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Abstract 

Estimating erosion rate of solid particles in a porous medium is of interest to geotechnical 

engineers; which use analytical or numerical models for this purpose. Constitutive law of erosion 

is a key component in the development of such models. These models estimate the solid erosion 

rate as a function of various modelling parameters such as fluid velocity and time.  

Using the principles of dimensional analysis, a constitutive law is proposed for assessment of the 

rate of erosion in relation to the fluid velocity and a dimensionless proportionality constant called 

the erosion coefficient, 𝜆. Based on physics of the erosion process, experimental observations 

and approximation theory, 𝜆 is expressed as a function of grain density, particle Reynolds 

number and porosity variation. Then, the proposed constitutive model is combined with the 

principle of conservation of mass to arrive at an analytical model for estimation of internal 

erosion rate. 

The analytical model shows that the erosion rate has a nonlinear direct relationship with fluid 

velocity and a nonlinear inverse relationship with time. The proposed analytical model is 

calibrated and validated using experimental data available in the literature. The validation results 

show that the model estimations of erosion rate can closely reproduce experimental data.  
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Introduction  

Internal erosion phenomenon has been studied in different fields such as petroleum and 

geotechnical engineering. In internal erosion, the finer particles are transported by the seepage 

forces within a fixed framework formed by the coarser particles. Internal erosion is a common 

problem encountered in earthen structures such as water dams, river/highway embankments and 

coastal protection structures and it usually has detrimental effects on the stability of such 

structures. Generally, this form of mass transport doesn’t involve direct geometrical changes in 

the shape of the porous media; even though particle rearrangement may happen. Other equivalent 

terms for internal erosion are “piping erosion” and “suffusion”.  

In civil engineering terminology, internal erosion is also known as “filter instability”. An ideal 

(stable) filter allows seepage of fluids through it but at the same time, prevents the erosion of 

finer particles. Karl Terzaghi is believed to be the first researcher who conducted laboratory 

experiments to study filter instability mechanisms in the 1920’s (Nguyen, 2012). Almost all of 

the works in the area of internal erosion modeling focus on determining the filter stability criteria 

which are the rules prescribing the relative percentages of fine and coarse components of the 

filter to eliminate or minimize internal erosion (de Graauw et al. 1984; Kenny and Lau, 1985; 

Skempton and Brogan, 1994). 

Urban regions are among areas where the internal erosion of subsurface soil can be problematic. 

In some cities, aggressive water pumping from subsurface water tables, on which the cities are 

built, have drawn the attention to the possibility of erosion of finer portions of the subsurface soil 

and the consequent changes in soil’s physical and mechanical properties. Researchers have 

shown that changes in soil’s physical and mechanical properties due to internal erosion can 

potentially lead to surface subsidence and instability of buildings and structures (Sterpi 2003; 

Cividini and Gioda, 2004; Cividini et al. 2009).  

The phenomenon of internal erosion in soils has been studied extensively both experimentally 

(Lafleur, 1984; Tomlinson and Vaid, 2000; Bendahmane et al., 2008; Richards and Reddy, 2010; 

Ke and Takahashi, 2014; Correia dos Santos et al., 2015; Hunter and Bowman, 2018) and 

numerically (Muir Wood et al., 2010; Bonelli and Marot, 2011; Zou et al., 2013; Liang et al., 

2017; Yang et al., 2018). A key component in analytical and numerical models used to simulate 

erosion of solid particles in a porous medium is the erosion constitutive law. Constitutive laws 

for erosion accompany the law of conservation of mass for the solid phase. Depending on the 

degree of coupling between erosion, fluid flow and deformation behaviour of the porous 

medium, other constitutive laws may be required to address the possible interaction between 

these phenomena. An erosion model based on three-phase mixture theory was introduced by 

Vardoulakis et al. (1996).  In this work, model formulation satisfies the principle of conservation 

of mass for solid, fluid, and fluidized solid phases along with Darcy’s law and a constitutive law 

for mass generation in the following form:  

�̇� = 𝜌𝑠𝜆(1 − 𝜑)𝑐‖�̅�𝑖‖ 
(1) 

This constitutive law is inspired by the experimental works of Sakthivadivel (1967). In this 

equation, �̇� is the solid erosion rate, 𝜌𝑠 is the grain density, 𝜆 is the erosion coefficient, 𝜑 is the 

rock porosity, 𝑐 is the concentration of solids in the fluid phase, �̅�𝑖 is the flow flux of the mixture 
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of solids and fluid and ‖ ‖ represents the Euclidean norm of a vector. The resulting system of 

equations is solved assuming 1-D radial fluid flow to study internal (piping) and surface erosion 

phenomena by enforcing different boundary conditions.  

Stavropoulou et al. (1998) used a modified constitutive law for mass generation which stops the 

internal erosion process when solid concentration in the fluid phase reaches a critical value: 

�̇� = 𝜌𝑠𝜆(1 − 𝜑)(𝑐 −
𝑐2

𝑐𝑐𝑟
)‖�̅�𝑖‖ (2) 

Here, 𝑐𝑐𝑟  is a critical concentration of the solids in the fluid phase at which the rates of solid 

erosion and deposition become equal and, thus, the net rate of erosion becomes zero.  

Similar forms of the constitutive laws presented above have been used by Skjaerstein et al. 

(1997), Papamichos and Malmanger (1999), Yi (2001), Wang and Xue (2002), Fjaer et al. 

(2004), Wang et al. (2005), Servant et al. (2006), Detournay et al. (2006), Detournay (2008), 

Papamichos (2010),  and Azadbakht et al. (2012).  

