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Abstract

This thesis is an observational and theoretical study of field line resonances
(FLRs) found to occur on magnetic shells in the Earth’s magnetosphere. These
resonances are actually standing shear Alfvén waves in the ultra-low frequency (ULF)
regime, generated through mode coupling to fast compressional magnetohydrodynamic
waves in the outer magnetosphere. FLRs may be signatures of fundamental processes by
which energy is transported from the solar wind to the ionosphere and it is therefore
important to study their characteristics and fully understand their generation

mechanisms.

Numerous FLR events have been identified and analyzed using the Super Dual
Auroral Radar Network (SuperDARN). This network is a system of high-frequency
(HF) radars which provides a global-scale view of the plasma convection in the F-region
of the high-latitude ionosphere. The oscillations in plasma flow associated with an FLR
are superimposed upon the background convective flow and can be used to determine
many characteristics of the FLR such as frequency, phase, location, and propagation
velocities. A compilation of the observations has yielded some very interesting results.
The most notable of these is that the FLRs repeatedly occur at the same discrete and
stable frequencies, i.e. 1.3, 1.9, and 2.5 mHz, independent of local time and azimuthal
wave number, m. They are also classifiable into two distinct types: those with small
azimuthal wave number (m<17), and those with large azimuthal wave number (m>17).
The fact that the two different wave types have numerous similarities is very important
since it suggests that the same driving mechanism is responsible for the initiation of both

types of resonance.

The apparent growth rates of the FLRs show a striking correlation with the



azimuthal wave number of the resonance. The observed high-m resonances have
amplitudes that increase with time, indicating positive growth rates, while the low-m
resonances have decreasing amplitudes, indicating negative growth rates. The resonance
growth rates and latitudinal phase shifts, a decrease for low-m modes and an increase for
high-m modes, are found to be determined by the direction of the Poynting flux in the
system. In the case of the high-m resonance, an internal driver is present which is able to
couple to the system and give Poynting flux out of the resonance region. The internal

driver is most likely in the form of a wave-particle interaction.

The final portion of this thesis concemns the development of a theoretical model
for the FLR driving mechanism. The most commonly accepted theory, the
magnetospheric waveguide/cavity mode model, postulates that the magnetosphere acts
as a waveguide or cavity which can generate a set of monochromatic fast wave
eigenmodes which then couple to the FLRs. A review of this theory has shown that it
falls short of explaining many of the experimental observations. Thus alternate theories
capable of explaining the observations are explored. A new model, the magnetosheath
waveguide model, is examined in detail and is shown to be very successful in its ability
to explain the existence of the discrete FLRs.
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1
Introduction

1.1 Preliminary Remarks

In general, the field of solar-terrestrial physics is concerned, as the name
suggests, with the effects of the Sun upon our terrestrial environment. To the lay person
the Sun’s effects upon the Earth are manifested primarily in the weather patterns which
affect our daily lives. However, the outflow of ionized and magnetized gas from the
Sun called the solar wind also has a dramatic effect upon the Earth’s magnetic
environment, the magnetosphere. The most well known effect of this interaction
between the solar wind and the magnetosphere is the colorful emission of light near the
north and south poles called the aurora. There are three fundamental mechanisms by
which the solar wind energy is transported into the magnetosphere. The first
mechanism involves the dayside merging of the Earth’s magnetic field with the solar
wind’s interplanetary magnetic field and the resulting reconnection of fields in the
nightside tail of the magnetosphere. The energy transferred during dayside merging is
stored in the tail of the magnetosphere. Eventually that energy is released and
dissipated into the ionosphere during events known as substorms which are
characterized by intense auroral activity. The second mechanism of energy transport is
via a viscous interaction at the magnetopause boundary which results in a mixing of
solar wind and magnetospheric plasmas. The third mechanism of energy transport
involves the propagation of fast compressional magnetohydrodynamic (MHD) waves
and their coupling to resonant shear Alfvén waves. This mechanism channels the wave
energy into very localized, and thin, regions within the magnetosphere. Field lines
resonances (FLRs) are the result and are the topic of this thesis.

FLRs are standing shear Alfvén wave oscillations of the Earth’s magnetic field
lines which are coupled to fast compressional MHD waves in the outer magnetosphere.
The FLRs which are of interest in this work are those uitra low frequency (ULF)
pulsations in the 0.5-5 mHz range which occur at discrete, stable and reproducible
frequencies and which are localized in latitude as well as being extended azimuthally
along a latitudinal contour. The body of observational evidence suppotting the
existence of the discrete, reproducible FLRs is growing steadily [Ruohoniemi et al.,
1991; Samson et al., 1991;Walker et al., 1992; Ziesolleck and McDiarmid, 1994).
Recent studies [Samson et al. 1992a, Samson et al., 1996] have shown a possible



association between FLRs, auroral arcs, and substorm dynamics. If FLRs are involved
in the generation of auroral arcs and the triggering of substorms then they are definitely
akey player in the transport of energy from the solar wind to the ionosphere. Currently,
there are many unknown aspects about the discrete FLR, including the fact that the
driving mechanism responsible for them is not known. Thus the primary goals of this
thesis are 1) to make experimental observations of FLRs in order to define their
characteristics and 2) to develop a model of the FLR generation mechanism consistent
with the experimental observations. Achieving these goals will bring us one step closer
to a complete understanding of energy transport in the magnetosphere.

A detailed introduction to space physics can be found in a number of
introductory text books, for example Parks [1991] and Kivelson and Russell [1995]. In
the remaining sections of this chapter, the necessary background and theory conceming
the FLR is presented. Here, basic concepts of space physics, space plasmas,
magnetohydrodynamic (MHD) waves, and mode coupling are introduced. The
equations govemning the coupling of MHD compressional and shear Alfvén waves are
derived and the characteristics of the FLR outlined. The chapter ends with a review of
previous experimental observations and a discussion of the most commonly accepted
theory concerning the source of the FLRs.

Before any conclusions about the source of the FLRs can be made it is essential
to have a good basis of experimental observations from which a consistent set of FLR
characteristics can be derived. Thus numerous FLR events have been identified with the
Super Dual Auroral Radar Network (SuperDARN) and have been analyzed. Some new
and exciting results, such as the observation of discrete FLRs with both large and small
azimuthal wave number, have been found which are very important parameters in the
identification of the FLR source. These results as well as a description of the
observational methods are the topics of Chapter 2. In Chapter 3 the results and
implications of a study on the growth and decay of the FLRs are presented. Given the
new set of FLR characteristics arising from the observational study it has become
apparent that the most commonly accepted theory, the waveguide/cavity mode model,
falls far short of providing a model consistent with all observations. In Chapter 4 the
limitations of the waveguide/cavity mode model are discussed and alternate theoretical
models are considered. Finally, the conclusions of the thesis are reemphasized and
some future directions discussed in Chapter 5.



1.2 Background and Theory

1.2.1 Basic Definitions and Concepts

The ficld line resonance phenomenon is a result of a multistep interaction
between the solar wind, magnetosphere, and ionosphere. Therefore, I will begin with
some basic definitions and concepts concerning these three regions of space. For a
visual reference, Figure 1.1 is a simple schematic of the Earth’s magnetosphere.
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Figure 1.1. Three dimensional cutaway view of the Earth’s
magnetosphere [from Eastman et al., 1985].



1.2.1.1 The Solar Wind

The solar wind is an extension of the Sun’s outer atmosphere, the corona, which
extends throughout the entire solar system.  The existence of a dynamic coronal
outflow was first predicted by Parker [1958] and later verified when the first space-
bome instruments began to make measurements in the solar wind. It was discovered
that the solar wind is a neutral plasma whose ion component is comprised mainly of
protons, H*, with densities on the order of 10 cm? at the Earth. Because of the frozen-
in-field condition, to be discussed in a later section, the solar wind plasma carries the
Sun’s magnetic field with it which results in an interplanetary magnetic field strength of
approximately 10 aT at the Earth. Solar wind speeds increase with increasing distance
from the Sun and are typically 400 knvs at the Earth. This value can vary by 100s of
knvs due to variations in solar activity. Since the solar wind speed exceeds both the
speed of sound (~50km/s) and the Alfvén speed (~40kmv/s), the Earth’s motion is
supersonic and super Alfvénic in the rest frame of the solar wind. Thus a shock wave,
called the bow shock, is formed in front of the Earth. The bow shock acts to slow and
heat solar wind particles as they approach the Earth. Behind the bow shock is the
region of shocked solar wind known as the magnetosheath.

1.2.1.2 The Magnetosphere

The region of space encompassing the Earth’s magnetic field is the
magnetosphere and it is bounded by the magnetopause. Although the Earth’s magnetic
field is dipolar, its interaction with the dynamic solar wind compresses it on the dayside
while stretching it into a long tail on the nightside. Associated with the deformation of
the Earth’s magnetic field is a set of four current systems: the magnetopause current,
the ring current, cross-tail current, and field-aligned current. The magnetopause current,
as the name suggests, flows along the magnetopause and is due to the discontinuity in
the magnetic field and plasma pressure across the magnetopause. The ring current is a
clockwise current around the Earth which arises from the differential gradient-curvature
drifts of ions and electrons within the dipole-like field region. In the magnetotail, the
direction of the magnetic field reverses across the equatorial plane in association with a
layer of current flowing from dawn to dusk called the cross-tail current. This current
divides at the flanks and closes around the magnetopause. Field aligned currents are any
currents which flow along the Earth’s magnetic field lines. There are different types of
field aligned current systems depending upon their location, and generation mechanism.
Field aligned currents couple the magnetosphere to the ionosphere and can couple the



ionosphere directly to the solar wind in the polar region.

The magnetosphere is separated into various regions depending upon plasma
and magnetic field characteristics. The plasma sheet is the region of the magnetosphere
which is populated by particles of ionospheric or solar wind origin. These particles, if
energetic enough, precipitate into the high-latitude ionosphere creating luminous
auroral displays. The plasma sheet contains the cross-tail current region which is a
region containing hot plasma and a weak B field. The magnetic tail lobe is the region
adjacent to the plasma sheet where the plasma density is very much reduced. The
plasmasphere corotates with the Earth and extends to the plasmapause at approximately
S5Rg.

The direction of the interplanetary magnetic field relative to the Earth’s field has
a dramatic effect upon the morphology of the magnetosphere. An interplanetary field
with a negative B, component produces an open magnetosphere with magnetic merging
on the dayside and reconnection on the night side. The result is field lines with one foot
on the sun and the other on the Earth. When the interplanetary field has a positive B,
component, the configuration is that of a closed magnetosphere. The processes of mass,
momentum and energy transport from solar wind to magnetosphere for these two
configurations differ greatly. It is during open magnetospheric configurations that the
magnetosphere becomes most energized since the solar wind mass, momentum and
energy can directly enter the magnetosphere and be stored in part in the magnetotail.
Transitions of the magnetosphere from a highly energized state to a more relaxed state
requires a release of energy. This release of energy is brought about through
dipolarization of the magnetotail and the generation of large scale currents, in particular,
field aligned currents which can generate brilliant auroral displays. Such intense
dynamic transitions of the magnetosphere are referred to as substorms. Substorms can
have many levels of intensity depending upon the initial and final energy states of the
magnetosphere. Generally, substorms are a result of the transition from an open to a
more closed magnetospheric configuration. The substorm and its triggering
mechanisms are currently a topic of great debate in the space science community. A
summary of the many substorm models is given by McPherron [1995]. The
observations of FLRs in this work were almost all during periods of quiet
magnetospheric conditions with no association with substorms. This does not imply
that FLRs are not associated with substorms but only that FLRs are best observed and
studied during periods of quiet conditions.



1.2.1.3 The Ionosphere

The ionosphere is the ionized portion of the Earth’s atmosphere extending from
~60 km and upwards into the magnetosphere. The ionization is caused by incident solar
radiation and is maintained because of the slow recombination rate. Some ionization is
also due to energetic particle precipitation.

The ionosphere is classified into three regions according to height. At the lower
edge, below ~90 km, is the D region. This region is ionized by only the most energetic
ionization sources such as solar X-rays and cosmic ray particles. Because of higher
collision frequencies and limited ionizing radiation, the clectron densities in this part of
the ionosphere are low at ~500 cm3. Between 90 and 130 km is the E region which is
characterized by a sharp increase in electron density to ~10° cm. Above 130 km is the
F region which exhibits the maximum ionospheric electron density of ~10 cm? at ~300
km altitude. The above density values are taken from Kivelson and Russell [1995].
Because of its electron density profile, the ionosphere is very important for radio-wave
communication and is also subject to intense study by means of radio frequency (RF)
experiments. In particular, the experimental data presented in this thesis are that of high
frequency (HF) radars which are designed to utilize the refraction and reflection
properties of high frequency RF in the ionosphere to measure bulk plasma flows in the F
region. The details of this radar technique are described in more detail in Chapter 2.

In the collisional ionosphere there are two types of current which flow
perpendicular to the ambient magnetic field: the Pedersen current and the Hall current.
The Pedersen current flows in the direction of the perpendicular electric field E, and
results from the acceleration of the ions and electrons under the influence of E, between
collisions. The Hall current flows perpendicular to both E, and B in the direction of -
ExB. It is due to the fact that although both ions and electrons are ExB drifting, the
ions are slowed down much more than the electrons in their attempt to drift because of
collisions with neutrals and other ions. The size of the height integrated perpendicular
current depends upon the Hall and Pedersen conductivities, defined by 2p and g
respectively, as well asE, .

The ionosphere also provides a major energy sink for any energy entering the
magnetosphere from the solar wind. This energy is deposited into the ionosphere by the
field aligned current systems. The field aligned current systems close through the
perpendicular currents in the ionosphere and dissipate some of the energy in the form of
Joule heating. The field aligned current is carried primarily by electrons. The most



energetic electrons can excite the ions and neutrals to various energized states. As the
excited atmospheric constituents decay to lower energy states they emit electromagnetic
radiation which constitutes, in part, the auroral emissions of light known as the aurora
borealis or northern lights in the northern hemisphere and the aurora australis or
southern lights in the southern hemisphere. The ionospheric emissions are generally
localized to a band of latitudes approximately 5° wide at 20-25° from the poles known
as the auroral zone. In open magnetospheric conditions, field aligned currents can flow
along field lines which are directly linked to the solar wind. These field aligned currents
can result in cusp and polar auroras. The visual colors which characterize the auroras
are determined by the emission characteristics of the excited atmospheric constituents
as well as the energies of the precipitating particles. In addition, the precipitated energy
can be converted to bremsstrahlung X-ray radiation which make the auroras an X-ray
source as well. The energy dissipated in a typical auroral event is on the order of 10
Joules.

1.2.1.4 Space Plasmas

In order for the ionized gases which permeate the solar wind, magnetosphere
and ionosphere to be classified as plasmas they must satisfy certain conditions. The
density of particles in a plasma must be sufficiently low so that short range collisions are
negligible while at the same time the total number of particles must be large enough for
the system to act collectively. The collective nature of a plasma arises from the long-
range electromagnetic forces present between the charged particles. A positively
charged ion will attract electrons while repelling other positive ions which causes its
electrostatic field to become shielded from the bulk of the plasma. Because of this
collective interaction the force range of a charged particle has a characteristic length

defined by the Debye length
A = ,KaT% (1.1)
D~ 2
nq

where Kp is the Boltzmann constant, €, is the dielectric constant of free space and 7, n,
and ¢ are the temperature, density, and charge, respectively, of the charged particle
species generally taken to be the electron. A system of charged particles is correctly




characterized as a plasma only if a value known as the plasma parameter is much less
than one. The plasma parameter is defined by

1

where N is the number of particles in a Debye sphere, i.e.
4m3\3,

3 (1.3)

ND=

Order of magnitude estimates for n, T, Ap and g in the solar wind, magnetosphere and
ionosphere are presented in Table 1.1. Since g<<1 for each of these regions they are
correctly classified as space plasmas. The number of particles present in each of these
systems is large enough to make Debye shielding effective, and since Ap<<L for each of
the three regions, where L represents a characteristic length, the plasmas are essentially
free of any significant electrostatic potentials and therefore are considered neutral.

Table 1.1: Some Typical Space Plasma Parameters®

n (m”) T(K) Ap (m) 8
Solar Wind (near Earth) 107 10° 10 101
Magnetosphere 10°-107 10°-10° 10%-10° 105
Ionosphere 10%-1072 10°-10* 109-3x102 10°

*n and T values taken from Parks [1991].

Since the collision frequency decreases with decreasing density and with
increasing temperature, those regions of space with low plasma density and high
temperature such as the solar wind and magnetosphere are essentially collisionless. The



ionosphere, on the other hand, has significantly larger densities and lower temperatures,
relative to the solar wind and magnetosphere, and cannot be considered collisionless.
The ionosphere is a much more complicated plasma because it contains ion populations
such as N,*, O*, NO* as well as neutral molecules. The solar wind and magnetosphere
are primarily electron-proton plasmas with H* being the dominant ion. However, the
solar wind and magnetosphere contain some other ions such as He**. Also, some of the
ionospheric ions such as O* find their way into the magnetosphere.

1.2.2. MHD Theory

As discussed above space plasmas have fluid properties due to the fact that they
behave as a non-interacting, neutral, collective system. However, because they consist
of charged particles in motion through a background magnetic field, electromagnetic
fields are also an integral part of the space plasma system. The combination of
electromagnetic and fluid properties results in a class of waves known as
magnetohydrodynamic or MHD waves. These waves are low frequency, i.e. their
frequencies are much lower than any of the natural plasma frequencies, and can have
both transverse and longitudinal modes. The FLRs studied in this thesis are a result of
the coupling between longitudinal and transverse MHD wave modes. Thus a detailed
discussion of the MHD wave description is the topic of this section.

Before introducing the details of the MHD theory some mention should be made
of other ways of dealing with magnetized plasmas. The most general approach to the
problem is to use a kinetic theory based upon the Boltzmann-Vlasov equations, which
take into account the dynamics of the individual particles rather than the plasma fluid as
a whole. The Boltzmann-Vlasov equation is given by

%+v.g{+§'(3+vx3) %{- = (1.4)

where f=fir,v,?) represents the distribution function of particles in (r,v) space with 7 the
particle position and v its velocity. This equation defines the total time derivative of
firw,t) for a system of collisionless particles subject only to electromagnetic forces.
Equation (1.4) and Maxwell’s equations are solved self-consistently in the kinetic
approach.

