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Abstract. Reconstruction of an evolutionary history for a set of organ-
isms is an important research subject in computational biology. One ap-
proach motivated by graph theory constructs a relationship graph based
on pairwise evolutionary closeness. The approach builds a tree represen-
tation equivalent to this graph such that leaves of the tree, corresponding
to the organisms, are within a specified distance of k in the tree if con-
nected in the relationship graph. This problem, the kth phylogenetic root
construction, has known linear time algorithms for k ≤ 4. However, the
computational complexity is unknown if k ≥ 5. We present a polynomial
time algorithm for strictly chordal relationship graphs if k = 5.
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1 Introduction

A phylogeny is the development and history through evolution of a set of organ-
isms or evolutionary units. A phylogenetic tree is a visual representation with the
leaves labeled by the evolutionary units and distances in the tree representing
evolutionary closeness; reconstruction of such trees is a fundamental question
in computational biology. One approach, based on graph theory, uses an input
graph representing the known relationships of the units; the vertices are labeled
by the units and connected if their relative closeness is greater than some pre-
specified threshold. The approach then constructs a tree, if it exists, where the
unit-labeled leaves are within a given path distance in the tree if and only if the
evolutionary units’ vertices are connected in the input graph. This problem is a
variation of the well-studied graph root and graph power problem.

The kth power of a graph, G = (V,E), denoted Gk, is another graph on the
same vertex set with an edge between x, y ∈ V if and only if a path in G of
length at most k exists between x, y. Given a graph, it is efficient to compute
a kth power, but the reverse direction, finding a kth root, is generally more
complex. For example, finding a square root of graph is NP-complete [9]. A few

? Supported partially by NSERC. Email: kennedy@cs.ualberta.ca.
?? Supported by NSERC and CFI. Email: ghlin@cs.ualberta.ca.



2

polynomial time algorithms exist for computing if a graph has a kth root where
this root is a tree [3,8]. For a graph G, a kth leaf root is a tree T where the vertex
set of G corresponds to the leaves of T and the kth power T k induced on the
leaf set of T is isomorphic to G. The internal vertices in such a tree are Steiner
points. For a Steiner point the number of Steiner points it is adjacent to in T
is its Steiner degree. All strictly chordal graphs are leaf powers, and finding the
kth leaf root of a strictly chordal graph for k ≥ 4 has a linear time solution [4].

The k-root phylogenetic tree problem is a restriction of the kth leaf root
with, in addition, all Steiner points having degree of at least 3; this follows from
the notion of an internal point in the tree representing a genetic split from a
common ancestor. The problem of finding a k-root phylogenetic tree has a linear
time solution for k ≤ 4 [6]. [5] has produced an algorithm for the k = 5 case that
runs in linear time if the critical clique graph CC(G) is a tree.

The k-root Steiner problem is a relaxation of the kth leaf root with vertices
of G now represented by both the leaves and some internal vertices of the tree.
[6] used this problem as an important intermediary step for constructing the 3rd
and 4th root phylogenetic tree; we employ an analogous approach in this paper.
The main contribution of this paper will be to produce an algorithm that decides
if a given strictly chordal graph has a 5-root phylogeny tree, and if such a tree
exists, constructs this tree.

2 Preliminaries

A forest is a simple acyclic graph; a tree is a connected forest; we will assume
that a tree is undirected. A graph is chordal [1] if it contains no induced cycle
of length four or more. Chordal graphs can be recognized in linear time [1]. All
graphs that have a leaf power representation are chordal graphs [6].

For a graph G, a clique is a set of vertices that are pairwise adjacent. A
clique is maximal if no other vertex of G is adjacent to all vertices in the clique.
A critical clique [6] is a clique such that all the vertices in the clique share a
common neighborhood. The cardinality of a maximal clique K, denoted card(K),
is the number of critical cliques it contains. For convenience, we define a maximal
clique to be large if it has cardinality of three or more. The size of a critical clique
C in a graph G is the number of vertices it contains. A critical clique is internal
if contained in at least two maximal cliques and external otherwise.

The set formed by all the critical cliques of a graph is a partition of the vertex
set of the graph. Two critical cliques C1 and C2 are adjacent if the vertices of
C1 are adjacent to the vertices of C2. Define a critical clique graph CC(G) with
nodes of CC(G) correpsonding to the critical cliques of G such that two nodes
are adjacent if and only if the critical cliques that they represent are adjacent [6].
As with the conventions established in [6], to avoid confusion we will refer the
vertices in CC(G) as nodes.