Sterpi (2003) used a constitutive law for numerical modelling of internal erosion which was 

obtained by fitting a curve to the experimental data. This constitutive law was used in a 

numerical model to estimate the surface subsidence due to internal erosion of soil particles in 

subsurface water tables. A similar approach was used by Cividini et al. (2009). 

Equations 1 and 2 are among the popular forms of constitutive laws used in the literature for 

numerical modeling of internal and surface erosion processes. In these equations, the erosion 

coefficient, 𝜆, is a calibration parameter and thus, it has to be determined experimentally. The 

common practice is to assign values of 𝜆 in a way that results a match between the numerical and 

experimental values of the eroded mass. The erosion coefficient, however, is not a constant and 

may be affected by variations in particle diameter, porosity, fluid viscosity and fluid velocity. 

This paper focuses on developing an analytical model for estimation of internal erosion rate of 

solid particles in a porous medium. First, using principles of dimensional analysis and 

approximation theory, a modified constitutive law for erosion is proposed which relates the rate 

of erosion and fluid velocity through the erosion coefficient as a constant of proportionality. In 

the modified formulations, it is proposed that the erosion coefficient is a function of particle 

density, porosity variation and a dimensionless parameter called particle Reynolds number. Next, 

the modified erosion law is combined with the principle of conservation of mass to arrive at an 

analytical model for estimation of internal erosion rate in a porous medium.  

The proposed analytical model has two calibration parameters which are expressed as functions 

of hydraulic gradient. A series of laboratory tests obtained from the literature are used to 

calibrate and validate the model. Results of model validation show a good agreement between 

the model predictions and the experimental erosion rates.  

Mathematical Modeling 

In this section, first, the modified constitutive law for particle erosion rate in porous media is 

presented using the principles of dimensional analysis. Next, the formulation for calculating the 

critical fluid velocity is derived based on analytical relations. 
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Modified Erosion Constitutive Law 

The purpose here is to determine the amount of solid mass that is eroded in a porous medium 

with a certain grain density, porosity, and grain size distribution, when it is subjected to a 

flowing fluid of certain velocity and viscosity. Generally, it can be assumed that there is a lower 

bound of fluid velocity which we call the “critical velocity”. The erosion process is expected to 

start only when the fluid velocity exceeds this lower limit.  

The general form of the relationship between eroded mass and the other parameters stated above 

can be shown in the following form: 

where, 𝑚 is the total eroded mass, 𝑣𝑓 is the apparent (Darcy) fluid velocity, 𝑣𝑐𝑟 is the apparent 

critical fluid velocity required to initiate the erosion process, 𝐷𝑝 is the mean diameter of the 

eroded particles, 𝜇 is the fluid dynamic viscosity, 𝜌𝑠 is the density of the eroded particles, (𝜑 −
𝜑0) is the difference between the new porosity and the initial porosity, 𝑡0 is  the time at which 

erosion starts ,(𝑡 − 𝑡0)  is the time elapsed after the start of erosion process and 𝑉𝐸𝐵 is volume of 

erosion boundary. Erosion boundary is defined as the zone in which the particles are mobilized 

and eroded out. In a numerical model, this could be the size of an element in the numerical mesh. 

In an erosion experiment, VEB could be considered as the volume of the test specimen. Such a 

zone experiences an increase in porosity as a result of the internal erosion process. Also, it 

should be noted that the internal erosion process is governed by the degree of uniformity of the 

particle assembly. In this process, finer particles are eroded and removed from the pore space 

formed by coarser particles.  As a result, internal erosion is expected to occur only in poorly-

graded assemblies of particles (assemblies with high coefficients of uniformity). 

If the eroded mass is expressed as time rate and is normalized by the volume of erosion 

boundary, then Eq. (3) is reduced to: 

where �̇� is the instantaneous mass rate of eroded particles per unit volume.  

The parameters in Eq. (4) have been selected based on the following criteria: 

 Dimensional requirements: The dependent parameter in this model is the mass rate 

per unit volume. In order to make this parameter dimensionless, there should be 

parameters on the right-hand side with dimensions of mass, length, time or 

combinations of these dimensions. This requirement justifies the existence of [(𝑣𝑓 −

𝑣𝑐𝑟), 𝐷𝑝, 𝜌𝑠] or [(𝑣𝑓 − 𝑣𝑐𝑟), 𝐷𝑝,  𝜇] group of parameters on the right-hand side of this 

equation. 

 Physics of the problem: Particle mobilization and erosion is due to the action of drag 

forces and kinetic forces of the flowing fluid.  Parameters  𝜇 and (𝑣𝑓 − 𝑣𝑐𝑟) represent 

these two forces, respectively. 

𝑚 = 𝑓[(𝑣𝑓 − 𝑣𝑐𝑟), 𝐷𝑝, 𝜇, 𝜌𝑠, (𝜑 − 𝜑0), (𝑡 − 𝑡0), 𝑉𝐸𝐵 ] (3) 

�̇� = 𝑓[(𝑣𝑓 − 𝑣𝑐𝑟), 𝐷𝑝, 𝜇, 𝜌𝑠, (𝜑 − 𝜑0) ] 
(4) 
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 Experimental and field observations: Laboratory and field observations 

(Vardoulakis, 2006; Papamichos and Malmanger, 1999) show that the rate of erosion 

decreases with time. In other words, the larger the eroded mass, the lower the rate of 

erosion.  Therefore, there is a relationship between the rate of erosion and the eroded 

mass. Since eroded mass is related to porosity changes through the law of 

conservation of mass, the parameter (𝜑 − 𝜑0) has been added to reflect this process. 

