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Abstract 

Osteoporosis is a bone disease characterized by the degradation of 

mechanical competence and support of the skeleton, leading to fracture risk of the 

wrist, vertebrae, and hip. The disease is due to major decrease of mass and 

deterioration of micro-structure of bone tissues.  

In this study, bone imaging methodologies are developed to image the 

internal structure of long bones and to estimate particularly the top cortical 

thickness using zero-offset data acquired on the bone surface. The inversion 

algorithm, which requires a background velocity model, is based on Born 

scattering theory implemented with conjugate gradient iterative method to seek an 

optimal solution. In case the velocity model is multilayered, ray tracing through a 

smooth medium will be used to calculate the travelled distance and travelling time. 

Using the simulated data, the forward and adjoint operators of the inversion 

method are validated for its feasibility, accuracy, and quality of the reconstructed 

images. The values of some inversion variables, such as frequency range, 

frequency sampling rate, beam aperture, source wavelet, noise level, temporal 

sampling interval, pixel size, spacing interval of acquisition, and inversion 

regularization, are also investigated to optimize the quality of the reconstructed 



 

 

images. 

To image the top cortical layer, a good estimate of the background velocity 

can be obtained by linear regression method using the offset axial transmission 

data. The inversion algorithm is applied to image four real bone samples in vitro. 

The results demonstrate the top cortical interfaces can be reconstructed and 

correspond favorably to the CT image. The measurements show the sectional 

mean thickness (SMT) is a better and robust estimate for the average thickness of 

the cortex. The thicknesses of the bovine, cervine and ovine samples are 5, 4 and 

3 mm, respectively, which correspond to absolute errors of 1.9%, 4.6% and 3.2% 

in comparison with the CT images.   

Due to the tissue absorption, interface curvature, and local heterogeneities, 

imaging the other interfaces was less successful. However, the current imaging 

method has successfully recovered the top cortical layer, offering a potential 

diagnostic tool to estimate cortical thinning for osteoporosis assessment.  
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Chapter 1  

Introduction 

Osteoporosis is a major bone disease occurring in the aged population and 

especially the postmenopausal women. The disease causes bone thinning and 

brittle bones leading to high risks of skeleton fractures, negatively impacting the 

quality of patients’ life. To diagnose and assess the state of the disease, ultrasonic 

imaging using long bones are developed in this thesis. This chapter, which serves 

as an introduction, begins with a review of the bone structure, bone classification, 

and osteoporosis. This is followed by a description of the commonly used 

radiological techniques to diagnose osteoporosis. The two conventional measured 

parameters, bone mineral density (BMD) and cortical thickness (cTh), are 

discussed. Subsequently, clinical ultrasonic assessment of osteoporosis using 

transverse transmission method is presented. Finally a survey of the current 

ultrasonic research for bone relevant to osteoporosis is given. This includes the 

evaluation of micro-structure, estimation of structure, and properties of long bones, 

and especially ultrasound wave imaging.  

1.1 Bone tissues and osteoporosis 

Based on structure, bone tissue can be categorized as cortical (compact, 

dense) bone and cancellous (spongy) bone. Cortical bone forms the outside layer, 

or cortex of all bones, and the main body of long bones. Its functions are to 

protect and support. Due to the concentric ring structure, it has greater density and 

stronger mechanical properties than cancellous bone. Cancellous bone is mainly 
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located in the short, flat and irregular-shaped bones, and also in the epiphyses of 

long bones. It has a structure of irregular lattice network, and the thin plates 

distributed in cancellous bone are the trabeculae, between which is the red 

marrow filling the space (Tortora and Grabowski, 1993). 

Another classification of human bones is based on the bone shape. They are 

long bones, short bones, flat bones, and irregular bones. Long bones are long and 

tube-shaped including several typical appendicular parts in human body, such as 

femur, tibia, humerus, and radius. The middle part of long bones is called shaft 

and mostly made of cortical bone. Calcaneus (categorized as short bone) and 

vertebra (categorized as irregular bone) are commonly used for the osteoporosis 

and scoliosis studies; they both have the internal cancellous structure and the 

outside cortex (Tortora and Grabowski, 1993). 

Osteoporosis is one of the major musculoskeletal diseases related to mass 

loss, cortical thinning, and deterioration of bone’s micro-architecture, ultimately 

leading to typical fractures of the wrist, vertebrae, and hip (Werner, 2005; Riggs 

et al, 2004). With aging, two major effects will occur on bone tissues: 1) 

deterioration of bone matrix structures due to loss of calcium and other minerals  

and 2) loss of elastic strength in bone due to decrease in protein synthesis  

(Tortora and Grabowski, 1993). Both effects can lead to the loss of bone mass and 

bone strength respectively. Bone loss during osteoporosis will highly increase the 

probability of future fracture risk. A decrease of one standard deviation in bone 

mineral density (BMD) increases the fracture risk by two-fold in a prospective 

cohort studies (Klotzbuecher et al, 2000).  

An estimated 75 million people are affected in the Unites states, Europe, 

and Japan combined (EFFO and NOF, 1997). In Canada, approximately 1 in 4 

women and 1 in 8 men have osteoporosis, and in US, the costs have risen to CAD 

(A) 

(B) 

(C) 
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17-20 billion per year over the past decade (Jacques et al, 2002). In Europe, the 

disability caused by osteoporosis is greater than that by common cancers with the 

exception of lung cancer. The osteoporotic fracture causes greater loss in life 

quality than some of the chronic non-communicable diseases such as rheumatoid 

arthritis, asthma, and high blood pressure related heart diseases (Johnell and Kanis, 

2006). 

1.2 The conventional clinical indicator for diagnosis of osteoporosis  

Bone densitometry is the most common quantitative technique for the 

measurement of bone mass and density. The measurements can be applied to 

different skeletal sites, which can be either central or peripheral. The 

characterization of each site is unique to densitometry. Conventionally central 

densitometry applied in the central body is capable to measure the spine and 

proximal femur. The peripheral sites are commonly indicated as distal 

appendicular sites including the calcaneus, tibia, metacarpals, phalanges, and 

forearm (Bonnick and Lewis, 2002). X-ray densitometry provides in vivo 

measurement for the bone mineral content (BMC) and bone mineral density 

(BMD), two important indicators in the clinical diagnosis of osteoporosis. The 

parameters measure the amount of mineral matter in bone tissue, which can be 

expressed in gram for BMC or gram per unit length or unit area for BMD 

(Bonnick and Lewis, 2002; Langton and Njeh, 2004). 

The thickness of cortical shell is another important parameter of interest in 

bone and osteoporosis research. In an experimental study of osteoporosis using 

rats, Virtama and Kallio (1961) reported the cortical thickness of long bones was 

apparently reduced after 10-15 percent loss of bone mineral. For human, the 

cortical thickness measured from radiographs will decrease after the age of 50 as 
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compared with people of younger ages (between 20-50 years old) due to cortical 

thinning. By the age of 75, the cortical thickness will experience an average 

decrease of 39% in females and 18% in males (Evans et al, 1978). A high 

correlation was present between the cortical thickness of proximal bones and the 

mineral content of the bones (Virtama and Mahonen, 1960; Virtama and Telkka, 

1962). In particular, the cortical thickness of proximal diaphysis is highly related 

to the bone quality; a cortical thickness less than 4 mm in humerus bones will 

indicate a low BMD (Tingart et al, 2003). The reduced cortical thickness will also 

result in a substantial decrease in stiffness and strength of bone. When the 

vertebral cortical shell changes from 0.5 mm to 0.2 mm, the stiffness and strength 

will reduce by 48% and 62% accordingly. Cortical thinning has a greater 

influence than trabeculae thinning upon the vertebral stiffness and strength in the 

late stage of osteoporosis (McDonald et al, 2009).  

In 1960, Barnett and Nordin (1960) introduced the definition of femoral 

score as an indicator to diagnose osteoporosis. The femoral score is defined as the 

ratio between the thickness of the thickest cortex and the diameter of the femoral 

shaft. Bloom (1970 and 1980) demonstrated that the combined cortical thickness 

(CCT) of the medial and lateral cortices at the lower shaft of the humerus showed 

the smallest variation in the healthy female populations; therefore, they suggested 

the site had an advantage in the diagnosis of osteoporosis. Moreover, Virtama and 

Mahonen (1960) suggested the fraction of cortex area to the total area in the finger 

bones could provide an objective way to assess the state of osteoporosis. As an 

improvement of the methodology, Evan et al (1978) found that the metacarpal 

cortical area could be regarded as an index of bone mass. The areal measurement 

provides greater reproducibility compared with the linear measurement of cortical 

width. All these methods are various ways to measure cortical thinning. The 

measurements are simpler, require less expensive equipments, and correlate well 
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with BMD. 

1.3 The current radiological approaches for bone measurements 

Currently, there are two main types of techniques for the physical 

measurement of bone to assess osteoporosis: the ionizing radiation techniques 

including DEXA (Dual Energy X-ray Absorptiometry), QCT (Quantitative 

Computed Tomography), and μCT (micro-Computed Tomography), and the 

non-ionizing techniques including MRI (Magnetic Resonance Imaging) and QUS 

(Quantitative Ultrasound). 

DEXA is the most commonly used clinical method to measure BMD from 

the lumbar spine, the proximal femur, and the whole body. X-ray absorptiometry 

is a mature modality and has an outstanding reproducibility. It is able to measure 

either the areal or the volumetric bone mineral density. The measurements from 

DEXA are regarded as the gold standard (Bonnick and Lewis, 2002).  

Quantitative computed tomography (QCT) can evaluate BMD in trabecular 

bones in the vertebral bodies with high degree of accuracy and precision but 

longer scanning time. Micro computed tomography (μCT) was developed to 

investigate the trabecular microstructure in vitro with ultra-high resolution. 

Magnetic resonance imaging (MRI) is also used to measure trabecular bone and 

assess skeletal strength but is mainly restricted to in vitro studies and the in vivo 

animal studies. (Langton and Njeh, 2004) 

Because radiation-based modalities only detect the bone density and are not 

capable to provide the elastic strength information in bones, they are not very 

sensitive to the early stage of osteoporosis. It is reported that changes of bone can 

be detected on radiographs only after approximate 20-40% of skeletal calcium has 
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been depleted (Castriota-Scanderbeg and Dallapiccola, 2005). Since 1990s, the 

use of quantitative ultrasound (QUS) in the assessment of skeletal status to assess 

osteoporosis and predict fracture risk has gained considerable interest (Genant et 

al, 1996; Wuster and Hadji, 2001; Laugier, 2006; Stiffert and Kaufman, 2007).  

1.4 Clinical ultrasound in bone and osteoporosis assessment 

It was first reported by Langton et al (1984) that QUS provided valuable 

information about bone structure in clinical assessment. Their study showed that 

broadband ultrasound attenuation (BUA) was significantly different between the 

healthy subjects and patients with fractured neck of femur. 

When ultrasound travels through a bone sample, the recorded signals are 

influenced by many ultrasonic parameters such as speed of sound (SOS), 

broadband ultrasound attenuation (BUA), and the internal structure of the bone 

sample. During the process of osteoporosis, the bone tissue degenerates, the 

mineral content decreases, the microstructure changes, and the cortical thickness 

reduces. These will lead to distinct changes of bone structure and mechanical 

properties, which will affect other macroscopical physical parameters. For 

example, with the deterioration of the bone structure, the scattering and absorption 

will be reduced, leading to the decrease of bone attenuation (Funke et al, 1995, 

Langton et al, 1984, Nicholson et al, 2001, Hakulinen et al, 2006). The ultrasound 

data should reflect such changes that could be identified through the process of 

ultrasonic wave propagation. 

The ultrasonic approach has several practical advantages over traditional 

radiological techniques such as DEXA, QCT, μCT and MRI. Ultrasound 

technique is radiation-free, less costly, portable, and easy to use. It has the 
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potential to measure bone elasticity and assess cancellous microstructure, which 

are important parameters contributing to the understanding of bone quality and 

strength. 

The conventional technique to measure bone samples is the transverse 

transmission method (Langton et al, 1984; Langton et al, 1990). A pair of 

transducers is co-aligned and submerged in a water tank. Ultrasound travels from 

one transducer to another. A reference signal is recorded with no bone sample in 

the path, and the other signal is recorded with the bone sample in between. This 

technique was widely used to measure speed of sound (SOS) and attenuation 

(BUA) of bone in vitro and in vivo (Strelitzki et al, 1999; Chaffai et al, 2000; 

Wear, 2000; Jenson et al, 2006). Clinically, the measurement is done at the heel or 

the phalanges, and the transverse transmission technique has been applied to 

evaluate bone mineral density during routine health examination (Lin et al, 2001). 

Baran et al (1988) found that BUA was remarkably decreased in women 

with osteoporosis and hip fractures. The BUA measurements in calcaneus showed 

correlation with BMD at the femoral neck and lumbar spine (Young et al, 1993). 

The normalized broadband ultrasound attenuation, nBUA (BUA normalized by 

thickness) also showed strong correlation with BMD (Jenson et al, 2006). The 

SOS, another measurable quantity, shows better correlation with elastic modulus 

and strength than the BUA in a study involving 37 bovine trabecular bone 

samples (Toyras et al, 2002). However, reproducibility is a problem because a 

small difference of measurement location may result in a significant measurement 

error when using the transverse transmission technique (Chappard et al, 1997); 

therefore a more robust method is necessary to achieve more accurate and precise 

assessment of bone quality and diagnosis of osteoporosis. 
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1.5 Current ultrasonic research in bone and osteoporosis study 

To improve the assessment of bone quality, three areas have been 

considered and explored in recent research activities (Laugier, 2006; Nicholson, 

2008): 1) the study of micro-structure, micro-architecture, and micro-fracture, 2) 

the estimation of geometrical structure and acoustic properties of long bones using 

bulk and guided waves, and 3) ultrasound wave imaging and tomography of long 

bones. 

1.5.1 Study of micro-structure 

The transverse transmission method renders a global measurement of the 

bone samples through which ultrasound propagates. The method lacks the 

resolution to unfold the micro-structural information of cancellous bones. The 

understanding of the micro-structural properties of cancellous bone will lead to a 

more accurate diagnosis and prediction of bone quality. 

Ultrasound backscattering provides a means to study the micro-architectures 

of cancellous bone samples. By analyzing the interaction between ultrasound 

waves and trabeculae, the ultrasound echoes are used to acquire the structural 

properties of the trabeculae. The current research literature has demonstrated that 

there is a strong correlation between the backscatter coefficients from the 

cancellous framework and micro-structural parameters. Wear (1999) measured 16 

human calcaneus trabeculae bone samples and compared with the long thin 

cylinder model of small radii approximate to the ultrasonic wavelength. Wear 

found agreement between the experimental results and theory, and the backscatter 

coefficient was proportional to cubic frequency at lower frequencies near 500 Hz. 

Chaffa et al (2002) studied 15 human calcanei from cadavers with age ranging 

between 75 and 90 years old and reported that the broadband ultrasound 
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backscatter (BUB) was strongly correlated with BMD (r = 0.89). Ta et al (2005) 

studied the in vitro and in vivo data from bovine tibia and human calcaneus. Their 

study showed that the BSC was a non-linear function of frequency and the data 

could be explained by a cellular model. Hakulinen et al (2006) reported that the 

BUB shows approximately a linear relationship with the structural properties such 

as BV/TV (trabecular bone volume fraction), SMI (structural model index, which 

is related to the predominant shape of trabeculae), TbTh (mean trabecular bone 

thickness) at the center frequency of 5 MHz. 

Using very high-frequency (20 - 400 MHz) focused ultrasound techniques, 

the scanning acoustic microscope (SAM) can be used to investigate and image the 

micro-structures of the bone samples, especially cortical samples (Katz and 

Meunier, 1993; Bumrerraj and Katz, 2001; Hasegawa et al, 1994 and 1995; 

Zimmerman et al, 1994; Raum et al, 2004). Katz and his associates (Katz and 

Meunier,1993; Bumrerraj and Katz,2001) used SAM to survey the structure of 

bone surface and interior and was able to obtain the resolution as low as 25 µm 

for human cortical and cancellous bones. Hasegawa et al (1994 and 1995) used 

the acoustic microscope to measure the longitudinal and shear acoustic velocity 

for bone structure such as the anisotropy ratio (the longitudinal elastic coefficients 

versus transverse elastic coefficients) and bone volume. Raum et al (2004) 

assessed the acoustic impedance of embedded cortical bone samples and 

demonstrated that higher frequencies such as 50 and 100 MHz used in SAM were 

more sensitive for the variation of bone structural and anisotropic elastic 

properties. The SAM techniques are implemented in vitro and its goal is mainly 

focused on the study of bone micro-structure and the relationship between bone 

elastic properties and bone macroscopical physical parameters such as SOS and 

BUA.  
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1.5.2 Estimation of the structural and acoustic properties of long bones 

Besides focusing on small samples of flat and irregular bones, the 

mechanical strength and elasticity of long bones should be significantly 

considered to estimate bone qualities and predict fracture. Therefore the study of 

long bone cortex becomes a rapidly important topic on the osteoporosis and 

fracture research. 

Different from the transverse transmission methods, ultrasonic 

measurements using an axial transmission technique have been developed to study 

the cortical shell of long bones such as femur and tibia (Muller et al, 2005). The 

technique has the source and receiver transducers located on the same side of the 

bone and the time signal is recorded at the same source location (zero-offset case) 

or several locations with the transducers moving away from the source at a 

pre-determined spatial interval (offset case). The propagation of ultrasound 

through long bones will be affected by the mechanical properties of the bone 

tissue such as elasticity, porosity, and internal micro-structure. The temporal (time) 

and dynamic (amplitude) characteristics of the recorded echoes will be dictated by 

the physical properties of the material under investigation. Also, the 

cortical/marrow interface has a very strong reflection coefficient, and the energy 

will be reflected to provide more information about the bone structure and 

properties.  

