

Stochastic Computational Models for Gene Regulatory Networks and Dynamic Fault Tree

Analysis

by

Peican Zhu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Department of Electrical and Computer Engineering

University of Alberta

© Peican Zhu, 2015

II

Abstract

Originally proposed in the 1960s, stochastic computation uses random binary bit

streams to encode signal probabilities. Stochastic computation enables the

implementation of basic arithmetic functions using simple logic elements. Here, the

application of stochastic computation is extended to the domain of gene network models

and the fault-tree analysis of system reliability.

Initially, context-sensitive stochastic Boolean networks (CSSBNs) are developed to

model the effect of context sensitivity in a genetic network. A CSSBN allows for a

tunable tradeoff between accuracy and efficiency in a simulation. Studies of a simple

p53-Mdm2 network reveal that random gene perturbation has a greater effect on the

steady state distribution (SSD) compared to context switching activities. Secondly,

stochastic multiple-valued networks (SMNs) are investigated to evaluate the effect of

noise in a WNT5A network. Lastly, asynchronous stochastic Boolean networks (ASBNs)

are proposed for investigating various asynchronous state updating strategies in a gene

regulatory network (GRN). The dynamic behavior of a T helper network is investigated

and the SSDs found by using ASBNs show the robustness of attractors of the network. In

a long term, these results may help to accelerate drug discovery and develop effective

drug intervention strategies for some genetic diseases.

III

As another application of stochastic computation, the reliability analysis of dynamic

fault trees (DFTs) is further pursued. Stochastic computational models are proposed for

the priority AND (PAND) gate, the spare gate and probabilistic common cause failures

(PCCFs). Subsequently, a phased-mission system (PMS) is analyzed by using a DFT to

model each phase’s failure conditions. The accuracy of a stochastic analysis increases

with the length of random binary bit streams in stochastic computation. In addition,

non-exponential failure distributions and repeated events are readily handled by the

stochastic computational approach. The accuracy, efficiency and scalability of the

stochastic approach are demonstrated by several case studies of DFT analysis.

IV

Preface

This dissertation makes original contributions in the areas of gene network models

and dynamic fault tree analysis. Specifically, stochastic computational models have been

developed for a fast analysis of genetic networks and system reliability.

The context sensitivity in a gene network is first considered in the modeling of

context-sensitive stochastic Boolean networks (CSSBNs). Chapter 3 is devoted to this

work and has been published as: P. Zhu, J. Liang, and J. Han, “Gene Perturbation and

Intervention in Context-Sensitive Stochastic Boolean Networks,” BMC Systems Biology,

8-60, 2014. I fully developed the initial stochastic models proposed by J. Liang, carried

out the network studies, performed the statistical analysis, and drafted the manuscript. Dr.

J. Han participated in the network studies, supervised the research, and revised the

manuscript.

Stochastic multiple-valued networks (SMNs) are then developed to model the

theoretical probabilistic multiple-valued networks (PMNs). The work is presented in

Chapter 4 and has been published as: P. Zhu, and J. Han, “Stochastic Multiple-Valued

Gene Networks,” IEEE Transactions on Biomedical Circuits and Systems, 8(1): 42-53,

2014. I developed the stochastic models, carried out the network studies, performed the

statistical analysis and drafted the manuscript. Dr. J. Han participated in the studies,

revised the manuscript, and helped in the entire process.

In Chapter 5, asynchronous stochastic Boolean networks (ASBNs) are presented to

consider the stochasticity and asynchronicity in the analysis of gene networks. This work

has been published as: P. Zhu, and J. Han, “Asynchronous Stochastic Boolean Networks

as Gene Network Models,” Journal of Computational Biology, 21(10): 760-770, 2014. I

developed the asynchronous stochastic models, carried out the GRN studies, performed

the statistical analysis and drafted the manuscript. Dr. J. Han participated in discussions

and revised the manuscript.

V

In the analysis of dynamic fault trees (DFTs), stochastic computational models are

first proposed for priority AND (PAND) gate, as presented in Chapter 6. This work has

been published as: P. Zhu, J. Han, L. Liu, and M. J. Zuo, “A Stochastic Approach for the

Analysis of Fault Trees with Priority AND Gates,” IEEE Transactions on Reliability,

63(2): 480-494, 2014. I developed the stochastic models for the PAND gate, carried out

the case studies, and drafted the manuscript. Dr. J. Han revised the manuscript with the

help of Dr. L. Liu and Dr. M. J. Zuo. All authors participated in the discussions.

Next, stochastic computational models are developed for a DFT analysis with spare

gates and probabilistic common cause failures (PCCFs). This work is presented in

Chapter 7 and has been published as: P. Zhu, J. Han, L. Liu, and F. Lombardi, “A

Stochastic Approach for the Analysis of Dynamic Fault Trees with Spare Gates under

Probabilistic Common Cause Failures,” IEEE Transactions on Reliability, PP(99): 1-15,

2015. I developed the stochastic models for spare gates, carried out the statistical analysis

and drafted the manuscript. Dr. J. Han revised the manuscript with the help of Dr. L. Liu

and Dr. F. Lombardi. All authors participated in the discussions.

Finally, a phased-mission system (PMS) consisting of 𝐻 phases is analyzed by 𝐻

fault trees with each of them modeling the failure conditions of a phase. This work is

presented in Chapter 8 and has been submitted for publication in IEEE Transactions on

Reliability as: P. Zhu, J. Han, L. Liu, and F. Lombardi, “Reliability Evaluation of

Phased-Mission Systems using Stochastic Computation.” I proposed the stochastic

models for a general PMS, carried out the statistical analysis and prepared the draft

manuscript. Dr. J. Han, Dr. L. Liu, and Dr. F. Lombardi revised the manuscript and

participated in the discussions.

VI

To my family and friends

VII

Acknowledgements

This dissertation could not have been completed without the help of many people.

First of all, I greatly appreciate my supervisor, Dr. Jie Han. During my four years’ Ph.D.

study, he has always been patient to provide guidance in the research, especially in

determining the research topics and discussions of the research problems. He has also

been very helpful to revise and edit the papers by providing valuable comments. He has

encouraged me to communicate with other researchers by providing various means and

support. It was my pleasure to work with him; many thanks to his insights and valuable

discussion, both for my personal and academic development.

Then I would like to give special thanks to Dr. Guohui Lin and Dr. Lukasz Kurgan,

my supervisory committee members, as well as, Dr. Jie Chen, Dr. Hasan Uludag, and Dr.

Jie Han, the candidacy and thesis committee members. Their suggestions and critical

comments helped me to improve the dissertation. Many thanks to Dr. Fangxiang Wu for

being the external committee member.

Furthermore, I am deeply thankful to all the co-authors of my publications:

Jinghang Liang, Hao Chen, Zhixi Yang, Dr. Leibo Liu, Dr. Yangming Guo, Dr. Mingjian

Zuo, Dr. Hamidreza Montazeri Aliabadi, and Dr. Fabrizio Lombardi. Without their

insight, help and support, the manuscripts could not have been completed or published.

I also want to thank my colleagues who are not mentioned above: Cong Liu, Ran

Wang, Honglan Jiang, Siting Liu, Yidong Liu, and Xiaogang Song. Many thanks to your

support, kind help and friendship.

Furthermore, I would like to extend my sincere appreciation to my friends and

classmates for your support and encouragement. And last but not the least, I want to

express my profound gratitude to my family for their unconditional care, love and support.

VIII

Table of Contents
Abstract .. II

Preface .. IV

Acknowledgements ... VII

Table of Contents ... VIII

List of Figures .. XIII

List of Tables .. XVII

List of Acronyms ... XIX

Chapter 1 .. - 1 -

Introduction .. - 1 -

1.1. Thesis Statements and Aims .. - 5 -

1.2. Thesis Outline .. - 6 -

Chapter 2 .. - 8 -

Background and Related Work .. - 8 -

2.1. Stochastic Computation ... - 8 -

2.2. Probabilistic Boolean Networks .. - 11 -

2.3. Stochastic Boolean Networks .. - 12 -

2.3.1. Stochastic Boolean Networks without Perturbation - 12 -

2.3.2. Stochastic Boolean Networks with Perturbation - 13 -

2.3.3. Steady State Distribution Analysis ... - 14 -

2.4. Dynamic Fault Tree Analysis .. - 17 -

2.5. Summary ... - 18 -

IX

Chapter 3 .. - 19 -

Gene Perturbation and Intervention in Context-Sensitive Stochastic Boolean Networks- 19 -

3.1. Context-Sensitive Probabilistic Boolean Networks....................................... - 20 -

3.2. Context-Sensitive Stochastic Boolean Networks without Perturbation - 23 -

3.3. Context-Sensitive Stochastic Boolean Networks with Perturbation - 25 -

3.4. Intervention in Context-Sensitive Stochastic Boolean Networks - 27 -

3.5. State Transition Matrix and Steady State Distribution Analysis - 29 -

3.6. Results and Discussion .. - 32 -

3.6.1. Simulation of a p53-Mdm2 Network .. - 32 -

3.6.2. Experiments on a Glioma Network .. - 39 -

3.7. Summary ... - 46 -

Chapter 4 .. - 48 -

Stochastic Multiple-Valued Gene Networks .. - 48 -

4.1. Probabilistic Multiple-Valued Networks ... - 48 -

4.2. Stochastic Multiple-Valued Logic ... - 52 -

4.3. Stochastic Multiple-Valued Networks without Perturbation - 55 -

4.4. Stochastic Multiple-Valued Networks with Perturbation - 56 -

4.5. State Transition Matrix and Steady State Distribution Analysis - 59 -

4.6. Results and Discussion .. - 63 -

4.6.1. A Multiple-Valued p53-Mdm2 Network .. - 63 -

4.6.2. Application on a WNT5A Network.. - 69 -

4.7. Summary ... - 72 -

Chapter 5 .. - 74 -

X

Asynchronous Stochastic Boolean Networks as Gene Network Models - 74 -

5.1. Asynchronous Gene Regulatory Network ... - 75 -

5.2. Stochastic Computational Models for Asynchronous Update Strategies - 76 -

5.3. Asynchronous Stochastic Boolean Networks .. - 81 -

5.4. Results and Discussion .. - 84 -

5.5. Summary ... - 89 -

Chapter 6 .. - 90 -

A Stochastic Approach for the Analysis of Fault Trees with Priority AND Gates - 90 -

6.1. Motivation ... - 90 -

6.2. Background ... - 91 -

6.2.1. Assumptions ... - 92 -

6.2.2. Discretization .. - 93 -

6.2.3. Generation of Non-Bernoulli Sequences .. - 93 -

6.3. Priority AND Gate ... - 94 -

6.4. Stochastic Priority AND Model .. - 95 -

6.4.1. A Two-Input Priority AND Gate Model .. - 95 -

6.4.2. Model Validation .. - 97 -

6.5. Case Studies and Validation Results ... - 106 -

6.5.1. Validation of the Stochastic Priority AND Models - 106 -

6.5.2. A Dynamic Fault Tree with Repeated Events - 109 -

6.5.3. DFTs with Non-Exponentially Distributed Events........................... - 111 -

6.5.4. A Fault Tree with Repeated and Non-Exponentially Distributed Events- 114 -

6.6. Summary ... - 116 -

XI

Chapter 7 .. - 117 -

A Stochastic Approach for the Analysis of Dynamic Fault Trees with Spare Gates under

Probabilistic Common Cause Failures ... - 117 -

7.1. Spare Gate ... - 118 -

7.2. Proposed Stochastic Models .. - 120 -

7.2.1. Stochastic Models for the WSP and CSP Gates - 121 -

7.2.2. Stochastic Models for CCFs and Majority Voters - 125 -

7.3. DFT Analysis Flow ... - 130 -

7.4. Case Studies .. - 131 -

7.4.1. HECS, with and without PCCFs .. - 132 -

7.4.2. DFT with Dependent PCCFs .. - 136 -

7.5. Summary ... - 141 -

Chapter 8 .. - 142 -

Reliability Evaluation of Phased-Mission Systems using Stochastic Computation ... - 142 -

8.1. Motivation ... - 143 -

8.2. Preliminaries .. - 144 -

8.2.1. A Phased-Mission System (PMS) .. - 144 -

8.2.2. Assumptions ... - 145 -

8.3. Stochastic Models for Phased-Mission System ... - 146 -

8.3.1. Case 1 ... - 148 -

8.3.2. Case 2 ... - 150 -

8.3.3. Case 3 ... - 151 -

8.4. Phased-Mission System Evaluation Procedure ... - 152 -

XII

8.5. Case Studies .. - 153 -

8.5.1. Example 1 ... - 154 -

8.5.2. Example 2 ... - 158 -

8.6. Summary ... - 161 -

Chapter 9 .. - 163 -

Conclusion and Future Work.. - 163 -

9.1. Summary ... - 163 -

9.2. Future Work... - 165 -

Publication List ... - 167 -

Bibliography ... - 169 -

XIII

List of Figures

Fig. 2.1. A stochastic encoding example with a sequence length of 10 bits. -9-

Fig. 2.2. Stochastic logic gates. -9-

Fig. 2.3. A stochastic Boolean network (SBN) without perturbation for a single gene. -13-

Fig. 2.4. An SBN for a network of 𝑛 genes with perturbation. -14-

Fig. 2.5. A general time-frame expanded architecture. -17-

Fig. 3.1. A context-sensitive stochastic Boolean network (CSSBN) without perturbation. -25-

Fig. 3.2. A CSSBN with perturbation. -26-

Fig. 3.3. A CSSBN for external gene intervention. -29-

Fig. 3.4. The p53-Mdm2 network. -33-

Fig. 3.5. A CSSBN for the p53-Mdm2 network. -34-

Fig. 3.6. A CSSBN with perturbation for the p53-Mdm2 network. -35-

Fig. 3.7. The steady state distribution (SSD) of the p53-Mdm2 network for different

perturbation rate, 𝑝, and context switching probability, 𝑞.

-36-

Fig. 3.8. Accuracy comparison of the proposed CSSBN approach and the accurate

analytical approach for 𝑝 = 0.01, 𝑞 = 0.9 and 𝐿 = 10k bits.

-38-

Fig. 3.9. A Glioma network. -39-

Fig. 3.10. An SBN for the glioma network as a basis for the CSSBN model. -42-

Fig. 3.11. The SSDs of the glioma network obtained using the CSSBN time-frame

expansion technique and the approximate analysis.

-43-

Fig. 3.12. SSDs of the context-sensitive glioma network. -45-

Fig. 4.1 The stochastic encoding of a ternary signal. -52-

Fig. 4.2. Stochastic ternary logic gates. -54-

Fig. 4.3. A stochastic multiple-valued network (SMN) without perturbation for a single

gene.

-55-

Fig. 4.4. An SMN structure with perturbation. -58-

Fig. 4.5. The multiple-valued p53-Mdm2 network under DNA damage. -64-

Fig. 4.6. A stochastic multiple-valued network for gene 𝑋2 (cytoplasmic Mdm2). -64-

Fig. 4.7. An SMN for the p53-Mdm2 network under DNA damage. -65-

Fig. 4.8. State transition matrices (STMs) obtained by Markov chain method and SMN

approach for the dynamic p53-Mdm2 network.

-66-

Fig. 4.9. The relationship between the minimum sequence length required in the process

of computing the STM (with certain accuracy requirement) and the perturbation rate for

the multiple-valued p53-Mdm2 network.

-68-

Fig. 4.10. SSDs for the multiple-valued p53 network after 30 state transitions with an

initial state of 000.

-68-

Fig. 4.11. Individual gene expressions for the p53 network generated from a single

simulation of 30 iterations with an initial state of 011.

-68-

Fig. 4.12. A ternary WNT5A network with gene interactions. -70-

XIV

Fig. 4.13. An SMN module for gene 𝑖 in the ternary WNT5A network. -70-

Fig. 4.14. SSDs of the ternary WNT5A network using the SMN model and Monte Carlo

(MC) simulation with perturbation rate 𝑝 = 0.2 and sequence length or simulation runs

𝐿 = 300,000 values.

-71-

Fig. 5.1. A general synchronous gene network model. -75-

Fig. 5.2. An asynchronous update module (AUM) for gene 𝑖, referred to as 𝐴𝑈𝑀𝑖,

consists of a 2-to-1 multiplexer (MUX) with a control bit 𝑆𝑖.

-77-

Fig. 5.3. An illustrative example of the generated control sequences at a time step for a

network of five genes (randomly one gene (ROG) and randomly 𝑚 genes (RMG)).

-79-

Fig. 5.4. An illustrative example of the generated control sequences at a time step for a

network of five genes (all genes updated in a random order (ARO) and 𝑚 genes

updated in a random order (MRO)).

-80-

Fig. 5.5. Stochastic architectures for the models of stochasticity in node (SIN) and

stochasticity with propensity parameter (SPP).

-82-

Fig. 5.6. Synchronous and asynchronous stochastic Boolean networks (ASBNs) for

different stochasticity models.

-83-

Fig. 5.7. A T helper network. -84-

Fig. 5.8. A deterministic BN model for the 23-gene T helper network. -85-

Fig. 5.9. Differentiation of T helper. -86-

Fig. 5.10. Transitions between attractors during the differentiation process of the T

helper network with an external stimulus of 𝐼𝐿 − 12 for the synchronous and RMG

models.

-88-

Fig. 6.1. A timing diagram for a non-repairable basic event. -93-

Fig. 6.2. (a) Symbols for a two-input priority AND (PAND) gate; (b) The expected

behaviour of the two-input PAND gate for an inclusive condition.

-94-

Fig. 6.3. (a) A stochastic logic model for a two-input PAND gate, and (b) the

decomposition of the three-input AND gate in (a) into two-input AND gates.

-97-

Fig. 6.4. (a) A three-input PAND gate, and (b) the successive cascading model of the

three-input PAND gate in (a).

-105-

Fig. 6.5. The failure probabilities obtained by using the stochastic, Monte Carlo (MC),

and accurate methods for the two-input PAND gate in Fig. 6.1(a).

-107-

Fig. 6.6. The differences in the failure probability obtained by using the stochastic

approach and an accurate analysis at different mission times for the two-input PAND

gate.

-108-

Fig. 6.7. The differences in the failure probability obtained by using the stochastic

approach and an accurate analysis at different mission times for the three-input PAND

gate.

-109-

Fig. 6.8. Example 6.2: a dynamic fault tree (DFT) with repeated events. -110-

Fig. 6.9. Example 6.3, a DFT with intermediate events as the inputs of a PAND gate. -112-

Fig. 6.10. The failure probability of the top event with non-exponentially distributed

basic events.

-113-

XV

Fig. 6.11. Example 6.4, a fault tree with repeated events and non-exponentially

distributed ones.

-115-

Fig. 6.12. The failure probability of the top event with non-exponentially distributed

basic events.

-115-

Fig. 7.1. A spare gate. -119-

Fig. 7.2. A generic switching diagram for the failure in a spare gate. -119-

Fig. 7.3. The spare gate decomposition: (a) a combinational model for the spare gate,

and (b) a simplified model for CSP.

-119-

Fig. 7.4. (a) Flowchart for generating the stochastic sequences of the standby module,

and (b) a general stochastic logic model for the spare gates.

-123-

Fig. 7.5. The differences in the failure probabilities obtained by the stochastic approach

and an accurate analysis for the WSP.

-125-

Fig. 7.6. (a) A stochastic multiplexer model for the s-dependency relationship between

the two s-dependent CCFs of flood and hurricane, and (b) a stochastic model for

computing the joint probabilities of multiple conditions.

-127-

Fig. 7.7. (a) A PCCF gate, (b) a combinational model for the PCCF gate, and (c)

proposed stochastic model for the PCCF gate.

-128-

Fig. 7.8. (a) A 2-out-of-3 majority voter; (b) a stochastic model for the 2-out-of-3

majority voter.

-129-

Fig. 7.9. The Hypothetical Example Computer System (HECS). -132-

Fig. 7.10. (a) A DFT of HECS with CSP, FDEP, and static gates; (b) the stochastic

model.

-133-

Fig. 7.11. Difference in the failure probabilities of the top event for HECS for 100

hours.

-135-

Fig. 7.12. (a) A DFT with s-dependent PCCFs; (b) a stochastic model for the DFT. -137-

Fig. 7.13. Example 7.2: (a) the failure probability of the DFT subject to PCCFs for

different 𝛾𝑖; and (b) the difference of the failure probabilities of the DFT subject to

PCCFs.

-140-

Fig. 8.1. A general structure of a phased-mission system (PMS). -146-

Fig. 8.2. A general fault tree structure of phase ℎ for a PMS consisting of 𝐻 phases

with different system topology at each phase.

-147-

Fig. 8.3. Distribution of the common components for phases 𝑗 and 𝑘 , 𝑗, 𝑘 ∈

{1, 2,⋯ ,𝐻}.

-148-

Fig. 8.4. Example of case 1: 𝜙(𝑗) ∩ 𝜙(𝑘) ≠ ∅ and 𝐴𝑖(𝑗/𝑘) ∈ 𝜙(𝑗) ∩ 𝜙(𝑘), where

𝐴𝑖(𝑗/𝑘) is one of the common components.

-149-

Fig. 8.5. A stochastic logic model for computing the failure probability of component

𝐴𝑖 for cases 1 and 2

-149-

Fig. 8.6. Example of case 2. -151-

Fig. 8.7. A stochastic logic model for computing the failure probability for case 3 of

component 𝐴𝑖.

-151-

Fig. 8.8. A non-repairable PMS of Example 1 consisting of three phases and four

XVI

components. -155-

Fig. 8.9. Failure probability and reliability obtained by the stochastic approach for

Example 1 with a sequence length of 10k bits.

-156-

Fig. 8.10. The average run time for 10 simulation runs of Example 1 based on the

stochastic approach and MC simulation.

-157-

Fig. 8.11. A PMS consisting of three phases with a dynamic PAND gate in phase 2 and a

FDEP gate in phase 3

-158-

Fig. 8.12. Failure probability of a PMS consisting of three stages for a mission time of

500 hours.

-160-

XVII

List of Tables

Table 3.1. Minimum sequence length and average run time in computing the state

transition matrix (STM) for context-sensitive stochastic Boolean networks (CSSBNs).

-31-

Table 3.2. Truth table of a probabilistic Boolean network (PBN) for the p53-Mdm2

network.

-33-

Table 3.3. The network function and selection probability for each context in the

p53-Mdm2 network.

-35-

Table 3.4. Differences in the state transition matrices (STMs) obtained using the CSSBN

with perturbation, compared to the results by using the analytical approach.

-36-

Table 3.5. Differences in steady state distributions (SSDs) computed using the CSSBN

model, compared to the results by using approximate and accurate analysis.

-38-

Table 3.6. Selection probabilities of the Boolean functions for each gene in the glioma

network in Fig. 3.10.

-40-

Table 3.7. Norms of the differences in the computed SSDs and average run time for the

glioma network.

-41-

Table 3.8. Cumulative distributions of the desirable states with a different gene selected

as the control gene for the simplified context-sensitive glioma network, with certain

perturbation rate and context switching probability.

-44-

Table 4.1. State transition rules for a gene in a ternary network under perturbation. -56-

Table 4.2. Minimum sequence length and average run time required in computing the

STM of ternary stochastic multiple-valued networks (SMNs), compared to those

obtained by a Markov chain analysis (MCA).

-60-

Table 4.3. Average run time in computing the SSD of SMNs, compared to the use of a

MCA.

-61-

Table 4.4. Required memory usage in computing the SSD of multiple-valued networks

by the MCA and time-frame expanded SMN approach.

-62-

Table 4.5. State transitions of 𝑋2. -64-

Table 4.6. Truth table for 𝑋1. -64-

Table 4.7. Truth table for 𝑋3. -64-

Table 4.8. The selection probabilities of the predictor functions for the multiple-valued

p53-Mdm2 network.

-65-

Table 4.9. Norms of the difference between the STMs obtained by MCA and SMN for

the p53-Mdm2 network.

-67-

Table 4.10. The selection probability of the predictor functions for 10 genes. -69-

Table 4.11. Norms of the difference between the SSDs obtained by the time-frame

expanded SMN technique and Monte Carlo (MC) simulation for the ternary WNT5A

network with certain perturbation rate.

-72-

Table 5.1. Steady states of the T helper network found by the stochastic approach. -87-

Table 5.2. The distribution of initial states (in percentages) leading to the attractors of a

XVIII

wild type T helper cell: 200,000 states are randomly chosen for simulation. -87-

Table 6.1. Accuracy and run time of the stochastic approach and MC simulation,

compared to an accurate analysis, for the two-input priority AND (PAND) gate.

-108-

Table 6.2. Accuracy and run time of the stochastic approach and MC simulation,

compared to an accurate analysis, for the three-input PAND gate.

-109-

Table 6.3. The top event’s failure probability of the dynamic fault tree (DFT) in Fig. 6.8,

with the total mission time of 300 hours.

-111-

Table 6.4. The failure rates of the basic events in Example 6.3. -113-

Table 6.5. Accuracy comparison and run time of the stochastic approach and MC

simulation for the DFT in Example 6.4.

-116-

Table 7.1. Evaluation of the stochastic WSP gate model for a mission time of 1,000

hours compared with an accurate approach.

-124-

Table 7.2. Mean, and variance of the occurrence probability of floods obtained by using

the stochastic approach and MC method for 1,000 experiments with different sequence

lengths or simulation runs.

-127-

Table 7.3. Mean and variance of the simulated occurrence probability of a component A

under a PCCF by applying the stochastic approach for 1,000 simulations.

-129-

Table 7.4. Mean and variance of the failure probabilities of 2-out-of-3 and 3-out-of-5

majority voters, obtained by the stochastic approach.

-130-

Table 7.5. The failure rates of the basic events in the Hypothetical Example Computer

System (HECS).

-134-

Table 7.6. Norms of the differences in the top event’s failure probability vectors

obtained by the proposed stochastic approach and MC simulation for the DFT compared

to accurate analysis.

-134-

Table 7.7. Component failure rates (10−3/hour). -138-

Table 7.8. Norms of the differences in the top event’s failure probability vectors of the

DFT in Fig. 7.12, and the average run time for the proposed stochastic approach and MC

simulation.

-139-

Table 8.1. Input parameters for Example 1. -155-

Table 8.2. Reliabilities of the phased-mission system (PMS) at different phases for

Example 1.

-156-

Table 8.3. Norms of the differences in the failure probability vectors obtained by the

proposed stochastic approach and MC simulation for the PMS in Example 1.

-157-

Table 8.4. Input failure parameters (10−3/hour) for Example 2. -159-

Table 8.5. Norms of the differences in the failure probability vectors obtained by the

proposed stochastic approach and MC simulation for the PMS of Example 2.

-159-

XIX

List of Acronyms

ARO all genes updated in a random order

ASBN asynchronous stochastic Boolean network

BDDs binary decision diagrams

BN Boolean network

CCF common cause failure

cdf cumulative density function

CSP cold spare gate

CSPBN context-sensitive probabilistic Boolean network

CSSBN context-sensitive stochastic Boolean network

DA-PBN deterministic-asynchronous probabilistic Boolean network

DFT dynamic fault tree

FDEP functional dependency gate

FPGA field programmable gate array

FTA fault tree analysis

GAP gene activity profile

GRN gene regulatory network

MC Monte Carlo

MRO m genes updated in a random order

MUX multiplexer

PAND priority AND gate

PBN probabilistic Boolean network

PCCF probabilistic common cause failure

pdf probability density function

PMN probabilistic multiple-valued network

PMS phased-mission system

RMG randomly m genes

XX

ROG randomly one gene

SBDDs sequential binary decision diagrams

SBN stochastic Boolean network

SC stochastic computation

SEQ sequence enforcing gate

SIN stochasticity in node

SMN stochastic multiple-valued network

SPP stochasticity with propensity parameters

SSD steady state distribution

STM state transition matrix

UAV unmanned autonomous vehicle

WSP warm spare gate

- 1 -

Chapter 1

Introduction

The correct functioning of a biological system involves an extraordinary integrated

process. Diverse biological functions are regulated through the interactions among genes,

proteins and other molecules in a cell [1]. It has become increasingly difficult to obtain

insights about a biological system through the investigation of single genes. Instead, a

systems or network-based approach often provides additional information that would

otherwise be difficult to obtain from biochemical experiments [2]. Such an approach

could further help to gain a better understanding of the mechanisms of diseases and may

help to speed up the process of drug discovery and development.

 Cell survival and numerous cellular functions are enabled by the amounts and the

temporal pattern of genes’ products; a gene regulatory network (GRN) governs the genes’

expression and product levels [3]. In a GRN, however, gene expressions are affected by

intrinsic and extrinsic noise [1]. A major source of the noise is the stochastic fluctuations

in regulatory interactions [4]. This indicates the necessity to consider noise in the study of

GRNs.

Various methods have been proposed to model the interactions among genes; these

include logical models [5], continuous models using differential equations [6]-[9] and

stochastic models at the single-molecule level [10][11]. The detailed stochastic

simulation algorithms and differential equations-based approaches provide a more

accurate simulation of a biological system, however they also require more detailed

knowledge about many parameters a priori, such as the kinetic rate constants [3][12]. In

the so-called approximate stochastic simulation algorithms [13][14], accuracy is

sacrificed to improve the algorithmic efficiency; however a long simulation time is still

- 2 -

required, especially in the modeling of large genetic networks. Logical models have

widely been used to gain insights into the biological behavior of GRNs. As a classic

logical model, Boolean networks (BNs) have been widely used to quantitatively model

the interactions among genes [5][15]-[17]. In a BN, discrete values of 0 and 1 are utilized

to indicate a gene’s expression level, which is referred to as a gene state. The state is

obtained by comparing the expression level of a gene to a threshold expression level

(usually a typical expression level of most genes in a network). For instance, a state of 1

(indicating the expression of a gene) is given if the expression level is higher than the

threshold; otherwise, a value of 0 is obtained. Probabilistic Boolean networks (PBNs)

have been proposed to consider noise in a BN model [18]-[20]. In a PBN, the next state

of a gene is determined by its current state and a Boolean update function. If the Boolean

function is randomly selected, a PBN is referred to as an instantaneous PBN [18]. Using a

PBN, the dynamics of a GRN can be investigated and steady state distributions (SSDs)

can be derived. In such a network, some states may be associated with diseases such as

cancer. Hence, external stimuli can be introduced to deliberately change the states of

certain genes to guide a network into a desired state. This process is referred to as gene

intervention [19].

As an application of BN, logic circuits have been used to simulate genetic networks

[21]. Recently, circuit diagnosis techniques have been utilized to identify the most

vulnerable molecules in cellular networks [22]. Stochastic logic has been demonstrated in

several biological applications [23][24]. Initially proposed for reliable circuit design,

stochastic computation uses random binary bit streams to compute probabilities [25]-[28].

This technique enables effective implementations of arithmetic operations using standard

logic elements. The accuracy and efficiency of stochastic computation have been

discussed for circuit reliability evaluation [29] and gene network analysis [30]. In [30],

stochastic Boolean networks (SBNs) were proposed for a fast implementation of an

instantaneous PBN. The SBN approach can recover biologically-proven regulatory

behaviors as shown in [31] and [32].

- 3 -

While the temporal evolution of genetic networks can be modeled as a Markov

chain of static (but random) Boolean networks at a sequence of time points [33], the

required computational complexity presents a significant challenge in evaluating even the

static network at each time. In fact, this computational problem exists in a wide class of

applications including the evaluation of system reliability that involves dynamic fault

trees (DFTs).

Fault tree analysis (FTA) was first proposed in 1962 for evaluating a system’s

failure probability, the probability that a system fails during a specified mission time [34].

Failures can be disastrous for systems such as chemical plants, nuclear reactors, airplane

and computer systems, or costly for systems such as online sales or commercial servers.

FTA has developed rapidly, and gained much attention in many applications, especially

in the analysis of large safety-critical systems [35]-[38]. In a traditional FTA, dynamic

behaviors, such as sequence-dependent, functionally dependent and priority relationships,

cannot be modeled properly [39][40]. To account for these dynamic behaviors, DFT

analysis has been proposed by incorporating additional dynamic gates such as the priority

AND (PAND) and spare gates. A phased-mission system (PMS) undergoes different

scenarios for which the failure criteria vary during the mission time. Thus, the system

topology of a PMS is usually modeled by a fault tree to indicate the combination of

component failures [41]. Hence, the technique of FTA has been applied to evaluate the

reliability of a PMS.

Several observations that motivate the development of this dissertation are

presented as follows:

1. A combination of Boolean update functions is referred to as a context in a gene

network and each update function contributes in determining the next state of a gene.

The genetic interactions are inherently context dependent, that is, certain regulatory

functions are active in some cellular states, but inactive in others [42]. A context

- 4 -

remains unchanged until a switching occurs. This switching of contexts, possibly

caused by external stimuli, is considered to occur randomly in a network. As a

general model, a context-sensitive probabilistic Boolean network (CSPBN) considers

the feature of context dependence in a gene network model [43]. The analysis of

CSPBNs, however, presents a great challenge due to its large computational

complexity. As a result, current CSPBN analysis was limited to networks with no

more than 15 genes [18][44]. A simulation-based method such as MC simulation [44]

requires a large sample size and thus a long run time to meet an accuracy

requirement, due to the slow convergence typically encountered in a random

sampling-based method [45].

2. In a BN, the Boolean simplification may incur an accuracy loss in the modeling of

complex biological networks such as a random Boolean network [46][47]. To

address this issue, an approach using multiple-valued variables introduces an

increased level of granularity and can be more accurate in the modeling of a GRN

[48]-[51]. As a general model, probabilistic multiple-valued networks (PMNs)

consider a gene’s state at multiple levels in a GRN [33]. However, the application of

a PMN analysis is even more severely limited due to an increased computational

complexity.

3. The Boolean models usually consider a synchronous update of all genes’ states in a

network. In biology, this is not necessarily the case because the expression of a gene

is seldom an instantaneous process. Instead it may require a few milliseconds or even

up to a few seconds [52]; this makes a synchronous model less realistic. In fact, an

analysis of the stability of attractors has shown that some attractors may disappear in

a BN model with gene perturbation [53]. This indicates that these attractors may be

the result of artifacts due to the synchronous updating rules.

4. The reliability analysis of a fault tree becomes challenging when dynamic behaviors

and complex failure distributions are considered. For instance, the derivation of

analytical expressions becomes cumbersome with the increase of network size. It is

also difficult to analyze a system with non-exponentially distributed failure events

using Markov models. In addition, the basic components of a system are often

subject to common cause failures (CCFs) caused by, for examples, earthquakes,

- 5 -

sudden changes in the environment, design errors, or incorrect operations in practice

[54]. As a result, the analysis of DFTs has become increasingly complex.

5. The reliability analysis of a PMS is more challenging than a single-phased system

because various factors, such as different system topologies and the dependency

between different phases due to the presence of common components, must be

considered. This limits the efficiency of existing approaches in the reliability

evaluation of a PMS.

1.1. Thesis Statements and Aims

Motivated by the aforementioned observations, we aim at performing a more

efficient analysis of gene networks and dynamic fault trees. The following thesis

statements are addressed in this dissertation.

1. The challenges in both analytical and simulation approaches such as the CSPBN and

MC simulation call for a more efficient analysis of gene network models that

considers context sensitivity in a GRN.

2. The increased computational complexity in a PMN analysis requires more efficient

computational model that deal with multiple-valued states of genes in a GRN.

3. An asynchronous model is potentially more accurate in discovering the dynamic

behavior of a GRN. However, usually a larger number of transitory states are

required for deriving an attractor with an asynchronous update strategy. Thus, new

gene network models are desired for a fast analysis of the dynamics in an

asynchronous genetic network.

4. Due to the limitations in the current methodologies for a DFT analysis, it becomes

imperative to develop more efficient methods to analyze the dynamic behaviors in a

fault tree.

5. Because of the special features of a PMS, it becomes important to extend the

computational models for a general DFT analysis to the reliability analysis of a PMS.

A PMS may contain common components at different phases and each common

component may have a different failure rate at each phase.

- 6 -

The following objectives are proposed for addressing the thesis statements:

1. To develop a stochastic computational model that considers context sensitivity

in the modeling of GRNs. In this model, the effects of external perturbation, gene

intervention and context-switching activities must be jointly considered and

effectively analyzed.

2. To develop a stochastic computational model that incorporates the feature of

multiple values into the analysis of gene activities in a GRN. This model utilizes

multiple-valued logic gates in the simulation of interactions of genes with

multiple-valued states.

3. To develop a stochastic computational model that analyzes the genes’ state

updating behavior in an asynchronous manner. The effects of both stochasticity

and asynchronicity must be considered in this model.

4. To develop new stochastic models for the analysis of DFTs consisting of PAND

gates and spare gates under the effect of CCFs. In these models, the dynamic

behaviors such as priority and sequence dependency are analyzed by using stochastic

computation.

5. To develop stochastic models for the fast analysis of the reliability of a PMS.

These models make it possible to analyze the reliability of a PMS with common

components that fail with different failure rates at different phases.

This dissertation is aimed at advancing the state of the art by extending the

application of stochastic computation to the domain of gene network models and the

fault-tree analysis of system reliability.

1.2. Thesis Outline

The remainder of this dissertation is organized as follows. Chapter 2 reviews the

fundamentals of stochastic computation, the theory of PBNs, the structure of SBNs and

the fundamentals of DFT analysis. Chapter 3 presents the first contribution of this

dissertation: gene perturbation and intervention in CSSBNs. Chapter 4 describes the

second contribution of this dissertation: stochastic multiple-valued gene networks.

- 7 -

Chapter 5 introduces the third contribution of this dissertation: asynchronous stochastic

Boolean networks as gene network models. Chapter 6 proposes a stochastic model of the

PAND gate for a fast analysis of DFTs; this is the fourth contribution of this dissertation.

The fifth contribution of this dissertation is presented in Chapter 7, i.e., a stochastic

model of the spare gate for a fast analysis of DFTs under probabilistic common cause

failures (PCCFs). The stochastic analysis of a PMS is presented in Chapter 8 as the sixth

contribution of this dissertation. Chapter 9 concludes this dissertation and provides a

discussion of future work. Contents of this dissertation are based on the publications in

the publication list with permissions whenever applicable.

- 8 -

Chapter 2

Background and Related Work

2.1. Stochastic Computation

In stochastic computation, real numbers or probabilities are represented by random

binary bit sequences that are readily processed by stochastic logic. Signal probabilities

are encoded into random binary bit streams by setting a proportional number of bits to a

specific value, i.e., one or zero. Hence, signal probabilities are typically encoded as the

proportion of the mean number of ones in a bit stream. Fig. 2.1 illustrates a stochastic

encoding example. The binary bit streams are then processed by stochastic logic. Thus,

Boolean logic operations are transformed into probabilistic computations in the real

domain based on the following rules (where A, B and C are binary input and output

signals, while a, b and c are the signal probabilities of A, B and C) [55][56]:

 Boolean “NOT,” or 𝐵 = �̅�, which corresponds to 𝑏 = 1 − 𝑎;

 Boolean “AND,” or 𝐶 = 𝐴𝐵, which corresponds to 𝑐 = 𝑎 ∙ 𝑏 ;

 Boolean “OR,” or 𝐶 = 𝐴 + 𝐵, which corresponds to 𝑐 = 𝑎 + 𝑏 − 𝑎 ∙ 𝑏.

The complement of a probability can be computed by an inverter and the

multiplication of probabilities can be implemented by an AND gate for independent

inputs. A multiplexer computes a weighted sum of its input probabilities, with the

weights given by the selection inputs. Fig. 2.2 shows several commonly-used logic gates

for stochastic computation. Examples of computation and encoding using a sequence

length of 10 bits are shown in Fig. 2.2(a) through (d); a longer sequence length is usually

required in a practical application, as shown in Fig. 2.2(e). For the 2-to-1 multiplexer of

Fig. 2.2(h), the output takes the value of one of the two inputs when the control bit is

zero or one. When stochastic sequences are used as input and control signals, this

multiplexer selects one of the inputs as the output according to the distributions (and thus

the probabilities) of zeros and ones in the control sequence.

- 9 -

01110101100111010110

X = 6/10

Fig. 2.1. A stochastic encoding example with a sequence length of 10 bits.

…1110…

9.021 PP

…1110…
P = 0.5

0000110000

1010000010

1010110010E_OR

 (e)
 (f)

9.021 PPP 5.021 PPP

0110000100

3.0inP 3.0outP

0110000100 0110000100 1001111011

3.0inP 7.0outP

0111111101

8.02 inP

4.0outP

0110000101
1110000101

5.01 inP

0111111101

8.02 inP

9.0outP

1111111101
1110000101

5.01 inP

...10101...

8.02 inP

5.0outP

...01101...
...11000...

5.01 inP

48.0outP

...00001...

5.01 inP

4.02 inP

2.0cP

...01001...

...00101...

...11001...

‘1’

‘0’

7.01 inout PP

(a)

3.0 inout PP

(b)

4.021 ininout PPP

(c)

9.0)1)(1(1 21 ininout PPP

(d)

5.0)1()1(2121 ininininout PPPPP

(g) (h)

48.0)1(21 incincout PPPPP

2.01 P

3.02 P
…1110… P=0.9

Fig. 2.2. Logic gates for stochastic computation: (a) a buffer; (b) an inverter; (c) an AND gate; (d) an OR gate; (e)

an AND with totally dependent inputs; (f) an exclusive OR gate; (g) an XOR gate; and (h) a 2-to-1 multiplexer.

Stochastic logic performs a probabilistic analysis by encoding probabilities into random value streams as proportional

numbers of different values.

Stochastic computation has the advantages of hardware simplicity and fault

tolerance [29][57]. However, inevitable random fluctuations occur in the computation of

probabilities. The random fluctuations can be reduced by increasing the bit-stream length

- 10 -

or by using deterministic bit-streams [58][59]. Conventionally, Bernoulli sequences are

utilized as random binary bit streams in stochastic computation (i.e., each bit is randomly

generated according to a probability). Due to inevitable stochastic fluctuations in

stochastic computation, the number of ones in the output sequence is not deterministic

but probabilistic. Hence, the output of a stochastic analysis follows approximately a

Gaussian distribution when long random binary bit streams are used [29]. However, the

use of non-Bernoulli sequences as random permutations of fixed numbers of ones and

zeros for initial input probabilities leads to a faster convergence of the result, as stated in

the following lemma.

Lemma 1. (Theorem 1 in [29]) Compared to the case when Bernoulli sequences are

used to encode initial input probabilities, the use of large non-Bernoulli sequences as

random permutations of fixed numbers of ones and zeros results in an output sequence

with the same mean number of ones, and a smaller variance for an AND gate with

statistically independent inputs.

Lemma 1 leads to the conclusion that, to meet a specific accuracy requirement, a

smaller sequence length is required by using the non-Bernoulli sequences compared to

the use of Bernoulli sequences for encoding initial input probabilities of an AND gate

[29].

It is trivial to show that Lemma 1 is also applicable to an inverter, thus any logic

network (as combinations of inverters and AND gates) can be more accurately evaluated

by using the non-Bernoulli sequences as initial input probabilities.

In this type of non-Bernoulli sequences, the numbers of ones and zeros are

computed from a specified probability, and then they are randomly permuted to encode

the probability. This is a faster process compared to the generation of Bernoulli

sequences, because fewer pseudo-random numbers need to be generated. The

non-Bernoulli sequences contain deterministic numbers of ones and zeros, so there is no

variation in the initial sequences. Therefore, the use of non-Bernoulli sequences as initial

inputs results in less variation in the stochastic computation process of a network, thus it

- 11 -

produces more accurate results than the case when Bernoulli sequences are used as initial

inputs. Nonetheless, different initial sequences produce different results, but the results

approximately follow a Gaussian distribution [29].

When the inputs of a gate are correlated, the output is also determined by the

correlation between the input signals. However, signal correlation (usually caused by the

re-convergence of signals) is handled readily in stochastic computation. This feature is a

particularly favorable property for handling the repeated input events in a complex DFT.

2.2. Probabilistic Boolean Networks

In a cell, biological functions are implemented through the interactions among

genes, proteins and other molecules. However, gene networks are noisy due to the effect

of stochastic fluctuations in genetic interactions [4]. Various methods have been proposed

to model gene regulatory networks (GRNs) [3]. As a classic logical model, Boolean

networks (BNs) have been widely used to qualitatively model the interactions among

genes by Boolean logic operations [5][15]-[17]. Probabilistic Boolean networks (PBNs)

have been proposed to consider noise in a BN model [18]-[20].

For a network of 𝑛 genes, a PBN is defined by G (V, F), where

𝑉 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, a set of binary-valued nodes, 𝐹 = (𝐹1, 𝐹2, ⋯ , 𝐹𝑛), a list of sets of

update functions: 𝐹𝑖 = {𝑓1
(𝑖), 𝑓2

(𝑖), ⋯ , 𝑓𝑙(𝑖)
(𝑖)} and 𝑙(𝑖) is the number of possible update

functions for gene 𝑖, 𝑖 = 1,2,⋯ , 𝑛 [18]-[20]. A node 𝑥𝑖 represents the state of gene 𝑖;

𝑥𝑖 = 1 (or 0) indicates that gene 𝑖 is (or not) expressed. The set 𝐹𝑖 contains the rules

that determine the next state of gene 𝑖. Each 𝑓𝑗(𝑖)
(𝑖)
: {0,1}𝑛 → {0,1} for 1 ≤ 𝑗(𝑖) ≤ 𝑙(𝑖) is

a mapping or predictor function determining the state of gene 𝑖.

Due to the stochastic behavior, the next state of gene 𝑖 is determined by all the

𝑙(𝑖) update functions in 𝐹𝑖, i.e., 𝑓1
(𝑖), 𝑓2

(𝑖), ⋯ , 𝑓𝑙(𝑖)
(𝑖)

 with probabilities 𝑐1
(𝑖), 𝑐2

(𝑖), ⋯ , 𝑐𝑙(𝑖)
(𝑖)

.