By applying dimensional analysis technique, it is desirable to gain some insight into the 

functional form of the relationship among the parameters of Eq. (4).  

There are six parameters in Eq. (4) but there are only three independent dimensions, namely; 

mass [𝑀], length [𝐿], and time [𝑇]. An infinite number of dimensionless parameters can be 

formed using the parameters given in Eq. (4) but using the Buckingham’s π theorem, only three 

of them will be independent (Hornung, 2006). 

Using the parameter listed in Eq. (4), the following relations are established to represent the three 

standard physical measures when forming the dimensionless groups. Different combinations of 

these parameters can be used to form the basic standard measures but at the end, the resulting 

functional relationship can be reduced to the same form. Therefore, Eq. (5) through Eq. (7) are 

used to represent mass, length and time respectively.  

Using the relationships above, the parameters in Eq. (4) are non-dimensionalized one by one.  

The third dimensionless parameter is selected to be (𝜑 − 𝜑0). 

Using Eq. (8) and (9) and parameter (𝜑 − 𝜑0), Eq. (4) can be written in the following form: 

[𝜌𝑠 𝐷𝑝
3] = [𝑀] (5) 

 

[𝐷𝑝] = [𝐿] (6) 

 

[
𝐷𝑝

(𝑣𝑓 − 𝑣𝑐𝑟)
] = [𝑇] 

(7) 

[�̇�] = [𝑀𝐿−3𝑇−1] =  [(𝜌𝑠 𝐷𝑝
3)(𝐷𝑝)−3 [

𝐷𝑝

(𝑣𝑓 − 𝑣𝑐𝑟)
]

−1

] =  [
𝜌𝑠(𝑣𝑓 − 𝑣𝑐𝑟)

𝐷𝑝
] 

(8) 

[𝜇] = [𝑀𝐿−1 𝑇−1] =  [(𝜌𝑠 𝐷𝑝
3)(𝐷𝑝)−1 [

𝐷𝑝

(𝑣𝑓 − 𝑣𝑐𝑟)
]

−1

] =  [𝜌𝑠 𝐷𝑝 (𝑣𝑓 − 𝑣𝑐𝑟)] 
(9) 

𝐷𝑝 �̇�

𝜌𝑠 (𝑣𝑓 − 𝑣𝑐𝑟)
= 𝑔 [

𝜌𝑠 𝐷𝑝 (𝑣𝑓 − 𝑣𝑐𝑟)

𝜇
, (𝜑 − 𝜑0)] =  𝑔 [

𝐺𝑠 𝜌𝑓 𝐷𝑝 (𝑣𝑓 − 𝑣𝑐𝑟)

𝜇
, (𝜑 − 𝜑0)] (10) 
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where 𝑔[ ] denotes the function of the variables in the bracket. Using the definition of Reynolds 

number for a particle of diameter 𝐷𝑝 (Charlez, 1997), we have: 

Where, 𝐺𝑠 is the specific gravity of the particle; 𝑅𝑝 is the particle Reynolds number and 𝑅𝑝𝑐𝑟 is 

the particle Reynolds number at critical fluid velocity. Eq. (11) can be further simplified into the 

following form: 

where 𝜆 is the erosion coefficient and is represented by the following equation: 

Eq. (12) can be compared to Eq. (1) and Eq. (2). It should be noted that the effect of porosity on 

the erosion rate is absorbed into 𝜆 here whereas in previous works, it is explicitly stated in the 

form of (1 − 𝜑). Also, 𝑣𝑓 and �̅�𝑖 are different notations representing the same parameter, i.e., 

apparent fluid velocity. We also can see that Eq. (12) has reduced a five-dimensional problem in 

Eq. (4) to a two-dimensional problem. As per Eq. (13), the erosion coefficient 𝜆 is proposed to be 

a function of the particle specific gravity, particle Reynolds number and porosity variation.  

The proposed internal erosion constitutive model, shown in Eq. (12) and Eq. (13), should satisfy 

the principle of conservation of mass. For an internal erosion problem, the principle of 

conservation of mass can be simplified into the following equation: 

Where �̇� is the mass generation term and expresses instantaneous (tangent) erosion rate per unit 

volume. 

Critical Fluid Velocity 

Movement of a particle through a porous medium caused by a flowing fluid is governed by the 

interaction between driving forces and resisting forces. The driving forces are: 1) pressure 

gradient force and 2) drag force of the flowing fluid. The buoyant weight of particle can be either 

a driving or resisting force or it can be neutral depending on the direction of fluid flow with 

respect to gravity. The analytical derivation of the relationship pertaining to each one of the force 

components will be given below. An expression is derived based on the balance of these forces 

to calculate the critical fluid velocity required to initiate particle movement. 

𝐷𝑝 �̇�

𝜌𝑠 (𝑣𝑓 − 𝑣𝑐𝑟)
= 𝑔[𝐺𝑆 (𝑅𝑝 − 𝑅𝑝𝑐𝑟), (𝜑 − 𝜑0)] 

(11) 

�̇� =
𝜆 𝜌𝑠 (𝑣𝑓 − 𝑣𝑐𝑟) 

𝐷𝑝
 (12) 

𝜆 =  𝑔[𝐺𝑆 (𝑅𝑝 − 𝑅𝑝𝑐𝑟), (𝜑 − 𝜑0)] 
(13) 

𝜌𝑠

𝜕𝜑

𝜕𝑡
= �̇� (14) 
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Pressure Gradient Force 

Pressure gradient force in an arbitrary direction 𝑛 , F𝑃,𝑛, exerted on an assembly of particles with 

volume, V, is given by the following formula (Detournay et al., 2006). Here, it is assumed that 𝑧 

is the vertical coordinate pointing upward, opposite to the direction of gravity: 

where Φ is called fluid potential. 

