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Abstract 

The present study combined the kernel smoothing procedure and three 

nonparametric DIF statistics—Cochran's Z, Fisher's^2 , and Goodman's U—to 

statistically test the difference between the kernel-smoothed IRF for reference group and 

the IRF for focal group. Simulation studies were conducted to investigate the Type I error 

and power of the proposed kernel-smoothed (KS) statistics. For the purpose of 

comparison, the Type I error and power rates with no correction (NC) and with regression 

correction (RC) were also include in the simulation. The results suggest that the kernel-

smoothed Cochran's Z can be the statistic to test the difference between the kernel-

smoothed IRFs when the sample size was small. When the sample size was moderate and 

large, the kernel-smoothed Cochran's Z and Fisher's x2 could be the candidates. 

However, we have to be aware of the fact that the Type I errors for both of them tend to 

be liberal. 
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Chapter I: Introduction 

Overview 

Differential item functioning (DIF) is of great interest to researchers and 

educators given that DIF poses a potential threat to test fairness. As stated in the 

Standards for Educational and Psychological Testing {Standards) (American 

Educational Research Association, American Psychological Association, & National 

Council on Measurement in Education, 1999), 

The test is not biased or offensive with regard to race, sex, native language, ethnic 
origin, geographic region, or other factors. Test developers are expected to exhibit 
sensitivity to the demographic characteristics of test takers. Steps can be taken 
during test development, validation, standardization, and documentation to 
minimize the influence of cultural dependency, using statistics to identify 
differential item difficulty, and examining the comparative accuracy of predictions 
for different groups, (http://www.unl.edu/buros/bimm/html/lesson03.html) 

Canadians have used large-scale standardized testing at many levels within the 

education system since the 1980s (Rogers & Klinger, 2007). Whether at the 

provincial, national, or international level, DIF in standardized testing is a constant 

concern. 

DIF occurs when examinees at the same ability level but from different 

groups have a different probability of answering an item correctly. A variety of 

parametric and nonparametric statistical procedures have been proposed to detect the 

occurrence of DIF and to quantify the magnitude and the direction of DIF, such as 

the item response theory (IRT) methods (Lord, 1980; Thissen, Steinberg, & Wainer, 

1993), the Mantel-Haenszel statistic (MH; Holland & Thayer, 1988), the 
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Simultaneous Item Bias Test (SIBTEST) (Shealy & Stout, 1993a, 1993b), and 

Logistic Regression (LR; Swaminathan & Rogers, 1990). 

The IRT methods (Lord, 1980; Thissen, Steinberg, & Wainer, 1993) can be 

considered as one of the pioneer procedures to detect DIF in the testing process. 

These methods, based on item response theory (IRT), provide a useful theoretical 

framework for DIF analysis because they explicitly use between-group differences in 

the item parameters. The general framework of the IRT methods involves estimating 

item parameters separately for the reference and focal groups. After placing the 

groups on the same scale, differences between the item parameters for the two 

groups can then be compared. When the parameters are identical for the two groups, 

the item does not display DIF. Otherwise, the item displays DIF. 

Mantel and Haenszel (1959) introduced a procedure for the study of item 

evaluation. This procedure then was adapted by Holland and Thayer (1988) for use 

in assessing differential item functioning. It is based on the analysis of contingency 

tables. This method differs from the IRT approaches in that examinees are typically 

matched on an observed variable (such as total test score), and then proportions of 

examinees in the focal and reference groups who answer the studied item correct or 

incorrect are compared. The method has been shown to be effective with reasonably 

small examinee samples (e.g., 200 examinees per group) (Holland & Thayer, 1988). 

The SIBTEST procedure (Roussos & Stout, 1996; Shealy & Stout, 1993a) is 

a relatively recent addition to the list of DIF statistics. Based on the ratio of the 

weighted difference in proportion-correct scores (for reference and focal group 



members) to its standard error, it includes a test of significance. It also includes 

several conceptual innovations. The first of these is that the matching criterion is a 

latent score rather than the observed score. Estimation of this matching score 

includes a linear regression correction that has been shown to be useful in controlling 

Type I errors (Shealy & Stout, 1993b). Additionally, SIBTEST allows for an 

evaluation of DIF amplification or cancellation across items within a testlet or 

bundle (Douglas, Roussos, & Stout, 1996). 

Logistic regression (Swaminathan & Rogers, 1990) may be conceptualized as 

a link between the contingency table methods (e.g., Mantel-Haenszel, SIBTEST) and 

the IRT methods. The contingency table methods form groups based on discrete 

score categories. By contrast, logistic regression treats the total score as a continuous 

variable and predicts an examinee's performance on the studied item based on the 

examinee's total score and group membership. The most notable feature of the 

logistic regression procedure is that it is designed to identify both uniform 

(unidirectional) DIF, which occurs when an item favors one group over another 

throughout the ability continuum, and non-uniform (crossing) DIF, which occurs 

when there is an ability-by-group membership interaction. Simulation studies in 

which the MH and LR have been compared have been conducted by Rogers and 

Swaminathan (1993). The study demonstrated that the Logistic regression procedure 

is as powerful as the MH procedure in detecting uniform DIF, and more powerful 

than the MH procedure in detecting non-uniform DIF. 
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A common feature among these DIF procedures is that they assess DIF 

across the entire ability range of examinees (called global DIF). However, recent 

studies have shown that DIF is sometimes present only in a specific range of ability 

or the direction of DIF changes across ability levels (Local DIF). For example, Gierl 

and Bolt (2001) provided a sample math item in an English-French translation test 

for which DIF was detected only at localized places along the ability scale. 

Recently, graphical inspection of non-parametrically estimated item 

response functions (IRFs) has become a useful way of studying DIF, particularly 

local DIF (e.g., Douglas, Stout & DiBello, 1996; Maydeu-Olivares, Morera, & 

D'Zurilla, 1999; Scrams & McLeod, 2000; Ramsay, 1991, 2000). IRF defines the 

probability of a correct response to an item as a function of examinee's latent ability 

{6) measured by the test. If PR{9) and PF{9) denote the IRFs for reference and 

focal groups, respectively, then DIF occurs whenever PR{9) #• PF{9) at some#. One 

approach to estimating PR{9) and PF{9) is to use the kernel smoothing procedure 

where the functional relationship between an examinee's latent ability (9) and the 

probability of answering the item correctly can be estimated (Ramsay, 1991). The 

benefit of using this nonparametric technique is that the IRFs can take any functional 

form that is free of the systematic bias potentially suffered by parametric procedures 

when the presumed parametric model may not reflect reality. TESTGRAF (Ramsay, 

2000) is a procedure that can be used to graphically compare the kernel smoothed 

focal and reference group IRFs so as to identify DIF items. However, the graphical 
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DIF analysis does not provide a hypothesis testing statistic that can be used 

objectively to determine the occurrence of DIF. 

Purpose of the Study 

Therefore, the first purpose of this study is to apply the kernel smoothing 

procedure to three nonparametric DIF statistics—Cochran's Z, Fisher's z2 > and 

Goodman's U—to statistically test the significance of focal and reference group IRF 

differences. The three statistics were used to test different performances among 

ethnic groups by Marascuilo and Slaughter (1981). To use these statistics, examinees 

were classified into a small number of ability groups (e.g., high, medium, low) based 

on their internal test scores. The use of internal test scores as a matching criterion has 

the potential to introduce bias into IRF comparisons when groups have different 

latent ability distributions. More recently, Bolt and Gierl (2006) applied the 

regression correction procedure currently used in SIBTEST to the three statistics in 

an attempt to adjust the potential bias in the matching criterion. Their findings 

suggested that the statistical performance of these DIF statistics was improved to 

some degree when the regression correction procedure was applied. Hence, the 

second purpose of the present study is to conduct a simulation study to investigate 

whether the kernel smoothing procedure can further improve the performance of the 

three modified statistics in terms of Type I error and power in DIF detection. 

Organization of the Thesis 

The thesis is organized in five chapters. Chapter II provides an overview of 

the kernel smoothed IRF estimation technique and reviews the three nonparametric 
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DIF statistics considered in this research. Chapter III presents the detailed steps for 

applying the kernel smoothing technique with the three statistics to test the 

significance of IRF differences. The procedure and manipulated factors for the 

simulation studies designed to assess Type I error and power are also described in 

this Chapter. Chapter IV presents the results of the simulation studies. Chapter V 

discusses the major findings and the implications of this study for DIF analysis. 

Limitations of this study and directions for future research are also presented. 
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Chapter II: Literature Review 

Kernel-Smoothed IRF Estimation 

In the Item Response Theory framework, item response functions (IRFs) that 

model the functional relationship between an examinee's latent ability (0) and the 

probability of answering the item correctly are usually specified in the form of 

parametric models such as the Rasch, 2PL, and 3PL models. However, parametric 

models cannot always estimate the item characteristics curve in an accurate and 

efficient way. For example, the most widely used model, the 3PL model, is 

problematic when an item is extremely easy. In this situation, there are virtually no 

data available for estimating the guessing parameter c. As a result, large changes in 

the parameter c are compensated for by the corresponding changes in the 

discrimination parameter a, which causes poor estimation of parameter a (Ramsay, 

2000). Even when the item is of moderate difficulty, the covariances between the 

3PL parameter estimates are high, and large amounts of data are required to estimate 

the item parameters precisely (Thissen & Wainer, 1982). This outcome has led to 

research for estimating IRFs without the restriction of a parameterized functional 

form (Altman, 1992; Douglas, 1996, 1997; Douglas & Cohen, 2001; Ramsay, 1991, 

2000). 

Kernel smoothing is a nonparametric regression technique that has been 

introduced in measurement practice (Ramsay, 1991). Nonparametric regression is a 

set of techniques for estimating a regression curve without making strong 
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assumptions about the shape of the true regression function. Ramsay (1991) 

discussed the use of kernel smoothing to estimate IRFs. The benefit of using kernel 

smoothing is that the IRFs can take any functional form that is free of the systematic 

bias potentially suffered by parametric procedures when the presumed model does 

not fit the data perfectly. Using the kernel smoothing technique, Ramsay (2000) 

developed a program for the graphical analysis of multiple choice and questionnaire 

data: TESTGRAF. TESTGRAF can graphically present the kernel smoothed IRFs 

and help the user visually compare the focal and reference group IRFs in order to 

identify DIF items. For more detailed information about TESTGRAF, the reader is 

referred to Ramsay (2000). 

