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Abstract

Real-time multimedia streaming (e.g. live video streaming) has become an

essential part of our day to day life. In many scenarios, we need to wirelessly

broadcast real-time media to many users. These scenarios include broadcast of

a sports event at a stadium to all the fans present, broadcast of a movie or an

announcement in an air-plane to all the passengers, or broadcast of live board

view to students in a large classroom. A major challenge in wireless broadcast of

live media is to handle packet loss, which is common in wireless communications

because of various channel impairments such as multi-path fading. There are

various solutions in the literature to handle packet loss in wireless broadcast.

Instantly Decodable Network Codes (IDNC) recover packets at the receivers

with minimal delay, but their encoding complexity and communication overhead

for collecting feedback increases with the number of users. Random Network

Codes (RNC), on the other hand, benefit from efficient encoding, but suffer from

long decoding delays at the users/receivers. With these limitations in mind,

we propose Random Instantly Decodable Network Coding (RIDNC). RIDNC

has the efficient encoding of RNC and the fast decoding of IDNC. In addition,

based on the analysis of our proposed RIDNC encoders and by our extensive

simulation results, RIDNC has a high performance in recovering lost packets

ii



particularly in networks with a large number of receivers. All these features

make RIDNC an attractive and promising packet recovery solution in wireless

broadcast of real-time multimedia.
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Preface

The work presented in Chapter 2 has been published in the IEEE Transac-

tions on Wireless Communications [1] and is a collaboration with Dr. Majid

Khabbazian, Dr. Masoud Ardakani, and Gaurav Bansal.
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“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

- - Lewis Carroll
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To my dearest friend Leslie,

without whom I would not have survived.
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Chapter 1

Introduction

1.1 Motivation

With the increase in popularity of mobile devices, the need for greater quality

and higher bandwidth in wireless networks has increased exponentially. Cisco

Visual Networking Index report shows that the overall mobile traffic will rise

from 11 ExaBytes per month in 2017 to more than 48 ExaBytes per month in

2021 (doubling every two years) [2]. At the same time video content is rising

as well, and by 2021, it will cover 82% of all Internet traffic; 16% of this video

content will be live video streams [2].

In this thesis, we consider live media (e.g., video) streaming in local wireless

networks with potentially many receivers. This has many applications. For

example, in a parking lot, the aerial view of the parking can be broadcasted to

all the cars, or in large sports stadiums, spectators can watch the replay on their

phones, or in a concert, far away seats can get a better view of the stage on their

tablets. Another example is to provide students in large theatre classes with a

better view of the board through their laptops. All these examples share the

same requirement, which is the need to broadcast some type of multimedia live

to hundreds or even thousands of users/receivers located in a limited physical

area.
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Handling packet losses. In radio communication, packet loss is common

due to various channel impairments such as mutli-path fading. To remedy

packet losses, most wireless applications try to recover lost data by transmitting

extra packets. A simple method to recover lost packets is to retransmit each

lost packet until all packets are delivered successfully. For example, in Wi-Fi

(IEEE 802.11), the transmitter retransmits a packet if it does not receive an

acknowledgment from the receiver. This is an effective way to recover lost

packets when there is only one receiver. When there are multiple receivers (i.e.,

in case of broadcast), however, there are more effective solutions.

As a simple example, consider a transmitter with three receivers within

its transmission range. Suppose that after transmitting three packets, the

transmitter realizes (e.g., through acknowledgments) that receiver one is missing

packet one, receiver two is missing packet two and receiver three is missing

packet three. To recover packets, the transmitter can retransmit all three

packets one more time. However, a more efficient solution is to XOR the three

packets to construct a coded packet, and transmit the coded packet only. This

way, every receiver can recover its missing data by XORing the coded packet

with the two packets it already has.

The coding-based solution to packet recovery has its own challenges. The

transmitter typically needs to collect feedback from users to, for example, know

what packets they are missing, and then use the feedback to construct a coded

packet that maximizes the chance of packet recovery at users. Random Network

Coding (RNC) algorithms remove the need for collecting feedback. However,

they suffer from long decoding delay as the receiver needs to receive several

coded packets before it can decode any packet. Therefore, the RNC solutions

are generally not suitable for real-time applications.

Instantly decodable network codes (IDNCs). IDNCs are a class of

codes that are much more suitable for real-time applications [3]. However, unlike

RNC, IDNC typically requires collecting feedback typically from all or most of
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the receivers. This is a significant overhead in networks with many receivers. To

get a numeric intuition on the amount of this overhead, consider a network with

100 receivers/users. Suppose the feedback are transmitted using UDP over IP

in a 802.11 network. The header size of UDP, IP and 802.11 are respectively 8

bytes, 20 bytes, and 34 bytes. This leads to at least 62 bytes of header overhead

per user. Assuming that the size of a data packet is 1000 bytes, the bandwidth

requirement for collecting feedback from 100 users is about that required to

transmit six full data packets. In practice, the overhead of collecting feedback

is even higher as nodes have to employ large back-offs to reduce the number of

collisions.

The second challenge with IDNC is that finding an optimal code is NP-hard

in general. There are suboptimal code constructions in the literature. However,

the complexity of their construction typically grows at least linearly with the

number of users, because they collect feedback from all users. When the number

of users grows, these solutions start to become slow and unsuitable for real-time

applications. Some works in the literature [4, 5] have tried to tackle this problem

by assigning cluster heads and collecting feedback from them, but most of these

algorithms are too complicated and depend on the spacial correlation of erasure

rates which makes them impractical for real life scenarios.

Random Instantly Decodable Network Codes (RIDNCs). In this

work, we introduce RIDNC, which is a class of codes that are at the intersection

of RNC, and IDNC. Similar to IDNCs, RIDNCs are instantly decodable, which

is desired for real-time applications. RIDNC encoding is, however, simpler and

faster than that of IDNC: RIDNC encoder only needs to find the right number

fo packets to XOR, as apposed to the right set of packets, a seemingly harder

task done by existing IDNC encoders. A main part of this thesis is to study

and analyze the performance of RIDNC for various scenarios. In each scenario,

the transmitter uses RIDNC to recover as many lost packets as possible within

a limited time. To construct a RIDNC packet, the main task of the transmitter
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is to compute the number of plain packets to be XORed.

1.2 Contributions and Overview of the Thesis

We make the following main contributions:

• In Chapter 2, we consider a scenario where the transmitter is targeting

receivers with an identical packet loss/erasure rate. An advantage of

RIDNC in this scenario is that its encoding does not require any feedback

from the receivers. We refer to our RIDNC-based transmitter as “blind

transmitter” since it collects no feedback from the receivers. Also, we call

the constructed RIDNC packet a “blind” packet, and refer to our RIDNC

construction solution as B-RIDNC.

We show that two blind packets can perform as good as any single (optimal)

coded packet, in terms of the number of lost packets recovery. We also

prove that three blind packets would outperform any single (optimal)

coded packet.

• In Chapter 3, we extend our previous work by considering a scenario,

where the transmitter targets receivers with different packet erasure rates.

We propose RIDNC encoders that use statistical information about packet

losses at receivers. We refer to these encoders as S-RIDNC. We prove

that a S-RIDNC packet (i.e, a coded packet generated by the S-RIDNC

encoder) can recover nearly as many lost packets as any other (optimal)

coded packet when there is a large number of receivers. We show how

S-RIDNC works when there is a limited feedback from the receivers and

when the transmitter has time to send more than one coded packets. Our

results presented in this chapter show that S-RIDNC is a practical solution

for packet recovery in real-time broadcast of multimedia in networks with

a large number of receivers.
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• In Chapter 4, we consider a scenario where the objective of the transmitter

is to recover all the lost packets with minimum number of transmissions.

This is in contrast with our objective in previous chapters, which is to

recover the maximum number of lost packets with a limited number of

transmissions. In this scenario, we assume that different receivers may

have different erasure rates, and we use no feedback from the receivers

in our RIDNC encoder. We show the expected number of transmissions

needed by RIDNC to recover all lost packets is O(logM) factor of that in

any coding solution, where M is the number of packets.

1.3 Related Work

Ahlswede et al. first introduced network coding in [6] and showed that it can

improve throughput. Since then, there has been extensive research work on

designing coding-based solutions for different applications. In the case of single-

hop wireless broadcast, the transmitter can use random linear network codes

(RLNC) [7, 8, 9, 10, 11, 12, 13, 14] and Raptor codes [15] to deliver packets with

minimum number of transmissions, and with low coding complexity, respectively.

These solutions are, however, not suitable for real-time applications such as live

video streaming, as packets have strict delivery deadline in such applications. To

meet the delivery deadline, a received coded packet needs to be decoded within

a short time window; otherwise it would be useless hence discarded. Instantly

Decodable Network Codes (IDNC) [16, 17, 18] are a family of Opportunistic

Network Codes (ONC) [19, 20, 21] that minimize this decoding time at the cost

of lower throughput than RLNCs.

IDNCs have the following distinguishing properties: 1) a coded packet is

constructed by simply XORing a number of plain packet. 2) a received coded

packet is either instantly decoded using the past decoded packets or discarded

(i.e., it is not stored for later decoding). Because of the latter property, IDNCs
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have been the subject of several work studying real-time multimedia broadcast

[7, 8, 22].

Eryilmaz et al. [7] study the delay gain of coding in unreliable networks.

They find closed-form expressions for the delay performance with or without

coding, and show significant delay gains when coding is used. They further

extend their results to general network topologies. Yu et al. [8] analyze the

tradeoff between throughput and decoding delay, and examine the performance

gap between RLNC and IDNC. They also propose a number of coding solutions

with varying delay-throughput tradeoffs. Fragouli et al. [22] examine different

usages of feedback in networks with coding capabilities, and illustrate benefits

including adaptive parameter optimization to provide better quality of services.

They also consider the possibility of using network coding to the feedback

packets, and examine design of acknowledgment packets.

The most relevant work to ours among these studies is [23, 24], in which the

authors show that the problem of finding a code that is instantly decodable by

the maximum number of receivers is NP-hard. They also propose a polynomial

time code construction method for the case where all receivers experience an

identical erasure rate.

There is a large body of work on IDNCs that aim to reduce the completion

time, which is the time needed to deliver packets to all the receivers. Some

of these works assume that some packets are more important to be delivered

than other packets [21, 25]. As argued in [24] minimizing the completion time

is not the right objective for real-time applications. What is important in

such applications is rather to deliver as many packets as possible within a

strict delivery deadline. For this reason, similar to [1, 23, 24, 26], we focus on

designing IDNCs that are instantly decodable by as many users as possible.

There are two other problem setups in the literature that resemble the

problem considered in this thesis. These problems are index coding [27] and

data exchange [28]. The objective of both index coding and data exchange is to
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minimize the number of transmissions to achieve a certain goal. For example,

in the index coding problem, each receiver demands a single packet from the

set of packets at the transmitter. The objective is to satisfy all these demands

with minimum number of transmissions. The objectives considered in index

coding and data exchange are different from our objective, which is to construct

a single code that is instantly decodable by the maximum number of users.

7



Chapter 2

B-RIDNC: A Blind RIDNC

Encoder [1]

2.1 Introduction

In communications, broadcast is a one-to-many transmission paradigm. Broad-

cast has many applications in wireless networks. For example, Multimedia

Broadcast Multicast Services (MBMS) is an interface for 3GPP cellular net-

works, designed for efficient broadcast within a cell or the core network. In

wireless ad hoc networks, broadcast is used for route discovery and delivering

control/emergency packets. As another example, currently there is much focus

in vehicular industry to develop automated driving technologies. Vehicular

communications would be key in achieving higher levels of autonomy. Vehicular

communications is inherently broadcast in nature, as vehicles’ data could be

useful to many nearby vehicles, pedestrians, road-side devices etc. [29]. The

goal of broadcast is to efficiently deliver a set of packets/messages to every user

in the network.

Because of interference, fading, and other channel imperfections there will

always be packet loss. Since each user/receiver may lose a different subset of

packets, packet loss recovery can be challenging.
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A simple example can clarify this point. Consider the broadcast of four

packets {p1, p2, p3, p4} to three users {u1, u2, u3}. Suppose u1 has received all

the packets, u2 is missing only p2, u3 is missing only p3, and u4 is missing only

p4. Without coding, the transmitter needs to retransmit p2, p3, and p4. A

better solution here is to allow the transmitter to mix packets and transmit a

coded packet, in this case p2⊕ p3⊕ p4, which is the XOR of p2, p3, and p4. This

explains the popularity of coding for packet loss recovery in wireless broadcast

[30].

While knowing the set of lost packets by each user helps the transmitter to

devise a better recovery strategy, the overhead required to collect feedback (e.g.,

acknowledgements) from users is a source of inefficiency and extra cost. This

cost linearly increases with the number of receivers. Therefore, for applications

with a large number of users, this solution may not be a suitable one. Also,

feedback packets are themselves subject to loss. These are some of the reasons

why users’ acknowledgement is not implemented in most practical applications

[31]. Instead, broadcast solutions based on coding are of interest.

To get a sense of the overhead of collecting acknowledgements, let us consider

a simple practical scenario, where packets are sent using UDP over Wi-Fi

(802.11). In the 802.11 protocol, the MAC layer has a header size of 34 bytes.

The IP layer header has a minimum size of 20 bytes, and the UDP has a header

size of 8 bytes. In this scenario, the total overhead for any transmitted packet

will be at least 62 bytes. Now, let’s assume that the size of data packets is 1000

bytes. With these numbers, a typical data packet will be around 1062 bytes,

while a feedback packet will be around 62 bytes. Therefore, gathering feedback

from 18 users would require more bandwidth than transmitting a single data

packet.

Depending on the application, various coding solutions are proposed for

broadcast. For example, when all packets are to be delivered to all users, Raptor

codes provide a low-complexity solution while dense network codes maximize
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the throughput [9, 15]. NIn these coding solutions, a user needs to receive many

coded packets before being able to extract the original data. For real-time

applications, such as video streaming or teleconferencing, these traditional

coding solutions are, therefore, not attractive choices.

Another solution for packet loss recovery is Instantly Decodable Network

Coding (IDNC) [3, 26, 32]. In IDNC, a received packet is either instantly

decoded using the past decoded packets, or discarded by the receiver. Instant

packet decodability of IDNCs is appealing in real-time multimedia broadcast in

which each packet has to be decoded by a short delivery deadline, because of

this, IDNC has been the subject of many studies [23, 33, 34].

A property of real-time multimedia broadcast is that it can tolerate some

packet loss [35]. A valid design goal is then to deliver as many packets as

possible within their delivery deadline. An interesting work in this direction is

by Le et al. [23]. They consider a broadcast of M packets from a source to a

set of N users. After transmitting the M plain packets, the source is allowed

to transmit one coded packet to recover as many lost packets as possible. The

problem considered there is how to code this extra packet in order to maximize

the number of users that can benefit from it, i.e., use it to recover one of their

lost data packets. Assuming that the source is aware of what packets are lost at

each node, and that the packet loss rate is identical for all users, they suggest a

polynomial time algorithm that finds the optimal code, with high probability.