For a vertex set V and hyperedge set E ={Ei|i = 0, 1, 2, ..., n} such that
Ei ⊆ V , the pair H = (V, E) is a hypergraph [1]. A twig in a hypergraph H(V, E),
denoted Et, is a hyperedge such that there exists another hyperedge, Eb called
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a branch, with the property that Et ∩ (∪E∈E−Et
E) = Et ∩Eb. A hypergraph is

a hypertree if there exists an ordering (E1, E2, . . . , Em) of the hyperedges such
that Ei is a twig in H(V, Ei) for 1 ≤ i ≤ m given that Ei = (E1, E2, . . . , Ei). This
definition of hypertree corresponds to [4,2] and differs from the definition in [1].
Given a set of hyperedges E ′ ⊆ E , We say the intersection I of E ′ is maximal [4]
if no other hyperedges exist which contain all the vertices of I. We say that an
intersection is strict [4] if for every pair of edges, E′, E′′ ∈ E , E′ ∩ E′′ = I and
E∗ ∩ I = ∅ for all E∗ ∈ E − E ′. A hypertree is strict [4] if all its intersections
are strict. Define a clique hypergraph of a graph G = (V,E) with vertex set V
and hyperedges set as the maximal cliques of G. A graph is strictly chordal if it
is chordal and its clique hypergraph is a strict hypertree. There exists a linear
time algorithm to recognize strictly chordal graphs [4].

A k-root Steiner tree T of a graph G is S-restricted for a set of critical cliques
S if T has no degree 2 Steiner points and critical cliques in S are internal in T .

Lemma 1. [7] For a graph G, let S be the critical cliques of size 1 in G. If
no (k-2)-root Steiner tree T is associated with G such that T is a S-restricted
Steiner tree, then no k-root phylogenetic tree is equivalent to G.

We now give a brief overview of the strategy we employ to produce a 5-
root phylogeny tree from a graph G. Starting with G, check if G is strictly
chordal, and if yes, we build the critical clique graph CC(G). Using CC(G), we
produce the set of tree chordal graphs T by removing edges in large maximal
cliques (see Section 2.1). For each tree chordal graph Ti ∈ T , we apply Alg(Ti),
a modification of the algorithm for producing a 5-root phylogeny tree for tree
chordal graphs given by Lin et al. [7]. If Alg(Ti) fails to produce a 3-root Steiner
tree we will find no phylogeny tree by Lemma 2. If for all Ti ∈ T , Alg(Ti)
produces a Steiner tree Si we then continue to consider the edges removed from
the large maximal cliques. We combine each 3-root Steiner tree Si until either
we come to a contradiction or we have a valid S-restricted Steiner tree where
S is the critical cliques of size 1 in G. If we construct such a Steiner tree, by
Lemma 1 we are always able to produce a corresponding 5-root phylogeny tree.
The Figure 1 shows a simplified flow chart of the algorithms steps.

Fig. 1. A flow chart of the 5-root phylogeny tree construction algorithm.
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Before we present the algorithms, we first discuss the tree chordal algorithm
presented by Lin et al. in [7] (Section 2.1) and discuss the structure of large max-
imal cliques (Section 2.2). We will present the algorithm in three progressively
less restrictive parts. Section 3.1, will assume G contains no small leaves and at
most one critical cliques is constrained (see Section 3.1). Section 3.2 will restrict
G to not contain small leaves and Section 3.3 will show the entire construction
for strictly chordal graphs.

2.1 Tree chordal graphs

A graph G is tree chordal [7] if CC(G) is a tree. [7] showed a polynomial time
algorithm to construct a 5-root phylogenetic tree from a tree chordal graph.
Starting with CC(G), this algorithm produces a S-restricted 3-root Steiner tree
where the set S contains external nodes of size 1 in CC(G); from this Steiner
tree a 5-root phylogenetic tree is easily produced. The non-trivial cases for this
algorithm are internal nodes of size 1 and external nodes of size 2 and 3.

By Lemma 1, for any 5-root phylogeny tree a corresponding S-restricted
3-root Steiner tree exists. To construct such a tree, for each Steiner point we
record the number of leaves it is adjacent to and then remove all leaves in the
tree. Steiner points that were not adjacent to leaves will remain as Steiner points;
notice that they will still have degree of three or more. The remaining Steiner
points now correspond to vertices in the input graph; let the set S be the internal
representatives in the graph. This simple retraction takes linear time to produce
a S-restricted 3-root Steiner tree.