Kernel smoothing estimation is based on local averaging. Suppose one has a 

set of independent variable values*,,/ = 1,...,«, and a corresponding set of dependent 

variable valuesyt,i = \,...,n. The objective is to estimate a smooth curve defined by 

function P with value P(x). For example, one might want to compute the value 

P(xq) at an independent variable valuexq, which is called the targeted point. The 

targeted point may or may not coincide with any of the data values xni = 1,...,«. An 

intuitive way of estimating P(xq) is to compute the average of those values 

yni = \,...,nk associated with values x,,i = \,...,nk that are close to the targeted point 

xq. This technique is called local averaging. Usually, one could let P(xg)be the 

arithmetic mean of the yt s corresponding to the k x, s closest tox?, or, more 

commonly, let P(x ) be the arithmetic mean of the yt s corresponding to the x, s 
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which are not more than h units from x . Then the kernel smoothing regression 

function can be written as: 

x, -x„ 

* ( * « > - " x _ x 

where K(—'- -) is the kernel smoothing function and — is the argument of 
h h 

the function K{u) and h is called the smoothing parameter or the bandwidth 

parameter. The value of /? controls the size of the difference between data value 

*,,/' = 1,...,« and target point x (see Hardle (1990) and Ramsay (2000) for more 

details). In TESTGRAF, h is set as a function of sample size N: h = l.\N~°'2. 

Three commonly used kernel smoothing functions can be applied to define 

local averaging: uniform, quadratic, and Gaussian (Ramsay, 1991). The three kernel 

smoothing function are presented as follows: 

Uniform: K(u) = 0.5, \u\ < 1, and 0 otherwise, 

Quadratic: K(u) = 1 - u2, \u\ < 1, and 0 otherwise, 

-w2 

Gaussian: K(u) - exp( ). 

No matter which of the three functional forms is taken, K{u) is always zero or 

positive for all values of the argument u, K(0) is always the maximum value taken 

by K(u), and K{u) always goes to zero as u deviates more and more in either 

direction from 0. In TESTGRAF, the Gaussian kernel smoothing function was 

adopted. 
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When kernel smoothing is applied to IRF estimation, the independent 

variable is 6j, i = 1,..., n, the latent ability variable. The dependent variable is the 

probabilities that examinees answer an item correctly, p,,i = l,...,n. Therefore, the 

kernel smoothing regression function applied in IRF estimation can be written as: 

N 6-6 

where K{ -) is the kernel smoothing function, 9t is ability estimate for 
h 

examinee /, 0 is the target ability point, pt is the probability of answering the item 

correctly by examinee /, and h is the bandwidth parameter. 

Although it is impossible to know the true value of the latent ability for each 

examinee, the kernel smoothing procedure can be operational ized by using the 

estimated latent ability for each examinee. In this sense, the kernel smoothing 

regression equation above is written as follows: 

/>(* , )= w 

N 6-6 

N 6-6 

<-=i 

The details about the procedure used to estimate the latent ability variable, 6f, are 

presented in the chapter III of method. 

Three Regression-corrected Nonparametric Statistics 

Marascuilo and Slaughter (1981) proposed six statistical procedures for 

identification of potentially biased test items. Three of these —Cochran's Z, Fisher's 

X2, and Goodman's U—were adapted by Bolt and Gierl (2006). They applied a 
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regression correction procedure, which is currently implemented in SIBTEST, to 

reduce measurement error in the matching criterion. These three statistics with the 

regression correction are reviewed in this section. 

Cochran's Z test. 

Cochran's Z test evaluates the null hypothesis 

against 

//•,:Ai=A2= — = A t=Ao, 

where At = p*m - p'm , in which / J V and p*Fk denote the probabilities of success 

for examinees in reference and focal groups, respectively, for the valid subtest score 

level k after using regression correction and A0 is a specified value. If the null 

hypothesis is rejected, one would conclude that a constant difference in the 

probabilities of success exists across all of the ability levels. The estimate of A0, A0, 

can be computed as: 

z>." 
where 

Tir _ ^Rk^Fk 
k Nm+NFk 

is the weight associated with each valid subtest score. The final test statistic is given 

by 

where 
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SE2 1 yw
 NlkPRkQ-PRk) + NFkp*Fk(l-p'Fk) 

Ao (Z>*)2r k (Nm+NFky 

Under the null hypothesis, Z has a approximate standard normal distribution. 

Therefore, the value of Z can be tested in terms of whether its absolute value is 

greater than 1.96 at the 0.05 significance level. 

Fisher's %2 test. 

Fisher's %2 t e s t evaluates the statistical dependence between group 

membership (reference/focal) and item response (correct/incorrect) conditioned on 

valid subtest score level k (Bolt & Gierl, 2006). Fisher's x1 provides an omnibus 

test of: 

H0:Al=A2=- = Ak=0 

against 

Hx : at least one Ak * 0. 

where Ak = p* m -p*n , in which /?Vand p" Fk denote the probabilities of success 

for examinees in reference and focal groups, respectively, for the valid subtest score 

level k after using regression correction. 

The formula for the test statistic with regression correction applied is: 

..?. _ (NRk + NFk- l)(rinoriki - HJaiHffio )2 

(M^O + n*Mi)(n*mo + "«o)(»«u + <H)(«/*O + nFkx) 

where Nm and JV^ denote the total number of examinees having valid subtest score 

k in the reference and focal group, respectively; n'Rkx and n*Fkx denote the regression-

corrected number of examinees (frequencies) in the reference and focal groups who 

obtained valid subtest score k and answered the item correct; and n*Rk0 and n*Fk0 

denote the regression-corrected number of examinees in each group who answered 
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the item incorrectly. The regression-corrected frequencies can be calculated using 

the total number of examinees multiplied by the adjusted conditional proportion 

correct or incorrect scores obtained from the SIBTEST extended output. The test 

statistic is approximately distributed as a %2 with one degree of freedom when 

NRk + NFk > 20 and each of n'm, n'm, n*Rka, and nFk0 is at least 3 (Kanji, 1993). 

The xl statistic at each matching score level can also be summed across a 

range of matching score levels to produce an omnibus test of DIF: 

%T ~ / ,Xk 
ke/C 

where # consists of all matching score levels of interest that satisfy the necessary 

cell size criteria for a suitable x2 approximation. The test statistic Xr ls distributed 

as a x2 with degrees of freedom equal to the number of matching score levels 

included in K. 

Goodman's Utest. 

Goodman's Latest evaluates whether the amount of DIF in an item varies 

across ability levels. In statistical terms, Goodman's (/is used to test 

HQ:Al =A2 = —= At =A0, 

against 

Hl : H0 is false. 

The formula for computing the test statistics is: 

C/ = 2X(At-Ao)2> 
k 
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where A0 = — ^ is the average difference between IRFs across all valid 
2>* k 

1 
subtest scores with Ak defined the same way as for the Cochran's Z test, Wk • 2 

SE-. A» 

is the weight applied to the displacement quantity (Ak - A0), and 

SE2 = Pm^-Pm) + PnQ-Pn) h ±e enQr v a r i a n c e . 
i v Rk i v Fk 

The same requirements as for the Fisher's x2 test needs to be met for 

Goodman's t/test (i.e., NRk + NFk > 20, and each of n'm , n*m , nRk0, and n*Fk0 is at 

least 3). The test statistic U is approximately distributed as a x2 distribution under 

H0 with degrees of freedom equal to the number of valid subtest score categories 

used in the computation of U. 

Bolt and Gierl (2006) conducted both a simulation study and a real data study 

to assess each of the three statistics. Two factors, sample size and ability distribution 

difference, were manipulated in the simulation study. Simulation study for Type I 

error was conducted for both not corrected and corrected statistics, but the power 

study was only conducted for the three corrected statistics. The results from the Type 

I error study demonstrated the effectiveness of the regression correction procedure in 

improving the performance of the three DIF statistics in some conditions. However, 

the Type I error rates were still high after regression correction, ranging from 0.12 to 

0.20, when there was an ability distribution difference and sample size was large. 

Moreover, the Type I error rates using regression correction for highly 

discriminating and easy items were high across the three statistics. For example, 

under one simulation condition, three items had Type I error rates of .48, .78 and .43, 
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respectively, for the regression-corrected Fisher's %2, .54, .92, and .55 for the 

regression-corrected Cochran's Z, and .26, .62, and .26 for the regression-corrected 

Goodman's U. In the real data study, data from six high school certification 

examinations were used to study global and local DIF across English- and Chinese-

speaking student groups. Based on the degree of agreement among the three statistic 

test, the items may be candidates for local DIF analysis were selected. By testing for 

DIF at any location along the ability scale for candidate items, Fisher's x1 and 

Goodman's U, but not Cochran's Z, appeared to be useful in identifying items that 

may display DIF at some ability levels but not others. 
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Chapter III: Method 

Three Kernel-Smoothed Statistics 

The calculation of the kernel-smoothed statistics for Fisher's;£2, Cochran's 

Z, and Goodman's U involved four steps. In step 1, the estimates of latent ability 

variable for each examinee in each group, #,,/ = 1,2,...,n, were obtained by using the 

kernel smoothing procedure. In step 2, matching subtest true scores were calculated 

and the frequencies of matching subtest true scores in each group were determined. 

In step 3, the kernel-smoothed estimates of the studied items IRF corresponding to 

each subtest scores were obtained. In step 4, the three statistics were calculated based 

on the kernel-smoothed studied item IRF and the frequencies of matching subtest 

true scores. Steps 1 to 3 were adapted from Douglas, Stout, and DiBello' s (1996) 

study, where the kernel smoothing procedure was used to improve the performance 

ofSIBTEST. 

Step 1: Estimate the latent ability. Suppose there are m matching subtest 

items and 2n examinees in a test. To simplify, the number of examinees in each 

group is equal (i.e., n examinees in reference group and n examinees in focal 

group). Consider item j,j = 1,2,..., m of the matching subtest items in one group, for 

instance, the reference group. Rank the number-correct scores of the matching 

subtest items among the n examinees for this group with item j excluded. The rank 

for each examinee is divided by n to put the score on the [0, 1] scale. The obtained 

rank for examinee /' is denoted by 6^J). For each item j , kernel smoothing 

estimation was completed using the formula: 
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N QU) _ Q 

p<(e*}='„ fr»-e ' 

where Yti is the score (1 or 0) of the /'th examinee's on item j of the matching 

subtest, K(u) is the kernel smoothing function, 6q is the target ability point, and h 

is the bandwidth parameter. In Douglas, Stout, and DiBello's (1996) study, the 

quadratic kernel smoothing function (i.e., K(u) = 1 - u2, \u\ < 1) and the bandwidth 

parameter h - 0.7N~°2 was used. The same kernel smoothing function and 

bandwidth parameter were adopted in this study. The estimates of latent ability 9i 

were obtained by summing Pj (d{j)) for j = 1,2,..., m ; that is 

m 

7=1 

The estimates of latent ability, #,,/ = 1,2,...,«, ranged from 0 to m because 

each Pj(dln),(i = \,2,...,n;j = 1,2,...,m) ranges from 0 to 1. However, the estimates 

of latent ability, <?,, / = 1,2,..., n, are separately calculated for reference and focal 

groups. Different ability distributions for the reference and focal groups will affect 

the estimation of abilities. Therefore, the estimates of latent abilities from two groups 

were pooled and converted to percentile estimates on the uniform ability scale that 

ranged from 0 to 1. Then, the estimates of pooled latent ability, denoted by 

91,i - \,2,...,2n, were obtained based on the percentile rank of 0,,i = \,2,...,n after 

reference and focal groups were combined. 