Due to the longer propagating paths, different ultrasonic wave types are 

possibly generated in long bones. There are two main types of ultrasonic waves 

propagating in long bones: body waves (bulk waves) and guided waves. Body 

waves have well defined ray paths and arrival times, which can be determined by 

ray tracing (Lay and Wallace, 1995). Le et al (2010) has successfully used 

seismological techniques including waveform simulations and travelling time 
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calculations to investigate the nature of ultrasound wave propagation in long 

bones at small source-to-receiver distances and times. Their experiments confirm 

the existence of reflected and converted body waves originating from wave 

interaction at the internal interfaces of a bone structure by means of a simple, 

horizontally layered bone model. The first arriving signals (FAS) of three 

frequencies (200 KHz, 1.0 MHz, and 1.25 MHz) were used to measure the 

velocities of 41 fresh human radii. Their study shows that the high frequency 

measurements have better correlation with bone properties while the low 

frequency (200KHz) measurements are more sensitive to cortical thickness 

(Muller et al, 2005). Camus et al (2000) studied the lateral wave (head wave) and 

found that it had a potential to evaluate the mechanical properties of cortical bone 

using arrival time and velocity. Zheng et al (2007 and 2009) used multiple 

reflection echoes in the zero-offset case to estimate nBUA of cortical bone 

without recourse to the additional reference signals.  

Guided waves are usually generated between bounded interfaces such as in 

the cortex of long bone. Guided waves are generated by the superposition of the 

reflections and multiples of the compressional waves, shear waves, and the 

converted waves within the cortical layers. Since the interfaces are strong 

reflectors (bounded above by soft tissue and below by marrow), the energy 

buildup by the summation of these waves is usually strong, allowing the guide 

wave modes to travel farther distances within the cortical layer. Guided wave 

analysis usually involves dispersion curves, which describe the change of phase 

velocity with frequency. Nicholson et al (2002) found that the velocity of lowest 

order Lamb asymmetrical (A0) mode was significantly different between healthy 

and osteoporotic subjects in a pilot study; Bossy et al (2002 and 2004) and 

Moilanen et al (2007a and 2007b) used thin plates to mimic wave propagation in 

cortical bone for two-dimensional (2D) and three dimensional (3D) cases, and 
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used the Lamb wave mode to study the change of the apparent velocity with 

cortical thickness; Lefebvre et al (2002) reported that Lamb wave could be used 

to retrieve the Young’s modulus with low frequency transducer; Moilanen et al 

(2004, 2006 and 2007) demonstrated that low frequency guided waves were 

sensitive to phantom thickness and suggested the use of guide waves to evaluate 

cortical thickness for the diagnosis of osteoporosis; Protopappas et al (2006) 

developed a two-dimensional (2D) bone model to mimic bone healing and 

observe the ultrasound guided wave propagation, especially the change of 

dispersive characteristics during the healing process. 

1.5.3 Ultrasonic wavefield imaging 

Wavefield imaging is widely used in geophysics to explore the Earth’s 

interior and extract material properties such as velocity and reflectivity (Weglein, 

1982; Miller et al, 1987; Beylkin and Burridge, 1990). Youzwishen (2001) and 

Youzwishen and Sacchi (2006), whose works have provided guidance to the 

development of this thesis, studied a 2D acoustic, constant density 

migration/inversion seismic problem using Born approximation and tested 

different regularization constraints including the edge-preserving constraints using 

simulated data.  Similar principles can be applied to image and characterize 

bones.   

Conventional medical ultrasound considers energy reflecting in the direction 

of incidence. Wavefield imaging makes use of waves travelling and scattering in 

all directions to image the bone interior, which leads to more accurate image 

reconstruction. Bone imaging research uses the transmission data or reflection 

data or the combination of both to reconstruct the cross-sectional image of long 

bone shafts (Lasaygues and Lefebvre, 2001). 
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Greenleaf (1981 and 1983) was the first to use ultrasound computer-assisted 

transmission tomography to image breast tissue. Using the arriving times and 

amplitudes of the transmission signals, they managed to estimate the 

two-dimensional distribution of acoustic velocity and attenuation in the scanned 

planes of the breast. Devaney (1983) applied diffraction tomography with Rytov 

approximation to develop the filtered back-propagation algorithm in computer 

simulation, and obtained a significant improvement in image quality comparing to 

the time and amplitude imaging method. Using the transmission signals, acquired 

by a 20-cm-diameter solid-state ultrasound ring array with 256 active and 

non-beamforming transducers, Pratt et al (2007) combined the time-of-flight 

method and 2D acoustic waveform inversion to image breast tissues and recover 

spatial distribution of sound speed and attenuation distribution. Duric et al (2005) 

developed a prototype ultrasound tomographic scanner to study breast imaging 

using phantoms and a cadaver breast. They used a pair of transducers to simulate 

up to 360 transmitter locations and 1600 receiver positions. Images of reflectivity 

and sound speed were successfully reconstructed from the scanned phantom data. 

They concluded that it was possible to image reflectivity with a 0.4 mm spatial 

resolution and 5 m/s variation in sound speed. The group went further to build a 

clinical prototype system and performed in-vivo studies (Duric et al, 2007). Their 

preliminary result demonstrated the feasibility to image human breast tissues 

using reflection and transmission ultrasound data. The reconstructed images had 

an in-plane 0.5 mm spatial resolution in reflection and 4 mm in transmission. 

Imaging hard tissues such as bone is a challenging problem. Bone has high 

acoustic impedance as compared to neighboring soft tissue and marrow. When 

ultrasound travels from the source, through the bone samples, and to the receiver, 

the wave front is highly distorted as the wave crosses the tissue/bone or 

bone/marrow boundaries. A straight ray approach, as normally assumed for soft 
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tissue tomography, through the bone sample is not valid and Snell’s law dictates 

the amount of refraction at the interfaces (Shearer, 1999).  

The research group led by Lasaygues was perhaps the first and leading 

group to tackle the inverse wave scattering in bones with promising results. Using 

a 500 kHz nominal frequency and 180 projections, Lasaygues and Lefebvre (2001) 

reconstructed in vitro a human L2 lumber vertebra and a cortical human femur (60 

projections applied) using reflected ultrasound tomography. Due to the strong 

contrast of bone with the soft tissues, low frequency ultrasound was used to 

improve the Born approximation, which in turn degraded the image resolution. 

They used a Papoulis super-resolution algorithm (Papoulis and Chamzas, 1979) to 

extend the spectrum of the signal beyond the frequency range available to enhance 

the image resolution. Multi-step compensation technique was also developed to 

enhance the reconstructed images, where the reflection tomography provided the 

information of the shape of the object and the transmission tomography was used 

to invert for the spatial variations of the inner structure (Ouedraogo et al, 2002; 

Lasaygues et al, 2004). Wavelet analysis was also applied to the transmitted 

signals to remove noise and enhance signal-to-noise ratio (Lasaygues et al, 2004; 

Lasaygues, 2007). Lasaygues et al (2005) used the ultrasonic tomography 

techniques to image the cross-section of human femur shafts and estimate the 

cortical thickness of long bone shaft in children using a 2D-ring antenna and 

mechanical and electronic steering systems (Lasaygues, 2006). The difference 

between the mechanical and acoustical measurements for thickness was mostly 

less than 0.5 mm (Lasaygues, 2006). Further Lasaygues and Le Marrec (2008) 

applied the intercepting canonical body approximation (ICBA) to solve imaging 

problem involving material with high impedance contrast with the surrounding 

medium. The ICBA method requires a previously determined model to seek the 

analytical solution of the forward problem, which is then applied to the iterative 
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inversion procedures. They found better inversion results than the classical 

reflection tomography method using simulation data for infinite elastic cylindrical 

tubes (Lasaygues and Le Marrec, 2008).  

1.6 Objective of the thesis 

The objective of this thesis is to develop a Born-based inversion technique 

to reconstruct the internal structure of long bones in vitro. The reflection data has 

been simulated or acquired on the bone surface by the axial transmission 

technique with zero offset. I use Born scattering and inverse theories to 

reconstruct 2D bone images and recover physical parameters of long bones such 

as SOS, interface locations, and cortical thickness. Using the simulated data, the 

feasibility and robustness of the inversion methodologies has been examined and 

the results have been used to improve the accuracy and quality of the 

reconstructed images. Finally, the inversion procedure has been applied to 

reconstruct real bone images and the recovered cortical thickness has been 

compared with measurements from X-ray CT images.   

1.7 Summary of the thesis 

In Chapter 2, I focus on wave propagation in long bones. Firstly, the elastic 

wave equation is derived; the acoustic wave equation is discussed under the 

zero-offset case where source and receiver are at the same location and there is no 

mode conversion. Secondly, I derive the Born approximation to the acoustic wave 

equation for the constant and variable background velocity. The equation thus 

derived forms the forward modeling equation for the scattered wavefields. To 

enhance the computation speed, the concept of beam aperture is introduced to 
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restrict the mathematical operations to a limited set of pixels within a fan window. 

Lastly, I describe some fundamentals of ray tracing algorithm in the varying 

velocity fields, which is used to compute travelled distance and travelling times.  

Inversion is described in Chapter 3. Starting from the ill-posed problems, 

the chapter reviews the regularized least squares methods to solve linear system of 

equations. To improve the efficiency of the computer resource, this leads to the 

discussion of using conjugate gradient iterative algorithm to seek least squares 

solutions. The forward and adjoint operators for the scattered wavefields are 

derived. The adjoint operator is the inversion operator for the reconstructed image 

given the observed data. Lastly the imaging resolution and quality are considered 

for the ideal and real cases. 

In Chapter 4, I test the accuracy and robustness of the algorithm using the 

synthetic data set. The data sets are simulated by the simple convolution method 

and finite-difference (FD) method. I also investigate how the variations of some 

inversion parameters and configurations might affect the reconstructed images. To 

this end, the optimal parameters thus derived are used to invert the FD data set. 

In Chapter 5, the inversion algorithm is applied to real bone data. Estimate 

of SOS through cortex of long bone using offset axial transmission technique is 

discussed. The SOS measurements thus derived are used for the inversion. Three 

bone data sets are inverted for the thickness of the top cortical layer. The 

measured thickness is compared with the measurements from the CT images. The 

chapter is concluded by presenting a full inversion for all interfaces of a bone data 

set.  

Chapter 6 concludes the thesis with further comments for future directions. 
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Chapter 2  

Wave propagation in long bones 

The propagation of ultrasound in a medium is governed by the wave 

equation, which is a system of second order hyperbolic partial differential 

equations. The equations are derived from the Newton’s second law and Hooke’s 

law, which relates the stress and strain. In this chapter, I derive the general 

solution to the wave equation. Since the problem at hand is a zero offset case 

where the transmitter and the receiver are at the same location, and normal 

incidence is assumed, there is no mode conversion. Only the acoustic wave 

equation is of our interest in this thesis. Therefore, I discuss further the solution of 

the acoustic wave equation, the Born approximation to the acoustic wave equation, 

and ray tracing.    

2.1 General wave equation and the solutions 

The wave equation governs the propagation of wave disturbance and its 

solution describes the motion of mechanical waves in a medium. Consider an 

infinitesimal isotropic, homogenous, and elastic solid cube at a point P(x,y,z), the 

displacement vector u(u,v,w) at the point P is governed by the following system of 

equations (Fung, 1977) 
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where λ and µ are the lamé constant and rigidity respectively, t is time, and ρ is 

density. The divergence θ and Laplacian 2 operators are  
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where i, j, k are the unit vectors along the x, y and z directions. The motion can be 

regarded as a combination of two kinds of motion (Ewing et al, 1957):  

1) the equivoluminal motion (divergence free), i.e., 0 u  and 

2) the irrotational motion (curl free), i.e., 0 u . 

With the introduction of a scalar potential φ and a vector potential Ψ(ψ1, ψ2, 

ψ3), the displacement vector can be described by 

   u    (2.3) 

and 



19 

3 2

31

2 1

    ,

     ,

    .

u
x y z

v
y z x

w
z x y

 
  
  


  
  

 
  
  

 



 

 

(2.4a) 

(2.4b) 

(2.4c) 

By substituting (2.4) into (2.2b), we obtain 

3 32 1 2 1

2 22 2 2 22 2 2

3 32 1 2 1

2 2 2

2 2 2

2 2 2

2

( ) ( ) ( )

    .

u v w

x y z

x x y z y y z x z z x y

x y z x y x z y z x y x z y z

x y z



      

      

  



  
  
  

         
        
           

      
        
              

  
  
  

   

 

 

 

 

(2.5) 

Replacing θ by
2  in (2.1a) yields 

2
2

2

2
23 2

2

2 3 2

2 22
2 23 2

2 2 2

2 2

3 2

2

2

( )   

( ) ( ) ( )

( )     ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )      ,

(

 
   

 

   
    

    

 
   

  

      
      

       

 
   

 

 

 

u
u     ,

t x

t x y z x

x y z

x t y t z t x x

y z

x t


   

 
   

 


 
       

   




2 2
23 2

2 2

2 2

3 2

) ( ) ( ) [( 2 ) ]

( ) ( ) .

   
    
    

 
   
 

y t z t x

y z

 
    

   

 

 

 

 

 

 

 

 

(2.6) 



20 

Similarly for (2.1b) and (2.1c), 
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For (2.6), (2.7), and (2.8) to be valid, the following relationship must be satisfied: 
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Eq. (2.9a) describes a curl-free motion travelling with a speed α. The wave is 

known as a compressional, longitudinal, primary or P-wave. The particle motion 

of compressional wave is parallel to or along the direction of wave energy 

propagation. The second motion given by (2.9b) is a divergence-free motion and 

travels with a velocity β. The particle motion defined by the second part of (2.3), 
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i.e., , is perpendicular to the direction of energy propagation. This motion is 

known as shear, rotational, transverse, distortional or S-wave (Ewing et al, 1957).  

2.2 Acoustic wave equation 

When an ultrasound beam is incident obliquely upon an interface between 

two solids, waves will be reflected and refracted, and partition of energy will take 

place at the interface. Mode conversion is also possible, i.e., the conversion from 

longitudinal wave to shear wave or vice versa. These waves are known as elastic 

waves and the wave equation governing their propagation in solids is known as 

the elastic wave equation (Brekhovskikh, 1980). Shear waves cannot propagate in 

fluid where µ=0. The wave that travels in fluid is compressional in nature and 

known as acoustic wave. Similarly, the acoustic wave equation governs the 

propagation of an acoustic wave field.   

Solving an acoustic wave equation is much easier than the elastic wave 

equation because the latter has the compressional and shear wave components 

coupled with each other. Figure 2.1 illustrates a photograph of a sectioned bovine 

tibia. In the mid portion of the long shaft, there are three layers: cortical bone, 

marrow, and cortical bone. The layers are not perfectly stratified but as a first 

approximation, the structure can be modeled by three layers (Le et al, 2010). 

Figure 2.2 shows an experimental setup for data acquisition. More details about 

the experimental setup will be provided later in Chapter 5. The transducer is both 

a transmitter and a receiver. We consider acoustic wave fields in my study based 

on the following reasons. Firstly, we only consider the zero-offset case, i.e., the 

transmitter and the receiver are at the same location on the bone surface. Secondly, 

we consider the mid shaft of the long bone where the layers tend to be more flat 

and parallel. In this case, the normal incidence condition can be assumed, i.e., the 



22 

ultrasound beam goes straight down into the bone and reflects straight back from 

the interface, thus mode conversions can be neglected in the wave propagation. 

Lastly, the experimental data are genuine with signals of the same polarity across 

the records, which indicate those motions vibrating in the same direction of 

ultrasound wave propagation. The timings of these echoes are consistent with the 

compressional wave velocities. If a shear wave exists, its contribution is 

insignificant. Based on these reasons, the use of acoustic wave equation is 

reasonably justified. 

  

Cortical bone 

Marrow 

Cortical bone 

Figure 2.1  A photograph of a sectioned long shaft of a bovine tibia, which was 

cut in half along the axial direction. 
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Consider an acoustic wavefield u(x,s,t) in a heterogeneous medium 

satisfying the inhomogeneous acoustic wave equation with an impulsive point 

source (s,t)  
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where x is an arbitrary point in the wavefield, s is the position of the impulsive 

source, and c(x) is the space-dependent wave speed. By taking the Fourier 

transform, we rewrite Eq. (2.11) as an inhomogeneous Helmholtz equation:  

2
2

2
( , , ) ( , , ) ( )

( )
U U

c


      s x s x x s

x  
(2.12) 

Figure 2.2  A photograph of the experimental setup and transducer used to 

acquire zero-offset data. 
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where 

( ) ( ) i tU u t e dt






 
 

(2.13) 

is used and  is the radial frequency. 

2.3 Born approximation 

The Born approximation (BA) was first introduced by Taylor (Taylor, 1952) 

to solve scattering problems of electromagnetic waves. Since then, BA has been 

intensively applied to scattering problems in the fields of quantum mechanics and 

earth physics. In geophysics, the theory has been used to image the earth’s interior 

using seismic data. The topics in this area are usually known as seismic migration 

(Yilmaz, 1987). The application of BA to bone imaging was pioneered by 

Lasaygues (Lasaygues and Lefebvre, 2001; Lasaygues et al, 2005; Lasaygues, 

2006) and is still in its infancy. Since BA forms the foundation of the bone 

imaging described in this thesis, it deserves a detailed description of the 

mathematical derivation. The presentation below follows closely the works by 

Miller et al (1987). 

2.3.1 Born approximation of acoustical wave equation 

We first assume that the velocity field is a combination of background 

velocity c0(x) and perturbation velocity profile p(x), 

2 2

0

1 1
( )

( ) ( )
p

c c
  x

x x
 

(2.14) 

where p(x) is also called the acoustic scattering potential of the medium, 



25 

describing the scattering strength of the perturbation between the actual medium 

and background medium at each point. Replacing c(x) in (2.12) by the 

background and perturbation velocity fields, we arrive at 

2 2

2

0

1
( , , ) ( ) ( , , ) ( )

( )
U p U

c

 
      

 
s x x s x x s

x
   

 

(2.15a) 

or 

2
2 2 2

2

0

( , , ) ( , , ) ( ) ( ) ( , , )  .
( )

U U p U
c

      s x s x x s x s x
x


    

 

(2.15b) 

We define the Green’s function G0(x,y,ω) to satisfy the nonhomogeneous 

Helmholtz Eq. (2.12) for the background velocity c0(x)   

2
2

0 02

0

( , , ) ( , , ) ( )  
( )

G G
c


      x y x y x y

x
 

(2.16) 

where x and y are two arbitrary points in the wavefield space. With the 

introduction of the Green’s function G0, the solution of the wavefield U can be 

rewritten as an integral equation (Morse and Feshbach, 1953) 

2 3

0 0( , , ) ( , , ) ( , , ) ( ) ( , , )  .U G d xG p U  s y s y x y x s x    
 

(2.17) 

The wavefield is governed by two parts: the first part arises from the background 

medium and the second part is due to the scattering perturbation p(x). Eq. (2.17) is 

known, in a variant form, as Lippmann-Schwinger equation (Lippmann and 

Schwinger, 1950). According to the Lippmann-Schwinger equation, if the integral 

equation has two spatially separate interacting parts resulting from the stable 

background and the small disturbance, then we can decompose the solution into 

two corresponding components. These two components are 1) the unperturbed 
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component corresponding to stimulation from the stable background, i.e., the final 

state of the system without the perturbation, and 2) the scattering component 

caused by the small disturbances. We can express these two components in a 

single equation using the integral Eq. (2.17). If we take the Laplacian of (2.17), 

we will be able to recover Eq. (2.15b). 