To produce the forest of tree chordal graphs T we use the critical clique
graph CC(G); remove the edges from large maximal cliques and re-substitute
each critical clique in for the node that it represents in the decomposed critical
clique graph. An example is given in Figure 2.

(a) Critical clique graph
CC(G).

(b) Forest T .

Fig. 2. An example decomposition from a critical clique graph to a forest of tree
chordal critical clique graphs.

If follows from the input graph being strictly chordal that each node is part
of exactly one tree chordal graph. In the algorithm’s final step of recombining
the corresponding Steiner trees for each tree chordal graph, the final state of the
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critical cliques part of large maximal clique is necessary information. In addition,
these critical cliques must be treated as different as they are internal in CC(G).
A critical clique C is constrained in K if C has two or more representatives in
the Steiner tree T , C has a single representative adjacent to a Steiner point with
Steiner degree 1, or C has a single representative adjacent to the representative
of another critical clique. As will be shown in Section 2.2, at most one critical
clique can be constrained. Therefore, the algorithm aims to produced constrained
critical cliques only when necessary. We now describe and justify a modification
of the [7] algorithm to minimize constrained critical cliques.

A tree chordal graph T is trivial when CC(T) is a single node. The algorithm
in [7] assumes that CC(G) contains at least three nodes for a tree chordal graphs
G. Therefore, we describe an algorithm to handle trivial tree chordal graphs.
Trivial tree chordal graphs T can arise from a decomposition in two ways: T was
part of only large maximal cliques in G, or T was part of a large maximal clique
and decomposed into a tree chordal graph of exactly two critical cliques. The
corresponding S-restricted 3-root Steiner tree with S = ∅ to the first situation
will be a single representative vertex. For the later case, we present to following
algorithm TrivAlg(T ), such that S is the critical cliques of size 1 in G.

1. if both c1 and c2 are internal critical cliques in G then:
a. if either |c1| = 1 or |c2| = 1 in G then represent c1 and c2 by two single

adjacent representatives,
b. otherwise, represent c1 and c2 by two single representatives connected

by a path of two Steiner points.
2. if only one is an internal critical clique, assume c1, then:

a. if |c1| = 1 and 1 < |c2| < 4 then represent c1 and c2 by two single
adjacent representatives,

b. if |c1| > 1 and 1 < |c2| < 4 then represent c1 by r′c1
and rc′′

1
, c2 by r′c2

,
and create path r′c1

− r′′c1
− r′c2

,
c. if |c2| > 3 then represent c1 by a single representative, represent c2 by

two representatives of sizes d|c2|/2e and b|c2|/2c, and make all adjacent
to a common Steiner point,

d. otherwise (|c2| = 1) no S-restricted 3-root Steiner tree exists.

For Case 2d no S-restricted 3-root Steiner tree exist for G, as c2’s representative
will always be external and have size 1. The remaining cases represent each trivial
tree chordal graph as a Steiner tree that can be part of a valid S-restricted 3-root
Steiner tree when recombined.

We must change the Lin algorithm’s handling of lemma 15 in [7] such that
instead of the representative of the size one internal node being adjacent to two
representatives of a leaf critical clique, we add a Steiner point between these two
leaf representatives. This change does not affect the correctness of the algorithm
as it preserves all adjacencies and degree requirements.

Given a tree chordal graph Ti ∈ T decomposed from a graph G, set S corre-
sponding to nodes in Ti of size 1 in CC(G), and a set R corresponding to nodes
of CC(Ti) contained in maximal cliques of size three or more in CC(G) produce
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an S-restricted 3-root Steiner tree as follows. Denote this modified algorithm
ALG(G), where G is a tree chordal graph.

– If Ti was part of only large maximal cliques in G, return single representative.
– If Ti was part of a large maximal clique and decomposed into a tree chordal

graph of exactly two critical cliques, return tree as in TrivAlg(Ti).
– Produce tree chordal graph T ′

i as follows:
• size two and three external nodes contained in R, change size to four,
• size one external nodes contained in R adjacent to degree-2 size-2 node

in CC(Ti), change size to four,
• remaining size one external nodes contained in R, change size to two,
• size one internal nodes contained in R which are not adjacent to an

external node not contained in R, change size to two.
– Call the Lin algorithm with modified tree T ′

i .
– return no if Lin algorithm fails, or return the S-restricted 3-root Steiner tree.

Lemma 2. Given a strictly chordal graph G decomposed into a forest of tree
chordal graphs T and set S corresponding to nodes in G of size 1, if ALG(T )
fails to produce a valid S-restricted 3-root Steiner tree for any Ti ∈ T then no
S-restricted 3-root Steiner exists for G.

