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ABSTRACT

Determining an appropriate population size is very important in genetic algorithms
and is closely related to the principle of implicit parallelism. In this report, the problem
of bounding the population size is formulated as that of minimization of sampling errors.
Two sampling error criteria are proposed for bounding the population size in genetic
algorithms. A theorem on the sampling error of genetic algorithms over a general class of
subsets in the individual space is established. Applying the result to the class of schemata,
we derive two kinds of lower bounds on the population size and present the principle of
implicit parallelism from a new perspective. It is further shown that the lower bound can
also result in the monotonic convergence of the correct schema. The lower bounds also
depict how the necessary population size is related to the mutation probability and some
population statistics. In particular, our results give an explanation to an experimental

observation of Schaffer et al [21].
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[. Introduction

Genetic algorithms (GAs) are robust and efficient search techniques inspired by Dar-
win’s theory of natural evolution [1], and have been applied with success to a wide vari-
ety of function optimization, machine learning, and engineering control problems [1]-[5].
Apart from the large volumes of experimental work in the literature, much progress has
been made recently in the theoretical investigation of GAs [1], [5]-[20]. Among the various
analytic approaches, schema analysis, introduced first by Holland [1] and further devel-
oped by the others [11]-[16], is still one of the most powerful methods to describe the

actual behavior of GAs.

From his schema theorem, Holland derived the famous principle of implicit parallelism
by counting the number of schemata that can be effectively processed. Holland’s result on
implicit parallelism is usually quoted in such a way that the number of schemata processed
effectively is proportional to the cube of the population size N, i.e., O(N3). This result,
although it sounds attractive, is misleading. In fact, there is a gap in Holland’s original
derivation, as has been noted by Goldberg [17] and Bertoni and Dorigo [16]. A closer
look at the original derivation shows that the O(N?) estimation is valid only when the
population size N and the encoding length [ have the relation N = ¢ - 2!. Bertoni and
Dorigo in [16] had further demonstrated that different orders of estimations could be
obtained under different assumptions on the relations between N and [. Since implicit
parallelism is widely recognized as the most significant feature of GAs, the result of Bertoni
and Dorigo [16] raises the following serious question on the reasonableness of the current
Holland-type interpretation of GAs’ implicit parallelism: does there exist a universal order

of estimation on implicit parallelism that is valid uniformly for all population sizes?



Another important problem closely related to implicit parallelism is that of bounding
the population size. There is significant empirical evidence showing that the larger the
population size, the better the ultimate convergence quality of GAs [8],[17],[21],[22]. On
the other hand, it is well-accepted that a large population will result in both slow con-
vergence and extra computational effort [17], [22], [23]. There has been some theoretical
work dealing with the problem of bounding the population size. To determine the appro-
priate population size, the process of selection is usually viewed as a game played among
a class of competing schemata that forms a partition of the individual space [1], [14],
[17]-[20]. Goldberg et al [18],[19], derived population-sizing equations by controlling the
error probability on a single trial to be under a pre-specified level. There are, however,

some problems with Goldberg’s population-sizing equations.

(1) The equations are derived for a pre-specified class of competing schemata, and
different classes of competing schemata will result in different equations. The problem is
which class of competing schemata one should choose when determining the population

size.

(2) The equations require some knowledge about the tasks to be solved. Goldberg et
al [18], [19], suggest using the online population measurements to “estimate” the required
knowledge. This approach, however, leaves us in an embarrassing situation, since from
the statistics point of view, we have to bound the population size for the second time to

make sure that these estimates are good approximations to the required knowledge.

(3) The equations only consider the first generation of the run under the belief that if

decisions are correct in the first generation, then GAs will converge to the right building



blocks.

The last problem was recently tackled by Harik, et al. [20], where the convergence
quality of GAs (in fact, the convergence of a particular class of competing schema) is also
taken into account when establishing the population size equations. Under the assumption
of mutual independence between schemata, a population size is derived from an expression

of absorbing probability of the correct schemata.

Besides minimizing the sampling errors, the interaction among the control parameters
of GAs must also be considered when determining the population size. Schaffer et al
[21] systematically studied the combined influences of control parameters on the on-line
performance of GAs by a series of elaborate experiments. An important observation made
in their experiments is that the population size and the mutation probability are in inverse
relation for the optimal on-line performance on the class of test functions they used. To

the best of our knowledge, there is so far no theoretical result to explain this observation.