The volume V is comprised of 𝑛𝑝 particles each having a volume 𝑉𝑝. Volumes V and  𝑉𝑝 are 

related through porosity, 𝜑. Substituting the equivalent terms in Eq. (15) yields: 

Knowing that the total pressure gradient force on volume V is the sum of the pressure gradient 

forces on individual particles each having volume 𝑉𝑝, the following relationship is used to 

represent the pressure gradient force on each particle in any direction 𝑛 : 

Drag Force 

Drag force of a flowing fluid in the direction 𝑛 exerted on an immersed body can be computed 

using the following equation (Charlez, 1997): 

In Eq. (18), 𝐶𝐷 is the drag coefficient which is a function of the Reynold’s number, 𝐴𝑐𝑠  is the 

cross sectional area of the immersed body projected in the direction 𝑛, 𝜌𝑓 is fluid density and 

𝑣𝐴,𝑛 is the actual fluid velocity in the direction 𝑛. For spherical particles with diameter 𝐷𝑝 and 

assuming laminar fluid flow conditions, Eq. (18) reduces to the following form (Asgian et al., 

1995): 

where 𝑣𝐴,𝑛 is related to the component of the apparent (Darcy) velocity, 𝑣𝑓,𝑛 ,through the 

following relationship: 

F𝑃,𝑛 = −𝑉 
𝑑(p + 𝜌𝑓g 𝑧)

𝑑𝑛
= −𝑉 

𝑑Φ

𝑑𝑛
 (15) 

F𝑃,𝑛 = −
1

1 − 𝜑

𝑑Φ

𝑑𝑛
∑  𝑉𝑝

𝑛𝑝

𝑝=1

  (16) 

F𝑃𝐺,𝑛 = −
𝑉𝑝

1 − 𝜑

𝑑Φ

𝑑𝑛
 (17) 

𝐹𝐷,𝑛 = 𝐶𝐷𝐴𝑐𝑠 (
𝜌𝑓𝑣𝐴,𝑛

2

2
) (18) 

𝐹𝐷,𝑛 = 3𝜋 𝜇 𝐷𝑝𝑣𝐴,𝑛 (19) 
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Here, 𝑘 is the intrinsic permeability of the medium. Substituting Eq. (20) in Eq. (19) results in: 

Gravity Force Due to Buoyant Weight of the Particle 

The gravitational force in the direction 𝑛 against particle movement, F𝐺,𝑛, exerted on a particle 

with volume 𝑉𝑝 and density 𝜌𝑠 submerged in a flowing fluid with density 𝜌𝑓 is given by the 

following relationship: 

where g is acceleration due to gravity and 𝜃𝑛 is the angle between the direction 𝑛 and vertical 

upward direction. For vertical upward flow 𝜃𝑛 is zero, for horizontal flow, 𝜃𝑛 is 90° and for 

downward flow, 𝜃𝑛 is 180°. If fluid flow is upward, gravity resists erosion, if fluid flow is 

downward, gravity drives the erosion process and if fluid flow is horizontal, gravity is neutral 

towards the particle movement. 

Erosion Condition  

It is assumed that particles will be moved in the 𝑛 direction when the sum of the driving forces 

on the particle in that direction is larger than the resisting forces. This assumption can be 

expressed in the following form:   

Substituting Eq. (17), Eq. (21) and Eq. (22) in the inequality above and replacing 
𝑑Φ

𝑑𝑛
 using 

Darcy’s law, an expression is derived for the estimation of critical fluid velocity as follows: 

where parameters A and 𝐵 are given in Eq. (25) and Eq. (26), respectively. 

𝑣𝐴,𝑛 =
𝑣𝑓,𝑛

𝜑
= −

𝑘

𝜇𝜑

𝑑Φ

𝑑𝑛
 (20) 

𝐹𝐷,𝑛 = −
3𝜋 𝐷𝑝 𝑘

 𝜑

𝑑Φ

𝑑𝑛
 (21) 

F𝐺,𝑛 = (𝜌𝑠 − 𝜌𝑓)𝑉𝑝 g 𝑐𝑜𝑠 𝜃𝑛 
(22) 

𝐹𝑃𝐺,𝑛 + 𝐹𝐷,𝑛 > 𝐹𝐺,𝑛 (23) 

𝑣𝑓,𝑛 >
A 

𝐵
 = 𝑣𝑐𝑟,𝑛  (24) 

𝐴 = (𝜌𝑠 − 𝜌𝑓)𝑉𝑝 𝑔 𝑐𝑜𝑠 𝜃𝑛 
(25) 

𝐵 = (
𝑉𝑝 𝜇

(1 − 𝜑)𝑘
+

3𝜋  𝐷𝑝 𝜇 

 𝜑
) (26) 
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Thus, in any direction, the apparent fluid velocity 𝑣𝑓,𝑛  has to exceed the critical velocity, 𝑣𝑐𝑟,𝑛, 

given in Eq. (24) for erosion to start. 

It is worth noting that Eq. (24) only sets a lower bound for the initiation of particle mobilization. 