Proof. TrivAlg(T ) only rejects when |c2| = 1, as c2 ∈ S and will never be
internal.

To show the correctness of the modified Lin algorithm we prove the con-
trapositive; assuming G has a S-restricted 3-root Steiner tree T ′ we will show
for any tree chordal graph Ti ∈ T produced in the decomposition, the modified
algorithm will produce a S-restricted 3-root Steiner tree. Take any Ti ∈ T in
such a graph G. Denote T ′

i as the subtree induced on the tree T ′ with the rep-
resentatives of the critical cliques of Ti and the Steiner points on paths between
these representatives. We show from T ′

i a valid S-restricted 3-root Steiner tree
for the T ′ that ALG(Ti) produces.

First, as T ′ satisfies all distance requirements, it follows that so will T ′
i . All

representatives that are not part of large maximal cliques in G will satisfy the
size requirements; all Steiner points not adjacent to a representative of a critical
clique in large maximal clique will satisfy the minimum degree requirement.
Therefore, assume that C is a critical clique in T ′

i that fails; it follows either a
representative of C is external in T ′

i and has size one or a Steiner point adjacent
to C has degree two.

We first deal with the case when an external representative is size one. The
modifications to ALG(G) set external representatives of size one to size two.
Therefore, C must have two representatives, but, the other representative was
a leaf in T ′ implying its size is greater than one. This implies the total size of
this critical clique was at least three, but external critical cliques of size three
were modified to have size four. Therefore, we can represent these nodes with
two representatives of size two each in T ′

i .
If the Steiner point adjacent to C has degree two, it must of been adjacent to

a Steiner point of the Maximal clique. The representative of the critical clique
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C must also have size one, as size greater than two were modified to have size
four or more and could have two representatives. This could be the case when
the critical clique C is internal as well. By as in the previous case, this implies
another representative must exists and we modified critical cliques of size 2 or 3
to size four and, therefore, this critical clique can have two representatives. ut

By lemma, if ALG(T ) fails for any tree chordal graph, we can return no,
as no S-restricted 3-root Steiner tree exits and therefore no 5-root phylogeny
will exist. We now enumerate the possibilities of a critical clique returned by
ALG(T ).

Lemma 3. Given a tree chordal graph G with at least two critical cliques,
ALG(G) leaves the representatives of any critical cliques in the 3-root Steiner
tree T in exactly one of the follow states:

c1: Representatives adjacent to a Steiner point of Steiner degree one; nearest
representative of another critical clique is at distance of three with:
a: a single representative, or
b: two representatives,

c2: One representative adjacent to a degree two Steiner point, with:
a: nearest representative of another critical clique is at distance of three, or
b: nearest representative of another critical clique is at distance of two,

c3: One representative at distance of one to another leaf critical clique and a
Steiner point, other critical cliques are at a distance of three,

c4: One representative adjacent to one a representative of another critical clique.
c5: Two adjacent representative; one adjacent to another leaf ’s representative.

Fig. 3. The seven possible cases for a leaf critical clique in a tree chordal graph
as returned by algorithm ALG ; representatives are darkened. We denote these
cases as c1a, c1b, c2a, etc. Notice only c2a and c2b are unconstrained.

Proof. The following correspondences are for the trivial tree chordal graphs in
TrivAlg(T ): cases 1a and 2a will correspond to c4, case 1b will correspond to
c1b, case 2b will correspond to c5, and the case 2c will correspond to c2b.

As the ALG(G) modifies all size one internal nodes to size two, Theorem
3.2 of [7] gives internal nodes of size at least two a single representative (c2a),
external nodes of size 1, 2 or 3 that were modified to have four representatives
(c1a) and external nodes of size at least four by two representatives adjacent to
a single Steiner point (c1b) in a 3-root Steiner tree. Increase the size of all size
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one external nodes to size two; by Lemma 3.9 in [7] leaves a size two external
node as a single representative adjacent to a representative of an internal critical
clique (c4). The algorithm modifies all size two or more external critical cliques
to size at least four; in Theorem 3.2 these will have two representatives adjacent
to a Steiner point as in c2a. ut

2.2 Structure of large maximal cliques

Lemma 4. [4] Suppose a graph G has a 3rd Steiner root T . Assume there exists
in G three maximal cliques K1,K2,K3 such that K1 ∩K2 = I1 6= ∅, K2 ∩K3 =
I3 6= ∅, and K1 ∩K3 = ∅. Let I2 = K2 − I1 − I3. If I1 = {u1, u

′
1}, I3 = {u3, u

′
3},

and |I2| > 0, then u1-u′1-u
′
3-u3 is a path in T and every representative for a

critical clique in I2 is adjacent to either u′1 or u′3.

