit but, as noted by Paolini et al. [60], it is also significantly larger 

than the gas phase rotational constant of HCN. 

The same system was later studied by Paolini et al. using reptation 

quantum Monte Carlo (RQMC)—a stochastic technique able to determine the 

exact expectation values of local observables while lacking the problem of mixed-

estimate or population-control biases which have plagued other methods, like 

diffusion Monte Carlo (DMC) [132]—and determined the a-type and b-type 

transitions of 4HeN–HCN clusters [60]. Their prediction of the rotational energy of 

the a-type transitions (≈ 2Beff) as a function of cluster size N lacked a turnaround 

point—suggesting that the decoupling of helium density already begins at N ≥ 1—

and also displays a relatively sudden convergence to the nanodroplet limit at N ≈ 

12, in stark contrast to Viel and Whaley’s results [61]. While the predicted b-type 

transitions also increase in energy before ultimately disappearing at N ~ 10.  

Paolini et al. [60] also attempted to “disentangle” the entwined influence 

of B0 and the anisotropy of the He–molecule interaction potential on the dynamics 

of the solvated chromophores in 4He. By creating “fudged” molecular versions of 

HCN and OCS—the chromophore retaining its potential anisotropy would be 

calculated using the B0 of the other molecule—and comparing with the results of 

the real HCN and OCS systems, the authors were able to determine that the 

potential anisotropy of the rotor had the greatest influence on the rotational 

dynamics of HeN–molecule clusters.  

The most recent theoretical work on HeN–HCN clusters were performed 

by Mikosz et al. [59], who employed fixed-node DMC calculations to predict the 

evolution of the a-type and b-type transition frequencies with increasing N. This 

method requires knowledge of the nodal surfaces of the system’s wavefunctions. 

The authors obtained these nodal surfaces through a process involving the 

adiabatic decoupling of angular and radial motions of small HeN–HCN clusters in 

a Borne-Oppenheimer-like approximation, originally proposed by Holmgren and 

colleagues [133]. By virtue of this procedure, the authors are able to track the 

solvation dynamics of the HeN–HCN clusters and ascribe their behavior to the 
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efficiency of angular momenta coupling between the HCN molecule and the 4He 

atoms.  

The DMC predictions of Mikosz et al. [59] reveal a turnaround point at N 

= 3, comparable to the POITSE calculation [61]; however, the rotational energies 

reach the nanodroplet limit quite rapidly at N = 12. This latter point is more 

consistent with the RQMC results [60]. These competing theoretical predictions 

give greater impetus for an experimental study of the rotational, microwave 

transitions of HeN–HCN clusters.  

 

3.2 Experimental 

In order to locate and tentatively assign the a-type, J = 1–0, transitions of 

HeN–HCN clusters, the chirped pulse Fourier-transform microwave (CP-FTMW) 

spectroscopy technique [116, 117, 119] was used. The experimental set-up 

follows very closely the design by the Cooke group [119], and only a brief 

description is given. A frequency chirped pulse (200–1000 MHz, 4 μs) generated 

by an arbitrary waveform generator is mixed with the output of a microwave 

synthesizer to produce 2 GHz wide chirps in the microwave range (with 400 MHz 

gaps in the center) in the 8–18 GHz range. These pulses are amplified with a 20 

W solid state microwave amplifier and then propagated into free space using a 

wide band, high gain, microwave horn antenna.  

The chirped microwave pulse interacts with the molecular ensemble 

generated by the pulsed expansion of a suitable precursor gas mixture through a 

General Valve, Series 9, pulsed nozzle. The resulting molecular emission signal is 

collected by a second, identical horn antenna, passes through a power limiter and 

a protective microwave switch, and is then amplified by a low noise microwave 

amplifier. After down-conversion into the frequency range from 0 – 2 GHz, the 

signal is digitized at a rate of 40 Gsamples/s, transferred to a computer, averaged, 

and Fourier-transformed to yield the frequency spectrum.     
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The J = 1–0 transitions of HeN–HCN clusters with  N > 5 fall into the 

frequency range from 18 to 26.5 GHz, and a Balle-Flygare-type [77], cavity-based 

Fourier-transform microwave (FTMW) spectrometer [110] was used to search for 

and measure these lines. Additionally, this spectrometer was used to confirm the 

assignments achieved with the chirped pulse Fourier-transform microwave 

spectrometer and to study the 14N nuclear quadrupole hyperfine structure of all J = 