Interestingly, they show that a single coded packet, if successfully delivered, can

benefit a large percentage of users. For example, for M = 20, and N = 20, on

average more than 80% of users will benefit from a received coded packet over

a wide range of packet erasure rates.

This considerable performance is achieved at the cost of (i) receiving feedback

from all users, and (ii) considerable computational overhead. Although [23]

suggests a polynomial time algorithm to find the optimal code, the computational

overhead can make the algorithm impractical. For example, when the packet
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erasure rate is 10%, for M ≥ 46, the algorithm requires at least 230 operations.

Also, for a packet erasure rate of 5%, the number of operations required

exceeds 230 for M ≥ 34. We highlight that these computations are only

for the optimal algorithm. Near-optimal solutions such as those proposed in

[30, 36, 37, 38, 39] pose significantly lower computational complexities. The

computational complexity of each of these sub-optimal solutions, however,

grows at least linearly with the number of packets (and users, when they collect

acknowledgements). This computational complexity can be remedied by using

the idea of Random Network Code (RNC) where instead of finding the best set

of packets, the encoder needs to find the size of such set. We use this idea to

create a hybrid of IDNC and RNC to gain both the benefits of IDNC’s instant

decodability, and RNC’s simplicity. We call this method Random Instantly

Decodable Network Coding (RIDNC).

As mentioned earlier, the solution of Le et al. [23] requires feedback from

all users. Collecting feedback from all users poses communication overhead

proportional to the number of users, and requires coordination among users

to avoid collisions. Also, feedback packets are themselves subject to loss due

to channel impairments, and external interference. This feedback cost is our

motivation here to consider an RIDNC encoding solution that requires no

feedback from the receivers. We call this low-complexity RIDNC encoder

B-RIDNC.

B-RIDNC imposes no feedback cost, and as will be discussed later, has

extremely low time-complexity (in particular, the computational complexity

of B-RIDNC does not grow with either the number of packets or the number

of users). In return, B-RIDNC packets, referred to as “blind packets”, may

not recover as many lost packets as other coded packets. An interesting

question is how many blind packet transmissions are required to achieve the

same performance as any single coded packet transmission. In this work,

using simulation, we show that two blind transmissions perform similar to or
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better than any single “sighted” transmission. We also prove that three blind

transmissions outperform any single sighted transmission.

As in the second part of the work in [23], we assume that all users have

identical packet erasure rates.1 While in practice different users may have

different erasure rates, studying optimal strategies for a fixed erasure rate can

have practical values. As an example, the maximum packet loss ratio that

a video application can tolerate is determined based on the video codec and

compression [35]. Now, consider a case where the maximum tolerable packet

loss ratio is 20%. In this case, our results can be used to target users with

packet erasure rate of about 20% and bring them into the tolerable range with

the help of a small number of recovery packets.

As in [23], we assume that the M original packets are first transmitted

uncoded. Note that our goal in this chapter is to maximize the number of

decoded packets. The advantage of this uncoded transmission phase is that any

received packet in this phase is immediately decodable and useful. Whereas

if we had started with coded transmissions, the received coded packets would

be useful only when a solvable set of equations is formed by the end of all

transmissions.

To see if two blind transmissions can beat any single sighted transmission,

we first consider the case of trasmitting a single blind packet. In this case, we

find the optimal number of packets to XOR in order to maximize the average

number of the recovered packets by all users. We use this result to analyze the

performance of two blind transmissions. We consider two scenarios: First we

assume that a received coded packet is discarded if it is not instantly decodable.

For this scenario, we find the optimal strategy for the blind transmitter (i.e., the

optimal B-RIDNC). In the second scenario, we assume a slightly different setup

in which a receiver can buffer the first coded packet to allow joint decoding

1Some of the main results in [23] holds under the general assumption that different users
can have different erasure rates.
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of the two blind packets. This setup imposes minimal storage, delay and

computational overheads, and offers similar performance to the fully-sighted

transmitter strategy of [23]. Here, we recognize that the no-buffer constraint of

RIDNC is violated. The literature contains other network coding paradigms

that more closely match this setup. For example, O2-IDNC [40], which allows

the storage of only one packet, or opportunistic network coding (ONC) [41],

which enables buffering of encoded packets.

Finally, we prove that three blind transmissions outperform any single

sighted transmission.

In Section 2.2, the system model and problem definition are presented. Our

main results appear in Section 2.3, where four different scenarios depending on

the number of blind packets, and buffering capability of receivers are discussed.

Simulation results and comparison with related work are presented in Section 2.4.

Section 2.5 concludes the chapter.

2.2 Problem Definition and System Model

The fast packet loss recovery problem considered in this work is motivated by

real-time applications (mainly live video streaming) in networks with packet

loss. In such applications, packets have certain delivery deadlines. Also, some

packet losses can be tolerated. Therefore, the main objective here is to deliver

as many packets as possible to users (also referred to as nodes or receivers)

within a short time, rather than delivering all the packets to every user as fast

as possible.

We consider N users/receivers U = {u1, u2, . . . , uN}, and a single broadcast

source (refered to as transmitter) with a set of M packets P = {p1, p2, . . . , pM}.

Note that the total number of packets that needs to be broadcast can be much

larger than M . However, we focus on a window of M packets only. When we

are done with one window, we move to the next window with the next set of M

13



packets. We would like to remark that in real-time applications, the order of

delivery is important. Nevertheless, if two packets are delivered out of order

but within their delivery deadline, they will be usable in the system. For this

reason, the number of packets in one window (i.e. M) should be set carefully.

We assume that each user receives a broadcast packet with probability 1− ϵ,

where the erasure rate ϵ is known by the source. In an initial transmission

phase, the transmitter broadcasts the M packets in plain (without any coding)

using M transmissions. After the initial transmission phase, the transmitter is

given m extra transmissions to recover (some of) the lost packets. For each of

these extra transmissions, a subset of P is XORed, and broadcast.

Let H(1)
i denote the set of packets decoded by user ui right after the initial

transmission phase (i.e., transmission of M uncoded packets), and H(2)
i denote

the set of packets decoded by user ui after the transmissions of m extra coded

packets. We define Gi =
⏐⏐⏐H(2)

i −H
(1)
i

⏐⏐⏐, the number of packets recovered by user

ui using the coded packets. The objective is to maximize the expected total

number of packets recovered by all users using the transmitted coded packets,

that is to maximize the expected gain G

G = E

[
N∑
i=1

Gi

]
.

When

1. All users have identical packet erasure rates,

2. Every set H(1)
i is known by the source, and

3. m = 1,

reference [23] gives a polynomial-time algorithm to construct a coded packet that

maximizes
∑N

i=1 Gi, with high probability. For m > 1, a simple repetition of this

algorithm is not always optimal. This is counter intuitive especially considering

that packets are not buffered for later use. The following counterexample sheds
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some light on this. Our future results also show interdependence between the

coded transmissions.

Suppose P = {p1, p2, p3}, and there are four groups of users. Assume that

the set of wanted packets for these groups are W1 = {p1, p2}, W2 = {p1, p3},

W3 = {p2, p3}, and W4 = {p1, p2, p3}, respectively. Assume that there are

only one user in group four, and other groups have t users each. Suppose

nodes receive extra transmissions with probability one. Assume that the sets

of wanted packets are always known by the transmitter. Let Opt1 denote an

optimal algorithm when a single extra transmission is granted (i.e. when m = 1).

Notice that Opt1 can benefit at most 2t+ 1 users with the first transmission.

This also holds for the second transmission. A better solution is, however,

to benefit 2t users (instead of 2t + 1 users!) with the first transmission by

transmitting p1 ⊕ p2, and then benefit 3t users with the second transmission by

transmitting p2 ⊕ p3.

Unlike [23], here we assume that the transmitter is blind, that is it does not

know what packets are lost at each node. In this case, the transmitter does not

require to collect feedback from users, coding is not sensitive to feedback loss

(since there is no feedback), and coding is computationally trivial as will be

shown later. However, to match the performance of a “sighted” transmitter, a

“blind” transmitter requires more transmissions.

Similar to [23], binary codes are considered for our blind transmitter (i.e.,

all coding operations are XORs). We study cases m ∈ {1, 2, 3}. For the case

m = 2, we consider two scenarios. In the first scenario, we assume that a

receiver discards the first received coded packet if it is not instantly decodable.

In the second scenario, however, a receiver can buffer the first received coded

packet, and use it when the second coded packet arrives. For m = 3, we show

that a blind transmitter always outperforms a sighted transmitter with a single

transmission (i.e., with m = 1).
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2.3 Main Results

In this section, we consider four scenarios based on the value of m, and receiver’s

buffering capability. Before delving into these scenarios, we start off with a few

definitions/notations that are used throughout this section.

First, note that the expected gain G (simply called gain) of all users are

identical. Therefore, without loss of generality, we focus on the gain of user

one, i.e., u1. For a set S ⊆ P , let ESn denote the event that user one misses

n packets from S after the initial transmission phase. We use ĒSn to denote

the event that user one misses j ̸= n packets from the set S after the initial

transmission phase. The probabilities of events ESn and ĒSn are denoted by PS
n

and P̄S
n , respectively. We define the function

ρ(x) = xϵ(1− ϵ)x−1,

where ϵ is the packet erasure rate. Notice that

PS
1 = ρ(|S|).

2.3.1 Scenario 1: m = 1

Here, we consider the simple scenario in which the transmitter is allowed to make

only one blind transmission (i.e., m = 1). The coded packet used for the blind

transmission is generated by XORing a subset of packets in P . Proposition 2.1

is about what subset of packets should be XORed in order to maximize the gain.

The result of this proposition will be used in scenarios where m ≥ 2, which

are the main focus of this work. Before stating Proposition 2.1, we prove two

lemmas.

Lemma 2.1. For every positive integer n, n ≤M , we have

ρ(n) ≤ ρ (min(M, ⌊1/ϵ⌋)) .
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Proof. Let ρi = ρ(i), i ∈ N, be a sequence of numbers. We have

ρi+1 ≥ ρi ⇐⇒ (i+ 1)ϵ(1− ϵ)i ≥ iϵ(1− ϵ)i−1

⇐⇒ i ≤ 1/ϵ− 1.

Therefore, the sequence ρi is non-decreasing in the interval

[1, ⌊(1/ϵ− 1) + 1⌋] = [1, ⌊1/ϵ⌋] ,

and non-increasing in the interval

[⌊1/ϵ⌋ ,∞) .

This implies that the sequence ρi takes its maximum at i = ⌊1/ϵ⌋. Also, the

sequence ρi is non-decreasing in the interval [1, ⌊1/ϵ⌋]. Therefore,

∀n ≤M ρn ≤ ρM

when M < ⌊1/ϵ⌋. This concludes the proof.

Lemma 2.2. Let 0 < ϵ < 1 be a real number. Then

ρ(⌊1
ϵ
⌋) ≥ 1

e
.

Proof. Let f : (0, 1)→ R, f(x) = x(1− x)k−1, for some positive integer k. We

have
d

dx
f(x) = (1− x)k−2 (1− kx)

Therefore, the function f is non-decreasing in
[

1
k+1

, 1
k

]
. Let us set k = ⌊1

ϵ
⌋.

Note that k ≥ 1, and ϵ ∈
[

1
k+1

, 1
k

]
. Therefore, f(ϵ) ≥ f( 1

k+1
), that is

ϵ(1− ϵ)k−1 ≥ 1

k + 1

(
1− 1

k + 1

)k−1

. (2.1)
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Therefore

ρ(⌊1
ϵ
⌋) = ϵ⌊1

ϵ
⌋(1− ϵ)⌊

1
ϵ
⌋−1

= kϵ(1− ϵ)k−1

≥ k

k + 1

(
1− 1

k + 1

)k−1

by (2.1)

=

(
1− 1

k + 1

)k

≥ 1

e
.

Proposition 2.1. For m = 1 the optimal blind transmission (i.e. optimal

B-RIDNC) that maximizes G is to transmit the XOR of any k = min(M, ⌊1
ϵ
⌋)

packets.

Proof. For a subset of packets S ⊆ P , let p⊕S denote the packet generated by

XORing packets in S, and X
(i)
S ∈ {0, 1} denote the random variable equal to

the number of packets decoded by user i after transmitting p⊕S . We have

G = E

[
N∑
i=1

Gi

]
=

N∑
i=1

E[Gi] =
N∑
i=1

E[X
(i)
S ],

and we have the random variable X
(i)
S = 1 iff the coded packet is both received

and useful for packet recovery at user i. The probability that exactly one packet

from the set S has been lost by user i in the initial transmission phase is equal

to ϵ(1− ϵ)|S|−1|S|. This probability needs to be multiplied by the probability

that the coded packet is received by user i, which is equal to (1− ϵ), hence

∀1 ≤ i ≤ N X
(i)
S =

⎧⎪⎨⎪⎩0 with probability 1− ϵ(1− ϵ)|S||S|

1 with probability ϵ(1− ϵ)|S||S|
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Therefore

G =
N∑
i=1

E[X
(i)
S ]

= Nϵ(1− ϵ)|S||S|

= N(1− ϵ)ρ(|S|).

By Lemma 2.1, we have

ρ(|S|) ≤ ρ (min (M, ⌊1/ϵ⌋)) ,

because |S| ≤M . Consequently, G is maximized when |S| = min(M, ⌊1/ϵ⌋).

2.3.2 Scenario 2: m = 2 with no Buffer

In this case, the transmitter is allowed to transmit two blind packets. We

assume these two blind packets are generated by XORing packets in the sets S1

and S2, respectively. Let A = S1\S2, B = S1∩S2, and C = S2\S1. Theorem 2.1

states that if receivers do not buffer the first packet, the optimal strategy by

the transmitter/B-RIDNC is to choose any two disjoint sets S1 and S2, with

|S1| = |S2| = ⌊1ϵ ⌋. The result of Theorem 2.1 holds for the region ϵ ≥ 2
M
.

This assumption is justified for large values of M , where our solution is most

attractive2.

Theorem 2.1. Suppose ϵ ≥ 2
M
. Assume that the two blind packets are generated

by XORing packets in the sets S1 and S2, respectively. Then, E[G] is maximized

when

S1 ∩ S2 = ∅

2Similar condition will appear in the remainder of this chapter, where the harshest one is
ϵ ≥ 3

M . The maximum value of M is a function of maximum tolerable delay, data rate, and
packet size, and can be as large as 100 for some typical parameters (10ms tolerable delay, 8
Mbps data rate, 1KB packet size). Assuming M = 50, this condition translates to ϵ ≥ 6%,
which sounds reasonable in wireless communications.
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and

|S1| = |S2| = ⌊
1

ϵ
⌋.