The fluid treatment which follows is a simplification of the full kinetic treatment.
In a fluid, macroscopic parameters are used to define the system. These macroscopic
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parameters are obtained by averaging over all particles in velocity space. The fluid
equations governing the macroscopic parameters such as the continuity of mass and
momentum equations are then obtained by taking various moments of the Boltzmann-
Vlasov equation. To arrive at the MHD fluid equations the distribution function used in
taking the averages and moments is a Maxwellian,

2 - - 2
£ = ey exp| G | 1)

where <v> corresponds to the average particle velocity. This equation corresponds to a
plasma in thermal equilibrium. In non-equilibrium situations where plasma instabilities
can be driven by velocity-space anisotropies, an appropriate distribution function and a
full kinetic formulation must be used.

In practice, the use of MHD generally requires certain assumptions to be made
about the nature of the plasma. In deriving the MHD equations these assumptions will
be pointed out and justification for their validity made. However, it should be
emphasized that in instances where these assumptions do not hold, the associated MHD
equations fail to provide the proper description for the plasma.

In the theory of the FLR the general approach is that of one-fluid MHD. This
approach assumes that the plasma system contains only electrons and one species of ion
with the conditions that n=n.~n and q;=-q.=q, where n represents number density and q
the electrostatic charge. In the magnetosphere and the solar wind this assumption is
quite valid as these regions are dominated by protons, with equal numbers of electrons.

In general when describing a plasma system, a fluid equation is required for each
particle species in the system. For a plasma composed of electrons and one ion species,
the system dynamics are described by the “two-fluid” equations. Since the ion and
electron motions are coupled, the solutions to the two-fluid equations are not easily
obtained. However, the two-fluid equations can be simplified to a set of one-fluid
equations as will be shown in the following section. The one-fluid equations, though not
as complete as the two-fluid equations, are quite successful in their description of the
basic behavior of MHD plasma and they have the distinct advantage of being more
easily solved.
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1.2.2.1 One-Fluid Equations

Based on the conservation of mass, both the clectron and ion species in a two-
component plasma must satisfy the continuity equation as follows:

g-l:‘+V0p,.v,.=0

where p and v represent the mass density and the average fluid velocity, respectively, for
the ions, i, and the electrons, e. One first defines the total mass density of the fluid as

p=nm+nm, (1.7

and the total fluid velocity as an effective center of mass velocity

nmy;+n,myv
v = Vi ReMePe (18)
nm;+n,m,

Then adding together the ion and electron continuity equations in (1.6) and substituting
(1.7) and (1.8) yields the one-fluid continuity equation:

%fi-VopV =0. (1.9

The fluid equation of motion for a given fluid species is given by

mng-: =qn(E+vXxXB) -VeP | (1.10)

where P represents a pressure tensor which in most general terms is anisotropic. This
equation is just Newton’s second law of motion, F=ma, where the forces are the Lorentz
force, g(E+vxB) and the pressure gradient force, -VoP. Collisional and gravitational
effects have been neglected. If the pressure is isotropic, VeP becomes Vp where p is the
scalar pressure. Once again, for a plasma of clectrons and one ion species, two
equations of motion are required:

dv;
mn = N (E+v;xB) ~VeP;
dv,
mn,—"=qn,(E+v,xB) -VeP,, (1.11)

€ ede
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Making the aforementioned assumptions n=n.=n and ¢=-9.=q, the above two
equations can be added to give

pF = gn(v;~v) xB-Vo (P;+P,) . (1.12)
Defining the total pressure tensor as
P=P+P, (1.13)
and the current density as
J =ngy;+nq.y, (1.14)

and substituting into (1.12) yields the one-fluid momentum equation

p-Z—Y:JxB-VOP : (1.15)

1.2.2.2 Maxwell’s Equations

The electromagnetic fields in a plasma are governed by Maxwell’s equations. In
differential form these are:

Faraday’s law:
VXE = 'gg (1.16)
Absence of magnetic monopoles:
VeB =0 (1.17)
Ampere’s law:
aD

VxH =J+5 (1.18)
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Coulomb’s law:

VeD = p_ (1.19)

Constitutive relations:

B=uH D=¢E (1.20)

(4]

Since space plasmas are good electrical conductors, free charges generally do
not accumulate. Therefore, the background charge density, p., in Coulomb’s law is
sometimes taken to be zero. However, if there is finite vorticity, p, will not be zero. In
addition, MHD is a low-frequency approximation where the displacement current,
aD/at, is considered negligible compared to the conduction current, J. This results in a
modified Ampere’s law

VxH =7 . 1.21)

12.2.3 Obhm’s Law

In addition to the fluid and Maxwell’s equations, further equations are required
to solve the MHD equations. Since, an MHD fluid behaves as an electrical conductor,
Ohm’s law provides some of those equations. Ohm’s law is an empirical law relating
the current density, J, to the total electric field, E. Since the total electric field includes
fields induced by the motion of the plasma across magnetic fields, Ohm’s law is
represented by

J =c(E+VxB) (1.22)

where G is the conductivity. It should be stressed that Ohm’s law should only be used in
regions where a conductivity can be defined such as in the ionosphere where collisions
are frequent enough to actually calculate values for the conductivity. However, in
regions such as the solar wind and magnetosphere where the plasma is essentially
collisionless, the conductivity is assumed to be infinite and the ideal MHD



14

approximation is applied.

1.2.24 Ideal MHD

Ideal MHD fluids are those fluids which have infinite conductivity. Although an
infinite conductivity can never exist in reality, some MHD fluids have such large
conductivities that the ideal condition of G—o describes the plasma behavior very well.
In this limit Ohm’s law becomes

E =-VxB . (1.23).

The ideal MHD approximation is also synonymous with the frozen-in-field
concept where the magnetic flux through any closed loop moving with the plasma
remains constant. In ideal MHD no induced electric fields can exist in the rest frame of
the plasma. Then, according to the form of Faraday’s law given by

ao

§Eedl=— (1.24)

where @ is the magnetic flux through the closed loop, there can also be no change in the
magnetic flux.

Another way to look at the frozen-in-field condition is by considering the rate at
which the magnetic field will diffuse through the plasma. A frozen-in-field cotresponds
to little or no diffusion of the magnetic field. A measure of magnetic field diffusion is
given by the magnetic Reynolds number

R, = p,0LV (1.25)
where 1, is the magnetic permeability of free space, and L is a characteristic length. In

the case of ideal MHD G—<o and therefore R,,~>oo and magnetic field diffusion can be
ignored.

1.2.2.5 Equation of State

In any fluid, including MHD fluids, the equation of state relates the fluid mass
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density, p,,, pressure, p, and temperature, 7. For an MHD plasma having an isotropic
Maxwellian distribution, the equation of state is given by

d N -
E;Q’P,,) =0 (1.26)

where ¥=5/3 is the ratio of specific heats. Such a plasma behaves as an ideal adiabatic
gas. An equation of state is necessary to close any system of fluid equations, which are
coupled moments of the Boltzmann-Vlasov equation.

1.2.2.6 Cold Piasma Approximation

In the cold plasma approximation 7—0 and any thermal effects are ignored.
Therefore, in the equation of motion the Vp term is negligible when compared to the
JxB term. To compare these two terms rewrite JxB as
(VxB)xB _BeVB VB

JxB = 1.27)

The first term on the right arises from magnetic field curvature while the second term is
due to magnetic field pressure. Now, the beta of a plasma, B, is defined as the ratio of

particle pressure to magnetic field pressure

=2 1.28
B = o 1.28)

In the cold plasma approximation f—0 and the plasma is dominated by the magnetic
field pressure rather than the plasma particle pressure. Thus Vp is negligible when
compared to V(B%/2,) and can be ignored in the equation of motion. The equation of
state also becomes irrelevant.

1.2.2.7 Summary of One-Fluid MHD

The set of equations governing one-fluid MHD plasma under the ideal and cold
plasma approximation are as follows:

Continuity equation:

g

+VepV =10

t (1.29)



16

Equation of motion:

p%—:, = JxB (1.30)
Ohm’s law:

E = -VxB (1.31)
Maxwell’s equations:

VXE = -g‘;’ (1.32)

VxB =pJ (1.33)

These are the equations used to derive the coupling process between the shear
Alfvén and compressional MHD wave modes in the magnetosphere which is
responsible for the field line resonance phenomenon. Based upon the observations of
FLRs discussed in this thesis, the region of the magnetosphere where the coupling
process occurs is between approximately 8-12 Re in the equatorial plane. Thus it is
assumed that all of the approximations that have gone into the derivation of the above
equations are valid in this region of the magnetosphere. The validity of many of these
approximations have already been previously discussed. However, a few comments
should be made with respect to the cold plasma approximation and the neglect of
particle pressure. Along the flanks of the magnetosphere, in the region between the
plasmapause at ~5 Re and the magnetopause at ~14-15 Re, the plasma Beta parameter
ranges from ~0.01 at the plasmapause to ~0.1 at the magnetopause. Thus in the region
where the FLR coupling process occurs, the plasma can be considered a low-p plasma
and the neglect of particle pressure is a reasonable approximation. In a later chapter,
when the magnetosheath region is developed as a source of monochromatic
compressional modes, the particle pressure is maintained since the plasma in this region
is a "warm" plasma, i.e. it no longer satisfies the cold plasma approximation.

1.2.2.8 MHD Plasma Waves

There are three wave modes which can propagate in a warm MHD plasma.
These are the shear Alfvén wave, the fast magnetoacoustic wave, and the slow
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magnetoacoustic wave. Each of these wave modes is defined by a dispersion relation
which relates the wave frequency, @, to the wave vector, k. The general dispersion
relations for the MHD waves can be derived from the MHD equations defined in the
previous section. For an example of the derivation sce Parks [1991] or Kivelson and
Russell [1995).

The shear Alfvén wave is a purely transverse wave with flow perturbations
perpendicular to both the wave vector and the background maguetic field, B,. Its
dispersion relation is given by

(02 2

? = Vicos e 1.34)
where V) is the Alfvén velocity defined by
v B,
[
= 2 (1.35)
A7 pp

and @ is the angle between B, and the wave vector k. A schematic of the electric field,
magnetic field, flow and current polarizations for the shear Alfvén wave are shown in
Figure 1.2. Because the flow perturbations are perpendicular to the propagation
direction there are no plasma density perturbations associated with the wave. The
magnitude of the magnetic field also remains constant because the field perturbations,
B, are normal to B,,. Thus the shear Alfvén wave is non-compressional

The phase velocity of a wave is

k (1.36)

x e

v, =
and therefore according to equation (1.34) the shear Alfvén wave phase velocity is
V,cos0. The group velocity defined by

'e = Vka) (1.37)

determines the direction of energy flow of the wave. This direction is coincident with
the direction of the Poynting vector

S = iLE x B (1.38)
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which for the shear Alfvén wave is along B,. The magnitude of the group velocity for
the shear Alfvén wave is v,=V..

Figure 1.2 Schematic of shear Alfvén wave.

The dispersion equation defining the magnetoacoustic wave modes is

@ L. Ce[(R+cD -4 cos0]

T = 0ArGe[0iech acate] 3 as
where C; is the speed of sound in the plasma. The positive sign corresponds to the fast
wave mode and the negative sign to the slow wave mode. Both of these wave modes are
compressional waves with perturbations in both plasma density and magnetic field
magnitude. They are a result of the coupling of electromagnetic wave modes to acoustic
wave modes in the plasma. Differences between the fast and slow modes include their
phase and group velocities. As the names suggest, the fast mode propagates much faster
than the slow mode. Group propagation for the fast mode is along the wave vector k,
while group propagation for the slow mode remains predominantly aligned along B,,.
Another distinguishing feature is found in their pressure perturbations. Pressure and
magnetic perturbations are in phase for the fast wave, but out of phase for the slow
wave.
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In a cold plasma, where p=0, the acoustic contributions to the magnetoacoustic
modes disappear as the C, becomes zero. The dispersion equation describing the

compressional modes reduces to

for the fast mode, and

(]

w

— =Vi (1.40)
2

% =0 (1.41)

for the slow mode, i.e. the slow mode does not propagate in a cold plasma.

Figure 1.3 is a schematic of the wave perturbations associated with the fast
compressional mode in a cold plasma. Both the phase and energy of the fast
compressional wave propagate along the wave vector k with speed V.

kv,

Figure 1.3. Schematic of fast compressional Alfvén wave.



1.2.3 Field Line Resonance Coupling

The coupling between the fast compressional and shear Alfvén waves in the
magnetosphere has been developed by various authors [Tamao, 1966; Southwood,
1974;and Chen and Hasegawa, 1974]). In this section the cold, ideal MHD plasma
equations discussed in the previous section will be used to derive the FLR coupling
equations. A simple box model of the magnetosphere can provide the basic features of
the coupling mechanism. A schematic of this box model is shown in Figure 1.4. The z-
direction is aligned along Bo, the x-direction radially outward, and the y-direction is
azimuthal to complete the right-handed coordinate system. The field line lengths are
taken to be constant and are bounded by the ionospheres. The zeroth order mass
density, p,, is taken to vary radially such that the resulting Alfvén velocity decreases
with x. The plasma perturbations of the system are assumed to be small with variations
in time and the y and z directions given by

¢ (@ky-kz) (1.42)

— B, field lines

Figure 1.4. Box model of magnetosphere.
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Note that k,, the field-aligned wave vector, is taken to be inversely proportional to the
field line length in order to comrespond to a standing wave along the field line.
Derivatives with respect to y, z and t can be expressed as follows.

aa-i-) io
1.43
%—) ik, (143

532 - —ik,

In the derivation which follows, the perturbed quantities are represented by the
non-scripted variables while the background equilibrium quantities are denoted by the
subscript "0". Note that the background flow and electric fields are assumed to be zero,
i.e. V,=E,=0. In reality this is not necessarily the case, but in an ideal plasma one can
always transform to the rest frame of the plasma where V, and E, are zero. The
equations are linearized by keeping only those terms which are to first order in the
perturbed quantities. The resulting linearized cold ideal MHD equations are as follows.

Continuity: iop+p, VeV =0 (1.44)
Equation of motion: iop,V = JxB, (1.45)
Ohm’s law: =-VxB, (1.46)
Maxwell’s equations: VX E = -ioB (1.47)
VxB=pJ
From the idealized Ohm’s law
E, Ey
W= Y%=g- (1.48)

From the second equation in (1.47) J is of the form

—i[z(-‘k +ik )-y(aB‘+'k )+2(aB’+ik )]
ol ik B, +ik.B, 35 +ikB; = VB . (1.49)



Using equation (1.49) JxB can be evaluated as
JxB, = l[x 8252 _iB kB ) +§(iB kB, ~iB k )] (1.50)
o~ K, o9x o sz o sz 0 sz .

where only first order terms have been kept. Substituting (1.50) and (1.48) into the
equation of motion (1.45) yields

. _E, 1 9B, .
iop,5, = i CBogx ~1BkEYD (1.51a)
E
-iop, 5" = il: (iB,k,B,—iB,k,B,) - (1.51b)

The first of Maxwell’s equations in (1.47) provides the equations relating the

components of E and B: k
Z
B = by (1.52a)
kz
B, = &« (1.52b)
: roE,
¢ Yy, . . 1.52¢
B = L3 ik -
Substituting (1.52) into (1.51) gives
r'|"'¢)pa 2 2- _ _0 aE)’ -
e 2a?-£|E, = A vk, | (1.532)
L o -
(HoPo 2 2] . [aEy . ]
o -k = —ik +ik
| B? 25T ThlE T yEs| (1.53b)

It is apparent in the above two equations that the shear and compressional wave
components are coupled. The azimuthal component of the electric field, E,,
corresponds to the compressional or poloidal component while the radial electric field,
E,, corresponds to the shear or toroidal component of the coupled system. Rewriting
equation (1.53b) as

_ ik, (8Ey/ dx)

* o’ 2 ;2
—-kz-k,]
E

(1.54)



and substituting into (1.53a) yields the differential equation governing E,,

29 2
%,  hisz(@/Vw (aE,) i PE <0 (1.55)
7 [(a/V)-B1¥ = ¢
2= _p_g
= -E-§

A

Equation (1.55) has two singular points which have important physical interpretations.
The first corresponds to the condition

=0 (1.56)

which is satisfied at the point x=x, defined as the tumning point. It is the point where the
solution changes from being purely oscillatory to purely decaying with distance. As
shown by Southwood [1974], there are two independent solutions to equation (1.55)
near the turning point which have the form

L _J
R
u =a,+ E a,(x-x,)
n=]

- (1.57)
uy= (x-x)2 {b,+ ¥ b, (x-x)°"}
=1

and both solutions are finite at x=x,.

The second singular point of equation (1.55) corresponds to the resonance
position where
2

G(x) s%-ki =0 . (1.58)
A

Near the resonance position, defined by x=x, G(x) can be expressed as

G = (x- i.
(x) = (x~x,) dfl . (1.59)



Substituting this form for G into equation (1.55) gives
IE 1 OE

y g 2 =
37 + G-x) % kE, 0. (1.60)

Equation (1.60) is a modified Bessel equation of order zero, whose solutions are infinite
at x=x,. However, the singularity at the resonance position is avoided if there is a small
time dependeat sink or source of energy in the system. Since the ionosphere does not
perfectly reflect shear Alfvén waves, the system’s energy is inevitably lost over time.
Thus a small time dependent sink at the ionosphere is represented by k, having a small
positive imaginary part, i.e.

. = ky +ik, (1.61)

The expansion of G(x) about x=x,. is now given by

G(x) = G'(x,) (x~x, +i€) (1.62)

where G {x,) represents the derivative of G(x) at x, and
-2k, k

r

Gx)V2 '

% J

(1.63)

Now using equation (1.62), equation (1.55) becomes
azE 1 oE
2 G-x+ie)ox kE, =0 (1.64)

which has solutions of the form [Southwood, 1974]

E, = CI, [k, (x—x,+i€)] + DK, [k, (x~x,+i)] . (1.65)

where I, and K, are modified Bessel functions of order zero and C and D are determined
by boundary conditions.

Toseethcfounofthesolutionatthetesonaneetakek,tobesmall. In the small
kylimitequaﬁon(l.GS)becomes

Ey = -E,ln [ky (x—x,+i€)] (1.66)

where E, is now the constant determined by boundary conditions. Note that for small
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ky, the solution at the resonance is dominated by the radial component of the electric

field, E,, and is referred to as a toroidal resonance. Therefore, the form of the solution

near x=x, is best illustrated by E,, which from combining equations (1.54) and (1.66) is
given by

_ -iE, _—E,[e+ i(x-x,)]

k, (x-x, +i€) k,[(x-x,)z-i-e’]

E, (1.67)

The general form of E, at the resonance according to (1.67) is depicted in Figure 1.5.