In this paper, we will deal with the above mentioned problems of implicit parallelism
and the population size in a unified approach. Using tools from the theory of uniform
strong law of large numbers for random variables, we study the sampling behavior of GAs
in details and establish lower bounds on the population size under certain sampling error
criteria. Our first lower bound given under the criterion that minimizes the absolute sam-
pling error uniformly over all schemata, is a linear function of the problem size (encoding
length) [. The lower bound is independent of the fitness function and the current state of
the population, and hence is universal. Based on the first lower bound, we can interpret

the implicit parallelism of GAs from a new perspective, i.e.,



To effectively process all the schemata whose number increases exponentially
with the problem size, the population size for GAs only needs to increase
linearly with the problem size.

This interpretation avoids the inconsistency in Holland-type interpretations of implicit

parallelism of GAs.

We obtain our second lower bound under a criterion that minimizes the relative sam-
pling error uniformly over the schemata of order one. The second lower bound depends on
the mutation probability and some population statistics. This is contrary to Goldberg’s
population-sizing equations that depend on the mean fitness and the fitness variances of
the schemata, which can only be approximated by the population statistics. Our second
lower bound also explains theoretically the experimental observation of Schaffer et al [21]
that the population size and the mutation probability have an inverse relation for the

optimal online performance of GAs.

By virtue of the uniform strong law of large numbers, the lower bound result is univer-
sal in that it does not depend on particular population states and is valid for all schema.
Hence, for GAs with the population size larger than the lower bound, sampling errors are
controlled at a specific level throughout the run of GAs. We shall use this observation, in

conjunction with schema theorem, to establish some results on the convergence of GAs.

The remainder of the paper is organized as follows. In section II, we first introduce
some notation and concepts, and then propose the sampling error criteria for sizing the
population. Section IIT studies the GA’s sampling behavior over a general class of subsets
of the individual space and uses the result to a special class of subsets—schemata to

establish lower bounds on the population size. Under certain assumptions on the initial



population and the accuracy parameters, a convergence result for the fittest schema is
also derived. The lower bound results are then used to present our new interpretation of
implicit parallelism, and to explain the empirical observation made by Schaffer et al [21].

In section V, we conclude and present some directions for future work.

II. Genetic Algorithms, Sampling Distributions and Sampling Error
Criteria for the Population Size

We consider GAs with binary string representations. Let N be the population size
and [ be the encoding length (problem size). Each individual in a population corresponds
to an element of the space S = {0,1}!, which is called the individual space. Denote the
population space by S = S x S x --- x S. For the sake of convenience, we write a
population )})E SN in both the vector and matrix forms as follows:

T11 T12...771]

)?: (Xl Xo, ... XN)T — X1 To2...Tyg

IN1 TN2.--T N

where X; € S is the ith individual of )_(>, while z;; is the jth component of Xj.

A schema [1] £ is a hyperspace in the individual space S. The order o(£) and the
defining length 6(L) of a schema L are defined respectively to be the number of fixed
positions in the schema and the distance between the first and last defining positions [2].
For a population )_(>€ SN let N(}?,ﬁ) denote the number of the individuals of )_() that

are contained in L.



We consider the following abstract genetic algorithm. Following Leung, Gao, and Xu

[8], we call it the Canonical genetic algorithm (CGA).

CGA

Step 1: Set k = 0 and generate initial population X (0);

Step 2: Independently select N pairs of individuals from the current popu-
lation for reproduction;

Step 3: Independently perform crossover on the N selected pairs of individ-
uals to generate N new intermediate individuals;

Step 4: Independently mutate the N intermediate individuals to get the
—
next generation X (k+1) = (Xy(k+1), -, Xny(k+1));

Step 5: Stop if some stopping criterion is met. Else, set ¥ = k + 1 and go
to Step 2.
From the mathematical point of view, genetic operators are random mappings between
the spaces S, S2, and S. They are the analogous idealized abstractions of some of the
genetic mechanisms in the evolution of natural organisms. To facilitate our later analysis,

we present in the following the probabilistic definitions of several basic operators.