Step 2: Calculate the frequency of matching subtest true scores. To calculate 

the frequency of matching subtest true scores, the 0j,i = l,2,...,2n obtained from step 
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1 were aligned to the matching subtest true score k,k - 0,1,2,..., m. In this study, the 

centre value was used to categorize the estimates of latent ability. For example, if the 

A 

estimate of latent ability 0\ for an examinee was 1.1, which fell in the interval of 

[0.5, 1.5), then the matching subtest true score of 1 was assigned to this examinee. In 

doing so, the estimates of latent ability can be aligned to matching subtest true 

and the result is denoted by 9k,k = 0,l,2,...,w. Consequently, the frequency of each 

matching subtest true score for examinees could be calculated. 

Step 3: Estimate kernel-smoothed IRF of studied item. To estimate the kernel-

smoothed IRF of studied item, the kernel smoothing procedure is used according to 

where Yj is the response to the studied item of the z'th examinee, 9\ is the pooled 

estimate of latent ability which is obtained from step 1, and 9 is the target ability 

point. In this step, target ability point is set as (m +1) points between 0 and 1 (i.e., 

9' — 9 
Vm^Ym^Vm^-,m'Ym>% )• Again, K(— L) is the quadratic kernel smoothing function 

h 

and h = 0.7iV~02is the bandwidth parameter. 

Then, the estimated probability difference for each studied item under the 

condition of ability level #A between reference and focal groups was calculated using 

A 4 = Re„~PF0t 
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Step 4: Calculate the three Kernel-smoothed statistic: Cochran's Z, Fisher's 

%2, and Goodman's U. The final step is to calculate the three kernel-smoothed test 

statistics. 

For the kernel-smoothed Cochran's Z, the null hypothesis is the same as the 

one described in Chapter II. The formula for kernel-smoothed Cochran's Z is: 

Z = 
SEk 

where A0 = — is the weighted average difference between IRFs across all 

IX 
k=0 

valid subtest scores with Aa which is defined in Step 3. The standard error of A0 is 

given by: 

<2X> 
4=0 

mk Fek -

NW NF0 where W- = * —, and N„t and NPA are defined as the same way as for 
0k fJ + N m F0k J 

kernel-smoothed Fisher's r2 described above, p- and p- are the estimated 
lWk l-t)k 

probabilities for each studied item for ability level 6k. Under the null hypothesis, Z 

has a standard normal distribution. 

For the kernel-smoothed Fisher's %2, the null hypothesis is the same as the 

one described in Chapter II. However, the formula for the test statistic with kernel 

smoothing applied is different from the one with correction regression applied: 

(Nm+NF0k -1X^ to
Wm, - V F A „ > 2 

%n,. 
("j*. + "*4, X"«4o + "Mo X"^, + nm, X*^o + wm, > 
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where N^ and NF^ denote the total number of examinees having ability level 6k 

in the reference and focal group respectively, nR^ and np^ denotes the kernel-

smoothed number of examinees (frequencies obtained from step 2) in the reference 

and focal groups who obtained valid subtest score 6k, and nD& and n, denotes the 
KOto rVto 

kernel-smoothed number of examinees in each group who obtained valid subtest 

score 6k. The test statistics can only be calculated when N^ + NF^ > 20 and each 

of nR£ , np^ , nR£ , and np^ is at least 3 for %j to approximate the chi-square 

distribution with 1 degree of freedom. 

The x\ statistic at each matching score level can also be summed across a 

range of matching score levels to produce an omnibus test of DIF: 

keK 

where K consists of all matching score levels of interest that satisfy the necessary 

cell size criteria for a suitable %2 approximation. The test statistic %\ 1S distributed 

as a x1 with degrees of freedom equal to the number of matching score levels 

included va.K. 

For the Goodman's U, the kernel-smoothed formula is: 

A A -

SE'x 
2 

k=0 

where A0 = — is defined the same way as for the kernel-smoothed 

IX 

Cochran's Z test and SEt = — — + — — is the error variance. 
A* N . N -
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Under the null hypothesis, U approximates the x2 distribution with degrees 

of freedom equal to the number of valid subtest scores providing that 

N„A +NFA >20, and each of nRA , n , , «„= , and npA is at least 3. 

Type I Error Study 

A simulation study was conducted to investigate the Type I error rates of the 

three proposed kernel-smoothed statistics in DIF detection. Three factors expected to 

affect the probability of a Type I error were considered: sample size, ability 

distribution difference, and item parameters of the studied item. Item response data 

were generated from a three-parameter logistic (3PL) item response model. Each 

generated test consisted of 26 items, 25 matching subtest items and a studied item. 

To compare the results of Type I error rates using regression correction with those 

from kernel-smoothed correction, the same 25 no-DIF matching items used in Bolt 

and Gierl's (2006) Type I error study were used in this simulation study. Table 1 

contains the item parameters for the 25 items. Table 2 shows the summary 

information for these factors. In total, 3 (sample size) x 4 (ability distribution) x 4 

(studied item) = 48 tests were generated to investigate the Type I error rates for the 

three proposed kernel-smoothed statistics. For each test, 100 replications were 

performed. Two-sided hypothesis tests were used with a significance level of 0.05. 

For comparison purpose, the Type I error rates with no correction and regression 

correction were also calculated under each simulation condition. 
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Table 1. Matching Items Parameters in Type I Error and Power Studies 

Matching 
Item 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Item Parameter 
a 

1.53 
0.89 
1.46 
0.73 
1.39 
0.49 
0.52 
0.97 
1.10 
0.81 
1.09 
0.64 
1.39 
1.23 
0.42 
1.46 
1.45 
1.18 
0.41 
1.00 
1.07 
0.63 
1.58 
1.00 
0.87 

b 
1.21 
-0.65 
-0.09 
0.65 
1.99 
0.22 
-0.67 
-0.38 
1.78 
-0.37 
-0.75 
-0.25 
-1.07 
2.78 
0.72 
-1.59 
-2.00 
-1.00 
-0.49 
-0.68 
1.23 
0.82 
-1.66 
-0.56 
1.73 

c 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 

Table 2. Manipulated Factors in Type I Error Study 

Sample Size 
Ref. Foe. 
500 500 
1000 1000 
2500 2500 

Ability Distribution 
Ref. Foe. 

NR(0,1) NF(0,1) 
NR(0,1) NF(0,2) 

NR(0.5,l) NF(-0.5,1) 
NR(0.5,1) NF(-0.5,2) 

Item Parameter 
a B c 

1.00 -0.75 0.20 
1.00 0.75 0.20 
1.50 -0.75 0.20 
1.50 0.75 0.20 

Sample Size 

The first factor manipulated was sample size. The results of many studies have 

revealed that sample sizes can influence the Type I error and power rates of DIF 

procedures (e.g., Bolt & Gierl, 2006; Douglas, Stout & DiBello, 1996; Jodoin & 

Gierl, 2001; Narayanan & Swaminathan, 1994; Roussos & Stout, 1996b). For 
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example, in Bolt and Gierl's study (2006), both the Type I error and power rates 

became inflated as the sample size increased for the three statistics using the 

regression correction. Three levels of sample size were considered in this simulation 

study. Let nR and nF denote the reference and focal group sample sizes, respectively. 

Values of nR,nF were set at (500, 500), (1000, 1000), and (2500, 2500), 

representing a small, moderate, and large sample sizes. Given the reference and focal 

groups have the same number of examinees, sample size was balanced across all 

conditions. 

Ability Distribution 

The second manipulated factor was the difference between the ability 

distributions of the reference and focal groups. Group ability mean was commonly 

used to reflect group differences in the previous DIF simulation studies (e.g., 

Douglas, Stout & DiBello, 1996; Fidalgo, Ferreres, & Muniz, 2004; Gierl, Jodoin, & 

Ackerman, 2000; Narayanan & Swaminathan, 1994; Roussos & Stout, 1996b). 

However, Bolt and Gierl (2006) suggested that group ability standard deviation 

differences can also cause substantial variation in Type I error and power rates of 

DIF procedures. Therefore, differences in both group ability mean and standard 

deviation were considered in the present study. Normal distributions for both groups 

were assumed. Four situations were considered: NR (0, 1) versus Np (0, 1), NR (0, 1) 

versus NF (0, 2), NR (0.5, 1) versus NF (-0.5, 1), and NR (0.5, 1) versus NF (-0.5, 2). 
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Item Parameters 

Although item parameters were not a manipulated factor in Bolt and Gierl 

(2006)'s study, they pointed out that Type I error rates of the three statistics were 

inflated under certain items, especially for easy or difficult items. In addition, their 

study showed that the power rates of the three statistics varied when items differed in 

discrimination and/or difficulty. Consequently, the item parameters of the studied 

item were manipulated in the Type I error study. 

A Type I error is found when a non-DIF item is detected as showing DIF. 

Therefore, to study the Type I error rates for the three statistics using kernel-

smoothing, the studied item was simulated as a non-DIF item. The item parameters 

were the same for both the focal and the reference groups. The discrimination 

parameter was set at 1 or 1.5, the difficulty parameter was set at -0.75 or 0.75, and 

the guessing parameter was set at 0.2. In total, four items were used in the Type I 

error study. Their item parameters were (1, -0.75, 0.2), (1, 0.75, 0.2), (1.5, -0.75, 

0.2), and (1.5, 0.75, 0.2), respectively. Therefore, each simulated test consisted of 25 

matching items and one of these four items. The item parameters of the 26 items are 

the same for the reference and focal groups. 

Power Study 

The power study was designed to investigate the performance of the three 

kernel-smoothed statistics in detecting DIF items. Three DIF items were studied, 

ranging from easy to difficult with varying amounts of discrimination. The item 

parameters for each studied item are given in Table 3. Each simulated test consisted 
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of 25 matching items and one of the studied items. The power study employed the 

same 25 matching subtest items used in the Type I error study. Sample size and 

ability distribution were also manipulated with the same levels as those in the Type I 

error study. A total of 3 (sample size) x 4 (ability distribution) x 3 (studied item) = 

36 tests were generated. For each test, 100 data sets were simulated. Two-sided 

hypothesis tests were used to examine the occurrence of DIF for the studied item 

using an alpha level of 0.05. For the purpose of comparison, the power rates with no 

correction and with regression correction were also calculated under each simulation 

condition. 