Proof. See Appendix A

2.3.3 Scenario 3: m = 2 with Buffer

If, instead of two coded packets, two distinct uncoded packets are transmitted,

the (expected) gain of user one will be

E[G1] = 2ϵ(1− ϵ),

which is at least equal to 1− ϵ when 0.5 ≤ ϵ < 1. This gain cannot be achieved

using a single transmission even when the transmitter is not blind. In fact, the

gain achievable by transmitting a single coded packet (i.e., when m = 1) is

always bounded by

E[G1] ≤ (1− ϵ)(1− (1− ϵ)M),

because i) the transmitted packet is received with probability (1− ϵ), ii) the

user has lost at least one packet with probability 1− (1− ϵ)M . Consequently,

when ϵ ∈ [0.5, 1), a transmitter with two blind transmissions can outperform

a sighted transmitter with a single transmission by simply transmitting two

distinct uncoded packets. Therefore, in the remaining of this section, our focus

will be on ϵ ∈ (0, 0.5).

In the case of m = 2 and no buffer we saw that the optimal strategy is to use

two disjoint sets of size ⌊1
ϵ
⌋. In the case of m = 2 with buffer, however, we show

that to maximize gain, the two sets should overlap (if ϵ ≤ 0.5). Suppose the

transmitter uses sets S1 and S2 to code packets for, respectively, the first and the

second transmission. As before, we let A = S1\S2, B = S1∩S2, C = S2\S1. We

assume that sets S†
1 and S†

2 maximize E[G1], and that A† = S†
1\S

†
2, B

† = S†
1∩S

†
2,

and C† = S†
2\S

†
1.
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Finding a closed-form formula for the size of optimal sets S†
1 and S†

2 in this

scenario is very challenging (if not impossible). Instead, we place some bounds

on the size of optimal sets S†
1, S

†
2 and their intersection, and show that the sizes

of S†
1 and S†

2 differ by at most one. For simulations, we use suboptimal sets S1

and S2 with size |S1| = |S2| = ⌊1ϵ ⌋, and |S1 ∩ S2| = ⌊0.5⌊1ϵ ⌋⌋. These parameters,

as stated in Proposition 2.2, guarantee the gain to be strictly larger than the

maximum gain achievable in Scenario 2, when ϵ ≤ 0.5.

Theorem 2.2. Let η = −1
ln(1−ϵ)

, and suppose ϵ ∈ (0, 0.5).

Then, for any optimal sets S†
1 and S†

2 we have

||S†
1| − |S

†
2|| ≤ 1, |S†

1| < 2η + 1, |S†
1| < 2η + 1, and⏐⏐⏐(S†

1 ∪ S†
2

)
\
(
S†
1 ∩ S†

2

)⏐⏐⏐ < 2η + 1.

Proof. See Appendix B.

The following proposition shows that the maximum gain achievable in Scenario

3 (m = 2 with buffer) is strictly higher than that in Scenario 2 (m = 2 with no

buffer).

Proposition 2.2. Suppose M ≥ 1.5⌊1
ϵ
⌋, and ϵ ≤ 0.5. Then, there are sets S1

and S2 for which

E[G1] > (1− ϵ)(2P∗
1 ).

Proof. Let S1 and S2 be any two sets such that |S1| = |S2| = ⌊1ϵ ⌋, and |S1∩S2| =

⌊0.5⌊1
ϵ
⌋⌋. Note that |S1 ∪S2| = |S1|+ |S2| − |S1 ∩S2| ≤M , thus such sets exist.

Since ϵ ≤ 0.5, we get

|B| = |S1 ∩ S2| = ⌊0.5⌊
1

ϵ
⌋⌋ ≥ 1,

and

|A ∪ C| = |S1|+ |S2| − 2|S1 ∩ S2| ≥ 2⌊1
ϵ
⌋ − ⌊1

ϵ
⌋ = ⌊1

ϵ
⌋.
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And (since |B| ≥ 1)

|A ∪B ∪ C| > |A ∪ C| ≥ ⌊1
ϵ
⌋.

Therefore, by Lemma B.2 (see Appendix B)

PA∪C
1 − PA∪B∪C

1 = ρ(|A ∪ C|)− ρ(|A ∪B ∪ C|) > 0.

Consequently, by Lemma B.1, we get

E[G1] =(1− ϵ)(PS1=A∪B
1 + PS2=B∪C

1 +

(1− ϵ)(PA∪C
1 − PA∪B∪C

1 ))

=(1− ϵ)
(
2P∗ + (1− ϵ)(PA∪C

1 − PA∪B∪C
1 )

)
>(1− ϵ)(2P∗).

2.3.4 Scenario 4: m = 3 with no Buffer

In this scenario, our solution does not make any overlap between coded packets.

Therefore, a buffer is useless since non-overlapping packets have no shared

information. Since our solution is proven to outperform any single sighted

transmission, we do not consider a fifth scenario (i.e., m = 3, with a buffer).

Following, we show that it is possible to achieve a gain E[G1] strictly larger

than

(1− ϵ)
(
1− (1− ϵ)M

)
.

This is interesting because, as stated earlier, no transmitter can achieve this

gain when m = 1 (i.e., with only one transmission).

Suppose M ≥ 3⌊1
ϵ
⌋. In this case, we select disjoint sets S1, S2, and S3 each
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with size ⌊1
ϵ
⌋. Since the sets are disjoint, the gain of user one is simply:

E[G1] =(1− ϵ)
(
PS1

1 + PS2
1 + PS3

1

)
=3(1− ϵ)P∗

1 .

By Lemma 2.2, we get

E[G1] ≥ 3(
1

e
)(1− ϵ),

which is clearly greater than (1− ϵ)
(
1− (1− ϵ)M

)
. The following proposition

extends this result to the case where M is smaller than 3⌊1
ϵ
⌋.

Proposition 2.3. Let M = 3k for some integer k ≤ ⌊1
ϵ
⌋. Let S1, S2, and S3

be three disjoint sets of size k. If sets S1, S2, and S3 are used for generating

the three blind packets, then the gain of user one will be more than

(1− ϵ)
(
1− (1− ϵ)M

)
.

Proof. Since sets S1, S2, and S3 are disjoint, the gain of user one is

E[G1] =(1− ϵ)
(
PS1

1 + PS2
1 + PS3

1

)
=(1− ϵ)

(
3kϵ(1− ϵ)k−1

)
.

Let g(x) = 3kx(1 − x)k−1 + (1 − x)3k. By taking derivatives of g(x), it can

be shown that g(x) takes its minimum value at x = 0 when x ∈ [0, 1
k
]. Thus

g(x) ≥ g(0) = 1 for x ∈ [0, 1
k
]. Replacing x with ϵ, we get

3kϵ(1− ϵ)k−1 + (1− ϵ)3k > 1,

hence

(1− ϵ)
(
3kϵ(1− ϵ)k−1

)
> (1− ϵ)

(
1− (1− ϵ)3k=M

)
,

when ϵ ∈ (0, 1
k
].

Example 2.1. Suppose there are five users {u1, u2, u3, u4, u5}, and five packets
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{p1, p2, p3, p4, p5} to be transmitted. Assume the erasure rate is 40%, and,

H(1)
i , the set of packets received by ui at the end of the initial transmission

are: H(1)
1 = {p2, p5}, H(1)

2 = {p3}, H(1)
3 = {p1, p4, p5}, H(1)

4 = {p1, p2, p5},

H(1)
5 = {p1, p2, p3, p4}.

In Scenario 1, the size of the optimal set of channels to mix will be
⌊

1
40%

⌋
= 2.

Therefore, two random packets are chosen and XORed. For instance, if packets

{p2, p3} are XORed, then the coded packet can be useful in recovering a total of

three packets at users u1, u2, and u4. In Scenario 2, two non-overlapping sets

of size two are selected to construct the two blind coded packets. For instance, if

{p1, p2} and {p3, p5} are selected, the two coded packets are useful for recovering

a total of 7 packets. In scenario 3, the two sets must overlap in one packet.

For instance, if {p3, p4} and {p4, p5} are selected for constructing the two blind

coded packets, in total 8 packets can be recovered.

With regards to the single sighted optimal transmission, the optimal choice

is to XOR {p3, p5}, which can recover a total of 5 packets.

2.4 Simulation & Comparison

In this section, we implement our proposed methods to verify our analytical

results. We also compare our methods with the one proposed in [23]. In an

initial transmission phase, the transmitter broadcasts the M packets in plain

(without any coding). After the initial transmission phase, the transmitter

transmits m coded packets, each obtained by XORing a subset of P .

In the method presented in [23], the users acknowledge received packets.

Knowing what packets are lost at each user (node), the optimum set for coding

is then calculated by performing an extensive search on all subsets of P whose

size is within a given interval. In simulating the proposed method in [23], we

assume that acknowledgement packets are not lost. In practice, however, such

losses are possible and can adversely affect the performance. Our methods, on

24



the other hand, do not require acknowledgements from receivers.

In our comparison, we consider a transmitter with one, two or three blind

transmissions. These correspond to Scenarios 1, 2, 3 and 4. In Scenario 2

(m = 2, no buffer), the sets S1 and S2 are randomly selected such that

|S1| = |S2| = min (⌊1/ϵ⌋ , ⌊M/2⌋) ,

and S1 ∩ S2 = ∅. In Scenario 3 (m = 2, with buffer), the sets S1 and S2 are

randomly selected such that

|S1| = |S2| = min (⌊1/ϵ⌋ , ⌊2M/3⌋) ,

and

|S1 ∩ S2| = min (⌊0.5 ⌊1/ϵ⌋⌋ , ⌊M/3⌋) .

Finally, for Scenario 4 (m = 3), the selected sets are three non-overlapping sets

S1, S2, and S3 with sizes

|S1| = |S2| = |S3| = ⌊1/ϵ⌋ ,

where 3
⌊
1
ϵ

⌋
≥M , and

|S1| = ⌊M/3⌋ , |S2| = ⌊2M/3⌋ − ⌊M/3⌋ , and

|S3| = M − ⌊2M/3⌋ ,

otherwise.

To find the expected gain, we average gains calculated in 1,000,000 runs,

where each run performs an initial transmission phase followed by transmitting

m coded packets. In Figures 2.1 and 2.2, the number of packets are set to

M = 10 and M = 20, respectively. Unlike the method proposed in [23], the

expected gain achieved by our methods is not a function of the number of users.
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To see the effect of the number of users on the expected gain of the method in

[23], both Figures 2.1 and 2.2 show the results of running the method in [23]

for N = 20 and N = 40.

As shown in Figures 2.1 and 2.2, with respect to the expected gain, for

m = 2 our methods (scenarios 2, and 3) either perform close or outperform

the method in [23]. For m = 3, as proven analytically, the blind transmitter

always outperforms any sighted transmitter with m = 1. Another observation is

that the performance of the method in [23] degrades as the number of users N

increases. In fact, as N approaches infinity, this performance will approach that

of a transmitter with a single blind packet. Hence, for large N the performance

gain of a blind transmitter with m = 2 is more pronounced.

It is worth mentioning that the time complexity of the proposed method

in [23] quickly increases with the number of packets. In particular, its time

exponentially increases when the erasure rate is about 2
M
, as in this case the

number of subsets that are searched in the method proposed in [23] is at least(
M

M/2

)
= Ω( 2M√

M
). For example, when the number of users is 20, the number

of packets is 10, and erasure rate of 10%, the execution time of [23] is about

one millisecond. If we increase the number of packets to 20 (while keeping the

number of users and error rate unchanged) the execution time increases to a

few minutes, which is clearly unacceptable for real-time applications.

We have also simulated a scenario in which users have different erasure

rates. The erasure rate of each user is selected from an interval. The interval is

ϵ ∈ [0.0, 0.5] in Figures 2.3, 2.4 and is ϵ ∈ [0.0, 0.25] in Figures 2.5 and 2.6. The

sighted optimal strategy finds the best single packet using an exhaustive search

among all possible coding options. To generate coded packets in the B-RIDNC

schemes (with one and two blind transmissions), we first choose an erasure rate

ϵr uniformly at random from the interval, and then code blind packets as if all

the users have identical erasure rate equal to ϵr. The simulation results plotted

in Figures 2.3, 2.4, 2.5 and 2.6 show that two blind transmissions perform close

26



0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Erasure Rate (%)

A
ve
ra
ge

n
u
m
b
er

of
p
ac
ke
ts

re
co
ve
re
d
p
er

n
o
d
e

Scenario 4
Scenario 3
Scenario 2
Scenario 1

Method [23] (N=20)
Method [23] (N=40)
Method [23] (N=80)

Figure 2.1: Simulation results comparing different scenarios with previous work
[23] for a system with 10 packets.

or outperform the optimal single sighted transmission. Of course, one cannot

draw a definite conclusion here based on limited simulation results.

2.5 Conclusion

In this chapter, we introduced B-RIDNC, which is a blind encoder for RIDNC. B-

RIDNC has significantly lower computational complexity than the conventional

IDNC encoders. In addition, B-RIDNC does not require any feedback from

users. This not only eliminates the potentially large communication overhead

related to collecting acknowledgements from receivers, but also makes the code
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Figure 2.2: Simulation results comparing different scenarios with previous work
[23] for a system with 20 packets.

insensitive to loss of acknowledgements.

We studied the performance of B-RIDNC for various number of blind coded

packets m = 1, 2, 3 in a wireless broadcast scenario when all users have identical

erasure rates. We devised optimal encoding strategies for B-RIDNC, when the

objective was to maximize the expected number of recovered packets by the

receivers. Using these strategies, we showed that B-RIDNC with m = 2 can

outperform (or perform close to) optimal sighted coding with m = 1. We also

proved that B-RIDNCs with m = 3 can outperform any coding with m = 1.

Our simulation results confirmed our analysis, and the potential benefits of

B-RIDNC.
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Figure 2.3: 10 packets, ϵ ∈ [0, 0.5]
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Figure 2.4: 20 packets, ϵ ∈ [0, 0.5]
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Figure 2.5: 10 packets, ϵ ∈ [0, 0.25]
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Figure 2.6: 20 packets, ϵ ∈ [0, 0.25]
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Chapter 3

S-RIDNC: A Statistical RIDNC

Encoder

3.1 Introduction

Instantly Decodable Network Codes (IDNCs) are a class of network codes that

are suitable for packet recovery in wireless broadcast of real-time applications.

Constructing IDNC-based coded packets that maximize the number of packet

recoveries, however, has been proven to be NP-hard. Also, the communication

overhead and/or computational complexities of existing sub-optimal solutions

increases at least linearly with the number of receivers. Therefore, the existing

solutions are not suitable for large networks with many receivers. Our solution

to address the above shortcomings is RIDNC.

In the previous chapter, we introduced B-RIDNC, which is an RIDNC

low-complexity encoder that works without feedbacks from users. B-RIDNC,

however, targets users with identical packet erasure rates. In this chapter, we

introduce a more general RIDNC encoder, called Statistical RIDNC (S-RIDNC),

that can target users with different erasure rates. Similar to B-RIDNC, S-

RIDNC has low-computational complexity. Also, as will be discussed later, the

communication overhead of S-RIDNC is low as it collects only small number
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of feedbacks from users. In addition, in large networks with many receivers, a

single S-RINDC packet can recover nearly as many lost packets as any other

coded packet. All these features, make S-RIDNC an attractive solution for lost

packet recovery in large networks.