(a) The proportional selection operator, T, : S — S? | selects a couple of parents
_).
from the given population for reproduction. Given the population X, the probability of

selecting (X;, X;) € S? as the parents is

P{Ts()?):(X,-,Xj)}:Zfix;)(X)-zf(j(J{EX), 1<i<N, 1<j<N. (1)

(b) The crossover operator, T, : S? — S generates an individual from the selected

7



parents. Given the parent X; = (x;1, -+ -, zy), ¢ = 1,2, the probability for the one-point

crossover operator to generate an individual Y is

k-pc 1 1
P{T.((X1, X2)) :y}:{ (1- po) + ke, iff§i§1 ' 2

where 0 < p. < 1 is the so-called crossover probability, k£ is the number of crossover points

at which the crossover of X; and X, can generate Y.

Remark 2.1: Throughout the present paper, we only consider the 2-parents-1-child
crossover operator, i.e., crossing two parents will always generate only one child (which
we assume to be the first offspring). Such a scheme has also been adopted by many other
theoretical works on GAs [1]. This is because only with 2-parents-1-child crossover, the
offspring in the next generation are conditionally independent and identically distributed.

This is crucial in the derivation of our results from the strong law of large numbers.

Remark 2.2: Though only the one-point crossover operator is defined in the above, all
the results in this paper are valid for any kind of crossover operators such as multi-point

crossover, uniform crossover, etc.

(c) The mutation operator, T,,, : S — S, operates on the individual by independently

perturbing each bit string in a probabilistic manner and can be specified as follows:

P{T,(X) =Y} =piy V(1= pa) Y (3)

Definition 2.1 Let {)_() (k),k > 1} be the sequence of populations of GAs. Denote by

PIX, V)2 PIX (k+1) =Y | X (k) =X}



_).
the conditional probability of the event that the population of the next generation is Y
given the current population X (k) = X. The (conditional) sampling distribution of the

CGA is defined to be

p(X,Y) 2 P{TW(T.(To(X (k) = Y| X (k) =X}, Y €S.

Remark 2.3: From the description of CGA, it is clear that the individuals X;(k +
1), 1 < k < N, are conditionally independent and identically distributed given the

N

current population )?' (k) =X. Hence, we have for each 1 <i < N,
— — —
P{Xi(k+1)=Y| X (k) =X} = p(X,Y).

_).
That is, p(X,Y") is the common conditional distribution of the individuals in generation

kE+1.

We now begin to derive our sampling error criteria for the population size. To get
some motivations, let us first recall Holland’s schema theorem. Let f : S — R be the
fitness function, p. be the crossover probability, and p,, be the mutation probability. For
any subset C in the individual space S, let N()_()' (k),C) be the number of individuals in C

and

p(X (k),€) 2 Y P(X (k),Y) (4)

YeC

be the sampling probability of C in the next generation. The schema theorem states that
small, low-order schemata with above-average performance are allocated exponentially

increasing trials in the next generation [2]. That is, for any schema £, we have

EIN(X (k+1),L£)] > N(X (k),L)-



where E[-] denotes the mathematical expectation, 7()_() (k)) is the average fitness of X (k),

- — —
and f(X (k), L) is the average fitness of the individuals of £ in X (k), .

Consider the random variable N()_() (k+1),L). Since given the current population
)?' (k), the individuals, X;(k + 1), 1 <i < N, are conditionally independent and have a
common distribution p(;( (k),-), we see that N()? (k+1), £) has the binomial distribution
with the parameters N and

p(X (k),£) = Y P(X (k).Y). (6)

YeLl

The sampling distribution p()_() (k),-) comprises all the relevant information about the
current environment (i.e., the structure and the fitness information of the current popu-
lation) that can be used by the CGA to guide the future search. Ideally, the algorithm
should sample the regions of the individual space according to the proportion suggested

by p()_() (k),-). Unfortunately, it is not the case if the population size N is finite. Because

—

of sampling error (or noise), the relative frequency W of the samples in the next

generation may deviate considerably from the probability p( X (k), £). This deviation can

cause the performance of the algorithm to deteriorate.