Not all the particles which meet the criterion in Eq. (24) can be eroded. Some of the mobilized 

particles are redeposited along the way and another portion will be trapped behind pore throats 

that are smaller than their diameters (particle entrapment). Particle redeposition and particle 

entrapment are two well-known causes of diminishing erosion rates in the internal erosion 

process. The proposed model accounts for these processes by using a nonlinear erosion 

coefficient (as shown in the model calibration section of this paper). 

Sterpi (2003) Erosion Experiments  

Data from a series of erosion experiments, obtained from the literature, on a well-graded silty-

sand were used to calibrate and validate the proposed analytical model.  Details of sample 

preparation and test procedures are reported in the paper by Sterpi (2003). In Sterpi (2003), the 

testing apparatus consisted of a permeameter in which the specimen was packed in seven layers. 

An upward fluid flow was induced through the specimen by applying different hydraulic 

gradients using an upper reservoir. Water and eroded particles were collected in a lower reservoir 

and the mass of eroded solids was measured at certain time intervals. Grain size distribution of 

the samples is shown in Figure 1 and other relevant properties are given in Table 1. Figure 2 

shows the results of Sterpi (2003) erosion tests with five different hydraulic gradients. The 

results are reported as the percentage of eroded fines versus time. In this work, “fines” is defined 

as particles that pass through the standard ASTM #200 sieve (with diameter of 0.074 mm). The 

samples in these tests had an initial fine content of 23% by weight (Figure 1). The tests were 

originally conducted to estimate the amount of eroded material in subsurface water tables under 

various hydraulic gradients and the results were used in a numerical model to estimate 

subsequent surface subsidence for geotechnical assessments.  

In Table 1, permeability and hydraulic conductivity are related. The difference originates from 

different forms of Darcy’s law used in petroleum and geotechnical engineering. The relationship 

between these two forms of Darcy’s law is given in Eq. (27): 

where 𝑘 is the intrinsic permeability with unit of area, |∆Φ| is difference of fluid potential across 

sample, ∆𝐿 is sample length, 𝛾 is unit weight of the fluid, |∆ℎ| hydraulic head difference across 

the sample, 𝐾 is hydraulic conductivity with unit of velocity, and 𝑖 is hydraulic gradient which is 

a dimensionless parameter.  

 

𝑣𝑓 =
𝑘

𝜇

|∆Φ|

∆𝐿
=

𝑘𝛾

𝜇

|∆ℎ|

∆𝐿
=

𝑘𝛾

𝜇
𝑖 = 𝐾𝑖 (27) 
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Figure 1: Grain size distribution of the silty-sand used for laboratory experiments by Sterpi (2003) 

(With permission from ASCE) 

 

 

 

Table 1: Properties of the silty-sand used in the experiments by Sterpi (2003) 

Parameter Value 

Sample diameter, m 0.07 

Sample height, m 0.14 

Initial porosity, 𝝋𝟎 0.338 

Specific gravity, 𝑮𝒔 2.72 

Initial mass of test specimen, kg 0.97 

Initial percentage of  fine particles by weight, % 23 

Hydraulic conductivity, K, m/sec 0.0001 

Permeability, k, Darcy 10.33 

Fluid viscosity, μ, Pa.sec 0.001 



 

11 

No appreciable change in permeability was reported during the testing except for Test 2 which 

showed an increase in permeability 5 hours after the start of the test (Figure 2). The constant 

permeability (with the exception of test 2) combined with the constant hydraulic gradient implies 

a constant fluid velocity during the testing.  

 

Figure 2: Results of erosion tests by Sterpi (2003) for different hydraulic gradients                      

(With permission from ASCE) 

Model Calibration 

The proposed modified constitutive law for internal erosion of particles in porous media is 

represented by Eq. (12) and Eq. (13). The purpose of this section is to offer a functional form for 

the erosion parameter (𝜆) given by Eq. (13). The actual functional form of 𝜆 is unknown but 

based on experimental observations (Figure 2), we know that 𝜆 is directly proportional to fluid 

velocity and inversely proportional to porosity change, (𝜑 − 𝜑0). In other words, a higher fluid 

velocity results in a higher value of 𝜆 and higher eroded mass [higher (𝜑 − 𝜑0)] results in a 

lower 𝜆 value. Having these observations and using the approximation theory (David and Nolle, 

1982), the functional from of 𝜆 can be approximated using the following equation: 

where 𝛼 and 𝛽 are dimensionless calibration parameters.  

By defining 𝜔 as: 

𝜆 =  𝛼 [
𝐺𝑆(𝑅𝑝 − 𝑅𝑝𝑐𝑟)

𝜑 − 𝜑0
]

𝛽

 (28) 

𝜔 =
𝐺𝑆(𝑅𝑝 − 𝑅𝑝𝑐𝑟)

𝜑 − 𝜑0
 

(29) 
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Eq. (28) can be simplified as: 

By taking the natural log of both sides of Eq. (30), the following equation is obtained: 

Therefore, if 𝑙𝑛 𝜆 is plotted versus 𝑙𝑛 𝜔, 𝑙𝑛 𝛼 will be the intercept and 𝛽 will be the slope of the 

line. Experimental data given in Figure 2 are used to estimate the values of 𝛼 and 𝛽 for each test. 

Using the data in Table 1 and eroded mass for each gradient given in Figure 2, the mass of 

eroded particles (silt and clay), 𝑚, can be calculated at any time for all tests, using the following 

formula: 

where 𝑝 is the percentage of eroded fine particles (obtained from Figure 2),  𝑝𝑖𝑓 is the initial 

percentage of fine particles (obtained from Table 1) and  𝑚𝑡 is the total mass of the test specimen 

(obtained from Table 1). 