Our simulation results support the above findings. For instance, simulation

results show that, in large networks, our solution can achieve at least 95% of

the performance of any other coding solution using feedbacks from up to 4% of

the receivers.

The rest of the chapter is organized as follows. In Section 3.2, the system

model and problem definition are presented. In Section 3.3, we prove that our

statistical approach is asymptomatically optimal. Motivated by this result, we

propose our S-RIDNC in Section 3.4. In Section 3.5, we extend our S-RIDNC

so it can handle the case where packets are assigned weights representing their

importance. Numerical results are presented in Section 3.6, and the chapter is

concluded in Section 3.7.

3.2 Problem Statement and System Model

Similar to the work of Le et al. [23, 24], we define the problem as follows. We

consider a single wireless base station (also referred to as the transmitter) and

N users (also referred to as receivers) U = {u1, u2, u3, · · · , uN}. We assume

that all users are within the transmission range of the base station.

The base station has M packets P = {p1, p2, p3, · · · , pM} to broadcast to all

N users. It first broadcasts these M packets using M transmissions. This step

is called the initial transmission phase. The transmitter is then granted a few

extra transmissions to recover as many packet losses occurred during the initial

transmission phase. We start with the case where the transmitter can transmit

only one coded packet.

For every user ui, let Hi denote the set of packets received by ui during the
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initial transmission phase. The set of packets wanted by ui, denoted by Wi, is

then

Wi = P −Hi

To recover packets, the base station broadcasts a single coded packet. The

coded packet is constructed by XORing a subset of packets in P. We denote

this subset by C. The coded packet results in a packet recovery at user ui if

and only if the following two events occur:

1. The coded packet is successfully received by user ui;

2. The intersection of C and Wi has only one packet in it, that is

|Wi ∩ C| = 1

Note that the coded packet can be constructed by linearly combining the

packets in C using a large finite field instead of XORing them. This, however,

will not improve the chance of packet recovery. It is because the above two

events still need to occur in order for user ui to recover a lost packet.

Objective. The objective is to construct a coded packet (i.e., finding

a subset C) that maximizes the number of packets that are recovered at the

receivers. To formally express this objective, let xi,C be a binary random variable

such that

xi,C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if the coded packet:

i) is received at user ui, and

ii) results in a packet recovery at user ui;

0 Otherwise

(3.1)
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Let us define the random variable XC as

XC =
N∑
i=1

xi,C. (3.2)

Then, the objective is to find a set C that maximizes XC, that is to find

argmax
C⊆P

XC.

The following table describes some of the main notations used.

Table 3.1: Table of Notations

Notation Description

N Number of receivers/users in the network
U Set of receivers/users in the network
M Number of packets
P Set of packets
Hi Set of packets received by user ui during the initial transmission phase
Wi Set of packets user ui wants after the initial transmission phase
C Set of packets used in constructing the coded packet
ϵ Erasure rate
Gut Gain of ultimate transmitter
Gst Gain of statistical transmitter

3.3 Motivating the Statistical Approach

Following, we define two different transmitters with different capabilities. Both

transmitters send all the packets in the initial transmission phase, and then

send one coded packet to recover as many lost packets as possible.

The ultimate transmitter. The first transmitter, which we call the

“ultimate” transmitter, is a powerful transmitter that

1. knows what packets are missing at every node;

2. knows a priori what nodes will receive the coded packet;
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3. has unlimited computational power.

The ultimate transmitter is not feasible because a practical transmitter cannot

know with certainty what nodes will receive the coded packet prior to the

transmission of the coded packet. Also, even when the transmitter has the

first two capabilities of the ultimate transmitter, it may not be able to find the

optimal solution as the problem was proven to be NP-hard [31]. Nevertheless,

we define the ultimate transmitter here for the sake of comparison. Note that

since the ultimate transmitter has unlimited computational power, it can do an

exhaustive search on all possible coded packet constructions, and then choose

the construction that maximizes the number of packets recovered. This way,

the ultimate transmitter can outperform any other transmitter in terms of the

number of packets that are recovered.

The statistical transmitter. The second transmitter, which we call the

“statistical” transmitter, only knows the probability distribution of erasure rates.

This is a seemingly much “weaker” transmitter than the ultimate transmitter

as it does not know what packets are missing at the receivers, is not aware

of what nodes will receive the coded packet, and does not have unlimited

computational power. In the remaining of this section, we start by a somewhat

surprising result: we show that, when the number of receivers is large, using

RIDNC, the statistical transmitter performs close to the ultimate transmitter.

In particular, we show that, as the number of receivers increases, the average

number of packets the statistical transmitter recovers using RIDNC tends to the

number of packets that is recovered by the ultimate transmitter; in other words,

RIDNC is asymptotically optimal. This theoretical result is our motivation to

propose a practical RIDNC encoder that we refer to as S-RIDNC. S-RIDNC does

not know the exact probability distribution of the erasure rates. It, however,

collects acknowledgments from a relatively small subset of users to estimate the

probability distribution of erasure rates. We show that even with this estimate,

S-RIDNC achieves a performance close to the performance of the ultimate
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transmitter.

3.3.1 Asymptotic Optimality of RIDNC

Let C ⊆ P be the subset of packets that are XORed to construct the coded

packet. As defined in Section 3.2, let xi,C be a binary random variable such that

xi,C =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if the coded packet 1) is received at user i, and

2) results in a packet recovery at user i;

0 Otherwise

Note that a user cannot recover any packet if it does not receive the coded

packet. That is why the random variable xi,C is set to zero if the coded packet

is not received at node i. Also, a received coded packet can result in a packet

recovery only if the user is missing exactly one packet from the set C.

Example 3.1. Suppose there are N = 1 user (i.e., U = {u1}), and one

transmitter with M = 2 packets to send (i.e P = {p1, p2}). Assume that the

erasure rate ϵ between the transmitter and the user has a uniform distribution

in the interval [0, 1]. Suppose the coded packet is constructed by XORing both

packets p1 and p2 (i.e., C = {p1, p2}). Let e1 be the event that the user is missing

exactly one packet from P right after the initial transmission phase, and e2 be

the event that the user receives the coded packet. We have

Pr(e1) =

∫ 1

0

Pr(e1|ϵ = x) · Pr(ϵ = x)dx =

∫ 1

0

Pr(e1|ϵ = x)dx =

∫ 1

0

2x(1− x)dx =
1

3
,

and

Pr(e2) =

∫ 1

0

Pr(e2|ϵ = x) · Pr(ϵ = x)dx =

∫ 1

0

Pr(e2|ϵ = x)dx =

∫ 1

0

(1− x)dx =
1

2
.
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Therefore, the probability that the coded packet is received and results in a packet

recovery is

Pr(x1,C = 1) = Pr(e1) · Pr(e2) =
1

3
· 1
2
=

1

6
.

Now suppose we set C = {p1}, that is the transmitter sends p1 as the coded

packet. Similar to the above analysis, we get

Pr(x1,C = 1) = Pr(e1) · Pr(e2) =
1

2
· 1
2
=

1

4
.

In this example, we see that the transmitter is better off sending the plain packet

p1 rather than sending p1 ⊕ p2. Note that a plain packet is a coded packet for

which the set C has only one member. In other words, the set of coded packets

includes the plain packets.

The gain of transmitters. Let us define the random variable XC as

XC =
∑N

i=1 xi,C. In other words, XC is the total number of packets that are

recovered, when the set C is used to construct the coded packet. We define the

gain of a transmitter as the expected number of packets that the transmitter

can recover. Let Gut and Gst denote the gain of the ultimate and the statistical

transmitter, respectively. Note that the ultimate transmitter knows the value

of XC for every set C. Therefore, to maximize its gain, it will choose the set C

with the maximum value of XC. Thus

Gut = max
C∈P

XC.

The statistical transmitter, on the other hand, is not aware of the values of

XC. However, as shown in Example 3.1, it can calculate µC = E[XC] for any

given set C1. A good strategy for the statistical transmitter is then to choose

1In Section 3.4, we will discuss how to approximate µC with a small number of feedbacks
from the receivers, and without any integration.
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the set C with maximum value of µC. To do this, the statistical transmitter

does not need to compute µC for every set C ⊆ P. It is because µC1 = µC2

if |C1| = |C2|, as µC is only a function of the size of the set C. Therefore, in

the worst case, the statistical transmitter needs to computer µC for M subsets

of P with sizes 1, 2, . . . , and M . Using the above approach, the gain of the

statistical transmitter will be

Gst = max
C∈P

µC.

Next theorem shows that the ratio Gut

Gst
is close to one when N , the number of

users, is large.

Theorem 3.1. Suppose

N ≥
(
3 ln 2 ln 1

ϵ

p∗ · δ2

)
·M

where N and M denote the number of users and the number of packets, re-

spectively, δ and ϵ are any arbitrary small positive real numbers, and p∗ =

maxC⊆P Pr(xi,C = 1).

Then, we have
Gut

Gst

≤ 1 + δ

with probability at least 1− ϵ.

Proof. The random variable XC is the sum of N independent binary random

variables xi,C, 1 ≤ i ≤ N . Therefore, by a Chernoff bound, we get

Pr(XC > (1 + δ)µC) ≤ e
−δ2µC

3 = e
−δ2NPC

3 (3.3)

where PC = Pr(xi,C = 1). Note that Gst = maxC∈P µC, and µC = N · PC.
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Therefore, by (3.3), we get

Pr (XC > (1 + δ)Gst) = Pr

(
XC > (1 + δ) · Gst

µC
· µC

)
= Pr

(
XC > (1 + δ) · p

∗

PC
· µC

)

≤ Pr

⎛⎜⎜⎝XC > (1 + δ · p
∗

PC  
δ′

) · µC

⎞⎟⎟⎠
≤ e

−δ′2·µC
3 = e

−δ′2·N·PC
3 = e

−(δ· p
∗

PC
)2NPC

3 ≤ e−δ2Np∗ ≤ ϵ

2M
.

The total number of subsets C of P is 2M , and Pr(XC > (1 + δ)Gst) ≤ ϵ
2M

for every random variable XC. Therefore, by the union bound, the probability

that XC > (1 + δ)Gst for at least one set C is at most

2M · ϵ

2M
= ϵ.

Therefore,

Gut = max
C⊆P

XC ≤ (1 + δ)max
C⊆P

µC = (1 + δ)Gst.

with probability at least 1− ϵ.

3.4 S-RIDNC

In the previous section, we showed that the performance of RIDNC is asymp-

totically identical to that of the ultimate transmitter. RIDNC achieves this

high performance using the probability distribution of packet eraser rates. In

practice, a transmitter may not know this distribution. Instead, the transmitter

can collect feedbacks from a subset S of the users at the end of each initial
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transmission phase. The feedback from a user may simply be the number of

packets the user has received during the initial transmission phase. Clearly,

these feedbacks carry information about the probability distribution of erasure

rates. Therefore, one may hope to achieve a similar performance using these

sample feedbacks. In this section, we will propose and study S-RIDNC, which

is a practical RIDNC encoder that uses these sample feedbacks to construct the

coded packet.

S-RIDNC. S-RIDNC picks a random subset of packets with a given size,

and XORs the packets in the subset to construct the coded packet. Therefore,

the main task of S-RIDNC is to compute the number of packets to be XORed

(i.e. the size of the subset). Therefore, the main task of S-RIDNC is to compute

using the feedbacks it receives from the users in S. Users in S are selected

uniformly at random from the set of all users, thus they statistically represent

the set of all users. Hence, to maximize the overall gain, one reasonable approach

is to maximize the gain for the set of users in S. This is exactly what S-RIDNC

does. Using numerical results, we show that S-RIDNC performs close to the

optimal coding even when the set S (i.e., the number of sampled feedbacks) is

very small.

Without loss of generality, assume S = {u1, u2, ..., un}, where n ≪ N is

the number of users (out of the total N users) that provide feedback to the

transmitter. Recall that Hi denotes the set of packets that user ui has received

during the initial transmission phase, and C denotes the set of packets XORed

to construct the coded packet. Using the following theorem, S-RIDNC estimates

the number of packets that is expected to be recovered given the feedbacks

received from the nodes in S.

Theorem 3.2. Suppose the coded packet is constructed by XORing all the

packets in a set C, where C ⊆ P. Let Ei be the event that |Hi| = hi, that is

the event that ui has received hi packets during the initial transmission phase.

Suppose that, prior to collecting acknowledgements, the transmitter has no
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information about the erasure rates. Then we can estimate the expected number

of lost packets that are recovered as:

Ẽ[XC|E1, E2, . . . , En] =
n∑

i=1

((
hi

|C|−1

)
(M − hi)(
M
|C|

) · hi + 1

M + 2

)
,

where XC is the random variable defined in (3.2).

Proof. Let ϵi denote the erasure rate of user ui. Note that the erasure rates ϵi

can come from different distributions, because different users may have different

statistic of erasure probability. However, before the acknowledgements are

collected, the transmitter assumes that each ϵi is uniformly distributed in the

interval [0, 1]. It is because the transmitter has no information about erasure

rates prior to collecting acknowledgements. Therefore, we have

Ẽ[xi,C|Ei] =

∫ 1

0

(
Ẽ[xi,C|Ei, ϵi = x]

)
Pr(ϵi = x|Ei)dx

=

∫ 1

0

((
hi

|C|−1

)
(M − hi)(
M
|C|

) · (1− x)

)
Pr(ϵi = x|Ei)dx

=

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
·
∫ 1

0

(1− x)Pr(ϵi = x|Ei)dx

=

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
·
∫ 1

0

(1− x)
Pr(ϵi = x)

Pr(Ei)
· Pr(Ei|ϵi = x)dx

=

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
·
∫ 1

0

(1− x)
Pr(Ei|ϵi = x)

Pr(Ei)
dx

=

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
·
∫ 1

0

(1− x)
Pr(Ei|ϵi = x)∫ 1

0
Pr(Ei|ϵi = x)Pr(ϵi = x)dx

dx

=

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
·
∫ 1

0
(1− x)Pr(Ei|ϵi = x)dx∫ 1

0
Pr(Ei|ϵi = x)dx
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=

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
·
∫ 1

0
(1− x)

(
M
|C|

)
(1− x)hixM−hidx∫ 1

0

(
M
|C|

)
(1− x)hixM−hidx

=

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
·
∫ 1

0
(1− x)hi+1xM−hidx∫ 1

0
(1− x)hixM−hidx

=

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
·
∫ 1

0
(1− x)hi+1xM+1−(hi+1)dx∫ 1

0
(1− x)hixM−hidx

.

We have

∀ a, b, a− b ∈ Z≥0

f(a, b) =

∫ 1

0

(1− x)bxa−bdx =
b!(a− b)!

(a+ 1)!
,

thus

Ẽ[xi,C|Ei] =

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
· f(M + 1, hi + 1)

f(M,hi)

=

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
·

(b+1)!(a−b)!
(a+2)!

b!(a−b)!
(a+1)!

=

((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
· hi + 1

M + 2
.