1–0 transitions. The cavity FTMW spectrometer usually required fewer averaging 

cycles (by a factor from 10 to 100) to achieve a signal to noise ratio comparable to 

that of the CP-FTMW spectrometer, albeit at a much narrower bandwidth of about 

1 MHz.   

Hydrogen cyanide was synthesised by mixing a potassium cyanide solution 

with concentrated sulfuric acid. Helium gas was bubbled through the mixture to 

carry the evolved HCN through a drying tube filled with calcium chloride into a 

sample cold trap immersed into a Dewar with liquid nitrogen. The collection time 

was from 1 to 2 hours. Finally, HCN was transferred to a 3 L glass bulb.   

Special attention was paid to avoid water contamination since in supersonic 

jets HCN will tend to form complexes with water rather than with helium atoms. 

The J = 2–1 transitions of the HCN–H2O dimer [71] fall in the range from 12.1 to 

12.2 GHz and were used as water indicator.  We estimated that the HCN 

contained less than 5% water vapour. The HC15N and DCN isotopologues were 

produced in a similar way, using KC15N and sulfuric acid-d2 solution in D2O, 

respectively. The DCN mixture contained about 10 to 20 % of HCN as a result of 

H/D exchange in storage and transportation containers. The gas samples contained 

from 0.002 % to 0.006 % HCN in helium at pressures between 20 to 80 bar.  

 

3.3 Results and Discussion 

3.3.1 Rotational Spectra 

The CP-FTMW spectrometer was used to find and record the initial 

spectra of the J = 1–0 transitions of the HeN–HCN clusters and its isotopologues, 
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for N = 1–5. From previous work it is known that the size of the helium clusters 

formed in supersonic jets increases with increasing sample backing pressure [35, 

40], and we used this dependence to make the N-number assignments.  

 

 

Figure 3.1 The pressure dependence of the a-type, J = 1–0, transitions 

of HeN–HCN clusters with N = 1 to 5, recorded on the broadband CP-

FTMW spectrometer. The 14N nuclear quadrupole hyperfine structure of 

the transitions is partially resolved. For the spectra on top, 250 averaging 

cycles were used. The additional splitting pattern observed in the He1–

HCN cluster is attributed to Doppler splitting 
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Figure 3.1 shows the pressure dependence of the observed spectra. The 

transitions of the smaller clusters are already observed with relatively high 

intensities at backing pressures of 20 to 30 bar. The larger clusters (N > 3) start to 

form at higher pressures of 40 to 50 bar, with usually lower intensities. The 

concentration of HCN in the sample mixture was kept constant at each particular 

sample pressure.  There is only a slight difference in intensity of the He2–HCN 

and He3–HCN transitions in Figure 3.1. This is a result of a variation of the 

excitation efficiency during the chirped excitation pulse. In the upper part of 

Figure 3.1, one can see indications of the 14N nuclear quadrupole hyperfine 

structures, which could, however, not be fully resolved at the spectral resolution 

of ~50 kHz.  

In order to nicely resolve the hyperfine structures and also to search for 

transitions of larger clusters that are expected to fall outside the spectral range of 

the chirped pulse spectrometer, our cavity FTMW spectrometer was used. In total, 

J = 1–0 rotational transitions of HeN–HCN clusters of five different isotopologues 

(i.e., those containing H12C14N, H13C14N, H12C15N, D12C14N and D13C14N) with N 

= 1 to 6 were measured. For the sake of brevity, the 12C and 14N isotopes in 

molecular formula will herein be referred to as simply C and N. 

A comparison of the high resolution spectra of He6–HCN clusters is given 

in Figure 3.2—note that the spectra of HC15N containing clusters lack nuclear 

quadrupole splitting. The J = 1–0 transition of the N = 7 cluster could only be 

measured for the DCN containing isotopologue. The search and the identification 

of other HCN isotopologues with N = 7 or even larger clusters was hampered by 

the operational limits of both spectrometers with the Balle-Flygare-type 

spectrometer having an upper frequency limit of about 26.5 GHz. Figure 3.3 

contains the high resolution spectrum of the J = 1–0 transition of He7–DCN . The 

assignment of this transition is supported by the 14N nuclear quadrupole hyperfine 

structure, which confirms the presence of one HCN molecule and a J = 0–1 

quantum number assignment. Also the sample pressure dependence and the effect 

of D2O/H2O conditioning of the sample system are consistent with this 

assignment.  
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Figure 3.2 A comparison of the J = 1–0 transition of He6–HCN 

measured on the cavity FTMW spectrometer for the most abundant 

isotopologue, HCN, and HC15N. Each transition is Doppler split due to 

the coaxial orientation of the molecular beam relative to the axis of the 

Fabry-Pérot resonator of the instrument. The number of averages per 

spectra range from 100 (HCN) to 500 (HC15N). 