1.00
0.75
E,| I
0.50
0.25
000l
-2 -1 0 1 2
(x-x,;) Rg

Figure 1.5. Small ky solution for E, near resonance. Note
that IE,| has been normalized to 1.

The coupling of compressional and shear Alfvén wave modes in the box model
of the magnetosphere resulting in the ficld line resonance can be summarized as follows.
A monochromatic compressional mode propagating through the magnetosphere towards
the earth encounters an increasing Alfvén velocity. The wave eventually reaches a
turning point where it is partially reflected and partially transmitted. At the turning
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point the wave changes from an oscillatory mode to a decaying mode. Thus beyond the
turmning point the wave is evanescent, i.c. it decays exponentially. At the resonance point
the spatial phase and frequency of the fast wave matches that of a standing shear Alfvén
wave along the field line. The result is a resonance of the field line whose characteristic
shear Alfvén frequency matches the frequency of the fast compressional wave. A
schematic of this scenario is shown in Figure 1.6.
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Figure 1.6. Schematic of field line resonance coupling.
£ represents the radial displacement of the plasma.

The strength of the coupling between the fast compressional and shear Alfvén
wave modes depends upon the size of the azimuthal wave number, k,. For k,=0, the two
modes are decoupled and no energy is transferred from the fast to the shear Alfvén wave
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and thus no FLR results. As k, becomes larger, the distance from the turning point, x;,
to the resonance point, x,, increases. The evanescent compressional wave continues to
decay over the increased distance and reaches the resonance location with a much
smaller amplitude. Therefore, less wave energy reaches the resonance. In the limit
ky—>oo, the modes are again completely decoupled. The most efficient coupling occurs
for a small range of k, values. The coupling efficiency is determined by the amount of
energy absorbed by the shear Alfvén resonance. The encrgy absorption as a function of
the dimensionless coupling parameter

= 2 — (1.68)

has been calculated numerically by Speziale and Catto [1977], and Forslund et al.
[1975]. A plot of the absorption versus Q is shown in Figure 1.7(a). It is instructive to
determine what the coupling parameter values correspond to in terms of an azimuthal
wave number. The azimuthal wave number, m, represents the number of azimuthal
wavelengths which would fit around the Earth. Thus &, and m are related by

£ = 2x _27m _m (1.69)
y~ A T 2mx, x,

where A, is the azimuthal wavelength. Substituting (1.69) into (1.68) and using an
Alfvén velocity profile proportional to x-/ yields

2 2
Q= m2 73 - 2m 5273 - (1.70)
xf[kg(;)] (2x7k;)

This relation is plotted in Figure 1.7(b) for a resonance location of 10 Rz and a
reasonable field-aligned wave vector of k,=0.1 Rg’. Comparing Figures 1.7(a) and
1.7(b) we can see that efficient coupling occurs for azimuthal wave numbers in the
approximate range 0.5-2.0, with no coupling for m=0 and m—»oo. This result suggests
that FLRs generated by the compressional-shear coupling mechanism should exist only
for azimuthal wave numbers in the above defined range. However, as will be shown in
Chapter 2, FLRs with m values as large as 30 are often observed. A discussion of high-
m mode coupling and its unique characteristics are presented in Chapter 3.
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Figure 1.7. (a) Resonance absorption versus coupling parameter, Q,
[from Kivelson and Southwood, 1986]. (b) Plot of Q versus azimuthal
wave number, m.

1.2.4 Field Line Resonance Characteristics

FLRs have a number of distinguishing characteristics. They exhibit an inverse
relationship between frequency and latitude, i.c. lower frequency FLRs occur at higher
latitudes. In the region of the magnetosphere where the resonances discussed in this
thesis are observed, between ~8-12 R in the equatorial plane, the gradients in magnetic
field strength and plasma densities result in an Alfvén velocity profile which decreases
monotonically with radial distance. The field aligned wave vector, k,, which is inversely
proportional to the field line length also decreases with increasing radial distances.
Thus the standing shear Alfvén wave frequency, defined by

szAz' a1.71)
must also decrease with increasing distances from the Earth. Since larger radial

distances map to higher latitudes, the inverse relationship between frequency and
latitude results.
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With a monochromatic compressional mode driving the resonance, the
resonance will be localized in the radial direction and therefore latitudinally localized as
well. This localization can be seen in Figure 1.5. From equation (1.67), one can derive
an expression relating the width of the resonance to the magnitude of €. This expression
is

FWHM = 2./3[¢| (1.72)

where FWHM represents the full width of the resonance at half its maximum.
Observations have shown typical resonance FWHM values to be on the order of 1°
latitude at the ionosphere which corresponds to a FWHM of ~1 Rg at an L value of 10
R based upon a dipole field model. According to (1.72) a FWHM value of 1 R gives
lel =0.3 Rg. Therefore, this was the value used in calculating E, for Figure 1.5 and one
can see from Figure 1.5 that the FWHM is indeed ~ 1Rg.

The phase of the resonant wave fields as a function of latitude or radial position
is an important feature used to identify FLRs. The phase comesponding to the radial
component of the resonant electric field, E,, is shown as a function of radial position in
Figure 1.8. This figure shows the characteristic decrease in phase of ~180° as the
resonance is crossed radially (latitudinally) from smaller x (lower latitude) to larger x
(higher latitude). Note that this solution corresponds to the case where the azimuthal
wave number is small and the resonance is being driven externally. However, the phase
variation with latitude has been found to depend upon the size of k;, FLRs with large ky
values were found to exhibit an increasing rather than a decreasing latitudinal phase
shift. Observations confirming this are presented in Chapter 2 and its cause is discussed
in Chapter 3. In addition to the latitudinal phase changes being dependent upon the
azimuthal wave vector, k,, there are additional k, dependent characteristics. When k, is
small the FLR is termed a toroidal resonance since it is dominated by toroidal wave
fields, i.e. the wave electric fields are radial while the wave velocity and magnetic fields
are azimuthal. Whenkyislargedtetesonanceispﬁmaﬁlypoloidal, i.e. the wave
electric fields are azimuthal while the velocity and magnetic fields are radial. For
intermediate k,, values the resonance is a combination of toroidal and poloidal modes.
In all cases the fields must satisfy boundary conditions at the ionosphere. The boundary
conditions dictate that the electric and velocity fields have a node at the ionosphere
while the magnetic field has an antinode there. The characteristics of the wave fields
between the ionospheres will depend upon whether the shear Alfvén wave is a
fundamental or higher harmonic along the field line. Figure 1.9 is a schematic of the
wave fields of a toroidal FLR which is in a fundamental mode along the magnetic field
line.
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Figure 1.9. Fundamental wave fields of a toroidal FLR
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1.2.5 Discussion of Previous Work on FLRs

In the theories developed to explain the occurrence of FLRs in the
magnetosphere, there has been one issue that has remained unresolved: the source of the
compressional modes responsible for driving the FLRs. It was initially suggested that
surface waves on the magnetopause generated by solar wind driven Kelvin-Helmholtz
instabilities were initiating the compressional modes [Chen and Hasegawa, 1974;
Southwood, 1974]. However, such a source would be fairly broad-band thus exciting a
continuum of FLRs. Although there is evidence of such a continuum at low powers
[Waters et al., 1994], observations have consistently shown the existence of discrete
FLRs at powers well above the background. Recent observations of FLRs in HF
coherent scatter radar data [Ruohoniemi et al., 1991; Walker et al., 1992; Samson et al.,
1992a], ground-based magnetometer data [Ziesolleck and McDiarmid, 1994; Samson et
al., 1991], and simultaneously in VHF coherent scatter radar and ground- and satellite-
based magnetometer data [McDiarmid et al., 1994], have shown not only the discrete
nature of the FLRs but also that the same frequencies occur repeatedly on different days
at different local times during various magnetic conditions. The most commonly
observed reproducible frequencies were 1.3, 1.9, 2.6, and 3.3 mHz with uncertainties of
less than 10%.

The first attempts to explain the quantization of the resonance frequencies were
made by Kivelson et al. [1984] and Kivelson and Southwood [1985]. They proposed a
cavity mode theory where the discrete FLRs correspond to eigenmodes of a
magnetospheric cavity. However, a cavity implies boundaries in all three dimensions.
With no potential boundaries in the azimuthal direction the cavity model was modified
into a waveguide model by Samson et al. [1992b] and Wright [1994] to account for the
azimuthal propagation of the compressional modes. A picture of the magnetospheric
waveguide model is shown in Figure 1.10.

In the waveguide model a source disturbance in the magnetosphere generates the
compressional modes with the inner turning point and possibly the magnetopause
providing the waveguide boundaries. It is not certain what type of disturbance excites
the waveguide, but potential sources include pressure pulses in the solar wind, Kelvin-
Helmboltz instabilities in the low-latitude boundary layer, or plasma instabilities
associated with substorms and reconnection. The monochromatic eigenmodes generated
by the waveguide couple to the field line resonances, thus explaining the discrete nature
of the observed resonance frequencies.
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Figure 1.10. Magnetospheric waveguide model [from Samson et al., 1992b].
The solid lines near the Earth represent the turning points for the first three
eigenmodes (n=1,2,3) of the waveguide.

The eigenfrequencies of the magnetospheric waveguide can be estimated by
using a WKB solution to the equation governing the resonance. The WKB solution to
equation (1.55) is given by

i| Kdx -i|x
E,(x) =AK'V2eI +BK 2 Idx

(1.73)
where, as defined previously,

2= g
- -VE 2 y (1.74)

and A and B are constants determined by boundary conditions. The compressional
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eigenmode solution must match the solution at the turning point where the wave is
reflected with a 90° phase shift [Samson et al., 1992b; Walker et al., 1992). The
boundary at the magnetopause is considered a fixed boundary because of the large
changes in plasma density and magnetic ficld. In the WKB approximation the phase
integral when integrated across the waveguide will correspond to the change in phase of
the standing compressional ecigenmode from the magnetopause to the tumning point.
Since the standing compressional eigenmode must have a node at the magnetopause and
must match the taming point solution with a 90° phase shift, the change in phase from
the magnetopause to the turning point is given by (n-1/4)x. Thus the phase integral
must satisfy

j’::'xdx = (u-%)n . (1.75)

Samson [1992b] used both the phase integral approach as well as numerical solutions to
derive the first four harmonic frequencies of a model magnetospheric waveguide and
found them to be compatible with the commonly observed frequencies listed above.

Although the concept of a magnetospheric waveguide or cavity is very
successful in explaining the discreteness of the FLRs, there are many deficiencies in the
model when it comes to explaining all observations. The extreme stability and
reproducibility of the FLRs is inconsistent with a dynamic magnetosphere. The
dimensions and conditions of the magnetosphere are continually changing. Thus it is
inconceivable that a magnetospheric waveguide could produce the same stable
resonance frequencies at different local times, day after day, year after year. Also, any
magnetospheric waveguide system is going to be very dispersive, ie. its
eigenfrequencies are going to vary strongly with k, However, according to
observations, which are presented in the next chapter, reproducible FLRs occur over a
wide range of k, values. An additional deficiency of the magnetospheric waveguide
model is that the predicted frequencies for realistic magnetospheric conditions tend to
be substantially larger than the observed FLR frequencies. A discussion of the full
extent of the problems concerning the magnetospheric waveguide model as a source for
the monochromatic compressional modes is deferred to Chapter 4 where other scenarios
concerning the driving mechanism will be explored. However, before any new ideas
about the source can be postulated it is first necessary to fully investigate the observable
characteristics of the FLRs. Thus an observational study of numerous FLR cvents has
been undertaken using the Super Dual Auroral Radar Network (SuperDARN) of HF
radars. The methods and results of this study are the topic of the next chapter.
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2

Observations of Discrete Field Line Resonances Using
The Super Dual Auroral Radar Network!

In order to better understand the discrete FLR phenomenon, an observational
study of field line resonance events has been completed using the Super Dual Auroral
Radar Network (SuperDARN) of HF radars. In the following chapter the methods and
results of this study will be presented. It will be shown that the FLRs fall into one of two
categories: those with small azimuthal wave number and those with large azimuthal
wave number. The high- and low-m events share many common features. They both
have the same discrete and reproducible frequency spectrum, with the most common
frequencies being 1.3, 1.9, and 2.5 mHz. Both types of event are localized in latitude
with lower frequency FLRs occurring at higher latitudes. The high- and low-m FLRs
also have some distinct differences the most notable being their latitudinal phase shifts
which are decreasing for all low-m FLRs and increasing for all high-m FLRs. A
complete description of the similarities and differences between these two types of
resonances and their implications conceming a generation mechanism will be given.

2.1 Data Acquisition and Analysis Methods

The data used in this study were acquired by three of the operational HF radars of
SuperDARN. These radars included the Johns Hopkins University/Applied Physics
Laboratory (JHU/APL) radar at Goose Bay, which has been in operation since 1983, plus
an overlapping pair of radars located at Saskatoon and Kapuskasing which began
operation in mid 1993. The fields-of-view of these radars are shown in Figure 2.1. The
Saskatoon, Kapuskasing, and Goose Bay radars are denoted by the prefixes T, K, and G,
respectively. For a detailed description of the SuperDARN HF radars see Greenwald et
al. [1995].

1. A version of this chapter has been published. F. R. Fenrich, J. C. Samson, G. Sofko, R. A.
Greenwald, ULF high- and low-m field line resonances observed with the Super Dual Auroral
Radar Network, J. Geophys. Res., 100, 21535-21547, 1995.
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Figure 2.1. Fields-of-view of the Su r Dual Auroral Radar Network
(SuperDARN) radars atGooseBay( A Kaﬁ::kmn sﬁ and Saskatoon

g’nﬁl Amcl:can F.xge t (PACB) magneti hl?hstﬁ?é Polar
o- rimen c
contours [Baker and ﬂng.

Each radar consists of 16 log periodic antennas operating in the 8-20 MHz band.
At any instant, a single beam is formed. By means of a phasing matrix, the beam is
advanced through 16 successive azimuths with an angular separation of 3.24 degrees,
giving a total azimuthal field of view of about 52 degrees. The beams of each radar are
numbered O to 15, going from the westernmost to the easternmost beam. At each beam
azimuth, the integration time is 6.25 s, yielding a sampling interval of about 100 s per
complete 16-beam scan. For the pre-1990 Goose Bay data presented, the integration
time was 6 s per beam for normal scans, with every fourth scan including a calculation of
the elevation angle of arrival which doubled the integration time to 12 s per beam. At
each beam azimuth the SuperDARN radars transmit a 5 to 7 pulse sequence over a 100
ms time period. The returned backscatter from the pulse sequence is sampled and
processed to produce multi-lag autocorrelation functions as a function of range. The
autocorrelation functions are then fitted to determine the backscattered power, the mean
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Doppler velocity, and the width of the Doppler power spectrum for each range gate
where there is significant backscatter. The radar beams have a maximum of 75 range

gates spaced 45 km apart.

Figure 2.2 is an illustration of the manner in which VHF (30-300 MHz) and HF
(3-30 MHZ2) signals are scattered by field aligned electron density irregularities in the
ionosphere [Fejer and Kelley, 1980]. The HF frequencies refract towards the horizontal
as they enter the ionospheric layers. If the HF signals are propagating perpendicular to
the magnetic field when they encounter the electron density irregularities, the
backscattered signals will return to the radar. In the F region the irregularities are at rest
with respect to the background convection of the plasma [Ruohoniemi et al., 1987].
Therefore, the measured Doppler velocities represent the bulk flow of the ionospheric
plasma. Note that single beams can only measure the line-of-sight Doppler velocity, i.e.
that component of the plasma flow along the beam direction. However, the overlap
between SuperDARN radar pairs allows for the determination of total velocity vectors in
the plane perpendicular to the magnetic field line. Since plasma convection is
perpendicular to the Earth’s magnetic field the overlapping SupertDARN radars measure
the two-dimensional plasma convection pattern in the ionosphere. |

TN I
A I.TIM :Tlll i

_ _

Figure 2.2. Illustration of the scattering of VHF and HF signals by the
ionosphere (Taken from Greenwald et agl [1995)). e
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The SuperDARN system of coherent scatter HF radars provides an exceptional
tool for analyzing field line resonances. The ULF oscillations in the F region plasma
flows, which are associated with the field line resonances, are observable in the measured
line-of-sight Doppler velocities. Data analysis began by scanning range-time plots of the
line-of-sight Doppler velocity data in order to find periods of good scatter where ULF
pulsations in the velocity were apparent. Figures 2.3 and 2.4 show two examples of

range-time plots exhibiting ULF pulsations.
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Once a period of interest was identified, the data for cach beam was selected over
the range and time interval exhibiting good scatter. A two-dimensional interpolation of
the raw range-time data set was then performed to fill in small data gaps which were
typically no larger than a few points. Data sets with large gaps were not used. In order
to determine the spectral components present in the data, 32 or 64 point time series were
detrended, high-pass filtered (f > 0.5 mHz), and then fast Fourier transformed. The 32
point time series were used most often since the resonance events generally had a time
duration of ~1 hour which comesponds to ~32 data points given the 100 second
resolution of the data. Contour plots of power spectra for various FLR events are shown
in Figures 2.5 and 2.6. Note the reproducibility of the FLR frequencies (shown by the

dashed lines).
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2.6. Contour plots of 64- mt fast Fourier transform (FFI') power
spectra taken at numerous a) beam 11 of Saskatoon during the
time interval 0210-0400 on 23, 1994, (b) beam 8 of Goose
Bay during the time interval 0315-0505 UT on October 14, 1989. The

spectra are normalized to ten with the contour lines drawn at (a) 2, 4, 6,
8, and () 1, 3, 5, 7. The dotted lines indicate the spectral frequencies
which were identified as FLRs. Figure 2.6a is a low-m event,
while figure 2.6b is a high-m event.
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Measurements of the power and phase of the observed spectral peaks as a
function of latitude were made to identify potential FLRs. Examples of such
measurements are shown in Figure 2.7. The power spectra are normalized to an arbitrary
amplitude. The error bars represent statistical estimates of uncertainties in spectral
power and phase calculated in the same manner as Walker et al. [1979]). The mean
spectral power is calculated for each time series according to

n
2 2.1)

al’-‘

where P; is the spectral power at each of the n frequency points. The calculation is then
repeated, dropping the points for which P>2P. The resulting power, P-, is an estimate of
the noise and is used as the uncertainty in the spectral power. The uncertainty in the
spectral phase, 8¢, is approximated by

5 = aan [(P'/P)?] 22)
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Figure 2.7. (a) Latitude profile of the spectral power and at 1.9 mHz

along beam 8 of Goose Bay for the time interval 0735-0835 UT on

September 28, 1988 alaw-meven (b) Latitude profile of the spectral
power and atl(SmHzalon I):eam3of8askg&n for the time

mterval 2120-2220 UT on October 18, 1993 (a high-m event). Note the
difference in phase variation between Figutes 2.7(a) and 2.7(b).
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It should be noted that care was taken in using the data from a single beam of the
radar to determine the phase variation with latitude since azimuthal phase variations can
contaminate the measurement if the beam is not directed perpendicular to the latitudinal
contour of the resonance. However, in some cases the perpendicular direction was also
the direction of minimum amplitude in the measured Doppler oscillations. Therefore
phase variations with latitude were determined using beams which differed as little as
possible from the perpendicular direction to the resonance contour in order to minimize
the influence of azimuthal phase variations while maintaining sufficient amplitude.