Note that

Ẽ[xi,C|E1, E2, . . . , En] = Ẽ[xi,C|Ei],

because the random variable xi,C, defined in (3.1), is independent of the events

Ej, j ̸= i. We have

Ẽ[XC|E1, E2, . . . , En] =
n∑

i=1

Ẽ[xi,C|E1, E2, . . . , En]

=
n∑

i=1

Ẽ[xi,C|Ei] =
n∑

i=1

((
hi

|C|−1

)
(M − hi)(
M
|C|

) · hi + 1

M + 2

)

The next corollary states Theorem 3.2 in a different way. This enables us to

pre-compute a significant part of calculations needed in S-RIDNC (Algorithm 1).
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Corollary 3.1. Let dj be the number of users that have received j, 0 ≤ j ≤M ,

packets during the initial transmission phase, and D = [d0, d2, . . . , dM ]T . Let Π

be a (M + 1)× (M + 1) matrix, such that

Πi,j =

(
j

i−1

)
(M − j)(
M
i

) · j + 1

M + 2
,

where Πi,j denotes the element in the ith row and jth column of Π.

Then

Ẽ[XC|E1, E2, . . . , En] = (Π×D)|C| ,

where (Π×D)|C| denotes value of the |C|th row of Π×D.

Proof. We have

Ẽ[XC|E1, E2, . . . , En] =
n∑

i=1

((
hi

|C|−1

)
(M − hi)(
M
|C|

) · hi + 1

M + 2

)

=
M∑
j=0

((
j

|C|−1

)
(M − j)(
M
|C|

) · j + 1

M + 2

)
· dj =

M∑
j=0

Π|C|,j · dj = (Π×D)|C| ,

where the first equation is by Theorem 3.2, and the second equation is by the

definition of dj.

By Corollary 3.1, the optimal size of set C is argmaxi (Π×D)i . As shown in

Algorithm 1, the matrix Π can be precomputed and used to find the optimal

coded packet.

Proposition 3.1. The computation complexity of Algorithm 1 is O(M2), where

M denotes the number of packets. Note that this complexity is constant with

respect to the number of users N .

Proof. Since matrix Π is precomputed, the main operation Algorithm 1 is to

compute the product Π×D. Since Π is a (M + 1)× (M + 1) matrix, and D is

a (M + 1)× 1 matrix, computing Π×D requires O(M2) operations. Note that
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Algorithm 1 S-RIDNC

1: // Pre-computation
2: P ← Set of Packets
3: M ← |P|
4: Π← Zero matrix of size (M + 1)× (M + 1)
5: for all i ∈ [1, . . . ,M ] do // Number of packets to be XORed
6: for all j ∈ [0, . . . ,M − 1] do

7: Πi,j ←
(
( j
i−1)(M−j)

(Mi )
· j+1
M+2

)
8: // Realtime computation
9: n← Number of feedback samples

10: S ← collectRandomSamples(n)
11: D← Zero vector of size M + 1
12: for all s ∈ S do
13: i← sizeOf(s)
14: Di ← Di + 1

15: Gain← 0
16: Num← 0
17: G← Π×D
18: for all i ∈ [1, . . . ,M ] do // Number of packets to be XORed
19: if Gi > Gain then
20: Gain← Gi

21: Num← i
22: return XOR of Num packets from P
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this complexity does not grow with the number of users N , which is appealing

in networks with a large number of users.

Example 3.2. In real-time applications, a packet is useless if it is received/re-

covered late. Therefore, in practice, the number of packets transmitted in the

initial transmission phase (i.e., M) should be set small to give the chance to

the coded packet to recover lost packets in time. Suppose M = 10, and Π is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0

.08 .15 .20 .23 .25 .25 .23 .20 .15 .08 0

0 .03 .09 .16 .22 .28 .31 .31 .27 .17 0

0 0 .02 .06 .12 .21 .29 .35 .35 .25 0

0 0 0 .01 .05 .12 .22 .33 .40 .33 0

0 0 0 0 .01 .05 .14 .28 .42 .42 0

0 0 0 0 0 .01 .07 .20 .40 .50 0

0 0 0 0 0 0 .02 .12 .35 .58 0

0 0 0 0 0 0 0 .04 .27 .67 0

0 0 0 0 0 0 0 0 .15 .75 0

0 0 0 0 0 0 0 0 0 .83 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Suppose that we get feedbacks from 30 random receivers, each reporting how

many packets they have received during the initial transmission phase. Using

these feedbacks, we can fill out Matrix D. In this example, we consider two

scenarios A and B. In both scenarios, M = 10. In each scenario, however, we

get a different set of feedbacks from users, hence different matrices DA and DB.

Let

DT
A =

[
0 0 0 1 1 2 4 4 7 9 2

]
,

DT
B =

[
0 0 0 0 1 4 6 7 7 4 1

]
,

Having matrices DA and DB we can calculate GA and GB as

GA = Π×DA, GB = Π×DB.

This yeilds
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GT
A =

[
0.00 4.51 6.78 7.86 8.31 8.44  

index i=5

8.39 . . . 7.50
]
,

GT
B =

[
0.00 5.43 7.91 8.60  

index i=3

8.32 7.56 . . . 3.33
]
,

Therefore, for scenario A, XORing five random packets will gives us the

largest estimated recovery of 8.44 packets. This number for scenario B is 8.60

packets, which is achieved when three random packets are XORed.

Feedback mechanism. To statistically represent the set of receivers/users

in the network, the receivers that send feedbacks are selected uniformly at

random. To collect feedbacks from the selected users, different mechanisms can

be employed. Following, we explain two possible feedback mechanisms.

For the first mechanism, we assume that the transmitter is aware of the IDs of

the receivers. This is a reasonable assumption because receivers typically connect

to the transmitter to receive the multicast service. To request feedbacks, the

transmitter can then randomly select receivers, and embed the list of selected IDs

in a packet to notify the selected receivers. To minimize collisions, the selected

receivers can transmit their feedbacks in the same order as their IDs appear in

the packet. Note that even without following such order of transmission, the

MAC layers of the selected users are there to handle the contention. Also, our

solutions require only a small number of feedbacks. Therefore, there is a smaller

chance of collisions compare to the case where feedbacks are collected from

all/majority of users. In addition, as shown in the simulations, our solutions

are not sensitive to few possible feedback losses.

For the second mechanism, we assume that the transmitter does not have

the IDs of the receivers, but has an estimate of the number of receivers. In this

case, the transmitter can ask the receivers to send feedbacks with a probability

p, set by the transmitter. For instance, if the transmitter estimates the number

of receivers to be 100, and it wishes to collect about 20 feedbacks, then it can set
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p to be equal or slightly higher than 0.2. This solution has lower communication

overhead than the first solution, and does not require knowledge of IDs of the

receivers.

3.5 Extending S-RIDNC

In this section, we generalize in two ways. First, we add the possibility of

assigning positive weights to packets. The weight of each packet is an indication

of the importance of that packet to the application. We call this generalized

S-RIDNC encoder Sw-RIDNC.

In the second case, we add the possibility of transmitting multiple coded

packets. Our extended solution, called Se-RIDNC, handles multiple coded packet

transmissions by updating the packet lost distributions after each coded packet

transmission. To perform the update, Se-RIDNC does not require collecting

feedbacks from receivers.

3.5.1 Sw-RIDNC

In some applications, delivery of one packet may be more important than

another packet. For example, in video streaming, packets carrying I-frames may

be more important to be received by the users than those carrying P-frames.

To model this, we can assign weights to packets, where the weight of a packet

indicates the importance of the packet to the application.

Without loss of generality, we can assume that the weights are real numbers

between zero and one (i.e., the weights are normalized). In the problem we

studied so far, we implicitly assumed that the weight of all packets is equal to

one, that is all packets are of the same importance. In this section, we generalize

this, and show that our main results including the asymptotic optimality of the

RIDNC still hold in the weighted version of the problem.

Extended objective. We extend the definition of transmitter gain and
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the problem objective as follows. Let wi denote the weight assigned to packet pi,

1 ≤ i ≤M . As before, the transmitter constructs a coded packet by XORing

the packets in C, and transmits the coded packet after the initial transmission

phase. Let YC be a random variable equal to the sum of the weights of the

packets that are recovered. The objective is to find a set C that maximizes YC.

The ultimate transmitter can fully achieve this objective because of its unlimited

computational power, and a prior knowledge of which nodes will receive the

coded packet. Therefore, the gain of the ultimate transmitter, denoted Gw
ut, is

Gw
ut = max

C∈P
YC.

On the other hand, the RIDNC can achieve the gain of

Gw
st = max

C∈P
E[YC].

To this end, the RIDNC first calculates the optimal size of C. It then selects the

|C| packets with the largest weights, and XORs them to construct the codded

packet. The next theorem proves that this code construction method by the

RIDNC is asymptotically optimal.

Theorem 3.3. Suppose

N ≥
(
0.5 ln 2 ln 1

ϵ

(p∗ · w̄ · δ)2

)
·M

where δ and ϵ are any arbitrary small positive real numbers, p∗ = maxC⊆P Pr(xi,C),

and w̄ = 1
M

∑M
i=1 wi.

Then, we have
Gut

Gst

≤ 1 + δ

with probability at least 1− ϵ.

Proof. See Appendix C.
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The next theorem, extends Theorem 3.2 to the case where packets are weighted.

Theorem 3.4. Let dj be the number of users that have received j, 0 ≤ j ≤M ,

packets during the initial transmission phase, and D = [d0, d1, d2, . . . , dM ]T . Let

W be a diagonal (M +1)× (M +1) matrix such that Wi,i is equal to the average

of the i largest weights (W0,0 is defined to be zero). Finally, let Ei be the event

that |Hi| = hi. Then

Ẽ[XC|E1, E2, . . . , En] = (W ×Π×D)|C| ,

where Π is the matrix defined in the statement of Theorem 3.2.

Proof. See Appendix D.

Using Theorem 3.4, Algorithm 2 (Sw-RIDNC) generalizes Algorithm 1. In

Algorithm 2, in addition to Π, we pre-compute W, and the product W ×Π,

which is used to calculate the gain matrix G. Similar to Algorithm 1, it is easy

to verify that the complexity of Algorithm 2 is O(M2), which does not grow

with the number of users in the network.

It is worth mentioning that weights can also be assigned to users/receivers.

In the absence of weight assignment to users, the transmitter may have bias

against users with higher erasure rates. Using weights, however, we can allow

the transmitter to better serve specific type of users, e.g. those with certain

range of erasure rates, or those that have lost certain number of packets.

3.5.2 Se-RIDNC

In this section, we consider the case, where the transmitter is allowed to send

multiple coded packets. Note that after transmission of each coded packet,

the packet lost distribution changes. Requesting feedbacks from users after

each code packet transmission is not desired as it significantly increases the
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Algorithm 2 Sw-RIDNC

1: // Pre-computation
2: P ← Set of Packets
3: M ← |P|
4: W ← Created as explained in Theorem 3.4 based on packet weights
5: Π← Zero matrix of size (M + 1)× (M + 1)
6: for all i ∈ [1, . . . ,M ] do // Number of packets to be XORed
7: for all j ∈ [0, . . . ,M − 1] do

8: Πi,j ←
(
( j
i−1)(M−j)

(Mi )
· j+1
M+2

)
9: Π′ ←W ×Π
10: // Realtime computation
11: n← Number of feedback samples
12: S ← collectRandomSamples(n)
13: D← Zero vector of size M + 1
14: for all s ∈ S do
15: i← sizeOf(s)
16: Di ← Di + 1

17: Gain← 0
18: Num← 0
19: G← Π′ ×D
20: for all i ∈ [1, . . . ,M ] do // Number of packets to be XORed
21: if Gi > Gain then
22: Gain← Gi

23: Num← i
24: return XOR the Num packets with largest weights.
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communications overhead. To handle multiple code packet transmission without

such overheads, we propose a sub-optimal RIDNC encoder called Se-RIDNC.

Se-RIDNC is a generalization of S-RIDNC; that is Se-RIDNC is equivalent to

S-RIDNC if only one coded packet is transmitted.

Se-RIDNC maintains a (M + 1)× (M + 1) matrix D as opposed to a vector

used in S-RIDNC. The value of Di,j is the estimated number of users that

received i packets after the initial transmission phase, but currently have j

(j ≥ i) packets because of possible recoveries.

Before transmissions of the first coded packet, the matrix D is initiated

using the feedbacks received from the users. After transmission of each coded

packet, the value of Di,j is updated as follows:

Di,j ← Di,j−

((
j

c−1

)
(M − j)(
M
c

) · i+ 1

M + 2
·Di,j

)
+

((
j−1
c−1

)
(M − j − 1)(

M
c

) · i+ 1

M + 2
·Di,j−1

)
,

where c is the number of packets XORed to construct the latest coded packet.

The above update is based on the result of Theorem 3.2. The updated matrix

is then used to construct the new coded packet as described in Algorithm 3

(Se-RIDNC).

3.6 Numerical Results

In Section 3.3.1, we proved that the gain of the statistical transmitter employing

RIDNC approaches that of the ultimate transmitter as the number of users

increases. Motivated by this result, we proposed a practical RIDNC encoder

called S-RIDNC.

To evaluate the performance of S-RIDNC, we performed simulations as

explained in the following.

1. First, we generate N users, and assign an erasure rate to each user

according to the given distributions.

51



Algorithm 3 Se-RIDNC

1: P ← Set of Packets
2: M ← |P|
3: n← Number of feedback samples
4: r ← Number of coded packets
5: R← ∅ // Set of constructed coded packets
6: S ← collectRandomSamples(n)
7: D← Zero matrix of size (M + 1)× (M + 1)
8: for all s ∈ S do
9: i← sizeOf(s)
10: Di,i ← Di,i + 1

11: for all p ∈ [1, . . . , r] do
12: Gain← 0
13: Num← 0
14: for all i ∈ [1, . . . ,M ] do // Number of packets to be XORed
15: D′ ← D
16: G← 0
17: for all j ∈ [0, . . . ,M − 1] do
18: for all k ∈ [j, . . . ,M − 1] do

19: tmpGain←
(
( k
i−1)(M−k)

(Mi )
· j+1
M+2
·Dj,k

)
20: G← G+ tmpGain
21: D′

j,k+1 ← D′
j,k+1 + tmpGain

22: D′
j,k ← D′

j,k − tmpGain

23: if G > Gain then
24: Gain← G
25: Num← i
26: D′′ ← D′

27: D← D′′

28: R← R ∪ {XOR of Num random packets from P}
29: return R
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2. Each packet in the set U is added to set Hi of user ui, 1 ≤ i ≤ N , with

probability 1−ϵi, where ϵi is the erasure rate of user ui, set in the previous

step.

3. Feedbacks are requested from a small set of users selected randomly. Each

feedback contains the number of packets received by the user during the

initial transmission phase. We drop/lose the feedback packet of user ui

with probability ϵi.

4. Using the proposed encoder, coded packets are constructed, and then

transmitted.