 

The measured transition frequencies are summarized in Table 3.1. As 

mentioned above, all microwave transitions, except those of the HeN–HC15N 
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number assignments of the hyperfine components are given in brackets and are 

consistent with the assignment for He1–HCN, given by Drucker and coworkers 

[87].  

 

 

Figure 3.3 The high resolution spectrum of J = 1–0 transition of He7–

DCN measured on the cavity FTMW spectrometer. The inset plot 

shows the result of conditioning the gas handling system with D2O and 

H2O prior to measuring the F = 2–1 transition.  

 

  

26.265 26.266

Frequency �GHz

In
te

ns
ity

F � 1�1

F � 2�1

F � 0�1

He7�D12C14N

26.2655 26.2660

D2O Cond.

H2O Cond.



—  74  — 
 

Table 3.1 Measured frequencies of the a-type, J = 1–0, rotational transitions 

(in MHz) of HeN–HCN clusters and its isotopologues. The 14N nuclear 

quadrupole hyperfine structures of transitions of 14N containing species could be 

resolved and the components are labelled with quantum numbers F, 

corresponding to F = J + I, with I = 1 being the nuclear spin angular momentum 

quantum number of the 14N nucleus. The standard deviation of the measured 

transition frequencies are on the order of ~ kHz. 

Size      
F’–F H12C14N H13C14N D12C14N D13C14N H12C15N 

He1      
1–1 15,893.4713 15,822.5977 15,503.0129 15,440.7295 J = 1–0 
2–1 15,893.6432 15,822.7755 15,503.2902 15,441.0116 15,750.7812 
0–1 15,893.8932 15,823.0478 15,503.6964 15,441.4342  

He2      
1–1 13,571.3801 13,394.4948 12,620.8401 12,501.3434 J = 1–0 
2–1 13,571.6554 13,394.7754 12,621.2250 12,501.7433 13,378.1963 
0–1 13,572.0588 13,395.1994 12,621.8115 12,502.3454  

He3      
1–1 12,606.5287 12,370.7147 11,401.4905 11,254.0902 J = 1–0 
2–1 12,606.8616 12,371.0631 11,401.9401 11,254.5540 12,392.1024 
0–1 12,607.3586 12,371.5811 11,402.6190 11,255.2433  

He4      
1–1 13,308.7842 13,017.2524 11,855.5054 11,676.9555 J = 1–0 
2–1 13,309.1585 13,017.6388 11,855.9842 11,677.4525 13,061.1799 
0–1 13,309.7146 13,018.2192 11,856.7146 11,678.1918  

He5      
1–1 15,449.9993 15,076.9784 13,567.2371 13,337.6699 J = 1–0 
2–1 15,450.3995 15,077.3918 13,567.7447 13,338.1844 15,149.4787 
0–1 15,450.9995 15,078.0070 13,568.5055 13,338.9599  

He6      
1–1 19,629.6269 19,157.5433 17,141.0312 16,845.3198 J = 1–0 
2–1 19,630.0524 19,157.9795 17,141.5646 16,845.8631 19,243.0842 
0–1 19,630.6812 19,158.6341 17,142.3677 16,846.6767  

He7      
1–1   26,265.1494   
2–1   26,265.6117   
0–1   26,266.2997   
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3.3.2 Rotational Constants 

To visualize the trend in the rotational transition frequencies, the data from 

Table 3.1 are plotted in Figure 3.4 as function of N.  Shown is an effective 

rotational constant, Beff, which was taken as ½ of the J = 1–0 transition frequency. 

In case of hyperfine structure, Beff was determined from the frequency of the 

strongest, i.e., the F = 2–1, component.  