A PBN is independent if the update functions from 𝐹𝑖 are independent, i.e., the selection

of Boolean update functions for gene 𝑖 has no influence on the selection of Boolean

- 12 -

update functions for gene 𝑗 (𝑖 ≠ 𝑗) [60]. For an instantaneous PBN of 𝑛 genes, there

are a total number of ∏ 𝑙(𝑖)𝑛
𝑖=1 possible BNs, each of which is a possible realization of

the genetic network. Each BN can be considered as a possible realization of the genetic

network. In the 𝑗 th context, assume the network function is given by

𝒇𝑗 = (𝑓𝑗(1)
(1)
, 𝑓𝑗(2)

(2)
, ⋯ , 𝑓𝑗(𝑛)

(𝑛)
), where each 𝑓𝑗(𝑖)

(𝑖)
: {0,1}𝑛 → {0,1} for 1 ≤ 𝑗(𝑖) ≤ 𝑙(𝑖) is a

mapping or predictor function determining the state of gene 𝑖. The probability that the

𝑗th context is selected, is obtained as 𝐶𝑗 = ∏ 𝑐𝑗(𝑖)
(𝑖)𝑛

𝑖=1 for 𝑗 = 1, 2, ⋯, 𝑘, where 𝑘 is

the number of contexts, each of which is a possible realization of the genetic network and

referred to as a context.

At time 𝑡, the state of a genetic network can be described by a vector, i.e.,

𝒙(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)), where the state of a gene 𝑖 at time 𝑡 is given by 𝑥𝑖(𝑡),

𝑥𝑖(𝑡) ∈ {0,1} for 𝑖 ∈ {1,2,⋯ , 𝑛}. A network state is also referred to as a gene activity

profile (GAP). A GAP is also given as a decimal index, i.e., 𝑑 = ∑ 2𝑛−𝑗𝑥𝑗(𝑡)
𝑛
𝑗=1 + 1.

2.3. Stochastic Boolean Networks

Recently, stochastic models have been proposed for a fast computation of the state

transition matrix (STM) and steady state distribution (SSD) of an instantaneous PBN,

referred to as stochastic Boolean networks (SBNs) [30].

2.3.1. Stochastic Boolean Networks without Perturbation

For a PBN, the next states of genes are updated by a set of Boolean functions, each

of which is selected with certain probabilities. In an SBN, random binary bit sequences

are used to represent those probabilities. The Boolean update functions are selected by a

stochastic multiplexer controlled by proper sequences. A structure of an SBN for a single

gene is shown in Fig. 2.3.

As shown in Fig. 2.3, the next state of gene 𝑖 is determined by a total number of

𝑙(𝑖) Boolean functions and the selection of functions is implemented by a multiplexer for

- 13 -

gene 𝑖. Thus 𝑚 = ⌈𝑙𝑜𝑔2(𝑙(𝑖))⌉ bits are required to control the multiplexer. For one gene,

the number of possible Boolean functions is usually small, between 1 and 4 for 93% of

genes [61][62]. Thus, one or two bits are sufficient to control the multiplexer in an SBN.

Hence, an update function is selected with probability 𝑐𝑗(𝑖)
(𝑖)

 for gene 𝑖 in an SBN. This

SBN structure accurately implements the probabilistic functions of a PBN if all the genes

are considered.

1

2

n

i

Boolean
function 1

MUX

1S mS

Boolean
function 2

Boolean
function l(i)

Binary gene
nodes

Present state

Fig. 2.3. A stochastic Boolean network (SBN) without perturbation for a single gene [30].

2.3.2. Stochastic Boolean Networks with Perturbation

In a PBN with perturbation, a gene may change its value with a small probability 𝑝

during transition. Let 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝜸 represent the current state of an

𝑛-gene network at time 𝑡 and the random perturbation vector respectively, then the next

state 𝒙′ is given by [19]:

 𝒙′ = {
𝒙⊕ 𝜸 𝑤𝑖𝑡ℎ 1 − (1 − 𝑝)𝑛

𝒇𝑘(𝒙) 𝑤𝑖𝑡ℎ (1 − 𝑝)
𝑛

 (2.1)

where ⊕ indicates a modulo 2 additions and 𝒇𝑘(·) is the 𝑘th BN at time 𝑡.

A general model of SBNs with perturbation is shown in Fig. 2.4. As can be seen,

the addition modulo 2 of the perturbation vector and the present state is implemented by

XOR gates. Either a Boolean function works or a perturbation occurs is determined by

- 14 -

the output sequence of an 𝑛-input OR gate. If there is no perturbation, the output

sequence of the OR gate contains all zeros; thus the next state is given by the original

SBN without perturbation. If perturbation occurs, the next state is determined by the

output sequence of the stochastic OR gate. Hence, the SBN in Fig. 2.4 accurately

implements the function of (2.1).

Fig. 2.4. A stochastic Boolean network (SBN) for a network of 𝒏 genes with perturbation [30].

In an SBN, the complexity to compute the STM is O(𝑛𝐿2𝑛), where 𝐿 is the

minimum sequence length required for obtaining an evaluation accuracy. For a network

with a large number of genes, 𝐿 is significantly smaller than N, the number of Boolean

networks. By using a time-frame expanded structure of the SBN, the SSD can be

evaluated (the technique of time-frame expansion is presented in detail later). The SBN

approach can recover biologically-proven regulatory behaviors, such as the oscillatory

dynamics of a simplified p53-Mdm2 network [31] and the dynamic attractors in a T cell

immune response network [32]. The interested reader is referred to [30] for more detail.

2.3.3. Steady State Distribution Analysis

The state transition of a PBN can be described by an STM as:

- 15 -

𝑨 =

[

𝑃𝑟 (1|1) 𝑃𝑟 (2|1) ⋯ ⋯ 𝑃𝑟 (2𝑛|1)

𝑃𝑟 (1|2) 𝑃𝑟 (2|2) ⋯ ⋯ 𝑃𝑟 (2𝑛|2)
⋯
⋯

𝑃𝑟 (1|2𝑛)

⋯
⋯

𝑃𝑟 (2|2𝑛)

⋯
⋯
⋯

⋯
⋯
⋯

⋯
⋯

𝑃𝑟 (2𝑛|2𝑛)]

,

 (2.2)

where each entry is a conditional (transition) probability that the genes transfer from a

given present state into a next state with the state indicated by a decimal index.

The STM 𝑨 can be obtained by 𝑨 = ∑ 𝑐𝑗𝑨𝒋
𝑁
𝑗=1 , where 𝑐𝑗 is the probability that

the 𝑗th BN is selected and 𝑨𝒋 is the STM due to the 𝑗th BN. Hence, the complexity of

computing 𝑨 is 𝑂(𝑛𝑁22𝑛) [64]. In an open genome system, random inputs under

external stimuli can incur random gene perturbation [19]. Due to a perturbation, the state

of a gene flips from 1 to 0 (or vice versa). A perturbed STM can be derived for a genetic

network under gene perturbation [20]. Any PBN with perturbation will reach a steady

state in a long run due to the property of an aperiodic and irreducible homogeneous

Markov chain [64].

Given an initial state distribution 𝒙(0) , let 𝒙(𝑚) and 𝒙(𝑚+1) be the state

distributions after 𝑚 and 𝑚 + 1 transitions respectively. Assume that the STM of the

network is given by 𝑨, then the state transitions from 𝒙(𝑚) to 𝒙(𝑚+1) are described by:

𝒙(𝑚+1) = 𝒙(𝑚) ∙ 𝑨, (2.3)

If ‖𝒙(𝑚+1) − 𝒙(𝑚)‖
∞

 is used to compute the maximum absolute value of the

summed difference of each row in 𝒙(𝑚) and 𝒙(𝑚+1), the condition for reaching a steady

state is given by [63]:

‖𝒙(𝑚+1) − 𝒙(𝑚)‖
∞
< 𝜀, (2.4)

- 16 -

where 𝜀 indicates a threshold for determining whether the steady state has been reached

or not. If (2.4) is met, a genetic network is considered to have reached a steady state, i.e.,

𝒙(∞) = 𝒙(𝑚); thus 𝒙(𝑚) is considered as the stationary distribution.

In order to measure the disparity of the obtained matrices and steady states, the

norms ‖∙‖1, ‖∙‖2, and ‖∙‖∞ are used to measure the differences of the STMs or SSDs

obtained by various methods. ‖∙‖1 and ‖∙‖∞ indicate the maximum absolute values of

the summed differences of the columns and rows respectively, while ‖∙‖2 measures the

average difference of all entries. For a vector 𝒙, the norms are defined as ‖𝒙‖1 =

∑ |𝑥𝑖|
𝑛
𝑖=1 , ‖𝒙‖2 = √∑ |𝑥𝑖|2

𝑛
𝑖=1 , and ‖𝒙‖∞ = 𝑚𝑎𝑥1≤𝑖≤𝑛|𝑥𝑖|, where 𝑛 is the number of

elements in the vector 𝒙.

Due to the large size of the STM for a PBN of a large number of genes, it becomes

difficult to evaluate the SSD using the STM-based analysis. However, the SSD can be

evaluated through an iterative simulation of stochastic model in the temporal domain (or

the so-called time-frame expansion technique [30]). An illustration is presented in Fig.

2.5. By this technique, an iterative structure of the SBN is used to simulate the temporal

evolution of a GRN. The required number of iterations is determined by the number of

state transitions before reaching a steady state. As an alternative to an STM-based

analysis, the simulation of stochastic models provides flexibility in achieving a tunable

accuracy-efficiency tradeoff by using stochastic sequences of different lengths.

For an SSD analysis, random bit sequences are first generated for the initial input

signals and the control bits of multiplexers. Then, the sequences propagate through the

iterative SBN structure. This process is equivalent to multiplying the initial input

probabilities with the powers of the STM, as given by (2.3). Given a threshold, if (2.4) is

met, the system is considered to have reached a steady state. The SSD is then obtained

from the final output sequence of the time-frame expanded SBN structure. As shown in

[30], a time-frame expanded SBN provides an alternative and fast means to estimate the

SSD of a PBN.

- 17 -

Stochastic

model

Time frame 1

Initial State

1

n

2
Stochastic

model

Time frame 2

...
Stochastic

model
Time frame

Num

1

n

2

...

...

Steady State

...

...

...

......

Fig. 2.5. A general time-frame expanded architecture. 𝑛: the number of genes in a genetic network. 𝑁𝑢𝑚: the

number of time frames required for deriving a steady state distribution (SSD).

2.4. Dynamic Fault Tree Analysis

Over the last few decades, fault tree analysis (FTA) has been widely applied to the

analysis of various systems, including chemical plants, nuclear reactors, airplane

controllers, and computers [35]. The so-called dynamic fault tree (DFT) has been

developed to simulate the dynamic behavior of a system. This has been accomplished by

incorporating several additional dynamic gates, such as the priority AND gate (PAND),

the sequence enforcing gate (SEQ), the standby or spare gate (Spare), and the functional

dependency gate (FDEP) [65][66].

For systems with perfect fault coverage, the FDEP can be treated as an OR gate

[67][68]; the SEQ gate can be regarded as a special case of a cold spare gate (CSP) [69].

Furthermore, a hot spare gate (HSP) is logically equivalent to an AND gate [70]. Hence,

the study of PAND and Spare (mainly CSP and WSP) gates becomes essential for a DFT

analysis. For a PAND gate, an input indicates the firing of a basic event that occurs in a

predetermined order, and the output indicates whether a failure occurs [37][71]. The

spare gate is usually used to model a standby system consisting of two types of modules:

the primary (or online) modules and the standby modules. When the primary module fails,

standby modules are used to replace the faulty modules to keep the system functional or

operational. Hence, the spare gate fires (i.e., fails) if both of the modules fail.

- 18 -

A phased-mission system (PMS) undergoes different phases of the mission time

and the failure criteria vary at each phase. The mission can fail in any of these phases and

the PMS must be evaluated to obtain the failure probability of each phase. The PMS

achieves an overall mission success only if every phase successfully completes the task.

Hence, the overall mission failure is obtained by a logic OR of the failures of all phases

[72]. The topology of each phase can be described by a fault tree (or a dynamic fault tree

if dynamic behaviors must be considered). Thus, FTA can be used to evaluate the

reliability of a PMS.

2.5. Summary

This chapter reviews the fundamentals of stochastic computation, the theory of

PBNs and the structures of SBNs. The use of non-Bernoulli sequences of fixed counts of

zeros and ones is also introduced as an effective method to improve the accuracy and

efficiency of stochastic computation. As another application of stochastic computation,

the fundamentals of the DFT analysis are also reviewed, including the definitions of

PAND gates, spare gates and a PMS.

- 19 -

Chapter 3

Gene Perturbation and Intervention in

Context-Sensitive Stochastic Boolean Networks

In a gene regulatory network (GRN), gene expressions are affected by noise, and

stochastic fluctuations exist in the interactions among genes. These stochastic interactions

are context dependent, thus it becomes important to consider noise in a context-sensitive

manner in a network model. As a logical model, context-sensitive probabilistic Boolean

networks (CSPBNs) accounts for molecular and genetic noise in the temporal context of

gene functions, so the study of CSPBNs have provided insights into the understanding of

gene perturbation and intervention. Analytical expressions have been derived for

analyzing CSPBNs [73]; however, this method is only applicable to the steady state

analysis of a network with small perturbation and switching probabilities. The method in

[61] ignores some Boolean networks (BNs) with very small probabilities for reducing the

size of the state transition matrix (STM) and thus provides a faster but approximate

solution for computing the steady state distribution (SSD) of a CSPBN. Stochastic logic

has been demonstrated in several biological applications [23][24]. Hence, in this chapter,

a novel structure of context-sensitive stochastic Boolean networks (CSSBNs) is proposed

for modeling the stochasticity in a GRN. The proposed CSSBN model enables a fast

simulation of CSPBNs. The results in this chapter have been published as [74].

The novelty of this chapter is as follows:

 Based on the original stochastic Boolean networks (SBNs) in [30], new SBN models

are developed to evaluate the effect of gene perturbation and intervention in a

context-sensitive environment in a GRN. These models are referred to as CSSBNs.

 A CSSBN analysis provides meaningful insights into the dynamics of the p53-Mdm2

network in a context-switching environment.

 The CSSBN models are used to predict the SSD of genes in a glioma network.

- 20 -

3.1. Context-Sensitive Probabilistic Boolean Networks

In a context-sensitive PBN (CSPBN) with 𝑘 contexts, a network function is

defined as 𝒇𝑗 = (𝑓𝑗
(1), 𝑓𝑗

(2), ⋯ , 𝑓𝑗
(𝑛)) , where 𝑓𝑗

(𝑖)
: {0,1}𝑛 → {0,1} is the predictor

function for gene 𝑖, 𝑖 = 1, 2, ⋯, 𝑛, in context 𝑗 (𝑗 = 1, 2, ⋯, 𝑘) [43][75]. In the 𝑗th

context, assume the network function is given by 𝒇𝑗 = (𝑓𝑗(1)
(1) , 𝑓𝑗(2)

(2) , ⋯ , 𝑓𝑗(𝑛)
(𝑛)), where each

𝑓𝑗(𝑖)
(𝑖)
: {0,1}𝑛 → {0,1} for 1 ≤ 𝑗(𝑖) ≤ 𝑙(𝑖) is a mapping or predictor function determining

the state of gene 𝑖. The probability that the 𝑗th context is selected, is obtained as

𝐶𝑗 = ∏ 𝑐𝑗(𝑖)
(𝑖)𝑛

𝑖=1 for 𝑗 = 1, 2, ⋯ , 𝑘 , where 𝑘 is the number of contexts in a

context-sensitive network [61]. The state of a gene is updated in the selected context; thus

the next state depends on both the present state and the selected context.

In a context-sensitive network, a context may remain for certain time until a

random event occurs. A context switching usually occurs with probability 𝑞. For 𝑞 = 1,

the CSPBN becomes an instantaneous PBN. For 𝑞 < 1, if a new context is to be selected,

it is randomly chosen from the set of network functions: {𝒇1, 𝒇2, ⋯ , 𝒇𝑘}, with a set of

context selection probabilities: {𝐶1, 𝐶2, ⋯ , 𝐶𝑘} [75]. If noise is considered in a CSPBN,

it is often referred to as a perturbation, by which a gene flips its state with a probability 𝑝

(𝑝 ≠ 0). It has been shown that a PBN with perturbation is an ergodic Markov chain in

that all the states are connected in the PBN [19]. The transition probability for any two

states is determined by the values of 𝑝 and 𝑞 pairs. Following [73], one of four

mutually exclusive events occurs at time 𝑡 in a CSPBN with perturbation:

 ∅1: The predictor functions in the currently selected context are applied to update the

gene expressions and this context remains for the next transition.

 ∅2: The predictor functions in the currently selected context are applied to update the

states of the genes and then a new context is selected for the next transition.

 ∅3: A random perturbation occurs and the currently selected context remains for the

next transition.

 ∅4 : A random perturbation occurs and a new context is selected for the next

- 21 -

transition.

The effect of a switching order, i.e., whether a network switches its context before

or after its state transition, is considered in [76], whereas in this dissertation, we focus on

the transition rules, i.e., the network function is applied first and then the context

switches.

A gene activity profile (GAP) is defined as a vector for describing the state of a

network at time 𝑡, 𝒙(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), ⋯, 𝑥𝑛(𝑡)), where 𝑥𝑖(𝑡) ∈ {0,1} for 𝑖 = 1, 2,

⋯, 𝑛. The state of a CSPBN can be represented as a combination of a context and a GAP,

i.e., 𝑺 = (𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑗, 𝐺𝐴𝑃 𝑖). By this definition, the number of states in a CSPBN

increases from 2𝑛 to 2𝑛𝑘 for a network with 𝑛 genes and 𝑘 contexts. A GAP can also

be represented by its decimal index, i.e., 𝑑 = ∑ 2𝑛−𝑗𝑥𝑗(𝑡)
𝑛
𝑗=1 + 1. A state of a CSPBN is

then given by 𝑺 = (𝑓𝑖 , 𝑑) for 𝑖 ∈ {1, 2,⋯ , 𝑘} and 𝑑 ∈ {1, 2,⋯ , 2𝑛}, where 𝑑 is the

decimal index of a GAP. For convenience, a state (𝑓𝑖, 𝑑) is referred to as (𝑖, 𝑑) in the

following analysis.

In a CSPBN with a perturbation probability 𝑝 and a switching probability 𝑞, the

transition probability for any two states 𝒂 and b is given by [76]:

𝑃(𝑺𝑡+1 = 𝒃|𝑺𝑡 = 𝒂) = {(1 − 𝑝)
𝑛𝑓𝑟1,𝑥1,𝑥2 + (1 − 𝑝)

𝑛−ℎ𝑝ℎ𝑠(ℎ)} ∙

[(1 − 𝑞 + 𝑞𝑐𝑟1)𝑔(𝑎, 𝑏) + 𝑞𝑐𝑟2(1 − 𝑔(𝑎, 𝑏))],

(3.1)

where

(3.2)

(3.3)

1 1 2

1 2 1

, ,

1,

0,
r x x

if x directly transitions to x incontext r
f

otherwise

1 21,
(,)

0,

if r r r
g

otherwise

a b

- 22 -

(3.4)

and ℎ is the Hamming distance between two GAPs with decimal indices 𝑥1 and 𝑥2,

𝑥1, 𝑥2 ∈ {1, 2,⋯ , 2𝑛} . This distance indicates the number of genes with different

expressions in the two GAPs 𝑥1 and 𝑥2.

The STM of a CSPBN without perturbation is of the size 2𝑛 ∙ 𝑘 × 2𝑛 ∙ 𝑘, given by

[76]:

(3.5)

and the STM of a CSPBN with perturbation is given by:

(3.6)

where 𝑷𝑖 and denote the STMs for the Boolean network 𝑖 , 𝑖 ∈ {1, 2,⋯ , 𝑘} ,

without and with perturbation respectively.

The study of PBNs has focused on the analysis of SSDs under gene perturbation

and intervention. A Markov Chain Monte Carlo (MCMC) method is used in [44] to

analyze the long run behavior of a PBN; however, this method generally requires a large

number of simulations to reach a steady state, due to the slow convergence typically

encountered in a Monte Carlo method [45]. An analysis is performed in [63] for finding

the SSD of a PBN through the computation of the STM. However, the application of an

analytical approach is generally limited to small networks due to the exponential increase

00
()

,

1,

if h
s h

otherwise

1 1 2 1 1

1 2 ()

(1)

,

1

k

k k k k

q qc qc qc

A

qc qc q qc

P P P

P P P

1 1 2 1 1

1 2

(1)

1()

,

k

k k k k

q qc qc qc

A

qc qc q qc

P P P

P P P

iP

- 23 -

in the size of an STM with gene numbers. The analysis of CSPBNs presents even a

greater challenge due to its significantly increased computational complexity. In

[43][77][78], gene intervention is investigated for avoiding undesirable states associated

with certain diseases (such as cancer). Due to external stimuli, the STM is changed by

external control variables, so desirable states can be obtained with larger probabilities in

the SSD. In a context-sensitive network with 𝑛 genes and 𝑘 contexts, however, a (2
n
 ∙ k)

× (2
n
 ∙ k) [76] (or 2𝑛 × 2𝑛 [61]) matrix is required for an accurate (or approximate)

analysis of the SSD; this results in a computational complexity of O(nk
2
2

2n
) (or O(nk2

n
))

for an accurate (or approximate) computation of the STM. Hence, the application of gene

network analysis was limited to those of less than 15 genes, due to the large

computational complexity required.

3.2. Context-Sensitive Stochastic Boolean Networks without

Perturbation

In a CSPBN, the selection of a context is determined by the context switching

probability. This probability indicates the likelihood to maintain the current context 𝑖 or

to select a new context from the 𝑘 contexts (including the currently selected context 𝑖).

Based on the present state and the selected context, a gene’s state is updated. If no

perturbation occurs in an 𝑛-gene CSPBN with a switching probability 𝑞, the transition

probability from state (𝒔, 𝑦) to (𝒓, 𝑥) is given by [76]:

(3.7)

where

(3.8)

, ,

, ,

(1)
((,) | (,))

()

s y x s

s y x r

f q qC if r s
p r x s y

f qC if r s

, ,

1,

0,
s y x

if y directly transitions to x incontext s
f

otherwise

- 24 -

𝒔 and 𝒓 denote the 𝑠th and 𝑟th contexts, 𝑦 and 𝑥 represent two GAPs (in decimal

indices), and 𝐶𝑠 and 𝐶𝑟 indicate the probability of selecting the 𝑠th and 𝑟th contexts

respectively.

An SBN structure is proposed in [30] to implement an instantaneous PBN. For a

CSPBN, a CSSBN is constructed to consider the switching of contexts, as shown in Fig.

3.1. In this CSSBN model, the probabilistic switching is implemented using a multiplexer

in stochastic computation and the switching probability 𝑞 is encoded as a random binary

sequence Q that serves as the control sequence of a 2-to-1 multiplexer (MUX). If the 𝑗th

bit in the sequence Q is 1, a new context will be selected for the next transition.

Otherwise, the current context will remain. The selection probability of the new context

is determined by the original and current context selection probabilities. As shown in the

lower section of Fig. 3.1, this process is implemented by 2-to-1 multiplexers with the

original and current context selection sequences as inputs and Q as the control sequence.

The selection probability of the new context is then obtained as encoded in the output

stochastic sequences of the multiplexers. If 𝑞 = 0, the CSSBN functions as a fixed BN.

If 𝑞 = 1, the CSSBN is simplified to an instantaneous SBN.

If a switching does occur, the context selection process is implemented by another

multiplexer for choosing one from the 𝑘 contexts, according to predefined selection

probabilities. As a network function is a combination of each gene’s predictor function, a

combination of the 𝑚 control sequences of 𝑆1~𝑆𝑚 is used to encode the predefined

selection probabilities; this in turn determines the selection probability of each new

context. For a CSPBN with 𝑛 genes, the CSSBN needs to be run for each of the 2𝑛

input states and sequences need to be generated for the 𝑚 control signals of the

multiplexer.

For a switching probability of 𝑞 in the proposed CSSBN, the currently selected

context 𝑖 remains at time 𝑡 with a probability of 𝑞 and switches to one of the 𝑘

contexts with a probability of 1 − 𝑞. If the network transitions from GAP 𝑦 to 𝑥 in the

𝑠th context (i.e., 𝑓𝒔,𝑦,𝑥 = 1), then context 𝒔 will remain with probability 1 − 𝑞 + 𝑞𝐶𝑠

- 25 -

at the next time step. Otherwise, the network moves into a new context 𝒓 with

probability 𝑞𝐶𝑟. From this analysis, it can be seen that the CSSBN in Fig. 3.1 computes

the transition probability from state (𝒔, 𝑦) to (𝒓, 𝑥) as given by (3.7). This indicates

that the proposed CSSBN model accurately implements the function of a CSPBN.

Fig. 3.1. A context-sensitive stochastic Boolean network (CSSBN) without perturbation (at time 𝒕). The

multiplexer (MUX) with control sequences 𝑆1~𝑆𝑚 probabilistically determine the selection of a network function for

context 𝑖, while the multiplexer with control sequence Q determines whether a switch of contexts occurs. The selection

probabilities of the new context are computed by the 2-to-1 MUX with the original and current context selection

sequences as inputs and Q as the control sequence.

3.3. Context-Sensitive Stochastic Boolean Networks with

Perturbation

In a PBN with random perturbation, a gene may change its state with a probability

𝑝 during a state transition. Following [18], the effect of perturbation is considered to flip

- 26 -

a gene’s state. Assume in an 𝑛-gene CSPBN, the current GAP at time 𝑡 is given by

𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and γ is the perturbation vector, the GAP at 𝑡 + 1, x′, is given by:

 (3.9)

where is the addition modulo 2 and 𝒇𝑗(∙) is the network function for the 𝑗th

context at time 𝑡.

Fig. 3.2. A context-sensitive stochastic Boolean network (CSSBN) with perturbation. A perturbation network is

implemented by the XOR logic of the perturbation vector and the present state. The probability that either a new

context works or a perturbation occurs is given by the output sequence of an 𝑛-input OR gate, which in turn

determines the selection of a new context (without perturbation) or a perturbed network by a bus (or multiple-bit)

multiplexer (MUX).

To account for the effect of perturbation, a CSSBN with perturbation is constructed,

as shown in Fig. 3.2. In this CSSBN, XOR gates are used to implement the addition

modulo 2 of the perturbation vector and the present state, while an 𝑛-input OR gate is

1 (1)

() (1)

n

n
j

with a probability of p

with a probability of p

x γ
x

f x

- 27 -

used to compute the probability that a perturbation occurs. The output of the OR gate is

then used as the control sequence of a bus (or multiple-bit) multiplexer to decide the

selection of sequences with or without perturbation. If the output sequence of the OR gate

contains all zeros, which means that there is no perturbation, then the next state is given

by the predictor functions in the currently selected context in the original CSSBN without

perturbation; otherwise, the next state is determined by the perturbation effect. A

stochastic analysis of the function of the CSSBN with perturbation shows that the next

state of the network is given by:

𝒙′ = (𝒙⨁𝜸) ∙ (1 − (1 − 𝑝)𝑛) + 𝒇𝑗(𝒙)(1 − 𝑝)
𝑛 (3.10)

which is equivalent to (3.9). This indicates that a CSPBN with perturbation can be

accurately implemented by a CSSBN with perturbation.

3.4. Intervention in Context-Sensitive Stochastic Boolean

Networks

In contrast to perturbation, gene intervention refers to the process of deliberately

changing the states of some genes to guide a network into a desired state [18]. External

stimuli are applied to a network to avoid undesirable states that might be associated with

certain diseases. For an effective intervention, control policies are developed for different

intervention strategies; as several genes may affect the state of the target gene, a single

gene that is most influential on the network state is usually identified as the control gene,

due to its simplistic biological implications [43]. The STM is then changed by an external

intervention [43][77][78].

In a CSPBN, the context information is usually hidden and thus difficult to obtain

in practice. However, gene expressions can readily be observed, so a GAP within all

possible contexts is considered to be undesirable if the GAP is an undesirable state of the

- 28 -

network [79]. Hence, gene intervention refers to changing the state of a network as

represented by a GAP.

For an 𝑛 -gene network, a vector 𝒔 = (𝑠1, 𝑠2, ⋯ , 𝑠𝑛) with 𝑠𝑖 ∈ {0, 1} for any

𝑖 ∈ {1, 2,⋯ , 𝑛}, is defined as the control gene vector, that is, if 𝑠𝑖 = 1, then gene 𝑖 is

selected as a control gene [80]. An intervention vector is defined as 𝒖 = (𝑢1, 𝑢2, ⋯ , 𝑢2𝑛),

𝑢𝑗 ∈ {0,1} for any 𝑗 ∈ {1,2,⋯ , 2𝑛} , where 𝑢𝑗 = 1 (or 0) indicates a flipping (or

remaining) of the state of a control gene at GAP j. If gene 𝑖 is selected to be a control

gene, for example, then 𝑠𝑖 = 1. The expression level of the control gene 𝑖 is then

determined by its current state and the status of 𝒖. If 𝑢𝑗 = 1, i.e., 𝑠𝑖𝑢𝑗 = 1, the state of

control gene 𝑖 is flipped by the external intervention when GAP j emerges; otherwise,

the state of control gene 𝑖 remains unchanged and thus the current state is preserved in

GAP 𝑗 [81][82]. An intervention vector can be obtained by various methods; in this

chapter, a control policy using the SSD [83] is used to obtain 𝒖.

The state of a network under intervention, i.e., a GAP, is determined by the control

signal, the state prior to the intervention and the intervention vector. Let �̂�𝑡 and 𝒙𝑡 be

the GAPs before and after intervention at time 𝑡; if the 𝑔th gene is the control gene (i.e.,

𝑠𝑔 = 1), the state of the network under intervention is given by [75]:

𝒙𝑡 = (�̂�𝑡⨁𝒔𝑔) ∙ 1(𝑢(�̂�𝑡) = 1) + �̂�𝑡 ∙ 1(𝑢(�̂�𝑡) = 0) (3.11)

where 𝒔𝑔 is a vector of 𝑛 bits with 0 at every bit except the 𝑔th bit. 1(∙) is an indicator

function: 1(𝑢(�̂�𝑡)) = 1 if 𝑢(𝒙𝑡) = 1 and 1(𝑢(�̂�𝑡)) = 0 otherwise. When 𝑢(�̂�𝑡) = 0,

the GAP 𝒙𝑡 is maintained; otherwise, the GAP �̂�𝑡 is an undesirable state, for which the

control bit is to be toggled, thereby improving the occurring probability of a desirable

state.

The CSSBN model under intervention is given in Fig. 3.3. If gene 𝑖 is selected as

the control gene, i.e., 𝑠𝑖 = 1, the output of the AND gate is determined by the state of 𝒖.

- 29 -

If state 𝑗 is an undesirable state, i.e., 𝑢𝑗 = 1, the state of the control gene 𝑖 is toggled.

This is implemented by an XOR gate: if 𝑠𝑖𝑢𝑗 = 1, the state of gene 𝑖, given by the

output of an XOR gate, is flipped at the state, or GAP, 𝑗; otherwise, the state is not

changed by the intervention. From this analysis, the state of a network after intervention

is given by:

(3.12)

which is equivalent to (3.11). This indicates that the CSSBN model in Fig. 3.3 accurately

implements the process of external gene intervention.

Fig. 3.3. A context-sensitive stochastic Boolean network (CSSBN) for external gene intervention. 𝑝: perturbation

rate; 𝑞: context switching probability. 𝑠𝑖 indicates whether gene 𝑖 is selected as a control gene and 𝑢 is the derived

intervention vector for all states or gene activity profiles (GAPs) of a network.

3.5. State Transition Matrix and Steady State Distribution

Analysis

As discussed previously, the state of a CSPBN can be represented as S = (context, x)

by considering the selected context and GAP information. Using a CSSBN, the STM can

ˆ ˆ, (1

ˆ ,

)t i t

t

t

if u

otherwise

x s x
x

x

- 30 -

be obtained through the statistics encoded in the output sequences. Given an input state,

each simulation of a CSSBN produces the transition probabilities from this input to all

output states, i.e., the row in the STM for this input. For a CSPBN with 𝑛 genes and 𝑘

contexts, the CSSBN needs to be run for each of the 2𝑛𝑘 input states and an O(n)

number of sequences need to be generated for the control signals of the multiplexers.

As in [30], a factor, 𝐿, is used to account for the computational overhead required

by using a longer stochastic sequence. Therefore, a complexity of O(𝑛𝐿𝑘2𝑛) results for

computing the STM of a context-sensitive network. In a CSSBN, the required minimum

sequence length is typically on a polynomial order of the numbers of genes and contexts,

as shown in the simulation results in Table 3.1. Since the number of possible BNs, 𝑘,

generally increases exponentially with the number of predictor functions for each gene,

the complexity of using a CSSBN to compute the STM, i.e., O(𝑛𝐿𝑘2𝑛), is smaller than

O(𝑛𝑘222𝑛) of an accurate analysis for a CSPBN [76]. As indicated by the shorter average

run time in Table 3.1, this difference becomes significant for a network with a large

number of gene states. In Table 3.1, the simulation results are also provided for CSSBNs

with a single context, i.e., 𝑘 = 1. In this case, the CSSBN degenerates into a

deterministic BN, for which an analytical approach is faster, due to the use of random

binary bit sequences in the stochastic approach. However, the CSSBN approach is faster

in computing the STM for a gene network with a large number of states compared to the

CSPBN approach.

In general, a (2
n
 ∙ k) × (2

n
 ∙ k) STM is required for an accurate CSPBN analysis [76]

while a 2
n
 × 2

n
 STM is needed by an approximate method [61]. As the number of genes

increases in a network, a matrix-based analysis becomes infeasible due to a significant

increase in the required computational resources. The analysis of the SSD is even more

challenging for a CSPBN. For a CSSBN, however, the STM can be effectively computed.

Furthermore, the SSD can be evaluated through an iterative simulation in the temporal

domain (or the so-called time-frame expansion technique [30]). By this technique, an

iterative structure of the CSSBN is used to simulate the temporal evolution of a GRN.

- 31 -

The required number of iterations is determined by the number of state transitions before

reaching a steady state.

Table 3.1. Minimum sequence length and average run time in computing the state transition matrix (STM) for

context-sensitive stochastic Boolean networks (CSSBNs).

𝒏 𝒌 𝑵𝒖𝒎 CSSBN (Norm 2 = 0.05) CSSBN (Norm 2 = 0.03) CSPBN [76]

𝑳

(bits)

Avg. time

(s)

Standard

deviation

𝑳

(bits)

Avg. time

(s)

Standard

deviation

Avg. time

(s)

Standard

deviation

2 1 4 40 1.48× 10−3 4.80× 10−4 100 1.81× 10−3 4.80× 10−4 4.90×

10−4

4.60× 10−4

2 4 16 900 5.53× 10−3 1.67× 10−3 2000 1.12× 10−2 3.60× 10−4 1.25×

10−2

2.51× 10−3

2 16 64 1000 0.64 0.42 6000 1.03 0.11 9.59×

10−2

9.01× 10−3

3 1 8 140 4.46× 10−3 1.32× 10−3 340 8.12× 10−3 9.40× 10−4 1.57×

10−3

4.50× 10−4

4 1 16 250 1.44× 10−2 2.87× 10−3 750 3.68× 10−2 2.68× 10−3 4.43×

10−3

2.70× 10−4

4 16 256 8000 1.43 1.84× 𝟏𝟎−𝟐 20000 3.29 3.83× 𝟏𝟎−𝟐 1.66 0.10

5 1 32 420 4.60× 10−2 2.61× 10−3 1200 0.12 3.14× 10−3 1.86×

10−2

2.14× 10−3

5 32 1024 8000 10.74 1.35× 𝟏𝟎−𝟐 25000 35.54 4.34× 𝟏𝟎−𝟐 24.07 8.39× 𝟏𝟎−𝟐

6 1 64 600 9.99× 10−2 4.58× 10−3 1700 0.34 1.97× 10−3 6.66×

10−2

7.05× 10−3

6 64 4096 24000 74.51 1.21 60000 195.79 4.87 531.07 6.36

7 1 32 1000 0.53 2.76× 10−2 2800 1.34 6.38× 10−2 0.26 7.19× 10−3

7 16 2048 8000 18.89 0.43 25000 50.09 0.27 221.92 1.66

8 1 256 1400 1.46 2.79× 10−2 3500 3.68 0.16 1.05 1.30× 10−2

8 4 1024 4000 5.51 5.17× 𝟏𝟎−𝟐 12500 15.67 0.12 37.41 2.21

9 1 512 2600 5.36 7.64× 10−2 8000 16.27 0.14 4.07 6.89× 10−2

9 4 2048 8000 23.20 0.40 18000 45.92 0.79 72.44 2.62

10 1 1024 4000 18.48 0.13 11000 49.24 0.37 17.51 0.13

10 4 4096 10000 59.94 0.41 30000 162.69 1.13 619.31 13.41

𝑛: the number of genes; 𝑘: the number of contexts. Perturbation and context switch probabilities: 𝑝 = 0.1 and 𝑞 = 0.8

(for 𝑘 > 1). 𝐿: the required minimum sequence length for a given accuracy measured by Norm 2. 𝑁𝑢𝑚: the number of

states for the CSSBN. The results that at least one case of the CSSBN study is faster than the context-sensitive

probabilistic Boolean network (CSPBN), are highlighted in bold.

- 32 -

In a time-frame expanded CSSBN, random binary bit streams are generated for

predictor function selection, gene perturbation and context switching probabilities. As in

[30], non-Bernoulli sequences are used for encoding initial probabilities. These sequences

then propagate through the CSSBNs and the statistics encoded in the output sequences

are used to obtain the SSD. Compared to the use of Bernoulli sequences, as shown in [29],

the use of the non-Bernoulli sequences produces more accurate results for a given

sequence length or requires a shorter sequence length for a desired evaluation accuracy.

As an alternative to an STM-based analysis, the stochastic simulation of CSSBNs

provides flexibility in achieving a tunable accuracy-efficiency tradeoff by using

stochastic sequences of different lengths. Hence, the proposed CSSBN approach is

potentially useful in the analysis of large GRNs.

3.6. Results and Discussion

3.6.1. Simulation of a p53-Mdm2 Network

As a tumour suppressor gene, p53 plays an important role in preventing the

development and progression of tumour cells [84][85]. In a p53 network, signaling

pathways are triggered by external stimuli. For example, DNA damages activate

pathways that involve the genes p53 and Mdm2 (Fig. 3.4) [31][86]. It has been shown

that the expression level of the p53 protein is reversely related with that of the Mdm2

gene, which leads to an oscillatory behavior of the p53-Mdm2 network [31][86]. Various

Boolean models have been developed to simulate the dynamics of a p53 network

[87]-[89]. In this section, the two-gene PBN model developed in [30] for the p53-Mdm2

network is used to illustrate the applicability of context-sensitive stochastic Boolean

networks (CSSBNs). This (instantaneous) PBN of the two genes p53 and Mdm2 consists

of 𝑉 = {𝑥1, 𝑥2} and the predictor function sets 𝐹1 = {𝑓1
(1), 𝑓2

(1), 𝑓3
(1), 𝑓4

(1)} and

𝐹2 = {𝑓1
(2), 𝑓2

(2), 𝑓3
(2), 𝑓4

(2)}. The truth table for the state transitions of this PBN is given as

Table 3.2 [30].

In Table 3.2, the present states of p53 and Mdm2 are indicated by 𝑥1 and 𝑥2

respectively. For a given predictor function, a logical 1 or 0 results as the next state of

- 33 -

each gene. Based on the K-map analysis [90], the predictor function can be implemented

by a combination of logic gates. The probability that each function is selected is given in

the bottom row. In [30], an SBN of the p53-Mdm2 network is proposed. Based on the

general CSSBN model in Fig. 3.1, a CSSBN for the p53-Mdm2 network is shown in Fig.

3.5. In this model, a network function (or a BN) is selected at time 𝑡 − 1 for context 𝑖

and at time 𝑡, the network remains at context 𝑖 with a probability of 𝑞 or switches to

one of the 𝑘 contexts (𝑘 = 16 for this network) with a probability of 1 − 𝑞. This context

switching behavior is modeled by a 2-to-1 MUX for each gene and the switching

probability 𝑞 is encoded in the control bit sequence Q. At the same time, the selection

probabilities of the new context are determined by the 2-to-1 multiplexers with the

original and current context selection sequences as inputs and Q as the control sequence,

as shown in the upper section of Fig. 3.5.

Fig. 3.4. The p53-Mdm2 network (as in [30] and adapted from [31]).

Table 3.2. Truth table of a probabilistic Boolean network (PBN) for the p53-Mdm2 network: 𝒙𝟏, 𝒙𝟐 are the

present states of p53 and Mdm2.

𝑥1𝑥2 𝑓1
(1)

 𝑓2
(1)

 𝑓3
(1)

 𝑓4
(1)

 𝑓1
(2)

 𝑓2
(2)

 𝑓3
(2)

 𝑓4
(2)

00 1 1 1 0 0 0 0 1

01 1 1 0 0 0 0 1 1

10 0 0 1 1 1 1 0 0

11 0 1 1 1 1 0 0 0

𝑐𝑗
(𝑖)

 0.5 0.4 0.09 0.01 0.5 0.4 0.09 0.01

An internal entry indicates whether a logical 1 or 0 would result at the next state of a gene from a selected Boolean update

function. 𝑐𝑗
(𝑖)

 indicates the transition probability by an update function 𝑓𝑗
(𝑖)

 [30].

The context-sensitive p53-Mdm2 network has 2 genes and 16 contexts. If both

context and GAP are considered, there are 2
2
 × 16 = 64 states for the p53-Mdm2 CSSBN.

- 34 -

Given the transition probability for each predictor function (in Table 3.2), the probability

for selecting each context can readily be computed for independent functions, as shown

in Table 3.3.

Fig. 3.5. A context-sensitive stochastic Boolean network (CSSBN) for the p53-Mdm2 network.

With random perturbation to the genes, a CSSBN with perturbation is constructed

as shown in Fig. 3.6. For this two-gene network, a two-input multiplexer is used for each

gene to probabilistically select a perturbed state or the original CSSBN state without

perturbation.

- 35 -

Table 3.3. The network function and selection probability for each context in the p53-Mdm2 network.

Context S2S3, S0S1 Combination Selection probability Context S2S3, S0S1 combination Selection probability

1 00,00 𝑓1
(2)
𝑓1
(1)

 0.25 9 10,00 𝑓3
(2)
𝑓1
(1)

 0.045

2 00,01 𝑓1
(2)
𝑓2
(1)

 0.2 10 10,01 𝑓3
(2)
𝑓2
(1)

 0.036

3 00,10 𝑓1
(2)
𝑓3
(1)

 0.045 11 10,10 𝑓3
(2)
𝑓3
(1)

 0.0081

4 00,11 𝑓1
(2)
𝑓4
(1)

 0.005 12 10,11 𝑓3
(2)
𝑓4
(1)

 0.0009

5 01,00 𝑓2
(2)
𝑓1
(1)

 0.2 13 11,00 𝑓4
(2)
𝑓1
(1)

 0.005

6 01,01 𝑓2
(2)
𝑓2
(1)

 0.16 14 11,01 𝑓4
(2)
𝑓2
(1)

 0.004

7 01,10 𝑓2
(2)
𝑓3
(1)

 0.036 15 11,10 𝑓4
(2)
𝑓3
(1)

 0.0009

8 01,11 𝑓2
(2)
𝑓4
(1)

 0.004 16 11,11 𝑓4
(2)
𝑓4
(1)

 0.0001

The control bits to select a predictor function in Fig. 3.6 are also listed. S0S1: the control bits for p53; S2S3: the control

bits for Mdm2.

Fig. 3.6. A context-sensitive stochastic Boolean network (CSSBN) with perturbation for the p53-Mdm2 network.

The CSSBN is then used to obtain the STM for the p53-Mdm2 network. The norms

‖∙‖1, ‖∙‖2, and ‖∙‖∞ are used to measure the differences of the STMs obtained for the

CSSBN and CSPBN. Assume 𝑨𝐶𝑆𝑆𝐵𝑁 and 𝑨𝐶𝑆𝑃𝐵𝑁 are the obtained STMs for the

CSSBN and CSPBN respectively. Let ∆𝑨 = 𝑨𝐶𝑆𝑆𝐵𝑁 − 𝑨𝐶𝑆𝑃𝐵𝑁 ; the norms of the

differences of the computed matrices (‖∆𝑨‖1，‖∆𝑨‖2 and ‖∆𝑨‖∞) are then shown in

Table 3.4 for different values of the switching probability 𝑞 and perturbation rate 𝑝.

The average run time is also shown for using the CSSBN.

- 36 -

Table 3.4. Differences in the state transition matrices (STMs) obtained using the context-sensitive stochastic

Boolean network (CSSBN) with perturbation, compared to the results by using the analytical context-sensitive

probabilistic Boolean network (CSPBN) approach in [76].

 𝐿 (bits) 𝑞 = 1 𝑝 = 0 𝑞 = 0.99 𝑝 = 0 𝑞 = 0.5 𝑝 = 0 𝑞 = 0.8 𝑝 = 0.01

‖∆𝑨‖1 1k 0.1820 0.2067 0.2320 0.3469

10k 0.0754 0.0754 0.0605 0.0890

100k 0.0291 0.0239 0.0306 0.0210

‖∆𝑨‖2 1k 0.0642 0.0754 0.0706 0.1012

10k 0.0258 0.0259 0.0207 0.0297

100k 0.0101 0.0091 0.0097 0.0080

‖∆𝑨‖∞ 1k 0.0382 0.0413 0.0530 0.0888

10k 0.0144 0.0145 0.0164 0.0249

100k 0.0050 0.0055 0.0064 0.0074

Avg. time (s) 1k 6.01× 10−2 5.47× 10−2 5.34× 10−2 6.23× 10−2

10k 0.32 0.32 0.39 0.32

100k 2.88 2.85 2.85 2.92

The average run time of 20 simulations using the CSSBN is also shown for different perturbation rates, 𝑝, and context

switching probabilities, 𝑞. 𝐿: sequence length.

Fig. 3.7. The steady state distribution (SSD) of the p53-Mdm2 network for different perturbation rate, 𝒑, and

context switching probability, 𝒒. The steady-state probabilities are shown for (a) state 00, (b) state 01, (c) state 10,

and (d) state 11. (𝐿 = 500k bits)

As revealed in Table 3.4, the difference in the STMs computed using the CSSBN

and an analytical CSPBN approach is significantly reduced by increasing the sequence

- 37 -

length 𝐿 . However, the inaccuracies, due to the inherent stochastic fluctuations in

stochastic computation, are generally small and thus negligible. Hence, the proposed

CSSBN model can be used to compute the STM of a CSPBN.