If an observed spectral component corresponds to a ficld line resonance, it should
exhibit a narrow maximum in power and a phase decrease of ~180 degrees across this
maximum. Note the reverse phase shift in Figure 2.7(b). This was a very interesting
feature characteristic of all high-m resonances and will be discussed in detail in the
following sections. Also, since a FLR is extended azimuthally along a single L shell, it
should be visible on a number of the radar beams at approximately the same
geomagnetic latitude. Therefore, if a similar analysis of numerous beams in the radar
array yielded the same frequency component with the same FLR characteristics, then the
pulsation was identified as a FLR and analyzed in more detail using analytic signal
techniques.

The analytic signal A(t) corresponding to a given time series f{#) is defined by

A@) =f(0) —iH(1) , 2.3)

where H(1) is the Hilbert transform of f{7). The characteristics of the analytic signal are
described in detail by Walker et al. [1992). Essentially, the analytic signal separates the
amplitude information from the phase information, allowing one to instantaneously
measure the amplitude, phase, and frequency of a given spectral component. For this
method to be useful the data must be quasi-monochromatic and therefore the data were
first band-pass filtered in the time domain. To accomplish this the band-pass filter was
centered on the frequency of interest with a bandwidth of 0.6 mHz. This width was
chosen to be as narrow as possible in order to isolate the resonance frequency, yet wide
enough to allow any shifts in the frequency to be observable. In the analysis of a
particular resonance, the analytic signal amplitude was calculated for each beam at the
range gate where a given field line resonance was a maximum, as shown in Figure 2.8.
The instantaneous phase of the resonance was then measured along each of the beams
yielding a phase versus longitude relation. The phase errors were calculated using
equation (2.2). An example of phase versus longitude measurement is shown in Figure



42

2.9. The slope of this relation gives the azimuthal wave number, m. The 95%
confidence interval in the slope was calculated to determine the accuracy of the m value.
Note that small slope values and therefore small m values generally have a larger
percentage error associated with them, given that the errors in phase are independent of
the m value. The m value and the resonance frequency were then used to calculate the
azimuthal phase velocity. Calculation of cross-correlations between the analytic signal
amplitude envelopes yielded lag times of the resonance wave packet as a function of
longitude (see Figure 2.10) from which azimuthal group velocities were estimated.
Errors in the lag times were estimated from the width of the cross-correlation functions.

1.0 mHz < f < 1.6 mHz
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Figure 2.8. Stack plot of the analytic si litude envelopes for
vanousbeamsofl&puskasing(l( mdmmatthemnﬁfﬁmes
where the 1.3-mHz resonance was at its maximum on October 18, 1993,
during the time interval 1900-2300 UT. ‘I'heeoordmatescoqm?ondmgto
the gate values used are listed on the right side of the figure in PACE
magnetic coordinates. Note that this resonance was seen on both

! ng and Saskatoon at ~71.8 degrees magnetic latitude with the
maximum in the wave packet structure appearing earlier on the larger
beams of Kapuskasing indicating westward propagation.
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Although the SuperDARN system of radars was designed to provide the total
velocity vectors for the plasma flow using intersecting beams from overlapping radars,
we were unable to analyze the majority of resonance events using data from intersecting
beams for the following reasons. Of course, for the events before 1993, only the Goose
Bay radar was in operation. During the first 8 months of operation of the Saskatoon-
Kapuskasing radar pair, when the majority of the events were observed, the amount of
good scatter from the F region was very limited. This was believed to be due to changes
in the ionospheric electron densities during the sunspot minimum of the solar cycle. In
addition, the beams of Saskatoon and Kapuskasing have substantial overlap only at
latitudes greater than approximately 70 degrees PACE magnetic latitude. Therefore total
velocity vectors for resonances at latitudes lower than this cannot be determined. Thus
the resonance events in this paper have been analyzed for the most part with line of sight
velocities provided by single radars.

In the few instances where good ionospheric scatter was observed on both the
Saskatoon and Kapuskasing radars during an FLR event, a merge of the line-of-sight
velocity data from each of the two radars was possible. The overlapping field of view of
the radar pair is separated into a 16x16 grid defined by the intersection of the radar
beams. Figure 2.11 is a geographic plot of the Saskatoon-Kapuskasing merge grid.
Within each grid box the velocities measured by each radar are averaged. Since the radar
beam directions are known, the average velocities from each radar can be combined to
yield total velocity vectors at the center of each grid box.

2.2 Observations

The results of the analysis of 15 FLR cvents are summarized in Table 2.1.
Corresponding composite pictures of the azimuthal phase velocities mapped to the
equatorial plane using both a dipole model and the Tsyganenko 87 [Tsyganenko, 1987]
model are shown in Figures 2.12(a) and 2.12(b), respectively. The events were found to
occur on both the dayside and nightside of the magnetosphere during predominantly
quiet days with most events occurring when Kp < 3. ULF pulsations were observed on
more active days, but the structures were not stable enough to be observed across a large
portion of the radar and therefore could not be identified as FLRs.
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Figure 2.12. Mamings of the azimuthal R_hase velocities to the equatorial
lane for each of the resonances listed in Table 2.1 for (8) a dipole model and
i::) the Tsyganenko 87 [Il':yfauenko, 1987] model with an International
magnetic Reference Field IGRF). Note that event 2 and some of event
13 donotamm Figrulr‘eez.lz(p)becausethe’rm model it to greater
than 15 Rg tail. position of the magnetopause is taken from

Sibeck et al., [1991].
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One of the most striking results was the reoccurrence of FLRs with the same
discrete frequencies at various locations in the magnetosphere. The discrete and
reproducible nature of the FLRs can be scen in the power spectra of Figure 2.5 and 2.6
and is reemphasized in Figure 2.13, which shows the number of occurrences for cach
frequency. In agreement with previous studies [Ziesolleck and McDiarmid, 1994;
Samson et al., 1992a, 1992b; Walker et al., 1992; Ruohoniemi et al., 1991], the most
common FLR frequencies were 1.3, 1.9, and 2.5-2.6 mHz. There were also resonances
observed at less common frequencies such as 0.8, 1.0, 1.5-1.6, 2.2, 2.8, 3.3, and 3.6
mHz. Given the spectral resolution the errors in the observed frequencies are ~30.1
mHz. For resonances occurring at the same time during a given event, the lower-
frequency resonances were localized at higher latitudes than the higher-frequency
resonances as predicted by theory.

| 20 am 2m an BE e e Sn Sm um am o 2w R SR D Sn n 2o aw o o n M S S BE Sm e he a2 B SN ML SR A s e mm an
|

(SN
N
<
4
4
1 . 4 4 2

L
(=

NUMBER OF OCCURRENCES
o\
— T T Ty

3

b

J

3
‘;‘lll‘l‘]‘lllll

4
2
oL S R e,
0 3 4 5
FREQUENCY (mHz)

lF‘}ﬂu 2.13. Number of occurrences observed to date for the various
uencies. The &eg:ency bins are 0.2 mHz in width centered
at 0.1, 0.3, 0.5 mHz, etc. For example, the bin centered at 1.3 mHz covers
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Two common features shared by all of the resonances were their stable
frequencies and wave packet structure which were found to last for a duration of ~1 hour.
These features are seen in Figure 2.14, which shows examples of the analytic signal
representation and corresponding instantaneous frequency for two FLR events. The
instantaneous frequency was calculated by taking the time derivative of the
instantaneous phase of the analytic signal. Figure 2.14 also emphasizes the similar
temporal variation of the resonance amplitudes for different frequency components in a
given event, which is expected if the frequencies are harmonics of the fast compressional
component in the cavity or waveguide.
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2.14. Analytic signal amplitude and frequency for the 1.9-mHz and
2.5-mHz resonances of two different events: (a) February 2, 1994 (low-m),
and (b) October 6, 1993 (high-m). The dotted lines represent the
bandwidth of the filter. Note the wave packet structure and the stable

frequencies.
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The m values ranged from 2-42 with distinct differences between resonances
with low-m values (i.e., m < 17) and those with high-m values (i.e., m > 17). All of the
observed high-m resonances exhibited a reverse phase change with increasing latitude,
i.e., an increase in phase as the resonance was crossed, rather than the standard phase
decrease of ~180 degrees which is predicted by FLR theory and characteristic of all the
low-m resonances. The range-time plots of Figures 2.3 and 2.4, which correspond to a
low- and high-m event, respectively, illustrate this difference in phase variation. The
poleward moving bands in Figure 2.3 represent bands of constant phase. The motion of
the bands poleward indicates that the lower latitudes lead the higher latitudes in phase,
i.e. the standard decrease in phase with increasing latitude. Likewise, the equatorward
moving bands in Figure 2.4 indicate the reverse or an increase in phase with increasing
latitude. These phase variations are shown explicitly in Figure 2.7.

Another of the observable differences between the high- and low-m resonances
was the polarization direction of the oscillating drift velocities. The high-m resonances
were characterized by predominantly magnetic north-south velocity oscillations, while
the low-m resonances displayed magnetic cast-west velocities. The polarization
directions of the velocity oscillations were first estimated by measuring the maximum
amplitude of the line-of-sight velocities as a function of beam direction as done by
Ruohoniemi et al. [1991). This method assumed that the resonant pulsations were
linearly polarized. Examples of such measurements for low- and high-m resonances are
shown in Figures 2.15(a) and 2.15(b), respectively.

There were two events, the 18 October 1993 event and the 2 February 1994
event, where there was sufficient data on both the Kapuskasing and Saskatoon radars to
allow determination of total velocity vectors rather than just the line-of-sight velocities.
In order to confirm the velocity polarization characteristics, total velocity vectors
corresponding to a given FLR during each of these events were determined. The
resulting velocity polarizations at the location of the resonance maximum are shown in
Figures 2.16(a) and 2.16(b) for a low-m and high-m FLR, respectively. It can be seen in
these figures that the resonant pulsations are indeed linearly polarized at the resonance
maximum. In the case of the high-m resonance the polarization direction is close to
perpendicular to the line of the resonance contour. Since the resonance contour lies on a
magnetic L shell the polarization direction for the high-m resonance is approximately
magnetic north-south. In the low-m case the polarization direction is approximately
along the resonance contour and therefore is approximately along magnetic east-west.
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A merge of the pulsation flow velocities in the vicinity of a low- and a high-m
FLR are shown in Figures 2.17(a) and 2.17(b), respectively. Figure 2.17(a) corresponds
to the 2.6 mHz low-m FLR of 2 February, 1994; while Figure 2.17(b) corresponds to the
1.3 mHz high-m FLR of 18 October, 1993. In these figures it is appareat that both the
high- and low-m FLRs exhibit a vortex flow pattern, however, there is a significant
difference in their respective flow patterns. The high-m FLR is characterized by a
succession of small vortices along the east-west direction, while the low-m FLR is
characterized by two larger vortices aligned along the north-south direction and which
are elongated azimuthally. These observations confirm that the FLR plasma flows have
the potential to wrap up into vortices as predicted by linear MHD simulations [Ding et
al., 1995).

Further differences between the high- and low-m resonances can be seen in the
composite pictures of azimuthal phase velocities shown in Figures 2.12(a) and 2.12(b).
The high-m resonances, those with small azimuthal phase velocities, were clustered on
the dayside and around local midnight with all but one propagating westward. The low-
m resonances, those with large phase velocities, were clustered near the dawn and dusk
flanks and propagated predominantly anti-Sunward, i.c., eastward at dusk and westward
at dawn. The group velocities were generally of the same order of magnitude for both
the low- and high-m resonances ranging from 0.2 to 3.1 kmv/s in the ionosphere for the
low-m resonances and 0.3 to 1.2 knvs for the high-m resonances. The resonance group
velocity was always found to be smaller than the phase velocity and in most cases was in
the same direction as the phase velocity. The group velocities are significant because
they indicate the direction of azimuthal energy propagation, an important factor when
considering where the source might be.
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Figure 2.17. of band-passed line-of-sight Doppler velocity data from
the Saskatoon uskasing radars for (a) the time interval 1:23:20-
1:25:0 on 2 Feb 1994 (2.4 <f<2.8 )andgb) the time interval
21:08:20-21:10:01 on 18 Oct 1993 (1.1 mHz< f < 1.5 mHz). In each case
the vortex flow pattem is sketched with a short dashed line. Note that (a
corresponds to a low-m FLR while (b) corresponds to a high-m FLR.

dashed lines are geographic coordinates and the solid lines are PACE

geomagnetic coordinates.
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2.3 Discussion

The first point that needs to be addressed is the occurrence of the high-m
pulsations which exhibit some very interesting characteristics not typical of classic field
line resonances. This brings up the following question: Are the high-m pulsations
initiated by the same source as the low-m pulsations, or are they due to some other
mechanism such as a wave-particle source? To help in answering this question, the
observations of high-m pulsations presented in previous studies plus those of this paper
will be discussed in terms of which source mechanisms they support.

ULF pulsations with large azimuthal wavenumbers have been detected in
previous VHF radar studies Allan et al., 1982; Grant et al., 1992; Walker et al., 1982;
Yeoman et al. 1992). A summary of the common observations presented in these studies
only is as follows:

1. The majority of the high-m pulsations occurred in the noon-dusk quadrant.

2. The pulsations occurred at discrete frequencies with different frequencies
dominant at different times. The most common frequencies found in these studies were
2.6 and 3.2-3.4 mHz.

3. Each pulsation had a latitudinal extent of approximately 3 degrees covering a
large portion of the radar field of view. The pulsations did not appear to be localized
within the field of view but would certainly be considered localized if they did not extend
outside the field of view.

4. All pulsations exhibited westward phase propagation. In some cases the
azimuthal phase velocity was mapped to the equatorial plane and was found to be
consistent with gradient-curvature drifts of 35-70 keV protons in the ring current.

5. In most cases, an equatorward phase propagation consistent with an increase in
phase with geomagnetic latitude was seen. Yeoman et al. [1992] provided evidence that
such latitudinal phase increases could occur in regions like the plasmapause where the
Alfvén velocity gradient is radially outward, not radially inward as it is in the region
outside of the plasmapause. In the other studies the pulsations occurred at latitudes too
high to involve the plasmapause, and in these cases the reverse phase variation remained
unexplained.

6. All pulsations showed near-linear polarizations in the drift velocities with the
polarization aligned close to the geomagnetic north-south direction. When mapped to
the equatorial plane, they were radial in direction.

In the above studies a wave-particle source mechanism involving a drift-mirror
instability was believed to be responsible for the observed pulsations. Cheng et al.
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[1994] have examined drift mirror and drift Alfvén ballooning modes as possible
explanations of Pc 5 waves.

The characteristics of the high-m resonances observed in this study agree in many
ways with the characteristics of the previously observed high-m pulsations listed above.
This suggests that they are all the same type of event. However, the high-m pulsations of
this study were found to exhibit additional characteristics which may shed new light on
the possible source mechanism. To begin with, the high-m resonances were found not
only in the noon to dusk range of local times but also in the post-midnight and moming
sectors. The high-m resonances of our study also showed numerous similarities to the
resonances with small azimuthal wave numbers. They showed the same strong
localization in latitude (see Figure 2.7) with an inverse relation between frequency and
latitude (see Figure 2.5 and 2.6), as well as a very similar wave packet structure (see
Figure 2.14). But most remarkably, they were found to exhibit the same discrete
common frequencies as found for the low-m FLRs, i.e., 1.3, 1.5-1.6, 1.9, and 2.5-2.6
mHz. In fact, referring back to the previous studies of high-m pulsations, they too were
found to occur at discrete frequencies with 2.6 and 3.2-3.4 mHz being the most common
[Allan et al., 1982; Grant et al., 1992; Walker et al., 1982]. These new observations
provide strong evidence that the high- and low-m FLRs may be initiated by the same
mechanism. In further support of this, one resonance event, that of October 6, 1993,
included pulsations which showed a decrease in their azimuthal wave number from the
high-m regime to the low-m regime. For example, the 1.3-mHz resonance of this event
initially showed a large m value of ~17 and a reverse phase change with latitude. Then
approximately 25 min later the azimuthal wave number had reduced to ~9, and the phase
variation with latitude became the standard decrease of ~180 degrees.

If in fact the low- and high-m resonances do originate from the same source, then
a source involving solely a wave-particle interaction must be ruled out since such a
source could not produce pulsations with small azimuthal wave numbers propagating
both eastward and westward. Currently, low-m field line resonances are believed to be
coupled to fast wave ecigenmodes generated by a waveguide or cavity in the
magnetosphere; but can a magnetospheric waveguide or cavity model explain the high-m
resonances as well? A detailed discussion of the magnetospheric waveguide modes as a
potential source for both the high and low-m FLRs is presented in Chapter 4. There it is
shown that the magnetospheric waveguide is an unlikely candidate for the source of the
FLRs. It is also shown that the source is most likely external to the magnetosphere and a
new theory involving the magnetosheath as a waveguide is developed.
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Figure 2.18 is a schematic diagram illustrating the general locations and
propagation directions of the high- and low-m resonances together with a proposed
source location. The placement of the source on the flanks is supported by the location
and propagation directions of the resonances. Propagating away from the source is a set
of fast wave modes which have a continuum of azimuthal wave numbers. The fast waves
with small k, will couple to FLRs near the source, while the fast waves with larger values
ofkywillptopagateaway,bothupmddownthewavegnide, and will couple to FLRs
further from the source. This scenario predicts the occurrence of eastward propagating
high-m resonances in the pre-noon and pre-midnight sectors for which few examples
have been observed. If the high-m resonances require amplification by a wave-particle
interaction with the westward drifting ring current protons then this would explain the
lack of high-m resonances propagating eastward.