 

Figure 3.4 The effective rotational constants, Beff, plotted against the 

number of 4He atoms, N, of several isotopologues of HeN–HCN 

clusters. The Beff values were taken as ½ of the J = 1–0 transition 

frequency. Note that the uncertainty in each data point is much less than 

the size of the representative symbol. 
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The turnaround point in Beff for all the measured HCN isotopologues is at 

N = 3. Beyond N = 3, the rotational constants move quickly towards the 

nanodroplet value, Beff  = 1.204(3) cm-1 for N ~ 103
 [129].  The increase in Beff at N 

> 3 indicates that there is significant decoupling of the helium density from the 

rotational motion of the chromophore molecule. It is also interesting to note that 

the behaviour of the Beff is similar to that of HeN–CO clusters [40, 41]. In 

particular, the turnaround point is at N = 3 for both chromophores. Furthermore, 

the Beff for clusters with N ≥ 5 is greater than the N = 1 value, which implies that, 

for these clusters, less than the equivalent of one helium atom is rotating with the 

probe molecule. The similarity between HeN–HCN and HeN–CO clusters can be 

attributed to the similarity of some of the molecular properties and the similarities 

in the corresponding He–molecule interaction potentials. For example, the gas 

phase rotational constant of CO, B0 = 1.913 cm-1[43], also falls into the same, 

intermediate regime as HCN, following the description of Suárez and coworkers 

[39]. In addition, the He–molecule interaction potentials for HCN [134] and CO 

[135] are both weakly anisotropic with well depths of ~ 29 cm-1 and ~ 22 cm-1, 

and binding energies of ~ 9 cm-1 and ~ 6 cm-1, respectively. 

Despite the aforementioned similarities, the rotational constants of HCN 

and CO are reduced to ~ 81% and ~ 63%, respectively, when embedded in helium 

nanodroplets. The more significant renormalization of CO is attributed to the 

somewhat higher anisotropy of the He–CO interaction potential.[43] A closer 

inspection of the data from the current work reveals that the different behavior of 

HCN and CO embedded in helium nanodroplets manifests itself already in the 

smaller droplets. Figure 3.5 provides a plot of the incremental effective moments 

of inertia, ΔI = IN – IN-1, for HeN–DCN and HeN–CO calculated from the 

respective rotational constants. Since the He1– and He2–molecule clusters are 

asymmetric tops we consider the trends from N = 3 onward; the corresponding 

symmetric top rotational constants allow a more straightforward comparison. The 

negative values for ΔI in both cases reflect the increase in rotational constant from 

N = 4 on. The more negative slope for HeN–DCN is a qualitative indicator of a 
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greater reduction of helium density that is rotating with the molecule compared to 

HeN–CO, which, in turn, can be attributed to the more isotropic He–HCN 

interaction potential.  

 

 

Figure 3.5 Incremental moments of inertia, ∆I = IN – IN-1, for HeN–

DCN and HeN–CO clusters. The effective moments of inertia of isolated 

DCN, CO, and HeN–CO were calculated using data from References 

[130], [43], and [41], respectively.   
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An interesting isotope effect was noted in the trends of the Beff values of 

HeN–H13CN and HeN–HC15N. For N = 1 and 2, the Beff value for the HC15N 

containing isotopologue is smaller than for He1,2–H13CN, which is expected since 

the helium density will initially accumulate at the hydrogen side. However, from 

N = 3 on, the rotational constants of the H13CN containing clusters become 

smaller. A similar crossover in Beff is observed for the HeN–13C16O and HeN–
12C18O clusters between N = 2 and 3 [40]. This isotope effect is the result of a 

combination of factors, such as position of the substituted nucleus relative to the 

helium density and the change in rotational anisotropy with center of mass shift 

upon substitution [43, 136]. The former effect has the greatest influence for 

smaller cluster sizes [136]. In any case, isotope effects in these types of systems 

appear to be rather complex, as pointed out already by McKellar [136] for the 

case of HeN–CO. 

Figure 3.6 shows a comparison of the Beff values of HeN–HCN clusters 

determined in this study with those from simulations [59-61]. In regards to overall 

accuracy, the POITSE method of Viel and Whaley [61] provides, on average, the 

closest match to the experimental Beff values for N = 1 to 6 and reproduces the 

observed turnaround at N = 3. However, the contour of the POITSE predictions is 

somewhat different from that of the experimental values, as seen in Figure 3.6. As 

mentioned before, the RQMC predictions by  Paolini et al. [60] lack a turnaround 

in Beff. From N = 3 on, the trend in the experimental rotational constants is 

reproduced, but the Beff values from the simulations are significantly higher, 

indicating a too severe decoupling of helium density from the molecule rotation. 