Let D(s,y,ω) be the scattered wavefield travelling from the source, s to the 

scatterer, x and back to the observation point, y due to the scattering potential p(x) 

0

2 3

0

( , , ) ( , , ) ( , , )

( , , ) ( ) ( , , )  .

D U G

d xG p U

 

 

s y s y s y

x y x s x

  

  
 

(2.18) 

To be more specific, the observed wavefield at the receiver position y = r is 

related to the potential p(x), i.e., the second term of (2.17) 

2 3

0( , , ) ( , , ) ( ) ( , , )  .D d xG p U s r x r x s x   
 

(2.19) 

Eq. (2.19) is a nonlinear equation because U(s,x,ω) is dependent on the scattered 

potential p(x). If the scattering perturbation is small, we can approximate the total 

field U(s,x,ω) by the background field G0(x,y,ω). By doing so, Eq. (2.19) can be 

linearized as    

2 3

0 0( , , ) ( , , ) ( ) ( , , )  .D d xG p G s r x r x s x   
 

(2.20) 

Eq. (2.20) is a single-scattering approximation of the acoustic Helmholtz 

equation and only holds when the scattering potential field is small. When the 

background velocity is constant, i.e., c(x) = c0, the equation is known as Born 

approximation (BA). When the velocity is spatially varying, the equation is a 

distorted-wave Born approximation (DWBA) (Taylor, 1952). Eq. (2.20) denotes 

the impulse response for the scattered wavefield D(s,y,). With a source function 
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s(t), Eq. (2.20) becomes 

2 3

0 0( , , ) ( ) ( , , ) ( ) ( , , )D S d xG p G     s r x r x s x  (2.21) 

where S() is the Fourier representation of the source function.  

Generally the asymptotic approximation will be used to evaluate the Green’s 

function, G0. For simple structures, G0 has a simple analytic expression of a plane 

wave 

( , )

0 ( , , ) ( , ) jG A e   x yx y x y  (2.22) 

where A(x,y) is the amplitude and τ(x,y) is the time it takes the ultrasound to 

travel from x to y. Beylkin (1985) provides an explicit form of the Green’s 

function based on the asymptotic expansion of the Hankel function 
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(2.23) 

where n is the number of dimension, k is the wave number and k = ω/c. The 

travelling time  in a constant velocity background, c0(x) is  

0

 ( , )  
c




x y
x y

 

(2.24) 

and the amplitude, A(x,y) is explicitly given by  

1
( , )  

4
A





x y

x y
 

(2.25a) 

for the 3D (n = 3) case or 
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 (2.25b) 

for the 2D (n = 2) case where k = ω/c0. Further,  

( , , )

0 0( , , ) ( , , ) ( , , ) jG G A e    s x rx r s x s x r
 (2.26) 

where 

( , , ) ( , ) ( , ) A A As x r s x x r  (2.27a) 

and 
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 ( , , ) ( , )+ ( , )=  .

c
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x r s x
s x r s x x r  

 

(2.27b) 

Using Eq. (2.26), Eq. (2.21) can be rewritten as 

2 3 ( , , )( , , ) ( ) ( , , ) ( )  .s x r
s r s x r x

    
jD S d xA e p

 
(2.28) 

Eq. (2.28) can be discretized for computational purpose. For a 2D problem, the 

discretized form of the scattered wavefield is 

( , , )2( , , ) ( ) ( , , ) ( )  
s x r

s r s x r x
   

    i kj

i i i k k

k

D S x z A e p

 
(2.29) 

where x and z are the cell or pixel dimensions of the model matrix.  

Eq. (2.29) is an important result and forms the forward operator of the 

inversion procedure. It reveals the relationship between the recorded scattered 

wavefield, D(s,r,ω) and the scattered potential, p(x). The recorded wavefield is 

also related to many inversion parameters, which we explore further in Chapter 4.   

According to Eq. (2.29), the scattered wavefield, D(s,r,ω) is computed by 
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summing the contribution of the scattering potential at all pixel locations, xk 

below the source-receiver plane. To reduce computational cost, we suggest 

limiting the computation to a region, which we call an aperture. The pixels which 

fall within the aperture will be contributed to the scattered wavefield computation. 

Such an aperture definition has physical meaning, which is related to the 

transducer’s radiation pattern. For a piezoelectric transducer, the transmitting 

pattern, or known as radiation pattern, has a symmetric lobe with the maximum 

transmitting strength at the normal direction, which is the vertical direction 

perpendicular to the transducer’s active surface. The transmitting strength 

decreases as the beam direction is deviated away from the normal. Usually, an 

aperture of ±60° covers a transmitting region, beyond which the transmitting 

energy is very insignificant. The dominant transmitting strength lies within ±40°. 

An example of the radiation pattern of a dual-head P-wave composite transducer 

is given in Chapter 5 (Figure 5.1C). By reciprocity property, the receiving 

sensitivity pattern of the transducer is similar. Since the region outside the 

aperture will not be insonified by the beam and therefore the assumption that the 

pixels within the aperture contributed mainly to the recorded scattered response is 

justified. 

2.3.2 A pictorial illustration of the scattering formalism 

Wave propagation in bone is a complicated phenomenon. Figure 2.3 

illustrates a snapshot image at 4 μs of ultrasound wave propagation in a femur 

with a single point source on the top surface of the bone shaft. The result was 

simulated using commercial software Wave2000 (CyberLogic, Inc., New York). 

The figure shows a point source generates the cylindrical wavefronts propagating 

downward into the bone structure. When the wavefronts encounter a reflector, 

which can be an interface or small inhomogeneity, the secondary sources are 
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created by Huygen’s principle to generate wavefronts to different directions. 

The pictorial description of scattering theory is shown in Figure 2.4. 

Consider an ultrasound beam incident on a scatterer at (x,z). The energy will be 

scattered by the scatterer to all directions (Figure 2.4A). The receivers positioned 

at the surface will pick up the scattered energy and the recorded echoes plotted in 

a distance-time (x,t) space will demonstrate a diffraction pattern (Figure 2.4B). 

This is known as the forward problem, i.e. from the model space (x,z) to the data 

(x,t) space. For the inverse problem, which will be discussed in Chapter 3, the task 

is to image the model space (x,z) by inverting the observation (x,t) data. The 

imaging procedure goes backward as shown in (Figure 2.4B) and can be 

accomplished by summing the diffracted energy along the diffraction pattern for 

the position of the scatterer. The location of the scatterer is considered to be the 

focal point of energy. 

The clinical medical ultrasound scanners only consider energy reflecting or 

scattering in the direction of incidence to form an ultrasound image. In contrast to 

the conventional techniques, the wave imaging approach presented in this thesis 

will make use of the coherent wave fields arriving within an aperture, leading to a 

more accurate reconstruction of the bone image. 

 

  

a point source 

 

Figure 2.3  A snapshot at 4 μs of ultrasound wave propagating in a bovine 

femur. The simulated waves are generated by a point source on the bone surface. 



 

 

0
4

0
8

0
1

2
0

1
6

0
2

0
0

2
4

0
2

8
0

3
2

0
3

6
0

4
0

0

0

4
0

8
0

1
2

0

1
6

0

2
0

0

2
4

0

2
8

0

3
2

0

3
6

0

4
0

0

Z (m) 

sc
a
tt

er
e
r
 

X
 (

m
) 

re
ce

iv
er

s 

0
2

4
6

8
1

0
1

2
1

4
1

6
1

8
2

0

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

T
ra

c
e

 N
u
m

b
e

r

Time (s)
R

ec
ei

v
er

 n
u
m

b
er

 
Time (s) 

(x
,z

) 

F
ig

u
re

 2
.4

 T
h
e 

sc
h

em
at

ic
 d

ia
g
ra

m
 f

o
r 

th
e 

sc
at

te
ri

n
g
 f

o
rm

al
is

m
: 

(A
) 

a 
si

n
g
le

 s
ca

tt
er

er
 d

ef
le

ct
in

g
 e

n
er

g
y
 i

n
 o

b
li

q
u
e 

d
ir

ec
ti

o
n
s 

an
d

 (
B

) 
th

e 
ti

m
e 

si
g
n
al

s 
re

co
rd

ed
 b

y
 t

h
e 

re
ce

iv
er

s.
 

31 



32 

2.4 Ray tracing 

In order to compute the Green’s functions (Eq. [2.26]) for each grid cell x, 

we need to know the travelled distance, l and time, τ of ultrasound between the 

source and the cell and the cell back to the receiver. In our case, source and 

receiver are at the same location. For a constant uniform velocity, the travelled 

distance and time are easily calculated. For a three layered structure where the 

layers are not necessarily planar, the ray must bend across the interface according 

to Snell’s law and calculating the two parameters for the structure poses some 

challenge. Usually ray tracing is the most commonly used method. This section 

will review the fundamentals of ray tracing.  

Following Lay and Wallace (1995) closely, we consider a ray in a (x,z) 

plane travelling an arc length l and normal to the wavefront Q(x) in a medium 

where the velocity changes gradually (Figure 2.5). The eikonal equation of the 

wavefront is governed by 

2 2
1 ( ) 1 ( )

1
Q Q

n x n z

    
    

    

x x
 (2.30) 

where 0 ( )xn c c  is the index of refraction. In Eq. (2.30), ( )xQ is normal to 

the wavefront and parallel to the ray. The directions of the ray are given by the 

direction cosines (see Figure 2.5),  

sin
dx

dl
    and  cos

dz

dl
     (2.31) 

where θ is the take-off angle. The direction cosines are related by  
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2 2

1  .
dx dz

dl dl

   
    

     
(2.32) 

Comparing (2.30) and (2.32), we have the system of normal equations 

( , )dx Q x z
n

dl x





    and   

( , )dz Q x z
n

dl z





 .  (2.33) 

Taking the derivative of (2.33) with respect to dl,  
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  
  
  

      
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
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  (2.34a) 

Similarly, 

d dz
n n  .

dl dl z

 
 
 

 (2.34b) 

With (2.31), Eq. (2.34) becomes 

 sin       
d

n n
dl x






  

(2.35a) 
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and 

 cos  .





d
n n

dl z
   (2.35b) 

If we assume that the velocity changes along the x direction, then (2.35a) becomes 
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 (2.36) 

Since   

( , )
dl

c x z
dt


   

(2.37) 

and the index of refraction by definition, 

  ,
dn dc

n c
   (2.38) 

Eq. (2.36) becomes 
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1
cos

cos cos   x

d dc
c

dt c dx

dc
c

dx




 

 
  

 

   
 (2.39a) 

where cx is the velocity gradient along the x direction. Next, we assume that the 

velocity changes in z direction and taking the similar step as above, we have  

sin sinz

d dc
c

dt dz


  

 
(2.39b) 

where cz is the velocity gradient along the z direction. Superimposing the 

increment of take-off angle dθ in x and z directions yields 

 sin cos   .z xd c c dt     (2.40) 

In summary, for each ray travelling through the medium with a take-off angle θ, 

the total travelled distance l and the corresponding travelling time t can be 

calculated by the following algorithm. 

Algorithm 2.1: Initially given that a constant sampling interval dt and velocity 

gradients, cx and cz, we set l = t = 0, θ = θ0, x = x0, and z = z0, then the iteration 

continues until the difference between the predicted receiver position r
pred

 and the 

true position, r is within a pre-defined tolerance.  
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The ray tracing algorithm is used to calculate the travelled distances and 

travelling times for a smoothly varying velocity field. During the inversion 

process, the background velocity does not change and only perturbation velocity 

does. Therefore to avoid the repetition to compute the travelled distances and 

travelling times, the strategy is to compute the results once and store them in 

tables. For each source/receiver pair, there are three tables storing the calculated 

travelled distance l, the travelling time τ, and the take-off angle θ associated with 

each grid cell x, and each table is the same size as the background velocity model. 

The stored information will be retrieved when it is needed.   

The ray tracing algorithm is based on the assumption that the change in 

velocity gradient of the medium between two points, x1 and x2 is small with 

respect to the velocity at x1 (see Figure 2.5). Therefore the velocity profile is 

necessarily smooth without sharp discontinuities. In this study, the background 

velocity profile is smoothed by convolving a 5 × 5 Boxcar filter with the velocity 

profile prior to ray tracing. However the smoothed velocity field will create 

inaccuracy relevant to the reconstructed position of the interfaces. The 

misplacement will become more serious as the interfaces are deeper. This will be 
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further discussed in Chapter 4.   

 

  

Figure 2.5  A two dimensional ray path in a medium where the velocity 

changes continuously in both x and z directions. Also shown is the 

relationship between x1 and x2 where x2 = x1 + dx and θ2 =θ1+dθ. 
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2.5 Summary and comment 

In this chapter, I have provided a derivation of the Born approximation to 

the acoustic wave equation. I advocate the use of the acoustic wave equation 

instead of the elastic wave equation based on the source/receiver configuration 

and the geometry of the cortical layers. As shown in Figure 2.1, the cortical layers 

are quite parallel in the mid diaphysis of the long bones. The surface of the bone 

samples in contact with the transducer is smooth and reasonably flat, enabling the 

ultrasound beam to penetrate into the bone approximately normal to bone surface.  

In case of zero-offset where the positions of the source and receivers are the same, 

the waves are normally incident and mode conversion does not occur.  

Figure 2.6A is a sagittal computed tomographic (X-ray CT) image of a 

bovine tibia. The long bone is consisted of mainly cortical bone and marrow with 

the cancellous bone at the distal and proximal epiphysis. The cortical layer and 

marrow are fairly homogenous. In a study of 175 females, Wang et al (1997) 

found that the mean velocity of cortical shell in tibia was 3850.7±119.3 m/s.  

The velocity of marrow is usually considered to be 1500 m/s, similar to the 

velocity of soft tissues (Camus et al, 2000; Muller et al, 2005). On the other hand, 

the cancellous bone in the diaphysis is not as much as in the proximal and distal 

epiphysis, but its existence makes the interface between cortex and marrow not as 

sharp as expected. It is reasonable to model the long bone using a background 

medium with a small perturbation. As such, BA is quite suitable for the long bone 

imaging.  

Figure 2.6B shows a constructed velocity model for the bovine tibia which 

will be described in Chapter 4. Cancellous bone is modeled by trabeculae with 

marrow filling the pores. The trabeculae are the thin plate compact bone with 

similar properties as cortical bone. To improve the accuracy of imaging in the 
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case of curved interfaces, ray tracing will be applied to the variable background 

velocity field. 

According to Eq. (2.25), we assume that the amplitude is inversely 

proportional to the travelling distance based on the 2D Green’s function. However, 

compact bone is a highly damping material. The average nBUA (normalized 

Broadband Ultrasound Attenuation) value was 4.91±0.65 dB/MHz/cm for bovine 

cortical bone (Zheng et al, 2007). The signal amplitude will be attenuated further 

due to the intrinsic absorption.  

The equations relevant to scattering theory presented so far are derived in 

the frequency domain. This allows the implementation of absorption if the 

material through which ultrasound travels is anelastic. However, absorption is not 

considered in the thesis, therefore the content described below is only used for 

future implementation. 

When an ultrasound pulse travelling through an isotropic and absorptive 

medium, the spectral amplitude can be described as a superposition of plane 

waves  

     , exp 2A f W f i ft    x k x 
 

(2.41) 

where f is the frequency and k is the wavenumber vector. Because the medium is 

absorptive, the wavenumber is complex (Waters et al, 2000) 

 r i k k 
 (2.42) 

where kr is the real part of the wavenumber, α is the attenuation coefficient in 

neper/unit length, and i
2
= -1. Substituting (2.42) into (2.41) yields 



40 

     , exp( )exp 2      x α x k xrA f W f i ft  (2.43) 

where each frequency component travels with the phase velocity 2 rV f k , 

and its amplitude decays exponentially with |α| due to absorption.   

 

 

 

 

 

Figure 2.6  A bovine tibia: (A) an X-ray computed tomographic (CT) 

image and (B) a constructed velocity model based on (A). 
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Chapter 3  

Inverse theory 

In general terms, inverse problems deal with the estimation of model 

parameters from the observed data. Inverse theories have been widely applied in 

many branches of science and engineering such as geophysics, medical imaging, 

remote sensing, astronomy, acoustic tomography and nondestructive testing. In 

geophysics, inverse theory is used to recover the spatial distribution of material 

properties within the earth using the data acquired on the Earth’s surface or within 

the boreholes (Parker, 1994). In medical imaging, X-ray tomographic imaging 

uses the Radon transform and its inverse to back project the X-ray planar images 

or slices around the body to reconstruct the inner image of the human body (Kak 

and Slaney, 1988). In this chapter, I first provide an overview of inverse theory 

(Hansen, 1998；Menke，1989). I then apply the inverse theory to solve the linear 

system arising from the acoustic wave propagation through bone as described in 

Chapter 2. 

3.1 Inversion of ill-posed problems 

A linear system can be denoted in the discrete matrix form as 

 Gm d  (3.1) 

where d is the observed data vector with dimension Nd × 1, m is the Nm × 1 vector 

of model parameters, and G is the Nd × Nm matrix of physical parameters 

describing the explicit relationship between the model parameters and the 

http://en.wikipedia.org/wiki/Geophysics
http://en.wikipedia.org/wiki/Medical_imaging
http://en.wikipedia.org/wiki/Remote_sensing
http://en.wikipedia.org/wiki/Astronomy
http://en.wikipedia.org/wiki/Ocean_acoustic_tomography
http://en.wikipedia.org/wiki/Nondestructive_testing
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observed data. The forward problem is to compute the predicted data d
pred

 given 

the model m. The objective of an inverse problem is to seek a best model m given 

the observed data d. (Menke, 1989).  