By the classical strong law of large numbers, for any €, > 0, there exists an N (¢, d, L, ;(

(k)) such that for all N > N(e,d, £, X (k)),
p{%N(} (k+1),L) - p(X (k), £)] > e} <. (7)

This means that for a particular schema and a population )?' (k), the probability that the
relative frequency has a large deviation from p()_(> (k), L) may be arbitrarily small if the

population size is sufficiently large. We are, however, not just content with this. Because

10



we do not know a priori the global optimal solution and because the sample distribution
p()_() (k), ) depends on the structure of the population X (k), we would like (7) to be valid

uniformly for all schemata (or at least a class of schemata) and all population states.

Based on these considerations, we propose the following two types of sampling error
criteria for bounding the population size. The basic idea underlying our criteria is to find
effective population sizes so that, with probability close to 1, the deviation (or the relative
deviation) of the relative sample frequencies from the true sampling probabilities is small

uniformly over a class of schemata.

Definition 2.2 Let € and 0 be small positive scalars, called respectively the accuracy
parameter and the confidence parameter. A population size N is said to be weakly
(€,6, m)-effective if for any k£ > 1 and X (k) € SN, we have

{Ksup NG (1), )~ (X (), )] > } <5 ®)

O

where the sup is taken over all the schemata £ with the order 1 < o(L) < m.

Definition 2.3 Let € and § be small positive scalars, called respectively the accuracy
parameter and the confidence parameter. A population size N is said to be strongly
(¢,d, m)-effective if for any k£ > 1 and X (k) € SN, we have
(k+ 1) z)—p(}(k>,ﬁ>\26}<5, )

su
{1<o b ,/ ‘N

where the sup is taken over all the schemata £ with the order 1 < o(L) < m.

11



ITI. Lower Bounds on the Population Size and a New Perspective of
Implicit Parallelism

In this section, we establish lower bounds on the effective population size by using
tools from the theory of uniform strong law of large numbers [24],[25]. We first present a
more general theorem on the deviation of the relative sampling frequencies from the true

sampling probabilities.

Theorem 3.1 Let C be a class of subsets in the individual space with the cardinality

|C|. For any 0 < €,d < 1, if the population size N satisfies

2 2
N > 6—2(ln|C| +1n3), (10)
then we have
{sup ‘— (k+1),C) — p()? (k),C)‘ > e} <4, (11)
ceC

Proof. For a fixed C € C, let
§i = Ie(Xi(k+1)), 1<i<N,

where I¢(+) is the indicator function of C. Since X;(k + 1), 1 < i < N, are condition-
ally independent (given X (k)), and have the common distribution p()? (k),+), we see
that (§,1 < i < N) are conditionally independent Bernoulli random variables with the

common success probability p()_(> (k),C). It follows that for each 1 <i < N,
0<&<Land 0<Eg)=p(X (),€) < L.

Recall that N()_(> (k+1),C) is the number of the individuals of X (k+ 1) contained in C,
S0

1 —
NN(X (k+1),C Z&

12



By Hoeffding’s inequality (See Lemma A.1 in Appendix A), we obtain

P{LNGE 010,00 5(F 00,0 > )
)
>N€}

Note that the right hand side of the above inequality is independent of C. Now, suppose

:P{%i@—p(i (1), €)

that N is a population size with

2 2
N > N(e,6,1) 2 S(In[C[+1In ).
€

4]
we get
1 — —
P {sup SN (k41),0) (¥ (1),0)] > }
cec|N
2
< Y 2exp(—0)
ceC 2

Ne?

<4

This completes the proof. Q.E.D.

Taking C to be the class of schemata, we obtain the following corollary which gives a

lower bound on the weakly (¢, §)-effective population size.

Corollary 3.1 Let 0 < ¢€,0 <1 be the given accuracy and confidence parameters, and
[ be the encoding length (problem size). Then, any population size satisfying

2
2

2
- (l-In3+1n-), (12)

N > N(e,6,1) £ .

13



is weakly (e, 9, [)-effective.

Proof. If C is the set of all the schemata in the individual space, then its cardinality

is 3'. The corollary follows. Q.E.D.