5. Each user ui will receive a coded packet with probability 1− ϵi.

6. If a user misses exactly one of the packets used in constructing the coded

packet, then the missing packet will be recovered by the user; otherwise,

the coded packet is discarded.

7. After transmitting all the coded packets, we calculate the gain by counting

the total number of packets recovered by all the users.

8. To compute the average gain, the above steps are repeated 1000 to 10,000

times.

S-RIDNC vs. ultimate. We computed the average gain of S-RIDNC over

two scenarios. In the first scenario, we set the number of packets M = 5; in

the second scenario we set M = 10.2 For each scenario, we considered three

different distributions for packet erasure rates, and varied the number of users

N from 10 to 10,000. The gains of both S-RIDNC and the ultimate transmitter

were calculated, and averaged over 10,000 simulation runs.

2Simulating the ultimate transmitter for large values of M is computationally challenging.
Recall that the ultimate transmitter is an infeasible transmitter with unlimited computational
power.
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Figures 3.1, and 3.2 show the results of our simulations. The distribution of

erasure rate (ϵ) follows a uniform distribution in the intervals [0, 0.1], [0, 0.2],

and [0, 0.3] in subfigures a, b, and c, respectively.

As predicted, we see that the gain of S-RIDNC approaches that of the

ultimate transmitter as the number of users increases. This verifies our analytical

result on the asymptotic optimality of RIDNC.

Sw-RIDNC vs. ultimate. Figures 3.3 and 3.4 show similar results for the

case where packets are weighted. In Figure 3.3, we assign weight of 1 to two

packets, and weight of 0.5 to the remaining three packets. In Figure 3.4 three

packets are assigned weight of 1, and the remaining seven packets get weight

of 0.5. The simulation results verify the asymptotic optimality of our second

RIDNC encoder, referred to as Sw-RIDNC.

Number of feedbacks. To obtain the results presented in Figures 3.1,

3.2, 3.3, and 3.4, we assumed that the transmitter collects feedbacks from all

users. Our next numerical results, presented in Figure 3.5, show that S-RIDNC

can achieve 95% of its full performance using up to 21 feedbacks from users.

This result holds for a wide range of number of users (from 10 users to 10,000).

Figure 3.5 shows the results of our simulations for 500 users. The dashed line

shows the performance of the optimal RIDNC encoder. The solid curve shows

the performance of S-RIDNC as a function of the number of feedbacks requested.

Note that feedback packets can get lost too (just like regular packets). These

results show that S-RIDNC needs to request only a small number of feedbacks

to nearly achieve its full performance.

Mixed erasure rates. Figure 3.6 shows our simulation results for the

case where erasure rates of different users are selected from three different

distributions. Specifically, the users are split into three equal-sized groups. The

erasure rates of all the users in one group are selected from one of the three

distribution: U(0, 0.1), U(0, 0.2), and U(0, 0.3). In this simulation, the number

of packets is set to M = 10. Figure 3.6 shows that S-RIDNC achieves an
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asymptotic optimal gain even when erasure rates follow different distributions.

Se-RIDNC vs. ultimate. We also evaluated the performance of our

extended S-RIDNC encoder, referred to as Se-RIDNC. In this simulation, we

set M = 10, considered three different distributions for packet erasure rates,

and varied the number of users from 10 to 10,000. The gains of both Se-RIDNC

and the ultimate transmitter were calculated and averaged over at least 1000

simulation runs. Figures 3.7, 3.8, and 3.9 show the simulation results. As shown,

the gain of Se-RIDNC is close to that of the ultimate transmitter when there is

a large number of users. In Figures 3.7, 3.8, and 3.9, the erasure rate (ϵ) follows

a uniform distribution in the intervals [0, 0.1], [0, 0.2], and [0, 0.3], respectively.

In subfigures a, b, and c of each figure, the number of coded packets are 2, 4,

and 8, respectively.

Number of feedbacks (Se-RIDNC). To obtain the results shown in in

Figures 3.7, 3.8, and 3.9, we assume that feedback is collected from all the

users in the network. Figure 3.10 shows that Se-RIDNC can achieve 95% of its

full performance using up to 21 feedbacks from users. This result holds for a

wide range of number of users (from 10 users to 10,000). Figure 3.10 shows the

results of our simulations for 500 users. The dashed line is the performance of

Se-RIDNC when feedbacks are collected from all users, that is, it shows the full

performance of Se-RIDNC. The solid curve shows the performance of S-RIDNC

as a function of the number of feedbacks requested.

The simulation results presented in this work show that, in large networks,

our RIDNC encoders can achieve a near optimal gain using low communication

overhead. This is the case even when multiple coded packets are transmitted,

and limited number of feedbacks are collected only prior to the first coded

packet transmission.
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3.7 Conclusion

In this chapter, we studied packet loss recovery in live media wireless broadcast.

We proposed several RIDNC encoders.. In particular, we proposed S-RIDNC

and showed that its performance is asymptotically optimal. Interestingly,

this performance is achieved using a small number of feedbacks from users.

This significantly reduces the time and communication overhead of collecting

feedbacks. We proved that the computational complexity of S-RIDNC is

polynomial in terms of the number of packets, and is constant with respect to

the number of users. Also, simulation results show that the performance of the

proposed S-RIDNC is not sensitive to loss of feedback packets. We generalized

S-RIDNC to Sw-RIDNC and Se-RIDNC, and evaluated their performance using

simulations. Our results show that our proposed RINDC encoders are ideal for

packet recovery in wireless networks with many receivers.
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Figure 3.1: The gain of the ultimate transmitter vs. that of the S-RIDNC
transmitter for M = 5. The packet erasure rate follows a uniform distribution
in intervals [0, 0.1], [0, 0.2], and [0, 0.3], respectively.
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Figure 3.2: The gain of the ultimate transmitter vs. that of the statistical
transmitter for M = 10. The packet erasure rate follows a uniform distribution
in intervals [0, 0.1], [0, 0.2], and [0, 0.3], respectively.
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Figure 3.3: The gain of the ultimate transmitter vs. that of Sw-RIDNC for
M = 5. The weight of packets are set to [1, 1, 0.5, 0.5, 0.5].
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Figure 3.4: The gain of the ultimate transmitter vs. that of Sw-RIDNC for
M = 10. The weight of packets are set to [1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5].

60



1 50 100 150 200 250
10

15

20

25

30

No. of feedbacks

G
ai
n
(%

)

S-RIDNC
Optimal RIDNC

(a) ϵ ∼ U(0, 0.1).

1 50 100 150 200 250
10

15

20

25

30

No. of feedbacks

G
ai
n
(%

)

S-RIDNC
Optimal RIDNC

(b) ϵ ∼ U(0, 0.2).

1 50 100 150 200 250
10

15

20

25

30

No. of feedbacks

G
ai
n
(%

)

S-RIDNC
Optimal RIDNC

(c) ϵ ∼ U(0, 0.3).

Figure 3.5: With up to 10, 6, and 21 feedbacks respectively, S-RIDNC transmit-
ter achieves at least 95% of Optimal RIDNC for the given distributions. This
result is independent of the number of users. Here, we set the number of users
to 500, and the number of packets to M = 10.
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Figure 3.6: The gain of S-RIDNC transmitter when the erasure rates of users
follow different distributions.
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Figure 3.7: The gain of Se-RIDNC. M = 10 and ϵ ∼ U(0, 0.1)
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Figure 3.8: The gain of Se-RIDNC. M = 10 and ϵ ∼ U(0, 0.2)
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Figure 3.9: The gain of Se-RIDNC. M = 10 and ϵ ∼ U(0, 0.3)
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Figure 3.10: With up to 21, 10, and 10 feedbacks respectively, Se-RIDNC trans-
mitter achieves at least 95% of its full performance. This result is independent
of the number of users. Here, we set N = 500, M = 10, and the number of
coded packets to four.
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Chapter 4

Be-RIDNC: An Extended Blind

RIDNC Encoder

4.1 Introduction

In many real-time applications, there may not be enough time to recover all

the lost packets at all receivers. This is why in the previous chapters we aimed

at maximizing the number of packet recoveries given a limited number of coded

packet transmissions.

When there is enough time, however, a valid objective would be to recover

all the lost packets with minimum number of coded packet transmissions. In the

IDNC literature, the number of coded packet transmissions required to recover

all the lost packets is referred to as completion time. An interesting question is

how RIDNC performs with respect to completion time.

To this end, we propose a low-complexity “blind” RIDNC encoder, called

Be-RIDNC. Be-RIDNC does not need to know the erasure rates of the receiver

(which can differ from one receiver to another), or receive any feedback from

them. Yet, we prove that, in any network, the completion time of Be-RIDNC is

at most O(log(M)) factor of that of any other (not necessarily IDNC) coding

solution, where M denotes the total number of packets.
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4.2 Problem Definition and System Model

As in the previous chapters, we consider N users/receivers U = {u1, u2, . . . , uN},

and a single transmitter with a set of M packets P = {p1, p2, . . . , pM}. We

assume that different receivers may have different packet erasure rates. As

before, in an initial transmission phase, the transmitter broadcasts the M

packets in plain using M transmissions. After the initial transmission phase,

the transmitter is given enough number of transmissions to recover all the lost

packets. In contrast to the objective pursued in the previous chapters, here we

aim to minimize the completion time, that is to recover all the lost packets with

minimum number of coded packet transmissions.

4.3 Be-RIDNC

As shown in Algorithm 4, Be-RIDNC consists of rounds. In each round, Be-

RIDNC generates ⌊logM⌋ + 1 coded packets, where the ith coded packet,

0 ≤ i < ⌊logM⌋, is generated simply by XORing 2i plain packets selected

uniformly at random from P. In essence, the ith coded packet targets packet

recovery at receivers that are missing about M
2i

packets.

Algorithm 4 Be-RIDNC

1: P ← Set of Packets
2: M ← |P|
3: C ← 0 // Number of broadcast rounds
4: while All packets not deliverted do
5: R← { 2i | 0 ≤ i < ⌊logM⌋ }
6: for all r ∈ R do
7: Broadcast(XOR of r random packets from P)
8: C ← C + 1

9: return C × (⌊logM⌋+ 1)
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4.3.1 Completion Time

To analyze the completion time of Be-RIDNC, we start by showing that, in

each round, each receiver with packet erasure rate ϵ would recover a lost packet

with probability 1−ϵ
2e

, where e is the base of natural logarithm.

Lemma 4.1. Let u be any receiver in the set U . Let ϵ denote the erasure rate

of u, and suppose that u is missing at least one packet.

Then, the probability that u recovers at least one lost packet within a round of

Be-RIDNC is at least 1−ϵ
2e

.

Proof. Suppose u is missing m ≥ 1 packets at the beginning of a round of Be-

RIDNC. Let p be the ith, i = ⌊log2 M
m
⌋, coded packet generated by Be-RIDNC

in this round. The coded packet p will result in a packet recovery in u iff u is

missing exactly one packet from the set of packets XORed in generating p. The

probability of this is1

m · 2
i

M

(
1− 2i

M

)m−1

= m · 2
⌊log2 M

m
⌋

M

(
1− 2⌊log2

M
m

⌋

M

)m−1

≥ 1

2
·

(
1− 2⌊log2

M
m

⌋

M

)m−1

≥ 1

2
·
(
1− 1

m

)m−1

>
1

2e
,

where the last inequality is because, for every integer m ≥ 1, we have

(
1− 1

m

)m−1

>
1

e
.

Node u will receive p with probability 1− ϵ. Therefore, in any given round of

Be-RIDNC, u will recover a lost packet with probability at least 1−ϵ
2e

.

1We set 00 = 1.
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Now, using the above lemma, we can prove the following main result.

Theorem 4.1. The expected completion time of Be-RIDNC is at most O(logM)

factor of that of any other packet recovery solution.

Proof. In any packet recovery solution, the probability that a transmission

results in a packet recovery at a node u is at most 1− ϵ, where ϵ is the packet

erasure rate of u. This is because u receives a packet with probability 1 − ϵ.

Therefore, if node u is missing m packets, any packet recovery solution requires

on average at least m
1−ϵ

transmissions to recover all the lost packets at u.

On the other hand, by Lemma 4.1, node u can recover a lost packet with

probability at least 1−ϵ
2e

, in every round. Therefore, the expected number of

transmissions required by Be-RIDNC to recover all the lost packets at u is at

most
2e

1− ϵ
· (⌊logM⌋+ 1) ·m = O(logM) · m

1− ϵ
.

Thus, the expected number of transmissions needed by Be-RIDNC to recover

all the lost packets at u is at most a factor O(logM) of that of any other

packet recovery solution. Assume that the erasure rate of users is either zero or

greater than a constant. Then, from the above result, we get that the expected

completion time of Be-RIDNC is at most a factor O(logM) of that of any other

packet recovery solution.

4.4 Numerical Results

In our simulations, we compared the expected completion time of Be-RIDNC

with that of an ideal packet recovery solution. In the ideal packet recovery

solution, we assume that any user can recover a lost packet upon receiving any

coded packet.
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Figure 4.1: Ratio of the expected Completion Time of Be-RIDNC to that of
the ideal packet recovery solution (N = 10).

The results presented in Figures 4.1 and 4.2 show the ratio of the expected

completion time of Be-RIDNC to that of the ideal packet recovery solution. As

shown in Figures 4.1 and 4.2 this ratio grows logarithmically with the number

of packets M .
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Figure 4.2: Ratio of the expected Completion Time of Be-RIDNC to that of
the ideal packet recovery solution (N = 100).
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Chapter 5

Conclusion & Future Work

With the increase in popularity of mobile devices, the need for greater quality

and higher bandwidth in wireless networks has increased exponentially. Cisco

Visual Networking Index report shows that the overall mobile traffic will rise

from 11 ExaBytes per month in 2017 to more than 48 ExaBytes per month in

2021 (doubling every two years) [2]. At the same time video content is rising

as well, and by 2021, it will cover 82% of all Internet traffic; 16% of this video

content will be live video streams [2].

We studied live media streaming in local wireless networks and introduced

Random Instantly Decodable Network Coding (RIDNC). We argued that

RIDNC has the advantage of IDNC as its coded packets are decodable in-

stantly at the receivers which is ideal for real-time multimedia, and has the

advantage of RNC because of its low-complexity encoding. We proposed and

studied several encoders for RIDNC.

First, we proposed a Blind RIDNC encoder (B-RIDNC) which targets

receivers with a specific erasure rate. We studied different scenarios for trans-

mitting one, two, or three coded packets using this encoder. In Chapter 4, we

extended this encoder to Be-RIDNC to recover all lost packets with minimum

number of transmissions.

We also proposed a Statistical RIDNC encoder (S-RIDNC). We showed that
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S-RIDNC perfroms nearly as good as any other coding solutoin when there

are many receivers. This encoder was extended to Se-RIDNC to be able to

transmit more than one coded packet and to Sw-RIDNC in order to account for

the importance of different packets.

Our analytical and simulation results proved and confirmed the low compu-

tational complexity, low communication overhead, and high performance of our

RIDNC encoders. These features make RIDNC a promising packet recovery

solution for broadcast of real-time applications particularly in networks with a

large number of receivers.