For an inverse problem, if the number of observations is more than the 

number of unknowns, i.e., Nd > Nm , the problem is said to be over-determined. 

The least squares method is usually applied to find the best fit between the 

observation and the desired model. If Nd < Nm , the problem is under-determined 

and there is not enough data to determine the unknowns. In this case, an additional 

regularization term is used to determine a solution for the model. However, some 

real problems are either over- or under-determined, and known as 

mixed-determined problem (Menke, 1989). An example of a mixed-determined 

type problem comes from our study; some image cells are sufficiently sampled by 

several ultrasonic rays while some are totally missed.    

When noise exists, Eq. (3.1) will be modified as 

  Gm n d  (3.2) 

where n is the random noise vector. Comparing (3.1) and (3.2), the solution for 

physical model m is influenced by the presence of noise. A well-posed problem 

has mainly three conditions for a solution: existence, uniqueness, and stability 

(Hansen, 1998). Most inverse problems are ill-posed because the solution is 

non-unique or the solution is not stable and sensitive to small changes in the data 

(Claerbout, 1992; Hansen, 1998). An example of an ill-posed problem is 

ultrasound wave propagating through the bone structure. In addition to the 

electronic noise, scattering from the inhomogeneities of the bone inner structures 

influences the primary reflections and contributes to the coda of the signals, 

degrading the signal resolution. 
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3.2 Least squares solutions 

To seek a solution to the inverse problem (3.2), the inversion procedure is to 

minimize the misfit error, e = d - d
pred

, between the observed data and the 

predicted data for an optimum model m. In general, one would like to seek a 

solution by minimizing in a least squares sense the cost or objective function, J = 

ee
T
 where the subscript T denotes the transpose of a vector. Quite often, the data 

has random noise and other coherent noise. The noise in the data causes error and 

instability to the solution. To overcome the problem, some prior information or 

relationship between the model parameters is used as a constraint to regularize the 

solution. Therefore, the general form of the cost function is made up of two terms: 

(1) the misfit or prediction error term 
2

2
Gm d  and (2) the regularization term, 

Qm, 

2 2

2 2
  .J   Gm d Qm  (3.3) 

In (3.3), the first term represents the L2 norm misfit between the predicted and 

observed data. The second term is the regularization term where Q is the 

constraint or regularization matrix or operator and µ is the regularization 

parameter, also known as Lagrange multiplier, trade-off, weighting or damping 

parameter. The regularization term provides some degree of smoothness to obtain 

solution stability.  

Generally, the misfit and regularization terms in cost function cannot be 

both fulfilled with minimization and then the optimal solution is found to satisfy a 

compromise between these two terms. For the extreme situation, if µ = 0, the 

regularization term will be totally neglected and the solution will completely fit 

the observed data, which may be greatly oscillating, unstable, and far away from 
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smoothness. If µ is set to a very large number, a smooth model solution is found, 

which may not have any meaning, and the predicted data may not fit the observed 

data at all. So in the real cases, the optimum regularization parameter should be 

chosen according to the specific ill-posed problems. The trade-off curve is a very 

common method to determine the value of regularization parameter (Hansen, 

1998). The curve is usually plotted as the misfit versus the norm of regularization 

term by taking a series of values of µ for a large range, say for example from 10
-4

 

to 10
3
. An example of a trade-off curve is provided in Chapter 5 (Figure 5.5). 

Expanding (3.3), 

2 2

2 2

( ) ( ) ( ) ( )

.

Gm d Qm

Gm d Gm d Qm Qm

m G Gm d Gm m G d d d m Q Qm  

T T

T T T T T T T T

J 





  

   

    

 

 

 

(3.4) 

Taking the first derivative of (3.4) with respect of m and setting it to zero, 

2

2( ) 2

0

G Gm G d G d Q Qm
m

G G Q Q m G d

  

T T T T

T T T

dJ

d




   

  



 
 

or 

( ) .G G Q Q m G d   
T T T   (3.5) 

Seeking the least squares solution to Eq. (3.2) reduces to find the solution of the 

linear system (3.5). If the matrix (G
T
G+µQ

T
Q) is invertible, the estimated least 

squares solution, m
est

 is 

1( ) .m G G Q Q G d  
est T T T    (3.6) 



45 

Depending on the configuration of regularization matrix Q, the solution takes 

different form. The matrix Q can be linear or non-linear. For example, the Edge 

Preserving Regularization (EPR) constraints are often used to preserve edges of 

the image (Lobel et al, 1997; Youzwishen and Sacchi, 2006), Q in this case will 

be nonlinear. In this thesis, I am focusing on the linear inverse problem. 

3.2.1 Unconstrained Least squares (ULS) solution  

In this case, Q = 0. Eq. (3.6) becomes 

1( )  .est
m G G G d

T T  (3.7) 

The unconstrained least squares (ULS) solution truly minimizes the misfit or the 

prediction error. The procedure assumes that the noise in the data does not create 

any instability of the solution and thus no regularization in model space is 

required. In most real cases, the ULS solution is not practical and hardly used in 

actual problems as the noise in the data affects the stability of the solution, 

causing a meaningless or non-convergent solution in most cases. 

3.2.2 Damped least squares (DLS) solution  

For DLS case, the regularization matrix is an identity matrix, i.e., Q = I. The 

regularization term is simply composed of the L2 norm of the model vector, 
2

2
m . 

Thus  

1( )est
m G G I G d

T T  .    (3.8) 

The method used the norm of the model vector as a constraint; therefore the 

procedure does not only minimize the prediction error and therefore, does not 

provide a model with the least prediction error. If the regularization parameter is 
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chosen appropriately, the solution reaches a compromise between minimizing the 

prediction error and the length of the model. The DLS method provides a 

smoother and practical solution which considers both accuracy and stability of the 

reconstructed model (Claerbout, 1992).  

3.2.3 Weighted least squares (WLS) solution  

When regularization other than the identity operator is considered, the 

method assumes some degrees of dependency among the model elements to 

achieve smoothness of the solution. In this case, Q = W where W is the weighting 

operator and  

1( )est
m G G W W G d

T T T  .    (3.9) 

The weighting matrix or operator W can take any form. A very common type of 

the weighting matrix is a derivative matrix (Claerbout, 1992), which can either be 

the first order derivative as 

1

1 1

1 1

1 1

1

 
 

 
 
 

 
 
 

D  (3.10) 

or the second order derivative as 

2

1 2 1

1 2 1

 .

1 2

1

D

 
 

 
 
 

 
 
 

 (3.11) 

The derivative operatives are often used to enhance sharp edges or discontinuities.   



47 

Figure 3.1 shows an example of the least squares solution. A model (Figure 

3.1A) convolves with a 10 Hz Ricker wavelet (Figure 3.1B) with 20% random 

noise added to yield the time series shown in Figure 3.1C. The solutions were 

calculated using the conjugate gradient (CG) method, which will be described in 

the next section. The number of iterations used is 1000 for all solutions. Figure 

3.1D shows the ULS solution, which is oscillatory and very unstable. Figure 3.1E 

shows a much smoother and stable DLS result with μ = 0.1, but the amplitudes are 

much smaller than the original model because of the smoothness resulting from 

the regularization term. The WLS solution is shown in Figure 3.1F. The method 

uses the first derivative operator, D1 with μ = 0.1 and recovers all the edges with 

comparable amplitude and without compromising the smoothness of the model.   

3.3 Iterative methods 

When the matrix G is very large, the computation of the solution via Eqs. 

(3.7) - (3.9) is not effective and sometimes impossible due to the instability when 

seeking the inverse matrix of a large scale system and limitation in memory 

storage. Even though G is sparse, matrices resulting from matrix factorization are 

more dense than G itself (Aster et al, 2005). In most cases, iterative methods are 

sought to solve the systems of equations. The most commonly used method is the 

conjugate gradient method developed by Hestenes and Stiefel in 1951 (Hestenes 

and Stiefel, 1952). This method was initially applied to solve a large sparse linear 

system with less computation cost and fast convergence speed (Hansen, 1998). 
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Figure 3.1  The least squares solutions: (A) a model, (B) a 10 Hz Ricker 

wavelet, (C) a convolved time series with 20% random noise, (D) the ULS 

solution, (E) the DLS solution with μ = 0.1, and (F) the WLS method with μ = 0.1 

and W = D1. 
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3.3.1 Method of conjugate gradient (CG) 

Consider a system of linear equations,  

Lx y  (3.12) 

where L is a symmetric and positive-definite matrix, i.e., z
T
Lz > 0 for any 

nonzero vector z. The CG method seeks a solution to Lx = y, which minimizes the 

cost function by computing a series of converging model vectors, x0, x1, …, xk 

(Aster et al, 2005). In the process, the procedure constructs a series of basis 

vectors, p of x, and the corresponding coefficients, αi, i.e., 

0

x p
k

i i

i




  (3.13) 

where the basis vectors are mutually conjugate with respect to L, 

 , 0 when .p Lpi j i j 
 (3.14) 

Also constructed is a series of orthogonal residual (or prediction error) vectors, r 

i.e.,  

 , 0 when .r ri j i j   (3.15) 

where r = y – Lx. The CG algorithm is as follows (Hestenes and Stiefel, 1952; 

Aster et al, 2005).     

Algorithm 3.1: Let 0 0 0 0, ,x x p r y Lx    and k = 0. The following steps will 

be repeated until number of iterations or the tolerance limit for convergence is 

reached.  
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 
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 
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
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r r
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p r p

  

3.3.2 Application of CG method to least squares solutions 

The algorithm 3.1 can be applied to different least squares solutions in 

Section 3.2. Depending on the kind of LS solutions, the operator, L takes different 

form. 

3.3.2.1 Unconstrained least squares solution 

Recall that the system of linear equations given by (3.5) with Q = 0 is 

G Gm G dT T  .     (from Eq. [3.7]) 

Comparing (3.7) and (3.12), we have L = G
T
G, y = G

T
d, where L is symmetric 

and positive definite. The algorithm 3.1 can be modified as follows. 

Algorithm 3.2: Let 0 0 0 00, ,    m p r G d G Gm G dT T T
and k = 0. The 

following steps will be repeated until number of iterations or the tolerance limit 

for convergence is reached.  
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(c)    ( ) .
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


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  

 

 

 

 

   



 
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p G Gp Gp Gp

m m p

r G d G Gm G d Gm

r r

r r

p r p

  

The G-matrix multiplication takes place once in (a) and twice in (c) for a total of 

three times in each iteration. The multiplication can be reduced to twice for each 

iteration by introducing two intermediate vectors: 

q Gpk k  (3.16a) 

and  

 .

1 1

1

1

1

( )

 s d Gm

d G m p

d Gm Gp

s q

k k

k k k

k k k

k k k







 







 

  

  

 

 

 

 

(3.16b) 

Thus algorithm 3.2 can be revised as follows.   

Algorithm 3.3: Let 0 0 0 0 0 00, , , ,m p r G d s d q GpT     and k = 0. The 

following steps will be repeated until number of iterations or the tolerance limit 

for convergence is reached.  
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The method discussed in this section is also known the conjugate gradient least 

squares (CGLS) algorithm (Hansen, 1998). 

3.3.2.2 Damped least squares solution 

The system of linear equations given by (3.5) with Q = I is 

( )  G G I m G d
T T    (from Eq. [3.8]) 

where we identify L G G I
T   . The algorithm is the same as algorithm 3.3 

with the steps (a) and (d) replaced by the following: 

1 1 1 1

(a)  .
( )

(d) ( )  .

r r r r

p G G+ I p q q p p

r G d G G+ I m G s m


 

    

 


   

T T

k k k k
k T T T T

k k k k k k

T T T

k k k k

  

3.3.2.3 Weighted least squares solution 

The system of linear equations given by (3.5) with Q = W is 
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( )  G G W W m G d
T T T    (from Eq. [3.9]) 

where we identify L G G W WT T  . Similarly, the algorithm is the same as 

algorithm 3.3 with the steps (a) and (d) replaced by the following: 

1 1 1 1

(a)  .
( ) ( ) ( )

(d) ( )  .

T T

k k k k
k T T T T T

k k k k k k

T T T T T

k k k k


 

    

 


   

r r r r

p G G+ W W p q q Wp Wp

r G d G G+ W W m G s W Wm

 

In WLS method, the weighting matrix W will increase the computational 

effort in comparison with ULS and DLS methods. Particularly in calculating the 

residual r, the W-operation will be performed twice at each step, which can 

greatly increase the computation cost especially in case of large scale systems. 

3.4 Forward and adjoint operators 

A mathematical operator is considered a mapping from a vector space to 

another. Forward operator maps the model space to the data space. Instead of 

using an inverse to seek a solution of the model space, we consider here adjoint 

operator to back-project the wavefield to obtain the image. An adjoint operator, 

which is a matrix transpose, is not an inverse. According to Claerbout (1992), an 

adjoint operator is better than an inverse because the former can accommodate 

incompleteness and imperfection of the data. Claerbout also provides some 

forward and adjoint operators commonly used in the imaging and inversion 

problems: 

Matrix multiply   << >> Conjugate transpose matrix multiply 

Convolution          << >> Cross-correlation 
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Zero padding         << >> Truncation 

Diffraction modeling   << >> Imaging by migration 

A given operator L is adjoint to L
T 

if    , ,x Ly y L x
T  for any two vectors, x 

and y. This is known as the dot-product test (Claerbout, 1992). In this thesis, the 

operators are all numerically defined and not implicitly formulated matrix, 

therefore the dot-product test is applied to verify the forward/adjoint pair. 

3.4.1 Operators of the scattered wavefields 

Recall the 2D discretized form of the scattered wavefield for a single 

frequency i at source position s and receiver position r is 

( , , )2( , , ) ( ) ( , , ) ( )  ,
s x r

s r s x r xi kj

i i i k k

k

D S x z A e p
   

   
 

(from Eq. [2.29]) 

which can be casted in a matrix form for each frequency ωi: 

( ) ( , , , )  ,  D L s r x Pi i  (3.17) 

where L is the forward operator related to the source/receiver positions (s,r), and 

the scatterer position (x) and P is the perturbation matrix.  

In Eq. (3.17), the operator L can be regarded as a large scale matrix with 

dimension Nd × Nm, where Nd is equal to the number of the signal records, and Nm 

is equal to the number of model pixels. Then the forward procedure is the matrix 

multiplication of the forward operating matrix L and the model vector P. Based 

on the complex matrix multiplication property, the adjoint operator L
T
 will be its 

conjugate transpose. To find the adjoint of G0 in (2.22), G0 
is replaced by its 

complex conjugate G0
*
 as  
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* ( , )

0 ( , , ) ( , )  .x yG x y x y jA e     

To implement the transpose transformation, the index of source/receiver pairs 

replaces the index of model cells. Then the adjoint operator can be approximated 

by 

( , , )2( , ) ( ) ( , , ) ( , , )  i j jj

i i i j j j j i

j

p S x z A e d


   
 

    
 


s x r
x s x r s r  (3.18) 

or in matrix form 

( ) ( , , , ) ( ).   P L s r x DT

i i i  (3.19) 

The operators, L and L
T
 are adjoint operators based on the dot-product test. Both 

Eq. (3.17) and (3.19) play an important role for the inversion process. 

3.4.2 The derivative operator  

In a two-dimensional system, the differentiation of a set of discrete data can 

be presented by the data matrix convolving with the derivative operator matrix 

shown as below 

 f

c a c

a b a

c a c

 
 

  
 
 

D  (3.20) 

where a, b, c are the predetermined constants. The value of constants can be set as 

zero or nonzero, but the sum of all the elements in operator matrix must be zero. 

For example, for the first derivative operator, it can be 
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1
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 



 
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or  

1 1 1
8 8 8

1 1
8 8

1 1 1
8 8 8

1f

  

 

  

 
 

  
 
 

D    

for five- or nine-point differentiation. 

To illustrate the differentiation process, matrix M on the right of the Figure 

3.2 shows the value of mij, the center of a 9-cell grid, is a weighted sum of the 8 

neighboring cells and itself with the derivative operator (3.20): 

 

1, 1

1,

1, 1

, 1

'

,

, 1

1, 1

1,

1, 1

         .

i j

i j

i j
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

 


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 



 

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

 

 

(3.21) 

Since the adjoint of matrix multiplication is its conjugate transpose, the adjoint 

operator of the derivative can be calculated as 
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 

 (3.22) 

What Eq. (3.22) does is to reverse the process of (3.21) by appropriately 

allocating (or weighting) the value of mij’ 
to the 9 neighboring cells mij (including 

itself) of the grid (see Figure 3.2). Any mapping from M′-space to M-space will 

involve the same cell in M-space nine times and, therefore, the allocated values to 

the same cell will be accumulated accordingly. This leads to the following 

algorithm.   

Algorithm 3.4:  Let the values of the 9 cells, mij, be zero.  

 

for i = 2:ni-1 

for j = 2:nj-1 

                m(i,j)      = m(i,j)   +  b × m′(i,j); 

                m(i-1,j-1)  =  m(i-1,j-1)  +  c × m′(i,j); 

                m(i-1,j+1)   =  m(j-1,j+1)  +  c × m′(i,j); 

                m(i+1,j-1)   =  m(i+1,j-1)  +  c × m′(i,j); 

                m(i+1,j+1)   =  m(i+1,j+1)  +  c × m′(i,j); 

                m(i-1,j)     =  m(i-1,j)  +  a × m′(i,j); 

                m(i+1,j)     =  m(i+1,j)  +  a × m′(i,j); 

                m(i,j-1)     =  m(i,j-1)  +  a × m′(i,j); 

                m(i,j+1)     =  m(i,j+1)  +  a × m′(i,j); 

end 

end 
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3.5 Imaging resolution and quality 

A complete model reconstruction can be established with the knowledge of 

a continuous data set. But in reality, digital data restrict the reconstruction results 

to the discretized form. The data are sampled in time and the signal records are 

measured in discrete spacing interval. The digital data are subject to the Nyquist 

sampling theorem (Shannon, 1949). Therefore, the spatial resolution is an 

important parameter of consideration during the inversion procedure to avoid 

aliasing artifacts.   

The mapping from the data space to the model space is related to the 

background velocity field and the frequency contents of signals (Beylkin, 1985).  