The two-level node DMC predictions by Mikosz et al. [59] provide the best trend 

in the Beff values compared to experiment, but also overestimate the rotational 

constants. Mikosz et al. [59] and Paolini et al. [60] predict a rapid convergence of 

the Beff value to the nanodroplet value, that occurs within the first solvation shell, 

whereas Viel and Whaley [61] propose a slow approach. It would be nice to 

extend the current study to larger clusters and to determine if the Beff values, for 

example, overshoot the nanodroplet, as inferred in the case of HeN–CO [40]. 
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Figure 3.6 Comparison of the effective rotational constants, Beff, of 

HeN–HCN clusters from experiment with previous theoretical 

predictions. The HeN–DCN experimental data have been included as well 

to emphasize the sharp increase of Beff after N = 3. The solid markers and 

lines pertain to the work of Viel and Whaley [61] (POITSE), Paolini et al. 

[60] (RQMC), and Mikosz et al. [59] (DMC).  
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3.3.3 14N Nuclear Quadrupole Hyperfine Structure 

In “regular” semi-rigid molecules, the nuclear quadrupole hyperfine 

structures of rotational transitions and the derived nuclear quadrupole coupling 

constants are delicate probes of the electronic environment of the respective atom 

with a quadrupole nucleus. In the case of weakly bound clusters it is typically 

assumed that the electronic and structural properties of the molecular monomers 

are not altered upon formation of the weak bond—this assumption has been 

justified previously by comparing the spin-spin and nuclear quadrupole coupling 

constants in Ar–DF [94]. Under these circumstances, the nuclear quadrupole 

coupling constants contain information about the orientation of the molecular 

monomer within the principal inertial axes system of the cluster. The nuclear 

quadrupole coupling constants of the cluster are then given by the projections of 

the monomer coupling tensor onto the a-, b-, and c-inertial axes of the cluster. For 

a linear monomer ߯௚௚ ൌ ߯଴
	 〈 ଶܲሺcos 〈ሻߠ ൌ 	

ଵ

ଶ
߯଴
	 ߠଶݏ݋3ܿ〉 െ 1〉. 

Here, ߯௚௚ represents the nuclear quadrupole coupling constant of the 

cluster measured along g = a, b, and c principal inertial axes, ߯଴
	  is the coupling 

constant of the  free molecule (the 14N quadrupole coupling constants for HCN 

and DCN are –4.70789(8) MHz and –4.70396(47) MHz, respectively [62]), and θ 

is the instantaneous angle between the g-inertial axis of the complex and the 

(linear) monomer axis. The brackets indicate an average over the internal large 

amplitude bending motion of the system. A summary of the hyperfine structure 

data for 14N nucleus containing isotopologues is provided in Table 3.2. 

For a system near the semi-rigid rotor limit, the above equation can be 

solved for θ to give an effective bending angle, θeff, which contains some 

structural information. However, for a system near the free internal rotation limit, 

the  〈 ଶܲሺcos  ሻ〉 values carry information about the potential anisotropy in theߠ

angular coordinate. The 〈 ଶܲሺcos  ሻ〉 values are also influenced by the relativeߠ

mass of the monomer with the quadrupolar nucleus in the sense that a heavier 

monomer determines, to some degree, the orientation of the principal axes of the 

moment of inertia tensor.  
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Table 3.2 Summary of the 14N nuclear quadrupole coupling constants, ࣑ࢇࢇ, in 

MHz and 〈ࡼ૛ሺࣂܛܗ܋ሻ〉 values for the 14N containing isotopologues of HeN–

HCN clusters. The standard deviation in both quantities was determined to be 

0.001 MHz and 0.0003, respectively. 

Size     H12C14N     H13C14N     D12C14N     D13C14N 

He1     
߯௔௔ –0.564 –0.599 –0.913 –0.940 
〈 ଶܲሺcos  ሻ〉 0.1199 0.1272 0.1942 0.1998ߠ

He2     
߯௔௔ –0.907 –0.939 –1.293 –1.336 
〈 ଶܲሺcos  ሻ〉 0.1927 0.1994 0.2749 0.2839ߠ

He3     
߯௔௔ –1.107 –1.156 –1.504 –1.539 
〈 ଶܲሺcos  ሻ〉 0.2352 0.2456 0.3197 0.3271ߠ

He4     
߯௔௔ –1.242 –1.289 –1.610 –1.650 
〈 ଶܲሺcos  ሻ〉 0.2637 0.2738 0.3422 0.3507ߠ