A steady state analysis is further performed on the proposed CSSBN. For the

p53-Mdm2 network, there are four states or GAPs. The probability of each GAP is given

by the sum of the probabilities for all contexts. The simulation results for the four GAPs

with respect to different 𝑝 and 𝑞 values are shown in Fig. 3.7 (using a sequence length

of 500k bits).

As can be seen in Fig. 3.7, while the SSD is determined by both the perturbation

and switching probabilities, the perturbation rate has a greater effect on the final

distribution of the steady state compared to the switching probability. The SSD changes

drastically with the increase of the perturbation rate, whereas the effect of context

switching is rather limited for a given perturbation rate. As 𝑝, 𝑞 ∈ [0, 1], several 𝑝

and 𝑞 pairs are chosen for further analysis. The difference in the SSDs obtained by

using the time-frame expanded CSSBN technique, the approximate [61] and accurate

analysis [76] are shown in Table 3.5.

As revealed in Table 3.5, the CSSBN approach can compute the SSD more

accurately than the approximate analysis. In fact, the difference in the results between the

CSSBN and the accurate analysis is negligible when reasonably long stochastic

sequences are used. With the STM obtained for a CSSBN, an SSD is evaluated and the

results are very close to those obtained using the CSPBN approach, as shown in Fig. 3.8.

A further analysis shows that the relative error is limited to less than approximately 0.2%

for the CSSBN approach.

It can be seen that the SSD can be evaluated by the CSSBN model faster compared

to the accurate analytical approach. It has been shown that a PBN with perturbation

evolves as an ergodic Markov chain [18]. For a larger perturbation probability 𝑝, there is

an increased randomness in the network activities, thus the steady states of the network

are more evenly distributed [76]. Fig. 3.7 further shows that context switching has little

- 38 -

Table 3.5. Differences in steady state distributions (SSDs) computed using the context-sensitive stochastic

Boolean network (CSSBN) model, compared to the results by using approximate [61] and accurate analysis [76].

 𝑝 = 0.01 𝑞 = 0.9 𝑝 = 0.1 𝑞 = 0.8 𝑝 = 0.3 𝑞 = 0.9

‖∆𝑺𝑺𝑫𝐴𝑃−𝐴𝐶‖1 0.0228 0.0214 0.0041

‖∆𝑺𝑺𝑫𝐶𝑆𝑆𝐵𝑁−𝐴𝐶‖1 𝐿 (bits) 10k 0.0094 0.0099 0.0073

50k 0.0061 0.0060 0.0057

100k 0.0047 0.0056 0.0040

‖∆𝑺𝑺𝑫𝐴𝑃−𝐴𝐶‖2 0.0118 0.0118 0.0025

‖∆𝑺𝑺𝑫𝐶𝑆𝑆𝐵𝑁−𝐴𝐶‖2 𝐿 (bits) 10k 0.0055 0.0057 0.0041

50k 0.0036 0.0036 0.0030

100k 0.0028 0.0031 0.0025

‖∆𝑺𝑺𝑫𝐴𝑃−𝐴𝐶‖∞ 0.0074 0.0081 0.0020

‖∆𝑺𝑺𝑫𝐶𝑆𝑆𝐵𝑁−𝐴𝐶‖∞ 𝐿 (bits) 10k 0.0047 0.0045 0.0027

50k 0.0030 0.0029 0.0021

100k 0.0020 0.0022 0.0017

Δ𝑺𝑺𝑫𝐴𝑃−𝐴𝐶: the difference between the results obtained by using the approximate and accurate analysis. Δ𝑺𝑺𝑫𝐶𝑆𝑆𝐵𝑁−𝐴𝐶:

the difference between the results obtained by using the CSSBN approach and the accurate analysis. 𝑝: perturbation rate,

𝑞: context switching probability, 𝐿: sequence length.

Fig. 3.8. Accuracy comparison of the proposed context-sensitive stochastic Boolean network (CSSBN) approach

and the accurate analytical approach [76] for 𝒑 = 0.01, 𝒒 = 0.9 and 𝑳 = 10k bits. The relative error is generally

less than 0.2% for the CSSBN approach.

impact on the SSD of the network with perturbation. This is due to the fact that the

context switching activity only affects the selection probability of a context, but not the

predictor functions.

- 39 -

3.6.2. Experiments on a Glioma Network

A network in [44] obtained from a human glioma gene expression data set [91] is

further used to illustrate the efficiency of the CSSBN model and the time-frame

expansion technique. Based on this data set, a PBN was inferred by a method using the

coefficients of determination (CODs) and an SSD analysis was performed in [63]. An

approximate method was developed in [61] as an extension to estimate the SSD of a

CSPBN with perturbation. The gene TOP2A was not considered in either study as it is an

input gene with an in-degree of zero. In our study, the network setting is considered the

same as in [61][63] with the gene TOP2A removed; this leads to a total of 2
14

 GAPs. Fig.

3.9 shows a detailed structure of the considered glioma network with double (or single) -

headed arrows indicating the bi (or uni) - directional relationships of gene pairs. The

selection probabilities for the predictor functions are shown in Table 3.6 [61] and the

Boolean functions for each gene are obtained through an analysis of the data in [63].

1X

3X

4X

5X

6X

8X

9X

10X

11X

12X

13X

14X

2X

7X

Tie-2

TGF-

beta3;TGFB3

ERCC1

(HSP40);(HD

J1;DNAJ1)

(TDPX2);(PA

G);(NKEFA)

(GSTP1);GST

3;(FAEES3)

GNB1

(NDP kinase B;

NDKB); (NME2);

(PUF); NM23B

(SCYB10);(IN

P10);IP10

PDGFA;PDGFI

(NKEFB);(TS

A);(TDPXI)

Beta Actin

NFKB1;KBF1

(BCL2A1);BFL1

protein; GRS protein

Fig. 3.9. A Glioma network (adapted from [61] and [63]).

- 40 -

In Table 3.6, each column for 𝒇𝑖 , 𝑖 ∈ {1, 2, ⋯, 14}, contains the selection

probabilities for the Boolean update functions of gene 𝑖, with the value in the 𝑗th row as

the probability for 𝑓𝑗
(𝑖)

, thus the probabilities sum to 1 in each column. Table 3.6 also

shows that six genes have only a single predictor function; only the state of gene 6 is

determined by three predictor functions, while the states of the other genes are

determined by two predictor functions.

With the network topology in Fig. 3.9 and the selection probabilities of update

functions in Table 3.6, simulation results can be obtained for certain initial input signal

probabilities and the perturbation and context-switching probabilities.

Table 3.6. Selection probabilities of the Boolean functions, 𝒇𝒊, 𝒊 ∈ {1, 2, ⋯, 14}, for each gene in the glioma

network in Fig. 3.10 [61][63] .

𝒇1 𝒇2 𝒇3 𝒇4 𝒇5 𝒇6 𝒇7

0.8560 0.2768 0.6759 1.0000 1.0000 0.0263 1.0000

0.1440 0.7232 0.3241 0.4983

 0.4754

𝒇8 𝒇9 𝒇10 𝒇11 𝒇12 𝒇13 𝒇14

0.0857 0.5595 0.0751 0.8508 1.0000 0.8697 0.6004

0.9143 0.4405 0.9249 0.1492 0.1303 0.3996

3.6.2.1. Steady State Analysis

For the 14-gene glioma network, there are a total of 384 contexts, as can be

determined from Table 3.6. It requires an STM with 2
14

 × 384 = 6291456 columns and

rows for an accurate analysis. This makes it infeasible to estimate the steady states of a

CSPBN using a matrix-based analysis. The approximate analysis in [61] would require

the computation of an STM of the size 2
14

 × 2
14

. Thus, it is difficult in general to use an

analytical approach to evaluate a large network, due to the demanding computational

resources required. However, a CSSBN model can be constructed for the glioma network;

this CSSBN is based on the constituent SBN, as shown in Fig. 3.10. With the CSSBN,

the SSD can be estimated using the aforementioned time-frame expansion technique with

a greatly reduced complexity. The obtained SSD is then compared with that obtained

from the approximate analysis in [61]. In this dissertation, a network is considered to

- 41 -

have reached a steady state if the discrepancy between two adjacent iterations is smaller

than a required threshold 𝜀 (by (2.14)) or the number of simulation iterations has

reached a maximum constant value.

The state or GAP of the glioma network can be represented by a binary vector as

(𝑥1, 𝑥2, ⋯, 𝑥14), 𝑥𝑖 ∈ {0, 1} for 𝑖 ∈{1, 2, ⋯, 14}, or its decimal index. For example,

the state (01001100011011) can be represented as state 4892. The SSDs of the

context-sensitive glioma network with all 16384 states, obtained using the CSSBN

approach and the approximate analysis [61], are shown in Fig. 3.11.

The norms of the differences of SSDs, obtained by using CSSBN with different

sequence lengths and the approximate method in [61], are shown in Table 3.7.

Table 3.7. Norms of the differences in the computed steady state distributions (SSDs) and average run time for

the glioma network.

 𝑝 = 0.01 𝑞 = 0.9 𝑝 = 0.1 𝑞 = 0.9

𝐿 (bits) 50k 200k 1M 50k 200k 1M

‖∆𝑺𝑺𝑫𝐴𝑃−𝐶𝑆𝑆𝐵𝑁‖1 0.2314 0.1323 0.0861 0.4251 0.2104 0.0939

‖∆𝑺𝑺𝑫𝐴𝑃−𝐶𝑆𝑆𝐵𝑁‖2 0.0055 0.0032 0.0023 0.0045 0.0023 0.0010

‖∆𝑺𝑺𝑫𝐴𝑃−𝐶𝑆𝑆𝐵𝑁‖∞ 0.0013 8.01 × 10−4 4.13 × 10−4 3.05 × 10−4 2.16 × 10−4 7.85 × 10−5

Avg.

time (s)

CSSBN 10.11 311.55 1377.50 10.07 315.65 1380.70

Approximate 21421.00 21417.00

A maximum of 300 iterations are used for obtaining the SSD. 𝑝: perturbation rate; 𝑞: context switching probability; 𝐿:

sequence length. ∆𝑺𝑺𝑫𝐴𝑃−𝐶𝑆𝑆𝐵𝑁: the difference between the SSDs obtained by the approximate analysis [61] and the

context-sensitive stochastic Boolean network (CSSBN) approach.

- 42 -

1X

2X

3X

4X

5X

6X

7X

8X

9X

10X

11X

12X

13X

14X

1

1
f

1

2f

2

1f

2

2f

3

1f

3

2f

4f

5f

6

1f

6

2f

6

3f

7f

8

1f

8

2f

9f

10f

11

1f

11

2f

14

1f

14

2f

13

2f

13

1f

12f

14s

13s

11s

8s

6s

3s

2s

1s

1X

2X

3X

4X

5X

6X

7X

8X

9X

10X

11X

12X

13X

14X

Fig. 3.10. A stochastic Boolean network (SBN) for the glioma network as a basis for the context-sensitive SBN

(CSSBN) model with 384 contexts.

- 43 -

Fig. 3.11. The steady state distributions (SSDs) of the glioma network obtained using the context-sensitive

stochastic Boolean network (CSSBN) time-frame expansion technique and the approximate analysis [61]. 𝐿 =

800k bits.

As shown in Table 3.7, the CSSBN time-frame expansion technique effectively

evaluates the SSD of the glioma network and produces results comparable to those

obtained by the approximate analysis [61]. Evaluation accuracy is further improved by

using longer stochastic sequences with yet a shorter runtime compared to the approximate

method. Since it is difficult, if not impossible, to compute the STM or SSD of a large

GRN by using an accurate or approximate analysis, the CSSBN time-frame expansion

approach provides an alternative means to estimate the SSD of a large network with a

tunable accuracy by using stochastic sequences of different lengths.

3.6.2.2. Intervention Analysis

In an n-gene network, if gene 𝑋𝑖 is the target gene, the states of all genes can be

divided into a set of desirable states, D, and a set of undesirable states, U, by the

expression level of the target gene [83]. As can be seen in Fig. 3.10, gene 𝑋14, the

(BCL2A1);BFL1 protein;GRS protein is one of the most influential genes that interacts

closely with others, thus it is chosen as the target gene. The desirable and undesirable

states are then separated by the expression level of 𝑋14. Assume that the inactivation of

𝑋14 is preferred; the cumulative probabilities of the desirable and undesirable states are

- 44 -

given by ∑ 𝜋𝑥𝑋14=0 and ∑ 𝜋𝑦𝑋14=1 , respectively, where 𝜋𝑥 and 𝜋𝑦 are elements in the

desirable and undesirable SSDs respectively.

As discussed previously, a GRN can be intervened by applying external stimuli to

minimize the likelihood of being in an undesirable state. Various methods have been

proposed for deriving control vectors for an effective intervention [75][83]; in this study

the SSD algorithm proposed in [83] is used to determine an intervention vector. For

simplicity, 16 most significant contexts that account for a total selection probability of

57.27% are chosen from the total 384 contexts of the glioma network for an intervention

analysis. For these 16 contexts, the expression levels of gene 𝑋5 and 𝑋7 have no effect

on the states of other genes, so these two genes are removed; this yields a simplified

12-gene glioma network. The cumulative distributions of the desirable steady states of

the context-sensitive 12-gene glioma network are shown in Table 3.8 for using a different

gene as the control gene.

Table 3.8. Cumulative distributions of the desirable states with a different gene selected as the control gene for

the simplified 12-gene context-sensitive glioma network, with perturbation rate 𝒑 = 0.001 and context switching

probability 𝒒 = 0.99.

gene 𝑋1 𝑋2 𝑋3 𝑋4 𝑋6 𝑋8 𝑋9 𝑋10 𝑋11 𝑋12 𝑋13

70.91% 62.93% 52.61% 45.90% 48.98% 54.78% 53.76% 61.61% 57.23% 56.99% 61.78%

The cumulative probability of the desirable states with no intervention is 45.97%. Sequence length 𝐿 = 800k bits.

When a different gene is selected as the control gene, the effect of intervention

varies with respect to improving the probabilities of desirable states in the SSD. For the

glioma network, as revealed in Table 3.8, gene 𝑋1, Tie-2, is the most effective for

maximizing the percentage of the desirable states. The cumulative distribution of the

desirable states is increased from 45.97% to 70.91% by an intervention using Tie-2 as the

control gene. Also revealed in the table is that an intervention via gene 𝑋4 ,

(HSP40);(HDJ1;DNAJ1), has nearly no impact on the distribution of the desirable states,

as the percentage of the desirable states has not been changed much by the intervention

14

x

x 0

π

- 45 -

Fig. 3.12. Steady state distributions (SSDs) of the 12-gene context sensitive glioma network (𝒑 =0.001, 𝒒 = 0.99).

Obtained by: (a) no intervention, (b) an indirect intervention via gene 𝑋1, Tie-2, and (c) a direct intervention via the

target gene 𝑋14, the (BCL2A1);BFL1 protein;GRS protein.

- 46 -

(i.e., 45.90% vs. 45.97%). A modest improvement in the desirable state distribution is

obtained by an intervention with another gene as the control gene. For any target gene,

this process can be applied to find the most significant gene that maximizes the

probabilities of desirable states.

The effects of intervention can also be seen in Fig. 3.12, where three different

scenarios are considered: (a) no intervention, (b) an indirect intervention via gene 𝑋1, i.e.,

Tie-2, and (c) a direct intervention via the target gene 𝑋14 , the (BCL2A1);BFL1

protein;GRS protein. The cumulative probabilities of the desirable states are 45.97% for

no intervention, 70.91% and 99.99% for the two intervention strategies. As revealed in

these results, a direct intervention of the target gene is perhaps optimal for avoiding the

undesirable states and almost certainly taking the network into a desirable state. However,

when an intervention on the target gene is not possible, an intervention through Tie-2 is

the most effective means to maximize the probability of the down-regulation of the target

gene 𝑋14.

3.7. Summary

CSSBNs are proposed as a fast approach to modeling the effects of gene

perturbation and intervention in GRNs. In a CSSBN, the STM can be computed with a

complexity of O(nLk2
n
), where 𝑛 is the number of genes in a CSPBN, 𝑘 is the number

of contexts and 𝐿 is a factor determined by the stochastic sequence length. This result is

an improvement compared to the previous result of O(nk
2
2

2n
) for an accurate analysis.

The use of non-Bernoulli stochastic sequences further increases computational efficiency

and allows for a tunable tradeoff between accuracy and efficiency. A steady state analysis

using a time-frame expansion technique has shown a significant speedup and produced

more accurate results than an approximate analysis in the computation of the SSD.

CSSBNs are constructed for the analysis of gene perturbation in a p53-Mdm2

network and gene intervention in a glioma network. It has been shown that SSD changes

drastically with the increase of the perturbation rate, whereas the effect of context

switching is rather limited for a given perturbation rate. Therefore, random gene

- 47 -

perturbation may have a greater effect on the final distribution of the steady state

compared to context switching activities. By predicting the SSD, the CSSBN approach

can further evaluate the effectiveness of external gene intervention. A case study of the

glioma network shows that the CSSBNs are useful in modeling the effects of gene

perturbation and intervention in a complex context-sensitive GRN. This will eventually

help drug discovery for an effective drug intervention therapy.

- 48 -

Chapter 4

Stochastic Multiple-Valued Gene Networks

For complex biological networks, the Boolean simplification may incur an accuracy

loss, whereas an approach using multiple-valued variables introduces an increased level

of granularity [48]-[51]. For examples, three states of the protein p53 are considered in

[88][89] and multiple-valued gene nodes are analyzed in a T-helper network [51].

Moreover, deterministic multiple-valued networks are analyzed in [92]. Multiple-valued

networks have also been studied in chemical reactions [93] and cognitive sciences [94].

To further exploit the simplicity of logical models, stochastic multiple-valued networks

(SMNs) are proposed for modeling the effects of noise and gene perturbation in a gene

regulatory network (GRN). An SMN enables a fast simulation of a probabilistic

multiple-valued network (or PMN), as an extension of a probabilistic Boolean network

(PBN). The results in this chapter have been published in [95][96].

The novelty of this chapter is as follows:

 Stochastic multiple-valued logic is generalized from Boolean logic to consider gene

states that are not limited to binary values.

 A stochastic multiple-valued network model, referred to as SMNs, is developed for

modeling the effect of noise and gene perturbation in a GRN. The SMNs provide a

finer granularity in the modeling of GRNs.

 SMNs are constructed to investigate the dynamics of a p53-Mdm2 network and a

WNT5A network with ternary gene states.

4.1. Probabilistic Multiple-Valued Networks

A multiple-valued network of 𝑛 genes is defined by 𝐺(𝑉, 𝐹), with a node set

𝑉 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} and a list of sets of predictor functions 𝐹 = (𝐹1, 𝐹2, ⋯ , 𝐹𝑛) [18]. If

the state of gene 𝑖 is quantized into 𝑘 levels, then 𝑥𝑖 ∈ {0, 1,⋯ , 𝑘 − 1} for 𝑖 ∈

{1, 2,⋯ , 𝑛}. For 𝑘 = 2, a network is referred to as a PBN, where 𝑉 is a set of

- 49 -

binary-valued nodes; for 𝑘 = 3, it is considered as a ternary network [33]. For a

𝑘-valued network of 𝑛 genes, hence, there are a total of 𝑘𝑛 network states or gene

activity profiles (GAPs). A GAP is also given as a decimal index. For a multiple-valued

network of 𝑛 genes, a GAP is indexed by:

𝑑 = ∑ 𝑥𝑖(𝑡) ∙ 𝑘
𝑖−1 + 1𝑛

𝑖=1 , (4.1)

where 𝑥𝑖 is the state of the 𝑖th gene, 𝑖 ∈ {1, 2,⋯ , 𝑛}, and 𝑘 indicates the discretization

level.

For gene 𝑖 (𝑖 ∈ {1, 2,⋯ , 𝑛}), the set of predictor functions is given by 𝐹𝑖 = {𝑓1
(𝑖),

𝑓2
(𝑖), ⋯ , 𝑓𝑙(𝑖)

(𝑖)} , with each predictor function 𝑓𝑗(𝑖)
(𝑖) : {0, 1,⋯ , 𝑘 − 1}𝑛 → {0, 1,⋯ , 𝑘 − 1} ,

where 𝑙(𝑖) is the number of possible predictor functions for gene 𝑖 and 𝑙(𝑖) is usually

a small number [61][62]. Due to the stochastic behavior, the next state of gene 𝑖 is

determined by all of its predictor functions in 𝐹𝑖 , i.e., 𝑓1
(𝑖), 𝑓2

(𝑖), … , 𝑓𝑙(𝑖)
(𝑖)

 with

probabilities 𝑐1
(𝑖), 𝑐2

(𝑖), ⋯ , 𝑐𝑙(𝑖)
(𝑖)

. If the predictor functions are independent, there are

𝑁 = ∏ 𝑙(𝑖)𝑛
𝑖=1 possible realizations of the network, each of which is referred to as a

context. Assume that the 𝑗 th context is represented as 𝒇𝑗 = (𝑓𝑗(1)
(1) , 𝑓𝑗(2)

(2) , ⋯ , 𝑓𝑗(𝑛)
(𝑛)) ,

where each 𝑓𝑗(𝑖)
(𝑖) : {0, 1,⋯ , 𝑘 − 1}𝑛 → {0, 1,⋯ , 𝑘 − 1}, for 1 ≤ 𝑗(𝑖) ≤ 𝑙(𝑖), is a predictor

function of gene 𝑖; the next state of a gene is determined by both the present state and the

selected context.

A multiple-valued network can be modeled by a Markov chain [33], so the next

state of gene 𝑖, 𝑥𝑖 (𝑥𝑖 ∈ {0, 1,⋯ , 𝑘 − 1} (in a k-valued network) is given by:

𝑥𝑖
(𝑡+1) =

{

 0 𝑤𝑖𝑡ℎ 𝐶𝑖

0(𝑺(𝑡)) = 𝑃𝑟(𝑥𝑖
(𝑡+1) = 0|𝑺(𝑡))

1 𝑤𝑖𝑡ℎ 𝐶𝑖
1(𝑺(𝑡)) = 𝑃𝑟(𝑥𝑖

(𝑡+1) = 1|𝑺(𝑡))

⋮

𝑘 − 1 𝑤𝑖𝑡ℎ 𝐶𝑖
𝑘−1(𝑺(𝑡)) = 𝑃𝑟(𝑥𝑖

(𝑡+1) = 𝑘 − 1|𝑺(𝑡))

.

 (4.2)

- 50 -

where 𝐶𝑖
0(𝑺(𝑡)) + 𝐶𝑖

1(𝑺(𝑡)) + ⋯+ 𝐶𝑖
𝑘−1(𝑺(𝑡)) = 1. Thus, the transition probability from

the network state (or GAP) 𝑺(𝑡) at time 𝑡 to 𝑺(𝑡+1) at 𝑡 + 1 is given by:

𝑃𝑟(𝑺(𝑡) → 𝑺(𝑡+1)) = ∏ 𝐶
𝑖

𝑥𝑖
(𝑡+1)

𝑛
𝑖=1 .

(4.3)

Using the decimal indices of GAPs by (4.1), the state transition of a ternary

network is described by the STM as follows:

𝑨 =

[

𝑃𝑟 (1|1) 𝑃𝑟 (2|1) ⋯ ⋯ 𝑃𝑟 (3𝑛|1)

𝑃𝑟 (1|2) 𝑃𝑟 (2|2) ⋯ ⋯ 𝑃𝑟 (3𝑛|2)
⋯
⋯

𝑃𝑟 (1|3𝑛)

⋯
⋯

𝑃𝑟 (2|3𝑛)

⋯
⋯
⋯

⋯
⋯
⋯

⋯
⋯

𝑃𝑟 (3𝑛|3𝑛)]

.

 (4.4)

In 𝑨, each entry indicates the conditional probability that the network transitions

from a present state into a next state. For 𝑁 realizations of the network, 𝑨 can be

obtained as 𝑨 = ∑ 𝑃𝑗
𝑁
𝑗=1 𝑨𝑗 , where 𝑃𝑗 (𝑃𝑗 = ∏ 𝑐𝑗(𝑖)

(𝑖)𝑛
𝑖=1) is the probability that the 𝑗th

realization of the network emerges and 𝑨𝑗 is the STM resulting from the 𝑗th realization

[18]. Hence, the STM can be derived for a multiple-valued network with a complexity of

𝑂(𝑛𝑁𝑘2𝑛), where 𝑁 is the number of possible realizations of the network and 𝑘 is the

quantization level of the gene state.

External stimuli cause random gene perturbation that makes the dynamics of a

network an ergodic Markov chain [19]. In an ergodic Markov chain, all states are

communicated and thus a steady state distribution (SSD) exists in a network. Since a

perturbed gene has 𝑘 − 1 possible states, there are (𝑘 − 1)𝑛0 states for 𝑛0 perturbed

genes (𝑛0 ∈ {1, 2,⋯ , 𝑛}); hence, each of the perturbed states in 𝑺(𝑡+1) is selected with

a probability of [1/(𝑘 − 1)]𝑛0 . The event that no gene is perturbed, occurs with a

probability of (1 − 𝑝)𝑛 . Hence, 𝑺(𝑡+1) is determined by the selected context if no

perturbation exists, i.e. 𝑃𝑟{𝑺(𝑡) → 𝑺(𝑡+1)} = ∏ 𝐶𝑙
𝑥𝑙
(𝑡+1)

𝑛
𝑙=1 . If 𝑛0 genes are perturbed,

𝑺(𝑡) → 𝑺(𝑡+1) occurs with probability 𝑝𝑛0 ∙ (1 − 𝑝)𝑛−𝑛0 ∙ [1/(𝑘 − 1)]𝑛0. Following [33],

- 51 -

the state transition probability from 𝑺(𝑡) to 𝑺(𝑡+1) in a perturbed 𝑘-valued network is

given by:

𝑃𝑟{𝑺(𝑡) → 𝑺(𝑡+1)} = (∏ 𝐶
𝑖

𝑥𝑖
(𝑡+1)

𝑛
𝑖=1) ∙ (1 − 𝑝)𝑛 + 𝑝𝑛0 ∙ (1 − 𝑝)𝑛−𝑛0 ∙ 𝑝0

𝑛0 ∙

1[𝑺(𝑡) ≠ 𝑺(𝑡+1)],

(4.5)

with

𝑛0 = ∑ 1(𝑥𝑖
(𝑡)
≠ 𝑥𝑖

(𝑡+1)
)𝑛

𝑖=1 , (4.6)

𝑝0 = 1/(𝑘 − 1), (4.7)

where 𝑝 is the perturbation rate, 𝑛0 is the number of perturbed genes, 𝑝0 is the

probability that a gene will change to a new state if perturbed, and 1(∙) is an indicator

function: 1[𝑺(𝑡) ≠ 𝑺(𝑡+1)] = 1 if 𝑺(𝑡) ≠ 𝑺(𝑡+1) and 1[𝑺(𝑡) ≠ 𝑺(𝑡+1)] = 0 otherwise.

Using (4.5), a perturbed STM or perturbation matrix [30][61] can be obtained for further

analysis of the SSD.

When gene expressions are discretized by multiple-valued variables, they are not

only affected by the presence of activating or repressing proteins, but also by the absence

of a protein [97]. PMNs have been studied in [50] and [33], respectively, for providing

insights into the long run behaviors of a network with noise. For a 𝑘-valued network of

𝑛 genes with 𝑁 network functions, a 𝑘𝑛 × 𝑘𝑛 matrix is required for an accurate

analysis of the SSD, resulting in a complexity of O(𝑛𝑁𝑘2𝑛) in the computation of the

STM. This also requires a memory usage in the order of at least O(𝑘2𝑛). Since the size of

an STM increases exponentially with the number of genes, the analysis of a large

network with a higher quantization level presents even a greater challenge. This prevents

the use of an accurate analysis in the evaluation of large networks. For a network with an

increased number of genes, a Markov chain Monte Carlo (MCMC) method is often used

- 52 -

to estimate the SSD of a PBN [44] and its multiple-valued extension, PMNs [33]. An

MCMC simulation is considered to produce an accurate result when a sufficient number

of simulations are performed to produce a stable output; however, this number is usually

required to be very large, due to the slow convergence of the MCMC method [45], thus

incurring a very long simulation time.

4.2. Stochastic Multiple-Valued Logic

To reduce the inaccuracy incurred in a binary analysis, multiple-valued logic has

been considered to generalize the stochastic analysis [95]. Stochastic computation is also

applicable to the probabilistic analysis of multiple-valued signals. For a k-valued signal,

the probability of each value is given in a vector 𝑃 = [𝑝𝑘−1, 𝑝𝑘−2, ⋯ , 𝑝1, 𝑝0], with

∑ 𝑝𝑖
𝑘−1
𝑖=0 = 1. This probability vector can be encoded into a multiple-valued stochastic

sequence. An example is shown in Fig. 4.1 for a ternary signal.

“0121012102” for

3.0)2(

4.0)1(

3.0)0(

P

P

P

Fig. 4.1 The stochastic encoding of a ternary signal 𝑨. 𝐴 ∈ {0, 1, 2}; 𝐿 = 10 bits.

Multiple-valued logic includes the buffer, inverter, MIN (minimum), MAX

(maximum) and rotator, some of which are defined as follows [92]:

(1) A multiple-valued buffer:

BUF(𝐴) = 𝐴,

(2) A multiple-valued inverter:

INV(𝐴) = (𝑘 − 1) − 𝐴,

- 53 -

(3) A multiple-valued rotator ∅:

∅(𝐴) = {
𝐴 + 1 𝐴 ≠ 𝑘 − 1
0 𝐴 = 𝑘 − 1

,

The following new logic operators are further defined:

(4) A multiple-valued equal or larger (EL) operator:

𝐸𝐿(𝐴 ≥ 𝑎) = 𝑀𝐴𝑋(𝐴, 𝑎),

(5) A multiple-valued equal or smaller (ES) operator:

𝐸𝑆(𝐴 ≤ 𝑎) = 𝑀𝐼𝑁(𝐴, 𝑎).

Several ternary stochastic processing elements are shown in Fig. 4.2, including a

buffer, an inverter, an EL operator, an ES operator, a MIN, a MAX, a rotate gate and a

4-to-1 multiplexer.

For the ternary MIN logic, if the two inputs are independent with probabilities 𝐴 =

[0.3 0.4 0.3] and 𝐵 = [0.5 0.4 0.1], the output probabilities are expected to be 𝑝(2) =

𝑝𝐴(2) ∙ 𝑝𝐵(2) = 0.3 × 0.1 = 0.03 , 𝑝(0) = 𝑝𝐴(0) + 𝑝𝐵(0) − 𝑝𝐴(0) ∙ 𝑝𝐵(0) = 0.65 and

𝑝(1) = 1 − 𝑝(0) − 𝑝(2) = 0.32. This function can be implemented by the ternary MIN

gate, as shown in Fig. 4.2(e), using stochastic sequences. For a sequence length of 10,000

bits, the output sequence is expected to have approximately 6,500 0’s, 3,200 1’s and 300

2’s. For the ternary rotate logic, if the input’s signal probability is given by 𝐴 = [0.3 0.4

0.3], the output’s signal probability is expected to be 𝑝(0) = 𝑝𝐴(2) = 0.3, 𝑝(1) =

𝑝𝐴(0) = 0.3 and 𝑝(2) = 𝑝𝐴(1) = 0.4. This function can be implemented by the ternary

rotate gate with the use of stochastic sequences (Fig. 4.2(h)).

For the 4-to-1 multiplexer logic in Fig. 4.2(i), its output is determined by its control

bits ′𝑒𝑓′. It takes the value of input 𝑎 for 𝑒𝑓 = 00, 𝑏 for 𝑒𝑓 = 01, 𝑐 for 𝑒𝑓 = 10,

or 𝑑 for 𝑒𝑓 = 11. Similarly, a stochastic multiplexer takes one of the inputs as its

output according to the distributions of control bits (i.e., 00 01 10 11). Thus, the selection

probabilities are encoded in the random sequences of the control bits. As in stochastic

computation, SMNs employ random streams of multiple values to encode probabilities

- 54 -

and computation is performed by stochastic logic. However, these numbers are not

deterministic but probabilistic, due to inherent stochastic fluctuations. For stochastic

Boolean networks (SBNs), it has been shown that the effect of the fluctuation can be

significantly reduced through the use of non-Bernoulli sequences as initial input

probabilities [30]. Here, stochastic sequences of random permutations of fixed numbers

of the multiple values, hereafter referred to as randomly permuted sequences, are used for

encoding initial input probabilities. The use of randomly permuted sequences reduces the

amount of stochastic fluctuations in a network. It will be shown that the effect of

fluctuation is negligible when a reasonable sequence length is used in the simulation.

outP

aP

eP

11

00

bP

cP

dP

01

10

fP

012120

001120

011020

102120

011220

011010

110010

3.0)2(

4.0)1(

3.0)0(

A

A

A

p

p

p
0102112102

3.0)2(

4.0)1(

3.0)0(

p

p

p
0102112102

TB 0102112102 2120110120
TI

(a) (b)

0102112102 0102110100
MIN

1222210100

0102112102 1222212102
MAX

1222210100

0102112102
MIN

0102112102

0102112102 0102112102 1210220210rotate

(e) (f)

(g) (h)

e f

3.0)2(

4.0)1(

3.0)0(

A

A

A

p

p

p

3.0)2(

4.0)1(

3.0)0(

p

p

p

6.0)2(

3.0)1(

1.0)0(

p

p

p
3.0)2(

4.0)1(

3.0)0(

A

A

A

p

p

p

4.0)2(

3.0)1(

3.0)0(

B

B

B

p

p

p

3.0)2(

4.0)1(

3.0)0(

A

A

A

p

p

p

3.0)2(

4.0)1(

3.0)0(

A

A

A

p

p

p 3.0)2(

4.0)1(

3.0)0(

p

p

p

3.0)2(

4.0)1(

3.0)0(

A

A

A

p

p

p

4.0)2(

3.0)1(

3.0)0(

p

p

p

3.0)2(

4.0)1(

3.0)0(

A

A

A

p

p

p

4.0)2(

3.0)1(

3.0)0(

B

B

B

p

p

p
1.0)2(

4.0)1(

5.0)0(

p

p

p

a
b

d
c

(i)

3.0)2(

4.0)1(

3.0)0(

A

A

A

p

p

p
0102112102

3.0)2(

7.0)1(

0.0)0(

p

p

p
1112112112 0102112102 1110110110

(c) (d)
3.0)2(

4.0)1(

3.0)0(

A

A

A

p

p

p

0.0)2(

7.0)1(

3.0)0(

p

p

p

1 1

Fig. 4.2. Stochastic logic: (a) a ternary buffer (TB); (b) a ternary inverter (TI); (c) an equal or larger

(EL) operator; (d) an equal or smaller (ES) operator; (e) a ternary minimum (MIN) with

independent inputs; (f) a ternary maximum (MAX) with independent inputs; (g) a ternary MIN with

totally dependent inputs；(h) a ternary rotate gate; (i) a 4-to-1 multiplexer. A probabilistic computation

is performed through stochastic logic operations by encoding signal probabilities into random sequences.

- 55 -

4.3. Stochastic Multiple-Valued Networks without Perturbation

In the general case that multiple quantization levels are considered, an SMN can be

constructed to model a multiple-valued gene network. As discussed previously, the next

state of a gene is determined by the present state of its input genes and a set of predictor

functions according to their occurring probabilities. In an SMN, these probabilities are

represented by randomly permuted multiple-valued sequences and the selection of the

predictor functions is implemented by a multiple-input multiplexer with properly

generated control sequences. A structure of the SMN for a single gene is shown in Fig.

4.3.

1

2

n

i

multiple-valued
function 1

MUX

Present
State

1S mS

multiple-valued
function 2

multiple-valued
function l(i)

k valued genes

Fig. 4.3. A stochastic multiple-valued network (SMN) without perturbation (for a single gene 𝒊). The control

sequences 𝑆1~𝑆𝑚 of the multiplexer (MUX) probabilistically determine the selection of the multiple-valued functions.

If the next state of gene 𝑖 is determined by 𝑙(𝑖) predictor functions, the number

of control bits of the multiplexer is given by ⌈𝑙𝑜𝑔2(𝑙(𝑖))⌉. By a multiplexer with control

bits 𝑆1~𝑆𝑚, a function is selected in the 𝑗th BN for gene 𝑖 with probability 𝑐𝑗(𝑖)
(𝑖)

.

Assume that a network transfers from state 𝑺(𝑡) to 𝑺(𝑡+1) in a context (or network

function), then the transition probability for 𝑺(𝑡) → 𝑺(𝑡+1) is given by the probability of

selecting this context. This indicates that when all the genes are considered, the SMN

model in Fig. 4.3 accurately implements the function of (4.3).

- 56 -

4.4. Stochastic Multiple-Valued Networks with Perturbation

Under external stimuli, a gene’s state can be perturbed by a small chance during a

transition [19]. In a 𝑘-valued network of genes, a perturbation flag vector 𝜸 is used to

indicate whether a gene is to be perturbed. Assume that the network goes from state 𝑺(𝑡)

to 𝑺(𝑡+1) under perturbation. If each gene is to be perturbed with a probability 𝑝, the

probability that the next state is totally determined by a network function (i.e., no

perturbation occurs) is (1 − 𝑝)𝑛. When a perturbation occurs, the state of the perturbed

gene transitions to a different state: this new state is determined by the present state and

the value in the perturbation flag vector 𝜸. Without the loss of generality, a set of

transition rules can be determined, as shown in Table 4.1 for a ternary network. The set

of rules in Table 4.1 can be implemented by sum and modulo operations; for 𝑺(𝑡) =

(0, 0, 0, 1, 1, 1, 2, 2, 2) and 𝜸 = (0, 1, 2, 0, 1, 2, 0, 1, 2), as an example, the next state is

given by 𝑺(𝑡+1) = 𝑚𝑜𝑑𝑢𝑙𝑜 ((𝑺(𝑡) + 𝜸), 3) = (0, 1, 2, 1, 2, 0, 2, 0, 1) . Hence, the

perturbation in a ternary network can be implemented by the sum and modulo operations.

For a network of higher levels, similar operations can be implemented for the

perturbation (although not discussed in detail), while for a Boolean network, this

operation is simplified to an XOR gate.

Table 4.1. State transition rules for a gene in a ternary network under perturbation.

Current State

(𝑥)

perturbation

(𝛾)

Next State

(𝑥′ = 𝑚𝑜𝑑𝑢𝑙𝑜(𝑥 + 𝛾, 3))

0 1 1

2 2

1 1 2

2 0

2 1 0

2 1

For an SMN, therefore, if 𝑺(𝑡) = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) is the GAP or state of the network

at time 𝑡; the next state 𝑺(𝑡+1) is given by:

- 57 -

𝑺(𝑡+1) = {
𝑚𝑜𝑑𝑢𝑙𝑜(𝑠𝑢𝑚(𝑺(𝑡) , 𝜸), 𝑘) 𝑤𝑖𝑡ℎ 1 − (1 − 𝑝)𝑛,

𝒇𝑗(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 𝑤𝑖𝑡ℎ (1 − 𝑝)𝑛,

 (4.8)

where 𝑝 is the perturbation rate for each gene and 𝒇𝑗(∙) is the 𝑗th realization of the

network at time 𝑡. (4.8) indicates that no perturbation occurs, i.e., 𝛾𝑖 = 0 for any

𝑖 ∈ {1, 2,⋯ , 𝑛}, with a probability of (1 − 𝑝)𝑛. In this case, the next state 𝑺(𝑡+1) is

determined by the selected context (or the network function). If gene 𝑖 is perturbed, 𝛾𝑖

in 𝜸 is assigned to be 𝑚 (𝑚 ≠ 0) with a probability of 1/(𝑘 − 1); the gene’s state 𝑥𝑖

is then changed from 𝑗 to 𝑚 (𝑚 ≠ 𝑗) with a probability of 1/(𝑘 − 1) [33]. This state

transition under perturbation is then implemented by the function of

𝑚𝑜𝑑𝑢𝑙𝑜(𝑠𝑢𝑚(𝑺(𝑡) , 𝜸), 𝑘). In a network of 𝑛 genes, if 𝑛0 genes are to be perturbed,

this indicates that the perturbation flag vector 𝜸 contains 𝑛0 non-zero values and

𝑛 − 𝑛0 zeros. For each zero, the current state of the corresponding gene remains, as

shown in the aforementioned example. For the 𝑛0 non-zero values, a different set of

values leads to a different next state of the perturbed genes. For random gene perturbation,

each set occurs with a probability of [1/(𝑘 − 1)]𝑛0, so the network transition from the

present state to a particular next state, i.e., 𝑺(𝑡) → 𝑺(𝑡+1), occurs with a probability of

𝑝𝑛0 ∙ (1 − 𝑝)𝑛−𝑛0 ∙ [1/(𝑘 − 1)]𝑛0. Since a perturbed state is considered to be different

from the present state, i.e. 𝑺(𝑡+1) ≠ 𝑺(𝑡), under perturbation, the probability of the state

transition of (4.8) is given by (4.5).

To account for the perturbation effect, a modified SMN is shown in Fig. 4.4. The

probability that the multiple-valued network is left without perturbation or that a

perturbation takes effect, is determined by the output of an 𝑛-input MAX gate. In the

SMN in Fig. 4.4, gene perturbation is considered as follows. Since a random gene

perturbation probabilistically changes the state of a gene, the modules of sum and modulo

𝑘 operations are used to implement the perturbation function (of the perturbation vector

and the genes’ current states). The 𝑗th perturbation vector, 𝑃𝑒𝑟𝑗, is a sequence consisting

of a number of 𝑖’s, 𝑖 = 0, 1,⋯ , (𝑘 − 1); for instance, if an 𝐿-bit sequence 𝑃𝑒𝑟𝑖 is used

- 58 -

to indicate the perturbation rate 𝑝 in a ternary network and let 𝑀 = 𝐿 ∙ 𝑝, then there are

𝐿 −𝑀 0’s, 𝑀/2 1’s and 𝑀/2 2’s in the sequence.

1

2

n

1

2

n

Original SMN without perturbation

MUX

1

0

sum

Present State Next State

1Per

2Per

nPer

1

1

1

perturbation

sum

sum

MIN

MIN

MIN

MAX

modulo k

modulo k

modulo k

Fig. 4.4. A stochastic multiple-valued network (SMN) structure with perturbation. Gene perturbation is

implemented by the sum and modulo 𝑘 functions of the perturbation vector and the present state.

This indicates that if a gene at state 𝑖 is perturbed, the new state can be any

𝑗(𝑗 ≠ 𝑖) with an equal probability of 1/(𝑘 − 1). Hence, if 𝑛0 genes are perturbed, a

perturbed state is chosen with a probability of [1/(𝑘 − 1)]𝑛0. The probability that either

an original multiple-valued function works or a perturbation occurs (by (4.8)) is

implemented by the output sequence of an 𝑛-input MAX gate. This sequence is then

used as the control sequence of a bus (or multiple-bit) multiplexer. If no perturbation

occurs, the perturbation vectors (′𝑃𝑒𝑟1′, ′𝑃𝑒𝑟2′, ⋯, ′𝑃𝑒𝑟𝑛′ in Fig. 4.4) consist of all

zeros, and thus the output sequence of the MAX gate will contain all zeros. The next state

is subsequently given by the original SMN without perturbation; otherwise, the next state

is determined by the perturbation probability encoded in the output sequence of the MAX

gate. From this analysis, it can be seen that the SMN model computes the function of (4.8)

- 59 -

and thus computes the transition probability of (4.5). This indicates that it accurately

implements a probabilistic multiple-valued network with perturbation.

4.5. State Transition Matrix and Steady State Distribution

Analysis

In the simulation of an SMN, each input combination results in output sequences

that contain information about the transition probability from this input to every output

(or next state). For a deterministic input (i.e. the present state), the proportions of the

numbers of the next states encoded in the output sequences return the statistics as the

transition probabilities in a row in the STM. Hence, all the transition probabilities for this

input can be generated in a single run. For a PMN with 𝑘 levels and 𝑛 genes, the SMN

needs to be run for each of the 𝑘𝑛 input states and an 𝑂(𝑛) number of sequences need

to be generated for the control signals of the multiplexers.

The accuracy in the computed state transition probabilities is determined by the

length of the stochastic sequences. Since longer sequences are usually required in a larger

network for achieving an evaluation accuracy, a factor, 𝐿, is used here to account for the

computational overhead required by using a longer stochastic sequence. For a 𝑘-valued

network of 𝑛 genes, a complexity of O(𝑛𝐿𝑘𝑛) results for computing the STM at a

desired accuracy. As shown in the simulation results in Table 4.2, the required minimum

sequence length increases slower with the numbers of genes than the number of possible

networks, 𝑁, which generally increases exponentially with the number of genes in a

network. Therefore, the complexity of using an SMN to compute the STM, i.e., O(𝑛𝐿𝑘𝑛),

is smaller than O(𝑛𝑁𝑘2𝑛) of an accurate analysis [33]. This difference becomes

significant for a large network, as indicated by the shorter average run time in Table 4.2.

In a network with a large number of genes, a matrix-based analysis becomes

cumbersome because of the size of the involved matrices. A steady state analysis

becomes even more challenging. Using an SMN, however, the STM can be accurately

computed. The SSD can be evaluated by using the so-called time-frame expansion

- 60 -

technique [30]. By this technique, the temporal evolution of a multiple-valued network is

simulated using a spatially iterative structure of the SMN. The number of iterations is

determined by the number of state transitions before reaching a steady state.

Table 4.2. Minimum sequence length and average run time required in computing the state transition matrix

(STM) of ternary stochastic multiple-valued networks (SMNs), compared to those obtained by a Markov chain

analysis [33].

𝑛 𝑁 Num

of

states

SMN (Norm 2 = 0.04) SMN (Norm 2 = 0.02) Markov chain analysis

[33]

𝐿 Avg. time

(s)

Std.

𝐿 Avg. time

(s)

Std.

Avg. time

(s)

Std.