Lemma 4 is an example of structure that is a potential problem for con-
struction of a S-restricted 3-root Steiner tree. The follow section shows how it
becomes unnecessary in the construction of such a Steiner tree.

Lemma 5. [4] Suppose a graph G has a 3rd Steiner root T , then all maximal
cliques with cardinality of 3 or more will have either have exactly two critical
cliques each with two representatives as in lemma 4, or will have at most one
internal critical clique with two are more representatives in T .

Lemma 6. For any maximal clique K represented by the situation of lemma 4
there exists an equivalent representation with a central Steiner point adjacent to
the representatives of its critical cliques in K.

Proof. Given the structure as in lemma 4 identify u1 and u′1 into one represen-
tative, u∗1, analogously with u3 and u′3, produce u∗3. Create a new Steiner point
s and make u∗1, u∗3 and all representatives for I2 adjacent to s. Notice that since
all critical cliques that we adjacent to exactly I1 we at a distance of 3 from i′1
are now that distance from s. The same follows for all critical cliques adjacent
to i′3 and critical cliques in I2. Therefore, the new structure is equivalent to the
old tree. ut

The following corollary follows easily from Lemmas 5 and 6.

Corollary 1. Suppose graph G has a 3rd Steiner root tree T , then there exists
a representation in which all maximal cliques with cardinality of 3 or more have
at most one internal critical clique with two or more representatives.

3 5PRP on strictly chordal graphs

This section deals with the combination of the Steiner trees returned by ALG(G)
and progresses from the most trivial case to the complete case: the solution of
the 5-root phylogeny problem over strictly chordal graphs.
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3.1 Restriction 1

A small leaf is an external critical clique of size 1 in a maximal clique of car-
dinality at least three. For the following section we will assume that the input
graph G contains no small leaves and large maximal cliques K contain at most
one critical clique which constrained. Therefore, at most one critical clique in a
large maximal clique will be as in c1a, c1b, c3, c4, or c5. c4 is a very restrictive
case as the following lemma shows.

Lemma 7. Given a strictly chordal graph G with a valid S-restricted 3-root
Steiner tree T with S = ∅ and a maximal clique K. If K has an internal critical
clique as in c4 then the critical clique must be part of at least two maximal cliques
with cardinality three or more with other critical cliques unconstrained.

Proof. The unique representative r of the critical clique in c4 is adjacent to
another critical clique’s representative, therefore, all large maximal cliques that
r is a part of must be wide. This implies, that each of these critical cliques is
unconstrained and a path of two Steiner point must be between r and these
critical cliques. The size of r must be 1, as if had size 2 or more it would have
been as in c1a by ALG(G). There exists a representation where all share the
Steiner point directly adjacent to r as their path to r, as otherwise, the Steiner
point adjacent to r will have degree 2. ut

Case c1a leaves has a single representative adjacent to Steiner point with
Steiner degree one; as such, if the the single representative corresponding critical
clique C has size 1 then we must increase the degree of both this representative
and the Steiner point. It follows that C must be part of at least three maximal
cliques; the follow operation show how to do this degree increase.

Definition 1 (Operation 1). Given a critical clique C part of at least three
maximal cliques K1,K2, ...,Kn. If K1 is as in c1a or c2b and K2 has all critical
cliques unconstrained then assign C a single representative and let the Steiner
point adjacent to C in K1 be adjacent to the Steiner point from K2 such that all
its critical cliques are at distance exactly three from C. For K3, ...,Kn, C now
corresponds to c2a and is unconstrained.

If a critical clique needs to have Operation 1 performed, check that there
exists a maximal clique containing it that has all critical cliques unconstrained.
If no maximal clique exists, we check if an adjacent critical clique C ′ is as in
c1a or c1b, and apply Operation 1. In a similar fashion continue searching for
a resolvable path through maximal cliques. Note that such a search is a depth
first search through the tree, and in the worst case, and has a linear runtime.
Notice that the choice made to change a path by Operation 1 will never effect
another path as the search will assign a single representative for a critical clique,
and this critical clique will be now be unconstrained. Therefore, we pick the first
resolvable path.