Figure 3.3 shows two reflected rays from the neighbouring scatterers within a 

constant velocity field. The schematic is simple because it does not consider the 

spatially-varying velocity field where the rays bend. However the simplicity of the 

schematic is sufficient to illustrate the concept of spatial resolution of the 

reflections. The spatial separation, Δl, between the two reflected rays at an 

incident (or reflected) angle, θ is given by  

0 ( )
 

2cos

x




 

c t
l  (3.23) 

where Δt is the sampling time interval related to the Nyquist frequency. For 

zero-offset case where θ = 0, then (3.23) simplifies to     

0 ( )
 .

2

x
   

c t
l


   (3.24) 

Either Eq. (3.23) or (3.24) provides a guidance for a theoretical minimum spatial 

resolution for the reconstructed image.  
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According to (3.23) and (3.24), the spatial resolution for inversion is not 

related to the number of signal records. However, the bone samples should be 

adequately sampled along the acquisition axis so that sufficient ultrasound rays 

will pass through the pixels in the imaging space. This is to warrant a better 

reconstruction of the images when there is enough data to solve for the unknowns.   

On the other hand, if there are more rays passing through a scatterer, the 

signal-to-noise (SNR) of the corresponding reconstructed image is greatly 

increased by means of superposition. Figure 3.4 shows a set of three wavefronts 

(isochron surfaces) passing through the same point x (the scatterer) in the imaging 

space. The superposition of these three wavefronts will reduce random noise and 

enhance the SNR of the signals registered by the pixel. This will lead a 

reconstructed pixel image with better contrast.  

  

Reflected rays 

Incident rays 

θ 

Q(x1) 

T(x1) 

Q(x2) 

 

Δl 

T(x2) 

θ (co(x)Δt)/2  

Figure 3.3  Geometry shows the spatial separation, Δl, between the two 

wavefronts Q(x1) and Q(x2) in a constant velocity field c0(x). T are the tangents 

to the wavefronts at the points of incidence. (modified from Miller et al, 1987). 
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D
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Figure 3.4  Three ray paths (RA, RB and RC) pass through a point x in the 

model or image space.     
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3.6 A flow chart of the imaging procedure 

Figure 3.5 shows the flow chart for the imaging process. We start with the 

data acquisition. The data undergoes signal processing and editing. The major 

goal of this step is to increase signal-to-noise ratio and remove the unwanted 

events such as multiple reflections. The processed data will be the input data, D 

ready for the inversion process. In parallel to this, the input background velocity is 

used to compute the travelled distance and travelling time between the pixel and 

the source/receiver pair. These parameters are then used to assemble the forward 

and adjoint operators, L and L
T
 according to Eq. (2.29) and (3.18). The data, D 

and the operators are then fed into the inversion engine to seek an optimal solution. 

For the inversion, one can choose the type of regularization such as ULS, DLS or 

WLS. The output of the iterative inversion procedure is the reconstructed image. 

Further image processing such as thresholding and interface enhancement will be 

used to display the reconstructed image. 
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Yes 

No 

Start 

Data acquisition 

Data processing 

Construct background 

velocity model 

Ray tracing for l and τ 

Choose regularization 

CG computation 

End 

 

Reconstructed image 

Prepare data D Prepare L and L
T
 

 

Further image processing 

 Tolerance met  

 Number of iteration completed 

 

Figure 3.5  The flow chart for the imaging process. The box outlined in 

dashed line is the engine for the iterative regularization method. Tolerance is 

defined by the misfit error. In this thesis, we only use the number of 

iterations as the stopping criterion. 



64 

  



65 

Chapter 4  

Numerical validation and parameter analysis of the 

imaging algorithm 

Numerical simulation is an important tool to verify the mathematical 

algorithms and theories. The simulated data are useful to assess the influence of 

various parameters upon the imaging results without the unwanted disturbance 

such as electronic noise from acquisition devices and scattering due to material 

inhomogeneities in real data. In this chapter, the inversion algorithms and 

methods are validated by applying the forward and inverse operators to the 

simulated data. The influence of several parameters such as frequency range, 

frequency sampling rate, beam aperture, source wavelet, noise level, temporal 

sampling interval, pixel size, spacing interval of acquisition, and inversion 

regularization, are investigated. Lastly, the inversion results using the optimal 

parameters and configurations are compared with the original model. 

4.1 Inversion I: Verification of the inversion algorithm 

In this section, the feasibility of the imaging algorithms and methodologies 

is verified by using the forward operator to simulate a numerical data set and 

using the inversion operations to reconstruct the images. The predicted data from 

the inversion result is compared with the synthetic data and the discrepancy is 

commented.    
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4.1.1 A bovine bone model 

An X-ray CT image of a bovine femur was acquired (Figure 4.1A). The 

image matrix is 159 × 478 with the pixel dimension of 0.4 mm and each pixel 

position is set at the center of the grid cell. The CT image was converted into a 

velocity model by assigning appropriate speed of sound (SOS) to each grid cell 

proportional to the gray scale. In this example, the SOS of cortical bone is 4000 

m/s, marrow is 1500 m/s and air is zero based on the experimental measurement 

and literatures (Camus et al, 2000; Muller et al, 2005). The velocity model was 

then transferred to a reflectivity model by taking the vertical difference of the 

image (Figure 4.1B). The background velocity model is made up of three layers 

where the top and bottom layers are cortex and the middle layer mimics marrow 

(Figure 4.1C). 

4.1.2 Simulation and Inversion 

The forward operator (Eq. [2.29]) was applied to simulate the numerical 

data set. The perturbation model used is the bone model shown in Figure 4.1B. 

Ray tracing was performed using the background velocity model (Figure 4.1C). 

The source wavelet is a negative Ricker pulse (Ricker, 1953) with a central 

frequency of 1 MHz. The sampling interval is 0.1 µs with a Nyquist frequency of 

5 MHz. Two hundred and one records were simulated with a 0.8 mm spatial 

interval and each record has 1024 data points. An aperture of ±40° and 0.1 – 3.0 

MHz frequency range are used for both forward and inversion procedures. Figure 

4.2 shows the simulated records. The forward operator simulates the primary 

arrivals from the three major interfaces (cortical/marrow, marrow/cortical and 

cortical/air) while ignoring the multiple reflections; the responses due to the 

heterogeneities at the right end of the bone model are also simulated.   
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Figure 4.1  A bovine femur: (A) an X-ray CT image; (B) a reflectivity 

model. The asterisks and triangles indicate the source/receiver locations 

on the bone surface; (C) a background velocity model. 

(A) 

(B) 

(C) 
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Figure 4.3 shows the reconstructed image using the adjoint operator. The 

image shows a strong reconstructed upper cortex/marrow interface. The scattered 

inhomogeneities on the right side of the image around z = 0.02 m are also imaged. 

The lower marrow/cortex and cortex/air interfaces are visible but weak. Figure 4.4 

shows the reconstructed results using the ULS and CG (ULSCG) methods with 28 

iterations (Figure 4.4A). The CG method apparently provides a better 

reconstructed image which is closer to the original model (Figure 4.1B) than the 

adjoint operator. The upper cortex/marrow interface is much better defined with 

good resolution. The lower marrow/cortex and cortex/air interfaces are also 

reconstructed with strong reflectivities. The CG-reconstructed interfaces and 

edges are more distinct from the background and the image illustrates clearly the 

Figure 4.2  The synthetic data using the forward operator (Eq. [2.29]) 

and the bone model shown in Figure 4.1B. 
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details of the inhomogeneities. Nevertheless, both (adjoint and ULSCG) show 

reconstructed artifacts. The artifacts are apparent at both ends of the lower 

interfaces (between z = 0.04 and 0.06 m, x < 0.02 m and x > 0.18 m) where the 

recovered interfaces are curving upwards instead of downward as in the original 

model. The misfit (Figure 4.4B) is significantly reduced after 5 iterations and 

trends to a comparably stable level after 10 iterations. The predicted data were 

computed by applying the forward operator to the reconstructed reflectivity model 

(Figure 4.4A) using the same parameters as those for the synthetic data. Figure 4.5 

shows the comparisons between the synthetic and predicted data. The 

reconstructed error, which is the difference between these two data sets, is 

amplified 20 folds (Figure 4.5C). 

  

Figure 4.3  The reconstructed image of the synthetic data shown in Figure 

4.2 using the adjoint operator. 
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Figure 4.4  Inversion of the synthetic data shown in Figure 4.2 using the 

ULSCG method: (A) The reconstructed image (28 iterations) and (B) the 

misfit curve.  

(A) 

(B) 
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There are two areas where the reconstructed errors are bigger. The first area 

is the lower marrow/cortical and cortical/air curved interfaces. This corresponds 

to the area bounded between 40 – 50 µs in the time section (Figure 4.5C). The 

data has low signal-to-noise ratio due mainly to signal attenuation by spherical 

divergence. The second area is close to the right end of the bone sample where 

many small scattering inhomogeneities exist. The area is around 10 µs at offset 

greater than 0.15 m in the time-offset section (Figure 4.5C). In this region, 

scattered signals from the small inhomogeneities give rises to the incoherent 

waveforms, which is difficult for the algorithm to back-project the wavefields 

perfectly. However, the errors are very small and are not noticeable without 

amplification. 

Based on the simulation experiment, the forward and adjoint operators 

appear to be effective operators to reconstruct the image. The reconstructed 

interfaces compare well with the reflectivity model. However, at the edges of the 

image, the algorithm has difficulty to reconstruct the interfaces properly.  

4.2 Inversion II: Analysis of inversion parameters  

In this section, the influence of some inversion parameters on the 

reconstructed images has been studied. These parameters are variables of the 

forward (Eq. [2.29]) and adjoint operators (Eq. [3.18]). They are frequency range, 

frequency sampling rate, beam aperture, source wavelet, and noise level. The 

numerical data was simulated by the convolution of the source wavelet with the 

reflectivities. Only primary arrivals were simulated without multiple reflections. 

As compared to finite difference method, which renders a full wave solution, the 

convolved data provide a less sophisticated and undisturbed numerical set to study 

the relevant parameters.  
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The adjoint operator with an aperture of ±5° was used in all the inversion 

operation unless specified otherwise in the later part of this chapter. For all the 

simulation and real bone experiments, the first interface of the bone images, 

which is the air/cortical interface, is predetermined by the source/receiver 

locations. This interface is indicated as a solid black curve in the subsequent 

reconstructed images. For the reconstructed image matrix, the depth (z) series at a 

fixed x position shows oscillatory waveforms. The amplitude of the waveforms 

close to the top interfaces is usually strong. In order to extract an interface from 

the waveforms, we applied two thresholds to pick the peaks and troughs of the 

waveforms. The two thresholds are not the same in absolute value but the positive 

threshold is usually larger than the negative threshold in value. Ideally, the levels 

of thresholds are set such that only a peak or trough is picked. Then the peak is 

indicated by red color while the trough by blue color. The colors used in this 

context emphasize the locations and continuities of the interfaces and do not have 

any relation to reflectivities. The threshold levels, once determined, are fixed for 

all the reconstructed images in this chapter.   

The computer used is a desktop PC with an Intel® Core
TM

 2 Duo 2.66 GHz 

processor with Windows XP operating system. The programming software is 

MATLAB R2009a. 

4.2.1 The simulated records  

The sample is a bovine tibia and 237 mm long, 35.2 mm thick in the mid 

shaft, and 51.1 mm thick at the left end. An X-ray CT image of the sample was 

acquired (Figure 4.6A). The image was then converted to a velocity model (Figure 

4.6B) by assigning different colors to different gray scales: air (white pixel), bone 

marrow (gray pixel) and cortical bone (black pixel) with the cancellous bone at 

(B) 
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the both ends removed. Figure 4.6B shows the velocity model with three distinct 

layers: upper cortex, marrow, and lower cortex, which will be used as a 

background velocity model for ray tracing. 

To seek a better estimation of the velocities for the cortex and marrow, we 

used a similar experimental method described by Zheng et al (2007). The 

reflection times of the echoes from the cortex/marrow and the marrow/cortex 

interfaces were measured using a group of time signals in the mid-shaft where the 

cancellous bone is less and the cortical tissue is more homogenous. The one-way 

travelling time is half of the reflection times. The thickness of the upper cortex 

and the marrow layer were measured in the relevant portion of the CT image. The 

one-way travelling time versus thickness data were best fitted by linear regression. 

The estimated cortical velocity is 3441 m/s and the marrow is 1434 m/s. The 

velocity of air is considered as zero to simplify the inversion procedure.  

Given a source/receiver pair, the arrival time of the echoes for normal 

incidence can be calculated by   

 
2

1,2,3
 

   
 

i
i

i

h
t i

V
 (4.1) 

where hi is the thickness of the ith layer in the model image and Vi is the 

corresponding velocity of the ith layer. At the arrival times of the echoes, unit 

impulses are assigned to mimic reflectivity, r(t). Then the simulated signals d(t) 

for any source wavelet s(t) are  

( ) ( ) ( ) d t r t s t  (4.2) 

where  is the convolution operator.  
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The source wavelet used was generated by a Panametrics CHC706 

(Panametrics, Waltham, MA) dual-head P-wave composite transducer. Figure 4.7 

shows the time signal (Figure 4.7A) and the amplitude spectrum (Figure 4.7B) 

respectively. The nominal center frequency of the transducer is 2.25 MHz but the 

spectrum peaks at 2.02 MHz. The useful frequency range is 0-4 MHz.  

  

Figure 4.6  A bovine tibia sample: (A) a CT image, and (B) a velocity 

model converted from the CT image. The asterisks and triangles indicate the 

source/receiver pairs.  

(A) 

(B) 
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Figure 4.7 An experimental source wavelet in (A) time domain and (B) 

frequency domain. 

(A) 

(B) 
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395 records were simulated with a spatial interval of 0.5 mm. Each record 

has 1800 data points with a time step of 0.05 µs (fNyquist = 10 MHz), i.e., the length 

of the signal is 90 µs. The first measurement station is 17.7 mm from the left edge 

of the bone sample (see Figure 4.6B) and the last measurement station is 214.6 

mm away. Figure 4.8A and 4.8B show a simulated signal and its frequency 

spectrum. Figure 4.8C shows a portion of the simulated time records with 

self-normalization. The reflections from three major interfaces were simulated. 

For this simulated data set, spherical divergence, partition of ultrasound energy at 

the interface, attenuation, and multiple reflections were not considered. The 

ultrasound beams were considered to travel straight down through interfaces 

without refraction due to interface curvatures.  
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Figure 4.8  The simulated data using the convolution method: (A) a single 

convolved signal; (B) the amplitude spectrum of the signal shown in (A); (C) 

a section of 395 simulated records with each record self-normalized by itself. 

 

(C) 

(A) (B) 



79 

4.2.2 Analysis of inversion parameters 

In this section, the influence of five parameters upon the reconstructed 

results will be examined. The five parameters are frequency range, frequency 

sampling rate, beam aperture, source wavelet, and noise level. In order to better 

present the reconstructed details of the interfaces, the inverted images were 

subsequently plotted in a 1:2 scale in the (x,z) space. The discussion is mainly 

based on the visual observations of the reconstructed images and the computation 

cost of the inversion operation.  

4.2.2.1 Frequency range 

Figure 4.9 shows the inversion results for three different frequency ranges.  

In Figure 4.9A, the 1-3 MHz range is used, which covers about 80 percent of the 

signal spectrum (0.1-5 MHz) shown in Figure 4.8B. The artifacts, as indicated by 

the arrows, are apparently observed within the boundaries of the first cortical 

layer in the reconstructed image. This is due to the frequency cut-offs at both ends. 

As shown in Figure 4.9B, when the 0.1-5 MHz range is used, the artifacts 

disappear. When the frequency range expands to 0.1-10MHz, the reconstructed 

image is not significantly improved (Figure 4.9C) but the computation time is 

doubled and increases from 1588 seconds to 3226 seconds.  

Properly selected frequency range could reduce the computation cost 

without compromising the image quality. For example, comparing with the full 

range inversion (up to Nyquist frequency), the half range (0.1-5MHz) reduces the 

computation time to half. However the selected frequency range should cover the 

major portion of the signal spectrum; otherwise the aliasing due to the frequency 

cut-off will introduce artifacts. 
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4.2.2.2 Frequency sampling rate 

With the Nyquist frequency fixed at 10 MHz, three cases are studied with 

different frequency sampling rates (i.e. different number of FFT points): 90 

points/MHz, 180 points/MHz, and 360 points/MHz respectively. Given the same 

frequency range of 0.1-5MHz, the numbers of frequency components used to 

calculate each pixel value for each sampling rate are 441, 882, and 1764 

respectively and therefore the computation cost increases accordingly. Figure 4.10 

shows the inversion results for three frequency sampling rates. The image with the 

most FFT points (Figure 4.10C) provides the best image with sharp interfaces. 

Nonetheless the other two images (Figures 4.10A & B) also recover the major 

structures with less calculation. In this case, increasing the number of frequency 

points or decreasing the frequency interval only improves the inversion results 

marginally. The inversion results with 90 points/MHz are acceptable.  

Having more data points for the signals does not seem to pose a challenge in 

real case. We always acquire more data points than we need during the acquisition 

with a fixed temporal sampling interval. Padding with zeros is also a possibility. 

This will guarantee enough number of FFT points to be used in the inversion 

procedure. 
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4.2.2.3 Beam aperture  

As discussed in Section 2.3.1, the use of beam aperture will reduce 

computational effort; it also has physical relevance to the beam characteristics of a 

transducer. The larger the aperture window, the more pixels will be used for the 

inversion. Here, I would like to investigate the effect of the aperture from ±1° to 

±60° on the quality of the reconstructed images 

Figure 4.11 shows the inversion results for six ultrasound beam apertures: 

±1°, ±5°, ±10°, ±20°, ±40°, and ±60°. For ±1° aperture (Figure 4.11A), the 

reconstructed interface of the top cortical/marrow appears discontinuous 

lengthwise, which is evident due to polarity changes across the interface. The 

interface artifact arises because the amount of data used for inversion is limited 

due to small aperture coverage and thus provides insufficient information for the 

reconstruction, especially in the part of the structures with large curvature. For 

example the discontinuity is more serious at the right end of the first interface 

where the interface is more curved as compared to the middle section. 

Contrarily, if the aperture is large such as ±20° (Figure 4.11D), ±40° (Figure 

4.11E), and ±60° (Figure 4.11F), more data within the aperture window are 

available for the reconstruction. The drawback is that by including more pixels, 

scattering and averaging will be enhanced, leading to serious blurring of the 

interfaces. The reconstructed interfaces start to lose sharpness especially at large 

apertures. The blurring effect is evident in all three reconstructed images, 

especially in Figure 4.11F where the aperture is the largest. 