From corollary 3.1, we can see that the lower bound N (¢, d,[) on the effective popula-
tion size depends only on the problem size [ and the pre-specified accuracy and confidence
parameters (€,0). Thus the lower bound is valid for any problem to be solved and any
population state, and hence is universal. Moreover, it can be observed that for fixed
(€,9), the lower bound N(e, d,1) is a linear function of the problem size . On the other
hand, simple calculation shows that there are 3! schemata in the individual space with
the encoding length [. We therefore obtain the following corollary which depicts GAs’

implicit parallelism from a new perspective.

Corollary 3.2 To process all the schemata whose number increases exponentially with
the problem size [, the effective population size N only needs to increase linearly with the

problem size. That is, N = O(1).

The universal lower bound presented in Corollary 3.1 is, however, too conservative to
be of practical use, particularly when the accuracy parameter € is very small. In fact,
N(e, 0,1) is a worst-case lower bound in the sense that the criterion (8) must be fulfilled
for all schemata. In practice, we may only be concerned with a special class of schemata
such as the schemata of order 1. In this case, an application of theorem 3.1 yields a lower

bound for the population size as
2 2
N(e,0,1) = =(Inl+In=
(67 ) ) 62( ni+in 5)7
which would be more reasonable. Moreover, as will be shown in corollary 3.3, the accuracy

14



parameter € need not be extremely small to obtain some kinds of monotonic convergence

results of GAs if the signal difference between competing schemata is significant.

Another advantage of the universality of our lower bound is that it can assure the
ultimate convergence of the correct schema. In the following we will show that under
certain assumptions on the initial population and the accuracy parameter e, the number
of individuals in the fittest schema will monotonously increase during the run of a GA with
probability close to 1. To facilitate the presentation, let us rewrite the schema theorem

as
— —

EIN(X (k+1),L)] = N(X (k),£) - a(L) - d (13)

where a(L) is the fitness ratio of the schema L relative to the average fitness and d is the

disruptive effect of crossover and mutation.

Corollary 3.3 Consider the schema L of order m with the highest fitness ratio
among the same class of competing schemata(i.e., those schemata with the same order
and defining positions). Suppose that the initial population is uniformly distributed and

the accuracy parameter e satisfies

1
€< 2—m(a(£)d —1). (14)
If the population size is weakly (e, 0, [)-effective, then with probability 1 — ¢, we have
— —
N(X (k+1),L) > N(X (k),L), Yk>1 (15)
ﬁ.
provided that N(X (k),L) < N.
Proof. If the population size N is (€, 0, [)-effective, then with probability 1 — ¢,

%N()_() (k4 1), L) — p(X (), )] < e

15



for all k£ > 1. It follows that
— —
N(X (k+1),£) — BIN(X (k+1),L£)]| < eN.
So according to (13) and the assumption (14), we have

N(X (k+1)> N(X (k),£) - a(L) - d— eN

= N(X (k), L) + N(X (k), £)(a(L)-d — 1) — eN
> N(X (k), £) + N(X (k), £)(a(L) - d— 1) — 2im (@(L)-d—1).  (16)
We now show that
N(X (k), L) > Q%N, vk > 1. (17)

By assumption, for the initial population, we have N()? (1),L£) > 2%,1]\7. Suppose that
N(X (k),£) > %N, then by (16),

1

N(X (k+1),£) > N(X (k),£) > o

N

By method of induction, (17) follows. This, together with (16), proves the corollary.
Q.E.D.

There are, however, some problems with the absolute sample error criteria in definition
2.2. For example, let )_(>' be a population and le. be a schema of order one with the defining
gene position j and the defining allele 1. Suppose p()?', ,C}) is very small so that, with a
relatively large probability,

1 = 1y
NN(X (k + 1),£j) =0, (18)

i.e., the allele 1 at gene position j is lost in the next generation. Since allele loss is related

to the problem of premature convergence ([8]), a population size satisfying (18) should

16



not be viewed as a good choice. However, according to the absolute sample error criteria,

such a population size may be weakly (¢, d, [)-effective since

%N(f{ (k+1),£}) = p(X (), L})

< €.

To overcome the above problem with our lower bound on the population size, we will
now establish another lower bound under the relative sampling error criteria (Definition
2.3). The result will also give a theoretical explanation to the observation made by Schaffer

et al [21]. To begin with, let us first introduce some notation and preliminary results.