2 4 9 0.26k 2.76×

10−3

4.40×

10−4

1k 6.66×

10−3

9.70×

10−4

3.44× 10−3 1.90×

10−4

3 8 27 0.9k 2.32×

10−2

1.31×

10−3

3.6k 8.36×

10−2

4.19×

10−3

2.35× 10−2 1.68×

10−3

4 16 81 1.6k 0.15 5.06×

10−3

6k 0.53 4.16×

10−3

0.20 6.44×

10−3

5 32 243 2.7k 0.93 3.97×

10−2

10k 3.38 1.38×

10−2

1.61 1.22×

10−2

6 64 729 4.2k 4.67 2.43×

10−2

17k 15.07 3.06×

10−2

12.39 0.36

7 128 2187 6k 24.27 0.17 24k 74.78 0.62 119.08 5.92

8 256 6561 10k 136.93 3.03 34k 438.99 11.95 1003.70 37.18

𝑛: the number of genes; 𝑁: possible number of networks; perturbation rate 𝑝 = 0.1; 𝐿: required minimum sequence

length. Accuracy of the SMN approach is measured by norm 2 between the STMs obtained by the Markov chain

analysis and the SMN approach. An equal number of predictor functions are randomly generated for each gene.

A general multiple-valued network (with any 𝑘) can be analyzed by the time-frame

expanded SMN approach. The simulation results in Table 4.3 reveal that, while the SMN

approach takes longer time than a Markov chain analysis [33] for small networks, it

becomes faster in the analysis of large networks. Although the evaluation accuracy

slightly decreases with the increase of the discretization level, k, a better accuracy is

obtained when longer stochastic sequences are used.

- 61 -

Table 4.3. Average run time (Avg. time) in computing the steady state distribution (SSD) of stochastic

multiple-valued networks (SMNs), compared to the use of a Markov chain analysis [33]. Accuracy of the SMN

approach is measured by norm 2 between the SSDs, i.e. ‖∆𝑺𝑺𝑫‖𝟐, obtained by the Markov chain analysis [33]

and the SMN approach.

𝑛 𝑁 𝑘 Time-frame expanded SMN approach Markov

[33]

Avg.

𝐿 Avg.

time (s)

‖∆𝑺𝑺𝑫‖2 𝐿 Avg.

time (s)

‖∆𝑺𝑺𝑫‖2 𝐿 Avg.

time (s)

‖∆𝑺𝑺𝑫‖2

2 4 3 1k

1.79×

10−2

0.0255 10k

0.19 0.0096 100k

1.39 0.0058 1.63×

10−2

4 1.74×

10−2

0.0282 0.18 0.0105 1.37 0.0072 2.05×

10−2

5 2.01×

10−2

0.0306 0.16 0.0125 1.63 0.0091 1.65×

10−2

6 1.99×

10−2

0.0312 0.18 0.0130 1.54 0.0106 4.96×

10−2

3 8 3 1k

3.31×

10−2

0.0283 10k

0.27 0.0099 100k

2.62 0.0049 4.37×

10−2

4 2.97×

10−2

0.0303 0.27 0.0104 2.49 0.0054 9.40×

10−2

5 2.81×

10−2

0.0310 0.28 0.0116 2.54 0.0064 0.38

6 2.94×

10−2

0.0323 0.27 0.0121 2.46 0.0073 1.05

4 16 3 1k

3.31×

10−2

 0.0293 10k

0.37 0.0098 100k

3.21 0.0045 0.24

4 3.95×

10−2

0.0302 0.36 0.0100 2.82 0.0046 1.63

5 3.36×

10−2

0.0312 0.31 0.0107 2.84 0.0054 8.52

6 3.26×

10−2

0.0317 0.31 0.0110 2.86 0.0059 35.33

The steady state is considered to have been reached in 30 iterations. 𝑛: the number of genes; 𝑁: possible number of

networks; 𝑘: the discretization level of a gene network (all genes are assumed to have the same discretization level);

perturbation rate 𝑝 = 0.1; 𝐿: sequence length used in the simulation.

The memory usage of the SMN approach is further investigated and compared to

that of the Markov chain analysis [33]. As shown in the simulation results in Table 4.4,

the Markov chain analysis requires less memory than SMN for small networks with a low

- 62 -

quantization level, 𝑘, whereas the required memory outgrows that of the SMN approach

in the analysis of a larger network with a larger 𝑘. In fact, the required memory by the

Markov chain analysis increases exponentially with the number of genes and depends

heavily on 𝑘, because of the increased size of transition matrices in an analysis. On the

other hand, the memory required by the time-frame expanded SMN approach is mainly

determined by the sequence length (L) and number of genes (𝑛), while the quantization

level (𝑘) has little impact. It is also shown that the Markov chain analysis incurs a

significantly longer run time than the SMN approach in the analysis of networks with

larger 𝑛 and 𝑘. Although a constant sequence length (30k) is used for the simulation

results in Table 4.4, further simulations using different sequence lengths show a similar

pattern. As reported in the Results and Discussion section, these features make the SMN

approach faster than an analytical Markov chain approach while producing more accurate

results compared to the Monte Carlo method in the analysis of large gene networks.

Table 4.4. Required memory usage in computing the steady state distribution (SSD) of multiple-valued networks

by the Markov chain analysis [33] and time-frame expanded stochastic multiple-valued network (SMN)

approach, given by 𝑴𝒆𝒎𝑴𝑪𝑨 (M Byte) and 𝑴𝒆𝒎𝑺𝑴𝑵 (M Byte) respectively. Average (Avg.) time (s) is also

provided.

 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

𝑛 = 2 𝑛 = 3

𝑀𝑒𝑚𝑀𝐶𝐴 2.60×

10−3

6.80×

10−3

1.56×

10−2

3.14×

10−2

1.83×

10−2

9.68×

10−2

0.36 1.08

Avg. time 1.63×

10−2

2.05×

10−2

1.64×

10−2

4.96×

10−2

4.37×

10−2

9.39×

10−2

0.38 1.05

𝑀𝑒𝑚𝑆𝑀𝑁 5.98 5.98 5.98 5.98 8.73 8.73 8.73 8.73

Avg. time 0.47 0.45 0.46 0.47 0.69 0.72 0.70 0.69

 𝑛 = 4 𝑛 = 5

 𝑀𝑒𝑚𝑀𝐶𝐴 0.15 1.51 8.97 38.49 1.36 24.04 223.64 1384.30

Avg. time 0.24 1.63 8.52 35.33 1.40 21.86 200.21 1272.67

𝑀𝑒𝑚𝑆𝑀𝑁 11.47 11.47 11.48 11.48 14.22 14.23 14.24 14.27

Avg. time 0.93 0.93 0.92 0.93 1.17 1.18 1.20 1.29

50 iterations are performed in each simulation. 𝑛: the number of genes; 𝑘: the discretization level of a gene network;

perturbation rate 𝑝 = 0.1; sequence length: 𝐿 = 30k. Two predictor functions are randomly generated for each gene.

- 63 -

4.6. Results and Discussion

4.6.1. A Multiple-Valued p53-Mdm2 Network

p53 is a tumour suppressor gene that plays an important role in preventing the

development and progression of tumour cells [84][85]. External stimuli such as DNA

damages can activate signaling pathways that involve the genes p53 and Mdm2. The

dynamic behavior of a p53 network has been studied by using various Boolean models

[87][88] and an oscillatory behavior of the p53 and Mdm2 has been observed [31][86].

A four-node network has been analyzed in [88][89] with “DNA damage” as one of

the nodes. As DNA damage (such as double strand breaks) is one of the major factors

that activate the p53 network [31][85][86], a three-node network that excludes the DNA

damage as an external factor, as shown in Fig. 4.5, is considered in this section for an

application of the SMN model. Let 𝑋1 denotes the gene p53, cytoplasmic p53 and

nucleic p53 (i.e. protein p53), and 𝑋2 and 𝑋3 denote the cytoplasmic Mdm2 and

nucleic Mdm2, respectively. As protein p53 activates the cytoplasmic Mdm2 that has a

positive effect on the nuclear Mdm2. Thus, protein p53 promotes nucleic Mdm2

indirectly through the cytoplasmic Mdm2. At the same time, p53 down-regulates nucleic

Mdm2 by directly inhibiting the nuclear translocation of p53 [88][89].

Based on these interactions, an SMN for the p53 network is established as follows:

𝑉 = {𝑋1, 𝑋2, 𝑋3}, where 𝑋1 has ternary values, each of which indicates a different

concentration level of the p53 protein (low, medium and high) [88], while 𝑋2 and 𝑋3

are binary nodes, with the ternary functional sets 𝐹1 = {𝑓1
(1), 𝑓2

(1)}, 𝐹2 = {𝑓1
(2), 𝑓2

(2)},

and 𝐹3 = {𝑓1
(3), 𝑓2

(3)}. Given their truth tables [89], these functions can be implemented

by multiple-valued logic gates. For the gene node 𝑋2 (i.e. cytoplasmic Mdm2), for

example, the state transitions are shown in the first and last columns in Table 4.5. These

transitions can be implemented by an ES operator and two rotate gates, as shown in Fig.

4.6. The intermediate states during the transitions are shown in Table 4.5.

- 64 -

protein p53

nuclear
Mdm2

cytoplasmic
Mdm2

1X

2X 3X

Fig. 4.5. The multiple-valued p53-Mdm2 network under DNA damage (adapted from [88][89]).

Table 4.5. State transitions of 𝑿𝟐.

𝑋1 𝑋1 (≥1) 𝑋2 (rotate) 𝑋2

0 1 2 0

1 1 2 0

2 2 0 1

Table 4.6. Truth table for 𝑿𝟏 [89].

𝑋3 𝑋1 𝑋1

0 0 1

0 1 2

0 2 2

1 0 0

1 1 0

1 1

Table 4.7. Truth table for 𝑿𝟑 (adapted from [89]).

𝑋1 𝑋2 𝑋3

0 0 0

0 1 1

1 0 0

1 1 1

2 0 0

2 1 1

rotate rotate
2X

1X
1X 2X

1

Fig. 4.6. A stochastic multiple-valued network for gene 𝑿𝟐 (cytoplasmic Mdm2).

Similarly, the implementation functions for the other genes 𝑋1 and 𝑋3 can be

determined from their truth tables as well (in Tables 4.6 and 4.7 respectively).

While the state transition in [89] is dependent on the current state and the state after

transition, random state transitions are considered in this work, as in [18]-[20][33]. Under

this assumption, the present state is transitioned into a next state with a transition

- 65 -

probability when perturbation occurs. The selection probabilities are shown in Table 4.8

for the predictor functions.

Table 4.8. The selection probabilities of the predictor functions for the multiple-valued p53-Mdm2 network.

𝒇1 𝒇2 𝒇3

0.95 0.95 0.95

0.05 0.05 0.05

MUX

0

MUX

1

)3(

1f

)3(

2f

0

1

1S

3S

1X

2X

3X

1X

2X

3X

MUX
0

1

2S

TB

TB

TB

rotate

rotate rotate

MUX

0

1

)2(

1f

)2(

2f

)1(

1f

)1(

2f

rotate

TB

rotate

1

1

1

Fig. 4.7. A stochastic multiple-valued network (SMN) for the p53-Mdm2 network under DNA damage.

For the p53-Mdm2 network in Fig. 4.5, an SMN can be constructed for

implementing its functions, as shown in Fig. 4.7. For this three-gene network, a two-input

multiplexer is used for each gene to probabilistically select a function with the selection

probability encoded in the control sequence. For the update functions, 𝑓1
(𝑖)

 (𝑖 ∈ {1, 2, 3})

is for the state transition due to interactions with other genes or the change of the current

state, while 𝑓2
(𝑗)

 (𝑗 ∈ {1, 2, 3}) indicates the preservation of the current state. In this

model, the effect of asynchronicity [98] is implicitly considered at each step of the state

updating process. For each input state, the output sequences are read out and decoded into

(transition) probabilities.

- 66 -

The p53 SMN model is used to compute the STM for this network, which is

compared to the STM obtained by a Markov chain analysis. Let 𝑨𝑆𝑀𝑁 and 𝑨𝑀𝐶𝐴 be the

STMs obtained by the SMN and a Markov chain analysis; the difference between these

two matrices is then given by ∆𝑨 = 𝑨𝑆𝑀𝑁 − 𝑨𝑀𝐶𝐴. For the multiple-valued p53-Mdm2

network with no perturbation, we obtain ‖∆𝑨‖1 = 0.0049, ‖∆𝑨‖2 = 0.0023 and

‖∆𝑨‖∞ = 0.0021 by using a sequence length of 10,000 values for the SMN.

The STM of the p53-Mdm2 network under perturbation can similarly be computed

using an SMN with perturbation (by implementing the SMN in Fig. 4.7 into that of Fig.

4.4). The STMs obtained by different approaches are illustrated in Fig. 4.8, while the

norms of the differences, ‖∆𝑨‖1，‖∆𝑨‖2 and ‖∆𝑨‖∞, are shown in Table 4.9 for using

different sequence lengths. The average run time is also provided for both approaches.

Fig. 4.8. State transition matrices (STMs) obtained by Markov chain method [33] and stochastic multiple-valued

network (SMN) approach for the dynamic p53-Mdm2 network. Sequence length: 𝐿 = 10,000 values; perturbation

rate: 𝑝 = 0.1.

As revealed in Table 4.9, the difference between the STMs computed using the

SMN model and the Markov chain analysis decreases with the increase of sequence

length 𝐿. For the same accuracy requirement, as can be seen, a larger sequence length is

needed for a higher perturbation rate. This relationship between the sequence length and

perturbation rate is further shown in Fig. 4.9. However, the computational inaccuracy due

to the inherent stochastic fluctuation in stochastic computation is generally small and

- 67 -

negligible. Hence, the proposed SMN model can compute the STM of a PMN with or

without perturbation.

Table 4.9. Norms of the difference between the state transition matrices (STMs) obtained by Markov chain

analysis (MCA) and stochastic multiple-valued network (SMN) for the p53-Mdm2 network, ∆𝑨𝑴𝑪𝑨−𝑺𝑴𝑵.

 𝑝 = 0

𝐿 (bits) 1,000 10,000 100,000

‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖1 0.0091 0.0049 7.6500 × 10−4

‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖2 0.0091 0.0023 8.1496 × 10−4

‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖∞ 0.0183 0.0021 0.0016

Avg. time (s) MCA 5.22× 10−3

SMN 6.8× 10−2 0.59 5.73

 𝑝 = 0.1

𝐿 (bits) 1,000 10,000 100,000

‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖1 0.0368 0.0097 0.0030

‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖2 0.0210 0.0061 0.0016

‖∆𝑨𝑀𝐶𝐴−𝑆𝑀𝑁‖∞ 0.0401 0.0105 0.0032

Avg. time (s) MCA 1.54× 10−2

SMN 5.94× 10−2 0.65 5.97

𝑝: perturbation rate; 𝑝 = 0.1; 𝐿: sequence length.

A probabilistic network with random perturbation evolves as an ergodic Markov

chain [19], because the non-zero perturbation rate makes all the states in the network

connected. Hence, a steady state exists in a network with perturbation. The SSDs for the

p53 network under DNA damage are obtained by different approaches, as shown in Fig.

4.10.

As shown in Fig. 4.10, all approaches produce similar SSDs. In fact, the difference

between the results by the SMN and the accurate Markov chain analysis is negligible

when reasonably long stochastic sequences are used (such as those of 10,000 values).

Using the STM computed by an SMN approach results in very close values of SSD

compared to the rigorous Markov analysis.

A further analysis shows that the relative error is less than approximately 0.2% for

the stochastic approach. Individual gene expressions are shown in Fig. 4.11 for a single

simulation of 30 transitions. It can be seen that the likely expression levels of p53 and

- 68 -

Fig. 4.9. The relationship between the minimum sequence length required in the process of computing the state

transition matrix (STM) (with an accuracy requirement of ‖∙‖𝟐 = 𝟎. 𝟎𝟐) and the perturbation rate for the

multiple-valued p53-Mdm2 network.

Fig. 4.10. Steady state distributions (SSDs) for the multiple-valued p53 network after 30 state transitions with an

initial state of 000. The X-axis indicates the network state, the Y-axis is for the different approaches and the color bar

on the right shows the values of the SSDs. Perturbation rate: 𝑝 = 0.1 and the sequence length or simulation runs: 𝐿 =

10,000 values.

Fig. 4.11. Individual gene expressions for the p53 network generated from a single simulation of 30 iterations

with an initial state of 011. X-axis indicates the iteration number and Y-axis shows the expression level of p53 or

nuclear Mdm2.

- 69 -

nuclear Mdm2 follow an oscillatory pattern as analytically [89] and experimentally [99]

shown previously.

4.6.2. Application on a WNT5A Network

Next, a WNT5A network [33] is used to illustrate the efficiency of the SMN model

and the time-frame expansion technique. A ten-gene network is derived from the

predictive relationships in Table 4.10. The selection probabilities of predictor functions

are also given in Table 4.10 (estimated from [33]). Fig. 4.12 shows a detailed structure of

the network with double (or single) - headed arrows indicating the bi (or uni) - directional

relationships of gene pairs. While the number of output arcs varies, every node (or gene)

has three input arcs in Fig. 4.13.

Table 4.10. The selection probability of the predictor functions for 10 genes (estimated from [33]).

Target Predictor 𝑓1 Select

probability

Predictor 𝑓2 Select

probability

Predictor 𝑓3 Select

Probability

pirin WNT5A 0.6 STC2 0.2 HADHB 0.2

WNT5A pirin 0.6 S100P 0.2 RET-1 0.2

S100P WNT5A 0.33 RET-1 0.33 Synuclein 0.34

RET-1 pirin 0.43 WNT5A 0.24 S100P 0.33

MMP-3 S100P 0.43 RET-1 0.25 HADHB 0.32

PHO-C MART-1 0.33 Synuclein 0.33 STC-2 0.34

MART-1 pirin 0.44 WNT5A 0.28 MMP-3 0.28

HADHB pirin 0.3 WNT5A 0.4 MMP-3 0.3

Synuclein pirin 0.25 S100P 0.25 MART-1 0.5

STC2 pirin 0.35 WNT5A 0.3 PHO-C 0.35

For the 10-gene ternary WNT5A network, it requires a STM of 310 = 59049

columns and rows for an accurate analysis. This makes it difficult, if not impossible, to

estimate the steady state of an SMN using a matrix-based analysis. In general, it is

difficult to analyze a large gene network, due to its excessive computational overhead.

An MC method has been used in [33] for evaluating the SSD of a network with

perturbation. However, the MC method is very time consuming due to the slow

convergence typically encountered in an MC simulation.

- 70 -

RET-1

WNT5A

pirin

STC2

PHO-C

synuclein

MART-1

S100P

MMP-3

HADHB

Fig. 4.12. A ternary WNT5A network with gene interactions (adapted from [33]).

MUX

1X

3X

2X

TB

TB

TB iX

Fig. 4.13. A stochastic multiple-valued network (SMN) module for gene i in the ternary WNT5A network, with

the predictor function implemented by a ternary buffer. Let 𝑮𝑖 = (𝑋1, 𝑋2, 𝑋3) be the input vector for gene 𝑖; the

input vector for each of the genes in the ternary WNT5A network is given by: 𝑮𝑊𝑁𝑇5𝐴 = (𝑝𝑖𝑟𝑖𝑛, 𝑆100𝑃, 𝑅𝐸𝑇 − 1);

𝑮𝑝𝑖𝑟𝑖𝑛 = (𝑊𝑁𝑇5𝐴, 𝑆𝑇𝐶2,𝐻𝐴𝐷𝐻𝐵); 𝑮𝑅𝐸𝑇−1 = (𝑝𝑖𝑟𝑖𝑛,𝑊𝑁𝑇5𝐴, 𝑆100𝑃); 𝑮𝐻𝐴𝐷𝐻𝐵 = (𝑝𝑖𝑟𝑖𝑛,𝑊𝑁𝑇5𝐴,𝑀𝑀𝑃 − 3);

𝑮𝑀𝑀𝑃−3 = (𝑆100𝑃, 𝑅𝐸𝑇 − 1,𝐻𝐴𝐷𝐻𝐵); 𝑮𝑆100𝑃 = (𝑊𝑁𝑇5𝐴, 𝑅𝐸𝑇 − 1, 𝑆𝑦𝑛𝑢𝑐𝑙𝑒𝑖𝑛);

𝑮𝑀𝐴𝑅𝑇−1 = (𝑝𝑖𝑟𝑖𝑛,𝑊𝑁𝑇5𝐴,𝑀𝑀𝑃 − 3); 𝑮𝑆𝑦𝑛𝑢𝑐𝑙𝑒𝑖𝑛 = (𝑝𝑖𝑟𝑖𝑛, 𝑆100𝑃,𝑀𝐴𝑅𝑇 − 1); 𝑮𝑃𝐻𝑂−𝐶 = (𝑀𝐴𝑅𝑇 −

1, 𝑆𝑦𝑛𝑢𝑐𝑙𝑒𝑖𝑛, 𝑆𝑇𝐶2); 𝑮𝑆𝑇𝐶2 = (𝑝𝑖𝑟𝑖𝑛,𝑊𝑁𝑇5𝐴, 𝑃𝐻𝑂 − 𝐶).

However, an SMN model can be constructed for the ternary WNT5A network, as

shown in Fig. 4.13. For this SMN, the SSD can be estimated using the aforementioned

time-frame expansion technique and compared with the MC simulation [33]. By the

- 71 -

time-frame expansion technique, the temporal operation of an SMN is laid out into a

series of identical SMN modules in the spatial domain. The required iterations of the

SMN are determined by the number of state transitions before reaching a steady state. As

in [63], a steady state is considered to have been reached if the discrepancy between two

adjacent simulations is smaller than a threshold or the number of simulations has reached

a maximum value. The state or GAP of the WNT5A network can be represented by a

ternary vector as (𝑥1, 𝑥2, ⋯, 𝑥10), or its decimal index. The SSDs of the network with

all of the 59049 states, obtained using the SMN and the MC method [33], are shown in

Fig. 4.14.

Fig. 4.14. Steady state distributions (SSDs) of the ternary WNT5A network using the stochastic multiple-valued

network (SMN) model and Monte Carlo (MC) simulation with perturbation rate 𝒑 = 𝟎. 𝟐 and sequence length

or simulation runs 𝑳 = 𝟑𝟎𝟎, 𝟎𝟎𝟎 values.

The norms of the differences of the SSDs obtained using the time-frame expanded

SMN approach with different sequence lengths and the MC method are shown in Table

4.11. As can be seen, the time-frame expanded SMN technique effectively evaluates the

SSD of the WNT5A network and produces very accurate results compared to the Monte

Carlo simulation [33]. The average run time reveals the efficiency of the SMN approach.

This is because the use of randomly permuted sequences results in a faster convergence

than in the MC simulation. The use of longer stochastic sequences further improves the

accuracy of evaluation and remains faster by several orders of magnitude than the MC

- 72 -

method. Albeit at a higher memory cost than the MC simulation (shown in Table 4.11),

the SMN approach requires much less memory than an accurate approach such as a

Markov chain analysis (shown in Table 4.4). Since it is difficult to compute the STM or

SSD of a large GRN by using an accurate analysis, a time-frame expanded SMN provides

an alternative method to evaluate the SSD of a large network with a tunable tradeoff

between accuracy and efficiency by using stochastic sequences of different lengths.

Table 4.11. Norms of the difference between the steady state distribution (SSDs) obtained by the time-frame

expanded stochastic multiple-valued network (SMN) technique and Monte Carlo (MC) simulation for the

ternary WNT5A network with perturbation rate 𝒑 = 𝟎. 𝟐. The average run time is also shown.

𝑵𝒖𝒎/𝑳 3k 30k 300k 3000k

‖𝑺𝑺𝑫𝑀𝐶 − 𝑺𝑺𝑫𝑆𝑀𝑁‖1 1.8827 1.3291 0.4915 0.1605

‖𝑺𝑺𝑫𝑀𝐶 − 𝑺𝑺𝑫𝑆𝑀𝑁‖2 0.0258 0.0082 0.0026 8.5342 × 10−4

‖𝑺𝑺𝑫𝑀𝐶 − 𝑺𝑺𝑫𝑆𝑀𝑁‖∞ 1.0000 × 10−3 2.6667 × 10−4 1.3333 × 10−4 5.6333 × 10−5

Avg. time (s)
MC 98.48 981.16 9731.04 97336.50

SMN 0.49 4.24 58.93 673.93

Required memory (M Byte)
MC 2.71 10.01 51.21 599.61

SMN 9.81 40.94 373.30 3696.50

𝐿: sequence length for the stochastic approach; 𝑁𝑢𝑚: number of simulation runs for the MC method; 𝑺𝑺𝑫𝑀𝐶 and

𝑺𝑺𝑫𝑆𝑀𝑁 respectively denote the steady state distributions obtained by the MC simulation and the time-frame expanded

SMN technique; a maximum number of 50 iterations is applied to the steady state evaluation.

4.7. Summary

As a generalization of SBNs, SMNs are proposed as a fast approach to modeling

the effects of noise in GRNs. In an SMN, the STM can be computed with a complexity of

𝑂(𝑛𝐿𝑘𝑛), where 𝑛 is the number of genes in a network, 𝑘 is the quantization level of a

gene’s state and 𝐿 is a factor determined by the stochastic sequence length. Since 𝐿

increases slower with 𝑛 than the number of network functions 𝑁, this result is an

improvement compared to the previous result of 𝑂(𝑛𝑁𝑘2𝑛) for an accurate analysis.

The use of randomly permuted sequences further increases computational efficiency and

allows for a tunable tradeoff between accuracy and efficiency. A steady state analysis

using a time-frame expansion technique has shown a significant speedup compared to a

Markov chain analysis and produced very accurate results compared to MC simulation.

- 73 -

SMNs are constructed for the analysis of a multiple-valued p53-Mdm2 network and

a ternary WNT5A network under gene perturbation. Simulations of the SMNs have

revealed the oscillatory dynamics of the p53-Mdm2 network with random gene

perturbation. The SMN approach can also predict the SSD of the WNT5A network with

gene perturbation. Hence, the SMNs are useful in evaluating the effects of gene

perturbation and, potentially, helpful in drug discovery for an intervention-based gene

therapy.

- 74 -

Chapter 5

Asynchronous Stochastic Boolean Networks as

Gene Network Models

For simplicity, the Boolean models usually consider a synchronous update of all

genes’ states in a gene regulatory network (GRN) [20][100][101]. However, this assumed

synchronicity may not be appropriate, because each gene may require a different period

of time for changing its state, as in asynchronous networks [102], and stochastic networks

with time delays [103] and parameter uncertainties [104]. In this chapter, asynchronous

stochastic Boolean networks (ASBNs) are proposed for investigating various

asynchronous state updating strategies in a GRN. As in stochastic computation, ASBNs

use randomly permutated stochastic sequences to encode probability. A GRN is

considered to be subject to noise and external perturbation, which are investigated by

several stochasticity models. In [105][106], stochasticity is modeled as the perturbation

of a gene’s state that occurs with certain probability; however, this stochasticity in node

(SIN) model over-expresses the effect of noise. Both stochasticity and asynchronicity are

considered in the state evolution of a GRN. As a case study, ASBNs are utilized to

investigate the dynamic behavior of a T helper network. It is shown that ASBNs are fast

in evaluating the steady state distributions (SSDs) of the network with random gene

perturbation. The SSDs found by using ASBNs show the robustness of the attractors of

the T helper network, when various stochasticity and asynchronicity models are

considered to investigate its dynamic behavior. The results in this chapter have been

published in [107].

The novelty of this chapter is as follows:

 ASBNs are proposed for a fast modeling of GRNs with asynchronous state updating

properties.

 Stochastic analyses are carried out for the asynchronous models of SIN and

stochasticity with propensity parameters (SPP).

- 75 -

 The obtained SSDs can be used to estimate the attractors of, especially, a large gene

network. This is shown by the study of a T helper network of 23 genes. The

robustness of the attractors for the T helper network is demonstrated for a number of

synchronous and asynchronous state update strategies.

5.1. Asynchronous Gene Regulatory Network

A network model is presented in Fig. 5.1 for a deterministic synchronous update

strategy. If the predict function 𝐹𝑖 , 𝑖 ∈ {1, 2, ⋯ , 𝑛} , consists of several update

functions with different selection probabilities, this network becomes a (synchronous)

probabilistic network [20][33]. Otherwise, a deterministic network is obtained if 𝐹𝑖 only

consists of one implementation function.

i

n

11

i

n
nF

Present state Next state

)(1 tx

)(tx i

)(tx n

)1(1 tx

)1(txi

)1(txn

...
...

1F

iF

...
...

Fig. 5.1. A general synchronous gene network model. 𝐹𝑖 denotes the update function for gene 𝑖, 𝑥𝑖(𝑡) and

𝑥𝑖(𝑡 + 1) are the states of gene 𝑖 at time 𝑡 and 𝑡 + 1 respectively, 𝑖 ∈ {1, 2, ⋯ , 𝑛}. 𝑛 is the number of genes in

the investigated network.

When asynchronicity is considered, a deterministic-asynchronous probabilistic

Boolean network (DA-PBN) assumes that the state of each gene is independently updated

according to its own updating period [20]. Whether the state of gene i is updated or not at

a time is indicated by a binary variable 𝑐 (either 1 or 0 respectively). The next state of

gene 𝑖, 𝑥𝑖(𝑡 + 1), is then given by:

- 76 -

𝑥𝑖(𝑡 + 1) = {
𝑓(𝑖)(𝑥1(𝑡),⋯ , 𝑥𝑛(𝑡)) 𝑖𝑓 𝑐 = 1

 𝑥𝑖(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

 (5.1)

where 𝑓(𝑖) is the predictor function in the DA-PBN for gene 𝑖; 𝑐 is a binary variable

that determines whether a gene is to be updated or not.

Furthermore, a different number of genes can be selected in an asynchronous

update process. The genes can be updated at the same time in one time step or following

certain updating order. In [46][102], only one gene is randomly selected at a time for

updating its state, while in [98], 𝑚 gene nodes are randomly chosen for a simultaneous

state update in one time step, where 𝑚 is a randomly generated number. Even in one

time step, however, the update of 𝑚 genes is likely to be asynchronous and the state of a

gene depends on the updating order of the inputs of its predictor function. In [108], all the

gene nodes are asynchronously updated one by one, so an updated state will subsequently

affect the other components’ states, even within the same time step. Hence, an

asynchronous update model is more realistic in modeling biological behaviors. Since the

next state of a network is determined by the updated gene and the remaining genes, an

updated gene state is determined by the current state vector and the corresponding

predictor function [102].

5.2. Stochastic Computational Models for Asynchronous

Update Strategies

In a biological system, some cells may update their states immediately while it may

take longer for other cells to respond. This phenomenon corresponds to a variable

reaction time or rate for each cell. To model this asynchronous process, a 2-to-1

multiplexer (MUX) is used to determine whether a gene’s state is updated or not, as

determined by the value of the control bit 𝑆𝑖, shown in Fig. 5.2. If the control bit 𝑆𝑖 is 1,

where 𝑖 ∈ {1, 2,⋯ , 𝑛} and 𝑛 is the number of genes, then the 𝑖 th gene’s state is

determined by the input genes’ states and the predictor function 𝐹𝑖 (i.e.

𝐹𝑖(𝑥1(𝑡),⋯ , 𝑥𝑛(𝑡))). If 𝑆𝑖 = 0, the gene remains at its current state, indicated by the

- 77 -

application of the buffer in Fig. 2.2 (i.e. 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡)). Hence, the stochastic

architecture in Fig. 5.2 accurately implements the function of (5.1).

iF
MUX

1

0
BUF

)1(txi

)(txi

)(tx

iS

iAUM)(tx)1(txi

Fig. 5.2. An asynchronous update module (AUM) for gene 𝒊, referred to as 𝑨𝑼𝑴𝒊, consists of a 2-to-1

multiplexer (MUX) with a control bit 𝑺𝒊. 𝐹𝑖 is the predictor function for gene 𝑖.

𝑥(𝑡) = (𝑥1(𝑡),⋯ , 𝑥𝑖(𝑡),⋯ , 𝑥𝑛(𝑡)) with 𝑥𝑖(𝑡) being the state of gene 𝑖 at time 𝑡, while 𝑥𝑖(𝑡 + 1) indicates the

next state of gene 𝑖, 𝑖 ∈ {1,2,⋯ , 𝑛}. 𝑛 is the number of genes in the investigated network.

Stochastic architectures for asynchronous networks can be constructed with the

control sequences of the MUX that are generated according to the updating rules. The

state transition matrices (STMs) are usually applied to derive the steady state distribution

(SSD) by an iterative evaluation, especially for synchronous models. However, a

matrix-based analysis becomes cumbersome to perform due to the size of STMs for a

large network; an analysis using STMs becomes even more challenging for asynchronous

networks. Hence, the SSD is evaluated by using the so-called time-frame expansion

technique [30]. By this technique, the temporal evolution of an asynchronous network is

simulated using a spatially iterative structure of the asynchronous network model.

Different strategies of updating one gene or 𝑚 genes synchronously or in a

random order are presented as follows:

 The ROG (randomly one gene) model [102]: At each time step, only one gene node

is randomly selected for a state update, while the remaining nodes stay at their

present states.

 The RMG (randomly 𝑚 genes) model [98]: At each time step, 𝑚 gene nodes are

randomly selected and synchronously updated, while the remaining nodes preserve

- 78 -

their present values. Here, 𝑚 can be either a random number or a fixed value. If

𝑚 = 1, the RMG model is simplified to the ROG model.

 The ARO (all genes updated in a random order) model [108]: At each time step, all

gene nodes are updated; however, the state update of each gene occurs one by one in

a random order. The update is carried out immediately and a state change will affect

the change of other genes’ states, even within the same time step.

 The MRO (𝑚 genes updated in a random order) model: At each time step, only 𝑚

gene nodes are randomly selected for updating their states and each state update

occurs in a random order, while the other genes remain at their present states. If

𝑚 = 1, this is simplified to the ROG model. If 𝑚 = 𝑛, the result will be the same as

the ARO model.

The general architectures are similar for the ROG and RMG models; the only

difference lies in the control sequences {𝑆1, 𝑆2, ⋯, 𝑆𝑛} for the 2-to-1 MUXs, where 𝑆𝑖

indicates the control sequence for gene 𝑖 ∈ {1, 2,⋯ , 𝑛}. For the control sequences of

asynchronous update modules (AUMs) in the ROG model, if the 𝑘th bit in the control

sequence 𝑆𝑖 is 1, i.e., 𝑆𝑖,𝑘 = 1 , then S𝑗,𝑘 = 0 for 𝑗 ≠ 𝑖 , 𝑖, 𝑗 ∈ {1, 2,⋯ , 𝑛} , 𝑘 ∈

{1, 2,⋯ , 𝐿} with ∑ 𝑆𝑖,𝑘
𝑛
𝑖=1 = 1 as only one gene is selected for updating its state,

where 𝐿 indicates the length of the control sequences. In contrast, the requirement of

∑ 𝑆𝑖,𝑘
𝑛
𝑖=1 = 𝑚 must be met for the RMG model as 𝑚 gene nodes are randomly selected

for updating the states using the control sequences.

The generation of the stochastic control sequences for the AUMs is explained next

with an example of a 5-gene network using the ROG and RMG models. Let the number

of genes to be updated for the RMG model, i.e. 𝑚, be 2. For each column of the

generated sequence matrices, only one gene is updated while two gene nodes are

randomly selected to be refreshed for 𝑗 ∈ {1, 2,⋯ , 𝐿} for the RMG model. At certain

time step, let the generated control sequences be 𝐶𝑅𝑂𝐺 and 𝐶𝑅𝑀𝐺 for the ROG and

RMG models respectively, as illustrated in Fig. 5.3.

- 79 -

For the ARO and MRO models, similarly, the evolution of an asynchronous

network is simulated by the time-frame expansion technique. In the ARO model, as all

genes are updated in a random order, each time step is divided into 𝑛 sub-steps and only

one gene is chosen to be updated at each sub-step while the other genes maintain their

present states. Assume at time 𝑡, only one gene is updated at each sub-step (𝑛 sub-steps

in total); hence, after the evolution of 𝑛 sub-steps, all the genes are updated, followed by

the evolution at time 𝑡 + 1. The ARO model is implemented with only one AUM with a

control bit of 1 at each sub-step for the gene to be updated (the AUM is simplified to a

buffer as the control bit is 0 for the other genes). If 𝑚 genes are to be updated in a

different order, there will be 𝑛-𝑚 buffers (or AUMs with a control bit of 0) for the n

sub-steps. This becomes an MRO model.

0

0

1

0

0

5

4

3

2

1

j

S

S

S

S

S

CROG

0

1

0

1

0

5

4

3

2

1

j

S

S

S

S

S

CRMG

(b)(a)

Fig. 5.3. An illustrative example of the generated control sequences at a time step for a network of five genes. (a)

The control sequences for the randomly one gene (ROG) model. (b) The control sequences for the randomly 𝑚 genes

(RMG) model. 𝑆𝑖 indicates the control sequence for gene 𝑖, 𝑖 ∈ [1,5]; 𝑗 is for the 𝑗th bit in each sequence, which

can be considered as the 𝑗th trial of the 𝐿 experiments and 𝐿 indicates the length of the stochastic sequences and

𝑗 ∈ {1,2,⋯ , 𝐿}. 𝑆𝑖,𝑗 = 0 indicates that the control bit is 0 for the AUM in Fig. 5.2, so the state of gene 𝑖 remains, while

𝑆𝑖,𝑗 = 1 means that the next state is determined by the predictor function 𝐹𝑖. For the RMG model, the number of genes

to be updated for the 𝑗th trail is assumed to be two, thus ∑ 𝑆𝑖,𝑗
𝑛
𝑖=1 = 2 in (b). 𝑛 is the number of genes in the

investigated network.

- 80 -

For the ARO model, at each sub-step only one gene is updated while the others

preserve their present states. If 𝑆𝑖,𝑘 = 1 , 𝑖 ∈ {1, 2,⋯ , 𝑛} , 𝑘 ∈ {1, 2,⋯ , 𝐿} , the 𝑖 th

gene’s state is updated by the predictor function; otherwise, the current state remains. For

the MRO model, the total number of 1’s for the 𝑛 sub-steps at time step 𝑖 is equal to

the number of genes to be updated for the MRO model. All genes remain at their present

states if the control bits for the AUMs are 0 at a time step. The updating order is indicated

by the different position of 1’s in the generated sequences.

00100

00010

01000

10000

00001

5

4

3

2

1

54321

x

x

x

x

x

ttttt

C
tARO

(b)(a)

tARO

ARO C

t
C

tMRO

MRO C

t
C

00010

00000

00001

00000

00100

5

4

3

2

1

54321

x

x

x

x

x

ttttt

C
tMRO

Fig. 5.4. An illustrative example of the generated control sequences at a time step for a network of five genes. (a)

The control sequences for the all genes updated in a random order (ARO) model. (b) The control sequences for the 𝑚

genes updated in a random order (MRO) model. 𝑡 is for the 𝑡th time step and 𝑡1, ⋯, 𝑡5 are the sub-steps at time 𝑖.

𝐶𝐴𝑅𝑂𝑡 and 𝐶𝑀𝑅𝑂𝑡 are the generated control sequences at the sub-steps of time 𝑡. An entry of 0 indicates the state of

gene 𝑖 remains while a value of 1 indicates that the next state is determined by the predictor functions. The number of

genes to be updated at time 𝑡 is three (in a random order), thus ∑𝐶𝑀𝑅𝑂𝑡 = 3 in (b).

An example of the random updating order for the AUMs at time 𝑖 is illustrated for

a network of five genes. Following the previous analysis, time step 𝑖 is divided into five

sub-steps. The control sequences of 𝐶𝐴𝑅𝑂 and 𝐶𝑀𝑅𝑂 for the ARO and MRO models are

shown in Fig. 5.4(a) and (b) respectively.

The updating order of the ARO model at time 𝑡 is given by the control sequences

in Fig. 5.4(a), i.e., 𝑥1 → 𝑥4 → 𝑥5 → 𝑥3 → 𝑥2, while the updating order of the MRO

- 81 -

model at time step 𝑖 is 𝑥3 → 𝑥5 → 𝑥1, as given by the control sequences in Fig. 5.4(b).

For genes 𝑥2 and 𝑥4, the present states at time 𝑡 remain the same.

5.3. Asynchronous Stochastic Boolean Networks

Any gene node in a GRN can change the expression level due to noise or a gene

perturbation that occurs with certain probability. The perturbation probability can be

encoded as a perturbation flag vector 𝛾 with each element indicating whether a gene is

to be perturbed or not. When a perturbation occurs, the state of the perturbed gene is

determined by the present state and the perturbation flag vector. In the stochasticity in

node (SIN) model [109], therefore, the effect of perturbation can be modeled by an XOR

gate [30], by which the gene state at time 𝑡 will be flipped with a probability of 𝑝, as

shown in Fig. 5.5(a).

In the SIN model, the correlation between a gene node’s current expression level

and the probability of changing the expression value is not taken into consideration. Even

if the expression level of the input node for an update function guarantees the activation

or degradation, there still exists a probability that the process will not occur due to

stochasticity. Hence, a stochasticity model is proposed in [89] with propensity

parameters,

𝐹 = {𝑓𝑖 , 𝑝𝑖
↑, 𝑝𝑖

↓}𝑖=1
𝑛 , (5.2)

where 𝑓𝑖 indicates the update function for node 𝑥𝑖 , 0 ≤ 𝑝𝑖
↑ ≤ 1 and 0 ≤ 𝑝𝑖

↓ ≤ 1

denote the activation propensity and degradation propensity, and 𝑛 is the number of

genes. A model of stochasticity with propensity parameters (SPP) is described by [89]:

𝑥𝑖 → 𝑓𝑖(𝑥) = {

𝑝𝑖
↑ 𝑥𝑖 < 𝑓𝑖(𝑥)

𝑝𝑖
↓ 𝑥𝑖 > 𝑓𝑖(𝑥)

1 𝑥𝑖 = 𝑓𝑖(𝑥)

(5.3)

- 82 -

In order to implement the function of (5.3), a multiplexer is used here to simulate

the behavior of stochasticity with parameters. A general structure is shown in Fig. 5.5(b).

For the architecture in Fig. 5.5(b), the output is determined by the value in the control

sequence 𝑆. 𝑆 consists of ternary values {0, 1, 2}, which indicate the three cases

of 𝑆𝑖(𝑡) < 𝑆𝑓𝑖(𝑡), 𝑆𝑖(𝑡) = 𝑆𝑓𝑖(𝑡) and 𝑆𝑖(𝑡) > 𝑆𝑓𝑖(𝑡) for any 𝑖 ∈ {1, 2,⋯ , 𝑛}. 𝑆𝑖(𝑡)

and 𝑆𝑖(𝑡 + 1) are the stochastic sequences encoding the probabilities of gene 𝑖 at time

𝑡 and 𝑡 + 1 respectively. 𝑆𝑓𝑖(𝑡) is the stochastic sequence encoding the expected

probability for the state of gene 𝑖 at time 𝑡. This probability is calculated from 𝑓𝑖(𝑥(𝑡)),

where 𝑓𝑖 indicates the update function for gene 𝑖 and

𝑥(𝑡) = {𝑥1(𝑡),⋯ , 𝑥𝑖(𝑡), ⋯ , 𝑥𝑛(𝑡)} with 𝑥𝑖(𝑡) being the state of gene 𝑖 at time 𝑡. 𝑆
𝑝𝑖
↑

and 𝑆
𝑝𝑖
↓ represent the stochastic sequences encoding the propensity parameters.

p

C
'C

S
(a)

XOR

)(tS
if

MUX

S

)(tS i

ip

S

ip

S

)(tS i

)1(tS i

)(tSi

)(tS
if

0

1

0

1

0

1

2

(b)

Fig. 5.5. Stochastic architectures for the models of stochasticity in node (SIN) and stochasticity with propensity

parameter (SPP). (a) The stochastic architecture of the SIN model for a binary gene node [30]. (b) The stochastic

architecture of the SPP model for updating the state of a gene.

Let (𝑆𝑖(𝑡))𝑗, (𝑆𝑓𝑖(𝑡))𝑗 and (𝑆𝑖(𝑡 + 1))𝑗 be the 𝑗th value in 𝑆𝑖(𝑡), 𝑆𝑓𝑖(𝑡) and

𝑆𝑖(𝑡 + 1). For a ternary case, if (𝑆𝑖(𝑡))𝑗 = (𝑆𝑓𝑖(𝑡))𝑗, the output (𝑆𝑖(𝑡 + 1))𝑗 is the

same as (𝑆𝑖(𝑡))𝑗, because the transition (𝑆𝑖(𝑡))𝑗 → (𝑆𝑓𝑖(𝑡))𝑗 occurs with a probability

of 1. However, if (𝑆𝑖(𝑡))𝑗 < (𝑆𝑓𝑖(𝑡))𝑗, (𝑆𝑖(𝑡 + 1))𝑗 is determined by the output of a

2-to-1 multiplexer with 𝑆𝑖(𝑡) and 𝑆𝑓𝑖(𝑡) as input sequences and 𝑆
𝑝𝑖
↑ as the control

sequence. If (𝑆𝑖(𝑡))𝑗 = 0 < (𝑆𝑓𝑖(𝑡))𝑗 = 1, for example, then (𝑆𝑖(𝑡 + 1))𝑗 = 1 with a

probability of 𝑝𝑖
↑ . If (𝑆𝑖(𝑡))𝑗 > (𝑆𝑓𝑖(𝑡))𝑗 , then (𝑆𝑖(𝑡 + 1))𝑗 = (𝑆𝑓𝑖(𝑡))𝑗 with a

- 83 -

probability of 𝑝𝑖
↓ or (𝑆𝑖(𝑡 + 1))𝑗 = (𝑆𝑖(𝑡))𝑗 with a probability of 1 − 𝑝𝑖

↓ . These

functions are implemented by the 2-to-1 multiplexers in the model in Fig. 5.5(b). Let a

and b be the values in (𝑆𝑖(𝑡))𝑗 and (𝑆𝑓𝑖(𝑡))𝑗 respectively; the next state of the gene 𝑖

is obtained as:

𝑆𝑖(𝑡 + 1) = {

𝑆𝑖(𝑡), 𝑖𝑓 𝑎 = 𝑏

𝑆𝑓𝑖(𝑡) 𝑤𝑖𝑡ℎ 𝑝𝑖
↑, 𝑜𝑟 𝑆𝑖(𝑡) 𝑤𝑖𝑡ℎ 1 − 𝑝𝑖

↑, 𝑖𝑓 𝑎 < 𝑏

𝑆𝑓𝑖(𝑡) 𝑤𝑖𝑡ℎ 𝑝𝑖
↓, 𝑜𝑟 𝑆𝑖(𝑡) 𝑤𝑖𝑡ℎ 1 − 𝑝𝑖

↓, 𝑖𝑓 𝑎 > 𝑏

,

 (5.4)

which is equivalent to the function of (5.3). This shows that the stochastic model in Fig.