Table 3. Parameters for Studied Items in Power Study 

Item parameter 
Studied 

Group 
Ref. 
Foe. 
Ref. 
Foe. 
Ref. 
Foe. 

a 
1.50 
0.50 
2.00 
0.40 
1.80 

0.40 

b 
0.00 
0.00 
1.00 
0.00 
0.00 

0.50 

c 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 



Chapter IV: Results 

Type I Error Study 

Type I Error results for Cochran's Z, Fisher's x2 > ar|d Goodman's Utests 

under the different simulation conditions described in the previous chapter are 

presented in Tables 4 to 6, respectively. Each table compares the Type I error rates 

for the corresponding test when no correction (NC), regression correction (RC), and 

kernel smoothing (KS) were used under each simulation condition. For each test, the 

impact of the manipulated factors in this study—ability distribution, sample size, and 

item parameter—on the Type I error rate is also summarized. 

Given that only 100 replications were conducted for each condition, the 

standard error was relatively large for this simulated Type I error study (0.02). 

Therefore, the lower and upper limits of 95 percent confidence interval for the 

nominal Type I error at 0.05 level were 0.01 and 0.09. Use of this interval would 

mean that values less than 0.01 would imply a conservative test while values greater 

than 0.09 would imply a liberal test. This did not seem reasonable. Therefore, the 

lower and upper limits were modified as follows: the empirical Type I error rate was 

considered conservative if it was less than 0.02, reasonable if it was greater than or 

equal to 0.02 and less than or equal to 0.08, and liberal if it was greater than 0.08. 

Cochran's Z 

Table 4 presents the empirical Type I error rates of the Cochran's Z test across 

different simulation conditions. For the NR (0, 1) and Np (0, 1) (i.e., no ability 
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distribution differences between reference and focal groups), the empirical Type I 

error rates using NC, RC, and KS were all in the inclusive range of 0.02 to 0.08 when 

the sample size was small (500/500). This indicated that the three procedures 

produced reasonable Type I error rates across the studied items when there was no 

ability difference and the sample size was small. Under moderate sample size 

(1000/1000), the empirical Type I error was conservative for item 2 (0.01) using NC 

and for item 1 (0.01) using RC. The remaining empirical Type I error rates were 

reasonable. Under the large sample size (2500/2500) condition, the empirical Type I 

error rates using NC were conservative (0.01) for items 1 and 4. Likewise, the 

empirical Type I error rates using RC were conservative (0.01) for items 1 and 4. 

Using KS, the Type I errors were liberal for item 3 (0.09) and item 4 (0.12). 

Therefore, as the sample size increased, the Type I error rates using the NC and RC 

procedures tended to be conservative while the Type I error rates using the KS 

procedure tended to be liberal when there was no ability difference between reference 

and focal groups. There was no noticeable influence of item parameters to Type I 

error under this condition. 

For the NR (0, 1) and NF (0, 2) (i.e., no difference for ability mean, one standard 

deviation for reference group, and two standard deviation for focal group) condition, 

the empirical Type I error rates using NC, RC, and KS were all reasonable under the 

500/500 sample size condition. For the 1000/1000 sample size, the empirical Type I 

error rates using NC were liberal for items 1 and 3, while the values for items 2 and 4 

were reasonable. The Type I error rates using RC were reasonable across the four 
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studied items. In contrast, the empirical Type I error rates using KS were inflated for 

three items; the error rates for items 2, 3, 4 were liberal, ranging from 0.09 to 0.13. 

When sample size was increased to 2500/2500, the Type I error rates using NC were 

liberal for items 3 and 4-0.12 and 0.14, respectively. The Type I error using RC was 

conservative for item 2 (0.00), while the Type I errors using KS were liberal for items 

1 and 4 (0.09 and 0.13, respectively). The remaining Type I error rates were 

reasonable. Therefore, as the sample size increased, the Type I errors using NC and 

KS tended to be liberal while the Type I error for RC tended to be conservative when 

there was no difference between mean ability and the standard deviations differed by 

one. There was no system influence on the Type I error rates due to item parameters. 

For the NR (0.5, 1) and NF (-0.5, 1) (i.e., no difference for standard deviation, the 

ability mean was 0.5 for reference group and -0.5 for focal group) condition, when the 

sample size was small, one of the four empirical Type I error rates using NC was 

liberal (0.10 for item 3), two of the four Type I error rates using RC were conservative 

(0.00 for iteml and 0.01 for item 3), and the remaining were reasonable. For the 

moderate sample size (1000/1000) condition, the empirical Type I error rates using 

NC were liberal for all four items, ranging from 0.09 to 0.16. On the other hand, all 

four Type I errors using RC were conservative: 0.00 for items 2 and 4 and 0.01 for 

items 1 and 3. Using KS, three of the Type I error rates were liberal, ranging from 

0.09 to 0.14. Lastly, for the largest sample size (2500/2500), the empirical Type I 

error rates using NC were inflated for all four items, ranging from 0.36 to 0.62. The 

Type I error rates using RC were conservative (0.00) for items 2 and 3 and reasonable 
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for items 1 and 4 (0.03 and 0.02, respectively). The Type I error rates using KS were 

reasonable with one exception, 0.09 for item 1. Therefore, when there was mean 

ability distribution difference, NC produced liberal Type I error when sample size was 

moderate and large. The Type I error rates using RC tended to be conservative across 

small, moderate, and large sample sizes. Lastly, the Type I error rates using KS 

tended to be reasonable when sample size was small, liberal when sample size was 

moderate, and reasonable when sample size was large. No systematic influence was 

found for item parameters under this condition. 

For the NR (0.5, 1) and NF (-0.5, 2) (i.e., the ability mean was 0.5 for reference 

group and -0.5 for focal group, the standard deviation was 1 for reference group and 2 

for focal group,) condition, when the sample size was small, one Type I error rate was 

liberal (0.11 for item 3) using NC, one was conservative (0.00 for item 1) using RC, 

and one was liberal (0.09 for item 3) using KS. The remaining rates empirical Type I 

error rates were reasonable. When the sample size was moderate, two Type I errors 

using NC were liberal (items 1 and 3) and three Type I errors using KS were liberal 

(items 1, 3, and 4). The remaining Type I error were reasonable. When the sample 

size was large, the same Type I error pattern observed for the moderate sample size 

condition was observed for NC and KS. Using RC, however, two Type I errors were 

conservative (0.01 for items 2 and 4). Different from the three ability distribution 

conditions above, the results for the NR (0.5, 1) and NF (-0.5, 2) condition showed 

strong impact of item difficulty (6-parameter). The empirical Type I error rate using 

NC for items 1 and 3 (6-parameters for items 1 and 3 were -0.75) increased noticeably 
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as the sample size increased. For item 1, for example, the Type I error rates increased 

from 0.05, to 0.11, and then to 0.28 when the sample size increased from small to 

moderate to large. In contrast, the empirical Type I error rates using NC were 

reasonable across the different sample size conditions for items 2 and 4 (^-parameters 

for items 2 and 4 were 0.75). For example, for item 2, the Type I error rates were 

0.03, 0.02, and 0.02 when the sample sizes were 500/500, 1000/1000, and 2500/2500, 

respectively. Using RC and KS, however, the impact of item difficulty was not found. 

To summarize, for the Cochran's Z test, the empirical Type I error rates using 

NC were affected by sample size, ability distribution differences, and item parameter 

values. When there was no mean ability difference between the reference and focal 

groups, the empirical Type I error rates using NC were reasonable when the sample 

size was small and conservative or reasonable when the sample size was large or 

moderate. However, when there were differences between mean abilities or between 

the standard deviations of the ability distributions of the reference and focal groups, 

the Type I error rates using NC increased as sample size increased. When the 

reference and focal groups differed in both mean ability and standard deviation (NR 

(0.5, 1) and NF (-0.5, 2)), Type I error rates were inflated for the easy items (items 1 

and 3), but not for the difficult items (items 2 and 4), as sample size increased. But, 

the results suggested that the item parameters did not strongly affect the Type I error 

rates using RC and KS when the sample size was small and there was no mean ability 

difference. However, when there was a difference between the mean abilities, the 
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empirical Type I error rates using RC tended to be conservative while the KS Type I 

error rates tended to be liberal as sample size increased. 

Fisher's %2 

Table 5 displays the Type I error rates of the Fisher's x2 test across different 

conditions. As shown in Table 5, for the NR (0, 1) and NF (0, 1) condition, the 

empirical Type I error rates using NC were reasonable except for item 4 (0.01) when 

the sample size was 500/500. The Type I error rates using RC were reasonable across 

all the studied items. In contrast, the empirical Type I error rates using KS were 

conservative except for item 4 (0.03). When the sample size was 1000/1000, the 

empirical Type I error rates using NC and RC were reasonable across all the studied 

items. Alternatively, the Type I error rates using KS were conservative except for 

item 4 (0.02). When the sample size was large (2500/2500), the empirical Type I error 

using NC and RC were reasonable, ranging from 0.05 to 0.07. The empirical Type I 

error rates using KS were conservative except for item 4 (0.03). Therefore, the 

empirical Type I error rates using the three procedures were stable as sample size 

increased. The rates using NC and RC tended to be reasonable while the rates using 

KS tended to be conservative when there was no ability difference. Influence of item 

parameters was found under this condition. The Type I error rates using KS for item 4 

(a=1.5, 6=0.75, and c=0.20) were reasonable while the rates for the remaining items 

(items 1, 2, and 3) were conservative as sample size varied. 

For the NR (0, 1) and NF (0, 2) condition, when sample size was small, the Type 

I error rates using NC were reasonable except for item 1 (0.11). The Type I error rates 

32 



i n 

cs 

I 
Sf 
•S 
.a *S 
c 

h 
co

 
ea

c 

ik 

•s, 
g o 
'•§ 
. O 
"CS 

& 
«2> 
<a 
*—i 

^ 
•s 
0 
a 
K 

,<3 

<4i 

5r 
v 
^ 
R 

. 0 
1 * 

fe 
§ 
£ 

<o 
N 

53 
<U 

"a 
E 

CO 

O 
O 

"n 
O 
O 
H-> 
<N 

O 
O 
O 

^ O 
O 

O 
O 

>Q 
O 

c> 
"-> 

% 

0 
ft! 

H 

s? 

0 
ft! 

g 

3 

ft! 