With all other parameters held constant except the beam aperture, the 

computation times for ±1°, ±5°, ±10°, ±20°, ±40°, and ±60° are 103 sec, 409 sec, 

799 sec, 1588 sec, 3666 sec, and 7651 sec respectively.   
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In summary, for zero-offset case, small apertures such as ±5-10° are 

relatively suitable for inversion procedure because the reconstruction operation is 

more efficient, faster, and yields better image quality. The 5° aperture will be used 

for all subsequent inversion experiments hereafter.   

4.2.2.4 Source Wavelet 

Figure 4.12 shows the inversion results for two source wavelets: the 

experimental wavelet and Ricker wavelet. As described in Section 4.2.1, the 

experimental wavelet was generated by a commercial transducer used in our 

experiment. The Ricker wavelet has a center frequency of 2.0 MHz. The two 

results are comparable in terms of image quality while the reconstructed image 

using the experimental wavelet is more emphasized against the background, i.e., 

the recovered interfaces have greater strength as shown in Figure 4.12A. The 

experimental wavelet is easily measured for any transducer and, in situation where 

the source wavelet is not known, can be used for the inversion of more complex 

model.  
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(A) 

(E) 

(C) 

(F) 

(D) 

(B) 

Figure 4.11  The reconstructed images with different beam apertures: (A) 

±1°, (B) ±5°, (C) ±10°, (D) ±20°, (E) ±40°, and (F) ±60°. 

  



86 

Figure 4.12  The reconstructed images with different source wavelets: (A) 

the experimental wavelet (Figure 4.7) and (B) the Ricker wavelet. 

(A) 

(B) 
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4.2.2.5 Noise level 

To study the influence of noise level upon the inversion results, three noisy 

data sets were generated by adding normally distributed random noise to the 

noise-free signal. The simulated time signals for noise-free case, 5%, 10%, and 20% 

noise level are presented respectively in Figure 4.13A-D. Figure 4.13E shows the 

group of data set with 20% noise level. The percentage refers to the 

noise-to-signal peak ratio.   

Figure 4.14 shows the inversion results for different noise levels. 

Comparing to the noise-free reconstructed image (Figure 4.14A), the quality of 

the reconstructed images is reduced with the increase of noise level. In Figure 

4.14D, the noise can be clearly seen in the reconstructed cortex layer. The 

experiment demonstrates that the noise is detrimental to the image quality. 

However, the image quality is acceptable for noise up to 5% level. But for higher 

noise level, filtering should be used to reduce noise and enhance signal-to-noise 

ratio in order to improve image quality.  
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Figure 4.13  The simulation data using the convolution method with 

different noise level: (A) noise free record, (B) 5% noise, C) 10% noise, (D) 

20% noise, and (E) a section of 199 records with 20% noise level. The time 

records for the section are self-normalized. 

(A) (B) 

(C) (D) 

(E) 
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4.3 Inversion III: Analysis of inversion parameters 

In this experiment, a data set was simulated using a commercial software 

package, Wave2000 (CyberLogic Inc., New York, NY). The software is based on 

the finite difference (FD) implementation of elastic wave equation; however only 

the acoustic condition was applied in this case. The simulated data set is close to 

the real bone data and contains all wave phenomena such as spherical divergence, 

multiple reflections, absorption, scattering, and refraction at the curved structures. 

With this data set, I further examine the influence of some other inversion 

parameters upon the image quality of the reconstructed images. These parameters 

are temporal sampling interval, pixel size of the image matrix, acquisition spatial 

interval (number of the signal records) and regularization methods.   

4.3.1 The simulated records 

The bone model used is shown in Figure 4.6, the same model used for 

previous convoluted data set (Section 4.2). The SOS values remain to be 3441 m/s, 

1434 m/s, and 0 m/s for cortical bone, marrow, and air respectively. The assigned 

attenuation coefficients are 4.91 dB/MHz/cm (Zheng et al, 2007), 0.1 dB/MHz/cm, 

and 93.4 dB/MHz/cm for cortical bone, marrow, and air. Pulse/echo mode was 

used to imitate the zero-offset configuration; the signal records were computed for 

one transducer’s position at a time to simulate the real acquisition situation with 

one single transducer. Due to the full wave simulation of FD algorithm, the 

receiver was supposed to receive all scattered signals including specular 

reflections from all directions due to any inhomogeneities. The same experimental 

source wavelet as shown in Figure 4.7 was used. 199 records were calculated with 

a spatial interval of 1 mm. Each record is 90 µs long with 6667 data points and a 

time step of 0.0135 µs.  
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Figure 4.15A shows a simulated section of 199 records. Besides the primary 

reflection from the top cortex/marrow interface, the multiply reflected energy 

following the primary event is also seen (indicated by red arrows). The presence 

of material absorption, energy diminishing with travelled distance, and energy 

partition at the interface during wave propagation reduces the amplitudes of the 

reflection signals significantly, especially from the two lower interfaces. The 

small amplitudes of the late arrivals can influence the inversion results and reduce 

the image quality, even greatly affecting the reconstruction accuracy.  

Several signal processing steps were applied to the simulated data. Firstly, 

all the records were decimated 3 times, leaving a record length of 2224 data points 

with a time interval of 0.0405 µs. The Nyquist frequency is about 12.5 MHz. A 

0.5/0.7/2.5/3.0 MHz bandpass filter was used to remove the low and high 

frequency noise. The multiple reflection from the top cortical/marrow interface 

(the small responses after the primary reflection as indicated by the red arrows in 

Figure 4.15A) was also removed because only primary reflections from the 

structures are considered in the Born-based algorithm. The data were also 

time-gain compensated. Figure 4.15B shows the data after signal processing. The 

three reflection events correspond to the three interfaces in Figure 4.6. There is 

evidence of signal loss, which is lacking in the convolution-based data (see Figure 

4.8C); for example the reflections from the marrow/cortical and the cortical/air 

interfaces (see blue circles in Figure 4.15B) are highly attenuated and not visible 

without significant time-gain compensation. In real bone data, it is unlikely the 

echoes from these areas will be observed due to curvature of the interfaces and the 

receiving aperture of the transducer. This will be discussed in Chapter 5. 
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Figure 4.15  Simulation using the commercial finite difference software 

(Wave2000, CyberLogic, NY): (A) the simulated data with the red arrows 

indicating the multiple reflections and (B) the data after signal processing with 

self-normalization, while the blue circle indicates the signal loss in the 

reflection from the cortical/air interface comparing to Figure 4.8C. 

(A) 

(B) 
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4.3.2 Analysis of inversion parameters 

Similarly to Section 4.2, the same background velocity model (Figure 4.6B) 

was used for ray tracing. The frequency range is set to 0.5-3 MHz, and 

correspondingly 222 frequency components were used for the inversion process. 

The beam aperture is ±5°. Four parameters have been examined: temporal 

sampling interval, pixel size, spacing interval of acquisition (number of the signal 

records) and different inversion regularizations. 

4.3.2.1 Temporal sampling interval 

The Nyquist frequency determines the sampling interval of the signal and 

vice versa. Figure 4.16 shows two reconstructed images based on two sampling 

intervals: 0.040 µs (fNyquist=12.5 MHz) and 0.081 µs (fNyquist=6.25 MHz). Even 

though the latter sampling frequency is half of the former, the 3 MHz frequency 

spectrum of the signal is well below the allowable maximum frequency. However 

as illustrated in Figure 4.16B, the coarse time interval results in blurred 

reconstructed interfaces. Comparing to Figure 4.16A with finer Δt, the first 

reconstructed cortical/marrow interface is broader with at least two cycles of 

waveform. For the lower interfaces, the reconstructed interfaces are less sharp and 

not well defined, especially where the interfaces are curved. Also the lower 

structures lost more information, for example the missing part of the cortical/air 

interface as indicated with red circle.  

The loss of resolution results from the reduced signal data points due to 

bigger sampling interval Δt. Moreover, if we recall the spatial resolution Eq. 

(3.24), the spatial resolution of reconstructed image decreases with the increase of 

Δt. 
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Figure 4.16  The reconstructed images when applying the different 

temporal sampling interval: (A) Δt = 0.40 µs; (B) Δt = 0.81 µs, while the red 

circle indicates the missing information comparing to (A). 

(B) 

(A) 
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4.3.2.2 Pixel dimension of the image matrix 

Prior to the inversion, the size of an initial image matrix must be determined. 

The compromise should be considered among imaging quality, imaging resolution, 

and computation cost. The pixel size Δx and Δz influence imaging resolution 

directly. Intuitively, the smaller pixel size indicates a better resolution for the 

reconstructed images; yet simultaneously implies more unknowns during 

inversion according to Eq. (3.17); subsequently, the image quality will be 

reduced. 

Figure 4.17 shows the inversion results for two pixel sizes: Δx = Δz = 0.50 

mm and (B) Δx = Δz = 0.25 mm. Comparing the two reconstructed images, the 

large pixel size offers better contrast (Figure 4.17A) while the small pixel size 

yields sharper interfaces (Figure 4.17B). On the other hand, the computing time 

increases by 4 folds from 205 seconds to 846 seconds when the pixel dimension is 

halved.  

Eq. (3.24) offers a theoretical minimum size of the image pixel when the 

background velocity is provided,  

 0max ( ) Δ
mininum size of Δ ,  Δ

2

c t
x z




x
 

which can be used as a guidance to determine the matrix size. 

4.3.2.3 Spatial interval of acquisition 

The spatial interval of acquisition determines the number of acquired 

records for a fixed scan length. As discussed in Chapter 3, when the pixel element 

is sufficiently sampled by the ultrasound rays, i.e., more ultrasound rays passing 

through the pixel element, the pixel value will be properly reconstructed to be 
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more close to the true value of the pixel. This will greatly improve the image 

quality.   

Figure 4.18 shows the inversion results for different acquisition spatial 

interval or different number of signal records. Figure 4.18A and C are the 

reconstructed images using 100 and 199 original signal records respectively. For 

Figure 4.18B and D, the F-X interpolation method (Spitz, 1991; Naghizadeh and 

Sacchi, 2009) was used to increase the number of records from 100 to 199 (Figure 

4.18B) and from 199 to 397 (Figure 4.18D). 

When 100 signal records are used (Figure 4.18A), the reconstructed 

cortical/marrow interface appears to be discontinuous and the image has low 

contrast. When the acquisition spatial interval is halved by interpolation, the 

discontinuity of the interface is less noticeable. However the reconstructed noise 

is not notably reduced (see circled area in Figure 4.18B). When 199 original 

signal records are used (Figure 4.18C), the noise level of the reconstructed image 

is reduced but the overall image quality is not much different from the 

interpolated section (see Figure 4.18B). The 199 records were further interpolated 

to double the number of records and reduce spatial interval to 0.5 mm. Figure 

4.18D shows the reconstructed image with 397 records. The image shows better 

contrast and continuity of the interfaces.   

Even though more signal records provide better image quality, a 

compromise should be reached among accuracy, image quality, and computational 

cost. The interpolation method cannot be unlimitedly applied; it is shown that the 

unexpected artifacts are introduced to the signal data after being interpolated more 

than once. 
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Figure 4.17  The reconstructed images when applying the different pixel 

size: (A) Δx = Δz = 0.50 mm; (B) Δx = Δz = 0.25 mm. 

(B) 
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4.3.2.4 Inversion regularizations  

In this section, four different inversion algorithms as described in Chapter 3, 

will be examined. There are four typical methods: adjoint operator, unconstrained 

least squares solution (ULS), damped least squares solution (DLS), and weighted 

least squares solution (WLS). Based on the previous study of the trade-off curves, 

10 iterations were chosen for the CG method (see Figure 4.4B); the values of the 

regularization parameters were 4 and 0.1 for DLS and WLS methods respectively.  

Figure 4.19 shows the reconstructed images using different inversion 

algorithms. Among the methods, the adjoint operator yields the least favorable 

result. The images are blurred and the reconstructed interfaces are fuzzy with low 

contrast (Figure 4.19A). Relatively, the ULS method improves the accuracy of 

interfaces (Figure 4.19B). Since the method contains only the misfit term in the 

cost function without the consideration of model smoothness, the reconstructed 

image is very noisy; both left and right ends of the first interface cannot be 

completely reconstructed due to great amount of interferences resulted from the 

low signal-to-noise ratio of the time records. For the WLS method, the two 

first-derivative operators were considered. We recall the derivative operator given 

by Eq. (3.20) 

 

 

Various operators can be constructed by assigning different values to the matrix 

elements, (a, b, c), for example (-1, 4, 0) and (-1, 8, -1). The latter is shown to 

yield better reconstructed results (Figure 4.19C). Theoretically the derivative 

 .D

 
 

  
 
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operator should emphasize the edge information during the inversion procedure. 

Comparing the other three reconstructed images, the WLS method provides the 

sharpest reconstructed interfaces with better contrast especially for the first 

cortex/marrow interface (see Figure 4.19C). However, the discontinuities, 

indicated by the dark arrows in the figure, are also enhanced with edge artifacts. 

Among all the reconstructed images, the DLS method provides the most 

reasonable results with clearer interfaces, better contrast, less noise, and smoother 

images (Figure 4.19D), striking a balance between image smoothness and 

accuracy. 

4.4 Inversion IV: Optimal reconstruction 

In this inversion example, the optimal values of those parameters examined 

in the previous sections were used to invert the FD data set. These values are   

frequency range: 0.5-3 MHz 

frequency sampling rate: 89/MHz 

aperture: ± 5 ˚ 

source wavelet: experimental  

bandpass filter: 0.5/0.7/2.5/3.0 MHz 

temporal sampling interval (Nyquist): 0.04 µs (12.5 MHz ) 

pixel size: 0.5 mm 

spatial interval of acquisition: 0.5 mm 

inversion method: DLS with µ = 4 and 10 iterations.
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Figure 4.20A shows the reconstructed image. Three major interfaces are 

identified: cortex/marrow, marrow/cortex and cortex/air. Due to the small 5° 

aperture used, only the area directly below transducer can be reconstructed, 

therefore the reconstructed interfaces are shorter at both ends than those of the 

original bone model. Very similar to the previous results, the first cortex/marrow 

interface is denser, sharper, more continuous and smooth, much better resolved 

than the other two interfaces. For the lower interfaces, the middle part of the bone 

is better reconstructed than both ends. As discussed in Section 4.1.2, this 

discrepancy between the reconstructed image and original model is slightly 

attributed to the small amplitudes due to spherical divergence, structural 

inhomogeneities, and beam refraction from large curvatures. Another important 

reason for the low signal-to-noise ratio is the pulse dispersion due to material 

absorption. The absorptive mechanism not only attenuates the signal amplitudes, 

but also makes the signal pulses broader and dispersive, which results in ringing 

waveforms of several cycles and leads to less sharp reconstructed interfaces.   

As the interfaces are assumed to be continuous and smooth, a seven-order 

polynomial was used to best-fit the reconstructed interfaces in the regions where 

the reconstructed images can be seen and are mainly located between 0.05 m and 

0.2 m. The best-fitted interface curves are superimposed on the reconstructed 

image (see Figure 4.20A) and the original bone model (see Figure 4.20B). The 

first cortex/marrow interface is perfectly located and identified. For the other two 

interfaces, there is visible discrepancy between the reconstructed and the original 

interfaces. The middle parts of the interfaces are better reconstructed than the 

ends.  

There are two main reasons for this discrepancy. First, the discrepancy 

partly arises from the replacement of a true velocity profile by its smooth version 
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for ray tracing. As discussed in Section 2.4 of Chapter 2, the ray tracing algorithm 

requires a small velocity gradient to calculate the travelled distance and travelling 

times properly. Smoothing a velocity model will introduce small inaccuracy or 

error to the calculated quantities when the travelled path is small. However, the 

error will accumulate when the travelled distances are longer, especially for the 

deeper structures. Therefore the lower interfaces are not imaged or mapped 

accurately. Secondly, we have replaced an inhomogeneous bone by a three 

homogeneously-layered bone model. The inhomogeneity of the real bone samples 

due to existence of cancellous bone will also influence the accurate reconstruction 

of the lower marrow/cortex and cortex/air interfaces.  

However, the reconstruction of upper cortical layer should not be seriously 

affected as long as the cortical velocity is accurately determined. The 

determination of the velocity and the reconstruction of the cortex using real 

animal bone samples will be the subject of Chapter 5, which leads to a feasible 

and robust method to assess the thickness of cortical layer. 
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Figure 4.20  The reconstructed images for the FD data using the optimal 

inversion parameters: (A) the reconstructed image superimposed by the 

best-fitted curves for the interfaces; (B) the original bone model (Figure 4.6) 

superimposed by the interface curves   

(A) 

(B) 
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Chapter 5  

In vitro application to real bone data 

Different from the simulated data, imaging real bone data is more 

challenging as the data is noisier and less predictable due to many factors, notably, 

electronic noises from acquisition and heterogeneities of bone tissues. In this 

chapter, we image real bone sample in vitro. I start this chapter with a discussion 

on sample preparation and experimental setup for zero-offset measurements. As a 

digression, I then describe the offset axial transmission method to estimate 

cortical velocity, which is an important input parameter for the imaging 

algorithms. The inversion of three bone samples is presented using the estimated 

velocities and the accuracy of the recovered thickness of the first cortical layer is 

assessed based on the CT images. Finally, a full inversion for all interfaces is 

performed for a real bone data set.  

5.1 Materials and methods 

To assure that all the signal records only register the information caused by 

the internal structure, the experimental conditions，such as equipment setup, 

acquisition protocol design, and data analysis after acquisition should be as 

identical as possible when collecting and processing the data. Therefore, one set 

of equipment was specially designed. 
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5.1.1 Preparation of bone samples 

Four fresh long bone samples were prepared: two from bovine tibia (labeled 

as Sample 1 and 4), one from cervine tibia (Sample 2), and one from ovine femur 

(Sample 3). The samples were cleaned and the soft tissue was removed. Most of 

proximal epiphyses were removed and the samples were cut to 200-250 mm long 

except the ovine sample, which was kept for full length.  