Next, the eroded mass is normalized by the volume of the test specimen (which is the same for 

all tests) and is plotted as a function of time. 

The values of �̇� for each point in Figure 2 are calculated using the following formula: 

where �̇�𝑖 is the tangent erosion rate for ith point, 𝑚𝑖+1 and 𝑡𝑖+1 are eroded mass and time for 

(i+1)th point, 𝑚𝑖−1and 𝑡𝑖−1 are eroded mass and time for (i-1)th point and 𝑉𝐸𝐵 is the volume of 

the erosion boundary (i.e., test specimen). 

In Eq. (13), 𝜑0 is the initial porosity of the test sample before the start of the erosion and 𝜑 is the 

porosity of the test sample after the initiation of the erosion process. The difference between 

these two parameters is computed using the following relationship: 

where 𝑚 is the cumulative mass of eroded solids which is obtained using Eq. (32) and 𝑉𝑡 is the 

total volume of the test specimen (equivalent to 𝑉𝐸𝐵) . It should be noted that Eq. (34) is a 

simplified form of Eq. (14).  

𝜆 =  𝛼 𝜔𝛽 (30) 

𝑙𝑛 𝜆 = 𝑙𝑛 𝛼 + 𝛽 𝑙𝑛 𝜔 
(31) 

𝑚 = 𝑝 𝑝𝑖𝑓 𝑚𝑡 
(32) 

 �̇�𝑖 =
𝑚𝑖+1 − 𝑚𝑖−1

(𝑡𝑖+1 − 𝑡𝑖−1)𝑉𝐸𝐵
 

(33) 

𝜑 − 𝜑0 =  
𝑚

𝜌𝑠  𝑉𝑡
          

(34) 
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The diameter of the eroded particles must be smaller than the pore throats which they are moving 

through. According to the experimental work of Abrams (1977), the particles should have a 

diameter equal or smaller than one-third of the average pore throat size of the porous medium in 

order to be able to pass through the pore network without being entrapped. Therefore, the 

particle diameter 𝐷𝑝 used in the calculation of the Reynolds number and critical fluid velocity is 

assumed to be the harmonic mean diameter of all particles smaller than 1/3 of the average pore 

throat size of the test specimen. The harmonic mean diameter is calculated using the method 

suggested by Kovacs (1981).  

Different methods are available in the literature to estimate the average pore throat diameter of 

an assembly of particles based on the grain size distribution curve (e.g., Kovacs, 1981; Uno et 

al., 1996). The average pore throat size of the test specimen, which is obtained using Figure 1 

and the method suggested by Uno et al. (1996), has been computed to be around 14.5 microns. 

Therefore,  𝐷𝑝 is assigned a constant value of 3.7 microns for all tests. As it has been mentioned 

before,  𝐷𝑝 is calculated as the harmonic mean diameter of all particles smaller than 1/3 of 

average pore throat size. Also, the critical fluid velocity is calculated using Eq. (24) by setting 

porosity equal to 𝜑0 and is assumed to remain constant for all tests. Since the fluid flow is in the 

upward direction, 𝜃𝑛 is set to zero in Eq. (25). 

Based on the approach discussed above and by using Eq. (12) and Eq. (29), the corresponding 

values of 𝜆 and 𝜔 for each test can be obtained from the experimental data (Table 1and Figure 

2). Tests 1, 2 and 3 (with hydraulic gradients of 0.18, 0.39 and 0.55, respectively) are used to 

calibrate the material parameters and Tests 4 and 5 (with hydraulic gradients of 0.60 and 0.75, 

respectively) are used to validate the proposed model. Figure 3 through Figure 5 show the plots 

of 𝑙𝑛 𝜆 versus 𝑙𝑛 𝜔  for Tests 1, 2 and 3, respectively.  

In Figure 3 through Figure 5, the diamonds represent experimental data and the solid line 

represents the best linear fit. The corresponding equation for the linear fit is also shown in these 

plots along with the value of coefficient of determination, 𝑅2. Also, in these figures, the upper-

right data points correspond to the start of the test and lower-left data points correspond to the 

end of the test. 

As mentioned earlier, in Test 2, a sudden increase in fluid velocity is reported after 5 hours 

(Sterpi, 2003). Since the value of fluid velocity is used to calculate 𝜆 and 𝜔 and since the value 

of velocity after 5 hours is not reported in this test, only data points up to 5 hours after the start of 

the test are used in calibration of 𝛼 and 𝛽 (Figure 4). 
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Figure 3: Calibrating model parameters for Test 1 by Sterpi (2003) (i=0.18) 

 

 

Figure 4: Calibrating model parameters for Test 2 by Sterpi (2003) (i=0.39) 
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Figure 5: Calibrating model parameters for Test 3 by Sterpi (2003) (i=0.55) 

As observed, the variation of 𝑙𝑛 𝜆 versus 𝑙𝑛 𝜔 for these tests can be approximated using a linear 

trend. Table 2 shows a summary of calibration parameters for Tests 1, 2 and 3. 