^ 

•9 
•i a 

CO 

a 
.0 
+S 
s 

5 

3 

0 
0 

0 

i n 
0 

O 

NO 
0 
0 

0 
0 

0 

i n 
0 

0 

1 0 
0 

O 

1—H 

O 

O 

<N 
O 

O 

m 
p 
0 

5 
<u 

AS 

0 0 

0 0 

NO N © 
O O 

O O 

f - NO 
0 0 

© © 

0 0 
0 0 

© d 

rn <n 
0 0 
d d 

en "* 
0 0 

d d 

0 0 
0 0 

d d 

0 >n 
0 0 
0 d 

( N v i 
O O 

d d 

£ 5 
<u <u 

AS AS 

•~̂  
^r 

* 

.as 
fe; 

m 
O 

d 

t -
O 

d 

r-
p 
d 

<N 
O 

d 

m 
0 

d 

i n 
O 

d 

f > 
0 

d 

-* 0 

d 

r -H 

O 

d 

£ 
w A; 

© 
0 

d 

t -
0 

d 

NO 
CN 

d 

0 
© 

d 

£j 
d 

m 
- - H 

d 

0 
0 

d 

i n 

p 
d 

*—H 

^ 
d 

£ 
5U 
A; 

O <N 
O O 

d d 

O N 0 0 

p p 
d d 

ON t N 
CS ( N 

d d 

0 0 

p p 
d d 

JN i n 
—1 O 

d d 

t - T t 

d d 

0 0 
0 0 

d d 

• * m 
O O 

d d 

>n r-
0 0 

d d 

s s 
^J SD 

A3 AS 

R" 
^T 

^ 

^ 

<N 
O 

d 

<N 

d 

• * 

** 
d 

p 
d 

r~ 
0 

d 

• < * 

d 

0 
0 

d 

m 
p 
d 

>n 
0 

d 

£ 
<a 
AS 

VO 

p 
d 

t -
0 

© 

r-
V~i 

d 

© 
© 

© 

ON 
© 

d 

ON 
<N 

d 

(—4 

© 

d 

•n 
p 
d 

NO 
© 

d 

s 
tU 
AS 

—1 m 

© p 
d © 

CN ON 
— © 

© d 

0 0 —< 
< n 0 0 

© © 

co -̂ -
© © 

© © 

( S CNI 
i - ^ 1—4 

d d 

i n O N 

r4 c-) 
d d 

—. O 
© © 

d d 

NO ( N 
~ © 

d © 

i n 0 0 
( N © 

O * © 

<N <N-I 

5 S 
<a «a 

•S5 * 5 

~ ~ 1 

>«•>" 

^ 1 

^ 
— 1 

^ 

m 
© 

d 

r-
© 

© 

>n 
r~; 
© 

© 
© 

© 

• > 
© 

d 

• * 

r<-> 
© 

© 
© 

d 

0 0 
© 

© 

i n 
CNl 

d 

S 
<a 
^ 

© 
© 

© 

ON 
© 

© 

0 0 
'S-

© 

rs 
© 

© 

ON 
r—1 

d 

ON 
(^1 

d 

© 
© 

d 

TT 
© 

d 

0 0 
© 

d 

5 
«> •S5 

© >n 

© p 
© © 

NO © 
© —; 

© © 

0 0 Tj-
© OO 

© © 

—< © 
© © 

© d 

t"~ ro 
O —< 

d d 

OO <N 
© • * 

© d 

© © 
© © 
© d 

» - © 
© © 
© © 

<n i> 
© © 
© © 

«a «a 
* 5 AS 

<N" 

•n 

^ 

^ 

© 

© 

»—< 
1—j 

d 

r-
© 

© 

© 
© 

d 

1—1 

^ H 

d 

0 0 
© 

d 

© 
© 

d 

0 0 
© 

© 

r-© 

d 

S 
>̂ AS 

33 



using RC were reasonable while the rates using KS were conservative across all the 

studied items. When the sample size was moderate, the Type I error rates using NC 

increased noticeably: the Type I errors were liberal for all four items, ranging from 

0.14 to 0.17. Using RC, the empirical Type I error rates for items 1 and 2 were liberal 

(both were 0.12) while the rates for items 3 and 4 were reasonable (0.05 and 0.07, 

respectively). The Type I error rates using KS were conservative across the studied 

items (0.00 for items 1, 2 and 3, 0.01 for item 4). When sample size was large, the 

empirical Type I error rates using NC were again liberal, ranging from 0.22 to 0.44. In 

addition, they were approximately two times higher than the value for the moderate 

sample size condition with one exception (approximately three times for item 4). The 

empirical Type I error rates using RC under this condition were reasonable for items 1 

and 3 (0.07 and 0.08, respectively) and liberal for items 2 and 4 (0.09 and 0.12, 

respectively). Using KS, the empirical Type I error rates were conservative for items 

1 and 2 (both were 0.00) and reasonable for items 3 and 4 (both were 0.02). As 

sample size increased, the Type I error rates were inflated noticeably using NC, 

tended to be liberal using RC, and tended to be conservative consistently using KS. 

No systematic influence of item parameters was found for the three procedures in this 

condition. 

For the NR (0.5, 1) and NF (-0.5, 1) condition, when sample size was small, the 

empirical Type I error rates using NC for item 1 and 3 were reasonable (0.06 and 

0.08, respectively). On the other hand, the rates for item 2 and 4 were liberal (both 

were 0.25). Using RC, the empirical Type I error rates were reasonable with one 
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exception (0.16 for item 2). The empirical Type I error rates using KS were 

conservative across all four studied items. When the sample size was moderate, the 

empirical Type I error rates using NC were liberal, ranging from 0.25 to 0.39. Using 

RC, the Type I error rates were also liberal with one exception (0.07 for item 4). In 

contrast, the rates using KS were conservative for items 1 and 4 (both were 0.00) and 

reasonable for items 2 and 3 (0.03 and 0.04, respectively). When the sample size was 

large, the empirical Type I error rates using NC were liberal and larger than that for 

the moderate sample size, ranging from 0.57 to 0.81. The Type I error rates using RC 

were reasonable for items 1 and 4 (both were 0.07) and liberal for items 2 and 3 (0.12 

and 0.09, respectively). Using KS, however, the empirical Type I error rates were 

reasonable with one exception (0.01 for item 2). When there was mean ability 

distribution difference, influence of item parameters was found for NC. The Type I 

errors using NC for difficult items (items 2 and 4) were liberal regardless of sample 

size. In contrast, the Type I error rates for easy items (items 1 and 3) were reasonable 

when the sample size was small and then became liberal as the sample size increased. 

For the NR (0.5, 1) and NF (-0.5, 2) condition, when sample size was small, the 

empirical Type I error using NC and RC were reasonable with one exception (0.00 for 

item 3 using RC). However, the Type I error rates using KS were conservative for all 

studied items. When the sample size was moderate, the Type I error rates using NC 

were liberal for items 1 and 3 (0.39 and 0.42, respectively), while the rates for items 2 

and 4 were reasonable (both were 0.08). The empirical Type I errors using RC were 

liberal, ranging from 0.11 to 0.19, with one exception (0.07 for item 2). But the rates 
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were lower than the rates using NC. The Type I error rates using KS were 

conservative except for item 1 (0.02). When the sample size was large, the empirical 

Type I error rates using NC for items 1 and 3 were liberal and larger than for the 

moderate size condition (0.48 vs. 0.39 for item 1, 0.84 vs. 0.42 for item 3). On the 

other hand, the rates for item 2 and 4 were still reasonable (0.08 and 0.07, 

respectively). Using RC, the Type I error rates were liberal with one exception (0.06 

for item 2). Using KS, the empirical Type I error rates were conservative except for 

item 3 (0.05). Like the pattern of the results for Cochran's Z test, the ^-parameter, 

influenced the Type I error rates using NC when there were differences between the 

mean abilities and the standard deviations. As sample size increased, the empirical 

Type I error rates using NC for easy items (^-parameters for items 1 and 3 were -0.75) 

increased. For example, the Type I error rates for item 3 increased from 0.07, to 0.42, 

and then to 0.84 when sample size increased from small, to moderate, and to large. On 

the other hand, the empirical Type I error rates using NC were reasonable across 

different sample size conditions for difficult items (^-parameters for items 2 and 4 

were 0.75). For example, for item 4, the Type I error rates were 0.07, 0.08, and 0.07 

when the sample sizes were 500/500, 1000/1000, and 2500/2500. In contrast, item 

parameter did not influence the Type I error when RC and KS were used. 

To summarize, for Fisher's %2, the empirical Type I error rates using NC were 

affected by the manipulated factors, including sample size, ability distribution, and 

item parameters. When the sample size was small, the Type I error rates using NC 

were reasonable with few exceptions (0.25 for item 2 and 0.25 for item 4) under the 
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NR (0.5, 1) and NF (-0.5,1) condition. However, the Type I error rates using NC 

increased as sample size increased and ability mean and standard deviation each 

differed by one. In addition, under the NR (0.5, 1) and NF (-0.5, 2) condition, Type I 

error rates using NC were influenced by item difficulty. Using RC, the empirical Type 

I error rates increased as sample size increased for items 1 and 3. The rates also 

increased when there were differences between the ability distributions for items 1 

and 3. However, the degree of increase for RC was smaller than for NC. Using KS, 

the empirical Type I error rates were conservative or reasonable across simulation 

conditions. 

Goodman's U 

The results for Goodman's £/test using NC, RC and KS are summarized in 

Table 6. For the NR (0, 1) and NF (0, 1) condition, when the sample size was small, 

the empirical Type I error rates using NC and RS were reasonable, with one exception 

(0.01 for item 4 using NC). The Type I error rates using KS were conservative across 

all four studied items. When the sample size was moderate and large, the Type I error 

rates using NC and RC were reasonable while the rates using KS were conservative 

across all studied items. The sample size and item parameter did not show any impact 

on the Type I error rates using the three procedures when there was no difference 

between ability means and standard deviations. 
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For the NR (0, 1) and Np (0, 2) condition, when the sample size was small, the 

empirical Type I error rates using NC were reasonable except for item 1 (0.01), while 

the rates using RC were reasonable for all studied items. Using KS, the Type I error 

rates were conservative except for item 3 (0.04). When the sample size was moderate, 

all four Type I error rates using NC were liberal, ranging from 0.09 to 0.17. Two rates 

using RC were also liberal, 0.09 for item 1 and 0.11 for item 2. All the Type I error 

rates using KS were conservative. When the sample size was large, the Type I error 

rates using NC were liberal for all studied items, ranging from 0.15 to 0.25. The error 

rates using RC were liberal for items 2 (0.09) and 4 (0.11), and reasonable for items 1 

(0.02) and 3 (0.06). Using KS, the error rates were again conservative (0.00 for all 

items). When standard deviation differences presented, the empirical Type I error 

rates using NC and RC became inflated as sample size increased. While the Type I 

error rates using KS were consistently conservative across the different sample size 

conditions. In contrast, item parameter did not influence the Type I error when NC, 

RC, and KS were used. 

For the NR (0.5, 1) and NF (-0.5, 1) condition, when the sample size was small, 

the empirical Type I error rates using NC and RC were reasonable with one exception 

(0.01 for item 1 using RC). The error rates using KS were conservative for all items. 