The samples were scanned by a multislice CT scanner (Siemens Somaton 64) 

and 1-mm thick sagittal images were reconstructed using high resolution. The 

dimension of the image matrix is approximately 500×1400 with 0.18 mm pixel 

size. Except for Sample 4, the pixel size is much bigger at 0.5 mm. The CT image 

of Sample 4 was previously used in Chapter 4 to construct the bone velocity 

model. Based on the CT images, the minimum diameters of the samples, which 

were measured at the mid-shaft, range from 19.4 mm to 33.5 mm with mean 

cortical thickness of top cortex from 3 to 7 mm. Table 5.1 lists the geometrical 

properties of the bone samples and some information relevant to the data 

acquisition. Since the receiver was translated in the mid-line of the coronal plane 

along the long axis during the experiment, the sagittal images with the largest 

cross-section area of the bone samples will be used to compare with the inversion 

results.  

The samples were stored in a freezer before the experiments. To achieve the 

best reconstructed images and comparison, one day before the CT-scanning, the 

samples were defrosted overnight at room temperature of 20
o
C, cleaned to remove 

the soft tissue, and then preserved in a 70% alcohol. The ultrasound data were 

acquired right after CT-scanning to avoid any change of internal structure and 

material properties due to the preservation process. However, during preservation, 

the marrow in the samples shrank and therefore some cavities were formed in the 
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structure; the properties of cortical bone changed because of dehydration, which 

would result in decreased velocity and increased attenuation in the bone tissue 

because of the intruded air.     

5.1.2 Experimental setup 

Figure 2.2 shows a specially designed device for data collection. The bone 

samples sat firmly on the brackets of the two wheels, which were fixed by 

tightening the knobs at the end. A Panametrics CHC706 dual-head P-wave 

composite transducer (Panametrics, Waltham, MA) with center frequency of 2.25 

MHz was used to transmit and receive the signal using the transmission mode 

(Figure 5.1A). Two piezoelectric crystal elements are housed in the same case 

acting as transmitter and receiver separately. The source signal was previously 

shown in Figure 4.7. Figure 5.1B illustrates the function of the transducer. The 

diameter of the active surface is 0.5 inch (13 mm). Figure 5.1C shows the 

measured beam radiation pattern indicating the beam strength is mainly focused 

within ±20° aperture. 

Figure 2.2 shows the schematic of the experimental setup. The transducer 

was directly positioned on the bone surface coupling with the ultrasound gel at 

room temperature of 20
o
C. A steel bar was placed on top of the transducer to 

provide constant pressure between the transducer and the sample. A Panametrics 

5800 computer controlled Pulser/Receiver (Panametrics, Waltham, MA) was used 

to pulse the transducer and a LeCroy wavesurfer 422 oscilloscope (LeCroy, 

Chestnut Ridge, NY) was used to receive and store the time signals. Time signals 

were collected along the axial direction of long bone samples with step interval of 

1 mm. Each signal was averaged 128 times in real time. 
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(C) 

(B) (A) 

Figure 5.1  The experimental transducer: (A) a CHC706 dual-head P-wave 

composite transducer; (B) a schematic showing how a dual-head transducer 

works (Ultrasonic transducers catalog, P6, Panametrics INC, Waltham, MA); 

(C) the experimental beam radiation pattern. The angle refers to angle of the 

beam with respect to normal direction to the transducer’s active surface.   
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The pulse/echo mode is usually an easier way to acquire zero-offset data. 

However, the trigger signals from the transducers operating in the pulse/echo 

mode can last for more than 4 µs. Then, the echoes from the first interface of the 

bone samples will be partly covered by the trigger signals and not be easily 

identified especially when the cortex is thin. In this situation, the dual-head 

transducer operating in the transmission mode is better suited for the study 

because it provides shorter trigger signals. The trigger signal of the CHC706 

dual-head transducer is less than 1.2 µs. There is a layer of shielding material to 

protect the crystals, which leads to a measured delay time of 4.94 µs in the 

receiving signals. The short trigger signal and the delay time will ease the 

separation of the signals from the trigger signals. However, the delay times must 

be subtracted from the recording times of the signals for the correct travelling 

times. During the experiments, acquisition parameters will be held unchanged for 

each bone sample. The collected signals will be saved and processed further by a 

desktop PC. 

5.2 Estimation of cortical velocity  

A good estimate of the background velocity is a crucial step for image 

reconstruction. In this chapter, we mainly focus on imaging the top cortex. I 

describe in the following a procedure to estimate the velocity of the cortex using 

the axial transmission offset data. 

5.2.1 Experimental setup 

Figure 5.2 shows the experimental setup for the axial transmission technique 

involving two transducers. Two P-wave angle beam transducers (Panametrics 

V539, Waltham, MA) were matched with two angle wedges (Panametrics 
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ABWM-7T, Waltham, MA). The transducers have a center frequency of 1.0 MHz 

with an active 13-cm diameter element. One transducer-wedge system, acting as a 

transmitter, was fixed and the other set was moved rectilinearly along the long 

axis of the bone samples at a regular spacing of 1 mm.  

Five different angle wedges including 30°, 45°, 60°, 70°, and 90° were used 

to generate ultrasound at different incident angles. According to the product 

information (Olympus, Waltham, MA), the wedge angle refers to the refracted 

shear wave angle in steel measured at 5 MHz (Ultrasonic transducers catalog, P8, 

Panametrics INC, Waltham, MA). Since the shear wave velocity of steel is 3240 

m/s and the cortical velocities of our samples are around 3200 m/s, the wedge 

angle can approximate the refracted P-wave angle in the cortex. For convenience, 

we use the wedge angle, hereafter, to refer to the refracted P-wave within the 

cortex. 

  

Figure 5.2  The setup for an offset axial transmission experiment. 
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Ultrasound waves propagate much longer distance within the cortical layer 

in the offset case than in the zero-offset case and will experience greater 

attenuation and dispersion. Lower signal-to-noise ratio is expected in the signals. 

The transducers with lower center frequency should be employed to reduce the 

effect of attenuation and dispersion. We chose to use 1.0 MHz instead of 2.25 

MHz to measure the cortical velocity of bone samples. Born theory does not 

consider dispersion during the approximation, so the inversion results will not be 

influenced even if the predicted background velocities are estimated using lower 

frequency. 

Three samples: bovine (Sample 1), cervine (Sample 2), and ovine (Sample 3) 

were used to estimate cortical velocities of the samples. Depending on the contact 

surface condition of the samples, the placement of the source-receiver pair and the 

minimum separation between transducers (or closest offset) varied. The closest 

offsets for the samples are listed in Table 5.1. For each bone sample, four angle 

wedges were used, yielding four sets of data. There are more than 50 signal 

records for each set. 

5.2.2 Data analysis 

For short offset, the first arriving signal (FAS) is the direct wave travelling 

from the source to the receiver through the cortical layer. The velocity, V, of the 

FAS can be estimated by 

X
V

t
    (5.1) 

where X is the offset and t is the travelling time of the FAS. The distance X of the 

n’th record can be calculated by knowing the closest offset and the spacing 
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interval, which is 1 mm in our study:  

closest offset ( 1) spacing interval .X n     

The arriving time t can be estimated by the time of the first peak of the signal.  

Instead of using a single record, a group of 10 – 20 records and linear least 

squares regression was used to determine the best-fitted line. The estimated 

velocity is then given by the 1/slope of the regression line.   

As a comparison, a zero-offset based method, similar to the method 

described in Section 4.2.1, was used to estimate cortical velocity. The thickness of 

the top cortical layer was provided by the CT images and the travelling times were 

given by the one-way travelling time of the corresponding echoes. A group of at 

least 100 records was used and the velocities thus obtained were averaged. Table 

5.2 lists the means of the CT-based velocity, which were used as standards or 

exact values to evaluate the FAS-based velocities. 

5.2.3 Results and discussions    

Table 5.2 lists the results of estimating cortical velocities for the twelve data 

sets. Four different wedge angles including 30°, 45°, 60° and 70°/90° were used 

for each bone sample. Since the results for the wedge angles 70° and 90° do not 

show significant difference, either one was used for each bone sample.  Figure 

5.3 shows one group of signals acquired from ovine sample for four different 

wedge angles. In the cases of 30° (Figure 5.3A) and 45° (Figure 5.3B), the 

amplitudes of the FAS travelling directly from source to receiver are smaller than 

the amplitudes of the late-arriving waves, which are indicated by the red dotted 

line in Figure 5.3B. Especially for 30°, the FAS and the late-arriving waves 

interfere each other, making their identification difficult. This is mainly caused by 
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beam pattern of the transducer, which leads to less energy propagating along the 

axial direction when the wedge angle is small. The smaller amplitude will result in 

lower signal-to-noise ratio, affecting the accuracy of picking the travelling times 

of the FAS’ peaks. With the increase of wedge angle, the beam is tilted more 

toward the axial direction and the FAS energy become stronger, as shown in the 

dash line in Figure 5.3C. However, due to the curved surfaces of the bone samples 

and the bigger contact surfaces of the wedges, good coupling was not possible 

during the experiments for large wedge angles, 70° and 90°, so the amplitudes of 

the FAS drop rapidly and the pulses become wider, which is a sign of energy loss 

and signal dispersion.  

Comparing the estimated SOS value of the cortical tissue in Table 5.2, the 

60° wedge has the best estimated velocities of the three samples, which are 3163 

m/s, 3106 m/s and 3149m/s; and the least errors are 1.4%, 5.0%, and 3.6% 

respectively. For 30° wedge, the errors relative to standard value are more than 50% 

in some cases. Comparatively, the 45° and 70°/90° wedges on the average has an 

error around 30-50% smaller than the error of 30° wedge but still greater than the 

error of 60° wedge. 
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To apply the linear regression method for cortical velocity, a group of the 

first ten, fifteen and twenty records were used to evaluate the accuracy of the 

estimation. Even though more than 50 records were collected during the 

experiment, the FAS can only be observed in the records close to the source with 

amplitudes decreasing at further offset. Among the number of records used, the 

group of 15 records works well for the bovine and cervine samples and have 

smaller errors as compared to the CT-based velocities. The results derived from 

the first 10 records are less favorable due to perhaps inadequate data points. For 

the ovine sample, the group of 10 records suggests a more accurate estimation 

instead. The sample is shorter than the other two samples and more uniform in the 

mid-shaft, thus fewer records providing better estimation. In case of 20 records, 

the signals were more interfered by the noise, attenuation due to longer travelling 

distances, the late arriving waves and surface waves, therefore larger errors in 

estimation were incurred.  

Additionally, the structural characteristics of cortical bone layer are an 

important factor for the velocity assessment. Figure 5.6A, 5.7A, 5.8A show the 

CT images for bovine, cervine, and ovine samples respectively. Apparently, the 

cortical thickness of bovine sample is less uniform along the axial direction and 

ovine sample shows a slight curvature of the contact surface with the transducers. 

Comparing the results of SOS estimation listed in Table 5.2, cervine sample 

presents a more stable and accurate results than the other two bone samples for all 

wedge angles and number of records. The possible reason is that different from 

other samples, the cervine sample has a flatter top surface and the cortical layer is 

more homogeneous and uniformly thick. In this situation, the scattering due to 

irregular cortex/marrow interface and inhomogeneity is reduced and the FAS will 

be less influenced by the other signal arrivals.  
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In summary, the velocity estimation using offset data are more accurate and 

stable when the wedge angle is 60°. The number of applied experimental records 

should be selected according to surface condition and length of the samples. Ten 

to fifteen records are reasonable choice for the assessment. If the curvature of the 

contact surface is larger, smaller number of records should be used to ensure the 

transducers to be level during the experiments. Since the structural properties can 

greatly affect the results, the mid-shaft of long bones, which usually has little 

presence of cancellous bone, should be considered for the cortical velocity 

estimation.  

5.3 Cortical thickness assessment 

In this section, I image the top cortices of the three bone samples and 

measure their thickness using the reconstructed images. The previously estimated 

cortex velocity is used for the initial velocity model. Experiments describing data 

acquisition for zero-offset cases was already presented in Section 5.1.2. Table 5.1 

provides information about the closest offset, spatial interval between records, and 

the total number of records acquired for each sample.    

5.3.1 Data analysis and processing 

The experimental data requires some data processing prior to inversion. 

First, the trigger signals were removed from each record; the delay time, intrinsic 

to the transducer, was deducted from the signal; decimation up to 100 folds was 

applied to reduce the total number of data samples, decreasing the sampling rate 

to 20 MHz, i.e. Δt = 0.05 µs with a 10 MHz Nyquist frequency. Trapezoidal 

bandpass filter with different frequency bands were applied to the data:  

0.2/0.5/2.5/3.0 MHz for bovine sample, 0.2/0.7/2.5/3.5 MHz for cervine sample, 
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and 0.2/0.7/2.5/3.0 MHz for ovine sample respectively. Each record was then 

normalized by its own maximum amplitude.  

Since the top cortical layer was the imaging target, inversion with a constant 

velocity model was appropriate. Also, only the reflection signals from the 

cortical/marrow interface were required to invert for the top cortex. A 61-point 

Hamming window was used to single out the cortex/marrow reflections while 

eliminating the other signals. Figure 5.4A shows an acquired ultrasound record 

including all reflections from the interfaces and Figure 5.4B shows the filtered 

signal containing only the top cortex/marrow reflection.   

The internal structure of a bone sample is a continuous medium and the 

acquired signals are actually the integral responses of reflecting zones instead of 

single points; unless there is a bone fracture, any large sudden change between 

neighboring records might not be real. However in experiments, there exist some 

discontinuities in the records due mainly to equipment-related factors. For 

example, equipment response may be different when the range of vertical display 

of the oscilloscope is changed, causing a discontinuity to the records. Figure 5.4C 

shows a group of original records of the cervine bone sample with some lateral 

discontinuities (see circled areas) for the cortex/marrow reflections. Here, the 

records were visually inspected for discontinuities and then replaced by the new 

records interpolated by the closest two or four records. In case the discontinuity of 

the data cannot be completely eliminated by the interpolation process, then we 

will accept the processed data without further manipulation. At the end, the 

records were interpolated to have the number of records doubled, i.e., 421, 325, 

and 243 records for the bovine, cervine and ovine samples respectively. Figure 

5.4D shows the records from the cervine sample after Hamming-filtering and 

interpolation.      
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Figure 5.4  Ultrasound signals of the cervine sample (Sample 2): (A) an 

original time signal including the top cortical/marrow interface (1), the 

marrow/cortical interface (2), and the cortical/air interface (3); (B) the filtered 

signal including the top cortex/marrow echo only; (C) an original ultrasound 

section; (D) a filtered and interpolated ultrasound section with the cortex/marrow 

reflection only. The red circles in both (C) and (D) indicate the lateral 

discontinuous area before and after interpolation.  

(D) 

Top cortex/marrow reflection (C) 

(B) 1 
2 

3 

(A) 
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5.3.2 Inversion parameters 

Prior to image reconstruction of the three bone samples, proper inversion 

parameters were selected based on the rationales discussed in Chapter 4. The 

beam aperture was settled at ±5°to decrease the influence of signal scattering 

and averaging. The frequency range for inversion was from 0.2 to 3.0 or 3.5 MHz 

depending on the bandpass frequency windows of the applied filters. The numbers 

of data points used per record are 1883 for the bovine sample, 873 for the cervine 

sample, and 887 for the ovine sample respectively. The experimental wavelet 

shown in Figure 4.7 was used. The size of the CT images was used as the 

dimension of the reconstructed images. Table 5.1 lists further information of the 

matrix sizes and pixel sizes for each sample. 

The velocities, previously estimated from the offset axial transmission data 

were used to construct the constant background velocity model. For bovine, 

cervine and ovine samples, the SOS values were respectively 3163 m/s, 3106 m/s 

and 3149 m/s as listed in Table 5.2.  

A damped least squares conjugate gradient (DSLCG) method was used for 

the inversion procedure. Ten iterations were used based on the results in Chapter 4. 

Figure 5.5 shows a trade-off curve for 3 iterations using the ultrasound data of the 

cervine sample. Based on the observation from the curve, the regularization 

parameter can be specified between 1 and 3. The trade-off curve for the other two 

data sets showed similar results. Therefore µ=1.5 was used as the regularization 

parameter for all three bone samples. 
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5.3.3 Thickness estimation 

The first interfaces between the cortical bone and marrow were 

reconstructed. Since the bone surfaces, indicated by the source/receiver positions, 

are known, the distance between these two interfaces is the estimated cortical 

thickness.  

5.3.3.1 Inversion results for bone samples 

Figures 5.6, 5.7 and 5.8 demonstrate the inversion results and thickness 

measurement for the three bone samples. In Part A of all the figures, velocity 

models converted from the CT images are shown and the red lines indicate the 

source/receiver (S/R) pair locations on the bone surfaces. Part B of all the figures 

Figure 5.5  A trade-off curve for the cervine bone sample with 3 iterations. 
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presents the reconstructed images of the samples. The black solid lines indicate 

the bone surfaces, which are the same red lines in part A of the figures. The red 

lines are the recovered interfaces between cortex and marrow. Part C of all the 

figures shows the cortical thickness comparison between the CT measurements 

and the reconstructed image, where the solid lines are the CT results and the 

asterisks are the ultrasound measurements. The number of thickness 

measurements is equal to the number of source/receiver pairs because at the S/R 

positions the cortical thickness was estimated.   

Figures 5.6B, 5.7B, and 5.8B show the recovered cortex/marrow interface.  

The interfaces are segmented and not continuous, showing a few major 

discontinuities. The inaccuracy of the reconstruction at those break points are 

attributed mainly to two reasons: the reconstruction noise causing the peaks to be 

thresholded at different locations and the presence of the discontinuity in the data 

as discussed previously in Section 5.3.1.   

Figure 5.6C shows the thickness comparison between the CT and 

reconstructed images. There are visually distinct sections where the average 

thickness levels are different. The sections have distinct break points at Record 60 

(x = 0.08m) and 160 (x = 0.19m), where there are few outliers in their 

neighbourhoods. These outliers should be neglected for thickness estimates as 

their values deviating far from the norms. Figures 5.7C and 5.8C show the 

reconstructed interfaces for the cervine and ovine samples, which are smoother 

and more continuous laterally. The thickness comparison is better and closer than 

the bovine’s comparison. 

Among all three samples, the cervine sample yields the best estimation for 

cortical thickness. As previously mentioned in Section 5.2.3, the possible reason 

is that the top cortical thickness of the cervine sample is relatively uniform and its 



124 

surface is flat. The good coupling between the transducers and the bone surface 

and the structural homogeneity of the bone sample allow better energy 

transmission and reflection.  