He5     
߯௔௔ –1.334 –1.373 –1.691 –1.719 
〈 ଶܲሺcos  ሻ〉 0.2833 0.2916 0.3596 0.3655ߠ

He6     
߯௔௔ –1.408 –1.454 –1.781 –1.809 
〈 ଶܲሺcos  ሻ〉 0.2990 0.3089 0.3787 0.3847ߠ

He7     
߯௔௔   –1.535  
〈 ଶܲሺcos   ሻ〉   0.3263ߠ

 

 

The 〈 ଶܲሺcos  ሻ〉 values for four HeN–HCN isotopologues are plotted inߠ

Figure 3.7, together with those of the HeN–N2O [48] and HeN–HCCCN [137] 

clusters. The value for He1–HCN is close to zero, indicating nearly free internal 

rotation of the HCN unit within the complex, in accord with the low angular 

anisotropy of the He–HCN interaction potential [87]. As the number of helium 

atoms increases, the 〈 ଶܲሺcos  ሻ〉 values increase smoothly; this is interpreted as anߠ
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increasingly hindered internal rotation. For He7–DCN, there is a sharp decrease in 

this value. In the cases of HeN–N2O [48]  and HeN–HCCCN [137], 〈 ଶܲሺcos  〈ሻߠ

shows little variation with N, which is probably related to the larger mass of the 

monomers, as mentioned above. For HeN–HCN, it is interesting to note that the 

turnaround in Beff at N = 3 occurs without a concomitant feature in 〈 ଶܲሺcos   .〈ሻߠ

 

 

Figure 3.7 A comparison of P2(cos θ) values from the 14N hyperfine 

structures of rotational transitions of HeN–HCN, HeN–N2O, and HeN–

HCCCN isotopologues as a function of cluster size. The data for the 

N2O and HCCCN containing clusters are taken from References [48] and 

[137], respectively. 

�

�
�
� �

�

�

�
�
� �

�

�

�
� �

� �
�

�

�
� �

� �

� � � � � � � � � � � � � �
� �

� � � � � � � � � � � � � � � � �

0 5 10 15 20

0.5

1.0

1.5

2.0

Number of helium atoms, N

�P
2
�c

os
Θ�
�

� HeN�H12C3
14N

� HeN�
14N15N16O

� HeN�D13C14N

� HeN�D12C14N

� HeN�H13C14N

� HeN�H12C14N



—  83  — 
 

The sudden drop in 〈 ଶܲሺcos  ሻ〉 for He7–DCN could be experimentalߠ

evidence for the incremental helium density shifting from the H/D end to the N 

side of the monomer, which has been predicted by Paolini et al. [60] to occur at N 

= 6. Despite confidence in the assignment of the He7–DCN line, it is still worth 

urging caution in this interpretation, as the He7–D13CN has yet been measured to 

confirm this trend. 

It is clear, however, that the hyperfine structure of the HeN–HCN clusters 

is influenced by the helium distribution around the chromophore and, 

consequently, contains information about the incremental change in the helium 

density. However, since the structural information of these weakly bound systems 

is averaged over the large amplitude motions, it can no longer be extracted from 

experimental measurements alone. It would therefore be very insightful if the ߯௔௔ 

and 〈 ଶܲሺcos  ሻ〉 values could be calculated in theoretical simulations to beߠ

compared against these results.  

 

3.3.4 Helium Density Distribution 

The rotational constants of the HeN–HCN clusters are inversely 

proportional to the corresponding moments of inertia, and contain thus 

information about the mass distribution within the clusters. For HeN–OCS clusters 

with N = 1 to 8, it was possible to obtain qualitative information about the 

location of the incremental helium density from the moments of inertia, when 

going from N to N + 1 helium atoms. This information could be extracted by 

comparing magnitudes of moment of inertia changes and by assessing the moment 

of inertia changes of different isotopologues. The experimentally determined 

trend is in accord with that found from subsequent path integral Monte Carlo 

simulations [38]. It was hoped that the rich isotopic data available for the HeN–

HCN clusters would allow for a similar analysis. It turns out, however, that the 

moments of inertia are “contaminated” by the significant increase in superfluid 

helium fraction already at low N-values.  
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Table 3.3 The |ࢠ| coordinates of HeN–HCN determined by the Kraitchman 

substitution procedure. The coordinates are given in Å. 