Theorem 1. Given a connected strictly chordal graph G such that G contains no
small leaves and large maximal cliques contain at most one constrained critical
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clique, there exists a polynomial time algorithm to recognize whether G has 5-root
phylogeny tree T . If T exists, it can be constructed simultaneously.

Proof. Given G, find CC(G) and create the forest T by decomposing CC(G),
let set S correspond to nodes in G of size 1 in CC(G). For each Ti ∈ T find the
corresponding 3-root Steiner tree Si; if one does not exists, by Lemma 1, return
no. For each maximal clique Ki create a Steiner point si. For each unconstrained
critical clique C ∈ Ki, attach its representative to si. By Lemma 7, each critical
clique as in c4 is contained in at least two large maximal cliques, if not, return
no; it follows by the precondition, that each of these maximal cliques will have all
other critical clique with a single representative. By Lemma 7, create a Steiner
point, s for a critical clique as in c4, place s adjacent to the critical cliques
representative and to all si for each Ki. s will have degree at least three as there
is at least two maximal cliques Ki. For a critical clique C in Ki as in c1a, where
|C| = 1, apply Operation 1 by searching, if necessary. For a critical clique C in
Ki as in c1a with |C| > 1, c1b, or c3 connect si to the Steiner point adjacent to
C’s representative. For critical clique in Ki as in c5 connect si to the degree one
representative.

Our built 3-root Steiner tree T ′ is now connected as G was connected and
we have connected all the tree chordal graphs by their maximal cliques. As each
critical clique had at most one constrained critical clique, each maximal clique
will have diameter at most 3 in T ′; this satisfies Lemma 2. As the minimum
diameter of a maximal clique in T ′ is 2 and as c4 is the only case where a rep-
resentative is adjacent to another representative, it follows that all nonadjacent
critical clique’s representatives are at distance at least 4. All size one represen-
tatives in each Ti will all be internal now as we assumed no small leaves exist.
Therefore the algorithm, produces a S-restricted 3-root Steiner tree T ′. To pro-
duce the 5-root phylogeny tree T , we replace each representative with a Steiner
point and place the representatives adjacent to this Steiner point. By Lemma 1,
we have a valid 5-root phylogeny tree T . This construction is polynomial, as it
calls ALG(G) at most once for each critical clique and performs a linear amount
of work for each of these cliques. ut

3.2 Restriction 2

In following section, we assume that the input graph G contains no small leaves.
A strictly chordal graph may have a large maximal clique having more than one
constrained critical clique; if all except one cannot be modified to be uncon-
strained, then the algorithm returns no, by Corollary 1. If a critical clique in a
3-root Steiner tree is as c4, Lemma 7 forces the structure for all maximal cliques
it is contained in; c3 and c5 are similarly restrictive.

Lemma 8. Given a strictly chordal graph G with a valid S-restricted 3-root
Steiner tree T with S = ∅ and a maximal clique K. If K has critical clique C
as in c3 or c5 of Lemma 3 then any other maximal cliques with cardinality three
or more containing C will have all critical cliques as unconstrained.
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Proof. As a representative of the critical clique C is adjacent to a critical clique
not in K; any other critical clique that is adjacent to C must be at distance
of exactly three from this representative. Therefore, similar to Lemma 7 assign
these critical cliques a single representative. ut

Thus, given a representative as in cases c3, c4, or c5, we can immediately
decide if the maximal clique can be recombined. As c2a and c2b both have a
single representative adjacent to a Steiner point of degree at least three, we now
deal with the cases c1a and c1b.

Lemma 9. Given a strictly chordal graph G with a corresponding 3-root Steiner
tree T and a critical clique C, where C is part of maximal cliques K1,K2, ...,Kn

and K1 is as in c1a or c1b, then at least one maximal clique must have all critical
cliques other than C unconstrained.

Proof. If all maximal cliques have two constrained critical clique, then at least
one maximal clique will have diameter of four. ut

Theorem 2. Given a connected strictly chordal graph G, G contains no small
leaves, there exists a polynomial time algorithm to recognize whether G has 5-root
phylogeny tree T . If T exists, it can be constructed simultaneously.

Proof. We proceed as Theorem 1 until we recombine large maximal cliques. For
a maximal clique that contains a critical clique as in c3, c4 or c5, by Lemmas 7
and 8 we know that all other critical cliques must have a single representative; if
not, no 5-root phylogeny will exit. For a critical clique C in Ki as in c1a, where
|C| = 1, apply Operation 1 by searching, if necessary. For each critical clique C
as in case c1a with |C| > 1 or c1b, if it is part of exactly two maximal cliques,
then the maximal cliques corresponding to the large maximal clique must have
all its critical cliques unconstrained, by Lemma 9; if yes, create a Steiner point
and set the Steiner point of the c1b critical clique and each of the representatives
for each critical clique adjacent to it.