When the sample size was moderate, the rates using NC and RC were reasonable 

except for item 3 (0.14 using NC and 0.12 using RC). The rates using KS were still 

conservative for all items. When the sample size was large, two of the Type I error 

rates using NC (0.03 and 0.05 for items 1 and 2) were reasonable and two of the rates 



(0.14 and 0.12 for items 3 and 4) were liberal. All the Type I error rates using RC 

were reasonable, ranging from 0.02 to 0.08. Using KS, the empirical Type I error 

rates were conservative for all the items. When there was difference between the 

mean abilities, the empirical Type I error rates using NC were inflated for a few items 

as sample size increased. While the Type I error rates using RC were reasonable as 

sample size increased with one exception (item 3 under moderate sample size). Again, 

the rates using KS were consistently conservative across the different sample size 

conditions. The item discrimination parameter (a parameter) influenced the Type I 

errors when NC was used. Using NC, the Type I error rates for items 1 and 2 (a=\ .00) 

were reasonable for all three sample sizes while the rates for items 3 and 4 (a=1.50) 

were reasonable when the sample size was small and liberal when the sample sizes 

were moderate and large (with one exception of 0.04 for item 4 when the sample size 

was moderate). In contrast, item discrimination did not influence the Type I error 

when RC and KS were used. 

For the NR (0.5, 1) and Np (-0.5, 2) condition, when the sample size was small, 

the empirical Type I errors using NC and RC were reasonable except for item 3 (0.00 

for both NC and RC). The Type I error rates using KS were conservative for all 

studied items. When the sample size was moderate, the Type I error rates using NC 

for items 1 and 3 were liberal (0.11 and 0.14, respectively), while the error rates for 

items 2 and 4 were reasonable (0.07 and 0.05, respectively). The empirical Type I 

error using RC were liberal, ranging from 0.11 to 0.19, with one exception (0.07 for 

item 4). The Type I error rates using KS were conservative for all studied items. 

40 



When the sample size was large, the empirical Type I error rates using NC for item 1 

and 3 were liberal (0.27 and 0.37, respectively). On the other hand, the rates for item 

2 and 4 were reasonable (0.05 and 0.06, respectively). Using RC, the Type I error 

rates were liberal for all four studied items. Using KS, the empirical Type I error rates 

were conservative across all items. When both ability means and standard deviations 

differed between the reference and focal groups, the Type I error rates using NC were 

influenced by item difficulty (6-parameter) as in Cochran's Zand Fisher's #2 tests. 

As sample size increased, the empirical Type I error rates using NC for difficult items 

(Z>-parameters for items 1 and 3 were 0.75) increased. For example, the Type I error 

rates for item 1 increased from 0.04 to 0.11 and then to 0.27 when sample size 

increased from small to moderate and to large. On the other hand, the empirical Type 

I error rates using NC were reasonable across different sample size conditions for 

easy items (6-parameters for items 2 and 4 were -0.75), For example, for item 4, the 

Type I error rates were 0.06, 0.05, and 0.06 when the sample sizes were 500/500, 

1000/1000, and 2500/2500. In contrast, item difficulty did not influence the Type I 

error when RC and KS were used. 

To summarize, for Goodman's U statistic, the manipulated factors affected the 

empirical Type I error rates when NC was applied. When there were no ability 

differences between two groups, the Type I error rates using NC were reasonable 

regardless of sample size. Conversely, when the ability means differed, the Type I 

error rates turned to liberal across all items when the sample sizes were moderate and 

large. Item parameters influenced the Type I error rates using NC when ability means 
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and standard deviations differed between two groups (i.e. the NR (0.5, 1) and NF (-0.5, 

2) condition). The Type error rates tended to be inflated for easy items (b = -0.75) 

than the rates for the difficult items (b = 0.75). Using RC, the empirical Type I error 

rates was influenced by sample size and ability distribution. When there was no 

ability difference, the Type I error rates using RC were reasonable as sample size 

increased. When there was ability difference, the Type I error rates tended to be 

liberal for items 1 and 3, especially under moderate sample size. When KS was used 

for Goodman's U, the empirical Type I error rates were consistently conservative 

level (most of them were equal to zeros). 

Power Study 

The results of power study for Cochran's Z, Fisher's x2» and Goodman's U 

tests under the different simulation conditions considered in this study are presented 

in Tables 7 to 9. In the power study, three distinct DIF items were studied, ranging 

from easy to difficult with varying amounts of discrimination. The selection of these 

items was based on the Douglas, Stout and DiBello's study (1996). The item 

parameters for each of these items were provided in Table 4. The remaining factors 

and their levels, sample size, and ability distribution were the same as those 

considered in the Type I error study. 

In order to interpret the power results, power rates were categorized as low, 

moderate, and high according to Cohen's (1962, 1992) criteria. He found that the 

mean power rate to detect medium effect sizes was 0.48 at the two-tailed 0.05 level of 

significance (1962). Also, he argued that a procedure could be considered as having 
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excellent power if its power rates were above 0.80 (1992). Therefore, in the present 

study, power was considered low if the rate was less than 0.48, moderate if the rate 

was in the closed interval 0.48 and 0.80, and high if the rate exceeded 0.80. 

Cochran's Z 

Table 7 displays the results using NC, RC, and KS for the Cochran's Ztest. 

For the NR (0, 1) and NF (0, 1) condition, when the sample size was small, the power 

rates using NC, RC, and KS varied across the three studied items. For item 1, the 

power rates using NC and RC were low, at 0.04 for both. In contrast, the power rate 

using KS was higher, but still low, at 0.29. For item 2, the power rates were 1.00 

when NC, RC, and KS were used, indicating that all three procedures correctly 

identified the occurrence of DIF across the 100 generated data sets. For item 3, the 

power rates using NC and RC were low, at 0.34 and 0.33, respectively, while the rate 

using KS was high at 0.84. When the sample size was moderate, the power rates using 

NC and RC were low for item 1 (0.02 for NC and RC), while the power rate using KS 

was low, at 0.43. For item 2, the power rates were again high at 1.00 across three 

procedures. For item 3, the rates were both moderate (0.64) for NC and RC, while the 

power rate using KS was high (0.95).When sample size was large, the power rates 

using NC, RC, and KS were high across the three studied items, ranging from 0.82 to 

1.00, with two exceptions (0.01 for NC and 0.02 for RC for item 1). 
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For the NR (0, 1) and Np (0, 2) condition, when the sample size was small, the 

power rates using NC, RC, and KS shared the similar trend with the NR (0, 1) and 

NF (0, 1) condition. That is, for item 1, the power rates were low using NC and RC 

(0.04 and 0.09, respectively), while the power using KS was higher, but still low, at 

0.33. For item 2, the power rates were 1.00 when NC, RC, and KS were used. For 

item 3, the power rates using NC and RC were low, at 0.11 and 0.13, respectively, 

while the rate using KS was moderate at 0.75. When the sample size was moderate, 

the power rates using NC and RC were low for item 1 (0.01 for NC and 0.00 for RC), 

while the power rate using KS was moderate, at 0.52. For item 2, the power rates were 

again high at 1.00 across three procedures. For item 3, the rates were both low for NC 

(0.31) and RC (0.30), while the power rate using KS was high (0.98). When sample 

size was large, the power rates using NC, RC, and KS were high across all studied 

items, ranging from 0.88 to 1.00, with two exceptions (0.03 for NC and 0.04 for RC 

for item 1). 

For the NR (0.5, 1) and Np (-0.5, 1) condition, when sample size was small, the 

power rates using NC, RC, and KS for item 1 were low (0.06, 0.04 and 0.29, 

respectively). For item 2, the power rates using NC, RC, and KS were all high and 

close to 1.00, ranging from 0.98 to 0.99. For item 3, the power rates were low for NC 

(0.33), low for RC (0.10), and high for KS (0.85). When the sample size was 

moderate, the power rates using NC and RC for item 1 remained low, 0.12 and 0.02, 

respectively, and the rate using KS was moderate (0.55). For item 2, the power rates 

using NC, RC, and KS were high (1.00, 1.00, and 0.98). For item 3, the power rates 
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were moderate for NC (0.74), low for RC (0.24), and high for KS (0.94). When 

sample size was large, the power rates were high across procedures and items, except 

for NC (0.51) and RC (0.00) for item 1. 

For the NR (0.5, 1) and NF (-0.5, 2) condition, when the sample size was small, 

the power rates using NC and RC for item 1 were low, 0.09 and 0.06 respectively. In 

contrast, the power rate using KS for item 1 was moderate (0.78). For item 2, the 

power rates using NC and RC were both moderate (0.73 and 0.79). However, the 

power rate using KS was still high for item 2 (0.97). For item 3, the power rates using 

NC and RC were low (0.30 and 0.25), while the power rates using KS was high 

(0.99). When the sample size was moderate, the power rates using NC and RC for 

item 1 were low (0.16 and 0.04), while the power using KS was high (0.98). For item 

2, the power rates were high for all three procedures, 0.99, 1.00, and 1.00, 

respectively. The power rates using NC and RC were low (0.42 and 0.31, 

respectively) for item 3, while the rate using KS was high (1.00). When the sample 

size was large, the power rates were high across the procedures and items with two 

exceptions: the power rates for item 1 using NC (0.45) and using RC (0.19). 

To summarize, for Cochran's Z, NC and RC yielded low power for item 1 

(ranging from 0.00 to 0.45) consistently with one exception (0.51 for NC at large 

sample size when NR (0.5, 1) and NF (-0.5 ,2)), but moderate to high power for item 2 

(ranging from 0.73 to 1.00) across different sample sizes and ability distributions. For 

item 3, NC and RC yielded comparable power rates when there was no ability mean 

difference. However, NC produced better power rates than RC when there was ability 
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mean difference between groups. KS produced higher power rates across different 

conditions for Cochran's Z. The results showed the superiority using KS procedure 

for Cochran's Zto detect DIF. 

Fisher's %2 

The power results using NC, RC, and KS for Fisher's j 2 are summarized in 

Table 8. For the NR (0,1) and NF (0,1) condition, when the sample size was small, the 

power rates using NC, RC, and KS for item 1 were low (0.41, 0.38, and 0.19, 

respectively). For item 2, the power rates using all three procedures were high (1.00 

for all of them). For item 3, the power rates using NC, RC, and KS were moderate 

(0.73, 0.76, and 0.79, respectively). When the sample size was moderate, the power 

rates were high across the three procedures and studied items with one exception 

(0.47 for item 1 using KS), ranging from 0.92 to 1.00. When sample size was large, 

all the power rates were high for all the procedures and studied items, ranging from 

0.96 to 1.00. 