5.5(b) accurately computes the function of the SPP model.

Fig. 5.6. Synchronous and asynchronous stochastic Boolean networks (ASBNs) for different stochasticity

models. (a) A synchronous SBN. (b) An ASBN for the randomly one gene (ROG) model. 𝐹𝑖: predictor function for

gene 𝑖, 𝑖 ∈ {1,2,⋯,𝑛}. 𝑛 is the number of genes in the investigated network. The detailed structures and inputs of

the SIN and SPP modules are shown in Fig. 5.5 (a) and (b) respectively.

In order to analyze the long run behavior of gene networks with different

stochasticity effects, synchronous and asynchronous stochastic Boolean networks

(ASBNs) are presented in Fig. 5.6 for the SIN and SPP models. The synchronous

network is obtained by implementing the stochasticity models (either the SIN in Fig.

5.5(a) or the SPP in Fig. 5.5(b)) into the architecture in Fig. 5.1. For simplicity, only the

- 84 -

randomly one gene (ROG) model is illustrated in Fig. 5.6(b) for an ASBN. For randomly

m gene (RMG) or a different updating order, the stochastic networks can be obtained by

applying a stochasticity model (either the SIN in Fig. 5.5(a) or the SPP in Fig. 5.5(b))

into the stochastic architecture in Fig. 5.5. Although discussed within the context of BNs,

multiple-valued networks such as those in [95] can also be used to construct an

asynchronous network. In a stochastic network, randomly permuted sequence and

perturbation vectors are generated for different signal probabilities. With these stochastic

sequences as inputs to the stochastic architectures, the stochastic behavior of a gene

network can be easily analyzed.

5.4. Results and Discussion

A T helper network of 23 genes with 35 regulatory interaction relationships (Fig.

5.7) [110] is considered to show the robustness of the attractors under the various

asynchronous update schemes. The functional molecules or molecular complexes are

listed as 𝑇𝐶𝑅 , 𝑁𝐹𝐴𝑇 , 𝐼𝐹𝑁 − 𝛽 , 𝐼𝐹𝑁 − 𝛽𝑅 , 𝐿 − 18 , 𝐼𝐿 − 18𝑅 , 𝐼𝑅𝐴𝐾 , 𝑆𝑂𝐶𝑆1 ,

𝐼𝐿 − 12, 𝐼𝐿 − 12𝑅 , 𝑆𝑇𝐴𝑇4, 𝑇 − 𝑏𝑒𝑡 , 𝐼𝐹𝑁 − 𝛾 , 𝐼𝐹𝑁 − 𝛾𝑅 , 𝐽𝐴𝐾1, 𝑆𝑇𝐴𝑇1, 𝐼𝐿 − 4,

𝐼𝐿 − 4𝑅, 𝑆𝑇𝐴𝑇6, 𝐺𝐴𝑇𝐴3, 𝐼𝐿 − 10, 𝐼𝐿 − 10𝑅, 𝑆𝑇𝐴𝑇3.

Fig. 5.7. A T helper network. A positive regulatory interaction is indicated by a regular arrow, while a negative

interaction is represented by a blunted arrow [110].

- 85 -

Fig. 5.8. A deterministic BN model for the 23-gene T helper network. Here 𝑋1 = 0, 𝑋3 = 0, 𝑋5 = 0 and 𝑋9 = 0.

𝑋𝑖, 𝑖 ∈ {1, 2,⋯ , 23}, indicates a gene node in Fig. 5.7.

- 86 -

There is no input for four gene nodes, namely, 𝐼𝐿 − 12, 𝐼𝐹𝑁 − 𝛽, 𝐼𝐿 − 18 and

𝑇𝐶𝑅, in the T helper network. As in [110], hence, these four elements are considered to

be consistently at state 0. The network in Fig. 5.7 can be implemented by the BN model

shown in Fig. 5.8.

The cell population may fall into different subgroups on exposure to input stimuli –

this is referred to as a cellular differentiation [111]. For the 23-gene T helper network in

Fig. 5.7, 𝐼𝐿 − 2 functions as a key cytokine in the 𝑇ℎ0 to 𝑇ℎ1 differentiation process

while a large perturbation of 𝐼𝐿 − 4 forces the network to switch from state 𝑇ℎ0 to

𝑇ℎ2, as illustrated by Fig. 5.9.

Fig. 5.9. Differentiation of T helper (adapted from [111]). 𝑇ℎ1 cells express 𝐼𝐹𝑁 − 𝛾 and 𝑇 − 𝑏𝑒𝑡, while 𝑇ℎ2

expresses 𝐺𝐴𝑇𝐴3 and 𝐼𝐿 − 4.

In the state space of the T helper network, the basins draining to different attractors

are not evenly distributed; the distribution of initial states leading to the attractors is

shown in Table 5.1. As revealed in Table 5.1, a random initial state evolves into 𝑇ℎ1

with the largest probability for each state update strategy. The attractor 𝑇ℎ0 is reached

with the lowest probability. For the asynchronous update strategies, the probability of

reaching 𝑇ℎ0 is even lower than that for the synchronous state update.

The effect of perturbation on different gene nodes has been shown by experiments

of the differentiation of T helper cells [112][113]. The stochastic simulations using

synchronous and asynchronous update strategies correctly identify the attractors for a

- 87 -

wild type T helper network, in which no perturbation exists. Table 5.2 shows the steady

states found by the stochastic approach for several scenarios of the wild type (no gene

suppression or overexpression; the initial states are randomly generated with a probability

of 0.5), 𝐼𝐿 − 12 overexpressed and 𝐼𝐿 − 4 overexpressed. These steady states are good

estimates of the attractors found in [102][114].

Table 5.1. Steady states of the T helper network found by the stochastic approach.

Perturbed genes Active genes in steady states attractors

Wild type All genes are inactive 𝑇ℎ0

𝐼𝐹𝑁

− 𝛾

𝑇

− 𝑏𝑒𝑡

𝑆𝑂𝐶𝑆1 𝐼𝐹𝑁

− 𝛾𝑅

 𝑇ℎ1

𝐼𝐿

− 10

𝐼𝐿

− 10𝑅

𝐺𝐴𝑇𝐴3 𝑆𝑇𝐴𝑇3 𝑆𝑇𝐴𝑇6 𝐼𝐿 − 4 𝐼𝐿

− 4𝑅

 𝑇ℎ2

𝐼𝐿 − 12 over

expressed

𝐼𝐹𝑁

− 𝛾

𝑇

− 𝑏𝑒𝑡

𝑆𝑂𝐶𝑆1 𝐼𝐹𝑁

− 𝛾𝑅

𝐼𝐿

− 12

𝐼𝐿

− 12𝑅

𝑆𝑇𝐴𝑇4 𝑇ℎ1

𝐼𝐿

− 10

𝐼𝐿

− 10𝑅

𝐺𝐴𝑇𝐴3 𝑆𝑇𝐴𝑇3 𝐼𝐿

− 12

𝑆𝑇𝐴𝑇6 𝐼𝐿 − 4 𝐼𝐿

− 4𝑅

𝑇ℎ2

 𝐼𝐿 − 4 over

expressed

𝐼𝐹𝑁

− 𝛾

𝑇

− 𝑏𝑒𝑡

𝑆𝑂𝐶𝑆1 𝐼𝐹𝑁

− 𝛾𝑅

𝐼𝐿 − 4 𝑇ℎ1

𝐼𝐿

− 10

𝐼𝐿

− 10𝑅

𝐺𝐴𝑇𝐴3 𝑆𝑇𝐴𝑇3 𝑆𝑇𝐴𝑇6 𝐼𝐿 − 4 𝐼𝐿

− 4𝑅

 𝑇ℎ2

Table 5.2. The distribution of initial states (in percentages) leading to the attractors of a wild type T helper cell:

200,000 states are randomly chosen for simulation.

Wild type 𝑇ℎ0 (%) 𝑇ℎ1 (%) 𝑇ℎ2 (%)

Synchronous 6.86 58.65 36.89

ROG 3.75 50.07 46.19

RMG (𝑚 = 10) 2.94 51.42 45.65

RMG (𝑚 = 21) 5.32 54.51 40.17

ARO 3.06 50.70 46.25

MRO (𝑚 = 10) 3.79 50.21 46.01

In [109], at most one perturbation is considered to occur at a time. In this work, 𝑘

time frames are considered with the stochasticity models (𝑘 = 5 in Fig. 5.10). If the

initial state of the T helper network is 𝑇ℎ0, after the constant activation of 𝐼𝐿 − 12, the

state will transition into 𝑇ℎ1. As shown in Fig. 5.10(b) and (c), the state remains even

after the inactivation of 𝐼𝐿 − 12 if no perturbation occurs. For the SIN model, the 𝑇ℎ0

- 88 -

cells derive into 𝑇ℎ1 and 𝑇ℎ2, while a few cells remain at their current states. The

almost equally-likely cellular differentiation of steady states has been analyzed in [97].

However, it has been shown that a 𝑇ℎ0 cell cannot transfer into a 𝑇ℎ2 cell [114].

Hence, the SIN model could be the main reason for this discrepancy, because 𝑇ℎ1 and

𝑇ℎ2 are evolved from 𝑇ℎ0 with nearly equal probability, as revealed in Fig. 5.10(d)-(f)

for the synchronous and RMG models.

Fig. 5.10. Transitions between attractors during the differentiation process of the T helper network with an

external stimulus of 𝑰𝑳 − 𝟏𝟐 for the synchronous and randomly 𝒎 genes (RMG) models. Each dot indicates a T

helper cell and each cell is independent of the neighboring cells. A red dot represents an undifferentiated cell at 𝑇ℎ0, a

green dot indicates the cell state of 𝑇ℎ1 and a blue dot indicates the state of 𝑇ℎ2. (a) All cells are in the initial

𝑇ℎ0 state. (b) and (c) The transitions from 𝑇ℎ0 to 𝑇ℎ1 by synchronous and asynchronous updating rules (without

perturbation to the network). (d), (e) and (f) The transitions from 𝑇ℎ0 for the SIN model with perturbation probability

of 0.5 for each node: the percentage of the corresponding nodes indicates the percentage of the cells deriving into an

attractor. For the first five time frames, each of the gene nodes is subject to the effect of SIN. The obtained transition

probabilities from 𝑇ℎ0 to different attractors are similar to the values in Table 5.1, because it is equivalent to setting

the initial state as the wile type by having each of the nodes under SIN for several time frames.

For the SPP model, the next state of a gene is closely related with the activity of

other nodes, the predictor function and the present states. For the SPP model, nearly all

- 89 -

the nodes of 𝑇ℎ0 differentiate into 𝑇ℎ1 cells under the dosage of 𝐼𝐿 − 12. Similar

results can be obtained for the dosage of 𝐼𝐿 − 4 and for the other asynchronous update

strategies. The instability of 𝑇ℎ0 is in agreement with the experimental results in [111].

The above simulation results can be reproduced with the network topology,

updating functions, the selection probabilities of the updating functions, initial input

signal probabilities, and the parameter values related with perturbation and the

asynchronous updating strategies.

5.5. Summary

In this chapter, ASBNs are proposed for an effective modeling of GRNs. Various

asynchronous updating rules are considered, including the models of ROG, RMG, ARO

and MRO. In an ASBN, if the control bits for an AUM are all zeros, an asynchronous

network becomes the same as a synchronous update network. Stochastic analyses are

carried out for the asynchronous models of SIN and SPP. The expected long run behavior

of a GRN is studied by the stochastic approach for various asynchronous state update

strategies.

For an asynchronous gene network, an accurate analysis becomes difficult due to

the limitation of computational resources, especially when the number of genes or the

quantization level of gene states increases. In the stochastic approach, a simulation-based

time-frame expansion technique is used for a fast analysis of the SSD of a network. The

obtained SSDs can be used to estimate the attractors of, especially, a large network. This

is shown by the study of a T helper network of 23 genes. The robustness of the attractors

for the T helper network is demonstrated for a number of synchronous and asynchronous

state update strategies. The effect of different asynchronous updating rules on the

distribution of initial states leading to an attractor is investigated for the T helper network.

It is shown that the model of SPP accurately reveal the state transition from 𝑇ℎ0 to 𝑇ℎ1

under the dosage of 𝐼𝐿 − 12.

- 90 -

Chapter 6

A Stochastic Approach for the Analysis of Fault

Trees with Priority AND Gates

In a dynamic fault tree (DFT) analysis, several dynamic gates, including the

priority AND (PAND) gate, the sequence enforcing gate (SEQ), the standby or spare gate

(Spare), and the functional dependency gate (FDEP) are frequently used to model the

dynamic behaviors in a DFT [65][66][115]. In this chapter, a stochastic computational

approach is proposed for a fast analysis of the top event’s failure probability in a DFT

with PAND gates. The results in this chapter have been published in [116].

The novelty of this chapter is as follows:

 A stochastic model is proposed for the analysis of a two-input PAND gate in a DFT.

This model is then used in a successive cascading structure for the analysis of a

general multiple-input PAND gate. For a DFT with PAND gates, a stochastic

approach using the proposed models provides a fast analysis of the DFT with good

scalability compared to an accurate or algebraic approach.

 The use of non-Bernoulli sequences of random permutations of fixed numbers of ones

and zeros as initial input event probabilities makes the stochastic approach faster and

more accurate than Monte Carlo simulation.

 Repeated events are correctly and readily handled in a DFT analysis, because signal

correlation is maintained in the random binary bit streams and in the propagation of

the stochastic sequences in a fault tree analysis.

6.1. Motivation

Various methodologies using Markov [117][118] and Bayesian [119][120] models

have been proposed for evaluating the dependability of a fault tree. Due to the inevitable

state-space explosion problem, these approaches incur a large complexity for the analysis

- 91 -

of complex systems. Moreover, the evaluation of a large DFT using a state-space based

method becomes difficult when a basic event’s failure behavior is not exponentially

distributed.

In [39], an Inclusion-Exclusion method is proposed for an exact analysis of a DFT

that contains PAND gates and repeated events. However, this method is limited to the

analysis of systems with exponentially distributed failure events; in addition, detailed

information on the minimal cut set is usually required in advance. In [40], an

integral-based analysis is proposed for handling any probability distribution; however, an

analytical expression is generally difficult to derive as a function of the basic events’

failure distributions. Several approaches have been developed to simplify the process of

deriving an exact analytical expression. These approaches include those using binary

decision diagrams (BDDs) [121], sequential binary decision diagrams (SBDDs) [70][122],

and an algebraic analysis [115][123]. In particular, the SBDD approach has been applied

to the analysis of the PAND gate [124]. Monte Carlo (MC) simulation [125][126] has

been widely used to evaluate complex DFTs; however, a long run time and a large

sample size are needed to meet an accuracy requirement. Generally, it is challenging to

accurately evaluate the reliability of a DFT with dynamic gates such as PAND gate. A

stochastic approach has been proposed in [127] for the evaluation of a system’s reliability.

In particular, the serial and parallel implementations of stochastic computation are

considered, and a speedup in analysis is obtained by a parallel implementation in field

programmable gate arrays (FPGAs). In [127], the PAND gate is modeled as a three-input

AND gate, and a sequential event is considered to be a basic event. In a general case,

however, the input of a PAND gate is not limited to a basic event. Thus, improved

stochastic models can be developed for a fast analysis of DFTs.

6.2. Background

The background presented here is also applicable to the DFT analysis in Chapters 7

and 8.

- 92 -

6.2.1. Assumptions

Some assumptions are as follows:

(1) For the PAND gate, the failure of the gate occurs if the inputs fail in a

predetermined order [37][71]. Without the loss of generality, the predefined order is

assumed to be from left to right in this dissertation, unless otherwise noted.

(2) The quantization level of a basic event is denoted by a binary variable 𝑥 ,

𝑥 ∈ {0, 1}, with 0 indicating no fault;

(3) All basic events are fault-free at the beginning of the mission time;

(4) The basic events are non-repairable [37]. This means that if a basic event fails,

the variable that indicates the status of the basic event, takes 1. Let 𝐹𝑡(𝑎) be the failure

time of a basic event 𝑎; the status variable of 𝑎 is 1 for time 𝑡 > 𝐹𝑡(𝑎) and 0 otherwise.

A generic timing diagram for a non-repairable basic event 𝑎 is shown in Fig. 6.1.

(5) The probability density function (pdf) and cumulative density function (cdf) of an

exponential distribution are given by:

𝑓(𝑡) = 𝜆 𝑒−𝜆𝑡, (6.1)

and

𝐹(𝑡) = ∫ 𝑓(𝑡)
𝑡

0
𝑑𝑡 = 1 − 𝑒−𝜆𝑡, (6.2)

where 𝑡 is the specified mission time and 𝜆 is the (constant) failure rate of a basic event

for an exponential distribution.

(6) The failure probability of a basic event in a selected time interval [𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡] is

considered constant at the value in the beginning of the time interval, i.e., the failure

- 93 -

probability is given by 𝑝 = 𝐹(𝑡𝑖) for any time in this time interval. For simplicity, the

time interval [𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡] is referred to as time 𝑖 in Chapters 6 and 7.

tFt(a)

a 1

0

Fig. 6.1. A timing diagram for a non-repairable basic event 𝒂 [37][115], where a value of 0 indicates no fault,

while 1 means the event has failed and 𝑭𝒕(𝒂) is the failure time of the basic event 𝒂.

6.2.2. Discretization

Assume that the mission time 𝑡 is divided into M equal time intervals, i.e.,

𝛥𝑡 = 𝑡/𝑀. Due to the nature of discretization, a failure probability is estimated more

precisely at time 𝑡 with a larger 𝑀. However, a longer run time is required as more

stochastic sequences need to be generated. Hence, 𝑀 is determined by a tradeoff

between accuracy and efficiency. With a reasonable 𝑀, the discretization provides a

relatively accurate estimation of the continuous failure probability of a basic event.

6.2.3. Generation of Non-Bernoulli Sequences

Assume that the failure probabilities for the two adjacent time intervals, [𝑡𝑖 −

𝛥𝑡, 𝑡𝑖], and [𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡], are given by 𝐹(𝑡𝑖 − 𝛥𝑡), and 𝐹(𝑡𝑖) respectively. If we use

non-Bernoulli sequences of 𝐿 bits, as a random permutation of a fixed number of zeros

and ones, then the number of ones in these sequences for the two probabilities are given

by:

{
𝑁(𝑡𝑖 − 𝛥𝑡) = 𝐿 ∙ 𝐹(𝑡𝑖 − 𝛥𝑡),

𝑁(𝑡𝑖) = 𝐿 ∙ 𝐹(𝑡𝑖).
 (6.3)

The difference of the number of ones is then:

- 94 -

𝛥𝑁 = 𝑁(𝑡𝑖) − 𝑁(𝑡𝑖 − 𝛥𝑡) = 𝐿 ∙ [𝐹(𝑡𝑖) − 𝐹(𝑡𝑖 − 𝛥𝑡)]. (6.4)

Further assume that the non-Bernoulli sequence for the probability in [𝑡𝑖 − 𝛥𝑡, 𝑡𝑖]

is given by 𝑆(𝑡𝑖 − 𝛥𝑡). Then the sequence 𝑆(𝑡𝑖) for the probability in [𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡] can

be obtained by randomly assigning 𝛥𝑁 ones to replace the zeros in 𝑆(𝑡𝑖 − 𝛥𝑡). Because

the ones in 𝑆(𝑡𝑖 − 𝛥𝑡) are a subset of those in 𝑆(𝑡𝑖), we obtain:

𝑆(𝑡𝑖 − 𝛥𝑡) 𝐴𝑁𝐷 𝑆(𝑡𝑖) = 𝑆(𝑡𝑖 − 𝛥𝑡). (6.5)

PAND

A B

OUT

AND

A B

OUT

A Before B

(a)

Case 1

1
0

1
0

OUT

B

1
0A

t Case 2 t Case 3 t

1
0

1
0

1
0

1

0

1
0

1
0

OUT

B

A

OUT

B

A

(b)

Fig. 6.2. (a) Symbols for a two-input priority AND (PAND) gate [37][71]; (b) The expected behaviour of the

two-input PAND gate for an inclusive condition (adapted from [115]) where 1 and 0 indicate a faulty, and

fault-free event respectively.

6.3. Priority AND Gate

A PAND gate is a special type of AND gate for which an input indicates the firing

of a basic event that occurs in a predetermined order, and the output indicates whether a

failure occurs [37][71]. The operational principles of a two-input PAND gate, as well as

its symbols, are shown in Fig. 6.2 for an inclusive condition [115]. By an inclusive

- 95 -

condition, if the two inputs of the PAND gate fail simultaneously, the output fails at the

same time as the inputs.

As shown in Fig. 6.2, the output of the PAND gate is 1 (i.e., it fails) when the basic

event 𝐴 fails before 𝐵 or 𝐴 and 𝐵 fail at the same time; otherwise, the output of the

PAND gate is 0, i.e., fault free. Let 𝐹𝑡(𝐴) and 𝐹𝑡(𝐵) be the failure time of basic events

𝐴 and 𝐵 respectively; the failure time of the PAND gate’s output, 𝐹𝑡(𝑂𝑈𝑇), is given

by:

𝐹𝑡(𝑂𝑈𝑇) = {

𝐹𝑡(𝐵), 𝑖𝑓 𝐹𝑡(𝐴) < 𝐹𝑡(𝐵)

𝐹𝑡(𝐴) 𝑜𝑟 𝐹𝑡(𝐵), 𝑖𝑓 𝐹𝑡(𝐴) = 𝐹𝑡(𝐵)

∞, 𝑖𝑓 𝐹𝑡(𝐴) > 𝐹𝑡(𝐵)

 (6.6)

6.4. Stochastic Priority AND Model

6.4.1. A Two-Input Priority AND Gate Model

Let 𝐴𝑖−1, and 𝐵𝑖−1 respectively indicate the states of basic events 𝐴, and 𝐵 at

time 𝑖 − 1, and 𝐴𝑖, and 𝐵𝑖 for the states at time 𝑖. If both 𝐴 and 𝐵 fail at time 𝑖, i.e.,

𝐴𝑖−1𝐵𝑖−1 = 00 and 𝐴𝑖𝐵𝑖 = 11, then the failure time of the basic events 𝐴 and 𝐵 is

given by:

𝐹𝑡(𝐴) = 𝐹𝑡(𝐵) = 𝑖 ∙ ∆𝑡. (6.7)

Then, the failure time of the PAND gate’s output is given by 𝐹𝑡(𝑂𝑈𝑇) = 𝐹𝑡(𝐴) =

𝐹𝑡(𝐵) = 𝑖 ∙ ∆𝑡, due to the model considered in Case 2 in Fig. 6.2(b).

If 𝐴𝑖−1𝐵𝑖−1 = 10 and 𝐴𝑖𝐵𝑖 = 11, the basic event 𝐵 fails at time 𝑖 while 𝐴

fails before time 𝑖. The failure time of the basic event 𝐵 is then:

𝐹𝑡(𝐵) = 𝑖 ∙ ∆𝑡. (6.8)

- 96 -

The relationship between the failure times of the basic events 𝐴 and 𝐵 is given

by:

𝐹𝑡(𝐴) < 𝐹𝑡(𝐵). (6.9)

Thus, 𝐹𝑡(𝑂𝑈𝑇) = 𝐹𝑡(𝐵), due to (6.6) and the model considered in Case 1 in Fig.

6.2(b).

For the other possible scenario, i.e., the basic event 𝐴 fails after 𝐵, the top event

of the PAND gate would not fail, i.e., with a failure time of infinity, due to the model

considered in Case 3 in Fig. 6.2(b).

Because the basic events are non-repairable, the state of the two-input PAND gate’s

output event is affected by the gate’s output at the previous time, hence the output of the

PAND gate at time 𝑖, 𝑂𝑈𝑇𝑖, is determined by three factors:

1) The current states of the input basic events 𝐴 and 𝐵 at time 𝑖, 𝐴𝑖 and 𝐵𝑖;

2) The inverted state of basic event 𝐵 at time 𝑖 − 1, 𝑁𝑂𝑇(𝐵𝑖−1); and

3) The output of the PAND gate at time 𝑖 − 1, 𝑂𝑈𝑇𝑖−1.

Hence, the output of the PAND gate at time 𝑖 is given by:

𝑂𝑈𝑇𝑖 = 𝑂𝑈𝑇𝑖−1 + 𝐴𝑖 ∙ 𝐵𝑖 ∙ 𝑁𝑂𝑇(𝐵𝑖−1) (6.10)

A stochastic logic model can be constructed to determine the failure of the

two-input PAND gate, as shown in Fig. 6.3.

According to the assumptions in Section 6.2.1, all basic events are fault free at the

beginning of the mission time; thus, the input signals of the model in Fig. 6.3 are zeros.

In Fig. 6.3(a), if the basic event 𝐴 fails before time 𝑖, 𝐸𝑖 = 1 if 𝐵𝑖−1 = 0, and 𝐵𝑖 = 1.

Then, at time 𝑖 , 𝑂𝑈𝑇𝑖 = 1. However, if 𝑂𝑈𝑇𝑖−1 = 1, which indicates that 𝐴 fails

- 97 -

before 𝐵 or both events fail simultaneously at time 𝑖 − 1, then 𝐵𝑖−1 = 1, and 𝐸𝑖 = 0.

Because 𝑂𝑈𝑇𝑖−1 and 𝐸𝑖 cannot be 1 at the same time, either 𝑂𝑈𝑇𝑖−1 = 1 or 𝐸𝑖 = 1

results in 𝑂𝑈𝑇𝑖 = 1. Otherwise, the state of the top event remains zero. From this

analysis, it can be seen that the stochastic PAND model in Fig. 6.3 computes (6.10), thus

it accurately implements the function of the PAND gate.

iOUT

1iOUT

iA

iB

1iB iD
iE

iA

iB

1iB

iE

iD
iF

(a)

(b)

Fig. 6.3. (a) A stochastic logic model for a two-input priority AND (PAND) gate, and (b) the decomposition of the

three-input AND gate in (a) into two-input AND gates.

6.4.2. Model Validation

To validate the proposed stochastic PAND model, the discretization of a continuous

probability distribution and the generation of stochastic non-Bernoulli sequences are

introduced next, followed by a theoretical proof.

6.4.2.1. Stochastic Model Validation

Theorem 1: Compared to an accurate analysis method, a stochastic simulation of

the two-input PAND gate model in Fig. 6.3, using large non-Bernoulli sequences of

random permutations of fixed numbers of ones and zeros as initial input probabilities,

- 98 -

produces the same increment in the failure probabilities of two adjacent time intervals

when 𝜆𝛥𝑡 → 0.

Proof: Assume that the failure probabilities of the PAND gate at time 𝑖, and 𝑖 − 1

are given by 𝐹((𝐴 → 𝐵)𝑖), and 𝐹((𝐴 → 𝐵)𝑖−1), respectively; we show that the failure

probability of 𝐸𝑖 in the stochastic model in Fig. 6.3 is the same as the increment in the

output failure probability of the PAND gate from time 𝑖 − 1 to 𝑖 , i.e., 𝐹(𝐸𝑖) =

𝐹((𝐴 → 𝐵)𝑖) − 𝐹((𝐴 → 𝐵)𝑖−1).

Given the basic events 𝐴, and 𝐵 with the pdfs 𝑓𝐴(𝑡), and 𝑓𝐵(𝑡) respectively, the

failure probability for the two-input PAND gate’s output 𝑂𝑈𝑇 (when both 𝐴 and 𝐵

fail or 𝐴 fails before 𝐵, i.e., 𝐴 → 𝐵), is given by:

𝐹(𝐴 → 𝐵) = ∫ ∫ 𝑓𝐵(𝑡2)𝑓𝐴(𝑡1)𝑑𝑡2
𝑡

𝑡1

𝑡

0
𝑑𝑡1. (6.11)

For an exponential distribution, (6.11) becomes:

𝐹(𝐴 → 𝐵) = ∫ ∫ 𝜆𝐵𝑒
−𝜆𝐵𝑡2𝜆𝐴𝑒

−𝜆𝐴𝑡1𝑑𝑡2
𝑡

𝑡1

𝑡

0
𝑑𝑡1, (6.12)

which leads to the failure probability of the sequential event 𝐴 → 𝐵 as:

𝐹(𝐴 → 𝐵) =
𝜆𝐴

(𝜆𝐴+𝜆𝐵)
(1 − 𝑒−(𝜆𝐴+𝜆𝐵)𝑡) − 𝑒−𝜆𝐵𝑡(1 − 𝑒−𝜆𝐴𝑡). (6.13)

Equation (6.13) can be obtained by using an analytical approach [40] or a

probabilistic algebraic analysis [115].

By discretization, the failure probabilities of the sequential event 𝐴 → 𝐵 at time 𝑖,

and 𝑖 − 1 are given by:

𝐹((𝐴 → 𝐵)𝑖) =
𝜆𝐴

(𝜆𝐴+𝜆𝐵)
(1 − 𝑒−(𝜆𝐴+𝜆𝐵)∙𝑖∙𝛥𝑡) − 𝑒−𝜆𝐵∙𝑖∙𝛥𝑡(1 − 𝑒−𝜆𝐴∙𝑖∙𝛥𝑡), (6.14)

and

𝐹((𝐴 → 𝐵)𝑖−1) =
𝜆𝐴

(𝜆𝐴+𝜆𝐵)
(1 − 𝑒−(𝜆𝐴+𝜆𝐵)∙(𝑖−1)∙𝛥𝑡) − 𝑒−𝜆𝐵∙(𝑖−1)∙𝛥𝑡 +

- 99 -

𝑒−(𝜆𝐴+𝜆𝐵)∙(𝑖−1)∙𝛥𝑡, (6.15)

respectively. Equation (6.14) can also be written as:

𝐹((𝐴 → 𝐵)𝑖) =

𝜆𝐴

(𝜆𝐴+𝜆𝐵)
(1 − 𝑒−(𝜆𝐴+𝜆𝐵)∙(𝑖−1)∙𝛥𝑡 ∙ 𝑒−(𝜆𝐴+𝜆𝐵)∙𝛥𝑡) − 𝑒−𝜆𝐵∙(𝑖−1)∙𝛥𝑡 ∙ 𝑒−𝜆𝐵∙𝛥𝑡 +

𝑒−(𝜆𝐴+𝜆𝐵)∙(𝑖−1)∙𝛥𝑡 ∙ 𝑒−(𝜆𝐴+𝜆𝐵)∙𝛥𝑡.

(6.16)

Because 𝑂((𝜆 ∙ ∆𝑡)𝑖) for any 𝑖 ≥ 2 is negligible when 𝜆𝛥𝑡 → 0 , applying a

Taylor series expansion on (6.16) leads to:

𝐹((𝐴 → 𝐵)𝑖) = [
𝜆𝐴

(𝜆𝐴+𝜆𝐵)
(1 − 𝑒−(𝜆𝐴+𝜆𝐵)∙(𝑖−1)∙𝛥𝑡) − 𝑒−𝜆𝐵∙(𝑖−1)∙𝛥𝑡 +

𝑒−𝜆𝐵∙(𝑖−1)∙𝛥𝑡 ∙ 𝜆𝐵 ∙ 𝛥𝑡 + 𝑒
−(𝜆𝐴+𝜆𝐵)∙(𝑖−1)∙𝛥𝑡 − 𝑒−(𝜆𝐴+𝜆𝐵)∙(𝑖−1)∙𝛥𝑡 ∙ 𝜆𝐵 ∙ 𝛥𝑡].

(6.17)

From (6.15) and (6.17), the probability increment for two adjacent times is obtained

as:

𝐹(𝑂𝑈𝑇𝑖) − 𝐹(𝑂𝑈𝑇𝑖−1) = 𝐹((𝐴 → 𝐵)𝑖) − 𝐹((𝐴 → 𝐵)𝑖−1) = 𝜆𝐵 ∙ 𝛥𝑡 ∙

𝑒−𝜆𝐵∙(𝑖−1)∙𝛥𝑡 ∙ (1 − 𝑒−(𝜆𝐴)∙(𝑖−1)∙𝛥𝑡).

(6.18)

 Next, the stochastic analysis of the increased probability 𝐸𝑖 between two adjacent

time intervals is pursued. Let 𝐹𝑐(∙), and 𝐹𝑑(∙) indicate the cdfs for the continuous, and

discretized distributions respectively. By applying the discretization process to the

exponential distributions of the basic events (i.e., 𝐴 and 𝐵), we have:

{
𝐹𝑐(𝐴) = ∫ 𝑓𝐴(𝑡)

𝑡

0
𝑑𝑡 = 1 − 𝑒−𝜆𝐴∙𝑡,

𝐹𝑑(𝐴) = 1 − 𝑒−𝜆𝐴∙𝑀∙∆𝑡,

 (6.19)

and

{
𝐹𝑐(𝐵) = ∫ 𝑓𝐵(𝑡)

𝑡

0
𝑑𝑡 = 1 − 𝑒−𝜆𝐵∙𝑡,

𝐹𝑑(𝐵) = 1 − 𝑒
−𝜆𝐵∙𝑀∙∆𝑡,

 (6.20)

where 𝑀 is the number of equally discretized time intervals ∆𝑡.

- 100 -

Hence, the input probabilities of 𝐴, and 𝐵 at time 𝑖 and 𝑖 − 1 are given by:

𝐹(𝐴𝑖) = (1 − 𝑒
−𝜆𝐴∙𝑖∙∆𝑡), (6.21)

𝐹(𝐵𝑖) = (1 − 𝑒−𝜆𝐵∙𝑖∙∆𝑡), (6.22)

𝐹(𝐵𝑖−1) = (1 − 𝑒
−𝜆𝐵∙(𝑖−1)∙∆𝑡). (6.23)

Let 𝑆(𝐴𝑖) be the stochastic sequence generated for the probability of the basic

event 𝐴 at time 𝑖; 𝑆(𝐵𝑖), and 𝑆(𝐵𝑖−1) be the stochastic sequences for the basic event

at time 𝑖 , and 𝑖 − 1 respectively. In the model of Fig. 6.3, the inverter’s output

sequence, 𝑆(𝐷𝑖), is given by:

𝑆(𝐷𝑖) = 𝑁𝑂𝑇(𝑆(𝐵𝑖−1)). (6.24)

For the three-input AND gate in Fig. 6.3(a), its output sequence is obtained as:

𝑆(𝐸𝑖) = 𝑆(𝐴𝑖) 𝐴𝑁𝐷 𝑆(𝐵𝑖) 𝐴𝑁𝐷 𝑆(𝐷𝑖) =

𝑆(𝐴𝑖)𝐴𝑁𝐷 (𝑆(𝐵𝑖)𝐴𝑁𝐷 (𝑁𝑂𝑇 (𝑆(𝐵𝑖−1)))).

(6.25)

Similar to (6.5), the probability encoded in the sequence

𝑆(𝐵𝑖)𝐴𝑁𝐷 (𝑁𝑂𝑇 (𝑆(𝐵𝑖−1))) is given by 𝐹(𝐵𝑖) − 𝐹(𝐵𝑖−1) , i.e., the probability

increment for the basic event 𝐵 in two adjacent times.

By (6.22) and (6.23), this probability increment is thus:

𝐹(𝐵𝑖) − 𝐹(𝐵𝑖−1) = 𝑒
−𝜆𝐵∙(𝑖−1)∙𝛥𝑡 − 𝑒−𝜆𝐵∙𝑖∙𝛥𝑡. (6.26)

Considering 𝐹(𝐸𝑖) as the probability encoded in the sequence 𝑆(𝐸𝑖), together

with (6.21) and (6.26), the probability increment in 𝐸𝑖 is given by:

𝐹(𝐸𝑖) = 𝐹(𝐴𝑖)(𝐹(𝐵𝑖) − 𝐹(𝐵𝑖−1)) = (1 − 𝑒−𝜆𝐴∙𝑖∙𝛥𝑡) ∙ (𝑒−𝜆𝐵∙(𝑖−1)∙𝛥𝑡 −

- 101 -

𝑒−𝜆𝐵∙𝑖∙𝛥𝑡). (6.27)

The application of a Taylor series expansion on (6.27) leads to a first-order

approximation given by (6.18). This result shows that the proposed stochastic model

accurately implements the function of a two-input PAND gate for exponentially

distributed events, i.e.,

𝐹(𝐸𝑖) = 𝐹((𝐴 → 𝐵)𝑖) − 𝐹((𝐴 → 𝐵)𝑖−1). (6.28)

Next, the proof of the theorem is pursued in the general case when the basic events

are non-exponentially distributed. By an integral analysis, the failure probability of the

two input PAND gate at time 𝑡 is given by:

𝐹((𝐴 → 𝐵)𝑡) = ∫ ∫ 𝑓𝐵(𝑡2)𝑓𝐴(𝑡1)𝑑𝑡2
𝑡

𝑡1

𝑡

0
𝑑𝑡1 = ∫ (𝐹𝐵(𝑡) − 𝐹𝐵(𝑡1))

𝑡

0
𝑓𝐴(𝑡1)𝑑𝑡1 =

𝐹𝐵(𝑡) ∫ 𝑓𝐴(𝑡1)
𝑡

0
𝑑𝑡1 − ∫ 𝐹𝐵(𝑡1)

𝑡

0
𝑓𝐴(𝑡1)𝑑𝑡1.

(6.29)

Similarly, this failure probability at time 𝑡 − ∆𝑡 is given by:

 𝐹((𝐴 → 𝐵)𝑡−∆𝑡) = ∫ ∫ 𝑓𝐵(𝑡2)𝑓𝐴(𝑡1)𝑑𝑡2
𝑡−∆𝑡

𝑡1

𝑡−∆𝑡

0
𝑑𝑡1 = ∫ (𝐹𝐵(𝑡 − ∆𝑡) −

𝑡−∆𝑡

0

𝐹𝐵(𝑡1)) 𝑓𝐴(𝑡1)𝑑𝑡1 = 𝐹𝐵(𝑡 − ∆𝑡) ∫ 𝑓𝐴(𝑡1)
𝑡−∆𝑡

0
𝑑𝑡1 − ∫ 𝐹𝐵(𝑡1)

𝑡−∆𝑡

0
𝑓𝐴(𝑡1)𝑑𝑡1

(6.30)

The increment of the failure probabilities between 𝑡 and 𝑡 − ∆𝑡 is then

- 102 -

𝐹((𝐴 → 𝐵)𝑡) − 𝐹((𝐴 → 𝐵)𝑡−∆𝑡)

= 𝐹𝐵(𝑡)∫𝑓𝐴(𝑡1)

𝑡

0

𝑑𝑡1 −∫𝐹𝐵(𝑡1)

𝑡

0

𝑓𝐴(𝑡1)𝑑𝑡1

− 𝐹𝐵(𝑡 − ∆𝑡) ∫ 𝑓𝐴(𝑡1)

𝑡−∆𝑡

0

𝑑𝑡1 + ∫ 𝐹𝐵(𝑡1)

𝑡−∆𝑡

0

𝑓𝐴(𝑡1)𝑑𝑡1

= 𝐹𝐵(𝑡) ∫ 𝑓𝐴(𝑡1)

𝑡−∆𝑡

0

𝑑𝑡1 + 𝐹𝐵(𝑡) ∫ 𝑓𝐴(𝑡1)

𝑡

𝑡−∆𝑡

𝑑𝑡1

− 𝐹𝐵(𝑡 − ∆𝑡) ∫ 𝑓𝐴(𝑡1)

𝑡−∆𝑡

0

𝑑𝑡1 − ∫ 𝐹𝐵(𝑡1)

𝑡

𝑡−∆𝑡

𝑓𝐴(𝑡1)𝑑𝑡1

(6.31)

When ∆𝑡 → 0, we have

∫ 𝐹𝐵(𝑡1)
𝑡

𝑡−∆𝑡
𝑓𝐴(𝑡1)𝑑𝑡1 = lim∆𝑡→0{𝐹𝐵(𝑡 − ∆𝑡)𝑓𝐴(𝑡 − ∆𝑡)∆𝑡}, (6.32)

and

∫ 𝑓𝐴(𝑡1)
𝑡

𝑡−∆𝑡
𝑑𝑡1 = lim∆𝑡→0{𝑓𝐴(𝑡 − ∆𝑡)∆𝑡}. (6.33)

In this case, (6.31) becomes

lim
∆𝑡→0

{𝐹((𝐴 → 𝐵)𝑡) − 𝐹((𝐴 → 𝐵)𝑡−∆𝑡)} =

lim∆𝑡→0{(𝐹𝐵(𝑡) − 𝐹𝐵(𝑡 − ∆𝑡)) ∫ 𝑓𝐴(𝑡1)
𝑡−∆𝑡

0
𝑑𝑡1 + 𝐹𝐵(𝑡)𝑓𝐴(𝑡 − ∆𝑡)∆𝑡 −

𝐹𝐵(𝑡 − ∆𝑡)𝑓𝐴(𝑡 − ∆𝑡)∆𝑡}.

(6.34)

When ∆𝑡 → 0,

- 103 -

𝐹((𝐴 → 𝐵)𝑡) − 𝐹((𝐴 → 𝐵)𝑡−∆𝑡)

= (𝐹𝐵(𝑡) − 𝐹𝐵(𝑡 − ∆𝑡)) (∫ 𝑓𝐴(𝑡1)

𝑡−∆𝑡

0

𝑑𝑡1 + ∫ 𝑓𝐴(𝑡1)

𝑡

𝑡−∆𝑡

𝑑𝑡1)

= (𝐹𝐵(𝑡) − 𝐹𝐵(𝑡 − ∆𝑡))∫𝑓𝐴(𝑡1)

𝑡

0

𝑑𝑡1

(6.35)

Because 𝐹𝐴(𝑡) = ∫ 𝑓𝐴(𝑡1)
𝑡

0
𝑑𝑡1, we obtain

𝐹((𝐴 → 𝐵)𝑡) − 𝐹((𝐴 → 𝐵)𝑡−∆𝑡) = (𝐹𝐵(𝑡) − 𝐹𝐵(𝑡 − ∆𝑡))𝐹𝐴(𝑡). (6.36)

The right hand side of (6.35) is the failure probability increment computed by the

stochastic model of PAND in Fig. 6.3. This result proves Theorem 1 in the general case.

 □

6.4.2.2. Analysis of the Increment in Failure Probability

If 𝑆(𝐵𝑖), and 𝑆(𝐵𝑖−1) are the non-Bernoulli sequences for the failure probabilities

of the basic event 𝐵, 𝐹(𝐵𝑖), and 𝐹(𝐵𝑖−1), at time 𝑖, and 𝑖 − 1 respectively, the mean

number of elements equal to 1 in the non-Bernoulli sequence 𝑆(𝐵𝑖−1) of 𝐿 bits is then

𝐿 ∙ 𝐹(𝐵𝑖−1), and the variance is 0 (by the nature of the non-Bernoulli sequence). This

result indicates that the use of non-Bernoulli sequences results in a deterministic initial

value. Because there is no variation in the input signal of the inverter, the variance in the

inverter’s output sequence 𝑆(𝐷𝑖) is 0 as 𝑆(𝐷𝑖) = 𝑁𝑂𝑇(𝑆(𝐵𝑖−1)). Hence, the mean and

variance of the number of ones in the sequence 𝑆(𝐷𝑖) are given by:

𝜇 = 𝐿 ∙ (1 − 𝐹(𝐵𝑖−1)), (6.37)

and

𝑣 = 0, (6.38)

respectively. In Fig. 6.3(b), the first AND gate’s output sequence 𝑆(𝐹𝑖) is given by

- 104 -

𝑆(𝐹𝑖) = 𝐴𝑁𝐷(𝑆(𝐵𝑖), 𝑁𝑂𝑇(𝑆(𝐵𝑖−1))) , where 𝑆(𝐵𝑖) is statistically dependent on

𝑆(𝐵𝑖−1), as discussed previously. The mean, and variance of the number of elements

equal to 1 in the first AND gate’s output sequence are then given by:

𝜇′ = 𝐿 ∙ (𝐹(𝐵𝑖) − 𝐹(𝐵𝑖−1)), (6.39)

and

𝑣′ = 0, (6.40)

respectively. (6.39) and (6.40) indicate that 𝑆(𝐹𝑖) is also a non-Bernoulli sequence.

For the basic event 𝐴, a non-Bernoulli sequence at time 𝑖, 𝑆(𝐴𝑖), is generated for

the failure probability 𝐹(𝐴𝑖). For the last AND gate in Fig. 6.3(b), the input sequences

𝑆(𝐹𝑖) and 𝑆(𝐴𝑖) are for two statistically independent signals. Per Lemma 1, therefore,

the use of non-Bernoulli sequences produces a more accurate result at the output of the

last AND gate in Fig. 6.3(b), and thus at the output of the three-input AND gate in Fig.

6.3(a), than using Bernoulli sequences.

If the expected probability of 𝐸𝑖 is given by 𝑧 = 𝑁(𝐸𝑖)/𝐿 , where 𝑁(𝐸𝑖)

indicates the number of ones in the sequence 𝑆(𝐸𝑖), through a combinatorial analysis and

the application of Stirling’s formula [128][129], the number of elements equal to 1 in the

output stochastic sequence 𝑆(𝐸𝑖) of 𝐿 bits follows approximately a Gaussian

distribution, i.e.,

𝐹(𝑧)~
1

√2𝜋𝐿
√𝛽𝑒−𝜃𝐿, (6.41)

where

𝛽~
1

𝐹(𝐴𝑖)(1 − 𝐹(𝐴𝑖))(𝐹(𝐵𝑖) − 𝐹(𝐵𝑖−1))(1 − (𝐹(𝐵𝑖) − 𝐹(𝐵𝑖−1)))
, (6.42)

𝜃~
(𝑧−𝐹(𝐴𝑖)(𝐹(𝐵𝑖)−𝐹(𝐵𝑖−1)))

2

2𝐹(𝐴𝑖)(1−𝐹(𝐴𝑖))(𝐹(𝐵𝑖)−𝐹(𝐵𝑖−1))(1−(𝐹(𝐵𝑖)−𝐹(𝐵𝑖−1)))
, (6.43)

as well as with a mean, and variance given by 𝐿 ∙ 𝐹(𝐴𝑖)(𝐹(𝐵𝑖) − 𝐹(𝐵𝑖−1)) and

𝐿 ∙ 𝐹(𝐴𝑖)(1 − 𝐹(𝐴𝑖))(𝐹(𝐵𝑖) − 𝐹(𝐵𝑖−1))(1 − (𝐹(𝐵𝑖) − 𝐹(𝐵𝑖−1))) respectively.