 

 

Table 2: Summary of calibration parameters for Tests 1, 2 and 3 performed by Sterpi (2003) 

Test # Hydraulic 

gradient 

𝜶 𝜷 

1 0.18 8.29E-6 0.47 

2 0.39 1.69E-5 0.94 

3 0.55 1.38E-4 1.05 

After calibrating the erosion coefficient , 𝜆, for each test, Eq. (12), Eq. (14) and Eq. (28) are used 

together to obtain an analytical relationship for the instantaneous (tangent) rate of erosion. With 

some rearrangement of the abovementioned equations, the following relation is obtained: 

After integration and simplification of Eq. (35), an analytical relationship for porosity 

variation, 𝜑 − 𝜑0, is derived in the following form: 

𝜕𝜑

𝜕𝑡
= 𝛼 [

𝐺𝑆(𝑅𝑝 − 𝑅𝑝𝑐𝑟)

𝜑 − 𝜑0
]

𝛽  (𝑣𝑓 − 𝑣𝑐𝑟)

𝐷𝑝
    (35) 
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By substituting Eq. (36) in Eq. (14), the following relationship is obtained for �̇�: 

where 𝐾 is 

As mentioned before, data from Tests 1, 2 and 3 were used for model calibration and a summary 

of the calibrated parameters for these tests is given in Table 2. Comparisons between the 

experimental and calculated values of erosion rate for these 3 tests are shown in Figure 6 to 

Figure 8. In these figures, analytical values of erosion rate are calculated by using Eq. (37) and 

the data given in Table 1 and Table 2 and the experimental values are calculated using Eq. (33). 

 

 

Figure 6: Comparison between experimental and calculated values of erosion rate, i=0.18 

 

𝜑 − 𝜑0 = [
 𝛼 (𝛽 + 1)𝐺𝑠

𝛽
 (𝑅𝑒𝑝 − 𝑅𝑒𝑝,𝑐𝑟)𝛽(𝑣𝑓 − 𝑣𝑐𝑟) (𝑡 − 𝑡0)

𝐷𝑝
]

1
(𝛽+1)

 (36) 

�̇� = 𝐾(𝑡 − 𝑡0)
−𝛽

(𝛽+1) (37) 

𝐾 = 𝜌𝑠
1

(𝛽+1)
 [

 𝛼 (𝛽+1)𝐺𝑠
𝛽

 (𝑅𝑒𝑝−𝑅𝑒𝑝,𝑐𝑟)𝛽(𝑣𝑓−𝑣𝑐𝑟)

𝐷𝑝
]

1

(𝛽+1)

 (38) 
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Figure 7: Comparison between experimental and calculated values of erosion rate, i=0.39  

 

 

Figure 8: Comparison between experimental and calculated values of erosion rate, i=0.55 

Model Validation  

In order to validate the analytical erosion model given in Eq. (37), relationships are required to 

predict 𝛼 and 𝛽 for Tests 4 and 5 by just using independent parameters such as hydraulic 

gradient. The data given in Table 2 are used in order to construct such relationships. Figure 9 and 

Figure 10 show the variation of 𝛼 and 𝛽 for Tests 1, 2 and 3 with hydraulic gradient. 
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Figure 9: Variation of 𝜶 with hydraulic gradient for Tests 1, 2 and 3 and best fit (solid line) 

 

 

Figure 10: Variation of 𝜷 with hydraulic gradient for Tests 1, 2 and 3 and best fit (solid line) 

Figure 9 shows that 𝛼 varies exponentially with hydraulic gradient and Figure 10 suggests that 

the relationship between 𝛽 and hydraulic gradient is linear. Therefore, based on the trends 

observed in these figures, the following relationships are suggested for variation of 𝛼 and 𝛽  with 

hydraulic gradient.  

𝛼 = 𝛾1𝑒𝛾2𝑖 (39) 

𝛽 = 𝛾3𝑖 
(40) 
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In Eq. (39) and Eq. (40), 𝛾1, 𝛾2 and 𝛾3 are model constants which (based on Figure 9 and Figure 

10) are calibrated to be 1.71E-6, 7.38 and 2.11 respectively. 

The proposed analytical model, which is shown in Eqs. (37) through (40), is validated by using it 

to predict the experimental results of Tests 4 and 5 (with hydraulic gradients of 0.60 and 0.75, 

respectively). In the validation process, first, the values of  𝛼 and 𝛽 for Tests 4 and 5 are 

calculated by using the calibrated values of 𝛾1, 𝛾2 and 𝛾3 in Eq. (39) and Eq. (40) and by using 

their corresponding hydraulic gradient. Table 3 shows a summary of calculated values of 𝛼 and 

𝛽 for Tests 4 and 5. In this table, values of 𝛼 and 𝛽 are obtained by using Eq. (39) and Eq. (40).  

 

Table 3: Calculated values of 𝜶 and 𝜷 for Tests 4 and 5 

Test # Hydraulic 

gradient 

𝜶 𝜷 

4 0.60 1.43E-4 1.27 

5 0.75 4.33E-4 1.58 

Next, values of erosion rate for these tests are calculated using Eq. (37) and the data given in 

Table 3. The comparisons between experimental and predicted values of erosion rate for these 

two tests are presented in Figure 11 and Figure 12. These figures show that the model predictions 

have a good agreement with the experimental results. 

 

 

Figure 11: Comparison between experimental results and model prediction of erosion rate, i=0.60 
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Figure 12: Comparison between experimental results and model prediction of erosion rate, i=0.75 

Discussion and Concluding Remarks  

Using the principles of dimensional analysis and approximation theory, an analytical model is 

proposed to calculate the rate of internal erosion due to fluid flow in a porous medium. The 

proposed model, shown in Eq. (37) and Eq. (38), shows that the erosion rate has a nonlinear 

direct relationship with fluid velocity and a nonlinear inverse relationship with time. In other 

words, for a given hydraulic gradient, erosion rate converges towards zero at a sufficiently large 

time which is consistent with the physics of erosion process as well as experimental 

observations. In addition, the higher the hydraulic gradient, the faster the erosion rate decreases 

with time, which is also consistent with experimental observations. The proposed model has two 

calibration parameters (Eq. 39-40) which vary as functions of the hydraulic gradient.  The model 

is calibrated and validated using experimental data available in the literature. The validation 

results show that the model predictions of erosion rates have a good agreement with 

experimental data.  