2.18. Schematic di of the equatorial sphere illustratin
&g:::eml locations md?mmpagan'on dnectx‘eq ions ofmpgﬁ high- and ¢
low-m resonances. The bold arrows represent observed tion
directions with the length of the arrows an indication of the re
magnitudes of the azimuthal phase velocities. The dashed arrows are only
mﬂmmn due to limited data in the prenoon and premidnight sectors.

shown are the proposed source locations.
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Regardless of what the source of the high-m resonances is, the reverse phase
associated with them is a very puzzling result. Statistical studies of both poleward
(standard phase) and equatorward (reverse phase) moving events observed on VHF
radars have been reported by Waldock et al. [1983] and Tian et al. [1991]. These studies
have linked the equatorward moving events to events occurring in the region of the
plasmapause and poleward events to events occurring outside of the plasmapause.
However, they made no measurements of azimuthal wave number, and we are left to
assume that their results include both low- and high-m pulsations. Yeoman et al. [1992],
on the other hand, did measure the azimuthal wave number for 26 equatorward
propagating events and found the m values to range from 10 to 30. Therefore these
events were predominantly high-m events. As discussed earlier, Yeoman et al. explained
the equatorward propagation of these events as being due to the occumrence of the
pulsations in the plasmapause region, in accordance with the results of Waldock et al.
and Tian et al. In addition, Nielsen and Allan [1983] reported a double low-m resonance
observed simultancously at plasmapause and plasma trough latitudes. The phase
variation for this double resonance was of the reverse sense at the plasmapause latitude
and of the standard sense at the plasma trough latitude.

Thus it can be concluded, from the aforementioned studies, that pulsations at
plasmapause latitudes exhibit equatorward motion. This equatorward motion
corresponds to an increase in phase with increasing latitude which is consistent with the
outward gradient in the local shear Alfvén resonance frequency found at the
plasmapause. In our study, however, all of the resonances are being observed at latitudes
between 69° and 74° geomagnetic latitude where no radially outward gradient in the
local shear Alfvén resonance frequency is expected. In fact, an inward gradient in the
local shear Alfvén frequency is confirmed by the fact that all resonance events, both low-
and high-m, exhibit an inverse relation between frequency and latitude (see Figure 2.5
and 2.6). Thus our observation of a reverse phase variation with latitude for the high-m
resonances is not expected. Further discussion of the high-m reverse phase problem and
a possible explanation can be found in Chapter 3.

A final point that warrants discussion is the observation of the less common field
line resonance frequencies that do not fit into a simple magnetospheric waveguide model
which predicts only a few frequencies like 1.3, 1.9, 2.6, and 3.3 mHz. The intermediate
frequencies, such as 1.5-1.6 mHz, also seen by Samson et al. [1992a], were rarely found
to exist independently of the more common frequencies indicating that there may be
some link between them. Ziesolleck and McDiarmid [1994] suggest that they may be
sidebands adjacent to the fundamental frequency peaks produced by the large-amplitude
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modulation of the wave trains. The observation of resonances at lower frequencies, i.e.,
0.8 and 1.0 mHz, also has important implications regarding the magnetospheric
waveguide model since they indicate a waveguide of dimensions larger than that which
can be generated by an outer boundary at the magnetopause and an inner boundary at the
turning point.

2.4 Summary

The numerous field line resonances observed with the HF radars of the new
SuperDARN system can be clearly classified into two distinct groups based upon the size
of their azimuthal wave number, m. The high-m resonances (i.c., m> 17) exhibited the
following characteristics.

1. They were localized in latitude with an increasing latitudinal phase shift.

2. They exhibited an inverse relation between frequency and latitude which is
indicative of a radially inward gradient in the local shear Alfvén resonance
frequency.

They showed a wave packet structure with a duration of ~1 hour.

All except one propagated westward.

They were clustered in the local afternoon and midnight sectors.

The pulsation velocities were linearly polarized predominantly in the
magnetic north-south direction.

7. In one instance a vortex flow pattern aligned azimuthally was observed.

The low-m resonances (i.c., m < 17) were characterized by the following.

1. They were localized in latitude with a decreasing latitudinal phase shift.

2. They exhibited an inverse relation between frequency and latitude.

3. They showed a wave packet structure with a duration of ~1 hour.

4. Most propagated anti-Sunward (i.e., westward at dawn, eastward at dusk).

5. They were clustered near the dawn and dusk flanks.

6. The pulsation velocities were linearly polarized predominantly in the

magnetic east-west direction.

7. In one instance an elongated vortex flow pattern aligned north-south was

observed.

Although these two classes were distinguishable, resonances from both classes
were found to occur at the same discrete frequencies, 1.3, 1.9 and 2.5-2.6 mHz, that have
previously been associated with a magnetospheric waveguide. As well, some less
common frequencies were found to reoccur such as 1.5-1.6 mHz.

WA W
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The high-m resonances presented in this paper shared many common features
with previous reports of high-m pulsations. These reports supported a wave-particle
interaction as a source mechanism based upon the consistent westward propagation and
the noon to midnight location of the high-m pulsations. However, our observations,
which strongly link the low- and high-m resonances to the same source, make an
exclusive wave-particle source unlikely and suggest that the wave-particle interactions
may only play a role in amplifying the high-m waves already preseat. The role of wave-
particle interactions is discussed further in Chapter 3. The locations and propagation
directions of the high- and low-m resonances are consistent with a source of fast waves
located at the flanks of the magnetosphere.

This observational study of FLRs has introduced some new and interesting
questions. What is the nature of the source generating the discrete fast wave spectrum
which couples to the FLRs. Why do the high-m resonances have a reverse phase change
with latitude? How do the high-m modes couple as strongly as they do to the field line
resonances? And finally, why do the same stable resonance frequencies occur repeatedly
independent of local time and k,? Finding answers to these questions is the purpose of
the next two chapters.
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3
Growth and Decay of Field Line Resonances 1

Chapter 2 outlined a number of problems concerning the observed features of the
FLRs. The most important of these problems is the lack of a consistent theory describing
the complete mechanism responsible for generating the discrete FLR spectrum at both
large and small m values. However, it is known that fast wave modes in the outer
magnetosphere are driving the FLRs, so the main problem then is to determine the
generation mechanism for the discrete spectrum of fast wave modes. There is another
problem, though, in the fact that the high-m FLRs exist at amplitudes comparable to
those of the low-m FLRs. As shown in Figure 1.7, the high-m coupling efficiency
between the fast and shear Alfvén waves should be orders of magnitude smaller than that
of low-m coupling [Speziale and Catto, 1977; Kivelson and Southwood, 1986). Also, the
high-m FLRs are characterized by an increase in phase with latitude rather than the
expected decrease in phase which is characteristic of the low-m FLRs. Possible
resolutions to the latter two problems are presented in this chapter. The stability of the
FLR frequencies and the generating mechanism will be addressed in Chapter 4.

The basic premise of this chapter is that FLR growth rate, latitudinal phase shift,
and azimuthal wave number are all interrelated. The goal is to sort out what that
relationship is. The growth rates for the set of FLRs presented in Chapter 2 have been
measured. The methods of growth rate measurement are detailed in Section 3.1. In
Section 3.2 the results and a discussion of the factors relating the resonance m values,
growth rates, and phase characteristics are presented. It is shown that an additional
internal energy source is involved in the high-m mode coupling and is responsible for the
distinguishing features associated with the high-m modes. It is suggested that a wave-
particle interaction provides the internal energy source.

1. A version of this chapter has been submitted for publication. F. R. Fearich, J. C. Samson,
Growth and Decay of Field Line Resonances, J. Geophys. Res., submitted June, 1996.
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3.1. Methods of Growth Rate Measurement

The data coasists of the extensive set of FLR events presented in Chapter 2. In
this chapter only the methods used to determine the growth rates will be discussed. For a
detailed description of the general methods used to identify and characterize the FLRs
see Chapter 2.

A field line resonance event evolves both temporally and spatially. A single
beam of a radar observes both the temporal growth of the complete coupled system plus
the spatial variation of the azimuthally localized resonance as it propagates through the
field of view. The result is that each beam measures a time varying resonance amplitude
with a characteristic wave packet structure which is determined by both the temporal and
spatial variations of the resonance. In this paper it is only the temporal growth or decay
of the complete FLR-fast wave system which is of interest. This type of growth or decay
should be observable as a change in the maximum amplitude of the FLR wave packet as
it propagates through the field of view of the radar. An example of the resonance wave
packet structure and its propagation through the ficld of view of the radar is shown in
Figure 3.1. Note that the azimuthal wave number, m, is determined by measuring the
instantaneous phase of the wave as a function of longitude.

The HF radars provide line-of-sight Doppler velocity measurements
corresponding to the convective plasma flows in the F-region of the ionosphere. The
observed resonances are identified by oscillations in the measured background
convective plasma flows. To measure the growth or decay of a particular resonance the
Doppler velocity measurements were sclected for all radar beams along which the
resonance was observed. For each of these beams the velocity time series corresponding
to the range gate where the power of the resonance was a maximum was selected for
analysis. Recall that single radars provide only the line-of-sight Doppler velocities, i.e.
only the component of velocity along the given radar beam. In order to get total
velocities two radar measurements are required. However, since most of the identified
resonances were observed only by single radars, due to the latitudinal location of the
resonance and poor ionospheric scatter, the true pulsation velocity vectors were not
directly measurable. Therefore a correction to the data had to be made to compensate for
the angle of the beam to the pulsation flow direction.

In order to correct the line-of-sight velocities to get the total pulsation velocity a
number of assumptions had to be made. First, it was assumed that the velocity fields at
the resonance maximum were linearly polarized. Linear polarization at the resonance
maximum has been shown in the coupling theory of Southwood [1974] and Chen and



64

Hasegawa [1974]. Second, the pulsation flow direction for the low-m resonances was
assumed to be aligned along the resonance contour, i.e. approximately east-west, while
the high-m resonances were assumed to have a pulsation flow direction aligned
perpendicular to the resonance contour, i.c. approximately north-south. These
assumptions conceming the pulsation flow directions are supported by the observations
shown in Figure 2.16 as well as the theoretical result that the low-m resonances
correspond to the toroidally dominated mode with azimuthal or east-west velocity fields,
while the high-m resonances correspond to the poloidally dominated mode with radial or
north-south velocity fields. Numerous VHF radar studies [Walker et al., 1979; Poulter,
1982; Grant et al., 1992; Yeoman et al., 1992] have observed these pulsation flow
directions. Ruohoniemi et al. [1991] used the variation in the line-of-sight velocity
amplitudes with beam direction to estimate the pulsation flow directions and found the
directions to be consistent with those mentioned above.
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A plot of the location of the resonance as a function of latitude and longitude
across the radar yielded the position of the resonance contour and therefore the pulsation
flow direction, either parallel to the contour for a low-m resonance or perpendicular to
the contour for a high-m resonance, from which the angle of the beam to the pulsation
flow direction was determined. Specifying this angle by ¢, the correction made to the
line-of-sight Doppler velocities for that particular beam is given by

v
Ve= (@ G.1)
where V, is the corrected velocity and V,, is the measured line-of-sight Doppler velocity.
An example of a measured resonance contour, estimated flow direction and beam
direction is shown in Figure 3.2.
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Figure 3.2. Plot of the resonance contour for a 2.5 mHz resonance
observed on October 18, 1993. Because this was a high-m resonance the
flow direction is estimated as being perpendicular to the resonance contour.
The angle ¢ represents the angle between the pulsation flow direction and

any given radar beam direction.
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In order to isolate the resonance frequency of interest, the corrected velocity data
for each beam was band-pass filtered with a bandwidth of 0.4 mHz centered on the
resonance frequency. Note that the time resolution of the data is 100 seconds. For each
beam, at the range gate where the resonance was a maximum, the power of the resonance
wave packet was determined using the following method. A set of 32 point FFTs were
taken at successive time points in the time series from well before the resonance to well
after the resonance. Since a resonance wave packet typically lasted for approximately
one hour, the set of FFTs covered a total time interval of approximately 2 hours. For
each FFT the power spectrum was summed to give a total power value for that particular
FFT time interval. The total power values for all FFTs were compared and the maximum
found. The central time of the FFT window for which the total power was a maximum
was chosen to represent the time corresponding to the resonance maximum along that
particular beam. The Fourier analysis method was repeated for each selected beam
yielding the total power of the resonance as a function of time. Note that the times
chosen to correspond to the resonance maxima along the various beams were for the
most part consistent with the propagation direction of the resonance. The plot of total
power versus time was fit with an exponential curve whose time constant was used to
determine the growth or decay rate of the resonance. Figure 3.3 shows examples of
power versus time plots and their exponential fits for both a low-m and a high-m
resonance. Figure 3.4 is a plot of the measured growth rates versus m value for all
identified resonances. The plot also indicates the latitudinal phase shift of each
resonance. Errors represent the standard deviation in the exponential fit. Points with
greater than 50% error have been excluded as well as those points with m values between
10 and 25 since the assumptions conceming flow direction do not hold for intermediate
m values.
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3.2. Results and Discussion

The plot of growth rate versus azimuthal wave number in Figure 3.4, shows that
all of the high-m resonances exhibit growth while all, but one, of the low-m resonances
exhibit decay. Also, all of the high-m resonances are characterized by a phase increase
with latitude while all of the low-m resonances show a decrease in phase with latitude.
These results indicate that there is indeed a relationship between the growth rate,
latitudinal phase variation and azimuthal wave number. The consistent growth of the
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high-m resonances is a very interesting observation. It suggests that in the case of the
high-m resonances there is possibly some additional input of energy to the coupled
system. The presence of an internal energy source, or lack thereof, may be the key to
explaining the observed relationship between growth rate, latitudinal phase structure and
m value. To investigate this possibility the ideal MHD theory governing the low-m
resonance will be discussed. Then an intemnal driver will be added to simulate the high-
m case

3.2.1. Low-m Case

In the general low-m case, the shear Alfvén field line resonance is driven by a
monochromatic fast wave in the outer magnetosphere. The equations governing the cou-
pling of the fast wave mode to the shear mode are well known and have been derived in
the Chapter 1. Some of the derivations and equations will be repeated here for conve-
nience. According to linear MHD coupling theory [Southwood, 1974; Chen and Haseg-
awa, 1974] the azimuthal component of the electric field, E,, is given by

2
k:a—'[?‘ 'k:] 2
azEy- : X Viz aE’+[9—-k§-k§JE,=O 3.2)
ox? [g__kz O _p2_p Vi
vi Z V: Z y

where the z-direction is field aligned, the x-direction is radial, and the y-direction is azi-
muthal. The wave frequency is represented by @, the Alfvén velocity by Vj, the field
aligned wave vector by k,, and the azimuthal wave vector by k. This equation has a sin-
gularity at the resonance position defined by

o
i © (3.3)

If there is no process by which energy can be dissipated at the resonance location, the
standing shear Alfvén wave amplitude will grow to infinity. However, the ionosphere is
not a perfect reflector to the shear Alfvén wave. Because the ionosphere has finite
conductivity, the magnetic field perturbations above the ionosphere drive ionospheric
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currents which dissipate energy through Joule heating. The dissipation of energy results
in a finite field line resonance amplitude. Thus the Poynting flux at the ionosphere,
which is given by

S = p,0,EL ', 3.4

is downward along the ficld lines. In equation (3.4) 0, is the height integrated Pedersen
conductivity and E, is an induced wave electric field in the ionosphere resulting from the
oscillating wave magnetic field above the ionosphere. Note that the primary wave
electric field has a node at the ionosphere.

Taking the wave perturbations to vary as expli(aw-kyy-k;2)], the ionospheric
dissipation of energy may be represented in the coupling equations by letting the field
aligned wave vector, k,, have a positive imaginary part, i.c.

k, = k, +ik,; 3.5)
where k; is proportional to the ionospheric conductivity. By defining
2
s 2
G(x) =|—=-k
) [Vi ZJ 36)

and using complex k, with lk,j<<Ik,,l, G(x) may be expressed as

2

L10)
G (%) s;g-ki-zik,,k,,.. (X))
A

If x=x, is the value of x at the resonance where w?/V,2=k,2, then G(x) may be expanded
about x=x, to give
G(x) = G’'(x,) (x—x, +i€) (3.8)

where G'(x,) represents the first derivative of G(x) at x,, and € is defined by

- ‘2kak 2 (3 .9)

=T
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Note that in the region of the magnetosphere where the FLRs have been observed, i.e. at
latitudes of ~68°-74° at the ionosphere, there is generally a decrease in both V4 and k,
with increasing x which results in a corresponding decrease in the field line resonant
frequency. This frequency gradient has been confirmed observationally by the fact that
the lower frequency resonances are observed at higher latitudes. Thus G'(x,) is expected
to be positive unless there is a reversal of the shear Alfvén frequency gradient. With both
G'(x,) and k; being positive, € will be negative. By substituting equation (3.8), equation
(3.2) near the resonance, x=x,, becomes
4E, b1 9 o (3.10)
2 x-x +ie) dx V7

which, for small k,. has solutions of the form

Ey = -E,in [:l:ky (x-x +i€)] . @3.11)

Note that there are two possible solutions. However, the correct solution is the one
which will match the fast wave solution outside the resonance region. For the case of k,,
positive the correct solution corresponds to the negative sign in equation (3.11).

For the case of small k, the resonance is a toroidal wave with the wave electric
field being primarily radial in direction. Therefore the sense of phase variation across
the resonance is best illustrated by the phase changes in the radial component of the
electric field, E,. From the lincar coupling theory E, is related to Ey, by the following
equation.

" dE,
Ny
E,= 5 3.12)

® 2 ;2
-k —k,

"v'z; z

~

Combining (3.11) and (3.12) yields the following expression for E, near x=x,.

_ -E,[e+i(x-x,)]
 k[G-x)i+el

3.13)

X

The amplitude and phase of E, according to equation (3.13) are shown in Figure 3.5. To
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generate this figure £=-0.3 Re and k=0.1 Re’! have been used. The value of € was
chosen to yield a resonance width consistent with observations while the k, value
corresponds to m~1. The decrease in phase by ~180° as the resonance is crossed going
from smaller x (lower latitudes) to larger x (higher latitudes) is consistent with all low-m
observations.
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Figure 3.5. Plot of the amplitude (solid line) and phase (dashed line) of E;
near the resonance at x=x,=10 R for the low-m case.