- 105 -

6.4.2.3. Generalization of the PAND Model

A multiple-input PAND gate can be converted to a successively cascaded model of

two-input PAND gates. Take a three-input PAND as an example, as shown in Fig. 6.4(a);

its cascaded model is shown in Fig. 6.4(b). Assume that the failure order of the three

inputs is from left to right, i.e., 𝐴 → 𝐵 → 𝐶. Then, if the failures of the input events

occur in this order, the output 𝐺 is 1; otherwise, 𝐺 is 0.

In the cascaded model in Fig. 6.4(b), a 1 at the gate output 𝐺 indicates that the

intermediate event 𝐷 fails before the basic event 𝐶, or both 𝐷 and 𝐶 fail at the same

time. Because 𝐷 = 1 is caused by the fact that the basic event 𝐴 fails before 𝐵, or both

𝐴 and 𝐵 fail at the same time, the gate output 𝐺 = 1 means that the sequential event

𝐴 → 𝐵 → 𝐶 occurs; thus the cascaded model implements the function of a three-input

PAND gate. This model can be generalized for an arbitrary multiple-input PAND gate.

PAND

A B

PAND

C

G

DPAND

A B C

G

(a)

(b)

Fig. 6.4. (a) A three-input priority AND (PAND) gate, and (b) the successive cascading model of the three-input

PAND gate in (a).

In summary, for a DFT with priority relationships, the stochastic two-input PAND

model and the successive cascading model can be utilized in an FTA using the

non-Bernoulli sequences generated for discretized probabilities of the basic events. The

- 106 -

failure probability of the top event is encoded in the statistics, i.e., the proportion of the

number of ones in the output sequence of the stochastic analysis.

6.5. Case Studies and Validation Results

In this section, several case studies are presented to show the accuracy, efficiency

and the ability of dealing with repeated basic events of the stochastic PAND model.

Simulations are performed for both exponential and non-exponential distributions of

basic events. The results are compared with those obtained by using accurate analysis and

simulation-based approaches.

6.5.1. Validation of the Stochastic Priority AND Models

Example 6.1. For a two-input PAND gate and a three-input PAND gate, as shown

in Fig. 6.2(a) and Fig. 6.4(a), the failure probabilities of basic events are assumed to be

exponentially distributed, with 𝜆𝐴 = 𝜆𝐵 = 𝜆𝐶 = 0.01. The mission time is 300 hours,

and the time interval for discretization is one hour, i.e., ∆𝑡 = 1 hour.

A quantitative analysis of the two-input PAND gate is first performed using the

stochastic PAND model. The results are compared with those obtained by using the

Monte Carlo (MC) [125] and analytical [40] methods, as shown in Fig. 6.5. In Fig. 6.5

(and all subsequent figures and tables, wherever applicable), 𝑁 is the number of

simulation runs for the MC method, and 𝐿 is the sequence length for the stochastic

approach. It can be seen that the stochastic approach produces closer results than MC

simulation to the accurate analysis.

Because a continuous failure distribution is discretized into M time intervals, the

stochastic analysis results in a vector of the failure probability of the top event at every

time interval, 𝑭 = (𝐹[1], 𝐹[2], … , 𝐹[𝑀]) . Let 𝑭𝑆 , 𝑭𝐴 , and 𝑭𝑀𝐶 denote the failure

probability vectors obtained by the stochastic approach, an accurate method [40], and the

- 107 -

MC method [125]. While an accurate result can be obtained by using an SBDD method

[70][122], or an algebraic analysis [115], a direct integral method is used in this

dissertation for an accurate analysis. Albeit very fast for a simple DFT analysis, such

accurate analysis may become cumbersome in the evaluation of large DFTs. Further, let

∆𝑭𝑀𝐶−𝐴 indicate the discrepancies between the failure probability vectors obtained from

the MC method in [125] and the accurate analysis in [40], and let ∆𝑭𝑆−𝐴 indicate the

discrepancies between the failure probability vectors obtained from the stochastic

approach and the accurate analysis in [40]. The three norms, ‖∙‖1, ‖∙‖2, and ‖∙‖∞, are

then used to measure the differences of the failure probability vectors.

The results are shown in Table 6.1 for the two-input PAND gate with various

sequence lengths for the stochastic approach. The average run time is also shown for

comparing the efficiency. Unless otherwise noted, ten experiments are run in each case

study for obtaining the norm values and average run time. As shown in Table 6.1, the

smaller norm values and shorter run time indicate that the stochastic analysis using the

non-Bernoulli sequences is more accurate and faster than the MC method.

Fig. 6.5. The failure probabilities obtained by using the stochastic, Monte Carlo (MC) [125], and accurate [40]

methods for the two-input priority AND (PAND) gate in Fig. 6.1(a).

- 108 -

The accuracy of the stochastic approach can further be improved by using longer

stochastic sequences. As shown in Fig. 6.6, the stochastic approach can produce very

close results to the accurate analysis [40] by using a large sequence length (e.g. 100k bits)

for the two-input PAND gate.

Table 6.1. Accuracy and run time of the stochastic approach and Monte Carlo (MC) simulation [125], compared

to an accurate analysis [40], for the two-input priority AND (PAND) gate in Fig. 6.1(a).

 𝑵/𝑳 1k 5k 10k 100k

MC [125] vs.

Accurate analysis

[40]

‖𝛥𝑭𝑀𝐶−𝐴‖1 2.8665 1.4030 1.0888 0.9853

‖𝛥𝑭𝑀𝐶−𝐴‖2 0.1984 0.0940 0.0729 0.0686

Avg. time for MC (s) 2.15 11.81 24.61 225.67

The stochastic

approach vs.

Accurate analysis

[40]

‖𝛥𝑭𝑆−𝐴‖1 2.0604 0.9243 0.7085 0.6319

‖𝛥𝑭𝑆−𝐴‖2 0.1338 0.0597 0.0455 0.0383

Avg. time for stochastic

(s)
3.39× 10−2 0.12 0.25 4.73

Fig. 6.6. The differences in the failure probability obtained by using the stochastic approach and an accurate

analysis at different mission times for the two-input priority AND (PAND) gate.

Next, the failure probability of a three-input PAND gate is evaluated by using the

successive cascading PAND model and the stochastic approach. Simulations are run for

different sequence lengths, and the obtained failure probability vectors are compared with

those obtained by an accurate analysis. As revealed in Table 6.2, the norms of the

- 109 -

differences of the computed failure probability vectors indicate that a stochastic analysis

of the PAND model is more accurate and faster than an MC method. As shown in Fig.

6.7, moreover, the accuracy of the stochastic approach can further be improved by using

longer stochastic sequences.

Fig. 6.7. The differences in the failure probability obtained by using the stochastic approach and an accurate

analysis at different mission times for the three-input priority AND (PAND) gate.

Table 6.2. Accuracy and run time of the stochastic approach and Monte Carlo (MC) simulation [125], compared

to an accurate analysis [40], for the three-input priority AND (PAND) gate in Example 6.1 (b).

Stochastic 𝐿 ‖𝛥𝑭𝑆−𝐴‖1 ‖𝛥𝑭𝑆−𝐴‖2 ‖𝛥𝑭𝑆−𝐴‖∞ Avg. time (s)

1k 1.5643 0.1071 0.0121 0.65

10k 0.6408 0.0434 0.0045 6.88

100k 0.4827 0.0313 0.0027 66.34

MC 𝑁 ‖𝛥𝑭𝑀𝐶−𝐴‖1 ‖𝛥𝑭𝑀𝐶−𝐴‖2 ‖𝛥𝑭𝑀𝐶−𝐴‖∞ Avg. time (s)

1k 2.1041 0.1462 0.0156 5.05

10k 0.7312 0.0512 0.0055 54.60

100k 0.5007 0.0324 0.0029 558.07

6.5.2. A Dynamic Fault Tree with Repeated Events

A DFT with PAND gates and repeated events is analyzed next using the stochastic

approach.

Example 6.2 (from [39]). A DFT consists of 5 logic gates (4 OR gates, 1 AND gate)

and 2 dynamic gates (PANDs) with 9 basic events, as shown in Fig. 6.8. The failure rates

- 110 -

of the basic events are exponentially distributed with 𝜆𝑖 = 0.01 for 𝑖 = 1, 2, … , 9. The

basic events 𝑒2 and 𝑒3 are repeated events. The maximum mission time is 300 hours.

G0

Top Event

e9

e5

e7 e3

T_G3

T_G1

e1

e2 e8 e3

G2

T_G2

G1

G3

G6

T_G4

e2 e6

T_G5

T_G6
e4

G4

G5

Fig. 6.8. Example 6.2: a dynamic fault tree (DFT) with repeated events 𝒆𝟐 and 𝒆𝟑 [39].

The simulation results by the stochastic approach with different sequence lengths

and the MC method [125] with different numbers of simulations are shown in Table 6.3

for several mission times. As can be seen, the stochastic approach computes the failure

probability of the top event with a better efficiency than the MC method. This indicates

that the stochastic approach using the non-Bernoulli sequences as initial inputs can

effectively evaluate the reliability of a dynamic system with repeated events. The

accuracy improves with the increase of the length of the stochastic sequences.

- 111 -

Table 6.3. The top event’s failure probability of the dynamic fault tree (DFT) in Fig. 6.8, with the total mission

time of 300 hours.

𝒕

(hour)

Monte Carlo simulation [125] (𝑵) The stochastic approach (𝑳)

1k 5k 10k 100k 1k 5k 10k 100k

50 0.1980 0.2104 0.2125 0.2165 0.2230 0.2134 0.2185 0.2172

100 0.4870 0.4988 0.4868 0.4952 0.5080 0.4954 0.4896 0.4953

150 0.6780 0.6996 0.6809 0.6886 0.7060 0.6786 0.6908 0.6909

200 0.8080 0.8156 0.8070 0.8121 0.8110 0.8118 0.8089 0.8092

250 0.8830 0.8890 0.8832 0.8860 0.8880 0.8878 0.8846 0.8868

300 0.9338 0.9336 0.9318 0.9314 0.9330 0.9328 0.9310 0.9315

Avg. time

(s)

25.44 126.66 254.02 2543.30 2.74 13.63 27.03 196.60

6.5.3. DFTs with Non-Exponentially Distributed Events

The presence of a large number of basic events makes it very difficult to derive the

top event’s failure probability using an accurate analysis, because a large number of

states need to be considered, and the complexity of an accurate analysis increases

significantly with the number of basic events. It is also difficult to evaluate a PAND gate

with intermediate events as inputs. The problem becomes even more challenging when

the basic events’ failures are not exponentially distributed. In this section, it is shown that

these issues are effectively addressed by the stochastic approach, as illustrated by

Examples 6.3.

Example 6.3 (from [125]): A DFT consists of a relatively large number of basic

events, while the inputs of a PAND gate are two intermediate events, as shown in Fig.

6.9.

The failure probability of the top event can be obtained by the algebraic analysis in

[115] as:

𝑃{(𝑀 → 𝑁)} = ∫ 𝑓𝑁(𝑡1) ∙ 𝐹𝑀(𝑡1)
𝑡

0
𝑑𝑡1, (6.44)

- 112 -

where

𝐹𝑁(𝑡1) = 1 − ∏ (1 − 𝐹𝑖(𝑡1))𝑖𝜖{𝐻,𝐼,𝐽,𝐾,𝐿} , (6.45)

𝐹𝑀(𝑡1) = ∏ 𝐹𝑗(𝑡1)𝑗𝜖{𝐴,𝐵,𝐶,𝐷,𝐸} . (6.46)

PAND

Top Event

LC D EA B

N

H I J K

M

Fig. 6.9. Example 6.3, a dynamic fault tree (DFT) with intermediate events as the inputs of a priority AND

(PAND) gate [125].

In a practical system, a non-exponential distribution may be required for a more

accurate modeling of a basic event’s failure. Although an exact result can be obtained by

using an algebraic analysis, it becomes cumbersome for an algebraic analysis to

accurately evaluate such systems due to the complexity involved in deriving a closed

form of analytical expressions.

In this section, the Weibull distribution is considered to show that a DFT with

non-exponentially distributed basic events can be handled by the stochastic approach.

The pdf and cdf of the Weibull distribution is given by

- 113 -

𝑓(𝑡) =
𝛼

𝜆
(
𝑡

𝜆
)𝛼−1𝑒−(𝑡/𝜆)

𝛼
, (6.47)

and

𝐹(𝑡) = 1 − 𝑒−(𝑡/𝜆)
𝛼
, (6.48)

respectively, where α , and 𝜆 are the shape, and scale parameters of the Weibull

distribution respectively.

Assume that, in the DFT in Fig. 6.9, the basic events J, K, L follow a Weibull

distribution with 𝛼 = 0.1 and 𝜆 = 20, while the other basic events are exponentially

distributed with failure rates given in Table 6.4 [125].

Table 6.4. The failure rates of the basic events in Example 6.3 [125].

Basic event Failure rate Basic event Failure rate

A 0.011 B 0.012

C 0.013 D 0.014

E 0.015 H 0.0011

I 0.0012

Fig. 6.10. The failure probability of the top event with non-exponentially distributed basic events.

For this system, the failure probability of the top event is plotted for a mission time

of 300 hours, as shown in Fig. 6.9, for both the stochastic approach and the MC method

- 114 -

[125]. The norms of the differences of the failure probability vectors obtained by the

stochastic and MC methods are ‖∙‖1 = 0.0357 , ‖∙‖𝟐 = 0.0028 , and ‖∙‖∞ = 4.5 ×

10−4. Because the encoding of a failure probability into a stochastic sequence is not

limited to those of exponential distributions, a DFT with non-exponentially distributed

basic events can be accurately evaluated by the stochastic approach, as shown in Fig.

6.10. Hence, the proposed stochastic approach is applicable to both exponential and

non-exponential distributions in a DFT analysis.

6.5.4. A Fault Tree with Repeated and Non-Exponentially Distributed Events

Finally, a fault tree without dynamic gates, but with repeated events and

non-exponentially distributed ones, is considered. This fault tree is developed from the

DFT in Fig. 6.9 by replacing the PAND gate with an AND gate and inserting a repeated

event E, as Example 6.4 shown in Fig. 6.11. The failure rates of the

exponentially-distributed basic events are assumed to be the same as those in Example

6.3, while the non-exponentially distributed events J, K, L follow a Weibull distribution

with 𝛼 = 0.5 and 𝜆 = 2.

For this fault tree, the failure probability of the top event is plotted for a mission

time of 300 hours, as shown in Fig. 6.12, for both the stochastic approach and the MC

method [125]. A more detailed comparison is given in Table 6.5.

As revealed in Fig. 6.11 and Table 6.5, a stochastic analysis of the fault tree is more

accurate and faster than an MC method compared with the accurate analysis [40], as

shown by the run time and norms of the differences in the failure probability vectors.

Hence, a DFT with non-exponentially distributed basic events and repeated events can be

evaluated by the stochastic approach.

- 115 -

AND

Top Event

LC D EA B

N

E I J K

M

Fig. 6.11. Example 6.4, a fault tree with repeated events and non-exponentially distributed ones.

Fig. 6.12. The failure probability of the top event with non-exponentially distributed basic events.

- 116 -

Table 6.5. Accuracy comparison and run time of the stochastic approach and Monte Carlo (MC) simulation [125]

for the dynamic fault tree (DFT) in Example 6.4.

Stochastic

approach

𝐿 ‖𝛥𝑭𝑆−𝐴‖1 ‖𝛥𝑭𝑆−𝐴‖2 ‖𝛥𝑭𝑆−𝐴‖∞ Avg. time (s)

1k 0.9953 0.0747 0.0150 9.47× 10−2

10k 0.4487 0.0348 0.0054 0.75

100k 0.0967 0.0081 0.0017 8.71

MC simulation 𝑁 ‖𝛥𝑭𝑀𝐶−𝐴‖1 ‖𝛥𝑭𝑀𝐶−𝐴‖2 ‖𝛥𝑭𝑀𝐶−𝐴‖∞ Avg. time (s)

1k 1.4800 0.1177 0.0203 8.31

10k 0.5461 0.0436 0.0081 85.37

100k 0.1373 0.0123 0.0027 969.38

6.6. Summary

A stochastic model is proposed for the analysis of a two-input PAND gate in a DFT.

This model is then used in a successive cascading structure for the analysis of a general

multiple-input PAND gate. For a DFT with PAND gates, a stochastic approach using the

proposed models provides a fast analysis of the DFT compared to an accurate or

algebraic approach. The use of non-Bernoulli sequences as initial input event

probabilities makes the stochastic approach faster and more accurate than Monte Carlo

simulation. The stochastic approach has the following features.

1) The failure probability of a basic event is not limited to an exponential distribution;

any failure distribution can be analyzed by an appropriate sampling and coding into the

stochastic non-Bernoulli sequences.

2) Repeated events are correctly and readily handled in a DFT analysis, because signal

correlation is maintained in the random binary bit streams and the propagation of the

stochastic sequences in a fault tree analysis.

3) The stochastic approach avoids the state-space explosion problem or the large

computational complexity typically encountered in a Markov or analytical method, thus it

is scalable for use in a general DFT analysis.

- 117 -

Chapter 7

A Stochastic Approach for the Analysis of

Dynamic Fault Trees with Spare Gates under

Probabilistic Common Cause Failures

The so-called spare gate is extensively used to model the dynamic behavior of

redundant systems in the application of dynamic fault trees (DFTs). Additionally, the

basic components of a system are often subject to common cause failures (CCFs)

including those caused by earthquakes, sudden changes in the environment, design errors,

and incorrect operations [54]. CCFs are sometimes closely related; for instance, floods

are likely to be caused by hurricanes. These CCFs are referred to as s-dependent CCFs.

Furthermore, the occurrence of a CCF is usually not deterministic, but probabilistic, thus

referred to as a probabilistic CCF (PCCF) [130]. The probability of occurrence differs by

components or conditions. The consideration of PCCFs in a DFT analysis is of great

significance as the system’s reliability is likely to be overestimated without incorporating

PCCFs. However, it presents a great challenge to consider PCCFs in a DFT analysis

using existing methods, such as an integration-based approach. In this chapter, stochastic

computational models are proposed for a fast analysis of spare gates and PCCFs in a DFT.

This work has been published as [131].

The novelty of this chapter is as follows:

 Stochastic computational models are proposed for analyzing a two-input spare gate

and PCCFs in a DFT. The warm spare (WSP), and cold spare (CSP) gates are then

analyzed in detail. The effect of PCCFs is taken into consideration, and a stochastic

logic model is constructed for dependent PCCFs.

- 118 -

7.1. Spare Gate

A standby system modeled by a spare gate usually consists of two types of modules:

the primary (or online) modules, and the standby modules. Standby modules are used to

replace the faulty modules to keep the system functional or operational. Hence, the spare

gate fires (i.e., fails) if both of the modules fail. Spare gates are divided into three

categories, depending on the switching relationship of the primary and standby modules:

the hot spare gate (HSP) [37][70], the cold spare gate (CSP) [37][70], and the warm spare

gate (WSP) [37][132]-[134]. In an HSP system, a standby module is always powered and

ready to replace a faulty primary module when a fault occurs. HSPs are typically used in

systems in which a minimal reconfiguration time is required, e.g. a chemical process

control system. In a CSP, however, the standby modules are usually not powered until it

is necessary to replace a faulty module [135]. Hence, it is usually used in power

consumption critical systems, such as a satellite system [136]. As a tradeoff between CSP

and HSP, the standby modules in a WSP are powered initially, but with a lower failure

rate. The failure rate of the standby module in a WSP changes when it is switched to

replace a faulty module [132]. For WSP, usually less power is consumed in the standby

state compared to HSP, and less initialization and recovery time are required compared to

CSP [133][134].

Fig. 7.1 shows different types of spare gates. A spare gate models the sequential

failure events of the primary online module 𝑃 (with a failure rate of 𝜆𝑃), and the

standby module 𝑆. The failure rate is assumed to be 𝛼 ∙ 𝜆𝑆 prior to the switching of the

standby module to replace a faulty component. The standby module in operation is

subject to a failure rate 𝜆𝑆 after switching. Hence, the spare gate can be classified by a

different value of the factor 𝛼: if 𝛼 = 1, the gate is an HSP gate; if 0 < 𝛼 < 1, it

becomes a WSP gate; if 𝛼 = 0, it is a CSP gate. A generic failure rate switching diagram

for a spare gate is shown in Fig. 7.2.

- 119 -

WSP

HSP

CSP

P S
S

spare

P 1
0

10

Fig. 7.1. A spare gate [37]. It is classified into different categories (WSP, HSP, and CSP) by the factor 𝜶,

according to the failure behavior of the standby module.

t

primary

0

Pλ

Sλ

Failure

rate

1 2

S
spare

Fig. 7.2. A generic switching diagram for the failure in a spare gate [37][122].

G

G

(a) (b)

PS SP

SP

Fig. 7.3. The spare gate decomposition: (a) a combinational model for the spare gate, and (b) a simplified model

for CSP. " → " indicates an inclusive precedence in a failure order.

HSP and CSP gates can be regarded as special cases of the WSP gate; the only

difference lies in the value of the failure rate before and after the switching point. A spare

gate can be converted into a combinational fault tree with two sequential components

serving as inputs of an OR gate, as shown in Fig. 7.3 [70][122].

- 120 -

In Fig. 7.3, the sequential event 𝑆 → 𝑃 indicates that both modules fail, and the

standby module fails before the primary module does; while the sequential event 𝑃 → 𝑆

means that both modules fail, and the primary module fails before the standby module.

The two sequential events cannot occur at the same time, thus they are mutually

exclusive. Furthermore, it is impossible for the standby module of a CSP gate to fail

because the failure rate of the standby module before switching is 0. Hence, the

combinational model for a CSP gate can be simplified, as shown in Fig. 7.3(b); this

indicates that the output failure probability of a CSP gate is the same as the failure

probability of the sequential event 𝑃 → 𝑆. The output failure probability of the spare gate

in Fig. 7.3(a) is given by [122]:

𝑈𝑠𝑦𝑠 = 𝑝(𝑃 → 𝑆) + 𝑝(𝑆 → 𝑃). (7.1)

The probabilities of the two sequential failure events in (7.1) are given by:

𝑝(𝑃 → 𝑆) = ∫ ∫ 𝑓𝑃(𝜏2)𝑓𝑆,𝜆(𝜏1)
𝑡−𝜏2

0

𝑡

0
(1 − ∫ 𝑓𝑆,𝛼𝜆(𝜏1)𝑑𝜏1

𝜏2

0
)𝑑𝜏2𝑑𝜏1, (7.2)

and

𝑝(𝑆 → 𝑃) = ∫ ∫ 𝑓𝑃(𝜏2)𝑓𝑆,𝛼𝜆(𝜏1)
𝑡

𝜏1

𝑡

0
𝑑𝜏2𝑑𝜏1, (7.3)

where 𝑓𝐴(𝑡), 𝑓𝑆,𝛼𝜆(𝑡), and 𝑓𝑆,𝜆(𝑡), are the failure probability density functions (pdfs) for

the primary module, the standby module before replacing the faulty primary module and

after replacing the faulty primary module. For a k-out-of-n WSP system consisting of

identical WSPs, a closed expression can be derived; however, it is only applicable to

systems with identical input events [137].

7.2. Proposed Stochastic Models

In a redundant system, some modules are online or operational, while one or more

- 121 -

modules function as standby. They are therefore referred to as primary, and standby

modules, respectively. Standby modules are critical for tolerating hardware failures or

software errors; fault tolerance is achieved by removing the faulty primary module from

the operation, and replacing it with a spare unit [136]. In a DFT, the primary and standby

modules are considered as input events to a spare gate [70]. If the primary and standby

components are not treated as basic events, or the input events include several standby

components, it becomes cumbersome to obtain the failure probability through the use of

existing approaches. Moreover, the components in a realistic DFT system may also suffer

from common cause failures that occur either deterministically or probabilistically. This

condition makes the distribution of the failure behavior even more complicated. Hence, a

stochastic model is proposed in this paper for analyzing spare gates.

In this section, the discretization of a continuous probability distribution and the

generation of the non-Bernoulli sequences are the same as the basic assumptions in

Chapter 6.

7.2.1. Stochastic Models for the WSP and CSP Gates

Let 𝑆𝑖−1
𝑃 , and 𝑆𝑖

𝑃 denote the non-Bernoulli sequences generated for the failure

probabilities of the primary module at two adjacent time intervals 𝑖 − 1, and 𝑖, i.e., 𝐹𝑖−1
𝑃 ,

and 𝐹𝑖
𝑃, where 𝐹𝑃 is the cdf for the failure of the primary module. As a primary module

is non-repairable, the relationship of (6.5) must be met. For the 𝑗 th bit in the

non-Bernoulli sequence, the state of the primary module is given by 𝑆𝑖−1,𝑗
𝑃 and 𝑆𝑖,𝑗

𝑃 for

the two consecutive time intervals; a state of 0, or 1 indicates that no fault occurs, or a

fault occurs respectively. The state combination of the primary module at time 𝑖 − 1 and

time 𝑖 for the 𝑗th trial is represented by 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 , where 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 ∈ {00, 01, 11}, due

to the non-reparability assumption. A trial is carried out by a bit or a combination of bits

- 122 -

in the stochastic sequences. For the WSP or CSP gate, the failure rate of the standby

module varies before and after switching to replace the primary module (for CSP, the

failure probability is 0 before switching). Hence, it is necessary to record the failure time

of the primary module to determine the failure probability of the standby module. If

𝑆𝑘−1,𝑗
𝑃 = 0, and 𝑆𝑘,𝑗

𝑃 = 1, it indicates that the primary module fails at time 𝑘 for the 𝑗th

trial; hence, for WSP and CSP, the operational time of the standby module should be

determined from the failure time of the primary module, i.e., 𝑡𝑠 = 𝑖 − 𝑘, where 𝑖 is the

present mission time, and 𝑘 is the failure time of the primary module. Similarly, the

operational time of the standby module can be determined for any other trial.

Let 𝑆𝑖−1
𝑆 , and 𝑆𝑖

𝑆 be the stochastic sequences generated for the failure probabilities

of the standby module at two adjacent time intervals 𝑖 − 1, and 𝑖 respectively. Then we

discuss the following three different cases: 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 00 , 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 01 , and

𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 11.

 For 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 00, the primary module does not fail at time 𝑖. For a WSP, if

𝑆𝑖−1,𝑗
𝑆 = 1, then 𝑆𝑖,𝑗

𝑆 = 1. If 𝑆𝑖−1,𝑗
𝑆 = 0, the current state of the standby module for

the 𝑗th trial is determined by the failure probability, i.e., the cdf 𝐹𝑖
𝑆,𝛼𝜆

 obtained

from the failure rate of the standby module before it is switched to replace the

primary module.

 For 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 01, the primary module fails at time 𝑖, but it still functions at time

𝑖 − 1. The standby module is expected to replace the faulty primary module at the

failure time. For a WSP, if 𝑆𝑖−1,𝑗
𝑆 = 0, 𝑆𝑖,𝑗

𝑆 is determined by the failure cdf of the

standby module before switching to replace the faulty module, 𝐹𝑖
𝑆,𝛼𝜆

.

In both of these two cases, 𝑆𝑖,𝑗
𝑆 remains 0 for a CSP as the standby module is not

activated prior to the failure of the primary module, and is assumed to be fault free before

- 123 -

it is switched to replace the faulty primary module.

P

ji

P

ji SS ,,1

Y

N

Y

N

01
Y

Y

N

N

11

Y

Y

N

 is determined by

 for WSP, or

is 0 for CSP

,S

iF

 is determined by

 for WSP or CSP

(a)

00

1, U

jiS

0 or 1

0 or 1

0 or 1

 is determined by

 for WSP, or

is 0 for CSP

0,1

S

jiS

0,1

S

jiS

0,1

S

jiS

1, U

jiS

1, U

jiS

U

jiS ,

U

jiS ,

U

jiS ,

,S

iF

,S

tS
F

1

0

S

iS 1

MUX

(b)

Sequence for the

probability of

 for WSP/CSP

Sequence for the

probability of

 for WSP, or

 0 for CSP

U

iS

P

iS 1

P

iS

S

iS

,S

iF

,S

tS
F

Fig. 7.4. (a) Flowchart for generating the stochastic sequences of the standby module, and (b) a general

stochastic logic model for the spare gates (WSP and CSP). 𝑆𝑖
𝑈 denotes the output sequence for the spare gate.

 For 𝑆𝑖−1,𝑗
𝑃 𝑆𝑖,𝑗

𝑃 = 11, the primary module has failed by time 𝑖 − 1. For the standby

module, if 𝑆𝑖−1,𝑗
𝑆 = 1, then 𝑆𝑖,𝑗

𝑆 = 1. Otherwise, 𝑆𝑖−1,𝑗
𝑆 is determined for a WSP

gate by the failure cdf, i.e. 𝐹𝑡𝑠
𝑆,𝜆

, obtained from the failure rate of the standby module

after switching to replace the faulty primary module; while for a CSP, it is also

- 124 -

determined by 𝐹𝑡𝑠
𝑆,𝜆

, where 𝑡𝑠 is the operational time of the standby module.

These processes are shown in the flowchart of Fig. 7.4(a), which can be

implemented by the stochastic architecture in Fig. 7.4(b). These stochastic architectures

model the sequential behavior of the WSP and CSP gates.

The proposed stochastic model is applied to evaluate the WSP in Fig. 7.1; the

results are compared with those obtained by an accurate approach [122], as shown in

Table 7.1. In Table 7.1, the failures of basic events are exponentially distributed with 𝜆𝑃

= 0.001, 𝛼 = 0.6, and 𝜆𝑆 = 0.0025. 𝑭𝐴, and 𝑭𝑆 are the failure probability vectors for

the accurate, and stochastic analysis respectively. ∆𝑭𝑆−𝐴 denotes the discrepancies of

the two failure probability vectors, i.e., ∆𝑭𝑆−𝐴 = 𝑭𝑆 − 𝑭𝐴. The differences between the

simulation results are measured by several norms.

Table 7.1. Evaluation of the stochastic WSP gate model for a mission time of 1,000 hours compared with an

accurate approach [122]. The average simulation time for the stochastic approach is also provided.

Sequence length 𝑳 (bits) 1k 10k 100k

‖∆𝑭𝑆−𝐴‖1 6.0512 2.1548 0.8354

‖∆𝑭𝑆−𝐴‖2 0.2424 0.0763 0.0163

‖∆𝑭𝑆−𝐴‖∞ 0.0189 0.0047 0.0025

Avg. time (s) 0.24 1.09 10.48

For the WSP gate with the same initial parameters of Table 7.1, the top event’s

failure probability is obtained for different mission times by the accurate and stochastic

approaches (for a sequence length of 10k). For the WSP gate, the exact failure

probabilities for 300, 600, and 1,000 hours (as computed by (7.1)) are 0.1175, 0.3173,

and 0.5500 respectively, while the results obtained by the stochastic approach are 0.1153,

0.3136, and 0.5477 by using a sequence length of 10k bits. As shown in Fig. 7.5, the

accuracy of the stochastic approach can be further improved with longer stochastic

sequences. In general, the stochastic approach accurately computes the failure probability

at a reasonable sequence length (e.g. 10k bits).

- 125 -

Fig. 7.5. The differences in the failure probabilities obtained by the stochastic approach and an accurate analysis

for the WSP in Fig. 7.1.

7.2.2. Stochastic Models for CCFs and Majority Voters

The stochastic model for common cause failure (CCF) is presented next for

analyzing a general DFT. This process is followed by an improved model that considers

the CCF’s probabilistic behavior, i.e., probabilistic CCFs (PCCFs). Finally, a stochastic

majority voter is proposed.

7.2.2.1. Stochastic Model for CCFs

Generally, CCFs are usually modeled by two types of methods: explicit methods

[138][139], and implicit methods [140][141]. In this Chapter, an explicit method is

modeled by a stochastic approach, and the CCF is considered as a basic event. To model

s-dependent CCFs, a multiplexer is used with the stochastic sequences as inputs, as

shown in Fig. 7.6(a). For a DFT [142], a hurricane occurs with a probability of

𝑝(ℎ) = 0.015. As floods usually occur in conjunction with hurricanes, the dependent

relationship between the hurricane and flood can be described by conditional

probabilities. The occurrence of floods is usually conditional on the occurrence of

- 126 -

hurricanes, denoted as 𝑝(𝑏 = 𝑓|ℎ) = 0.55, and 𝑝(𝑎 = 𝑓|ℎ̅) = 0.035. These conditional

probabilities can be derived from available weather information [143].

The function computed by the 2-to-1 multiplexer in Fig. 7.6 (a) is given by

𝑝(𝑓) = 𝑝(𝑎 = 𝑓|ℎ̅) ∙ 𝑝(ℎ̅) + 𝑝(𝑏 = 𝑓|ℎ) ∙ 𝑝(ℎ), (7. 4)

where 𝑓|ℎ̅, and 𝑓|ℎ are the events of floods (𝑓) conditional on the occurrence of a

hurricane (ℎ). The output of the multiplexer is determined by the value of the control bit.

For the 2-to-1 multiplexer of Fig. 7.6(a), one of the inputs is selected as the output

according to the distributions of zeros and ones in the control sequence encoding the

signal probability of ℎ. For a sequence length of 10k bits, the input sequences for

probabilities of 𝑝(𝑓|ℎ) = 0.55, and 𝑝(𝑓|ℎ̅) = 0.035 consist of 5500, and 350 ones,

respectively. If the random input sequences are independent, the output of the multiplexer

is expected to be 0.0427 (by (7.4)), i.e. approximately 427 ones are expected in the output

sequence for a sequence length of 10k bits. If multiple conditions are considered, for

example to compute 𝑝(𝐴𝐵𝐶) based on 𝑝(𝐴𝐵) and 𝑝(𝐶|𝐴𝐵), two conditions can first

be combined, e.g., using an AND gate for a conjunction of the two events A and B; then

this new condition can be used as the control input to a multiplexer for computing the

joint probability 𝑝(𝐴𝐵𝐶). This process is shown in Fig. 7.6(b). The computed result is

however approximate due to the inevitable stochastic fluctuations inherent in the

processing of the random binary bit streams. This is an important feature in stochastic

computation as probabilistic values are propagated rather than deterministic ones.

It has been shown in [29] that, when the initial probabilities are encoded by

non-Bernoulli sequences, the stochastic fluctuations are reduced compared with the use

of Bernoulli sequences. For the previous example, the occurrence probability of floods is

obtained by using a multiplexer with stochastic non-Bernoulli sequences; the mean and

variance are reported in Table 7.2 for a number of simulations using different sequence

- 127 -

lengths. As shown by the simulation results, the evaluation accuracy is better for the

stochastic approach with a smaller variance, and it can be improved with an increase of

sequence length.

fP

hP

1

0
000100

001110

100100

011010

)|(hfbP

)|(hfaP)(outP

)(ABP

1

0

)|(ABCP

)|(ABCP

)(AP
)(BP

(a) (b)

Fig. 7.6. (a) A stochastic multiplexer model for the s-dependency relationship between the two s-dependent

common cause failures (CCFs) of flood (𝒇) and hurricane (𝒉), and (b) a stochastic model for computing the joint

probabilities of multiple conditions.

Table 7.2. Mean, and variance of the occurrence probability of floods obtained by using the stochastic

approach and Monte Carlo (MC) method for 1,000 experiments with different sequence lengths 𝑳

(bits) or simulation runs 𝑵.

𝑵/𝑳 1k 10k 100k

Stochastic Mean 4.26× 10−2 4.27× 10−2 4.27× 10−2

Variance 3.89 × 10−6 4.16 × 10−7 3.83 × 10−8

MC Mean 4.28× 10−2 4.27× 10−2 4.27× 10−2

Variance 5.59 × 10−5 4.19 × 10−6 4.01 × 10−7

The stochastic approach effectively computes the occurrence probability of

dependent CCFs as evidenced by the average run time in Table 7.2. Moreover, the

variance is significantly reduced with an increase of sequence length. The use of a

sequence length of 1k bits generates very accurate results, with a relative disparity (RD)

of approximately 0.23%, compared to the analytical result of 0.0427 computed by (7.4).

RD is defined as:

𝑅𝐷 = (𝑝 − 𝑝0)/𝑝0 (7. 5)

where 𝑝, and 𝑝0 are the probabilities obtained by using the stochastic approach, and an

accurate analysis, respectively. For an increased sequence length, a smaller RD can be

obtained by the stochastic approach.

- 128 -

7.2.2.2. A Stochastic Model for PCCF

A mechanical system can be subject to multiple CCFs, as denoted by 𝐶𝐶𝐹1, 𝐶𝐶𝐹2,

⋯, 𝐶𝐶𝐹𝑚. The failure of a dependent event affected by a specific CCF (say 𝐶𝐶𝐹𝑖) occurs

with a probability, so the CCF is considered as a probabilistic CCF (PCCF). The

occurrence probability of a PCCF is given by

𝛾𝑖 = 𝑝(𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑒𝑣𝑒𝑛𝑡 𝑓𝑎𝑖𝑙𝑠|𝐶𝐶𝐹𝑖 𝑜𝑐𝑐𝑢𝑟𝑠); 𝛾𝑖 may vary for different components

affected by a CCF.

PCCF
CCF

(a) (c)

factor

p
p

1S 2S nS

1 2 n
i ibS

iaS

ibS

iS

 (b)

iaS

iS

Fig. 7.7. (a) A probabilistic common cause failure (PCCF) gate [130], (b) a combinational model for the PCCF

gate, and (c) proposed stochastic model for the PCCF gate.

In Fig. 7.7(a), the CCF occurs as a trigger event with probability 𝑝; then, one or

more dependent events affected by the trigger event will fail with a specific probability.

For example, an event 𝑆𝑖 occurs with probability 𝛾𝑖 if the trigger event occurs. Let 𝑆𝑖𝑎

and 𝑆𝑖𝑏 denote the failures of the basic event 𝑆𝑖 without, and with considering the

effect of a CCF; then, if 𝑆𝑖𝑎 or 𝑆𝑖𝑏 occurs, the output event 𝑆𝑖 fails. Thus, the failure

of the event 𝑆𝑖 can be modeled as an OR gate with two input events 𝑆𝑖𝑎 and 𝑆𝑖𝑏 (as

illustrated in Fig. 7.7(b)). The event 𝑆𝑖𝑏 occurs with probability 𝑝 ∙ 𝛾𝑖, where 𝑝 is the

occurrence probability of the CCF, and 𝛾𝑖 is the conditional failure probability of the

dependent event 𝑆𝑖 affected by the CCF. A stochastic model is proposed to implement

the PCCF, as shown in Fig. 7.7(c). The simulation results for this model are shown in

Table 7.3 for 𝑝(𝐴) = 0.1, and 𝑝(𝐶𝐶𝐹) = 0.01; the probability of event 𝐴 affected by

- 129 -

the CCF is given by 𝛾 = 0.3.

Table 7.3. Mean and variance of the simulated occurrence probability of a component A under a PCCF by

applying the stochastic approach for 1,000 simulations. The average run time is also provided.

Sequence length 𝑳 (bits) 1k 10k 100k

𝑝(𝐴) Mean 0.1026 0.1027 0.1027

Variance 1.94 × 10−6 2.13 × 10−7 1.96 × 10−8

Avg. time (s) 6.42× 10−4 6.68× 10−4 7.14× 10−2

As revealed in Table 7.3, the proposed stochastic approach effectively computes the

occurrence probability of PCCFs. The relative disparity (given by (7.5)) is approximately

0.0974% for a sequence length of 1,000 bits compared with the analytical result of

0.1027 [130]. Furthermore, the variance can be significantly reduced with a longer

sequence length, thus the accuracy in the failure probability obtained by the stochastic

approach increases with an increase of sequence length.

7.2.2.3. A Stochastic Model for Majority Voter

The stochastic structure for a 2-out-of-3 majority voter is shown in Fig. 7.8, as

implemented by stochastic logic in Fig. 7.8 (b). The analytical expression for the output

probability of the 2-out-of-3 majority voter is given by [144]:

𝑝(𝑂𝑢𝑡) = 𝑝(𝐴) ∙ 𝑝(𝐵) + 𝑝(𝐴) ∙ 𝑝(𝐶) + 𝑝(𝐵) ∙ 𝑝(𝐶) − 2 ∙ 𝑝(𝐴) ∙ 𝑝(𝐵) ∙ 𝑝(𝐶). (7. 6)

A

C

B

A

C

B 2/3

(a) (b)

Out
Out

Fig. 7.8. (a) A 2-out-of-3 majority voter [144], and (b) a stochastic model for the 2-out-of-3 majority voter.

For a 2-out-of-3 majority voter with inputs’ failure probabilities given in Table 7.4,

- 130 -

the output failure probability is 0.2880 by (7.6); the relative disparity (RD) is 0.069%

(given by (7.5)) for the stochastic approach using sequences of 1k bits. For a 3-out-of-5

majority voter, the output probability is 0.1780 using the analysis of [144], while the RD

is approximately 0.17% for the stochastic approach with 𝐿 = 1k bits. Thus, the error in

the failure probability for the stochastic approach decreases with the increase of sequence

length. Similar stochastic circuits can be constructed for majority gates with more than

three inputs.

Table 7.4. Mean and variance of the failure probabilities of 2-out-of-3 and 3-out-of-5 majority voters, obtained

by the stochastic approach. The average simulation time is also provided.

For the 2-out-of-3 voter, 𝑝(𝐴) = 0.3, 𝑝(𝐵) = 0.6, 𝑝(𝐶) = 0.2

Sequence length 𝑳 (bits) 1k 10k 100k

Mean 0.2882 0.2880 0.2880

Variance 6.31 × 10−5 5.43 × 10−6 5.82 × 10−7

Avg. time (s) 2.39× 10−3 2.26× 10−3 1.40× 10−2

For the 3-out-of-5 voter 𝑝(𝐴) = 0.2, 𝑝(𝐵) = 0.4, 𝑝(𝐶) = 0.5, 𝑝(𝐷) = 0.1, 𝑝(𝐸) = 0.4

Sequence length 𝑳 (bits) 1k 10k 100k

Mean 0.1783 0.1781 0.1780

Variance 6.68 × 10−5 6.27 × 10−6 6.39 × 10−7

Avg. time (s) 3.15× 10−3 2.77× 10−2 0.28

7.3. DFT Analysis Flow

Following the proposed stochastic models for the spare and PAND gates [116], the

process for evaluating the top event’s failure probability of a general DFT with PCCFs

consists of the following steps.

Step 1: Replace the original spare gate with the proposed stochastic model for WSP

and CSP in Fig. 7.1(b).

Step 2: Substitute the original FDEP and PAND gates with the OR model [67][68],

and the stochastic PAND model in [116], respectively; then a DFT with dynamic gates

can be implemented by combinational logic.

- 131 -

Step 3: Encode the events’ failure probabilities at different time steps into

non-Bernoulli sequences.

Step 4: If PCCFs are considered in the DFT, an additional PCCF module is

required for each of the basic events subject to PCCFs. Moreover, if the CCFs are

s-dependent, a stochastic multiplexer is used to model the effect of the dependency.

Step 5: Derive the top event’s failure probability at different time steps by

propagating the non-Bernoulli sequences through the stochastic models.

7.4. Case Studies

In this section, several case studies are presented to show the efficiency and

accuracy of the stochastic method, in comparison with the analytical method of [40], and

the MC approach of [125]. Simulations are performed for DFTs with, and without PCCFs.

Furthermore, the effect of dependent PCCFs is also analyzed. Non-exponential

distributions of the basic events are also considered to show the capabilities of the

stochastic approach to handle general cases. All simulations are run on a computer with a

3.10 GHz i3-2100 microprocessor, and a 6 GB memory.

Let the failure probability of a basic event 𝐵 at time 𝑖 be 𝐹𝑖
𝐵, 𝑖 ∈ {1, 2,⋯ ,𝑀},

obtained as the failure cdf for the basic event; then the failure probability of the DFT is

given by:

𝐹(𝑖) = 𝑓(𝐹𝑖
𝐵), (7. 7)

where 𝑓(∙) indicates the logic operation determined by the system’s topology. Hence,

the failure probability vector for the entire mission time is given by a vector 𝑭 =

(𝐹(1), 𝐹(2),⋯ , 𝐹(𝑀)), where 𝑀 indicates the number of discretized intervals of the

mission time. The failure probability vectors obtained using the stochastic, analytical [40],

- 132 -

and MC [125] approaches are then represented by 𝑭𝑆, 𝑭𝐴, and 𝑭𝑀𝐶 respectively. Hence,

∆𝑭𝑆−𝐴 indicates the disparity vector for the stochastic and analytical methods; ∆𝑭𝑀𝐶−𝐴

represents the disparity vector for the MC and analytical approaches. Similarly, the

norms, ‖∙‖1 , ‖∙‖2 and ‖∙‖∞ , are used to measure the differences of these failure

probability vectors.

7.4.1. HECS, with and without PCCFs

A DFT of the Hypothetical Example Computer System (HECS) (from [37], and

shown in Fig. 7.9) is used to illustrate the efficiency and accuracy of the proposed

stochastic method.

The correct operation of the HECS is determined by the states of different systems

such as the processor (A1, A2, and A), memory, bus, and application interfaces [145].

The HECS will fail if any of the four subsystems fail. The computer of Fig. 7.9 is

modeled by a DFT in Fig. 7.10(a) as illustrated in [145]. Using the stochastic models of

the dynamic gates, a complete stochastic system can be constructed for the HECS, as

shown in Fig. 7.10(b).

A1 A2
Cold

Spare A
Memory

Interface Unit1

Memory

Interface Unit2

Operator console

Operator & software

M1 M2 M3 M4 M5

Redundant bus

Fig. 7.9. The Hypothetical Example Computer System (HECS) [37].