Definition 3.1 Let f : S — R™ be the fitness function. Given a population )_():
(X1, Xn), Xi = (zi1,+-+,29)T, 1 <4 < N, for any positive integer 1 < j < [, let
I! and IJ(-’ be the sets of indices of the individuals in )?' that have one or zero at the jth

J

component (gene position) respectively, i.e.,
II={1<i<Njzj; =1}, I]={1<i< N;z;; =0}.

Write F(X) = XN, £(X,) and F/(X) = ¥ f(X,). We call

0y(%) = 2 g by = B
Py Py

the relative fitness of the one order schema £} and L respectively.

Lemma 3.1 Let ﬁjl. be the one order schema with the defining gene position j and let

p()_(), -) be the sampling distribution given the current population )_(>' . Then,
— — —
P(X, £5) = a;(X) + (1 = 2¢;(X))Pm,

where p,, is the mutation probability.

17



Proof: Similar to the proof of Theorem 3 in [8]. Q.E.D.

We now present a problem-dependent lower bound on the population size under the

relative sample error criteria in Definition 2.3.

Theorem 3.2 Let 0 < €,6 < 1 be the given accuracy and confidence parameters, [ be

the encoding length (problem size), p,, be the mutation probability, and f : S — R* be

— —
the fitness function. For a given population X, let p = 1r£111<1l <% — |3 —p(X,E})|> > 0
<<

and assume that p > 0. Then, any population size satisfying

1 = 1 4
NEN(Gaéalaiaf)épi_F _(lnl+ln_)? (19)
2p €2 )

is strongly (¢, 6, 1)-effective, that is, for each £ > 1 and )_() (k) :)_5, we have

"l 2 e

_>.
Proof. To simplify the presentation, for a given population X, we write

(k+1),L£) — p(X (k),ﬁ)‘z.s} <4 (20)

=p(X. L) and pf =p(X,LD).
Foreach 1 <7< N and 1 < j </, define
5;' =1 (Xi(k +1)).

Then, for each 7, (5}, 1 < i < N) are conditionally independent given )_(> (k) :)_5, and

have the common Bernoulli distribution with the mean E[£}] = p} and the variance
2 1 1
0; =D~ (1 _pj)'
For each j, it follows from Bernstein’s inequality (See Lemma A.2 in Appendix A) that

e )

(k+1), £) p]

18



_p{f

> (& —ph)

=1

> Nepjl-}

—L1Ne2pt

(1 —pj) + 3¢

Similarly, we have
1 71 0 1
Vi
—_LNe2p0
< 2exp [%}7]1] (22)
(1—p7) + 3¢

Now, suppose that the population size N satisfies (19), we get from (21) and (22) that,

(k+1),L) — p(X (k),ﬁ)‘ > e}

—p} >6}

Ao
<3 r{plEva o

+1), L)

I 1 =
+ZP{—0 —N(X (k+1),£5) —p)| > e}
j=1 p;
—1Ne2p
< 4lexp [2_—61911
(1-Dp)+ 3¢
< 6. (23)

So, N is a strongly (e, d, 1)-effective population size. The theorem is proved. Q.E.D.

Remark 3.1: In theorem 3.2, we have made an assumption that p > 0 which is
equivalent to 0 < p()?,ﬂjl-) < 1forall 1 <j <. If there is a schema (say L) with
p()?,ﬁ}) = 0, we could simply exclude it from consideration when taking sup in (20).
This is reasonable because if p()_(),ﬁ}) = 0, the sampling behavior in the schema E}
becomes deterministic and hence no sampling error exists. In practice, we could even

only consider those schemata £; such that |p()?, L})— 3| is smaller than a given threshold

19



o (say 0.1). In this case, the P in the lower bound (19) is greater than 1 — o so that the

resulting lower bound is more practical.

We close this section by discussing the meanings of our lower bound in Theorem 3.2.