For the NR (0, 1) and Np (0, 2) condition, when the sample size was small, the 

power rates using NC, RC, and KS for item 1 were low (0.27, 0.33, and 0.07, 

respectively). For item 2, the power rates using NC, RC, and KS were high (1.00, 

1.00, and 0.99, respectively). For item 3, the power rates using NC were low (0.45), 

while the rates using RC and KS were moderate (0.63, and 0.53). When sample size 

was moderate, the power rates for item 1 were moderate (0.70) using NC, high (0.80) 

using RC, and low (0.35) using KS. For items 2 and 3, the power rates using NC, RC, 

47 



T
a
b
le

 8
. 
P

o
w

er
 R

a
te

s 
fo

r 
F

is
h
er

's
 

%
2
 
w

it
h

 N
o

 C
o

rr
ec

ti
o

n
, 
R

eg
re

ss
io

n
 C

o
rr

ec
ti

o
n

, 
a

n
d

 K
er

n
el

 S
m

o
o

th
in

g
 

(P
ro

po
rt

io
n 

of
 r

ej
ec

ti
on

s 
ou

t o
f 

10
0 

re
pl

ic
at

io
ns

 fo
r 

ea
ch

 c
on

di
ti

on
, a

=
 

A
b

il
it

y 
D

is
tr

ib
u

ti
o

n 

N
R
(0

,1
),

N
F
(0

,1
) 

N
R
(0

,1
),

N
F
(0

,2
) 

N
R
(0

.5
,1

),
N

F
 (

-0
.5

,1
) 

N
R
 (

0.
5,

1)
, N

F
 (

-0
.5

,2
) 

S
tu

d
ie

d
 

It
em

 

it
em

 1
 

it
em

 2
 

it
em

 3
 

it
em

 1
 

it
em

 2
 

it
em

 3
 

it
em

 1
 

it
em

 2
 

it
em

 3
 

it
em

 1
 

it
em

 2
 

it
em

 3
 

-0
.0

5)
 

S
am

p
le

 S
iz

e 
50

0/
50

0 

N
C

 
0.

41
 

1.
00

 

0.
73

 
0.

27
 

1.
00

 

0.
45

 
0.

62
 

1.
00

 

0.
95

 
0.

34
 

0.
99

 

0.
80

 

R
C

 

0.
38

 
1.

00
 

0.
76

 
0.

33
 

1.
00

 

0.
63

 
0.

49
 

1.
00

 

0.
82

 
0.

40
 

1.
00

 

0.
80

 

K
S 

0.
19

 
1.

00
 

0.
79

 
0.

07
 

0.
99

 

0.
53

 
0.

18
 

0.
99

 

0.
86

 
0.

44
 

0.
79

 

0.
95

 

10
00

/1
00

0 

N
C

 
0.

92
 

1.
00

 

0.
99

 
0.

70
 

1.
00

 

0.
99

 
0.

97
 

1.
00

 

1.
00

 
0.

91
 

1.
00

 

1.
00

 

R
C

 
0.

92
 

1.
00

 

0.
99

 
0.

80
 

1.
00

 

0.
98

 
0.

91
 

1.
00

 

0.
99

 
0.

91
 

1.
00

 

0.
99

 

K
S 

0.
47

 
1.

00
 

0.
98

 
0.

35
 

1.
00

 

0.
99

 
0.

60
 

1.
00

 

1.
00

 
0.

92
 

1.
00

 

1.
00

 

25
00

/2
50

0 

N
C

 

1.
00

 
1.

00
 

1.
00

 
1.

00
 

1.
00

 

1.
00

 
1.

00
 

1.
00

 

1.
00

 
1.

00
 

1.
00

 

1.
00

 

R
C

 
1.

00
 

1.
00

 

1.
00

 
1.

00
 

1.
00

 

1.
00

 
1.

00
 

1.
00

 

1.
00

 
1.

00
 

1.
00

 

1.
00

 

K
S 

0.
96

 
1.

00
 

1.
00

 
1.

00
 

1.
00

 

1.
00

 
0.

93
 

1.
00

 

1.
00

 
1.

00
 

1.
00

 

1.
00

 

N
ot

e:
 N

C
 fo

r 
N

o 
C

or
re

ct
io

n,
 R

C
 f

or
 R

eg
re

ss
io

n 
C

or
re

ct
io

n,
 K

S
 fo

r 
K

er
ne

l S
m

oo
th

in
g;

 

oo
 



and KS were high, ranging from 0.98 to 1.00. When sample size was large, the power 

rates were high (1.00) across all procedures and items. 

For the NR (0.5, 1) and NF (-0.5, 1) condition, when the sample size was small, 

the power rates using NC and RC for item 1 were moderate (0.62 and 0.49, 

respectively), while the power rate using KS was low (0.18). For items 2 and 3, the 

power rates were high across NC, RC, and KS, ranging from 0.82 to 0.95. When the 

sample sizes were moderate and large, the power rates were high across all procedures 

and studied items with one exception (0.60 for item 1 using KS when the sample size 

was moderate), ranging from 0.91 to 1.00. 

For the NR (0.5, 1) and NF (-0.5, 2) condition, when the sample size was small, 

the power rates using NC, RC, and KS were low for item 1 (0.34, 0.40, and 0.44, 

respectively). For items 2 and 3, the power rates using NC, RC, and KS were high 

with one exception (0.79 for item 2 using KS), ranging from 0.80 to 1.00. When the 

sample sizes were moderate and large, the power rates were high across procedures 

and items, ranging from 0.91 to 1.00. 

To summarize, for item 1, all procedures yielded low power with two 

exceptions (0.62 for NC and 0.49 for RC at NR (0.5, 1) and NF (-0.5, 1)) when the 

sample size was small. NC and RC produced high power with one exception (0.70 for 

NC at NR (0, 1) and NF (0, 2) when the sample size was moderate), while KS 

produced moderate to high power with two exceptions (0.47 and 0.35 when there was 

no mean difference and sample size was moderate) when the sample sizes were 

moderate and large. For item 2, all procedures produced high power rates with one 
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exception (0.79 for KS at NR (0.5, 1) and NF (-0.5, 2) when the sample size was 

small). For item 3, all procedures yielded moderate to high power rates across 

different sample sizes and ability distributions with one exception (0.45 for NC when 

the sample size was small at NR (0, 1) and NF (0, 2)). 

Goodman's U 

Table 9 shows the power study results using NC, RC, and KS for Goodman's 

Utest For the NR (0, 1) and NF (0, 1) condition, when the sample size was small, the 

power rates using NC and RC were low across studied items, ranging from 0.30 to 

0.35, with the exception of item 3 using RC (0.70). In contrast, the power rates using 

KS were 0.00 for all items. When the sample size was moderate, the power rates using 

NC and RC were high across all studied items, ranging from 0.89 to 1.00. However, 

the power rate using KS was low for the three studied items (0.08 for item 1, 0.01 for 

item 2, and 0.15 for item 3). When the sample size was large, the power rates using 

NC and RC were all high (1.00) across items. In contrast, the power rates using KS 

were low for items 1 and 2 (0.40 and 0.29, respectively) and high for item 3 (0.86). 

For the NR (0, 1) and NF (0, 2) condition, when the sample size was small, the 

power rates using NC and RC were, with one exception, low across the three studied 

items, ranging from 0.26 to 0.42. The power rates for item 3 using RC was moderate 

(0.51). In contrast, the power rates using KS were 0.00 for all items. When the sample 

size was moderate, the power rates using NC and RC were moderate for item 1 (0.64 

and 0.77, respectively). However, the rates using NC and RC were high for items 2 
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and 3. Using KS, the power rates were low across studied items (0.00 for item 1, 0.05 

for item 2, and 0.05 for item 3). When the sample size was large, the power rates using 

NC and RC were high across studied items, ranging from 0.98 to 1.00. The power 

rates using KS were low for item 1 (0.31), moderate for item 2 (0.73), and high for 

item 3 (0.83). 

For the NR (0.5, 1) and NF (-0.5, 1) condition, when the sample size was small, 

the power rates using NC and RC were low for items 1 and 2, ranging from 0.31 to 

0.37, while the rates using NC and RC were moderate for item 3 (0.54 and 0.59, 

respectively). In contrast, the powers using KS were 0.00 for all items. When the 

sample size was moderate, the power rates using NC and RC were high across all 

studied items, ranging from 0.81 to 0.98. However, the power rate using KS was low 

for the three studied items (0.00 for item 1, 0.00 for item 2, and 0.01 for item 3). 

When the sample size was large, the power rates using NC and RC were all high 

(1.00) across items. Meanwhile, the power rates using KS were low for the three 

items (0.04, 0.06, and 0.19, respectively). 

For the NR (0.5, 1) and NF (-0.5, 2) condition, when the sample size was small, 

the power rates using NC and RC were low for item 1 (0.14 and 0.28, respectively). 

For items 2 and 3, the rates were low using NC (0.43 and 0.37, respectively) and 

moderate using RC (0.48 and 0.53, respectively). Again, the power rates using KS 

were 0.00 for all items. When the sample size was moderate, for item 1, the power 

rates were low using NC (0.46) and moderate using RC (0.70). For items 2 and 3, the 

rates were high when NC and RC were used, ranging from 0.86 to 0.96. However, the 

power rate using KS was low for the three studied items (0.00 for item 1, 0.27 for 

item 2, and 0.00 for item 3). When the sample size was large, the power rates using 

NC and RC were all high across items, ranging from 0.98 to 1.00. Meanwhile, the 
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power rates using KS were low for items 1 and 3 (0.03 and 0.08, respectively) and 

high for item 2 (1.00). 

To summarize, for item 1, NC and RC yielded low power when the sample 

size was small. When the sample sizes were moderate, NC and RC produced 

moderate to high power rates with one exception (0.46 using NC at NR (0.5, 1), NF (-

0.5, 2) conditions). When the sample size was large, NC and RC yielded high power. 

However, KS produced low power for item 1 regardless sample size and ability 

distributions. For item 2, NC and RC yielded low power when the sample size was 

small with one exception (0.48 using RC at NR (0.5, 1) and NF (-0.5, 2)). When the 

sample size was moderate and large, NC and RC produced high power rates. 

However, KS produced low power rates regardless sample size and ability distribution 

with two exceptions (0.73 and 1.00 at NR (0, 1), NF (0, 2) and NR (0.5, 1), NF (-0.5, 2) 

conditions when the sample size was large). For item 3, NC yielded low power rates 

while RC yielded moderate power rates when the sample size was small. When the 

sample sizes were moderate and large, NC and RC produced high power rates for 

item 3 as the ability distribution varied. However, KS yielded low power rates for 

item 3 regardless sample size and ability distribution with two exceptions (0.86 and 

0.83 at NR (0, 1), NF (0, 1) and NR (0, 1), NF (0, 2) conditions when the sample size 

was large). 
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Chapter V: Discussion and Future Directions 

Summary of Purpose and Method 

Recently, practitioners and researchers have become interested in the graphical 

comparison of non-parametrically estimated IRFs for DIF analysis. This is because 

the graphical comparison of non-parametrically estimated reference and focal group 

IRFs has the potential to detect both non-uniform DIF and local DIF without making 

strict assumptions about the student ability distribution and the functional forms of 

IRFs. However, in order to objectively determine the occurrence of IRF differences, 

DIF hypothesis testing statistics are needed. Ramsay (1991) introduced kernel 

smoothing, a general technique for nonparametric estimation, to measurement 

practice. However, the procedure Ramsay proposed does not provide a hypothesis 

testing statistic that can be used objectively to determine the occurrence of DIF. 