This work can be extended in multiple directions:

Packet Correlation. We considered the case where some packets are more

important than others. To this end, we assigned higher weights to packets that

were more important. This simple weight assignment strategy, however, may

not be good enough when importance of one packet depends on whether or

not another particular packet is decoded. For such scenarios, we need a better

strategy than the weight assignment strategy used in this thesis.

Feedback Collection. In this thesis, we explained some basic methods to

collect feedback from randomly selected users. Since feedback collection is an

important part of IDNC, a more in-depth study of it is needed particularly for

networks with a large number of users. In this study, one should consider the

fact that feedback can get lost either because of channel impairments, or packet

collision.

Completion Time. The main focus of this thesis was to recover as many lost

packets as possible with a few coded packet transmissions. Another objective,

which we considered in Chapter 4, is to minimize the completion time, which is

the number of coded packet transmissions to recover all lost packets. Simulation

results in [42] show that IDNC is able to achieve nearly optimal completion

time. It is interesting to see how good RIDNC performs with regards to the

completion time.
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Appendix A

Proof of Theorem 2.1

Before proving Theorem 2.1, we need to prove one lemma

Lemma A.1. Let S1 and S2 be two arbitrary subsets of P . Assume S1 and S2

are used to generate the first and the second blind packets, respectively. Then,

the expected gain of user i = 1 can be expressed as

E[G1] = (1− ϵ)(PS1=A∪B
1 + PS2=B∪C

1 +

(1− ϵ)(PB
1 PA

0 (PC
1 − PC

0 )).

Proof. Let X be the random variable equal to the number of packets decoded

by user one after the two coded packets are transmitted. We have 0 ≤ X ≤ 2,

and

Pr(X = 1) =ϵ(1− ϵ)
[
Pr(ES1

1 ) + Pr(ES2
1 )
]
+

(1− ϵ)2[Pr(EB0 (EA1 ĒC1 + ĒA1 EC1 )+

EB1 (EA0 ĒC1 + ĒA0 EC0 ))]

=ϵ(1− ϵ)
[
PS1

1 + PS2
1

]
+

(1− ϵ)2[PB
0 (PA

1 P̄C
1 + P̄A

1 PC
1 )+

PB
1 (PA

0 P̄C
1 + P̄A

0 PC
0 )]
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where ϵ(1− ϵ) is the probability that only one coded packet is received, (1− ϵ)2

is the probability that both coded packets are received, and the terms inside

brackets are the probabilities that a single packet is decoded in each case.

Similarly, we have

Pr(X = 2) = (1− ϵ)2[Pr(EA1 EB0 EC1 + EA0 EB1 EC1 )]

= (1− ϵ)2[PA
1 PB

0 PC
1 + PA

0 PB
1 PC

1 )]

Therefore

E[G1] =Pr(X = 1) + 2Pr(X = 2)

=ϵ(1− ϵ)[PS1
1 + PS2

1 ]+

(1− ϵ)2[PB
0 (PA

1 P̄C
1 + P̄A

1 PC
1 )

+ PB
1 (PA

0 P̄C
1 + P̄A

0 PC
0 )+

2PA
1 PB

0 PC
1 + 2PA

0 PB
1 PC

1 ]

=ϵ(1− ϵ)
[
PS1

1 + PS2
1

]
+

(1− ϵ)2[PB
0 PA

1 P̄C
1 + PB

0 P̄A
1 PC

1 +

PB
1 PA

0 P̄C
1 + PB

1 P̄A
0 PC

0 +

2PA
1 PB

0 PC
1 + 2PA

0 PB
1 PC

1 ]

=ϵ(1− ϵ)
[
PS1

1 + PS2
1

]
+

(1− ϵ)2[(PB
0 PA

1 P̄C
1 + PA

1 PB
0 PC

1 )+

(PB
0 P̄A

1 PC
1 + PA

1 PB
0 PC

1 )+

(PB
1 PA

0 P̄C
1 + PA

0 PB
1 PC

1 )+

(PB
1 P̄A

0 PC
0 + PA

0 PB
1 PC

1 )]
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=ϵ(1− ϵ)
[
PS1

1 + PS2
1

]
+

(1− ϵ)2[PA
1 PB

0 + PB
0 PC

1 + PA
0 PB

1 +

(PB
1 P̄A

0 PC
0 + PA

0 PB
1 PC

1 )]

=ϵ(1− ϵ)
[
PS1

1 + PS2
1

]
+

(1− ϵ)2[PA
1 PB

0 + PB
0 PC

1 + PA
0 PB

1 +

(PB
1 (1− PA

0 )PC
0 + PA

0 PB
1 PC

1 )]

=ϵ(1− ϵ)
[
PS1

1 + PS2
1

]
+

(1− ϵ)2[PA
1 PB

0 + PB
0 PC

1 + PA
0 PB

1 +

PB
1 PC

0 + (−PB
1 PA

0 PC
0 + PA

0 PB
1 PC

1 )]

=ϵ(1− ϵ)
[
PS1

1 + PS2
1

]
+

(1− ϵ)2[(PA
1 PB

0 + PA
0 PB

1 )+

(PB
0 PC

1 + PB
1 PC

0 ) + PB
1 PA

0 (PC
1 − PC

0 )]

=ϵ(1− ϵ)
[
PS1

1 + PS2
1

]
+

(1− ϵ)2[PS1
1 + PS2

1 + PB
1 PA

0 (PC
1 − PC

0 )]

=(1− ϵ)(PS1=A∪B
1 + PS2=B∪C

1 +

(1− ϵ)(PB
1 PA

0 (PC
1 − PC

0 ))

Proof of Theorem 2.1 Since receivers have an identical packet erasure rate ϵ,

we have E[Gi] = E[Gj], for every 1 ≤ i, j ≤ N . Therefore, to maximize, E[G],

we can concentrate on maximizing E[Gi], for some 1 ≤ i ≤ N . Without loss of

generality, we assume i = 1. Let

P∗
1 = max

S⊆P
PS

1 .

By Proposition 2.1, for any set S ⊆ P of cardinality ⌊1
ϵ
⌋, P∗

1 = PS
1 .
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Suppose PC
1 − PC

0 ≤ 0. In this case, by Lemma A.1, we get

E[G1] = (1− ϵ)
(
PS1

1 + PS2
1 + (1− ϵ)(PB

1 PA
0 (PC

1 − PC
0 )
)

≤ (1− ϵ)(2P∗
1 ).

(A.1)

Note that, if for the two blind transmissions we choose two disjoint sets S1 ⊆ P

and S2 ⊆ P each with cardinality ⌊1
ϵ
⌋, we will have

E[G1] = (1− ϵ)(2P∗
1 ).

which, by (A.1), is optimal if PC
1 − PC

0 ≤ 0. In the remaining, we show that

if PC
1 − PC

0 > 0, then the expected gain of user one does not decrease by

replacing S1 and S2 with S ′
1 = A∪B and S ′

2 = C, respectively. Let A′ = S ′
1\S ′

2,

B′ = S ′
1 ∩ S ′

2, and C ′ = S ′
2\S ′

1. By the above definitions, we get that A′ = S1,

B′ = ∅, and C ′ = C.

We have PC
0 = (1− ϵ)|C| and PC

1 = |C|ϵ(1− ϵ)|C|−1. Since PC
1 −PC

0 > 0, we

get

PC
1 = |C|ϵ(1− ϵ)|C|−1 > PC

0 = (1− ϵ)|C| =⇒ |C| > 1

ϵ
− 1

thus |C| ≥ ⌊1
ϵ
⌋. Since |B ∪ C| ≥ |C| ≥ ⌊1

ϵ
⌋, by Lemma 2.1, we get

PC
1 ≥ P

S2=B∪C
1 . (A.2)

Using Lemma A.1 with parameters S ′
1, S

′
2, we get

E[G ′1] = (1− ϵ)
(
PS′

1
1 + PS′

2
1 + PB′

1 PA′

0 (PC′

1 − PC′

0 )
)

= (1− ϵ)
(
PS1

1 + PC
1

) (A.3)

where G ′1 represents the gain when we use sets S ′
1 and S ′

2, and the second

equality is because B′ = ∅ (hence PB′
1 = 0), S ′

1 = S1, and S ′
2 = C. Also, we
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have

PC
1 ≥ PC

1 (PB
0 + PB

1 )

= PC
1 (PB

0 + PB
1 ) + (PB

1 PC
0 − PB

1 PC
0 )

= PC
1 PB

0 + PC
1 PB

1 + PB
1 PC

0 − PB
1 PC

0

= (PC
1 PB

0 + PB
1 PC

0 ) + (PC
1 PB

1 − PB
1 PC

0 )

= PS2
1 + PB

1 (PC
1 − PC

0 )

≥ PS2
1 + PB

1 PA
0 (PC

1 − PC
0 )

(A.4)

where the inequality holds because (PC
1 −PC

0 ) > 0. Using (A.3) and (A.4), we

get

E[G ′1] = (1− ϵ)
(
PS1

1 + PC
1

)
≥ (1− ϵ)

(
PS1

1 + PS2
1 + PB

1 PA
0 (PC

1 − PC
0 )
)

= E[G1]

Finally, by the second equality in (A.3)

E[G ′1] = (1− ϵ)
(
PS1

1 + PC
1

)
≤ (1− ϵ) (P∗

1 + P∗
1 )

= (1− ϵ)(2P∗
1 ),

which completes the proof.
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Appendix B

Proof of Theorem 2.2

We first prove a series of lemmas. The proof of theorem follows directly from

Lemmas B.4 and B.6.

Lemma B.1. Let S1 and S2 be arbitrary subsets of P , and assume that S1 and

S2 are used to generate the first and the second blind packets, respectively. Then,

the expected gain of user i = 1 is

E[G1] = (1− ϵ)(PS1=A∪B
1 + PS2=B∪C

1 +

(1− ϵ)(PA∪C
1 − PA∪B∪C

1 ))

Proof. When both blind packets are received, the receiver can XOR the two

blind packets to generate another coded packet. It is sometimes possible to

use this third coded packet to recover a lost packet. This is the core difference

between Scenario 2 and 3, which requires attention in this proof.

Let E10, E01, and E11 denote the events that the receiver receives, respectively,

the first coded packet only, the second coded packet only, and both coded packets.

If E10 (E01) occurs, the number of packets recovered will be one with probability

PS1
1 (PS2

1 ) and zero, otherwise. The probability of event E10 (E01) is simply

ϵ(1 − ϵ). If E11 occurs (i.e., both coded packets are received) the number of

packets recovered is at most two, and this happens when one of the sets A, B,
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and C includes no lost packets, while the other two each includes exactly one

lost packet. Therefore, if E11 occurs, the probability that two lost packets are

recovered is PA
0 PB

1 PC
1 + PA

1 PB
0 PC

1 + PA
1 PB

1 PC
0 . Finally, if E11 occurs, only a

single lost packet will be recovered iff one of the sets A, B, and C includes no

lost packets, the second set includes exactly one lost packet, and the number of

lost packets in the third set is not one. For example, if A includes only one lost

packet, C does not include any lost packets, and the number of lost packets in

B is three, the lost packet in A can be recovered by XORing the two coded

packets. The probability that only a single lost packet is recovered given that

E11 has occurred (i.e., both coded packets have been received) is

(P̄A
1 PB

1 PC
0 + P̄A

1 PB
0 PC

1 + PA
1 P̄B

1 PC
0 +

PA
0 P̄B

1 PC
1 + PA

1 PB
0 P̄C

1 + PA
0 PB

1 P̄C
1 )−

(PA
1 PB

0 PC
0 + PA

0 PB
1 PC

0 + PA
0 PB

0 PC
1 )

=P̄A
1 PB

1 PC
0 + P̄A

1 PB
0 PC

1 + PA
1 P̄B

1 PC
0 +

PA
0 P̄B

1 PC
1 + PA

1 PB
0 P̄C

1 + PA
0 PB

1 P̄C
1 − PA∪B∪C

1

Consequently, we get

E[G1] =Pr(E10)E[G1|E10]+

Pr(E01)E[G1|E01] + Pr(E11)E[G1|E11]

=ϵ(1− ϵ)PS1
1 + ϵ(1− ϵ)PS2

1 +

(1− ϵ)2([P̄A
1 PB

1 PC
0 + P̄A

1 PB
0 PC

1 +

PA
1 P̄B

1 PC
0 + PA

0 P̄B
1 PC

1 + PA
1 PB

0 P̄C
1 +

PA
0 PB

1 P̄C
1 − PA∪B∪C

1 ]+

2[PA
1 PB

0 PC
1 + PA

0 PB
1 PC

1 + PA
1 PB

1 PC
0 ])
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=ϵ(1− ϵ)
(
PS1

1 + PS2
1

)
+

(1− ϵ)2[(P̄A
1 PB

1 PC
0 + PA

1 PB
1 PC

0 )+

(P̄A
1 PB

0 PC
1 + PA

1 PB
0 PC

1 )+

(PA
1 P̄B

1 PC
0 + PA

1 PB
1 PC

0 )+

(PA
0 P̄B

1 PC
1 + PA

0 PB
1 PC

1 )+

(PA
1 PB

0 P̄C
1 + PA

1 PB
0 PC

1 )+

(PA
0 PB

1 P̄C
1 + PA

0 PB
1 PC

1 )− PA∪B∪C
1 ]

=ϵ(1− ϵ)
(
PS1

1 + PS2
1

)
+

(1− ϵ)2[PB
1 PC

0 + PB
0 PC

1 + PA
1 PC

0 +

PA
0 PC

1 + PA
1 PB

0 + PA
0 PB

1 − PA∪B∪C
1 ]

=ϵ(1− ϵ)
(
PS1

1 + PS2
1

)
+

(1− ϵ)2[(PB
1 PC

0 + PB
0 PC

1 )+

(PA
1 PC

0 + PA
0 PC

1 )+

(PA
1 PB

0 + PA
0 PB

1 )− PA∪B∪C
1 ]

=ϵ(1− ϵ)
(
PS1

1 + PS2
1

)
+

(1− ϵ)2[PB∪C=S2
1 + PA∪C

1 +

PA∪B=S1
1 − PA∪B∪C

1 ]

=(1− ϵ)(PS1
1 + PS2

1 +

(1− ϵ)(PA∪C
1 − PA∪B∪C

1 ))
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Lemma B.2. We have

d
dx
ρ(x) < 0 if x < η

d
dx
ρ(x) > 0 if x > η

d2

dx2ρ(x) < 0 if x < 2η

d2

dx2ρ(x) > 0 if x > 2η

Proof.
d

dx
ρ(x) = ϵ(1− ϵ)x−1 (ln(1− ϵ)x+ 1) ,

and
d2

dx2
ρ(x) = ϵ(1− ϵ)x−1 ln(1− ϵ) (ln(1− ϵ)x+ 2) .