Thus the low-m scenario may be summarized as follows. A monochromatic fast
wave mode in the outer magnetosphere couples to the shear Alfvén field line resonance.
Because of the finite ionospheric conductivity, energy in the coupled system is dissipated
into the ionosphere. During the initial time development of the coupling process the
FLR will grow. At some point a marginal steady state will be reached where the
Poynting flux into the FLR from the fast wave balances the Poynting flux into the
ionosphere. This directionality of the Poynting flux results in the standard latitudinal
phase decrease. If the energy of the fast wave mode is finite, the amplitude of the fast
wave and the FLR will decrease together at a rate proportional to the rate of energy loss
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into the ionosphere.

The scenario described above is in good agreement with the low-m observations.
Although all of the low-m resonances exhibit the standard decrease in the latitudinal
phase shift, which is consistent with the direction of the Poynting flux, not all low-m
FLRs exhibit decay. The one instance where the low-m FLR grows most likely
corresponds to the case where the coupled system is in its initial time development stage,
whereas the remaining low-m FLRs correspond to the period of marginal stability.

For the purpose of illustration, consider the situation where the energy for the
coupled shear-fast Alfvén wave system originates intemally at the resonance location
rather than an externally. In this case the Poynting flux would be in the opposite
direction to that described above, i.e. it would point out into the fast wave from the FLR.
This situation can be represented mathematically by taking € as positive rather than
negative. The relationship between the Poynting flux and € can be seen in Figure 3.6(a)
which illustrates the radial Poynting vector, S,, for € taken as negative, and Figure 3.6(b)
which illustrates the radial Poynting vector for € taken as positive. In Figure 3.6(a) the
slope of Poynting flux versus radial position is negative in the resonance region
indicating that energy is being absorbed there. The plot also shows that the Poynting
flux direction is into the FLR from the fast wave, i.e. S, is negative for x>x,. In Figure
3.6(b) the slope of Poynting flux versus radial position is positive in the resonance region
indicating that there is now an injection of energy at the resonance region. In this case,
the Poynting flux direction is from the resonance out into the fast wave, i.e. Sy is positive
for x>x,. Thus a negative € simulates an absorption of energy at the resonance with the
Poynting flux directed from the fast wave into the FLR, while a positive € simulates an
injection of energy with Poynting flux directed from the FLR into the fast wave. Note
also that the magnitude of € determines the width of the resonance region and thus the
region over which the energy is either being absorbed or injected.

It is the direction of the Poynting flux, represented by the sign of €, which
determines the sense of the latitudinal phase variation across the resonance. Recall thata
decreasing latitudinal phase shift results when the Poynting flux direction is from the fast
wave into the FLR and down into the ionosphere as was shown above in Figure 5 for the
low-m case. Now consider the new case where the Poynting flux is in the opposite
direction, i.e. from the FLR into the fast wave. Figure 3.7 depicts the low-m solution for
this scenario showing the amplitude and phase of E, with € taken as positive. Here the
latitudinal phase shift is increasing rather than decreasing which confirms the effect of
the Poynting flux direction upon the latitudinal phase shift.
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Figure 3.7. Plot of the amplitude (solid line) and phase (dashed line) of E,
near the resonance at x=x,=10 R for the low-m case with € taken as
positive.

3.2.2. High-m case

Since the discrete frequency spectrum of the high-m FLRs is almost ideatical to
that of the low-m FLRs, the fast wave driver must be responsible for initiating the high-m
FLRs as well. However, there also must be an additional internal driver to the system
which causes the temporal growth of the high-m modes and makes them observable. The
presence of an internal driver causes the energy to flow from the internal driver into the
FLR and out into the fast wave. When the system reaches a marginal steady state, the net
Poynting flux into the FLR from the internal driver will approximately equal the Poynt-
ing flux from the FLR into the fast wave. If there is no energy dissipation mechanism in
the fast wave region, the fast wave will grow in amplitude and thus so will the FLR.
Since the internal driver is present only for the high-m modes, it most likely acts by
pumping energy in through E, which is the dominant electric field component for the
high-m modes. To simulate the internal driver a real polarization current proportional to
Eyis added, ie.

1

J-J+
Vik,

YES . (3.14)
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where YE, is the positive real time derivative of Ey due to the influx of energy from the
internal driver. Using a current density as defined by equation (3.14) and defining
wy

- Eﬂ@ (3.15)

results in an extra driving term added to the right hand side of equation (3.10), i.e.

. 2
dzEu. 1%, oy —BEL (3.16)
& (x-x +ig)de VY (x-x +iE)

Note that this driving term is not intended to represent the exact form of the internal
driver, but is only intended to simulate the effect an internal energy source might have
upon the solution. In equation (3.16) € is positive to be consistent with an injection of
energy from the internal driver into the resonance and the subsequent flow of energy
from the FLR out into the fast wave.

Since the large k, resonance is primarily poloidal, the phase variation across the
resonance is best illustrated by the phase and amplitude of E, Using a fourth order
Runge-Kutta algorithm numerical solutions to equation (3.16) have been determined.
The resulting phase and amplitude of E, are plotted in Figure 3.8. In generating this
solution the following values were used: k=3.0 Rg, €=0.3 Re, f=2.0 Re. The
magnitude of € was taken to be the same as that used in the low-m case in order to
represent the fact that the magnitude of the Poynting vector, at marginal stability, is
approximately the same in both the low- and high-m cases. The value for k, was chosen
to correspond to m~30, while the constant B, which determines the strength of the
internal driver, was chosen to yield a strong resonance amplitude for E,,

The solution shown in Figure 3.8 is very interesting because not only does the
phase increase across the resonance, but it increases by several hundreds of degrees more
than the 180° phase change typical of the low-m resonances. The strong phase change is
in fact consistent with some of the high-m observations and is an indication that the
solution is oscillatory in x. Figure 3.9 is a plot of the resonance power and phase for one
observed high-m resonance showing a latitudinal phase increase of ~500° across the
resonance. From the numerical solutions it was found that the magnitude of the phase
change depended upon the size of B, i.c. the strength of the driver, as well as the size of
k, Therefore in the case of the observed high-m resonances, differences in the
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magnitude of the phase variation can be explained by differences in the strength of the
internal driver as well as the size of the azimuthal wave number, &,

According to the above results, the growth and latitudinal phase increase of the
high-m FLRs are consisteat with the reversal of the Poynting flux which results from the
presence of an internal driver. Since the FLR cannot grow indefinitely, it is expected that
at some point the internal driver will turn off. In this case the Poynting flux direction will
revert back to that of the low-m case and the fast wave and FLR should decay with the
standard phase decrease. However, no decaying high-m FLRs have been observed. This
may be due to the limited number of events studied or may indicate that once the internal
driver turns off, the high-m resonance is no longer observable.

(89p) oseyq

Figure 3.8. Plot of amplitude (solid line) and phase (dashed line) of E, near
the resonance at x=x,=10 Re determined by the numerical solution to
driven system for large
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3.2.3. Wave-Particle Coupling

In this section the form of the internal driver which interacts with the high-m
FLRs will be discussed. Many of the high-m characteristics suggest that a wave-particle
coupling mechanism is acting as an intemnal driver to the system. Walker et al. [1982],
Allan et al. [1982], Yeoman et al. [1992), and Grant et al. [1992] have all made
observations of a class of high-m ULF pulsations termed “storm-time” Pc5 events which
they have attributed to a wave particle interaction and in particular a drift-mirror
instability in the ring current. These storm-time Pc5 pulsations were shown in Chapter 2
to share many characteristics with the discrete high-m FLRs of this study. The similar
characteristics include local time of occurrence (noon-dusk), a large radial or north-south
component in the pulsation, and westward phase propagation. In some of the storm-time
PcS5 studies the westward phase velocities when mapped to the equatorial plane were
found to be consistent with gradient-curvature drifts of ring-current protons. In the case
of the high-m FLRs used in this study, the westward phase velocities when mapped to the
equatorial plane ranged from 15-40 km/s. Subtracting a background convective ExB
drift of ~10 knw/s [Allan et al., 1982] this range corresponds to gradient-curvature drifts
of 10 to 30 KeV protons with 90° pitch angle at L~10 Rg. If the FLRs are fundamental
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harmonic oscillations of the field lines then it is the 90° pitch angle protons near the
equatorial plane which will couple most strongly to the FLRs since the protons interact
through the pulsation electric field which has a maximum in the equatorial plane for the
fundamental mode. However, if the FLRs are a second order harmonic then the
energetic protons which can couple to the FLR must have a bounce motion as well as a
drift motion and they must bounce and drift such that they always see the same phase of
the wave. The energetic protons which can satisfy the drift-bounce resonance condition
require larger energies on the order of 100 KeV. This energy value is consistent with the
peak flux of the ring current. However, the ring current peaks at ~5-6 Rg during storm
time periods, whereas the high-m FLRs are occurring at ~10 Rg during predominantly
quiet times. Also, in geostationary satellite observations of ULF pulsations, 30 KeV
particles were found to dominate the ion flux measurements [Woch et al., 1990] while the
strongest wave-particle resonance was found to involve 90° pitch angle protons [Kremser
etal., 1981]. These observation suggest that the ULF pulsations are fundamentals along
the field line, and the more energetic drifting-bouncing protons are not required.
Regardless of the proton energies involved, the high-m FLRs are definitely associated
with some form of wave-particle interaction.

Various theories on wave-particle coupling and instabilities have been developed
and used to try and explain such observations as the storm-time PcS events. Hasegawa
[1969] initially developed the theory of the drift-mirror instability which involves the
generation of waves due to the drift-bounce motion of particles. Later, other authors
showed that the unstable drift-mirror wave could couple to shear Alfvén wave modes
[Lin and Parks, 1978; Walker et al., 1982]. Kinetic theories on the excitation of Alfvén
waves purely through resonant particle instabilities have been looked at in general by
Southwood [1976] and including finite Larmour radius effects by Chen and Hasegawa
[1988]. More recently, Walker [1994] evaluated the effects of an energetic particle
population on a pre-existing standing hydromagnetic wave and showed the existence of a
drift resonance while maintaining marginal stability.

All of the theoretical treatments listed above, except for Walker [1994), attribute
the excitation of the high-m pulsations solely to a particle driven instability in the ring
current. However, this excitation mechanism cannot explain the recent observations of
Fenrich et al. [1995] which show the existence of the high-m FLRs at the same discrete
frequencies as the low-m FLRs. These observations suggest that the same initial
excitation mechanism is responsible for both the low- and high-m FLRs. The low-m
FLRs cannot be associated with an energetic particle instability due to their large
azimuthal wavelengths and propagation directions. This leads us to conclude that a
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wave-particle interaction is not the sole mechanism responsible for initiating the high-m
FLRs. Instead, both the high- and low-m resonances are initiated by the same
mechanism which determines the normal mode structure. Generally, this mechanism is
believed to involve the resonant coupling between MHD fast compressional modes and
standing shear Alfvén waves on field lines whose natural frequency corresponds to the
frequency of the fast wave [ZTamao, 1966; Southwood, 1974; Chen and Hasegawa, 1974).
The fast wave modes are possibly eigenmodes of a magnetospheric waveguide [Samson
et al.,1992b; Wright, 1994), to be discussed in Chapter 4, thus explaining the discrete
nature of the FLRs.

The coupling efficiency between the fast wave mode and the FLR is dependent
upon the azimuthal wave number [Speziale and Catto, 1977; Kivelson and Southwood,
1986]. Coupling is non-existent for m=0, maximum for small m values and then
decreases as m increases. Thus the high-m FLRs are not expected to be observable and
yet they are seen at amplitudes comparable to the low-m FLRs. This is where the wave-
particle interaction comes into play. Those modes with large azimuthal wave numbers
propagating westward in the same direction as the ring current, and with phase speeds
equal to the gradient-curvature drift speeds of energetic ring current protons, begin to
grow. The growth arises from a transfer of energy from the energetic particle population
to the wave as the particles drift along always seeing the same phase of the wave. Of
course for energy to be transferred into the wave the velocity distribution of the energetic
particles must be such that there are more particles moving slightly faster than there are
particles moving slightly slower than the phase speed of the wave. This type of
interaction is described as a drift resonance by Walker [1994]. However, rather than
there being a perfectly stable balance, as Walker describes, between energy influx from
the resonant particles and energy losses in the ionosphere, the particle resonance
dominates yielding a net flux of energy into the FLR and fast wave which causes growth
of both the fast wave and FLR. This scenario is supported by the observation of high-m
growth shown in Figure 3.4.

An extensive set of geostationary satellite observations of ULF waves in the ring
current by Woch et al. [1990] provides evidence that some ULF pulsations are coupled to
energetic ring-current particles. Woch et al. observed numerous events characterized by
simultaneous modulations of the particle fluxes and oscillations of the magnetic field.
The events were classified as diamagnetic if their onset was immediately preceded by an
enhancement of the ion intensity and as non-diamagnetic events if not. In the 1-4 mHz
range the events were primarily non-diamagnetic. The non-diamagnetic events were
found to exist during periods of low, decreasing geomagnetic disturbance levels but with
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enhanced ring current. Values of the D, index during the time periods when the high-m
FLRs of this study were observed ranged from -15 to +4 indicating that the resonances
occurred during quiet magnetospheric conditions with little or no enhancement of the
ring current. Note the D, index provides information on the world-wide magnetic storm
with larger negative values indicating a more intense storm. Thus it is highly unlikely
that there is a particle driven instability involved independent of the FLRs.

3.3. Summary

The measurements of FLR growth rates versus azimuthal wave number has
yielded a very interesting resuit. The low-m FLRs, characterized by the standard
decrease in phase with latitude, were found in almost all cases to exhibit temporal decay.
The high-m FLRs, characterized by a phase increase with latitude, were found in all
cases to exhibit temporal growth. The temporal growth indicates the presence of an
internal energy source in the high-m case.

The FLR growth rates and latitudinal phase shifts were found to be consistent
with the direction of the Poynting flux through the system. In the low-m case, energy
flows from the fast wave driver into the FLR and then into the resistive ionosphere. An
analytic solution to the linearized ideal MHD equations showed that this Poynting flux
direction always results in a latitudinal phase decrease of ~180°. In marginal steady state
this Poynting flux direction will also cause a temporal decay of the FLR and fast wave
amplitudes. However, in the initial time development before a steady state is reached the
FLR will grow in amplitude as the fast wave driver begins to couple to the FLR.

In the high-m case an internal driver couples to the FLR and reverses the
direction of the Poynting flux such that the energy now flows from the intemal driver into
the FLR and out into the fast wave. The result is always an increasing latitudinal phase
shift and a temporal growth of both the FLR and fast wave amplitudes. In order to
simulate an internal driver for the high-m resonances a driving term was added to the
ideal MHD equation governing the azimuthal component of the electric field, Ey, near
the resonance. The resulting numerical solutions to this high-m equation showed a
latitudinal phase increase of many hundreds of degrees. Such a large increase in phase
with latitude is consistent with observations of high-m latitudinal phase variations. This
result further supports the idea that the high-m FLRs are being driven by an internal
energy source.
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A wave-particle interaction, in the form of a drift resonance between energetic
ring-current protons and the shear Alfvén FLR, is the most likely candidate for the
internal driver. Note, however, that the wave-particle coupling mechanism is not the
primary mechanism responsible for exciting the initial high-m FLRs, but is a secondary
mechanism responsible oaly for the growth of the pre-existing high-m modes.
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4
Discussion of Theoretical Models

This chapter is an investigation of various models which may have the potential
to explain the observations of the discrete reproducible field line resonances discussed
in Chapter 2. The currently accepted model, the magnetospheric waveguide/cavity
model, has many deficiencies which are outlined in the following section. Given these
deficiencies it is clear that a new model is required. After examining a few alternate
possibilities a model involving the magnetosheath as a waveguide is developed, and will
be shown to have the ability to explain many aspects of the FLR phenomenon.

4.1 Problems with the Magnetospheric Waveguide/Cavity Model

4.1.1 Plasma Density Problem

The success of the magnetospheric waveguide/cavity model lies in its ability to
explain the discrete frequencies of the observed FLRs. As discussed in Section 1.2.5
these frequencies are predicted by solving the phase integral equation

I 7kl jdE= (- @.1)
A

In order to solve equation (4.1) the magnetopause position, Xy, and the Alfvén velocity

profile, V,(x), must be estimated. Based upon a minimization technique Samson et al.

[1992b] found
3

Vy(n) =V, (22

where V,,,=1000 knvs is the Alfvén velocity at the plasmapause location defined by
*pp=5 RE, and found the waveguide eigenfrequencies to be 1.24, 1.91, 2.75, and 3.62
mHz. In determining these frequencies Samson et al. assumed ky’<<k,? and used the
resonance relation of equation (1.58) to determine k,. However, assuming a dipole



magnetic field which is of the form
3

X,
Bdipolc = Bpp (%) B” = 250nT = 5R; , 4.3)

%pp

the Alfvén velocity profile in (4.2) comresponds to a constant plasma density of ~30 m,,
cm?, where m,, represents the proton mass. Such a large plasma density is very
unrealistic according to observations [Parks, 1991; Kivelson et al., 1984]. A reasonable
plasma density profile consistent with observations is given by

4

x -
p(x) =p,, (-%e) Ppp = 15m, (cm) 3 44)
which yields plasma mass densities on the order of 1 m, cm in the regions of the

magnetosphere where the FLRs are generated.

Solving equation (4.1) for the waveguide eigenfrequencies using the plasma
density profile defined in (4.4), the dipole field of (4.3), X,y=15 Rg, k=0.1 Rg’, and
k~0.1Rg" yields a fundamental frequency of ~5 mHz which is substantially larger than
the lowest observed resonant frequency of 0.8 mHz. Note that the &, value used
corresponds to that of maximum coupling to the FLR and the k, value is typical of
dipole-like field lines at ~10 Rg. Thus unless there is an enhanced plasma density in the
outer magnetosphere which has not yet been detected, the magnetospheric waveguide is
not able to generate the observed resonance frequencies. Even if such large densities
did exist, according to the resonance condition @=V,k,, the k, values would have to be
much larger than that which corresponds to dipole field line lengths in order to get the
observed frequencies at the observed locations.

4.1.2 The Problem Concerning Large Azimuthal Wave Numbers

The observations of the large k, field line resonances presents a major problem
for the waveguide/cavity model. FLRs have been observed with m values as large as 40
which corresponds to k,, values as large as ~4. However, the variation of frequency with
ky in the magnetospheric waveguide is quite significant. It has been calculated using
equations (4.1) and (4.2) and can be seen in Figure 4.1. This figure shows that a change
in k, from O to 1.0 corresponds to a 200% change in the cigenfrequency of the
waveguide. Thus a waveguide inside the magnetosphere likely does not generate the
observed high- and low-m FLRs which occur at the same set of reproducible
frequencies.
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Figure 4.1. Magnetospheric waveguide frequency variation as a function
of ky, for x,,=15 Rg and k,=0.1 Rgt.