N HeN–H12C14N 

 H 12C 14N 

1 1.24 0.52 0.75 
2 2.33 0.98 1.02 
3 2.86 1.22 1.17 
4 3.01 1.29 1.19 
5 2.97 1.26 1.13 
6 2.70 1.11 1.01 

  

 

Table 3.4 A comparison of the molecular radii, rs, determined from 

Kraitchman substitution analysis, of two light rotors (HCN and CO) and two 

heavy rotors (OCS and N2O) weakly bound to N 4He atoms. Note, ∆r = rs – r; 

where r is the accepted length of the molecule (or the N=N bond length in N2O) 

with values of rHCN = 2.2187(5) Å [62], rCO = 1.12834(1) Å [138], rOCS = 

2.7171(14) Å [62], and rN=N = 1.1281(8) Å [138]. The experimental Beff values of 

HeN–CO [40, 41], HeN–OCS [35], and HeN–N2O [48] were used in the same 

fashion to determine the |ݖ| coordinates for their respective nuclei. 

N HeN–H12C14N HeN–12C16O HeN–16O13C32S HeN–15N2
16O 

rs,HCN   ∆r rs,CO  ∆r rs,OCS  ∆r rs,N=N  ∆r 

1 1.99 –0.23 0.92 –0.21   
2 3.35 1.13 1.43 0.30 2.71 –0.01  
3 4.03 1.81 1.76 0.63 2.68 –0.03 1.15 0.02
4 4.20 1.98 1.98 0.85 2.65 –0.07  
5 4.10 1.88 2.11 0.98 2.63 –0.09  
6 3.71 1.49 2.09 0.96 2.81 0.10 1.12 –0.01
7   1.89 0.76 2.81 0.09 1.13 0.01
8  1.59 0.46   1.20 0.07
9     1.16 0.03
10   1.24 0.11
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The moments of inertia provide, of course, only a measure of the normal 

fluid helium density distribution (and the HCN location), and it is not possible to 

separate the effects of total mass increase, change in superfluid fraction, and 

helium density redistribution upon addition of a further helium atom. For 

example, calculation of the Kraitchman substitution coordinates [97], |ݖ|, for the 

H, C, and N atoms was attempted (see Table 3.3). For N = 2 to 6, unrealistic 

values for the C–N bond distances between 2.0 and 2.5 Å were obtained (the C–N 

distance in isolated HCN is 1.1532(1) Å [62]). 

This discrepancy is not only a problem for HCN, but appears to be the 

case for all comparatively light rotors. Table 3.4 contains the molecular radii, rs, 

determined by Kraitchman substitution analysis for two light rotors (HCN and 

CO) and two heavy rotors (OCS and N2O) seeded in small clusters of 4He. Table 

3.4 also includes the difference between these rs from the accepted molecular radii 

of the bare chromophore. 

The discrepancies presented in Table 3.4 are significant for the light 

rotors, with deviations of nearly 2 Å (or ~ 90% difference). However, a full 

propagation of error for HCN and CO accounts for only 0.1-0.2 Å. This usually 

implies that error lies within the method itself (i.e., questioning the validity of 

approximations made); however, if this were true then it would not be restricted to 

light rotors. This is clearly not the case as OCS and N2O themselves show a much 

more reasonable agreement of ~0.1 Å between the calculated rs and their actual 

radii. It appears that a detailed interpretation of the cluster rotational constants in 

terms of, for example, changes in helium density distribution and variation of 

superfluid helium fraction, awaits the completion of path integral Monte Carlo 

simulations, similar to those done for HeN–N2O [51] and (para-H2)N–CO [139]. 
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3.4 Summary 

The high resolution spectra of the a-type, J = 1–0 transitions of several 

isotopologues of HeN–HCN clusters, with N ranging from 1 to 7, have been 

measured.  A plot of the effective rotational constants, Beff, versus cluster size N 

reveals a turnaround at N = 3 and a subsequent fast approach to the 4He 

nanodroplet limit. These experimental results closely resemble those of HeN–CO 

and its isotopologues [40, 41] and is attributed to the similarities in the respective 

He–molecule interaction potentials. 

Upon comparison with previous quantum Monte Carlo simulations on the 

rotational transitions of HeN–HCN clusters [59-61], the fixed-node DMC 

predictions of Mikosz et al. [59] reproduce the contour of the experimental Beff 

versus N data well for cluster sizes N = 1 to 4, but do not capture the steep 

increase in rotational constant observed in the N = 6 and N = 7 clusters.  