Let the set M consist of all maximal cliques which contain at least two critical
cliques as in case c1b or c1a with |C| > 1. Let the set N consist of all maximal
cliques which contain a single critical clique as in c1b or c1a with |C| > 1 and
has all other critical cliques unconstrained. By Lemma 9, find a critical clique
C ∈ N ∩M ; perform Operation 1 with searching on this maximal clique and, if
possible, remove C from M . Continue until either M is empty, the algorithm has
resolved all maximal cliques in M , or N ∩M contains no such C, and therefore,
no phylogeny tree will exist. The algorithm removes one C from the list each
time, and we will have at most O(|V |) searches of the maximal cliques, therefore,
this will run in polynomial time.

When M = ∅ every maximal clique will only contain critical cliques that
are unconstrained, therefore create a Steiner point for each maximal clique and
connect each representative to it. We will now have S-restricted 3-root Steiner
tree and, thus, the 5-root phylogeny tree. The construction is polynomial as we
use the polynomial construction from Theorem 1 and the searching of M takes
polynomial time. ut
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3.3 No restrictions

In any maximal clique there exists at most one leaf critical clique; otherwise,
these multiple critical clique would have the same set of neighbors, and therefore,
would be a larger critical clique. [7] shows a size one leaf critical clique could
never exist in a maximal clique of cardinality two. For the remainder of the paper
let S contain all size one critical cliques in G.

Lemma 10. Given a strictly chordal graph G and a corresponding S-restricted
3-root Steiner tree T , if there exists a small leaf l in a maximal clique K, then:

1. l is internal in T ,
2. each critical clique C ∈ K \ l has all adjacent critical cliques not in K at a

distance of at least 2 in T ,
3. at least one critical clique C ∈ K \ l has all adjacent critical cliques not in

K at a distance of 3 in T , and
4. every critical clique in K has a single or 2 adjacent representatives.

Proof. Assume G has such a maximal clique l, by definition of S-restricted 3-root
Steiner, must be internal. As the maximum diameter of a maximal clique is 4
and l is internal, any critical clique not in K adjacent to a critical clique K would
be adjacent to l, thus claim two holds. The third claim follows as l is internal
and therefore is adjacent to at least one other critical clique C; critical cliques
adjacent to C must be at distance of three from C in T , otherwise, adjacent to l. If
K has an internal critical clique, C, with at least two nonadjacent representatives
in T , l will be adjacent to the same center Steiner point or representative of the
critical clique and will be adjacent to all C’s neighbors. A critical clique not in K
can be adjacent to a critical clique with a single representatives or two adjacent
representatives and not to l, thus, the fourth claim holds. ut

By this lemma, a critical clique C in a maximal clique containing a small leaf
can be as in c1a, c1b, c2a or c2b. c4 is impossible as the critical clique is adjacent
to another critical clique failing to satisfy condition 2. c3 is impossible as the
small leaf would have to be at a distance of exactly three from single represen-
tative, but then it would be a leaf in T , failing to satisfy condition 1. Similarly,
c5 a small leaf would be distance three from the degree two representative but
then a leaf in T .

We now introduce two operations to change a critical clique to satisfy condi-
tion 3. The algorithm applies these operations if no suitable critical clique exists
to satisfy condition 3 of Lemma 10. Notice that only one of these operations can
apply to a set of maximal cliques. In addition, the search as done for Operation
1 can be applied to these operations.

Definition 2 (Operation 2a). Given a critical clique, C, which is part of at
least three maximal cliques, K1,K2, ...,Kn. If at most one of K2, ...,Kn was part
of a decomposed tree chordal graph with C as in c1a, c2b c2a, or c2b and all
critical cliques in the remainder are unconstrained. Then give all critical cliques
C a single representative and let the Steiner point adjacent to C be adjacent to
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the Steiner points from K2, ...,Kn such that each remaining critical clique is at
distance exactly three from C.

Definition 3 (Operation 2b). Given a critical clique, |C| ≥ 2, which is part
of exactly two large maximal cliques K1 and K2. If all critical cliques in K1 and
K2 other than C are unconstrained then create two Steiner points, p1 and p2;
let all critical cliques in K1 other than C be adjacent to p1, all critical cliques
in K2 other than C be adjacent to p2, and give C two adjacent representatives
where one is adjacent to p1 and the other to p2.