Consider the term

— . 1 a1
p= nin (5~ Ip(X, £;) = 50)
By Lemma 3.1, we have
- 1 - 1 - 1
p(X,£5) = 5| = 1aj(X) = 5 = 2(¢5(X) = 5)pm|
- 1
= Jal(X) = 5111 — 20,
- 1 1
= 20a}(X) — 2| pm — 2|
(%)~ 51 o —

First, for a fixed mutation probability p,,, we see that the lower bound N (e, d, [, )_(>, f)
in Theorem 3.2 is an increasing function of |aj — 1|. This implies that the larger the
deviation of a} from %, the larger the necessary population size needed for GAs to have
small sampling error. At this point, our lower bound is consistent with one of our previous
results in [8], which states that the probability for gene loss to occur at the gene position

3]

.. . 1
j increases with |a; — 5.

1], we see that the

Second, for fixed ajl-’s, since p is a decreasing function of |p, — 3

L], This means that for

necessary population size needed for GAs increases with |p, — 3

pm € (0, %), the smaller the mutation probability, the larger the population size necessary
for GAs to have good performance. Therefore, our result in Theorem 3.2 supports the

experimental observation of Schaffer et al [21] that, to achieve good on-line performance,
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the population size is in an inverse relation to the mutation probability. Formally, we

have the following Corollary.

Corollary 3.4 Assume that 0 < p,, < % and adopt the notations in Theorem 3.2.

Then, any population size N with

l+ie—pn 1 4
NZN(E,é,pm):%-g(lnl—i—ln—), (24)

J

is strongly (¢, 6, 1)-effective.

Proof. The Corollary follows from Theorem 3.2 and the fact that for each 7,

1
2

1

- (_ _pM) = Pm-

| >
2

|p(X7 ‘C;) -

DN | —
N =

IV. Conclusion and Future Directions

In this paper, we have proposed two types of sampling error criteria for bounding
the population size in genetic algorithms. Under the absolute sampling error criteria,
a universal (problem-independent) lower bound on the population size was established.
Based on the universal lower bound, the principle of implicit parallelism was interpreted
from a new perspective. We have also established a problem-dependent lower bound on
the population size which depicts how the necessary population size is related to the
mutation probability and some population statistics. In particular, our result explains an

experimental observation of Schaffer et al [21].

The theory of uniform strong law of large numbers has found many applications in the
fields of statistics and machine learning. It is the basis of the Probably Approximately

Correct (PAC) model of learning [25]. The work presented in this paper opens the door to
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using this powerful theory to analyze the behavior of genetic algorithms. This is perhaps

not too surprising since the process of evolution is in essence a learning process.

In the future, we hope to sharpen the lower bounds on the population size so that they
can be used in the practice of GAs. For example, using the tools developed by Haussler
[25], it is possible to replace the term €? in the lower bounds (10), (12), and (19) by €. In
this respect, any improvement of the Hoeffding’s bounds such as those in [29] will be of
help. Another promising direction for further research is to generalize the analyses in this
paper to obtain lower bounds under criteria that minimize the sampling error uniformly

over richer structures other than schemata, such as Radcliffe’s formae [12].

It is also possible to use the ideas to bound the population sizes in real-coded genetic
algorithms[27] and evolution strategies [28]. In such cases, the reasonable criteria should
be those that minimize the sampling error uniformly over some kinds of structures such
as the class of open sets, the class of rectangles, and the interval-schemata [27]. Since the
number of these structures is infinite, more powerful tools such as Vapnik-Chervonenkis
dimension(VC dimension) and the metric entropy [25], [26], may play an important role

in the investigation.
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Appendices

Appendix A. Two useful probabilistic inequalities

In the following, we present two probabilistic inequalities that are used in the proof of

the main theorem. We refer the reader to Polland [24] for the detailed proof.

Lemma A.1(Hoeffding’s Inequality) Let &, &, -+, &, be independent random variables

with zero means and bounded ranges: a; < & < b;. Then, for each € > 0,

—2¢2

E(bi - ai)2

=1

P{l&i+ -+ &l > e} < 2exp

Lemma A.2(Bernstein’s Inequality) Let &, &, -+, &, be independent random variables
with zero means and bounded ranges: || < M. Write o for the variance of & and
suppose V' > 0% + - -- + ¢2. Then, for each ¢ > 0,

—1le2
P nl > <9 — 2 |
flo+-+ 62 d < 20w |

Wl
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