For all inversion results, there are edge artifacts occurring at the both ends. 

In those areas, large errors exist between the estimated thickness from the 

reconstructed images and CT images. It may be caused by two factors: larger 

curvature of the interfaces at the ends of the samples and the presence of 

cancellous bone at the ends. The latter reduces the homogeneity of the samples, 

making the assumption of uniform velocity model deviating from the actual bone 

structure. 

Therefore, when estimating the cortical thickness from the reconstructed 

images, one should avoid using the portion of the image either at the ends or the 

discontinuous locations. The part of the image corresponding to the mid-shaft of 

bone sample should be more appropriate. 
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Figure 5.6  The inversion results for the bovine sample: (A) a CT image 

with source/receiver configurations. The red line indicates the S/R pair 

locations; (B) the inversion result of the first cortical layer with the black line 

indicating the bone surface; (C) thickness comparison between the 

measurements from the CT image and the reconstructed image.  
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— Measurements from CT 
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0.05 0.09 0.17 0.15 0.07 0.11 0.13 0.19 0.21 

X (m) / Record No. 

(C) 

(B) 

(A) 

Figure 5.7  The inversion results for the cervine sample: (A) a CT image 

with source/receiver configurations. The red line indicates the S/R pair 

locations; (B) the inversion result of the first cortical layer with the black line 

indicating the bone surface; (C) thickness comparison between the 

measurements from the CT image and the reconstructed image. 



127 

  

Figure 5.8  The inversion results for the ovine sample: (A) a CT image with 

source/receiver configurations. The red line indicates the S/R pair locations; 

(B) the inversion result of the first cortical layer with the black line indicating 

the bone surface; (C) thickness comparison between the measurements from 

the CT image and the reconstructed image. 
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5.3.3.2 Mean thickness measurement and comparison 

Figures 5.6C, 5.7C and 5.8C show the point-by-point comparison between 

the estimated and CT-based thickness at all source/receiver positions. To compare 

the measurement quantitatively, the mean thickness is calculated by taking the 

average of the thickness values of a specific number of S/R positions. 

Here we define two mean thickness estimates: total mean thickness (TMT) 

and sectional mean thickness (SMT). TMT uses thickness measurements at all 

S/R positions. In case the measurements have outliers, the TMT value does not 

have significant meaning but does offer a quick estimate. SMT is a more 

meaningful and reliable estimate as it only uses a smaller number of S/R positions 

when the reconstructed interfaces are not smooth and excludes outliers for the 

estimation.   

Table 5.3 tabulates the mean thickness estimates for the three samples. 

Expectedly, the TMT errors are larger than the SMT errors. The TMT always has 

larger errors with large standard deviations for the following two main reasons. 

First, the estimate uses thickness measurements for a very far range, i.e., the first 

S/R position is very far away from the last S/R position; the cortex might not be 

heterogeneous laterally for that distance. Secondly, the estimate uses all thickness 

measurements even though some of the measurements are not reliable, i.e., 

outliers. As shown in Table 5.3, most SMT estimates are close to the 

corresponding CT-based mean thickness. The absolute relative errors between 

these two mean thickness values are as low as 1.9%, 4.6% and 3.2% for the 

bovine, cervine, and ovine samples respectively. Therefore the sectional mean is a 

more reliable and robust parameter to estimate the average thickness of the 

cortical layer. 
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As expected, the cervine sample shows the least TMT error of 7% among 

the three samples. There are more than 30% errors for bovine and ovine samples 

because the thickness measurements vary greatly along the acquisition distance. 

Thus choosing a uniform section in the reconstructed image is important for 

accurate thickness estimate. The cervine sample also has a flatter bone surface and 

a smoother reconstructed interface, which consequently provides more accurate 

cortical thickness estimate. 

For the bovine sample, the SMT measurement includes three zones 

delineated by Record 21 - 60, Record 81 - 150 and Record 171 -190 respectively. 

The first zone (between Record 21 and 60) has the best SMT of 5.4 mm with 1.9% 

error. The small error in this zone can be attributed to the fact that the cortical 

velocity was estimated and calculated in the same zone. While one can assume the 

homogeneity of the bone tissues at smaller measuring distance, the bone tissues 

can be inhomogeneous at large distances. The cortical velocities vary slightly 

along the long axis. This can lead to error or inaccuracy in thickness estimation 

where positions at which the velocity and thickness estimation are far apart. To 

improve the accuracy of the results, the procedures of velocity estimation and 

thickness measurement should be performed in the same zone of bone samples. 

For the other two (cervine and ovine) samples, these procedures were followed in 

the experiments, and thus better estimates of the cortical thickness were obtained 

with a good comparison to the CT-based measurements.  

The bovine, cervine and ovine bone samples used have average cortical 

thickness of 5 mm, 4 mm and 3 mm respectively. It has been shown that a cortical 

thickness of less than 4 mm in humerus bones will indicate a low BMD (Tingart 

et al, 2003). The cortical thickness measurement from the reconstructed images in 

this study reveals possible potential to estimate thin cortex for osteoporosis.  
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5.4 Full inversion of long bone structure 

In this section, I use one of the real bone data sets, the bovine tibia data set 

(Sample 4) to invert for all of its interfaces: cortical/marrow, marrow/cortical and 

cortical/air. Distorted Born approximation with a variable background velocity is 

used. 

5.4.1 Inversion analysis and processing 

The data was processed following the procedures described in Section 4.3.1 

and Section 5.3.1 to improve the signal-to-noise ratio and enhance the echoes of 

the recorded signals. After the triggers were removed from the original data, the 

signals were decimated with a time interval of 0.05 µs. A bandpass filter of 

0.3/0.5/2.0/2.5 MHz was applied to all records to remove the low and high 

frequency components. The multiple reflections from the first interface 

(cortical/marrow) were muted. Time gain compensation was applied to increase 

the amplitude of late-arriving reflection signals from other interfaces in the lower 

part of the bone sample. Further the major reflections, which will be used for 

inversion, were singled out by a 71-point Hamming window. As discussed in 

previous section, interpolation was also used to replace any bad record and reduce 

spacing interval by inserting records in between. The number of records was 

increased from 198 to 395 records in this case, to improve image quality of the 

reconstructed images. 

Figure 5.9 shows portion of the time signals before (Figure 5.9A) and after 

processing (Figure 5.9B). The reflection responses from the two lower interfaces 

(marrow/cortical and cortical/air) could be seen after time gain compensation. 

Figure 5.10A illustrates the CT image of the bone sample. Due to the long 
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preservation time, the bone sample was dehydrated and there were large cavities 

in the marrow close to the right end of the bone sample. Under this circumstance, 

ultrasound wave can hardly penetrate further in the bone structure, and therefore, 

there were very little responses at the latter part of the signal beyond x = 0.16m as 

seen in Figure 5.9B. Simultaneously, the presence of cancellous bone close to 

epiphyses greatly attenuated ultrasound waves so the waves couldn’t travel longer 

distance. These factors will influence the inversion results, which will be 

discussed later.  

Similar inversion parameters were selected as those used in Section 5.3.2. 

The beam aperture was ±5°and the frequency range for inversion used was set 

from 0.3 to 2.5 MHz. The number of data points for each record was 1799. The 

dimension of image matrix was 155×512 with 0.5 mm pixel size. After 

interpolation, the number of record was 395. The DLSCG method was used with 

4 and 10 for the regularization parameter and iteration number respectively. The 

SOS for cortical bone was still assigned as 3441m/s, 1434 m/s for marrow, and 0 

for air. The same tables of ray tracing results used in Section 4.3 and 4.4 were 

recalled to provide the travelled distance and travelling time estimates.
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Figure 5.9  Experimental data of bovine tibia bone (Sample 4): (A) a 

section of the original time signals; (B) the same section of the records after 

processing. The records are self-normalized. 

(A) 

(B) 
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5.4.2 Inversion results and discussions 

Figure 5.10B shows the reconstructed image using the data set shown in 

Figure 5.9B. In the figure, the red points indicate the pixel values of the 

reconstructed interfaces and the blue solid lines are the best-fitted seven-order 

polynomial curves for the three interfaces. Figure 5.10C shows the reconstructed 

interfaces superimposed on the original CT-converted velocity model. To 

emphasize the interfaces, the CT-converted velocity model instead of the CT 

image was used for the comparison. 

Among the three, the first cortical/marrow interface is faithfully 

reconstructed. The interface is continuous and smooth and almost overlaps with 

the corresponding interface in the converted velocity model. 

For the other two interfaces, the reconstructed interfaces are made up of 

largely dispersive dots, and the contour of the interfaces can only be identified 

with the aid of imaging enhancement techniques. The curve-fitting is only 

effective in the range where the true inversion results can be achieved. The 

agreement is also less favourable comparing to the first cortical/marrow interface. 

The agreement is better in the middle part of the image where the curvature of the 

bone structure is minimal. Toward the left, the structure curves sharply and the 

agreement is poor.  

There are at least three main reasons for the misfit. The first two reasons 

have been discussed in Section 4.4 where I analyzed a full inversion of a 

simulated data set. I will repeat them here. First, part of the discrepancy arises 

from the replacement of a true velocity profile by its smooth version for ray 

tracing. Smoothing a velocity model will introduce small inaccuracy to the model 

itself but the accumulated error to the calculated travelling times and distances can 
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be large when the travelled distances are longer, especially for the deeper 

structures. Therefore the lower interfaces are not imaged accurately. Secondly, a 

homogeneously-layered model is used for an inhomogeneously-layered bone 

structure. The discrepancy between the model and the real bone samples due to 

existence of cancellous bone and curved interfaces will influence the accuracy of 

the interface reconstruction. Lastly, the presence of material absorption, air 

cavities, and scattering due to heterogeneities and curved interface in the real data 

will decrease the SNR of the recorded signals.  

The best fitted curves thus obtained can only be a rough estimate of the 

interfaces. In reality, the amplitudes of scattered signals recorded by the 

transducer in the zero-offset case are very small. The reconstruction will never be 

expected in area below these curved interfaces. If there is any, the results will not 

be trustworthy. 

Due to the influences of large cavities in the structure and cancellous bone, 

the lower interfaces in the right part of image were not successfully reconstructed. 

Although the cavities will not appear in human bone in vivo, other interferences, 

such as soft tissue, blood vessels in marrow, can decrease the amplitude intensity 

of the signals and generate similar effects as observed in this experiment.  

In summary, it is difficult to faithfully reconstruct the lower interfaces of the 

bone sample. The energy strength of the echo from those interfaces is usually 

weak or nonexistent and thus, the signal-to-noise ratio is lower. Nevertheless, the 

first cortical/marrow interface can be well reconstructed, which enables us to 

estimate the cortical thickness.
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Figure 5.10  Full inversion of the bovine tibia bone (Sample 4): (A) a CT 

image; (B) the reconstructed interfaces with the best-fitted curves for the 

interfaces; (C) the velocity bone model (constructed from (A)) with the 

best-fitted curve superimposed. 

(A) 

(B) 

(C) 
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Chapter 6  

Conclusions 

A set of ultrasound imaging algorithms and procedures based on the Born 

scattering theory was developed to image the internal structures of long bones 

such as femur and tibia. The inversion methodologies were applied to image bone 

data from simulation and real animal bone samples and to estimate the top cortical 

thickness from the reconstructed images. The cortex thickness is one of the 

important parameters for osteoporosis diagnosis.  

Three major topics were discussed in the thesis: (1) the feasibility and 

robustness of the algorithms and the selection of the inversion parameters; (2) the 

cortical thickness estimation using the inversion methods based on the constant 

background velocity; (3) the full reconstruction of the long bones based on 

distorted Born method using variable background velocity model. 

Acoustical wave equation was used in the formalism. The assumption is 

valid because (1) the acquisition is the zero-offset configuration where the source 

and receiver are at the same location, (2) the interfaces are almost parallel, 

especially in the mid-shaft of the bone sample, and (3) the received signals mainly 

consist of strong longitudinal waves. The inversion algorithms and methods were 

validated by applying the operations to simulated data sets generated by the 

forward operator (using bovine femur model), convolution, and finite-difference 

full wave solution (using the bovine tibia model). The difference between the 

synthetic data and predicted data is very insignificant.  

Signal processing play an important role prior to inversion. Proper 
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processing steps can greatly increase the signal-to-noise ratio of the signal, 

enhance the the quality of reconstructed images and reduce computation effort. 

Based on this study, decimation is required to reduce the temporal sampling rate 

and thus the number of data points. Bandpass filters should be used to remove the 

unwanted low and high frequency components. Gain compensation enhances the 

echo strength from the deeper structures of the bone samples. Hamming filter 

windows the primary pulses and selects them for inversion purpose. The 

interpolation procedure replaces bad records and inserts interpolated records to 

reduce spatial interval.   

Proper selection of inversion parameters is an important step to achieve 

good reconstructed results. Signal length or number of data points determines the 

frequency sampling interval, Δf, and should be long enough so that Δf is not too 

coarse, compromising the image quality. Small aperture around ±5-10° is enough 

to provide more pixels for the reconstruction without incurring significant 

computation cost and inclusion of other scattered energies. Smaller pixel size 

yields better resolution of the reconstructed images but might negatively affect 

image contrast. Therefore a compromise among the image resolution, image 

quality, and computation effort should be reached when the pixel size and 

temporal sampling rate are determined. Finally, the damped least squares method 

with conjugate gradient implementation (DLSCG) is suitable for long bone 

imaging because it considers minimization of both the data misfit and model norm, 

thus providing some degrees of smoothness to the reconstructed solutions.  

Accurate estimation of cortical velocity is important to building a good 

background velocity model for the inversion. The cortical velocity can be 

estimated using the offset axial transmission method. Data should be acquired on 

a visually flat bone surface and in the mid-shaft of the bone samples. The method 
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relies on picking the FAS signals. Proper wedge angle will provide the best signal 

discrimination. For our data set, 60° wedge angle was our choice. Usually, ten to 

fifteen records are reasonable for linear regression. The errors between the 

estimated SOS and CT-based velocity are as low as 1.4%, 5.0%, and 3.6% for 

three different long bone samples, respectively. 

The structural properties can greatly influence the inversion results, thus 

affecting the measurement of cortical thickness. The procedures of velocity 

estimation and thickness measurement should be advisedly performed in the 

approximate location of bone samples. Lateral discontinuities might happen 

across the reconstructed interfaces. The mean thickness is a good index to assess 

the cortical thickness and should be evaluated within a segment where the 

thickness values do not change significantly.  Visual inspection of smoothness of 

the reconstructed interfaces will provide a good quality control to pick the range 

of records used for sectional mean thickness (SMT) estimate. The estimated SMT 

values are close to the CT-based measurements with discrepancies of 1.9%, 4.6% 

and 3.2% for bovine, cervine and ovine samples respectively. Therefore the SMT 

is a more reliable and robust parameter to estimate the thickness of bone cortex. 

In comparison with the top cortex/marrow interface, the reconstruction of 

the lower interfaces (marrow/cortex and cortex/air) interfaces are less fortunate. 

This is mainly caused by lower signal strength due to longer distances travelled 

and larger curvatures. These two factors lead to the severe refractions and 

attenuation along the wave propagating paths and thus weaken the recorded 

echoes. Another factor is due to the intrinsic assumption of the Born-based 

methodology, which requires a smooth velocity background. Therefore, 

velocity-smoothing will create inaccuracy to the calculated travelling times and 

distances. 
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In summary, the proposed imaging method is a promising tool to estimate 

top cortical thickness with good accuracy. The average values of cortical thickness, 

thus recovered in this thesis, are around 5 mm, 4 mm and 3 mm corresponding to 

bovine, cervine and ovine samples respectively. The precision of the thickness 

estimation can be as good as 0.1 mm. Cortex thickness is highly related with the 

bone quality in the proximal diaphysis (Tingart et al, 2003). The cortical thickness 

measurement based on the ultrasound reconstructed images reveals possible 

potential to estimate small cortical thickness during osteoporosis. 

The ultrasound imaging method presented in this thesis is novel in the area 

of bone imaging. There are mainly two groups engaging in this type of ultrasound 

imaging research in hard tissues: one led by Dr. Lasaygues in CNRS of Marseilles, 

France and one by Dr. Le in the University of Alberta, Edmonton Canada (this 

group). While two groups used similar Born-based scattering and inversion 

methods to invert for bone internal structures, the acquisition configuration and 

thus the nature of data set are different. Dr. Lasaygues focuses on tomographic 

configuration with the transducers deployed around the long bone sample. This 

group focuses on the axial transmission configuration where the transducers 

deployed collinearly on one side of the bone surface. The method has the potential 

to provide tissue parameter estimation in the pixel scale rather than the global 

estimation by the conventional ultrasound techniques. However, our study is still 

focused on the theoretical and limited in vitro studies and far behind the clinical 

application for the diagnosis of osteoporosis. 

There are at least four identified areas which should be considered in future 

studies to improve the imaging methods.  

1. Data acquisition: the current acquisition method relies on moving a 

transducer manually from one position to another and is not suitable for clinical 
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study. A linear array with 64 - 128 transducer elements should be considered. This 

will speed up the acquisition time significantly and reduce patient motion artifacts. 

In addition, the array transducer can decrease the measurement range to 5-8 cm 

while keeping sufficient number of signals, which will increase the spatial 

acquisition sampling rate and thus improve the image quality. However, since the 

transducer elements will function simultaneously, the interference during wave 

propagation needs to be considered in the imaging algorithms.   

2. Soft-tissue artifacts: The effect of overlying soft tissues should have 

influence on the cortex/marrow reflected signals, and further signal processing 

will be the main focus to distinguish the reflection echoes from different 

interfaces. For the offset axial transmission data, the soft tissue will affect the 

picking of the FAS signals. In this case, the head wave might be a solution for the 

cortical velocity estimation. This is an important area which needs careful 

research effort.  

3. Implementing the Edge-Preserving Regularization constraints will 

improve the sharpness of the reconstructed interfaces and thus provide a better 

estimation for interface position and cortical thickness. This constraint will also be 

useful to image fractures. 

4. Programming and computation: Matlab programming is a drawback for 

the computing speed. The processing time will be greatly decreased when other 

languages such as C++, FORTRAN are used for the signal processing and 

reconstruction. A work station instead of a desktop PC will improve the 

computation efficiency. The real-time measurement including data acquisition and 

analysis, image reconstruction and thickness assessment in less than 10 minutes is 

possible to fulfill the clinical diagnostic needs.
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