Another way of looking at the large k, problem is to consider the locations of the

turning points. Using the turning point condition

o’ 2 ;2

— k- =0
Vi z Ky 4.5)
together with the observed FLR frequencies and locations, the tumning points as a
function of ky can be determined. Table 4.1 lists the frequency, L value, k,, and &, for
three of the low-m resonances observed during the January 11, 1989 event. Note that
the k, values were determined from the resonance condition, w=Vk,, where the Alfvén
velocity profile used comresponds to the dipole field and the plasma density profile
defined in (4.4). Using the parameters of Table 4.1, the turning points as a function of k,,
have been determined and plotted in Figure 4.2. In this plot the FLR turning points
corresponding to the observed k, values listed in Table 4.1 are indicated with a cross,
and are well beyond the location of the magnetopause. Given that the range of &y values
for all observed FLRs is 0.3 to 4.0, the observed FLRs most likely have their turning
points outside of the magnetospherc and thercfore cannot be associated with a
magnetospheric waveguide.



Table 4.1: Parameters For Three Low-m FLRs

f (mHz) LRRp k, Re™) ky Re™)
13 11 0.08 045
19 9.9 0.11 1.0
26 8.7 0.13 0.57
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Turning Point (Rg)
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Figure-i.z. Plot of turning point as a function of k, for 1.3, 1.9, and 2.6
FLRs. The crosses represent the turring point locations
compondmgtothemsuredk,valuw

An additional problem concerning the large ky FLRs is that according to Wright
[1994], only small k, eigenmodes can grow strong enough in the waveguide to couple to
the FLRs. This can be understood in the following way. The small k, modes remain in
approximately the same azimuthal location and therefore are able to constructively add
to themselves while the large k, modes propagate away with no constructive growth.



4.1.3 Stability Problem

In Chapter 2 the observed FLR frequencies were shown to be very stable and
reproducible. However, the magnetosphere is a very dynamic system and thus a
magnetospheric waveguide may not be able to generate a stable and reproducible set of
cigenfrequencies during different magnetospheric conditions. To investigate the
stability of the magnetospheric waveguide, the frequency of the guide as a function of
magnetopause position and different Alfvén velocity profiles has been determined. The
Alfvén velocity profiles used are of the form

Vo) = V(D) 46

which corresponds to a dipole magnetic field and a density profile as given in equation
(4.4). Taking x,=5 R as the location of the plasmapause, V) is determined by the
magnetic field strength and plasma density at the plasmapause. Taking these values to
be 250 nT and 15 my, cm, respectively, gives V,=1400 kmvs. To represent changes in
magnetospheric coaditions this value of V), is varied. A value of V=1200 km/s is used
to represent a 15% decrease and a value of V,=1600 kmv/s is used to represent a 15%
increase in the Alfvén velocity throughout the guide giving an overall variation of 30%.
The results are plotted in Figure 4.3 which shows the waveguide eigenfrequency as a
function of magnetopause position for the three different Alfvén velocity profiles. From
this figure it is apparent that changes in magnetopause position of ~1 RE corresponds to
changes in the waveguide eigenfrequency of ~15%. A Similar change in
eigenfrequency results from a 15% change in the Alfvén velocity. Given that the
measured FLR frequencies can vary by approximately 10%, small variations in
magnetospheric conditions may not have a significant effect. However, the observed
FLRs are generally spatially localized within the field of view of the radar and therefore
the fast wave eigenmode driving the FLR must also be localized to a specific region of
the magnetosphere with its eigenfrequency determined by the dimensions of that region.
Considering the difference in magnetopause position as a function of local time from
dawn to dusk, i.e. ~15 Rg at dawn and dusk and ~10 Rg at noon, the variations in
cigenfrequency can be as large as ~100%. The observation of the same discrete
frequencies at different local times is then inconsistent with the waveguide scenario.
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4.2 Other Possible Models

Given the problems concerning the magnetospheric waveguide model defined
above, it can be concluded that this model is probably not the solution to the field line
resonance problem. Therefore we need to look at other possible models which can
better explain the FLR observations. One model which has been considered is the
existence of an MHD cavity in the magnetotail [Siscoe, 1969; Sebolt, 1990; Liu et al.,
1995]. This model is attractive because under typical magnetospheric conditions
frequencies in the 1-5 mHz range can be achicved. However to get a discrete set of
frequencies, boundaries in all three dimensions are required. In a GSM coordinate
system, boundaries in the y-direction would be provided by the magnetopause; in the
z-direction either tuming points within the plasma sheet boundary layers or the
magnetopause can provide the reflecting boundaries; while in the radial direction it is
not clear what boundaries might exist. In any case the magnetotail dimensions are
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highly variable depending on magnetic conditions and thus a tail mode model has
serious stability problems. An additional point which rules out the magnetotail as a
possible source for the discrete FLRs is the fact that a source in the tail cannot produce
any of the anti-sunward propagating FLRs since compressional wave energy coming
from the tail could only generate sunward propagating FLRs.

Another mechanism which may play a role in the generation of FLRs involves
the reconnection of field lines on the dayside of the magnetosphere. There have been
some observations that dayside magnetic reconnection can be modulated at frequencies
similar to FLR frequencies [Prikryl et al., 1996] However, there is no known
mechanism by which the reconnection process could generate the set of discrete
frequencies observed for the FLRs. The fact that the observed FLRs occurred primarily
during quiet magnetic conditions with probably little dayside reconnection provides
conclusive evidence that a mechanism associated with dayside reconnection cannot be
responsible for generating the FLRs. Thus pulsed reconnection may be a result rather
than a cause of the FLR phenomenon.

The most promising model concerning the source of the FLRs involves the
magnetosheath. The involvement of the magnetosheath was first suggested by Harrold
and Samson [1992], who proposed the existence of a waveguide between the bow shock
and a turning point deep within the magnetosphere. The larger dimensions of this
waveguide compared to that of the magnetospheric waveguide allowed for
eigenfrequencies in the 1-5 mHz range without requiring unreasonably large
magnetospheric plasma densities. However, like the magnetospheric waveguide model,
this model is subject to the same dispersion and stability problems. It is also highly
unlikely that waveguide modes would be generated between the bow shock and a
turning point within the magnetosphere for the following reasons. The magnetopause is
a good reflector of fast waves, as will be shown in the next section, and therefore waves
impinging on the magnetopause from cither the magnetosheath or the magnetosphere
will be strongly reflected. Also the bulk plasma flows in the magnetosheath and
magnetosphere are in opposite directions. With plasma flow in opposite directions it
would be difficult for an eigenmode spanning both regions to exist. In addition, recall
from section 4.1.2 that the observed FLRs most likely have their effective turning points
well beyond the magnetopause position making reflection from a turning point within
the magnetosphere unlikely.

The possibility that reflections at both the bowshock and magnetopause might
result in a waveguide within the magnetosheath itself is a new idea which should be



90

considered. The following section is a detailed discussion of the magnetosheath
waveguide model and its potential as a driving mechanism for the FLR phenomenon.
The major differences between this model and that of Harrold and Samson [1992] are:
reflection occurs at the magnetopause rather than a turning point in the magnetosphere;
more realistic magnetosheath parameters are used; the magnetosheath eigenmodes are
shown to be localized to the dusk and dawn flank regions; and the eigenmode
frequencies are shown to be reasonably stable.

4.3 The Magnetosheath Waveguide Model

The basic premise of the magnetosheath model, which is sketched in Figure 4.4,
is the following. A continuum of fast compressional wave energy in the solar wind is
refracted at the bow shock as it enters the magnetosheath. Once in the magnetosheath,
the fast waves are reflected off both the magnetopause and bow shock as they propagate
downstream. Thus the magnetosheath acts like a waveguide. Now, like all waveguides,
the magnetosheath will allow propagation of a continuum of fast wave modes. For a
discrete set of eigenmodes to grow above the background continuum certain conditions
must be met.

Consider the analogy of waves on a string. A string will resonate at certain
discrete frequencies because the incident and reflected waves constructively add in such
a way as to set up a standing wave pattern. In the case of the magnetosheath waveguide,
the incident and reflected waves can only constructively add to become standing waves
if they remain within the same region of plasma. This means that in the rest frame of
the plasma the wave vector along the length of the waveguide must be small, i.c. k,—0.
Waves withlargek,valmwillptopagateawayintheplasmaandwﬂlnotgmwabove
the background continuum. In the direction perpendicular to the equatorial plane,
which in the model is defined as the z-direction, the situation is similar. There are no
fixed reflecting boundaries so once again the eigenmodes which grow will have small k,
as well.

Although the magnetosheath eigenmodes will not propagate relative to the
plasma in either the y- or z-directions, the magnetosheath plasma itself is flowing
downstream at speeds ranging from ~50 kny/s near local noon to ~300 km/s at the dusk
and dawn flanks [Kivelson and Russell, 1995). Given the speed of the fast mode waves
in the magnetosheath plasma and the time required for the bulk plasma to flow from the
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Flig.:'e 4.4. Schematic of magnetosheath waveguide model in the equatorial
plane.
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local noon region to the dusk or dawn flank region, the k,—0 fast mode waves will have
undergone only ~1 or 2 complete traversals of the magnetosheath from bow shock to
magnetopause and back to bow shock again. Since at least one complete traversal is
required before the k,—0 waves begin to add constructively, the cigenmode standing
waves are not set up until the bulk plasma reaches the flank region of the
magnetosheath. Therefore, it is the plasma parameters in the flank region which
determine the characteristic frequencies of the magnetosheath waveguide eigenmodes.

Typical magnetosheath plasma parameters together with those characteristic of
the regions of the magnetosphere and solar wind adjacent to the flank magnetosheath
are given in Figure 4.4. These plasma parameters were estimated from various sources
[McKenzie, 1970; Kivelson and Russell, 1995, Gleaves and Southwood, 1991]. The
bow shock position at the dusk and dawn flanks is estimated from the comprehensive
study of Peredo et al. [1995] which made use of a large set of bow shock crossings
observed by 17 spacecraft to explore the three-dimensional shape and location of the
Earth’s bow shock.

43.1 Fast Wave Reflection at Magnetopause and Bow Shock

The existence of magnetosheath eigenmodes requires reflection of fast
magnetosonic modes at both the magnetopause and bow shock. McKenzie [1970] has
derived the reflection coefficient for hydromagnetic waves at the magnetopause
boundary. For the radial component of the flow perturbation and in the case of normal
incidence it is given by

1-2Z
= —= 4.
R 157 @.7
where

)

k. P
z= - 438)

kxz pl

Here k; ;™ and ky," represent the incident and transmitted normal wave vectors which
can be determined from the magnetoacoustic dispersion relation

2

p; and p, are the mass densities in the magnetosheath and magnetosphere respectively.
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Using equation (4.9) together with the plasma parameter estimates given in Figure 4.4,
the magnetopause reflection coefficient near the flanks is ~0.75. This value increases
slightly towards local noon. Thus the magnetopause does provide good reflection for

fast magnetoacoustic modes in the magnetosheath.

Now consider the bow shock. The bow shock is a fast mode shock which forms
in front of the Earth’s magnetopause because the solar wind speed exceeds the fast
mode wave speed. Whereas the magnetopause is a tangential discontinuity which
allows no normal B or mass flux across it, the bow shock does allow both normal B and
mass flux across it as long as they are continuous. To investigate the bow shock as a
reflecting boundary the equations of reflection and refraction for hydromagnetic waves
at a perpendicular shock have been derived in Appendix A. A perpendicular shock is
defined as a shock in which the normal to the shock boundary is also perpendicular to
the interplanetary magnetic field (i.e. Ben=0). Although the angle between the bow
shock and the interplanetary magnetic field varies from dawn to dusk it will be assumed
that if reflection occurs at the bow shock in the perpendicular shock case then reflection
will most likely occur for other bow shock angles as well. This may be justified by the
" fact that the derived reflection coefficients are independent of the angle between the bow
shock and the interplanetary magnetic field and depend only on the magnetosonic and
radial flow velocities at the bow shock.

From the derivation in Appendix A the reflection coefficient for the fast wave
normal flow perturbation was found to be

(r O)
5Vx; _ m+kx; Vxl( 2 l) (4.10)
1+k

R 14 = — = -
W) = v ekDv, @ /g®

x1

where k. and k™ are as defined previously and V, is the normal flow to the shock
boundary on the magnetosheath side. Using the magnetosonic dispersion relation,
equation (4.9), the above equation can be rewritten as

= - 4.11

where

Vaz = Va2 +Cis @.12)
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Note that V,;/V), is negative since the normal flow across the bow shock is in the
opposite direction to the incident normal wave vector. According to equation (4.11) the
reflection coefficient at the bow shock is non-zero if V), the fast wave speed in the
magnetosheath, is different from both the fast wave speed in the solar wind, Vp), and
the normal flow speed to the shock boundary on the magnetosheath side, Vy;. Taking an
average Vjqof ~180 kn/s and V) ~50 kn/s in the magnetosheath between local noon
and the flanks, and taking V),~60 kmy/s in the solar wind, the reflection coefficient for
the normal flow perturbation of a fast wave incident on the bow shock is ~0.3. Thus it
appears that fast wave modes can reflect from both the magnetopause and the bow shock
allowing magnetosheath waveguide eigenmodes to grow.

4.3.2 Boundary Conditions

As discussed above the reflection coefficient at the bow shock for the normal
flow perturbation is approximately 0.3. The fact that this value is positive implies that
the incident and reflected perturbations are in phase and will therefore constructively
add. Although the reflection at the bow shock is not perfect the in-phase reflection is a
good indication that the boundary condition at the bow shock is such that the radial flow
perturbation and thus the radial plasma displacement will have a maximum or antinode
there. The boundary condition to be applied at the bow shock is then the open boundary
condition, 9€,/dx=0, where &, is the radial displacement.

At the magnetopause the situation is similar with the reflection coefficient for
the radial flow perturbations having a value of ~0.75. Given this value the reflection at
the magnetopause is quite strong and the reflected wave is in phase with the incident
wave. Thus the magnetopause has an open boundary condition as well. An illustration
of the boundary conditions at both the magnetopause and bow shock are given in Figure
45.
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Figure 4.5. Illustration of boundary conditions at bow shock and
magnetopause for the radial displacement, &,.

433 Magnetosheath Eigenmode Solutions

In the magnetosheath the warm plasma equations are required to solve for the
eigenmode solutions. The warm, ideal MHD equations goveming the radial
displacement vector, &, is given by

p k2 (V-3 (C2+V3) (VP -C> dt
TR, L T L M.

E(C+V) (- -E(V-V3) (- |&x

4.13)

p

where C; is the sound speed, V, is the Alfvén speed, V,, is the plasma bulk flow velocity,
k=kjey+k, e, (ey=Bo/Bo, e =e,xey). Note that in this magnetosheath model ey=e,



and e ;=e,. The derivation of equation (4.13) can be found in Harrold et al.[1990].

As discussed previously, the magnetosheath waveguide eigenmodes will be
determined by the conditions in the flank region of the magnetosheath. Therefore it is
the set of plasma parameters characteristic of the magnetosheath flank region which will
be used in the determination of the cigenmode solutions. Although the plasma
parameters do fluctuate somewhat across the magnetosheath flank region it is a
reasonable approximation to assume average values which are constant across the
sheath. With this approximation the term in brackets in equation (4.13) is constant and
the equation can be simplified as

d
;E’ -%x§, =0 4.14)
where
_ ki-"'zl(":“’i) Va-Ch wis)
(C+V3) (V2-CD
This equation can be solved analytically with solutions of the form
g, = Aexp (x,/X) +Bexp (-x/K) 4.16)

where A and B are constants determined by the boundary conditions defined in section
432. Using the magnetosheath plasma parameters defined in Figure 4.4 with
ky=k;=0.001 Rg’, E, as a function of frequency has been calculated and is shown in
Figure 4.6. This figure illustrate the displacement amplitude of the eigenmode solutions
in the flank region of the magnetosheath. The eigenfrequencies are apparent in the
figure but can also be calculated using a phase integral approach, i.e.

[ Jxdx = nx, @.17)

Xep

where xp; and x,,, arc the radial locations of the bow shock and magnetopause,
respectively. A plot of the resulting cigenfrequencies together with the plot of
occurrence of observed FLR frequencies is shown in Figure 4.7. Note that the
agreement between the most commonly observed FLR frequencies and the
magnetosheath eigenfrequencies is very good.
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Figure 4.6. Displacement amplitude versus frequency and L value for
the magnetosheath waveguide eigenmodes.
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Figure 4.7. Comparison of magnetosheath eigenmode frequencies
(solid lines) and observed occurrences of FLR frequencies.
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434. Stability of Eigenmode Frequencies

Although the frequencies predicted by the magnetosheath model are in good
agreement with observations, there is still the question of whether or not these
frequencies will remain stable under various magnetosheath conditions. To test the
stability of the eigenfrequencies, cach of the parameters ky, k;, Vy, Co xpp and x,,, Was
varied independently of the others and the frequency variation determined. Plots of the
eigenfrequency of the first 4 eigenmodes as a function of each parameter are shown in
Figures 4.8-4.13. Note that for the case of small k, the ecigenfrequencies are
independent of the flow speed V,, as V, enters the equation only through keV,=k,V,,.

A summary of the stability of the first eigenmode is presented in Figure 4.14
From this figure it is obvious that the magnetosheath is very dispessive, i.e. the
frequencies are very sensitive to the size of k, However, this dispersion is irrelevant
since, as discussed previously, only the small ky modes are able to add constructively
and grow above the background continuum. For ky<0.005 Rz’ the vasiation in
frequency is virtually non-distinguishable. Although only the small k, solutions are
relevant for the same reasons as for k,, the frequencies are insensitive to changes in k..