Lemma B.3. For any two numbers x1 and x2, x1 + 2 ≤ x2 ≤ 2η + 1, we have

ρ(x1) + ρ(x2) < ρ(x1 + 1) + ρ(x2 − 1).

Proof. Let g(x) = ρ(x− 1)− ρ(x). The derivative of g(x) is

d

dx
g(x) = (1− ϵ)x−2ϵ (ϵ ln(1− ϵ)x− ln(1− ϵ) + ϵ) .

Thus the derivative of g(x) is positive when

x <
ln(1− ϵ)− ϵ

ϵ ln(1− ϵ)
=

1

ϵ
+

−1
ln(1− ϵ)

=
1

ϵ
+ η.

Therefore, for integers x1 and x2, x1+2 ≤ x2 ≤ 1
ϵ
+η we have g(x1+1) < g(x2),

that is

ρ(x1)− ρ(x1 + 1) < ρ(x2 − 1)− ρ(x2),

hence

ρ(x1) + ρ(x2) < ρ(x1 + 1) + ρ(x2 − 1). (B.1)
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Note that 1
ϵ
≥ −1

ln(1−ϵ)
= η, because ln(1 − ϵ) ≤ −ϵ. Therefore, the above

inequality holds for any two integers x1 and x2, x1 + 2 ≤ x2 ≤ 2η. To extend

(B.1) to any two integers x1 + 2 ≤ x2 ≤ 2η + 1, we simply need to verify (B.1)

for integers x2 = ⌊2η + 1⌋, and x1 = ⌊2η − 1⌋.

Lemma B.4. Suppose |S†
1| ≤ 2η + 1 and |S†

2| ≤ 2η + 1. Then we must have

⏐⏐⏐|S†
1| − |S

†
2|
⏐⏐⏐ ≤ 1,

that is the sets S†
1 and S†

1 must have almost the same size.

Proof. By contradiction, suppose
⏐⏐⏐|S†

1| − |S
†
2|
⏐⏐⏐ ≥ 2. Assume without loss of

generality that |S†
2| ≥ |S

†
1|+ 2. Since |S†

2| > |S
†
1|, there must be a packet p ∈ S†

2

which is not in S†
1. Let S2 = S†

2\{p}, and S1 = S†
1 ∪ {p}. Since PS

1 = ρ(|S|), by

Lemma B.3, we get

PS†
1

1 + PS†
2

1 < PS1
1 + PS2

1

Note that A ∪ C = A† ∪ C†, and A ∪B ∪ C = A† ∪B† ∪ C†, where A = S1\S2,

B = S1 ∩ S2, and C = S2\S1. Therefore

(1− ϵ)
(
PS1

1 + PS2
1 + (1− ϵ)(PA∪C

1 − PA∪B∪C
1 )

)
>

(1− ϵ)
(
PS†

1
1 + PS†

2
1 + (1− ϵ)(PA†∪C†

1 − PA†∪B†∪C†

1 )
)
,

a contradiction, as it implies that the gain increases when S†
1 and S†

2 are replaced

with S1 and S2, respectively.

Lemma B.5. Suppose ϵ ∈ (0, 1). Then, we have

PA†∪B†=S†
1

1 ≥ PA†∪C†

1 ,

and

PB†∪C†=S†
2

1 ≥ PA†∪C†

1 ,

Proof. We just prove the former inequality. The latter is proved similarly.
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By contradiction, suppose

PA†∪B†=S†
1

1 < PA†∪C†

1 , (B.2)

Let A = A†, B = C†, and C = B†. We show that the gain is increased by

using sets S1 = A ∪ B, and S2 = B ∪ C, instead of sets S†
1 = A† ∪ B†, and

S†
2 = B† ∪ C†. For that, we need to show that

(1− ϵ)(PS1=A∪B
1 + PS2=B∪C

1 +

(1− ϵ)(PA∪C
1 − PA∪B∪C

1 ))

>(1− ϵ)(PS†
1=A†∪B†

1 + PS†
2=B†∪C†

1 +

(1− ϵ)(PA†∪C†

1 − PA†∪B†∪C†

1 ))

(B.3)

Note that A ∪B ∪ C = A† ∪B† ∪ C†, A ∪B = A† ∪ C†, and B ∪ C = B† ∪ C†.

Therefore, (B.3) is equivalent to

PA†∪C†

1 + (1− ϵ)(PA†∪B†

1 ) > PA†∪B†

1 + (1− ϵ)(PA†∪C†

1 )

which holds by (B.2).

Lemma B.6. Suppose ϵ ∈ (0, 0.5). Then, the size of sets S†
1 = A† ∪ B†,

S†
2 = B† ∪ C† and A† ∪ C† is less than 2η + 1.

Proof. Let ρ(x) = xϵ(1− ϵ)x−1. Recall that, PS
1 = ρ(|S|), and, by Lemma B.2,

ρ(x) is strictly convex in (2η,∞). Similar to the proof of Lemma B.3, using the

mean value theorem, we can show that

ρ(x1 − 1)− ρ(x2 − 1) ≥ ρ(x1)− ρ(x2)

∀x2, x1, x2 ≥ x1 ≥ 2η + 1.
(B.4)

91



Since ϵ ≤ 0.5, we get η ≥ 1, thus x1 − 1 > x1 − 2 ≥ η, hence

ρ(x1 − 2) > ρ(x1 − 1) (B.5)

Combining (B.4), and (B.5), we get

ρ(x1 − 2)− ρ(x2 − 1) > ρ(x1)− ρ(x2)

∀x2, x1, x2 ≥ x1 ≥ 2η + 1.
(B.6)

as the derivative of ρ(x) is negative in (η,∞).

Let us start with A† ∪C†. By contradiction, suppose |A† ∪C†| ≥ 2η + 1. Then,

|A†∪B†∪C†| ≥ 2η+1, too. Suppose A† and C† are not empty. Therefore, there

are packets pa ∈ A†, and pc ∈ C†. Consider the sets A = A†\{pa}, B = B†∪{pa},

and C = C†\{pb}. Let S1 = A ∪B, and S2 = B ∪ C. Following, we show that

using S1, and S2 instead of S†
1, and S†

2, increases the gain. Note that |S1| = |S†
1|,

|S2| = |S†
2|, |A ∪ C| = |A† ∪ C†| − 2, and |A ∪ B ∪ C| = |A† ∪ B† ∪ C†| − 1.

Therefore, by (B.6)

PA∪C
1 − PA∪B∪C

1 > PA†∪C†

1 − PA†∪B†∪C†

1 ,

thus

(1− ϵ)
(
PS1

1 + PS2
1 + (1− ϵ)(PA∪C

1 − PA∪B∪C
1 )

)
>(1− ϵ)

(
PS†

1
1 + PS†

2
1 + (1− ϵ)(PA†∪C†

1 − PA†∪B†∪C†

1 )
)

where, by Lemma B.1, the larger side of the above inequality is the gain of user

one when sets S1, and S2 are used, and the smaller side is the gain when S†
1,

and S†
2 are used.

Now, suppose that either A† or C† is empty. Therefore, either S†
1 ⊆ S†

2 or

S†
2 ⊆ S†

1. Assume without loss of generality that S†
1 ⊆ S†

2 (that is A† = ∅). In
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that case, by lemma B.1, we have

E[G1] =(1− ϵ)
(
PS1=A†∪B†

1 + PS2=B†∪C†

1 +

(1− ϵ)(PA†∪C†

1 − PA†∪B†∪C†

1 )
)

=(1− ϵ)
(
PS1=B†

1 + PS2=B†∪C†

1 +

(1− ϵ)(PC†

1 − P
S†
2=B†∪C†

1 )
)

=(1− ϵ)
(
PS1=B†

1 + ϵPS2=B†∪C†

1 + (1− ϵ)PC†

1

)
≤(1− ϵ)(2P∗

1 ).

Therefore, two disjoint sets S1 and S2 of size ⌊1
ϵ
⌋ achieve a gain not less than

the gain achieved by S†
1 and S†

2. The two gains are equal only when

PS1=B†

1 = PS2=B†∪C†

1 = PC†

1 = P∗
1 . (B.7)

The function ρ(x) is maximized in at most two consecutive integers, x1 = ⌊η⌋,

and x2 = ⌈η⌉. Since ϵ ≤ 0.5, we get η = − 1
ln(1−ϵ)

> 1, thus ⌈η⌉ ≥ ⌊η⌋ ≥ 1.

Therefore, equation (B.7) holds only if |B†| = |C†| = 1, 1 ≤ η < 2, and

ρ(1) = ρ(2) =⇒ 1ϵ(1− ϵ)1−1 = 2ϵ(1− ϵ)2−1 =⇒ ϵ = 0.5,

which is not possible as ϵ ∈ (0, 0.5).

So far, we have shown that |A†∪C†| < 2η+1. Assume without loss of generality

that |S1| ≤ |S2|. Next, we show that |S2| < 2η + 1. Clearly, that would yield

|S1| < 2η + 1. By contradiction, suppose |S1| ≥ 2η + 1. We consider two cases.

In the first case, S†
1, and S†

2 are disjoint. In this case, the gain of user one is

simply PS†
1

1 + PS†
2

1 . Let S2 be a set obtained by removing one packet from the

set S†
2. Note that |S2| = |S†

2| − 1 ≥ 2η > η. Since ρ(x) is strictly decreasing in
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(η,∞), we get PS2
1 > PS†

2
1 , hence

PS†
1

1 + PS2
1 > PS†

1
1 + PS†

2
1 .

which is not possible, thus the first case never occurs. In the remaining, we

then assume that S†
1 and S†

2 are not disjoint. Let pb ∈ S†
1 ∩ S†

2 be a packet. Let

S1 = S†
1 and S2 = S†

2\{pa}. Therefore, we have A ∪ C = A† ∪ C† ∪ {pa} and

A∪B∪C = A†∪B†∪C†. In the following, we show that sets S1 and S2 achieve

a higher gain than S†
1 and S†

2. Comparing the gain of the two cases using the

formula given in Lemma B.1, we get that when S1 and S2 are used instead of

S†
1 and S†

2, the number added to the gain will be

(
PS2

1 − P
S†
2

1

)
+
(
PA∪C

1 − PA†∪C†

1

)
The first term

PS2
1 − P

S†
2

1 = ρ(|S2|)− ρ(|S†
2|),

is positive because |S2| = |S†
2| − 1 > η, and ρ(x) is strictly decreasing in

(η,∞). In the remainder we show that the second term
(
PA∪C

1 − PA†∪C†
1

)
is

non-negative, which will conclude the proof.

By Lemma B.5, we have

PA†∪C†

1 ≤ PB†∪C†

1

Therefore, we must have |A† ∪ C†| < η; Otherwise, for the above inequality

to hold, we must have |A† ∪ C†| ≥ |B† ∪ C†|, thus |A† ∪ C†| ≥ 2η + 1, which

was previously shown to be impossible. Now, since |A† ∪ C†| < η, and A ∪

C = A† ∪ C† ∪ {pa}, the term
(
PA∪C

1 − PA†∪C†
1

)
is only non-negative when

|A† ∪ C†| = ⌊η⌋, and P |A†∪C†|
1 = ρ(|A† ∪ C†|) = P∗

1 . This implies

P |A†∪C†|
1 > P |B†∪C†|

1 ,
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which is not possible by Lemma B.5.
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Appendix C

Proof of Theorem 3.3

The random variable YC is the sum of random variables yi,C, 1 ≤ i ≤ N , where

yi,C is equal to the weight of the packet recovered at user ui (equal to zero

if no packet is recovered). Let µC = E[YC]. Recall that in constructing the

coded packet, we select the |C| packets with the largest weights. Therefore,

µC = N · PC · w̄|C|, where w̄j denotes the average of the j largest weights. Note

that w̄j ≥ w̄M = w̄, for every 1 ≤ j ≤M . Thus, µC ≥ N · PC · w̄, hence

Gw
st = max

C∈P
µC

≥ N · p∗ · w̄.
(C.1)

By Hoeffding’s inequality we get

P (YC ≥ (1 + δ)µC) ≤ e−2δ2µ2
C/N (C.2)

96



Recall that Gw
st = maxC∈P µC. Therefore, by (C.2), we get

P (YC ≥ (1 + δ)Gw
st) = P

(
YC ≥ (1 + δ) · G

w
st

µC
· µC

)

= P

⎛⎜⎜⎝YC ≥ (1 + δ · G
w
st

µC  
δ′

) · µC

⎞⎟⎟⎠
(C.2)

≤ e−2δ′2µ2
C/N = e−2(δGw

st)
2/N

(C.1)

≤ e−2(δ·N ·p∗·w̄)2/N ≤ ϵ

M
,

where the last inequality is because N ≥
(

0.5 ln 2 ln 1
ϵ

(p∗·w̄·δ)2

)
·M . The total number

of subsets of P is 2M . Therefore, by a union bound, the probability that

YC > (1 + δ)Gw
st for at least one set C is at most

2M · ϵ

2M
= ϵ.

Thus

Gw
ut = max

C⊆P
YC

≤ (1 + δ)Gst.

with probability at least 1− ϵ.
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Appendix D

Proof of Theorem 3.4

We have

E[yi,C|E1, E2, . . . , En] = E[yi,C|Ei],

because the random variable yi,C is independent of the events Ej, j ̸= i. Let ϵi

denote the erasure rate of user ui. We have

E[yi,C|Ei]

=

∫ 1

0

(E[yi,C|Ei, ϵi = x])Pr(ϵi = x|Ei)dx

=

∫ 1

0

(
|C| ·W|C|,|C| ·

(
M−|C|

hi−|C|+1

)(
M
hi

) · (1− x)

)
Pr(ϵi = x|Ei)dx

=

∫ 1

0

(
W|C|,|C| ·

(
hi

|C|−1

)
(M − hi)(

M
|C|

) · (1− x)

)
Pr(ϵi = x|Ei)dx

= W|C|,|C| ·

[((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
·
∫ 1

0

(1− x)Pr(ϵi = x|Ei)dx

]

= W|C|,|C| ·

[((
hi

|C|−1

)
(M − hi)(
M
|C|

) )
· hi + 1

M + 2

]
,

where the last equality is because

∫ 1

0

(1− x)Pr(ϵi = x|Ei)dx =
hi + 1

M + 2
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as shown in the proof of Theorem 3.2. Consequently,

E[XC|E1, E2, . . .]

=
n∑

i=1

E[yi,C|E1, E2, . . . , En] =
n∑

i=1

E[yi,C|Ei]

=
n∑

i=1

W|C|,|C| ·

((
hi

|C|−1

)
(M − hi)(
M
|C|

) · hi + 1

M + 2

)
= W|C|,|C| ·

n∑
i=1

((
hi

|C|−1

)
(M − hi)(
M
|C|

) · hi + 1

M + 2

)

= W|C|,|C| ·
M∑
j=0

((
j

|C|−1

)
(M − j)(
M
|C|

) · j + 1

M + 2

)
· dj

= W|C|,|C| ·
M∑
j=0

Π|C|,j · dj = W|C|,|C| · (Π×D)|C| ,= (W ×Π×D)|C| .
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