Analysis of the 14N nuclear quadrupole hyperfine data suggests that the 

internal rotation of the HCN unit within the cluster becomes increasingly hindered 

upon the further addition of 4He atoms. A marked drop in 〈 ଶܲሺcos  ሻ〉 is observedߠ

for He7–DCN and potentially provides experimental evidence for a shift in the 

incremental helium density from the linear (H/D side) to the anti-linear (N end) 

configuration. This shift has been predicted to occur at N = 6 by Paolini and 

coworkers [60]. 

The isotopic substitution data of the HeN–HCN clusters measured in this 

study contain significant discrepancies of calculated C–N bond lengths of clusters 

against accepted values of the bare chromophore. A comparison of Kraitchman 

substitution coordinates between light rotors (HCN and CO) and heavy rotors 

(OCS and N2O) suggest the errors reside solely in the former class of rotors. 

Consequently, a theoretical study into the solvation dynamics of HeN–HCN 

clusters is necessary to provide a thorough analysis of the helium density 

distribution and superfluid fraction. 
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CHAPTER 4: CONCLUDING REMARKS 

The construction and optimization of a next generation Fourier-transform 

microwave spectrometer was successively completed. This chirped-pulse FTMW 

instrument, originally designed by the Pate group [116, 117] with modifications 

made by Grubbs et al. [119], exploits the transient phenomenon of fast passage, 

where the excitation frequency is linearly swept through molecular resonance on a 

time scale short compared to relaxation processes [115]. Currently the CP-FTMW 

spectrometer built in the Jäger group is capable of exciting transitions within a 

spectral window of 2 GHz.  

A brief theoretical treatment of fast passage transition dynamics using the 

optical Bloch equations was also provided. Results from numerical integration of 

Equations 2.36a-c predicted a strong dependence of signal intensity on both the 

molecular system’s Rabi frequency and the chirp sweep rate. It appears, based on 

this information, that the sweep rate must be adjusted for a particular transition 

dipole moment to optimally polarize a molecular ensemble. 

In order to study small HeN–HCN clusters, an affordable, high purity 

source of HCN gas was required. This was accomplished by locally synthesizing 

hydrogen cyanide under an inert helium atmosphere. The procedure was extended 

to produce a total of five isotopologues (H12C14N, D12C14N, H13C14N, H12C15N, 

and D13C14N) with excellent yields of 85–90%. To help limit the environmental 

impact and, of course, the workplace hazards that would ensue if HCN gas were 

released, a thorough procedure for the safe disposal of excess hydrogen cyanide 

was implemented and strictly followed.  

Finally, the high resolution microwave spectra of the end-over-end J = 1–0 

transition of small HeN–HCN clusters and their isotopologues were measured. 

These weakly bound clusters were generated in a seeded supersonic jet-expansion, 

with observed clusters ranging in size from N = 1 up to 6 (or, in the case of DCN, 

up to N = 7). The CP-FTMW spectrometer provided initial survey scans in the 
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frequency region of 8–18 GHz and correct intensity information. The latter was 

used to confirm cluster assignments using pressure dependency experiments. In 

addition to measuring the high resolution spectra, the Balle-Flygare FTMW 

spectrometer was used to search for clusters with transitions frequencies greater 

than 18 GHz.  

Analysis of spectroscopic constants revealed the first signs of microscopic 

superfluidity in helium solvated HCN. This is evidenced by the turnaround point 

in Beff versus N occurring suddenly at N = 3 and is followed by a rapid increase in 

the effective rotational constants with N ≥ 4. This suggests that a significant 

amount of decoupling of angular momenta is occurring between the helium 

density and the HCN probe. In order to better compare the experimental rotational 

constants against the quantum Monte Carlo simulations [59-61], this study needs 

to be extended to larger cluster sizes. This would give a better prediction of the 

behaviour of Beff as the cluster evolves into a solvated system. 

It is rather unfortunate that the extreme floppiness of these clusters 

prevents the extraction of accurate structural information from the rich isotopic 

data obtained in this study. That being said, the hyperfine structure analyses of the 
14N nuclear quadrupole coupling constants seem to reveal promising results. 

However, with limited experimental data available and the lack of theoretical 

work, it is difficult to properly assess their potential as delicate probes of the local 

helium density distribution. Hope now lies in the hands of theoreticians, as this 

study undoubtedly provides valuable experimental information on the rotational 

dynamics of helium solvated rotors lying in the intermediate regime. 
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