Lemma 11. Given a graph with a S-restricted 3-root Steiner tree and a large
maximal clique K containing a small leaf l, then one critical clique C ∈ K \ l
can have Operation 2a applied, Operation 2b applied, or is as c2a.

Proof. Lemma 10 case 3 shows that at least one critical clique must all adjacent
critical cliques not in K at distance exactly 3, the above enumerates the possibil-
ities. To see that there does not exists any other situations to consider, we note
that cases c1a, c1b, c2a, c2b are the only cases for a maximal clique with a small
leaf. Operation 2a and 2b show how to construct such a distance 3 situation. For
c2b, representing the critical clique by two adjacent representatives will force all
critical cliques in K to be wide in their maximal cliques; thus, all will have to
be as in the lemmas three cases. ut

Lemma 12. Given a strictly chordal graph G and a corresponding S-restricted
3-root Steiner tree T , if there exists a small leaf l in a maximal clique K, then:

1. if card(K) = 3 and there exists exactly one critical clique C ∈ K \ l with
two adjacent representative then all other critical cliques have all adjacent
critical cliques not in K at a distance of exactly 3 in T ,

2. if card(K) = 3 and no critical clique C ∈ K \ l has two adjacent representa-
tive then all critical cliques having all adjacent critical cliques not in K at a
distance of exactly 3 in T , and

3. if card(K) ≥ 4 then there exists a critical clique C ∈ K \ l with Operation
2a applicable or C is as c2a.

Proof. When card(K) = 3 and l is internal, at least one of the critical clique
must be adjacent to l, as it is internal. If the other critical clique is not adjacent
and does not have two adjacent representatives then the Steiner point adjacent
to l will have degree two, a contradiction. Thus, the first claim holds. In case 2,
as every critical clique has two adjacent representative or a single representative,
the two non-leaf critical cliques have single representatives that are adjacent to
the small leaf, otherwise, the maximal clique has width four. It follows from
Lemma 3, that Operation 2a and c2a represent the only cases when the critical
clique C in its other maximal cliques. When card(K) ≥ 4, at least one critical
clique representative r will have a single representative adjacent to l, otherwise,
not internal. All critical cliques adjacent to r which are not in not in K must be
at distance of three, otherwise, adjacent to r. Therefore, the third case holds. ut
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Theorem 3. Given a connected strictly chordal graph G, there exists a polyno-
mial time algorithm to recognize whether G has 5-root phylogeny tree T . More-
over, such a T can be constructed at the same time, if it exists.

Proof. Proceed as in Theorem 1 until the recombination of large maximal cliques.
Lemmas 7 and 8 handles tree chordal graphs returned as in c3, c4, and c5. Define
the set L as all maximal cliques K which contain a small leaf l. All critical
cliques as in c1a and c1b which are in a maximal clique in L will need to be
changed using either Operation 1 or 2a with searching. For each K ∈ L such
that card(K) = 3 if one critical clique C in K is as c2b and in no other maximal
clique, then if |C| > 1 then given C two adjacent representatives such that one
is adjacent to l. All other critical cliques must be one of the choices in Lemma
11, otherwise return no. If |C| = 1 then no S-restricted 3-root Steiner tree will
exist by Lemma 12. Otherwise by Lemma 12 both critical cliques must be one
of the choices in Lemma 11, otherwise return no. Perform operation if needed
and set representatives adjacent to l.

All maximal cliques in L now have cardinality at least 4. If any critical clique
is as in c2a and contained in exactly two maximal cliques, then set the leaf
adjacent to it and all remaining critical cliques single representative adjacent to
a Steiner point adjacent to the leaf. For a maximal clique containing multiple
critical cliques as in c1a or c1b, first apply Operation 2a, if possible, and then,
apply Operation 1 if possible. If neither operation is applicable, then no tree
exists by Lemma 10. Every maximal clique in L must have a critical clique
changed by Operation 2a, otherwise by Lemma 12 no S-restricted 3-root Steiner
tree exists; combine these maximal cliques by setting l adjacent to this critical
clique. Set the other critical cliques, which are now all necessarily unconstrained,
adjacent to a Steiner point adjacent to l. All maximal cliques in L will now be
recombined, by Lemma 12.

Finally continue as in Theorem 2 by combining large maximal cliques with
more than one constrained critical clique. We produce the 5-root phylogeny
tree as in Theorem 1. This construction adds a linear amount of work for each
maximal clique containing a small leaf. Therefore, the algorithms overall runtime
is still polynomial. ut
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