- 133 -

CSP1 CSP2

CSP

A1

A

A2

CSP

3/5

HW OP SWBUS1 BUS2FDEP

M1

MIU1 MIU2

M2

MIU12
M3

M4

M5

FDEP FDEP

Memory

system

failure

Bus

system

failure

Application

Interface failure

Processing

system failure

HECS

Failure

(a)

3/5

HECS

failure

Memory

system

failure

Bus

system

failure

Application

Interface

failure

BUS1 BUS2 HW SWOP

M5

MIU2MIU1

M2 M3 M4M1

Processing

system

failure

11

00

01
A

iS

0 for CSP2

1

0

MUXSequence for the

probability

for CSP1

0 for CSP1

Sequence for the

probability

for CSP2

1

0

MUX

1M

iS

1MIU

iS 2MIU

iS

2M

iS 3M

iS 4M

iS 5M

iS

1BUS

iS
2BUS

iS HW

iS OP

iS SW

iS

A

iS

1A

iS

A

iS 1
2

1

A

iS

A

iS 1

2A

iS

1

1

A

iS

,A

tS
F

,A

tS
F

(b)

Fig. 7.10. (a) A dynamic fault tree (DFT) of Hypothetical Example Computer System (HECS) with CSP, FDEP,

and static gates [145]; and (b) the stochastic model for the HECS with constituent dynamic gate models.

The mission time of the HECS is assumed to be 100 hours, and the failure

- 134 -

behaviors of the basic events in the HECS are considered to be exponentially distributed

(the failure rates are shown in Table 7.5 [37][145]).

Table 7.5. The failure rates of the basic events in the Hypothetical Example Computer System (HECS) [37][145].

Basic event Failure rate (ℎ−1)

A1 A2 A 10−4

M1M2 M3 M4 M5 6 × 10−5

MIU1,MIU2 5 × 10−5

BUS1,BUS2 10−6

HW 5 × 10−5

SW 3 × 10−2

OP 10−3

For a mission time of 100 hours, the difference in failure probabilities of the HECS

and the average simulation time are shown in Table 7.6 for the different approaches. 𝑁,

and 𝐿 denote the number of simulation runs for the MC method, and the sequence length

for the stochastic approach, respectively. The norms of the disparity vectors are presented

for the stochastic and MC [125] approaches.

Table 7.6. Norms of the differences in the top event’s failure probability vectors obtained by the proposed

stochastic approach and Monte Carlo (MC) simulation for the dynamic fault tree (DFT) compared to accurate

analysis. The average run time is also provided.

𝑵/𝑳 1k 10k 100k

‖∆𝑭𝑆−𝐴‖1 0.1749 0.0529 0.0168

‖∆𝑭𝑆−𝐴‖2 0.0225 0.0066 0.0023

‖∆𝑭𝑆−𝐴‖∞ 0.0064 0.0016 7.0872 × 10−4

‖∆𝑭𝑀𝐶−𝐴‖1 0.8199 0.2830 0.1024

‖∆𝑭𝑀𝐶−𝐴‖2 0.1079 0.0386 0.0140

‖∆𝑭𝑀𝐶−𝐴‖∞ 0.0364 0.0134 0.0049

Avg. time (s) Accurate Analysis 1.74× 10−3

Stochastic 5.09× 10−2 0.39 3.96

MC 0.14 1.26 12.59

As shown in Table 7.6, the proposed stochastic approach requires a shorter run time,

and results in a smaller variance in the computed failure probability; hence, it is faster

- 135 -

and more accurate than the MC method. The evaluation accuracy can be further improved

by increasing the sequence length. However, a tradeoff between precision and efficiency

must be determined when selecting the sequence length. Although the accurate analysis

results in the shortest run time, the significantly longer time required for deriving the

analytical expressions is not included in the value reported in Table 7.6.

In practice, the failure distribution is not limited to an exponential distribution if

other factors such as aging are taken into consideration. Therefore, a non-exponential

distribution may be required for a more accurate model. A Weibull distribution is

considered for a DFT with non-exponentially distributed basic events. The pdf, and cdf of

a Weibull distribution are given by (6.47) and (6.48) in Chapter 6 respectively.

Fig. 7.11. Difference in the failure probabilities of the top event for the Hypothetical Example Computer System

(HECS) for a mission time of 100 hours.

Assume that the basic events A1 and BUS1 follow a Weibull distribution with

λ = 2, and 𝑘 = 0.1, while the failures of the other basic events are exponentially

distributed. Furthermore, assume that BUS1 and HW are subject to a CCF (i.e. 𝛾𝑖 = 1)

with an occurrence probability of 0.1. Fig. 7.11 reveals the difference of the top event’s

failure probabilities for a mission time of 100 hours, obtained by both the stochastic

- 136 -

approach and MC simulation [125]. It can be seen that the difference between the

stochastic and MC approach decreases with the increase of the sequence length. For a

sequence length (or simulation runs) of 10k bits, ‖∙‖1 , ‖∙‖2 , and ‖∙‖∞ of the

differences in the failure probability vectors obtained by the two approaches are 0.3087,

0.0387, and 0.0133 respectively. As revealed by these norm values, a DFT with

non-exponentially distributed basic events subject to PCCFs can be effectively evaluated

by the proposed stochastic approach with a reasonable sequence length.

7.4.2. DFT with Dependent PCCFs

A DFT with WSP, FDEP, and PAND gates is analyzed next to show the efficiency

of the stochastic approach (Fig. 7.12(a)). Assume that ℎ, 𝑙, and 𝑓 denote the events of

hurricanes, lightning strikes, and floods respectively. Table 7.7 shows the exponentially

distributed failure rates of the components; non-exponential distributions will be dealt

with subsequently. The occurrence probabilities of a hurricane, and a lightning strike are

given as 𝑝(ℎ) = 0.015 and 𝑝(𝑙) = 0.025 respectively. The dependencies between the

CCFs are modeled by the conditional occurrence probabilities of floods because of the

occurrence of a hurricane, i.e., 𝑝(𝑓|ℎ) = 0.55, and 𝑝(𝑓|ℎ̅) = 0.035. These probabilities

are determined from weather information [143]. The probability that a component fails

due to a CCF is assumed to be 𝛾𝑖 = 0.8 for 𝑖 = 1, 2, 3 (where 𝑖 indicates a different

CCF, i.e., ℎ, 𝑙, 𝑓, respectively). For this DFT, a stochastic model is constructed in Fig.

7.12(b) with the PAND model of [116], and the stochastic models in Figs. 7.6 and 7.7 for

considering the effects of PCCFs.

The average run time and the norms used to measure the differences in the failure

probability vectors of the DFT obtained by the stochastic and MC [125] approaches are

given in Table 7.8 for a mission time of 200 hours. Also shown are the failure

probabilities by considering PCCFs for each of the modules.

- 137 -

DFT

Module 1 Module 2 Module 3

C I

B FA G

A B E

E F

A D HD E E

2/3

PCCF

factor

A B

PCCF

factor

A F

PCCF

factor

H

FDEP

A E

f
32

Clh
1

WSP

PCCF

(a)

DFT

E

D

f

3

hP

1

0
)|(hfP

)|(hfP

F

G

h

1

A

B

A F

1

0

I

iS 1

MUX
Sequence for

the probability

 for WSP

Sequence for

the probability

 for WSP
,I

iF

Module 1 Module 2

G

iS

F

iS

A

iS

B

iS l2

A C E

Module 3

H

,I

tS
F

I

iS

C

iSC

iS 1

h

iS

1

iS

2

iS

A

iS
A

iSF

iS

l

iS

E

iS OUT

iS 1

OUT

iS

E

iS E

iS 1

B

iS

E

iSC

iS

D

iS

H

iS

h

iS

hf

iS |

hf

iS |

f

iS

3

iS

(b)

Fig. 7.12. (a) A dynamic fault tree (DFT) with s-dependent probabilistic common cause failures (PCCFs) (taken

from [54]), and (b) a stochastic model for the DFT in (a).

- 138 -

In Monte Carlo simulation, the result follows approximately a Gaussian distribution

for a large number of runs. The result of stochastic computation with a long sequence

length is also approximately Gaussian distributed [29]. In this case, a parameter 𝑧𝑐 can

be used to determine the confidence interval of the simulated results [146]. The error in

the computed result is then given by:

𝐸 =
zc

𝜇
√
𝑣

𝑚
, (7.10)

where 𝜇, and 𝑣 are the accurate mean, and variance of the distribution of the results,

and 𝑚 is the number of simulations (or equivalently, the number of bits in a stochastic

sequence). For a confidence level of 95%, 𝑧𝑐 = 1.96. For the failure rates in Table 7.7

and for 𝛾𝑖 = 0.8, stochastic sequences of one million bits are used to find the accurate

mean, and variance, as 0.8119, and 0.1527, respectively, for the stochastic approach. For

a sequence length of 10k, the error is then obtained by (7.10) as 0.9434% (i.e. less than

1%) at a confidence level of 95%. As per (7.10), the error decreases with an increase of

sequence length at a given confidence level. The required sequence length can thus be

estimated by (7.10) for achieving a desired evaluation accuracy.

Table 7.7. Component failure rates (𝟏𝟎−𝟑/hour).

Basic events Failure rates Basic events Failure rates

A 1.5 B 1.0

C 4.0 D 1.0

E 2.0 F 1.0

G 3.0 H 2.0

I (spare) 1.0 I (working) 2.0

For this DFT, the top event’s failure probability for a mission time of 200 hours is

plotted in Fig. 7.13 for two values of 𝛾𝑖, where 𝛾𝑖, 𝑖 = 1, 2, 3, indicates the probability

that the basic event is affected by a CCF. In Fig. 7.13 (a), the failures of the basic events

are assumed to be exponentially distributed; for 𝛾𝑖 = 0, i.e., when the effect of a CCF is

not considered, the failure probability is underestimated compared to the case when the

- 139 -

occurrence of a CCF will definitely cause a failure of the basic event (i.e. when 𝛾𝑖 = 1).

In the latter case, the failure probability is overestimated compared to the case when the

probabilistic behavior of a CCF is considered, i.e., when 0 < 𝛾𝑖 < 1 (for which the

failure probabilities would lie between the values shown in Fig. 7.13(a)). Furthermore,

assume that components A and D follow a Weibull distribution with 𝜆 = 2, and 𝑘 = 0.1,

while the failure rates of the other basic events remain at the values given in Table 7.7.

Fig. 7.13(b) plots the differences between the failure probabilities obtained by the

stochastic and MC approaches; the difference decreases with an increase of stochastic

sequence length, or the number of simulation runs. For a sequence length (or simulation

runs) of 10k bits, the norms, ‖∙‖1, ‖∙‖2, and ‖∙‖∞, of the differences in the failure

probability vectors of the stochastic and MC approaches are obtained as 0.8198, 0.0734,

and 0.0136, respectively.

Table 7.8. Norms of the differences in the top event’s failure probability vectors of the dynamic fault tree (DFT)

in Fig. 7.12, and the average run time for the proposed stochastic approach and Monte Carlo (MC) simulation in

[125].

Under CCFs (i.e. 𝜸𝒊 = 𝟏) 𝑵/𝑳 1k 10k 100k

‖∆𝑭𝑆−𝑀𝐶‖1 2.4370 0.7457 0.2301

‖∆𝑭𝑆−𝑀𝐶‖2 0.2227 0.0680 0.0205

‖∆𝑭𝑆−𝑀𝐶‖∞ 0.0460 0.0148 0.0041

Avg. time (s)

Accurate 4.90× 10−3

Stochastic 0.22 2.06 16.28

MC 0.38 3.55 36.66

Under PCCFs with 𝜸𝒊 = 𝟎. 𝟖 𝑵/𝑳 1k 10k 100k

‖∆𝑭𝑆−𝑀𝐶‖1 2.5580 0.8148 0.2498

‖∆𝑭𝑆−𝑀𝐶‖2 0.2324 0.0722 0.0216

‖∆𝑭𝑆−𝑀𝐶‖∞ 0.0450 0.0152 0.0042

Avg. time (s)

Accurate 6.10× 10−3

Stochastic 0.24 1.87 21.03

MC 0.48 4.92 41.16

The DFT systems (inclusive of the spare gate, PAND gate, and FDEP gate) can be

effectively evaluated by the proposed stochastic approach. The stochastic approach is

- 140 -

(a)

(b)

Fig. 7.13. Example 7.2: (a) the failure probability of the dynamic fault tree (DFT) subject to probabilistic

common cause failures (PCCFs) for 𝜸𝒊 = 𝟎, and 𝜸𝒊 = 𝟏 (for basic events with exponentially distributed

failures, using a sequence length of 10k bits); and (b) the difference of the failure probabilities of the DFT

subject to PCCFs for 𝜸𝒊 = 𝟎.𝟖 (for basic events with non-exponentially distributed failures).

faster than a MC method [125] with an equivalent number of simulation runs.

Furthermore, the accuracy of the proposed stochastic approach can be improved by

increasing the sequence length. The required sequence length is determined as a tradeoff

between precision and efficiency. It is also shown that the reliability of a DFT system

decreases by considering the effects of PCCFs that widely occur in practice. Hence, if the

failure of a certain component affected by PCCFs is not considered, then the reliability of

- 141 -

a DFT is likely to be overestimated. If the effect of PCCFs is considered to be

deterministic in causing a failure, then the reliability of a DFT is underestimated.

7.5. Summary

In this chapter, stochastic models have been proposed for analyzing a two-input

spare gate and PCCFs in a DFT; the WSP, and CSP gates have been analyzed in detail.

For a DFT with spare gates, a stochastic approach using the proposed models provides a

fast analysis of the DFT compared to an analytical approach. The use of non-Bernoulli

sequences as initial input probabilities makes the stochastic approach faster and more

accurate than Monte Carlo simulation. The effect of PCCF has been taken into

consideration, and a stochastic logic model has been constructed for dependent PCCFs.

The efficiency and accuracy of the proposed stochastic approach have been shown by the

case studies of several benchmark systems.

- 142 -

Chapter 8

Reliability Evaluation of Phased-Mission Systems

using Stochastic Computation

In this chapter, a stochastic computational approach is proposed for analyzing a

phased-mission system (PMS). Initially, the topology of each phase in a PMS is modeled

by either a static fault tree, or a dynamic fault tree (DFT). A stochastic computational

model is then proposed for evaluating the output failure probability of a PMS as a

function of the failure probabilities of its components. Due to the stochastic sequence’s

capability of preserving signal correlation, repeated common components at different

phases (as frequently encountered in a PMS) are also analyzed. A PMS with dynamic

gates can be analyzed using the proposed approach by utilizing stochastic models of

priority AND (PAND) and functional dependency (FDEP) gates. Finally, due to the

direct encoding of failure probabilities into non-Bernoulli sequences, any distributions

can be analyzed by the stochastic model, as shown by several case studies. The contents

presented in this chapter have been submitted for publication in IEEE Transactions on

Reliability as [147].

The novelty of this chapter is as follows:

 A stochastic computational model is proposed for the analysis of a PMS. The effect

of common failures at different phases is considered and various stochastic models

have been developed to evaluate the dynamic behaviors in a PMS.

 The accuracy of the stochastic analysis is affected by the simulated sequence length

in stochastic computation. However, the stochastic approach is more accurate than

Monte Carlo simulation with an equivalent number of runs.

 The stochastic approach is applicable to any failure distribution of the basic

- 143 -

components.

8.1. Motivation

For a PMS, the mission time is usually decomposed into multiple non-overlapping

phases. A PMS consisting of 𝐻 phases is represented by 𝐻 fault trees with each of

them modeling the failure conditions of a phase. The fault tree for each phase can be

constructed using stochastic logic gates. For the success of a PMS, all phases are required

to be successfully and sequentially completed [148]. Many practical systems operate in

this sequential manner, such as an aircraft flight, a nuclear power plant, aerospace and

distributed computing systems [72][149]-[154]. For example, an aircraft mission of an

unmanned autonomous vehicle (UAV) has a number of phases, including taxing, take-off,

climbing to the required altitude, and cruising, descending and landing phases. The

mission can fail in any of these phases and the PMS must be evaluated to obtain the

failure probability of each phase. The PMS achieves an overall mission success only if

every phase successfully completes the task. Hence, the overall mission failure is

obtained by a logic OR of the failures of all phases [72].

Several approaches have been proposed to evaluate the reliability of a PMS. These

approaches are mainly classified into two classes: analytical and simulation-based

approaches [155][156]. The analytical approaches can be differentiated into three

categories: combinatorial methods [154][157], state-space based methods [158]-[161]

and phase modular methods [142][162][163]. A combinatorial method can handle any

failure distribution and provide the exact failure probability using, for example, a binary

decision diagram (BDD). However, this analysis is cumbersome when deriving the exact

analytical expression as a function of the basic components’ failure distributions due to

the presence of a large number of basic components. The BDD based combinatorial

approaches of [154] and [164] are only applicable to a PMS with static phases.

Furthermore, dynamic relationships (such as functional dependency and priority

relationships) usually exist among the basic components in a PMS. Hence, the reliability

evaluation becomes even more challenging when dynamic gates are included in the PMS.

- 144 -

For a state-space based method, a large complexity is usually encountered when

analyzing complex systems due to the state-space explosion problem. The phase-modular

methods of [162][163] can model dynamic relationships, but a Markov chain analysis is

required for the dynamic modules. The application of a Markov chain analysis is however

limited when a basic component’s failure behavior is not exponentially distributed.

Simulation-based approaches can be found in [125][155][156] and Monte Carlo (MC)

simulation [125] can also be used to evaluate the failure probability of a PMS. However,

a long simulation time is often required for a simulation-based approach.

8.2. Preliminaries

8.2.1. A Phased-Mission System (PMS)

A PMS is usually defined as follows [72]:

1) It consists of multiple non-overlapping phases and the operation of phases is

performed in a sequential order;

2) The topology of the system usually varies from phase to phase, i.e., different failure

criteria apply to each phase;

3) All phases must be successfully completed for the mission to be successful.

A component can fail at any time during the mission time and the state of a

component may be critical for a specific phase. Furthermore, the failure of a component

resulting in the failure of the PMS may have occurred during previous phases. The

mission can fail in any of the phases; hence, the evaluation of the PMS must calculate the

failure probability occurred in each phase.

The system topology is usually modeled as a fault tree to show the combinations of

component failures. Let 𝑄(∙) be the logic operation derived from the system topology;

then, the structure function at phase ℎ is denoted by 𝑄ℎ(∙). The technique of fault tree

- 145 -

analysis (FTA) [34][37] is utilized to calculate the failure probability during phase ℎ as:

𝑝ℎ = 𝑄ℎ(𝑆𝑖(ℎ)), (8. 1)

where 𝑆𝑖(ℎ) indicates the stochastic sequence generated based on the failure probability

of component 𝐵𝑖(ℎ) , i.e., 𝑝𝑖(ℎ) 𝐵𝑖(ℎ) ∈ 𝜙(ℎ) , 𝜙(ℎ) denotes the set of basic

components at phase ℎ, and 𝑝ℎ is the failure probability of the sub-system of phase ℎ.

To compute the overall mission failure probability of the PMS, 𝑃, a conventional

phase-OR model is adopted, as shown in Fig. 8.1. In this structure, the output failure

probability of the PMS is determined by the stochastic sequences for the failure

probabilities of different phases. As the failures are exclusive events at different phases,

𝑃 is given by the sum of the failure probabilities of all phases [72], i.e.,

𝑃 = ∑ 𝑝ℎ
𝐻
ℎ=1 , (8. 2)

where ℎ ∈ {1, 2,⋯ , 𝐻} and 𝐻 is the number of phases of the PMS.

Then, the reliability of a PMS, 𝑟, i.e., the probability that all phases are successful,

is given by:

𝑟 = 1 − 𝑃. (8. 3)

8.2.2. Assumptions

The background of Section 6.1 in Chapter 6 is also applicable in this chapter.

Additionally, two more assumptions are provided for the PMS.

 For a PMS, the state of a component at the beginning of a phase is the same as the

state at the end of the previous phase [154];

 The duration of each phase in the PMS is known for the investigation.

- 146 -

8.3. Stochastic Models for Phased-Mission System

A PMS consisting of 𝐻 phases is usually represented by 𝐻 fault trees (Fig. 8.1).

For a binary PMS, both the system and the components can only have two states: success

or failure. For the success of the PMS, all phases are required to be successfully

completed. The failure of any phase results in the failure of the PMS. Let the stochastic

sequence 𝑆(ℎ) encode the failure probability of phase ℎ, 𝑝(ℎ), and 𝑆𝑗(ℎ) denote the

value of the 𝑗th bit. If 𝑆𝑗(ℎ) = 1 (i.e., the failure of phase ℎ), then 𝑆𝑗(𝑃𝑀𝑆) = 1 where

𝑆(𝑃𝑀𝑆) is the stochastic sequence for the failure probability of the overall PMS. The

calculation of the failure probability of the PMS (as in formula (8.2)) can be implemented

by an OR gate; thereafter, the reliability of the PMS is obtained by inverting the

stochastic sequence for the failure probability of the PMS.

Failure
sequence of PMS

 Phase 1 Phase h PhaseH

1Q
hQ HQ

Reliability
sequence of PMS

)1(p)(hp)(Hp

)(hS)(HS)1(S

)(PMSS

)(PMSSr

Fig. 8.1. A general structure of a phased-mission system (PMS) consisting of 𝑯 phases with different system

topologies. 𝑆(ℎ) is a stochastic sequence for the failure probability of phase ℎ, 𝑝(ℎ). 𝑄ℎ denotes the structural

function at phase ℎ, (1 ≤ ℎ ≤ 𝐻). 𝐻 is the total number of phases. 𝑆(𝑃𝑀𝑆) denotes the stochastic sequence for the

failure probability of the PMS. 𝑆𝑟(𝑃𝑀𝑆) denotes the stochastic sequence for the reliability of the PMS.

- 147 -

Each of the fault trees derived from the system topology (indicated by 𝑄ℎ) is used

to model the failure condition of a phase. Fig. 8.2 illustrates a general fault tree structure

of phase ℎ, ℎ ∈ {1, 2,⋯ ,𝐻}, for a PMS. Each phase has a different system topology, so

let 𝑄ℎ denote the structure function at phase ℎ. If there are 𝑛 basic components at

phase ℎ, let 𝐴𝑗(ℎ) indicate the 𝑗th component at phase ℎ.

Fig. 8.2. A general fault tree structure of phase 𝒉 for a phased-mission system (PMS) consisting of 𝑯 phases

with different system topology at each phase. 𝐴𝑗(ℎ) denotes the 𝑗th component at phase ℎ(1 ≤ ℎ ≤ 𝐻). 𝐻 is the

number of phases in the PMS. 𝑛 is the number of basic events in phase ℎ.

The structure function at phase ℎ, 𝑄ℎ, is constructed using the stochastic logic

gates according to the relationships between the basic components. Then, the output

stochastic sequence for the failure probability of phase ℎ is obtained by first determining

the input sequences for the basic components. Let 𝑥ℎ denote the states of basic

components at the end of phase ℎ, i.e., 𝑥ℎ = (𝑥1(ℎ), 𝑥2(ℎ),⋯ , 𝑥𝑛(ℎ)), where 𝑥𝑗(ℎ)

denotes the state of the basic component 𝐴𝑗(ℎ), 𝑗 ∈ {1, 2,⋯ , 𝑛}. Then, 𝑄ℎ(𝑥ℎ) gives

the state of the system at the end of phase ℎ. If 𝑄ℎ(𝑥ℎ) = 0, phase ℎ is successfully

completed. Otherwise, the system fails by the end of phase ℎ.

In a general PMS, common components are often encountered in different phases.

For example, the engine of a UAV must function in most phases. However, some of the

- 148 -

components might appear in all phases while some of them are just used in a few specific

phases. The distribution of the common components is illustrated in Fig. 8.3, where 𝜙(𝑗)

and 𝜙(𝑘) denote the basic component sets of phases 𝑗 and 𝑘 respectively, 𝑗, 𝑘 ∈

{1, 2,⋯ ,𝐻}. For any phases, say 𝑗 and 𝑘, 𝜙(𝑗) ∩ 𝜙(𝑘) ≠ ∅ indicates that common

components exist at phases 𝑗 and 𝑘 (as in Fig. 8.3(a)). If the failure can be masked and

does not necessarily cause a system failure, it is referred to as case 1. If the failure of a

common component directly results in the failure of a specific phase, it is referred to as

case 3. As in Fig. 8.3(b), 𝜙(𝑗) ∩ 𝜙(𝑘) = ∅ indicates the case that there is no common

component at phases 𝑗 and 𝑘. This case is referred to as case 2 in this chapter.

)(k)(j

)(j

(a)

(b)

)(k

Fig. 8.3. Distribution of the common components for phases 𝒋 and 𝒌, 𝒋, 𝒌 ∈ {𝟏, 𝟐,⋯ ,𝑯}. (a) Common

components exist in phases 𝑗 and 𝑘; (b) No common component at phases 𝑗 and 𝑘. 𝜙(𝑗) or 𝜙(𝑘) denotes the

basic component set of phase 𝑗 or 𝑘. 𝐻 is the number of phases in the PMS.

8.3.1. Case 1

Assume that component 𝐴𝑖 exists in phase 𝑘 and also in phase 𝑗, i.e., 𝐴𝑖 ∈

𝜙(𝑗) ∩ 𝜙(𝑘). Fig. 8.4 shows an example of 𝐴𝑖 ∈ 𝜙(𝑗) ∩ 𝜙(𝑘), where 𝑗 and 𝑘 are two

consecutive or disjoint phases (𝑗 < 𝑘). In Fig. 8.4 (and all subsequent figures, wherever

applicable), 𝐴𝑖(𝑗) denotes the 𝑖 th component at phase 𝑗 with 𝑖 ∈ {1, 2,⋯ ,𝑚} ,

𝑗 ∈ {1, 2,⋯ , 𝑘} and 𝐵𝑙(𝑘) denotes the 𝑙th component at phase 𝑘 with 𝑙 ∈ {1, 2,⋯ , 𝑛}.

𝑚 and 𝑛 are the total numbers of basic components for phase 𝑗 and 𝑘 respectively. If

- 149 -

the failure of the common component 𝐴𝑖 does not directly cause the failure of phase 𝑗,

the failure of 𝐴𝑖 is masked by other components (for instance by an AND operation); so

this component is not required to survive prior to phase 𝑘 (as an example of case 1).

)(j)(k

jQ
kQ

)(1 jA)(jAm)(1 kB)(kBn

PMS

)()(kj

(/)iA j k

Fig. 8.4. Example of case 1: 𝝓(𝒋) ∩ 𝝓(𝒌) ≠ ∅ and 𝑨𝒊(𝒋/𝒌) ∈ 𝝓(𝒋) ∩ 𝝓(𝒌), where 𝑨𝒊(𝒋/𝒌) is one of the

common components.

(1)iS h

()iS h

'(1)iS h

Fig. 8.5. A stochastic logic model for computing the failure probability of component 𝑨𝒊 for cases 1 and 2.

For simplicity, let 𝑗 = ℎ and 𝑘 = ℎ + 1. Since, the failure of the component 𝐴𝑖

may occur during phase ℎ + 1 or a phase before ℎ + 1, the stochastic sequence for the

failure probability of 𝐴𝑖 at phase ℎ + 1, 𝑆𝑖
′(ℎ + 1), is found by considering 𝑆𝑖(ℎ) (the

stochastic sequence at the end of phase ℎ) and 𝑆𝑖(ℎ + 1) (the stochastic sequence for

the failure probability of component 𝐵𝑖 during ℎ + 1). Then the sequence 𝑆𝑖
′(ℎ + 1) is

obtained using the stochastic model in Fig. 8.5.

Let 𝑆𝑖,𝑗(ℎ) , 𝑆𝑖,𝑗(ℎ + 1) and 𝑆𝑖,𝑗
′ (ℎ + 1) be the values of the 𝑗 th bit of the

corresponding stochastic sequences. If 𝑆𝑖,𝑗(ℎ) = 1 (so component 𝐴𝑖 fails at the end of

- 150 -

phase ℎ), then 𝑆𝑖,𝑗
′ (ℎ + 1) = 1 due to the assumption of non-reparability of the PMS.

This corresponds to the case when component 𝐴𝑖 fails before phase ℎ + 1. Otherwise,

whether component 𝐴𝑖 fails or not is determined by 𝑆𝑖,𝑗(ℎ + 1) for the failure

probability during phase ℎ + 1 , i.e., 𝑝𝐴𝑖(ℎ + 1) . This indicates that 𝑆𝑖,𝑗(ℎ + 1) is

selected as the value of 𝑆𝑖,𝑗
′ (ℎ + 1) if 𝑆𝑖,𝑗(ℎ) = 0. This can be implemented by a

stochastic OR gate as shown in Fig. 8.5.

8.3.2. Case 2

For case 2, there is no common component in any of the two phases 𝑗 and 𝑘, i.e.,

𝜙(𝑗) ∩ 𝜙(𝑘) = ∅ (as in Fig. 8.3(b)); then whether the components of phase 𝑗 or 𝑘 fail

or not cannot result in the failure of phase 𝑗 or 𝑘 (with 𝑗 < 𝑘). Fig. 8.6 shows an

example of case 2. With the stochastic logic models for phases 𝑗 and 𝑘 (i.e., 𝑄𝑗 and

𝑄𝑘), the failure probabilities of phases 𝑗 and 𝑘 are determined by the failure

probabilities (encoded into non-Bernoulli sequences) of the input components of phases

𝑗 and 𝑘 respectively.

Again, let 𝑗 = ℎ and 𝑘 = ℎ + 1. The failure of phase 𝑘 is determined by the

failure of basic events in 𝜙(𝑘). For a basic component 𝐵𝑖, it may fail before or during

phase ℎ + 1. Both scenarios need to be considered for the failure of phase 𝑘. Hence, the

stochastic sequence for the failure probability of component 𝐵𝑖 at phase ℎ + 1 ,

𝑆𝑖
′(ℎ + 1), is obtained by considering 𝑆𝑖(ℎ) and 𝑆𝑖(ℎ + 1), the stochastic sequences for

the failure probabilities of component 𝐵𝑖 at the end of phase ℎ and during phase ℎ + 1

respectively, are as follows. Then, the failure probability of 𝐵𝑖 is found by using the

stochastic model of Fig. 8.5 (same as for case 1).

- 151 -

)(j)(k

jQ
kQ

)(1 jA)(jAm)(1 kB)(kBn

PMS

Fig. 8.6. Example of case 2 (corresponding to Fig. 8.3(b)). 𝝓(𝒋) ∩ 𝝓(𝒌) = ∅.

8.3.3. Case 3

For case 3, assume that component 𝐴𝑖 appears in both phases 𝑗 and 𝑘, i.e.,

𝐴𝑖 ∈ 𝜙(𝑗) ∩ 𝜙(𝑘). Let again 𝑗 = ℎ and 𝑘 = ℎ + 1. The failure of 𝐴𝑖 directly causes

the failure of phase ℎ, so the failure probability at the end of phase ℎ + 1 is given by

the failure probability during phase ℎ + 1 with the failure before phase ℎ + 1 excluded,

i.e., 𝑆𝑖
′(ℎ + 1) = 𝑆𝑖(ℎ + 1) implemented by a buffer as in Fig. 8.7.

(1)iS h
' (1)
i

S h

Fig. 8.7. A stochastic logic model for computing the failure probability for case 3 of component 𝑨𝒊.

Furthermore, if the failure probability for an intermediate time point during phase

ℎ + 1 is of interest, the following analysis is applicable. Let 𝜏(ℎ + 1) denote the

intermediate mission time during phase ℎ + 1; then, the intermediate failure probability

of the overall PMS during phase ℎ + 1 is derived by replacing the stochastic sequence

𝑆𝑖(ℎ + 1) (for 𝑝𝑖(ℎ + 1)) with 𝑆𝑖(𝜏(ℎ + 1)) (for 𝑝𝑖(𝜏(ℎ + 1))).

Hence in the proposed approach, a stochastic model of the PMS can be constructed

- 152 -

for the relationship among basic components using stochastic logic gates. Two stochastic

models (Figs. 8.5 and 8.7) are utilized to evaluate the effect of common components in

different phases and to obtain the reliability of each phase from the failure probabilities of

the basic components. The failure probability of the overall PMS is encoded in the

statistics, i.e., the proportion of number of ones, in the output sequence of the stochastic

analysis; the reliability of the PMS can then be determined by inverting the stochastic

sequence indicating its failure probability (Fig. 8.1).

8.4. Phased-Mission System Evaluation Procedure

For a general PMS, the process of evaluating its overall reliability is as follows.

Step 1: Construct the PMS using stochastic logic gates;

Step 2: Determine the common components in different phases and find whether

the failure of the common components can directly cause the failure of the phase being

investigated;

Step 3: Compute the failure probabilities at different mission times based on the

provided pdfs and cdfs;

Step 4: Encode the basic modules’ failure probabilities at different time steps into

non-Bernoulli sequences following the algorithm provided in Chapter 6;

Step 5: If a common component exists, the stochastic sequences must be generated

using the stochastic model in Fig. 8.5 or Fig. 8.7, as determined by whether a common

component exists and whether the failure of the common component can result in the

failure of the PMS;

Step 6: Derive the overall failure probability at different time steps by propagating

- 153 -

the non-Bernoulli sequences through the stochastic models. The reliability can be

obtained by inverting the stochastic sequence indicating the failure probability of the

PMS (using the model in Fig. 8.1).

In a DFT, the PAND gate can be utilized if required. This may occur for an input

(to indicate the firing of a basic event in a predetermined order) and the output (to

indicate whether a failure occurs [72]) as a priority relationship. A FDEP gate can further

be utilized to model the behavior among the components. However, it is cumbersome to

analyze a system using a combinatorial analysis. A stochastic model can instead be

utilized to replace the dynamic gates with static gates. For systems with perfect fault

coverage, the FDEP can be treated as an OR gate [67][68]. For the PAND gate in a PMS,

the stochastic model of [116] can be used to model the priority relationship.

8.5. Case Studies

In this section, several case studies are presented to show the efficiency of the

proposed stochastic method. The results are compared with the combinatorial analysis of

[157] and the Monte Carlo (MC) simulation of [125]. The proposed stochastic approach

is not limited to a particular failure distribution of the basic component. Hence, both

exponential and non-exponential distributions are investigated to show the capability of

the stochastic approach in handling the general cases. All simulations are run on a

computer with a 3.10 GHz i3-2100 microprocessor and 6 GB memory.

The mission time 𝜏 is divided into 𝐻 phases and each phase is further divided

into 𝑀 equal intervals. Let 𝑝(𝑖) be the failure probability of a basic component at time

𝑖, then the failure probability of an output event for the system is given by a vector

𝑭 = (𝐹(1), 𝐹(2),⋯ , 𝐹(𝑀)), i.e., 𝐹(𝑗) = 𝑄(𝑝(𝑖)), where 𝑄(∙) is the logic operation

determined from the system topology. Let 𝑭𝑀𝑐 and 𝑭𝑠 denote the failure probability

- 154 -

vectors obtained by MC simulation and the stochastic approach respectively. Thus,

∆𝑭𝑀𝐶−𝑆 = 𝑭𝑀𝑐 − 𝑭𝑠 denotes the difference between the failure probability vectors of

the MC simulation and the stochastic approach. In the simulations of the following case

studies (and for all related figures and tables as applicable), 𝑁 denotes the number of

simulation runs for the MC method, while 𝐿 denotes the sequence length for the

stochastic approach. Similar to [116], the norms, ‖∙‖1, ‖∙‖2 and ‖∙‖∞, are calculated to

measure the differences of failure probability vectors that reveal the accuracy of different

approaches.

8.5.1. Example 1

A PMS with non-exponentially distributed basic events is analyzed first using the

stochastic approach. It becomes challenging when the failures of basic components are

not exponentially distributed for reliability evaluation. In this section, it is shown that this

issue is effectively addressed by the stochastic approach. A Weibull distribution is

considered for a PMS with non-exponentially distributed basic components. Furthermore,

the reliability of the PMS at any time during the entire mission time can be found.

Example 1 deals with a non-repairable PMS consisting of four elements for a

mission time of 𝜏 = 630 hours [157]. The system is successful only if the three phases

perform without failure; the durations of the three phases are 𝜏1 = 160 hours, 𝜏2 = 200

hours and 𝜏3 = 270 hours. The structure of the stochastic PMS is shown in Fig. 8.8.

The parameters for each element of Example 1 in each phase are given in Table 8.1

[157]. Except for element 3 at phase 3 and element 4 at phase 1, which follow Weibull

distributions, all other elements fail exponentially. The probability density function (pdf)

and cumulative density function (cdf) of a Weibull distribution are given by (6.47) and

(6.48) in Chapter 6 respectively.

- 155 -

Phase 1

)1(2x

Phase 2

)2(1x)2(3x

)2(2x)2(4x

)3(3x)3(4x

Phase 3

PMS

Fig. 8.8. A non-repairable phased-mission system (PMS) of Example 1 consisting of three phases and four

components [157]. 𝑥𝑖(𝑗) denotes the 𝑖th component at phase 𝑗 with 𝑖 ∈ {1, 2, 3, 4} and 𝑗 ∈ {1, 2, 3}.

Table 8.1. Input parameters for Example 1 [157] with exponentially and Weibull distributed basic components.

𝒌 and 𝝀 denote the shape and scale parameters for the Weibull distribution.

Component Phase 1 Phase 2 Phase 3

𝑥1 0.0002 0.0001 0.00015

𝑥2 0.0001 0.0001 0.0001

𝑥3 0.00025 0.0001 1/𝜆 = 0.0001, 𝑘 = 2

𝑥4 1/𝜆 = 0.0001, 𝑘 = 1.5 0.0002 0.0001

For the stochastic approach and the combinatorial analysis of [157], the reliabilities

of the components at each phase and the reliability of the overall PMS are given in Table

8.2. For the same input parameters in Table 8.1, the mean and variance of the reliability

of Example 1 obtained by using the stochastic, Monte Carlo (MC) and combinatorial

approaches are also provided in Table 8.2.

Due to fluctuations in stochastic computation, the found reliability of the PMS is

very close (or equal) to the probability obtained from the combinatorial analysis, as

shown by the results in Table 8.2. For a reasonable sequence length, the stochastic

- 156 -

approach provides a very accurate result, and it is more accurate than MC simulation.

Table 8.2. Reliabilities of the phased-mission system (PMS) at different phases for Example 1 (sequence length

here is 10k bits).

Element 𝑗 Methods ℎ = 1 ℎ = 2 ℎ = 3

1
stochastic 0.9685 0.9803 0.9603

combinatorial [157] 0.9685 0.9802 0.9603

2
stochastic 0.9841 0.9803 0.9735

combinatorial [157] 0.9841 0.9802 0.9734

3
stochastic 0.9608 0.9803 0.9971

combinatorial [157] 0.9608 0.9802 0.9971

4
stochastic 0.9980 0.9610 0.9734

combinatorial [157] 0.9980 0.9608 0.9734

Reliability mean of 20 times

stochastic 0.8192

Monte Carlo 0.8196

combinatorial [157] 0.8188

Variance of reliability for 20 times
stochastic 1.54 × 10−6

Monte Carlo 1.85 × 10−5

For Example 1, the failure probability and reliability obtained by the stochastic

approach are plotted in Fig. 8.9 for a mission time of 630 hours.

Fig. 8.9. Failure probability and reliability obtained by the stochastic approach for Example 1 with a sequence

length of 10k bits.

Next, ‖∙‖1, ‖∙‖2, and ‖∙‖∞ of the differences in the reliability vectors obtained by

- 157 -

the stochastic and MC approaches are shown in Table 8.3. As per the results in Table

8.3, the disparity in the failure probability vectors of the stochastic and MC approaches

decreases, and thus, the stochastic fluctuations in both approaches decrease with the

increase of the sequence length and the number of simulation runs. However, the

stochastic approach is faster than MC simulation, as indicated by the smaller average run

time for each sequence length or sample size (i.e., 𝐿/𝑁 in Table 8.3). The relationship

between the average run time of the two approaches and the simulation runs/sequence

length are further illustrated in Fig. 8.10.

Table 8.3. Norms of the differences in the failure probability vectors obtained by the proposed stochastic

approach and Monte Carlo (MC) simulation for the phased-mission system (PMS) in Example 1.

𝑵/𝑳 1k 10k 100k

‖∆𝑭𝑀𝐶−𝑆‖1 6.7200 0.8260 0.2717

‖∆𝑭𝑀𝐶−𝑆‖2 0.3017 0.0384 0.0143

‖∆𝑭𝑀𝐶−𝑆‖∞ 0.0300 0.0032 0.0016

Avg. time (s)
Stochastic 5.56× 10−2 0.34 7.68

MC 0.29 2.42 23.30

Fig. 8.10. The average run time for 10 simulation runs of Example 1 based on the stochastic approach and

Monte Carlo (MC) simulation.

As shown by these simulation results, the stochastic approach can evaluate a PMS

with non-exponentially distributed components at a high accuracy. As the encoding of a

- 158 -

failure probability into a stochastic sequence is not limited to exponential distributions, a

PMS with non-exponentially distributed basic components can be effectively evaluated

by the proposed stochastic approach using a reasonable sequence length. Hence, the

proposed stochastic approach is applicable to both exponential and non-exponential

distributions for a PMS analysis.

8.5.2. Example 2

Example 2 is taken from [54][142] and deals with the non-repairable PMS shown in

Fig. 8.11. This PMS is simulated to assess the efficiency of the stochastic approach for a

total mission time of 500 hours. The PMS consists of three consecutive non-overlapping

phases and eight components. Furthermore, several common components exist in the

PMS. The PMS contains a dynamic PAND gate in phase 2 and an FDEP gate in phase 3.

PMS

Phase 1

C D

B FA G

A C E

B F

A D HG B E

2/3

FDEP

D E

Phase 2 Phase 3

C

Fig. 8.11. A phased-mission system (PMS) consisting of three phases with a dynamic priority AND (PAND) gate

in phase 2 and a functional dependency (FDEP) gate in phase 3 [54][142].

- 159 -

Table 8.4. Input failure parameters (𝟏𝟎−𝟑/hour) for Example 2 with exponentially distributed basic components

[54].

Basic components
Phase 1

𝝉𝟏 = 100 hours

Phase 2

𝝉𝟐 = 250 hours

Phase 3

𝝉𝟑 = 150 hours

A 1.0 2.0 1.5

B 0.5 1.0 1.0

C 3.0 2.0 1.0

D 3.0 2.0 1.0

E 1.5 1.0 2.0

F 1.0 1.0 1.0

G 2.0 1.0 1.0

H 1.0 2.0 2.0

The stochastic model can be constructed for the PMS shown in Fig. 8.11 with the

adoption of stochastic logic gates. For systems with perfect fault coverage, the FDEP is

treated as an OR gate [67][68]; moreover, the stochastic model of [116] is utilized for

modeling the PAND gate. Table 8.4 shows the exponentially-distributed failure rates of

the components at different phases. Assume the durations of the three phases are 𝜏1 =

100 hours, 𝜏2 = 250 hours, and 𝜏3 = 150 hours. Given the exponentially-distributed

failure rates in Table 8.4, the failure probabilities for the components at different time

points can be computed using (6.2) in Chapter 6.

Table 8.5. Norms of the differences in the failure probability vectors obtained by the proposed stochastic

approach and Monte Carlo (MC) simulation [125] for the PMS of Example 2.

𝑵/𝑳 1k 10k 100k

‖∆𝑭𝑆−𝑀𝐶‖1 6.0390 0.7980 0.2426

‖∆𝑭𝑆−𝑀𝐶‖2 0.3123 0.0350 0.0157

‖∆𝑭𝑆−𝑀𝐶‖∞ 0.0320 0.0040 0.0019

Avg. time (s)
Stochastic 0.84 6.11 63.51

MC 2.61 26.19 237.33

Both the stochastic computational approach and MC simulation [125] are applied to

find the failure probability/reliability of the PMS at any mission time. The accuracy of

the stochastic approach is compared with the MC simulation. The norms of the disparity

- 160 -

vectors are given in Table 8.5 for the stochastic and MC approaches. The average run

times of the stochastic approach and MC method are also shown.

(a)

(b)

Fig. 8.12. Failure probability of a phased-mission system (PMS) consisting of three stages for a mission time of

500 hours. (a) Failure probability and reliability obtained by the proposed stochastic approach with a sequence length

of 10k bits (the durations of the three phases are 𝜏1 = 100 hours, 𝜏2 = 250 hours, and 𝜏3 = 150 hours). (b) Values of

the difference between the failure probabilities for Example 1 obtained by the stochastic approach and Monte Carlo

(MC) simulation.

As per the norms in Table 8.5, the proposed stochastic approach requires a shorter

simulation time than the MC approach for the same value of sequence length/simulation

- 161 -

runs. Therefore, the stochastic approach is faster than the MC method, and provides a

close result with a reasonable sequence length.

The failure probability for the PMS of Example 2 is plotted in Fig. 8.12(a) for a

total mission time of 500 hours using the stochastic approach, while the difference

between the obtained failure probability vectors for the stochastic and MC methods is

illustrated in Fig. 8.12(b) for different sequence lengths or numbers of simulation runs.

‖∙‖1, ‖∙‖2, and ‖∙‖∞ of the differences in the failure probability vectors obtained by the

proposed stochastic and MC approaches are 0.7980, 0.0350 and 0.0040, respectively, for

using a sequence length or sample size of 10k bits.

As can be seen from these results, the PMS (inclusive of static and dynamic gates,

such as PAND and FDEP gates) can be easily evaluated by the proposed stochastic

approach, using the stochastic PAND and FDEP models. Hence, a general PMS with

dynamic behaviors can be evaluated by the stochastic approach. Moreover, the failures of

common components in different phases can be effectively evaluated by the proposed

stochastic models.

8.6. Summary

A stochastic model has been proposed for the analysis of a PMS. A PMS consisting

of 𝐻 phases is represented by 𝐻 fault trees with each of them modeling the failure

conditions of a phase. The fault tree for each phase can be constructed using stochastic

logic gates. An OR gate model has been utilized to calculate the output stochastic

sequence to indicate the failure probabilities of the 𝐻 phases, i.e., for the entire system.

Based on this analysis, the common components at different phases have been considered

to determine whether their failure can cause the failure of the corresponding phase;

different stochastic models have been proposed to compute the failure probabilities of the

- 162 -

components for each phase. If dynamic behaviors (such as functional dependency and

priority relationships) are included in the relationships between components, stochastic

models for dynamic gates, such as the PAND and the FDEP, can be utilized for stochastic

analysis of a system. Hence, the stochastic model of a general PMS can be constructed

with stochastic logic gates.