This model associates vanishing erosion rate to changes in porosity. In other words, for any 

given hydraulic gradient, there is only a portion of the particle assembly that is erodible. The 

porosity increases slowly as particles are being washed away to the point where the entire 

erodible portion has been eroded at which point internal erosion stops. Physically, this can 

happen due to two reasons. First, at a certain hydraulic gradient, hydrodynamic forces are only 

able to mobilize particles of a certain size. For a well graded assembly of particles, the lower the 

hydraulic gradient the smaller the percentage of erodible particles. The second reason for the 

decreasing internal erosion rate can be related to the processes of particle re-deposition and pore 

clogging which limit the available flow paths for loose particles to migrate. 

Also, it was assumed in this work that the parameter 𝐷𝑝, which is the average size of the eroded 

particles, is constant for all hydraulic gradients. The reason for this assumption is that we do not 

know the value of  𝐷𝑝 a priori unless we perform the erosion experiments and analyze the size of 

eroded particles. The fact of matter is that higher hydraulic gradients mobilize larger size 
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particles and generally, 𝐷𝑝 can vary from one test to another. To further improve this model, a 

correlation can be established, experimentally, between fluid velocity (or hydraulic gradient) and 

the average size of the eroded particles. Then, such a correlation can be used to assign variable 

values for 𝐷𝑝 in the proposed erosion model.  

The novelty of the analytical model presented in this paper is in its derivation methodology 

which combines dimensional analysis and approximation theory with the principle of 

conservation of mass and considers the physics of erosion process as well as experimental and 

field observations. In addition, this model accounts for the effect of fluid viscosity and average 

particle diameter on the rate of internal erosion (by using the concept of particle Reynolds 

number) which are not directly addressed in previously published models. As mentioned earlier, 

the proposed model has two calibration parameters which are dependent on hydraulic gradient. 

These parameters are material-dependent and need to be calibrated again in case the porous 

medium under study is changed.   

It should be noted that in this work, the focus was on the development, calibration and validation 

of an analytical relationship for estimation of the rate of internal erosion. The proposed model 

can be used in analytical or numerical modelling of internal erosion process in various field 

phenomena such as fines migration and sand production (petroleum engineering) or suffusion 

and surface settlement due to internal erosion (geotechnical engineering). It should be noted that 

this model assumes that internal erosion doesn’t bring about any changes in permeability. 

However, experimental and field observations indicate that internal erosion is generally 

associated with some degree of permeability reduction in porous media. To apply this model to 

cases where permeability is reduced as a result of internal erosion, this model has to be coupled 

with appropriate constitutive laws relating permeability variation to porosity variation or the 

mass of internally eroded particles.  
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Nomenclature   

A, 𝐵 Parameters used to estimate critical fluid velocity 

𝐴𝑐𝑠 Cross sectional area of an immersed body projected in the direction of flow 

𝑐 Concentration of solids in fluid phase 

𝑐𝑐𝑟  Critical concentration of solids in the fluid phase 

𝐶𝐷 Drag coefficient  

𝐷𝑝 Particle diameter or average particle diameter  

𝐹𝐷,𝑛 Drag force of fluid exerted on the particle in direction n 
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𝐹𝐺,𝑛 Resistive gravitational force in direction n 

𝐹𝑃𝐺,𝑛 Pressure gradient force exerted on the particle in direction n 

𝐺𝑠 Specific gravity of the solid particles 

𝑖 Hydraulic gradient 

𝑘 Permeability  

𝐾 Hydraulic conductivity 

𝑚 Eroded mass 

�̇� Tangent erosion rate per unit volume 

𝑚𝑡 Total mass of the test specimen 

𝑛 A symbol representing an arbitrary direction 

𝑛𝑝 Number of particles 

𝑝 Percentage of the eroded fine particles 

𝑝𝑖𝑓 Initial percentage of the fine particles 

�̅�𝑖                     Flow flux of the mixture of solids and fluid 

𝑅𝑝 Particle Reynolds number 

𝑅𝑝𝑐𝑟 Particle Reynolds number calculated at critical fluid velocity 

𝑡 Time  

𝑡0 Time at which erosion starts 

𝑣𝐴,𝑛 Actual fluid velocity in direction n 

𝑣𝑓,𝑛 Apparent (Darcy) fluid velocity in direction n 

𝑉𝐸𝐵 Volume of the erosion boundary 

𝑣𝑐𝑟,𝑛 Critical fluid velocity in direction n 

𝑉𝑝 Volume of particle  

𝑉𝑡 Total volume of the sample 

𝛼, 𝛽, 𝛾1, 𝛾2, 𝛾3 Dimensionless calibration parameters 

∆ℎ Hydraulic head difference 

∆𝐿 Sample length 



 

23 

𝜃𝑛 Angle between direction n and vertical upward direction 

𝜆 Erosion coefficient 

𝜇 Fluid dynamic viscosity 

𝜌𝑓 Fluid density 

𝜌𝑠 Grain density 

Φ Fluid potential  

𝜑 Porosity 

𝜑0 Original porosity of the assembly of particles 

‖ ‖ Norm of a vector 
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