Variations in C; and V), appear to render the magnetosheath unstable. However,
one must also consider the possibility of a compensating effect between these speeds
and the magnetopause position due to the requirement of pressure balance at the
magnetopause. As an example, consider the following. The total plasma pressure
which includes particle and magnetic pressures must be balanced across the
magnetopause. Suppose the magnetopause is at ~15 Rg and the particle pressures on
either side are equivalent with a value of ~0.35 nPa. The magnetic field strengths on
either side are equivalent as well at a value of ~15 nT. Thus the total pressure is
balanced across the magnetopanse with a value of ~0.4 nPa. Assuming that the plasma
behaves as an ideal gas, i.e. p=nkT, the particle pressure will vary with x in the same
manner as the plasma density, temperature being approximately constant. Then taking a
magnetospheric plasma density profile which varies as x and a dipole B field, the total
pressure, p°, in the magnetosphere near the magnetopause will vary as
x"P)‘+ 83"’ (x"'P)6 (4.18)
x 20 " x

P' = Py

where the subscript mp refers to the value of that parameter at the initial magnetopause
position, i.€. py;=0.35 nPa, Xp;=15 RE, Bmp=15 nT. Now suppose that due to changes
in the solar wind the plasma density and magnetic field strength in the magnetosheath



"'VV""V'

w

1A \RAAARL S

Frequency (mHz)
N

1

L

0.00 0.05 0.10 0.15 0.20
k, Rg™)

Figure 4.8. Variation of magnetosheath eigenmode frequencies as a
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both increase by 50%. This results in an increase in the total magnetosheath pressure to
~0.65 nPa. To restore pressure balance across the magnetopause the magnetopause will
adjust its position until the pressure on ecither side is balanced. Using equation (4.18)
the new magnetopause position required to satisfy pressure balance is ~13.5 Rg, a
change of ~1.5 Rg from the initial position of 15 Rg. Referring to Figure 4.14, such a
decrease in the magnetopause position will decrease the cigenfrequency by ~10%.
However, the increase in density and magnetic field in the magnetosheath also increases
V, in the magnetosheath by ~22% which itself causes a ~10% increase in the
cigenfrequency. Thus the frequency variation due to magnetopause motion is offset by
the increase in V. A similar compensating effect would also occur for changes in C;
arising from magnetosheath temperature variations. Note that the work of Sibeck et al.
[1991], which is based upon 1821 satellite crossings of the magnetopause, has shown
that the magnetopause location varies by no more than +2 R at the flanks.
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The bow shock position unlike the magnetopause is not controlled by pressure
balance but by the flow speed of the solar wind. Figure 4.15 is a plot of best fitting
curves to observed bow shock locations for different ranges of Alfvénic Mach numbers,
M,, taken from Peredo et al. [1995]. This figure shows that for intermediate ranges in
M, the bow shock position on the flanks varies by ~1 Rg at most, and in the region
half-way between local noon and cither flank, the bow shock position shows no
variation at all. Thus, realistic variations in bow shock position should not aiter the

eigenfrequencies significantly.
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Figure 4.15. Equatorial projection of the best fitting curves for observed
bow shock location for different ranges of M. Taken from Peredo et al.

[1995].
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4.3.5 Coupling of Magnetosheath Eigenmodes to FLRs

As discussed in Section 4.3.2 the magnetosheath eigenmodes have an antinode
in both the radial displacement and radial flow perturbation at the magnetopause.
However, there can be no normal flows across the magnetopause boundary since it is a
tangential discontinuity. Thus the magnetopause will oscillate radially at the same
frequencies as the magnetosheath cigenmodes to prevent any normal flow. The
resulting perturbations of the magnetopause will generate fast wave modes inside the
magnetosphere.

As discussed at the beginning of Section 4.3, the fast waves which generate the
magnetosheath eigenmodes are those with k,—0. Thus there is the problem as to how
the magnetosheath waveguide eigenmodes can generate FLRs which have a large range
of k, values. This problem may be solved in the following way. The magnetosheath
eigenmodes are localized in the flank region because of the need for successive
reflections of the small k, fast waves across the magnetosheath before the cigenmodes
are generated. The result is a localized source of monochromatic waves on the flanks of
the magnetosphere. The uncertainty principle tells us that the spatial localization of a
wave cormresponds to a broadening of the k spectrum, i.e. AxAk~2x. Thus the
eigenmode waves which are transmitted into the magnetosphere via magnetopause
perturbations will have a range of k, valves while maintaining the magnetosheath
eigenfrequencies.

To illustrate the coupling of the magnetosheath eigenmodes to the FLRs, Figure
4.16 is a numerical solution to the warm ideal MHD plasma equations in the box model
of the magnetosphere calculated to match the eigenmode amplitudes at the
magnetopause boundary. The boundary condition at the plasmapause (x=5 Ry) was
taken to be 3 /ox=0 (or E;=0). The numerical solution was achieved using a 4" order
Runge-Kutta algorithm. The radial variations in magnetic field and plasma density
were of the form given in equations (4.3) and (4.4), respectively. A constant sound
speed value of Cy=100 kmV/s was used. The k, and k; values were varied with frequency
to keep the field line resonances between ~7-12 Rg and to keep an azimuthal wave
number of ~1. Thus k, was varied from 0.015-0.15 Rg/and k, from 0.15-0.3 Rg”/. With
this range of k,, which corresponds to m values of ~1-3, the effective turning point
locations all fall beyond 15 Ry and thus the solution for §; shown in Figure 4.16(a)
decays cvanescently right from the magnetopause, till the resonances position is
reached. Note that the resonance amplitudes for §, are not as pronounced as those for
E,.
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Figure 4.16. Plots of () &,| and (b) IE,| as a function of frequency and
L value calculated from numerical solutions to the warm ideal MHD
equations and matching the magnetosheath eigenmode amplitudes

at the magnetopause.
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As shown in Figure 4.16 the cigenmodes with m values of ~1 and greater will all
be evanescent from the magnetopause. This result may help to explain the coupling of
modes with m values greater than 2 which, according to the coupling parameter shown
in Figure 1.7, should not couple very strongly. The resonant absorption as a function of
the coupling parameter is based upon the fact that the fast wave is evanescent from the
tuming point to the resonance point. In the magnetosheath model there is no tuming
point and the waves are all evanescent from the magnetopause. The distance from the
magnetopause to the resonance point is independent of the eigenmode m value and
therefore all m value modes will evanescently decay for approximately the same
distance. Thus the coupling efficiency will not decrease as quickly with m value as has
been determined by the coupling parameter. Therefore cigenmodes with m values
greater than 2 will be able to couple efficiently as well. Of course, for the high-m modes
the coupling is not as efficient as for the low-m modes and may require an additional
input of energy from an intemnal energy source.

43.6 Success of Magnetosheath Waveguide Model

As shown in Section 4.3.3 the flanks of the magnetosheath can generate a set of
eigenfrequencies which are very consistent with the most commonly observed FLR
frequencies. The stability of the magnetosheath eigenmode frequencies seems plausible
due to the limited motion of the bow shock and the pressure balance compensation
between changes in magnetosheath conditions and magnetopause position. The
apparent sensitivity of the waveguide eigenfrequencies to ky is not a problem since only
the small k, eigenmodes are able to grow above the background continuum.

The localization of the small k, eigenmodes in the flank region results in the
transmission of monochromatic waves into the magnetosphere which have a broad
spectrum of k,, values. This scenario explains the observation of FLRs at the same
discrete frequencics but with very different ky, values. The event of October 6, 1993
(event #5 in Table 2.1) is a good example of a FLR occurring at a fixed frequency but
withavariationink, The localization of the magnetosheath eigenmodes to the flank
region is also consistent with the observed locations and propagation directions of the
FLRs.

Considering all of the above results, the magnetosheath waveguide model seems
to be very successful in its ability to explain the existence of the discrete and stable

FLRs.
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5
Concluding Remarks

This thesis has presented a detailed experimental and theoretical analysis of the
discrete ficld line resonance phenomenon. This phenomenon has in the past been a
somewhat controversial topic. Some in the space science community have been hesitant
to accept that discrete reproducible FLRs exist at all, claiming that they are an artifact of
the data analysis methods. Hopefully the work presented in this thesis will bring an end
to some of this controversy.

Based upon the observational results there can be no doubt that a discrete set of
FLRs does exist at both large and small azimuthal wave numbers and that the frequency
spectrum is extremely reproducible from event to eveat. The most common
frequencies are 1.3 mHz, 1.9 mHz, and 2.5 mHz with some less common frequencies
such as 0.8 mHz, 1.5 mHz, and 2.2 mHz. These frequencies are distinct given that the
measurement error is 0.1 mHz. The classification of the FLRs into two distinguishable
groups: low-m and high-m, is a new and interesting result which has important
implications regarding the source of the discrete FLRs. Previously high-m pulsations
were attributed purely to a wave-particle interaction, however, the new results presented
in this thesis confirm that both the high- and low-m discrete FLRs must have the same
normal mode structure ruling out a pure wave-particle interaction.

Although a wave-particle interaction is not the mechanism initiating the discrete
high-m FLRs, it does provide an extra intemal driver to the coupled FLR-fast-wave
system, and is responsible for the different growth and latitudinal phase shift
characteristics of the high-m FLRs. Although initiated by a monochromatic fast wave in
the outer magnetosphere, the high-m FLRs are able to couple to an internal driver which
reverses the direction of the Poynting flux. It is the direction of the Poynting flux which
determines the latitudinal phase shift of the FLR. In the low-m case the Poynting flux
direction is from the fast wave into the FLR and down into the resistive ionosphere and
results in a phase decrease with latitude across the resonance. In the high-m case the
Poynting flux direction is reversed, i.c. it points from the internal driver into the FLR
and out into the fast wave. The reversal of the Poynting flux direction causes a reversal
of the latitudinal phase shift such that the phase increases with latitude. The presence of
the internal driver also results in a net phase change which is much greater than the
standard 180°.
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In marginal steady state the low-m resonances decay with time because the finite
energy of the fast wave is continuously lost to the resistive ionosphere. However,
during the initial time development of the low-m mode coupling, the FLR will grow.
The high-m resonances, on the other hand, will grow with time because the energy
originating from the internal driver accumulates in the fast wave resulting in an increase
in amplitude of both the fast wave and the FLR. The initial time development of the
high-m FLRs will not be observed because the coupling efficiency between the fast
wave and the high-m FLR is so low. This scenario is completely consistent with the
observations that the low-m resonances generally decay with time always exhibiting an
increasing latitudinal phase shift while the high-m resonances always grow with time
and always exhibit a decreasing latitudinal phase shift.

The fact that almost all of the observed high-m FLRs propagate westward with
phase speeds consistent with drift speeds of ring-current protons is strong evidence that
the internal driver is in the form of a drift resonance between energetic ring-current
protons and a pre-existing high-m FLR. The amplification of the high-m FLRs by this
internal driver mechanism also explains why the high-m resonances are observable at all
given that the coupling efficiency between fast wave and FLR is extremely low for such
large m values.

The observed locations and propagation directions of the FLRs, ie. anti-
sunward propagating low-m FLRs located at dusk and dawn and westward propagating
high-m FLRs located in the local aftemoon and early moming regions, supports a
source located at the flanks of the magnetosphere. Because the high- and low-m FLRs
share similar characteristics, the most important being the similar discrete frequency
spectrum, it has been concluded that they must also share the same initial generating
mechanism. Thus, any model of the source must be able to explain localization at the
flanks as well as the discrete, reproducible frequency spectrum independent of
azimuthal wave number and local time.

By examining the magnetospheric waveguide model in terms of its ability to
satisfy the observational requirements, it has been concluded that this model is not the
solution to the FLR source problem at hand. The problems involved with the
magnetospheric waveguide include the following: it is too dispersive and unstable;
plasma densities are too low to generate the observed frequencies; and for the FLRs of
interest the turning points generally fall outside of the magnetosphere leaving no room
for a waveguide. This does not mean that a magnetospheric waveguide or cavity does
not exist. However, if it does, the resulting FLRs will have frequencies greater than ~5
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mHz and small azimuthal wave numbers on the order of m=1. In addition, the
frequencies will vary with local time and different magnetospheric conditions.

A new model, the magnetosheath waveguide model, has been proposed as a
source of the discrete, reproducible FLRs. It has been shown to satisfy many of the
observational constraints. Its eigenfrequencies are consistent with the most commonly
observed FLR frequencies and are stable due to the limited motion of the bow shock and
pressure balance compensation at the magnetopause. Dispersion in the waveguide is
inelevmtsinceoﬂythesmaﬂkyeigenmodesmablemgmwaboveﬂ:ebackgromd
continuum. Because of the bulk plasma flow in the magnetosheath, the magnetosheath
eigenmodes are localized to the flank region providing a localized source of
monochromatic waves at the magnetopause which may stimulate monochromatic fast
waves with a broad range of k, values within the magnetosphere. Thus the
magnetosheath waveguide is a very good candidate for the source of the discrete high-
and low-m FLRs.

One point that warrants discussion is the observation of the less common FLR
frequencies such as 1.5 mHz and 22 mHz, which are not predicted by the
magnetosheath waveguide model. The fact that these frequencies were rarely found to
exist independently of the more common frequencies indicates that there may be some
link between them. Ziesolleck and McDiarmid [1994] suggest that they may be
sidebands adjacent to the fundamental frequency peaks produced by the amplitude
modulation of the wave trains. However, the fact that they are seen at latitudes
intermediate to the adjacent common frequencies suggests that they are not a result of
amplitude modulations but are true FLRs themselves generated by the same mechanism
as the more common frequencies. If the magnetosheath model were modified to include
a phase change at one of its boundaries it is possible that wave modes with a total phase
change of (2n—1)x upon one reflection back and forth across the magnetosheath might
correspond to a set of odd eigenmodes consistent with the less common FLR
frequencies. However, further observations and further theoretical work are required
before the less common FLRs are understood.

The magnetosheath waveguide model discussed here is just a simple one-
dimensional model intended to introduce the potential of the magnetosheath as the
source of the FLRs and is by no means a complete theoretical treatment. Thus some
future directions for this model are as follows. A two-dimensional MHD simulation of
the magnetosheath would be useful to see if magnetosheath eigenmodes are in fact able
to grow and localize near the dusk and dawn flanks. It would be a further challenge to
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add the magnetosphere to this model and see how the cigenmodes generated in the
magnetosheath are able to enter the magnetosphere and couple to the FLRs. Of course
on the experimental side of things confirmation that such magnetosheath waveguide
modes exist would require direct measurement of the cigenmodes. The most obvious
way of making such measurements is with satellites. There have been satellite studies
of magnetic pulsations in the magnetosheath [Gleaves and Southwood, 1991; Hubert et
al., 1989] but they have generally concentrated on frequencies higher than those of
interest here.

With regards to the internal driver involved with the high-m FLRs, further study
is required as well. Although it was suggested that the source of the internal energy was
being provided by a drift resonance between the FLR and energetic ring current protons,
the form of the internal driver was taken to be general and was not specific to a wave-
particle interaction with the ring current. The idea that a pre-existing monochromatic
FLR provides the seed for a wave-particle instability with the ring current is a new
concept and will certainly be a topic of future investigation.

The primary goals of this thesis have been achieved. A solid data base from the
Super Dual Auroral Radar network has been accumulated and analyzed. As discussed
above the data base has provided a set of FLR characteristics from which numerous
conclusions about the FLR phenomenon have been made. Solutions to perplexing
problems such as the reverse latitudinal phase shift of the high-m resonances and the
source of the discrete FLRs have been provided. The work presented in this thesis has
not only given us a better understanding of the discrete FLR phenomenon but has also
provided new insight into how energy may be transported from the solar wind to the
magnetosphere and into the ionosphere.
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Appendix A
Reflection and Transmission at a Perpendicular Shock

Region 1 ANY  Region2

__— | o F

r

N
Perpendicular Shock Boundary

Consider the reflection and refraction of a fast magnetoacoustic wave at a
perpendicular shock boundary such as the dusk bowshock. If there is reflection, the
impinging wave (denoted by the superscript i) will give rise to both a reflected wave
(denoted by r) and a transmitted wave (denoted by t). As discussed in Chapter 4, the
magnetosheath ecigenmodes will have small k, and k. Therefore, in the following
derivation it will be assumed that k, and k, are zero. At a perpendicular shock the
following boundary conditions hold.

Normal magnetic field is zero on both sides:

By =B, =0, (A.D)

Mass flux is conserved across the boundary:

[pV,] =0 (A2)
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Momentum is conserved across the boundary:

B2\ BB
[p(V"l) V+ (p+2—u-;)u- n ] =0 . (A3)

In the above equations » is the normal vector to the boundary surface and the square
brackets [] represent the difference between that quantity on either side of the boundary.

The amplitudes of the reflected and transmitted waves can now be determined
by applying the above conditions. Assuming small perturbations and linearizing, these
become:

sBY +5B =38BY =0 (A4)

V. (8pP +8p) +p, (BVY +8VYD) = V805 +p,(8V7)  (AS)

5o +8p{7 + V2, (8p{ +8p(") +2p,V,, (BVY +8V]) (A6)

+B,, (3B +8BY) = 8p" + V80 +20,V,,8V]) +B,,8B)

where 3p, p, 8B, and 3V, are, respectively, the perturbed amplitudes of mass density,
pressure, and the x components of magnetic field and fluid velocity. Note that only the
normal part of (A.3) has been used in (A.6).

The x-component of the momentum equation given by
Be B

[

poV_(0-k V) =k (5p+ ) (AT

holds for each plane wave (incident, transmitted, and reflected) thus providing 3
additional equations. Similarly, the continuity equation

7?'89 = V., 8p+pdV, (A.8)
P 4

also provides 3 more equations, one for each plane wave. Substituting equation (A.7)
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into (A.6) and using k;"="k,;® yields:

x1

Pz ) (r) ®
SV, +V_ 8p, )
E? s (A9)

Now, substituting (A.8) into (A.5) gives:
(l')

k,
(Bp{"-8p") = A = (3p3") (A-10)
and substituting (A.8) into (A.9) gives:
km 2

Solving these two equations, (A.10) and (A.11), for the reflection coefficient for the
density perturbation, Ry, defined by

(r)
Ry = _ 50 (A.12)
50 PG
and the transmission coefficient for the density perturbation, T, defined by
Q)
T, = _%; A.13)
P sp PG
yields:
2
Ryw=1-———orn——
2 (A.19

T =
()]
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Using equation (A.8) and the above relations for Ry and T, the reflection and
transmission coefficients for the perturbed flow can be determined to be

R = (m+k‘g)vxl)( 2 -l)
¥ otQv, 1 +k2 /Y

f 4 X

plkﬁ) ) (m—kg) sz) ( 2 ) (A.15)

( @ V
(v,
) szg) kﬁ) xl (kg) / k.g)) (l + kx('? / k.g))

In the above equations, k, on either side of the shock boundary must satisfy the
following dispersion relation

B=—m——a  (k=k=0) (A.16)