A general PMS has been evaluated using non-Bernoulli sequences as initial input

probabilities. The accuracy of the stochastic analysis is affected by the simulated

sequence length. In the case studies considered, it is shown that the accuracy of the

stochastic approach is better than MC simulation with the same number of runs.

Furthermore, the stochastic approach is capable of considering any failure distribution of

the basic components; both exponential and Weibull distributions have been analyzed for

the case studies considered.

- 163 -

Chapter 9

Conclusion and Future Work

9.1. Summary

This dissertation presents our work on the application of stochastic computational

models on the analyses of gene regulatory networks (GRNs) and dynamic fault trees

(DFTs).

Chapter 1 presents the motivation and major objectives of this dissertation. Chapter

2 introduces the background on stochastic computation, probabilistic Boolean networks

(PBNs), stochastic Boolean networks (SBNs) and DFT analysis.

In Chapter 3, the context-sensitive stochastic Boolean network (CSSBN), is

presented as an effective approach to modeling the effects of gene perturbation and

intervention in a GRN. In a CSSBN, the state transition matrix (STM) can be computed

with a reduced computational complexity compared to the use of a context sensitive

probabilistic Boolean network (CSPBN). The dynamics of the p53-Mdm2 network and a

glioma network are analyzed using the stochastic models, both in a context-switching

environment with random gene perturbation. We have shown that random gene

perturbation has a greater effect on the final distribution of the steady state compared to

context switching activities.

In Chapter 4, stochastic multiple-valued networks (SMNs) are presented as a fast

approach to modeling the effect of noise in a GRN. In an SMN, the use of randomly

permuted sequences further increases computational efficiency and allows for a tunable

tradeoff between accuracy and efficiency. A steady state analysis using a time-frame

expansion technique has shown a significant speedup compared to either an accurate

analysis or Monte Carlo (MC) simulation. It also produced more accurate results than

MC simulation. Simulations of the SMNs have revealed the oscillatory dynamics of a

- 164 -

multiple-valued p53-Mdm2 network and have predicted the steady state distribution of a

ternary WNT5A network with gene perturbation.

In Chapter 5, asynchronous stochastic Boolean networks (ASBNs) are introduced

to model a gene network. Stochastic analyses are carried out for the asynchronous models

of stochasticity in node (SIN) and stochasticity with propensity parameters (SPP). The

dynamics of a GRN is studied under different asynchronous state update strategies. The

ASBNs have been used to estimate the attractors of a T helper network of 23 genes and

the robustness of the attractors have been demonstrated for the state-updating strategies in

the T helper network. It has been shown that the SPP model accurately reveal the state

transition from 𝑇ℎ0 to 𝑇ℎ1 under the dosage of 𝐼𝐿 − 12.

In Chapter 6, a stochastic model is proposed for the analysis of a two-input priority

AND (PAND) gate in a DFT. A successive cascading structure of this model is then

constructed for the analysis of a general multiple-input PAND gate. For a DFT with

PAND gates, a stochastic approach using the proposed models provides a fast analysis of

the DFT compared to an analytical or algebraic approach. The failure probability of a

basic event is not limited to an exponential distribution and repeated events are readily

handled in the stochastic approach. It also avoids the state-space explosion problem or the

large computational complexity typically encountered in Markov or other analytical

methods, thus it is scalable for use in a general DFT analysis.

In Chapter 7, stochastic models are proposed for analyzing a two-input spare gate

and probabilistic common cause failures (PCCFs) in a DFT. The warm spare (WSP), and

cold spare (CSP) gates have been analyzed in detail. The effect of PCCFs has been taken

into consideration and a stochastic logic model has been constructed for dependent

PCCFs. The efficiency and accuracy of the proposed stochastic approach have been

shown by the case studies of several benchmark systems.

Phased-mission systems (PMSs) are considered as another application of stochastic

- 165 -

computational models in Chapter 8. A PMS consisting of 𝐻 phases is modeled by 𝐻

fault trees, each of which can be constructed using stochastic logic gates. The common

components in different phases have been considered to determine whether their failure

can cause the failure of the corresponding phase. In the case studies considered, it is

shown that the accuracy of the stochastic approach is higher than MC simulation with an

equivalent number of runs.

9.2. Future Work

1) Signaling Pathway Analysis

The logical representation and analysis of a signaling pathway provides valuable

insight into a biological system. The investigation of vulnerable components in such a

pathway can contribute to the development of drug therapy addressing aberrations in that

signaling pathway. The stochastic computational models are potentially applicable to

analyzing the vulnerability of the components in multiple signaling pathways involved in

different cancer cells. The inhibition/activation relationship among genes can be modeled

by stochastic logic, thus a stochastic pathway can be constructed with logic gates. The

computational results will be validated by experiments, where selected proteins will be

silenced using siRNAs and the viability of the cells will be analyzed after silencing. We

are currently collaborating with Dr. Hasan Uludag’s group on this work.

2) System Reliability Evaluation

The stochastic computational approach is potentially applicable to several emerging

problems in system reliability evaluation. For instance, the stochastic model for the

2-out-of-3 majority voter is presented in Chapter 7. This stochastic model can be

generalized for 𝑘-out-of-𝑛 and weighted 𝑘-out-of-𝑛 voters. For a binary weighted

𝑘-out-of-𝑛 system [165], each component 𝑖 is associated with a weight of 𝑤𝑖. The

system functions if and only if the total weight of the functional components is greater

than a threshold 𝑘. The accurate analysis of a large weighted 𝑘-out-of-𝑛 voter is

- 166 -

difficult because of the size of the problem. The current stochastic analysis is based on

the non-repairable property, so the repair of faulty components [166] can be incorporated

into a system reliability evaluation using binary or multiple-state fault trees [167][168].

The stochastic logic models could be readily used to evaluate the reliability of a network

and to identify the vulnerable components that are critical to the robustness of a network.

3) Signal Correlation Reduction

Despite the recent development of stochastic computation (such as in

[29][59][169]), inaccuracy remains a problem that limits its application.

Application-dependent measures of the statistical similarity between the random bit

streams are investigated in [169] and [170]. The impact of signal correlation on the

accuracy of stochastic computation is analyzed in [171]. Different approaches are

proposed to reduce signal correlation such as using the regeneration and isolation of

stochastic numbers [171].

MC simulation is subject to a probabilistic error bound and the generation of

random samples is usually expensive. The random fluctuation in MC simulation is

reduced at a rate of 1
√𝑁
⁄ , where 𝑁 is the number of random samples. The stochastic

approach using non-Bernoulli sequences of fixed number of zeros and ones is shown to

be faster than MC simulation and requires a less expensive random number generation

[29], however the error is likely to decrease at a rate of the same order as MC simulation.

The Quasi Monte Carlo method uses carefully chosen and thus deterministic samples

[172], so a smaller error bound is obtained for an improved accuracy. In general, what

types of stochastic sequences to use remains a key issue to be investigated in future work,

because a better sequence may indicate a shorter sequence length required to achieve a

certain accuracy, thus significantly improving the efficiency of stochastic computation.

- 167 -

Publication List

Journals

1) P. Zhu, J. Liang, and J. Han, “Gene Perturbation and Intervention in

Context-Sensitive Stochastic Boolean Networks,” BMC System Biology, 8–60,

2014.

2) P. Zhu, and J. Han, “Asynchronous stochastic Boolean networks as gene network

models,” Journal of Computational Biology, 21(10): 760-770, 2014.

3) P. Zhu, and J. Han, “Stochastic Multiple-Valued Gene Networks,” IEEE

Transactions on Biomedical Circuits and Systems, 8(1):42–53, 2014.

4) P. Zhu, J. Han, L. Liu, and M. J. Zuo, “A Stochastic Approach for the Analysis of

Fault Trees with Priority AND Gates,” IEEE Transactions on Reliability, 63(2):

480-494, 2014.

5) P. Zhu, J. Han, L. Liu, and F. Lombardi, “A Stochastic Approach for the Analysis of

Dynamic Fault Trees with Spare Gates under Probabilistic Common Cause Failures,”

IEEE Transactions on Reliability, PP(99): 1-15, 2015.

6) J. Han, H. Chen, J. Liang, P. Zhu, Z. Yang, and F. Lombardi, “A Stochastic

Computational Approach for Accurate and Efficient Reliability Evaluation,” IEEE

Transactions on Computers, 63(6): 1336-1350, 2014.

Papers under review

1) P. Zhu, J. Han, L. Liu, and F. Lombardi, “Reliability Evaluation of Phased-Mission

Systems Using Stochastic Computation,” submitted to IEEE Transactions on

Reliability, 2015.

Book chapter

1) P. Zhu, J. Liang, and J. Han, “Toward Intracellular Delivery and Drug Discovery:

- 168 -

Stochastic Logic Networks as Efficient Computational Models for Gene Regulatory

Networks,” a chapter in Intracellular Delivery Vol. II, Fundamental Biomedical

Technologies, Volume 7, 2014, pp 327-359. Springer Netherlands: Dordrecht.

- 169 -

Bibliography

[1] M.B. Elowitz, A.J. Levine, E.D. Siggia, and P.S. Swain, “Stochastic Gene Expression in a Single Cell,”

Science, vol. 297, no. 5584, pp. 1183–1186, 2002.

[2] R. Iyengar, “Computational Biochemistry: Systems Biology Minireview Series,” Journal of Biology

Chemistry, vol. 284, pp. 5425-5426, 2009.

[3] G. Karlebach, and R. Shamir, “Modelling and Analysis of Gene Regulatory Networks,” Nature Reviews

Molecular Cell Biology, vol. 9, pp. 770-780, 2008.

[4] J.M. Pedraza, and A. van Oudenaarden, “Noise Propagation in Genetic Networks,” Science, vol. 307, no.

5717, pp. 1965–1969, 2005.

[5] S.A. Kauffman, “Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets,” Journal of

Theoretical Biology 1969, vol. 22, no. 3, pp. 437–467.

[6] E. Klipp, “Systems Biology in Practice: Concepts, Implementation and Application,” Wiley-VCH,

Weinheim, Germany, 2005.

[7] K.C. Chen, et al., “Integrative Analysis of Cell Cycle Control in Budding Yeast,” Molecular Biology of

the Cell, vol. 15, no. 8, pp. 3841–3862, 2004.

[8] S. Li, et al., “A Quantitative Study of the Division Cycle of Caulobacter Crescentus Stalked Cells,” PLoS

Computational Biology, vol. 4, no. 1, pp. e9, 2008.

[9] L. Qian, H. Wang, and E. Dougherty, “Inference of Noisy Nonlinear Differential Equation Models for

Gene Regulatory Networks using Genetic Programming and Kalman Filtering,” IEEE Transactions on

Signal Processing, vol. 56, no. 7, pp. 3327–3339, 2008.

[10] D.T. Gillespie, “A General Method for Numerically Simulating the Stochastic Time Evolution of

Coupled Chemical Reactions,” Journal of Computational Physics, vol. 22, pp. 403-434, 1976.

[11] D.T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical Reactions,” Journal of Physical

Chemistry, vol. 81, pp. 2340–2361, 1977.

[12] H. de Jong, “Modeling and Simulation of Genetic Regulatory Systems: a Literature Review,” Journal of

Computational Biology, vol. 9, no. 1, pp. 67-103, 2002.

[13] M. Gibson, and J. Bruck, “Efficient Exact Stochastic Simulation of Chemical Systems with Many

Species and Many Channels,” Journal of Physical Chemistry, vol. 104, pp. 1876–1889, 1999.

[14] D.T. Gillespie, “Approximate Accelerated Stochastic Simulation of Chemically Reacting Systems,”

Journal of Chemical Physics, vol. 115, pp. 1716-1733, 2001.

[15] M. Davidich, and S. Bornholt, “Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast,”

PLoS One, vol. 3, no. 2, pp. e1672, 2008.

[16] C.E. Giacomantonio, and G.J. Goodhill, “A Boolean Model of the Gene Regulatory Network underlying

Mammalian Cortical Area Development,” PLoS Computational Biology, vol, 6, no. 9, pp. e1000936,

2010.

[17] S. Huang, “Gene Expression Profiling, Genetic networks, and Cellular States: an Integrating Concept for

Tumorigenesis and Drug Discovery,” Journal of Molecular Medicine, vol. 77, no. 6, pp. 469–480, 1999.

[18] I. Shmulevich, E.R. Dougherty, and W. Zhang, “From Boolean to Probabilistic Boolean Networks as

Models of Genetic Regulatory Networks,” Proceedings of the IEEE, vol. 90, no. 11, pp. 1778–1792,

2002.

- 170 -

[19] I. Shmulevich, E.R. Dougherty, and W. Zhang, “Gene Perturbation and Intervention in Probabilistic

Boolean Networks,” Bioinformatics, vol. 18, no. 10, pp. 1319-1331, 2008.

[20] I. Shmulevich, and E.R. Dougherty, “Probabilistic Boolean Networks: the Modeling and Control of Gene

Regulatory Networks,” Philadelphia, SIAM, 2009.

[21] H.H. McAdams, and L. Shapiro, “Circuit Simulation of Genetic Networks,” Science, vol. 269, no. 5224,

pp. 650-656, 1995.

[22] A. Abdi, M.B. Tahoori, and E.S. Emamian, “Fault Diagnosis Engineering of Digital Circuits can Identify

Vulnerable Molecules in Complex Cellular Pathways,” Science Signal, vol. 1, no. 42, pp. ra10, 2008.

[23] R. Adar, et al., “Stochastic Computing with Biomolecular Automata,” PNAS, vol. 101, no. 27, pp. 9960–

9965, 2004.

[24] Y. Benenson, et al., “An Autonomous Molecular Computer for Logical Control of Gene Expression,”

Nature, vol. 429, pp. 423–429, 2004.

[25] B.R. Gaines, “Stochastic computing systems,” Advances in Information Systems, Science, vol. 2, pp. 37–

172, 1969.

[26] W.J. Poppelbaum, C. Afuso, and J.W. Esch, “Stochastic Computing Elements and Systems,”

Proceedings of AFIPS Fall Joint Computer Conference, pp. 635-644, 1967.

[27] A. Alaghi, and J.P. Hayes, “Survey of Stochastic Computing,” ACM Transactions on Embedded

Computing Systems, vol. 12, no. 92, pp. 1-19, 2013.

[28] S.T. Ribeiro, “Random-pulse Machines,” IEEE Transactions on Electronic Computers, vol. 16, no. 3, pp.

261–276, 1967.

[29] J. Han, et al., “A Stochastic Computational Approach for Accurate and Efficient Reliability Evaluation,”

IEEE Transactions on Computers, vol. 63, no. 6, pp. 1336-1350, 2014.

[30] J. Liang, and J. Han, “Stochastic Boolean Networks: an Efficient Approach to Modeling Gene

Regulatory Networks,” BMC Systems Biology, vol. 6, pp. 113, 2012.

[31] G. Lahav, et al., “Dynamics of the p53-Mdm2 Feedback Loop in Individual Cells,” Nature Genetics, vol.

36, no. 2, pp. 147–150, 2004.

[32] S. Martin, Z. Zhang, A. Martino, and J.-L. Faulon, “Boolean Dynamics of Genetic Regulatory Networks

Inferred from Microarray Time Series Data,” Bioinformatics, vol. 23, no. 7, pp. 866-874, 2007.

[33] S. Kim, et al., “Can Markov Chain Models Mimic Biological Regulation?” Journal of Biological Systems,

vol. 10, no. 4, pp. 337–357, 2002.

[34] C.A. Ericson II, “Fault Tree Analysis – a History,” In Proceedings of the 17th International System

Safety Conference, pp. 16–21, 1999.

[35] N.G. Leveson, “Safeware: System Safety and Computers,” Addison-Wesley, 1995.

[36] H. Boudali, P. Crouzen, and M. Stoelinga, “A Rigorous, Compositional, and Extensible Framework for

Dynamic Fault Tree Analysis,” IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 2,

pp. 128–143, 2010.

[37] M. Stamatelatos, and W. Vesely, “Fault Tree Handbook with Aerospace Applications,” NASA Office of

Safety and Mission Assurance, version 1.1, pp. 1–205, 2002.

[38] E.J. Henley, and H. Kumamoto, “Reliability Engineering and Risk Assesment,” Englewood Cliffs:

Prentice Hall, 1981.

- 171 -

[39] T. Yuge, and S. Yanagi, “Quantitative Analysis of a Fault Tree with Priority AND Gates,” Reliability

Engineering & System Safety, vol. 93, no. 11, pp. 1577–1583, 2008.

[40] S. Amari, G. Dill, and E. Howald, “A New Approach to Solve Dynamic Fault Trees,” In Annual IEEE

reliability and maintainability symposium, pp. 374–9, 2003.

[41] J.D. Esary, and H. Ziehms, “Reliability analysis of Phased-missions,” Reliability and Fault-Tree Analysis,

pp. 213-236 (Society for Industrial Applied Mathematics, Philadelphia, Pennsylvania), 1975.

[42] M. Dunlop, et al., “Regulatory Activity Revealed by Dynamic Correlations in Gene Expression Noise,”

Nature Genetics, vol. 40, pp. 1493–1498, 2008.

[43] R. Pal, A. Datta, M.L. Bittner, and E.R. Dougherty, “Intervention in Context-sensitive Probabilistic

Boolean Networks,” Bioinformatics, vol. 21, no. 7, pp. 1211–1218, 2005.

[44] I. Shmulevich, et al., “Steady-state Analysis of Genetic Regulatory Networks Modeled by Probabilistic

Boolean Networks,” Comparative and Functional Genomics, vol. 4, no. 6, pp. 601–608, 2003.

[45] J.S. Rosenthal, “Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo,”

Journal of the American Statistical Association, vol. 90, no. 430, pp. 558–566, 1995.

[46] I. Harvey, and T. Bossomaier, “Time Out of Joint: Attractors in Asynchronous Random Boolean

Networks,” Proceedings of the 4
th

 European Conference on Artificial Life (ECAL1997), (MIT Press), pp.

67–75, 1997.

[47] H. Kitano, “Foundations of Systems Biology,” (MIT Press Cambridge, Massachusetts London), 2001.

[48] R. Thomas, and R. D’Ari, “Biological Feedback,” CRC Press, 1990.

[49] M.K. Morris, J. Saez-Rodriguez, P.K. Sorger, and D.A. Lauffenburger, “Logic-based Models for the

Analysis of Cell Signaling Networks,” Biochemistry, vol. 49, no. 15, pp. 3216–3224, 2010.

[50] E. Dubrova, “Random Multiple-Valued Networks: Theory and Applications,” Proceedings of the 36
th

International Symposium on Multiple-Valued Logic (ISMVL ’06), pp. 27-33, 2006.

[51] A. Garg, L. Mendoza, I. Xenarios, and G. DeMicheli, “Modeling of Multiple Valued Gene Regulatory

Networks,” In Proceedings of the 29
th
 International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBS ’07), pp. 1398-1404, 2007.

[52] F. Greil, B. Drossel, and J. Sattler, “Critical Kauffman Networks under Deterministic Asynchronous

Update,” New Journal of Physics, vol. 9, pp. 373, 2007.

[53] K. Klemm, and S. Bornholdt, “Stable and Unstable Attractors in Boolean Networks,” Physical Review E,

Statistical, Nonlinear, and Soft Matter Physics, vol. 72, pp. 055101, 2005.

[54] L. Xing, A. Shrestha, L. Meshkat, and W. Wang, “Incorporating Common-cause Failures into the

Modular Hierarchical Systems Analysis,” IEEE Transactions on Reliability, vol. 58, no. 1, pp. 10-19,

2009.

[55] K.P. Parker, and E.J. McCluskey, “Probabilistic treatment of general combinational networks,” IEEE

Transactions on Computers, vol. C-24, no. 6, pp. 668–670, 1975.

[56] I. Bahar, J.L. Mundy, and J. Chen, “A Probabilistic-based Design Methodology for Nanoscale

Computation,” In Proceedings of International Conference on Computer Aided Design, pp. 480–486,

2003.

[57] H. Chen, and J. Han, “Stochastic Computational Models for Accurate Reliability Evaluation of Logic

Circuits,” In Proceedings of the 20
th

 symposium on Great Lakes Symposium on VLSI (GLVLSI),

Providence, RI, USA, pp. 61-66, 2010.

- 172 -

[58] D. Braendler, T. Hendtlass, and P. O'Donoghue, “Deterministic Bit-stream Digital Neurons,” IEEE

Transactions on Neural Networks, vol. 13, no. 6, pp. 1514-1525, 2002.

[59] P.K. Gupta, and R. Kumaresan, “Binary Multiplication with PN Sequences,” IEEE Transactions on

Acoustics, Speech and Signal Processing, vol. 36, no. 4, pp. 603-606, 1988.

[60] H. Lähdesmäki, et al., “Relationships between Probabilistic Boolean Networks and Dynamic Bayesian

Networks as Models of Gene Regulatory Networks,” Signal Processing, vol. 86, no. 4, pp. 814-834,

2006.

[61] W. Ching, S. Zhang, M. NG, and T. Akutsu, “An Approximation Method for Solving the Steady-state

Probability Distribution of Probabilistic Boolean Networks,” Bioinformatics, vol. 23, no. 12, pp. 1511 –

1518, 2007.

[62] N. Guelzim, S. Bottani, P. Bourgine, and F. Kepes, “Topological and Causal Structure of the Yeast

Transcriptional Regulatory Network,” Nature Genetics, vol. 31, no. 1, pp. 60–63, 2002.

[63] S. Zhang, W. Ching, M. NG, and T. Akutsu, “Simulation Study in Probabilistic Boolean Network

Models for Genetic Regulatory Networks,” International Journal of Data Mining and Bioinformatics,

vol. 1, no. 3, pp. 217–240, 2007.

[64] I. Shmulevich, E.R. Dougherty, S. Kim, and W. Zhang, “Probabilistic Boolean Networks: a Rule-based

Uncertainty Model for Gene Regulatory Networks,” Bioinformatics, vol. 18, no. 2, pp. 261-274, 2002.

[65] M.A. Boyd, “Dynamic Fault Tree Models: Techniques for Analyses of Advanced Fault Tolerant

Computer Systems,” Ph.D dissertation, Department of Computer Science, Duke University, 1991.

[66] J.B. Dugan, S.J. Bavuso, and M.A. Boyd, “Dynamic Fault Tree Models for Fault-tolerant Computer

Systems,” IEEE Transactions on Reliability, vol. 41, no. 3, pp. 363–377, 1992.

[67] A. Ejlali, and S. Miremadi, “FPGA-based Monte Carlo Simulation for Fault Tree Analysis,”

Microelectronics Reliability, vol. 44, no. 6, pp. 1017–1028, 2004.

[68] G. Merle, J.-M.Roussel, and J.-J. Lesage, “Improving the Efficiency of Dynamic Fault Tree Analysis by Considering

Gates FDEP as Static,” In Proceedings of the European Safety & Reliability Conference 2010 (ESREL2010), pp.

845–851, 2010.

[69] S.J. Bavuso, “A Novel Solution-technique Applied to a Novel WAAS Architecture,” In Proceedings of

Annual Reliability and Maintainability Symposium (RAMS’98), USA, pp. 229–234, 1998.

[70] L. Xing, O. Tannous, and J.B. Dugan, “Reliability Analysis of Nonrepairable Cold-standby Systems

using Sequential Binary Decision Diagrams,” IEEE Transactions on Systems, Man, Cybernetics–Part A:

Systems and Humans, vol. 42, no. 3, pp. 715–726, 2012.

[71] J.B. Dugan, S.J. Bavuso, and M.A. Boyd, “Fault Trees and Sequence Dependencies,” In Proceedings of

the Reliability and Maintainable Symposium, pp. 286–93, 1990.

[72] R. Remenyte-Prescott, J.D. Andrews, and P.W.H. Chung, “An Efficient Phased-mission Reliability

Analysis for Autonomous Vehicles,” Reliability Engineering & System Safety, vol. 95, no. 3, pp. 226–35,

2010.

[73] M. Brun, E.R. Dougherty, and I. Shmulevich, “Steady-state Probabilities for Attractors in Probabilistic

Boolean Networks,” Signal Processing, vol. 85, no. 10, pp. 1993–2013, 2005.

[74] P. Zhu, J. Liang, and J. Han, “Gene Perturbation and Intervention in Context-Sensitive Stochastic

Boolean Networks,” BMC Systems Biology, vol. 8, pp. 60, 2014.

- 173 -

[75] B. Faryabi, et al., “Intervention in Context-sensitive Probabilistic Boolean Networks Revisited,”

EURASIP Journal on Bioinformatics and Systems Biology, vol. 2009, pp. 360864, 2009.

[76] R. Pal, “Context-sensitive Probabilistic Boolean Networks: Steady-state Properties, Reduction, and

Steady-state Approximation,” IEEE Transactions on Signal Processing, vol. 58, no. 2, pp. 879–890,

2010.

[77] A. Datta, A. Choudhary, M.L. Bittner, and E.R. Dougherty, “External Control in Markovian Genetic

Regulatory Networks,” Machine Learning, vol. 52, pp. 169–191, 2003.

[78] A. Datta, A. Choudhary, M.L. Bittner, and E.R. Dougherty, “External Control in Markovian Genetic

Regulatory Networks: the Imperfect Information Case,” Bioinformatics, vol. 20, no. 6, pp. 924–993,

2004.

[79] R. Pal, A. Datta, M.L. Bittner, and E.R. Dougherty, “Optimal Infinite Horizon Control for Probabilistic

Boolean Networks,” IEEE Transactions on Signal Processing, vol. 54, no. 6, pp. 2375–2387, 2006.

[80] B. Faryabi, A. Datta, and E.R. Dougherty, “On Approximate Stochastic Control in Genetic Regulatory

Networks,” IET Systems Biology, vol. 1, no. 6, pp. 361–368, 2007.

[81] R. Layek, A. Datta, R. Pal, and E.R. Dougherty, “Adaptive Intervention in Probabilistic Boolean

Networks,” Bioinformatics, vol. 25, no. 16, pp. 2042–2048, 2009.

[82] X. Qian, and E.R. Dougherty, “Effect of Function Perturbation on the Steady-state Distribution of

Genetic Regulatory Networks: Optimal Structural Intervention,” IEEE Transactions on Signal

Processing, vol. 56, no. 10, pp. 4966-4976, 2008.

[83] X. Qian, I. Ivanov, N. Ghaffari, and E.R. Dougherty, “Intervention in Gene Regulatory Networks via

Greedy Control Policies based on Long-run Behavior,” BMC Systems Biology, vol. 3, pp. 16, 2009.

[84] R.A. Weinberg, “The Biology of Cancer,” 1st edition. New York: Garland Science, 2006.

[85] B. Vogelstein, D. Lane, and A.J. Levine, “Surfing the p53 Network,” Nature, vol. 408, no. 6810, pp.

307–310, 2000.

[86] E. Batchelor, A. Loewer, and G. Lahav, “The Ups and Downs of p53: Understanding Protein Dynamics

in Single Cells,” Nature Reviews Cancer, vol. 9, pp. 371-377, 2009.

[87] A. Ciliberto, B. Novak, and J.J. Tyson, “Steady States and Oscillations in the p53-Mdm2 Network,” Cell

Cycle, vol. 4, no. 3, pp. 486–493, 2005.

[88] W. Abou-Jaoude, D. Ouattara, and M. Kaufman, “From Structure to Dynamics: Frequency Tuning in the

p53-mdm2 Network: I. Logical Approach,” Journal of Theoretical Biology, vol. 258, no. 4, pp. 561–577,

2009.

[89] D. Murrugarra, et al., “Modeling Stochasticity and Variability in Gene Regulatory Networks,” EURASIP

Journal on Bioinformatics and Systems Biology, vol. 2012, pp. 5, 2012.

[90] K. Maurice, “The Map Method for Synthesis of Combinational Logic Circuits,” Transactions of the

American Institute of Electrical Engineers part I , vol. 72, no. 9, pp. 593–599, 1953.

[91] H. Ge, and M. Qian, “Boolean Network Approach to Negative Feedback Loops of the p53 Pathways:

Synchronized Dynamics and Stochastic Limit Cycles,” Journal of Computational Biology, vol. 16, no. 1,

pp. 119–132, 2009.

[92] Z. Li, and D. Cheng, “Algebraic Approach to Dynamics of Multivalued Networks,” International

Journal of Bifurcation and Chaos, vol. 20, no. 3, pp. 561– 582, 2010.

- 174 -

[93] A. Adamatzky, “On Dynamically Non-trivial Three-valued Logics: Oscillatory and Bifurcatory Species,”

Chaos, Solitons & Fractals, vol. 18, no. 5, pp. 917–936, 2003.

[94] L.G. Volker, and M. Conrad, “The Role of Weak Interactions in Biological Systems: the Dual Dynamic

Model,” Journal of Theoretical Biology, vol. 193, no. 2, pp. 287–306, 1998.

[95] P. Zhu, and J. Han, “Stochastic Multiple-Valued Gene Networks,” IEEE Transactions on Biomedical

Circuits and Systems, vol. 8, no. 1, pp. 42-53, 2014.

[96] P. Zhu, J. Liang, and J. Han, “Toward Intracellular Delivery and Drug Discovery: Stochastic Logic

Networks as Efficient Computational Models for Gene Regulatory Networks,” a chapter in the book

“Intracellular Delivery Vol. 2,” Springer, 2014.

[97] L. Kadanoff，M. Aldana, and S.N. Coppersmith, “Boolean Dynamics with Random Couplings,” Springer

Applied Mathematical Sciences Series, Special volume, Springer, New York, pp. 23–89, 2003.

[98] C. Luo, and X. Wang, “Dynamics of Random Boolean Networks under Fully Asynchronous Stochastic

Update Based on Linear Representation,” PLoS One, vol. 8, no. 6, pp. e66491, 2013.

[99] N. Geva-Zatorsky, et al., “Oscillations and Variability in the p53 System,” Molecular Systems Biology,

vol. 2, no. 1, pp. 2: 2006.0033, 2006.

[100] A. Naldi, D. Thieffry, and C. Chaouiya, “Decision Diagrams for the Representation and Analysis of

Logical Models of Genetic Networks,” Computational Methods in Systems Biology, Lecture Notes in

Computer Science, vol. 4695, pp. 233–247, 2007.

[101] E. Remy, et al., “From Logical Regulatory Graphs to Standard Petri Nets: Dynamical Roles and

Functionality of Feedback Circuits,” Transactions on Computer Systems Biology Springer Lecture Notes

in Computer Science, vol. 4230, pp. 56–72, 2006.

[102] A. Garg, et al., “Synchronous versus Asynchronous Modeling of Gene Regulatory Networks,”

Bioinformatics, vol. 24, no. 17, pp. 1917-1925, 2008.

[103] B.S. Chen, and P.W. Chen, “Robust Engineered Circuit Design Principles for Stochastic Biochemical

Networks with Parameter Uncertainties and Disturbances,” IEEE Transactions on Biomedical Circuits

and Systems, vol. 2, no. 2, pp. 114-132, 2008.

[104] F.X. Wu, “Global and Robust Stability Analysis of Genetic Regulatory Networks with Time-varying

Delays and Parameter Uncertainties,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no.

5, pp. 391–398, 2011.

[105] A.S. Ribeiro, and S.A. Kauffman, “Noisy Attractors and Ergodic Sets in Models of Gene Regulatory

Networks,” Journal of Theoretical Biology, vol. 247, no. 4, pp. 743–755, 2007.

[106] K. Willadsena, and J. Wiles, “Robustness and State-space Structure of Boolean Gene Regulatory

Models,” Journal of Theoretical Biology, vol. 249, no. 4, pp. 749–765, 2007.

[107] P. Zhu, and J. Han, “Asynchronous Stochastic Boolean Networks as Gene Network Models,” Journal of

Computational Biology, vol. 21, no. 10, pp. 771-783, 2014.

[108] M. Wu, X. Yang, and C. Chan, “A Dynamic Analysis of IRS-PKR Signaling in Liver Cells: a Discrete

Modeling Approach,” PLoS One, vol. 4, no. 12, pp. e8040, 2009.

[109] A. Garg, et al., “Modeling Stochasticity and Robustness in Gene Regulatory Networks,” Bioinformatics,

vol. 25, no. 12, pp. i101-9, 2009.

[110] L. Mendoza, and I. Xenarios, “A Method for the Generation of Standardized Qualitative Dynamical

Systems of Regulatory Networks,” Theoretical Biology and Medical Modelling, vol. 3, pp. 13, 2006.

- 175 -

[111] M. Kaern, et al., “Stochasticity in Gene Expression: from Theories to Phenotypes,” Nature Reviews

Genetics, vol. 6, no. 6, pp. 451–464, 2005.

[112] D. Agnello, et al., “Cytokines and Transcription Factors that Regulate T Helper Cell Differentiation:

New Players and New Insights,” Journal of Clinical Immunology, vol. 23, no. 3, pp. 147-161, 2003.

[113] C. Bergmann, J.L. Van Hemmen, and L.A. Segel, “Th1 or Th2: How an Appropriate T Helper Response

can be Made,” Bulletin of Mathematical Biology, vol. 63, no. 3, pp. 405–430, 2001.

[114] K.M. Murphy, and S.L. Reiner, “The Lineage Decisions on Helper T Cells,” Nature Reviews

Immunology, vol. 2, no. 12, pp. 933–944, 2002.

[115] G. Merle, J.-M. Roussel, J.-J. Lesage, and A. Bobbio, “Probabilistic Algebraic Analysis of Fault Trees

with Priority Dynamic Gates and Repeated Events,” IEEE Transactions on Reliability, vol. 59, no. 1, pp.

250-261, 2010.

[116] P. Zhu, J. Han, L. Liu, and M.J. Zuo, “A Stochastic Approach for the Analysis of Fault Trees with

Priority AND Gates,” IEEE Transactions on Reliability, vol. 63, no. 2, pp. 480-494, 2014.

[117] H. Boudali, P. Crouzen, and M. Stoelinga, “Dynamic Fault Tree Analysis through Input/Output

Interactive Markov Chains,” In Proceedings of the International Conference on Dependable Systems and

Networks (DSN), pp. 25–38, 2007.

[118] R. Manian, J.B. Dugan, D. Coppit, and K.J. Sullivan, “Combining Various Solution Techniques for

Dynamic Fault Tree Analysis of Computer Systems,” In Proceedings of the 3
rd

 IEEE International

Symposium on High-Assurance Systems Engineering (HASE’98), pp. 21–28, 1998.

[119] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla, “Improving the Analysis of Dependable

Systems by Mapping Fault Trees into Bayesian Networks,” Reliability Engineering & System Safety, vol.

71, no. 3, pp. 249-260, 2001.

[120] H. Boudali, and J.B. Dugan, “A Discrete-time Bayesian Network Reliability Modeling and Analysis

Framework,” Reliability Engineering & System Safety, vol. 87, no. 3, pp. 337–349, 2005.

[121] L. Xing, “An Efficient Binary-decision-diagram-based Approach for Network Reliability and

Sensitivity Analysis,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 38, no. 1, pp. 105-115,

2007.

[122] O. Tannous, L. Xing, and J.B. Dugan, “Reliability Analysis of Warm Standby Systems using Sequential

BDD,” In Proceedings of the 57
th

 Annual Reliability &Maintainability Symposium, FL, USA, pp. 1-7,

2011.

[123] A. Rauzy, “Sequence Algebra, Sequence Decision Diagrams and Dynamic Fault Trees,” Reliability

Engineering & System Safety, vol. 96, no. 7, pp. 785-792, 2011.

[124] L. Xing, A. Shrestha, and Y. Dai, “Exact Combinatorial Reliability Analysis of Dynamic Systems with

Sequence-Dependent Failures,” Reliability Engineering & System Safety, vol. 96, no. 10, pp. 1375-1385,

2011.

[125] RK. Durga, et al., “Dynamic Fault Tree Analysis using Monte Carlo Simulation in Probabilistic Safety

Assessment,” Reliability Engineering & System Safety, vol. 94, no. 4, pp. 872–83, 2009.

[126] W. Long, T.L. Zhang, Y.F. Lu, and M. Oshima, “ On the Quantitative Analysis of Sequential Failure

Logic using Monte Carlo Method for Different Distributions,” In Proceedings of Probabilistic Safety

Assessment Manage, pp. 391–396, 2002.

- 176 -

[127] H. Aliee, and H.R. Zarandi, “A Fast and Accurate Fault Tree Analysis Based on Stochastic Logic

Implemented on Field-Programmable Gate Arrays,” IEEE Transactions on Reliability, vol. 62, no. 1, pp.

13-22, 2013.

[128] J. von Neumann, “Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable

Components,” Automata Studies, Shannon C.E. & McCarthy J., eds., Princeton University Press, pp.

43-98, 1956.

[129] J. Han, “Fault-Tolerant Architectures for Nanoelectronic and Quantum Devices,” Universal Press,

Veenendaal, the Netherlands, 2004. A Ph.D. dissertation of the Delft University of Technology, 1-135.

ISBN: 90-9018888-6.

[130] L. Xing and W. Wang, “Probabilistic Common-cause Failures Analysis,” In Proceedings of the 54
th

Annual Reliability & Maintainability Symposium, pp. 354-358, 2008.

[131] P. Zhu, J. Han, L. Liu, and F. Lombardi, “A Stochastic Approach for the Analysis of Dynamic Fault

Trees with Spare Gates under Probabilistic Common Cause Failures,” IEEE Transactions on Reliability,

vol. PP, no. 99, pp. 1-15, 2015.

[132] J.D. Andrews, and J.B. Dugan, “Dependency Modeling using Fault Tree Analysis,” In Proceedings of

the 17
th

 International System Safety Conference, USA, Aug, 1999.

[133] J.B. Dugan, and S.A. Doyle, “New Results in Fault Tree Analysis,” Tutorial notes of Annual Reliability

& Maintainability Symposium, (Jan.) 1997.

[134] K.B. Misra (Editor), “Handbook of Performability Engineering,” Springer-Verlag, London, ISBN:

978-1-84800-130-5, (Oct.) 2008.

[135] J.B. Dugan, S.J. Bavuso, and M.A. Boyd, “Dynamic Fault-tree Models for Fault-tolerant Computer

Systems,” IEEE Transactions on Reliability, vol. 41, no. 3, pp. 363–377, 1992.

[136] B.W. Johnson, “Design and Analysis of Fault Tolerant Digital Systems,” Reading, MA:

Addison-Wesley, 1989.

[137] J. She, and M. Pecht, “Reliability of a k-out-of-n Warm-standby System,” IEEE Transactions on

Reliability, vol. 41, no. 1, pp. 72-75, 1991.

[138] Y.S. Dai, M. Xie, K.L. Poh, and S.H. Ng, “A Model for Correlated Failures in N-version Programming,”

IIE Transactions, vol. 36, no. 12, pp. 1183–1192, 2004.

[139] K.N. Fleming, and A. Mosleh, “Common-cause Data Analysis and Implications in System Modeling,”

In Proceedings of the International Topical Meeting on Probabilistic Safety Methods and Applications,

vol. 1, pp. 3.1–3.14, 1985.

[140] Z. Tang, H. Xu, and J.B. Dugan, “Reliability Analysis of Phased Mission Systems with Common Cause

Failures,” In Proceedings of the 51
st
 Annual Reliability and Maintainability Symposium, pp. 313–318,

2005.

[141] J.K. Vaurio, “An Implicit Method for Incorporating Common-cause Failures in System Analysis,” IEEE

Transactions on Reliability, vol. 47, no. 2, pp. 173–180, 1998.

[142] L. Xing, L. Meshkat, and S. Donohue, “An Efficient Approach for the Reliability Analysis of

Phased-mission Systems with Dependent Failures,” In Proceedings of the 8
th

 International Conference

on Probabilistic Safety Assessment and Management (PSAM8), New Orleans, LA, USA, May 14–19,

2006.

- 177 -

[143] L.B. Page, and J.E. Perry, “A Model for System Reliability with Common-cause Failures,” IEEE

Transactions on Reliability, vol. 38, no. 40, pp. 406–410, 1989.

[144] J. Han, E. Boykin, H. Chen, J. Liang, and J. Fortes, “On the Reliability of Computational Structures

using Majority Logic,” IEEE Transactions on Nanotechnology, vol. 10, no. 5, pp. 1099-1112, 2011.

[145] G. Merle, J.M. Roussel, and J.J. Lesage, “Dynamic Fault Tree Analysis based on the Structure Function,”

In Annual reliability and maintainability symposium, Lake Buena Vista, pp. 462-467, 2011.

[146] C.P. Robert, and G. Casella, “Monte Carlo Statistical Methods,” Springer, 2004.

[147] P. Zhu, J. Han, L. Liu, and F. Lombardi, “Reliability Evaluation of Phased-mission Systems using

Stochastic Computation,” Submitted to IEEE Transactions on Reliability 2015.

[148] L. Xing, and S.V. Amari, “Reliability of Phased-Mission Systems,” K. B. Misra, editor. Handbook of

performability engineering. Springer 2008, pp. 349–68 Chapter 23.

[149] A.K. Somani, J.A. Ritcey, and S.H.L. Au, “Computationally Efficient Phased-mission Reliability

Analysis for Systems with Variable Configurations,” IEEE Transactions on Reliability, vol. 41, no. 4, pp.

504–11, 1992.

[150] L. Xing, “Reliability Evaluation of Phased-mission Systems with Imperfect Fault Coverage and

Common-cause Failures,” IEEE Transactions on Reliability, vol. 56, no. 1, pp. 58–68, 2007.

[151] A. Pedar, and V.V.S. Sarma, “Phased-mission Analysis for Evaluating the Effectiveness of Aerospace

Computing Systems,” IEEE Transactions on Reliability, vol. R-30, no. 5, pp. 429–37, 1981.

[152] H.S. Winokur J.R., and L.J. Goldstein, “Analysis of Mission-oriented Systems,” IEEE Transactions on

Reliability, vol. R-18, no. 4, pp. 144–8, 1969.

[153] J.L. Bricker, “A Unified Method for Analyzing Mission Reliability for Fault Tolerant Computer

Systems,” IEEE Transactions on Reliability, vol. R-22, no. 2, pp. 72–7, 1973.

[154] X. Zang, H. Sun, and K.S. Trivedi, “A BDD-based Algorithm for Reliability Analysis of

Phased-Mission Systems,” IEEE Transactions on Reliability, vol. 48, no. 1, pp. 50–60, 1999.

[155] R.E. Altschul, and P.M. Nagel, “The Efficient Simulation of Phased Fault Trees,” In Proceedings of the

Annual Reliability and Maintainability Symposium, pp. 292–296, January, 1987.

[156] F.A. Tillman, C.H. Lie, and C.L. Hwang, “Simulation Model of Mission Effectiveness for Military

Systems,” IEEE Transactions on Reliability, vol. R-27, no. 3, pp. 191–4, 1978.

[157] L. Xing, and L. Gregory, “BDD-based Reliability Evaluation of Phased-mission Systems with

Internal/External Common-cause Failures,” Reliability Engineering & System Safety, vol. 112, pp.

145-153, 2013.

[158] A. Bondavalli, S. Chiaradonna, FD. Giandomenico, and I. Mura, “Dependability Modeling and

Evaluation of Multiple-phased Systems using DEEM,” IEEE Transactions on Reliability, vol. 53, no. 4,

pp. 509–22, 2004.

[159] J.B. Dugan, “Automated Analysis of Phased-mission Reliability,” IEEE Transactions on Reliability, vol.

40, no. 1, pp. 45–52, 55, 1991.

[160] I. Mura, and A. Bondavalli, “Markov Regenerative Stochastic Petri Nets to Model and Evaluate

Phased-mission Systems Dependability,” IEEE Transactions on Computers, vol. 50, no. 12, pp. 1337–51,

2001.

[161] M.K. Smotherman, and K. Zemoudeh, “A Non-homogeneous Markov Model for Phased-mission

Reliability Analysis,” IEEE Transactions on Reliability, vol. 38, no. 5, pp. 585–90, 1989.

- 178 -

[162] L. Meshkat, L. Xing, S. Donohue, and Y. Ou, “An Overview of the Phase-modular Fault Tree Approach

to Phased-mission System Analysis,” In Proceedings of the International Conference on Space Mission

Challenges for Information Technology, pp. 393–398, 2003.

[163] Y. Ou, and J.B. Dugan, “Modular Solution of Dynamic Multi-phase Systems,” IEEE Transactions on

Reliability, vol. 53, no. 4, pp. 499–508, 2004.

[164] L. Xing, and J.B. Dugan, “Analysis of Generalized Phased-mission System Reliability Performance,

and Sensitivity,” IEEE Transactions on Reliability, vol. 51, no. 2, pp. 199-211, 2002.

[165] J.S. Wu, and R.J. Chen, “An Algorithm for Computing the Reliability of a Weighted-k-out-of-n System,”

IEEE Transactions on Reliability, vol. R-43, no. 2, pp. 327–8, 1994.

[166] J.M. Lu, and X.Y. Wu, “Reliability Evaluation of Generalized Phased-mission Systems with Repairable

Components,” Reliability Engineering & System Safety, vol. 121, pp. 136-145, 2014.

[167] W. Li, and M.J. Zuo, “Reliability Evaluation of Multi-state Weighted k-out-of-n Systems,” Reliability

Engineering & System Safety, vol. 93, no. 1, pp. 160-167, 2008.

[168] Z. Tang, and J.B. Dugan, “BDD-based Reliability Analysis of Phased-mission Systems with Multimode

Failures,” IEEE Transactions on Reliability, vol. 55, no. 2, pp. 350–360, 2006.

[169] P. Jeavons, D.A. Cohen, and J. Shawe-Taylor, “Generating Binary Sequences for Stochastic

Computing,” IEEE Transactions on Information Theory, vol. 40, no. 3, pp. 716–720, 1994.

[170] S.-S. Choi, S.-H. Cha, and C.C. Tappert, “A Survey of Binary Similarity and Distance Measures,”

Journal of Systemics, Cybernetics and informatics, vol. 8, pp. 43-48, 2010.

[171] T.H. Chen, and J.P. Hayes, “Analyzing and Controlling Accuracy in Stochastic Circuits,” Computer

Design (ICCD), 32rd IEEE International Conference on, pp. 367-373, 2014.

[172] H. Niederreiter, “Random Number Generation and Quasi-Monte Carlo Methods,” SIAM, Philadelphia,

1992.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6974707