The present study combined the kernel smoothing procedure and three 

nonparametric DIF statistics—Cochran's Z, Fisher's^2, and Goodman's U—to 

statistically test the difference between the kernel-smoothed IRF for reference group 

and the IRF for focal group. To calculate the kernel-smoothed statistics, examinees' 

latent abilities were estimated using the kernel smoothing technique and these 

estimates served as the matching criterion for DIF detection. Using the latent ability 

estimates rather than subtest observed scores as the matching criterion can be 

considered as a latent-variable-matched DIF procedure (Douglas, Stout & DiBello, 

1996). This procedure avoids the potential problems introduced by bias in DIF 

detection when groups have different latent ability distributions. After latent ability 

estimation, the true score for each examinee and the frequency of the true scores were 

calculated. The kernel smoothing technique was also applied in the calculation of the 
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probabilities of answering the studied item correctly for the examinees in reference 

and focal groups at certain ability level. 

Simulation studies were conducted to investigate the Type I error and power of 

the proposed kernel-smoothed (KS) statistics. For Type I error study, three factors 

expected to affect the probability of a Type I error were considered: sample size, 

ability distribution difference, and item parameters of the studied item. There were 

three levels in the factor of sample size, four levels in the factor of ability distribution, 

and four levels in the factor of item parameters. In total, 3 (sample size) x 4 (ability 

distribution) x 4 (studied item) = 48 tests were generated to investigate the Type I 

error rates for the three proposed kernel-smoothed statistics. 100 replications were 

performed for each test. For power study, the three factors as the same as in Type I 

error study were manipulated. There were three levels in the factor of sample size, 

four levels in the factor of ability distribution, and three levels in the factor of item 

parameters. In total, 3 (sample size) x 4 (ability distribution) x 3 (studied item) = 36 

tests were generated to investigate the power performance for the three kernel-

smoothed statistics. Two-sided hypothesis tests were used with a significance level of 

0.05 for both Type I error and power studies. The Type I error and power rates of 

Kernel Smoothed (KS) statistics were compared to those with No Correction (NC) 

and Regression Correction (RC) to evaluate the performance of the new statistics 

introduced in this study. 

Summary of Main Findings and Conclusion 
Type I Errors 

The summary findings are presented in terms of the percentages of Type I errors 

that were classified as conservative, moderate, and liberal. As shown in Table 10, the 

percentages are classified by sample size (small (500,500), moderate (1000, 1000), 
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and large (2500, 2500) given the results revealed that Type I error was influenced by 

sample size. The percentages are further classified by statistics used (Cochran's Z, 

2 

Fisher's-^ , and Goodman' U) and procedures (no correction (NC), regression 

correction (RC), and kernel smoothing (KS). The discussion is organized in terms of 

sample size. 

Table 10. Percentages of Type I Errors Classified as Conservative, Moderate, and 
Liberal according to Statistics and Procedures 

Sample 
size 

NC 
Conservative RC 

KS 
NC 

Reasonable RC 
KS 
NC 

Liberal RC 

KS 

Small 

z x2 u 
0.0 6.3 25.0 
18.8 6.3 6.3 
0.0 93.8 93.8 
87.5 75.0 75.0 
81.3 87.5 93.8 
93.8 6.3 6.3 
12.5 18.8 0.0 
0.0 6.3 0.0 
6.3 0.0 0.0 

Moderate 

z x2 u 
6.3 0.0 0.0 
31.3 0.0 0.0 
0.0 75.0 100.0 
43.8 37.5 56.3 
68.8 50.0 62.5 
43.8 25.0 0.0 
50.0 62.5 43.8 
0.0 50.0 37.5 
56.3 0.0 0.0 

Large 

z x2 u 
12.5 0.0 0.0 
43.8 0.0 0.0 
0.0 56.3 100.0 

37.5 37.5 50.0 
56.3 56.3 87.5 
56.3 43.8 0.0 
50.0 62.5 50.0 
0.0 43.8 12.5 

43.8 0.0 0.0 

Note: Z for Cochran's Z, %2 for Fisher's ̂ 2 , and U for Goodman's U; 
NC for No Correction, RC for Regression Correction, and KS for Kernel Smoothing. 

Small sample size. For Cochran's Z, the majority of Type I errors were 

reasonable using NC (87.5%), using RC (81.3%), and using KS (93.8%). There 

appears to be superior using KS compared with using NC or RC. For Fisher's #2 , the 

majority of Type I error rates were also reasonable using NC (75.0%) and RC 

(87.5%). In contrast, the majority of Type I error rates were conservative using KS 

(93.8%). For Goodman's U, the similar pattern as for Fisher's %2 was found. That is, 

the majority of Type I error rates were reasonable using NC (75.0%) and RC (93.8%), 

while the majority of Type I error were conservative using KS (93.8%). 
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Moderate sample size. Comparison of the pattern of percentages for the 

moderate size sample size condition with the pattern noted above for the small sample 

size condition reveals that there was an interaction between sample size, test statistic, 

and procedures. For example, while the majority of Type I errors for Cochran's Z 

were reasonable using RC (68.8%), the majority was less than that observed when the 

sample size was small (68.8% vs. 87.5%). Further, 31.3% of Type I errors using RC 

were conservative when the sample size was moderate, but 18.8% when the sample 

size was small. In contrast, the majority of Type I errors using NC were liberal 

(50.0%), while only 12.5% of Type I errors were liberal when the sample size was 

small. Similarly, 56.3% of Type I errors were liberal using KS when the sample size 

was moderate, but only 6.3% Type I errors was liberal when the sample size was 

small. 

In contrast, the incidence of Type I errors for Fisher's j 2 and Goodman's U 

was more evenly divided between reasonable and liberal when NC and RC were used. 

Take Fisher's x2 a s a n example, 37.5% and 50.0%) were reasonable using NC and 

RC, while 62.5% and 50.0%) were liberal. While all of the conservative Type I errors 

occurred for KS when the sample size was moderate, no reasonable and liberal Type I 

2 

errors occurred for KS. In contrast, the liberal Type I errors for Fisher's % and 

Goodman's U are essentially evenly divided between NC and RC. 

Large sample size. The patterns of results for the large and moderate sample 

sizes are more comparable to each other than to the pattern for the small sample size, 

thereby clarifying the nature of the contribution of sample size to the interaction noted 

above. For example, while a large majority of Type I errors were reasonable for 

Cochran's Z (87.5%), when the sample size was small, the Type I errors were more 
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evenly divided between the three error size intervals for both Fisher's x2 a n^ 

Goodman's Ufor both moderate and large sample sizes. 

In summary, the attention was only paid to reasonable Type I errors for KS 

procedure since the main purpose of present study is to find a suitable statistic to 

detect the occurrence of DIF when kernel smoothing procedure was applied. 

Cochran's Z produced better Type I errors than Fisher's x2 and Goodman's U when 

kernel smoothing was used across the three sample sizes (93.8% vs. 6.3% and 6.3% 

for small sample size, 43.8% vs. 25.0% and 0.0% for moderate sample size, and 

56.3% vs. 43.8% and 0.0% for large sample size). However, the percentages of 

reasonable Type I errors for the kernel-smoothed Cochran's Z were not the highest 

one when the sample sizes were moderate and large. The Regression-corrected 

Cochran's Z produced the best Type I errors (68.8%) under moderate sample size and 

the regression-corrected Goodman's U had the best Type I errors (87.5%) under large 

sample size. 

Power 

The summary findings are presented in terms of the percentages of power that 

were classified as low, moderate, and high. As shown in Table 11, the percentages are 

classified by sample size (small (500,500), moderate (1000, 1000), and large (2500, 

2500). Like the structure of Type I errors, the percentages are further classified by 

2 

statistics used (Cochran's Z, Fisher's^ , and Goodman' U) and procedures (no 

correction (NC), regression correction (RC), and kernel smoothing (KS). The 

discussion is also organized in terms of sample size. 

Small sample size. For Cochran's Z, the majority of power rates were low using 

NC (66.7%) and using RC (66.7%). In contrast, the majority of power rates were high 

using KS (58.3%). Therefore, there appears to be superior using KS compared with 
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using NC or RC. For Fisher's %2, half of power rates using NC were low while half 

of power rates using RC were high. The power rates using KS were approximately 

evenly divided among low (33.3%), moderate (25.0%), and high (41.7%). This 

finding indicates that RC and KS improved the power performance of Fisher's %2 an<^ 

RC produced even better results than KS (50.0% vs. 41.7%). For Goodman's U, the 

majority of power rates were low using NC (91.7%) and KS (100.0%). In contrast, the 

power rates using RC were evenly divided between low and moderate. This suggests 

that none of the three procedures had adequate power for Goodman's U when the 

sample size was small. 

Table 11. Percentages of Power Classified as Low, Moderate, and High according to 

Statistics and Procedures 

Sample 
size 

NC 
Low RC 

KS 
NC 

Moderate RC 
KS 
NC 

High RC 
KS 

Small 

z x2 u 
66.7 50.0 91.7 
66.7 25.0 58.3 
25.0 33.3 100.0 
8.3 16.7 8.3 
8.3 25.0 41.7 
16.7 25.0 0.0 
25.0 33.3 0.0 
25.0 50.0 0.0 
58.3 41.7 0.0 

Moderate 

z x2 u 
50.0 0.0 8.3 
58.3 0.0 0.0 
8.3 16.7 100.0 
16.7 8.3 8.3 
8.3 0.0 16.7 
16.7 8.3 0.0 
33.3 91.7 83.3 
33.3 100.0 83.3 
75.0 75.0 0.0 

Large 

z x2 u 
25.0 0.0 0.0 
33.3 0.0 0.0 
0.0 0.0 66.7 
8.3 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 8.3 

66.7 100.0 100.0 
66.7 100.0 100.0 
100.0 100.0 25.0 

2 2 

Note: Z for Cochran's Z, X f°r Fisher's % >an^ U for Goodman's U; 
NC for No Correction, RC for Regression Correction, and KS for Kernel Smoothing. 

Moderate sample size. For Cochran's Z, the patterns of results for the moderate 

sample size are comparable with the results for the small sample sizes. The majority 

of power rates were also low using NC (50.0%), using RC (58.3%), but the majority 

was less than that observed when the sample size was small (50.0%) vs.66.7% for NC, 

58.3%o vs. 66.7%o for RC). In contrast, the majority of power rates were high using KS 

(75.0%) and the majority was more than that observed when the sample size was 
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small (75.0% vs. 58.3%). For Fisher's ^ 2 , the majority of power rates were high 

regardless using NC (91.7%), using RC (100.0%), or using KS (75.0%). In contrast, 

while the majority of power rates for Goodman's U were high using NC (83.3%) and 

RC (83.3%), all of power rates were low using KS. 

Large sample size. The patterns of power rates for the large sample size are 

more convergent than the small and moderate sample sizes. For example, for 

Cochran's Z, two of third power rates were high using NC and RC. The remaining 

rates were low. For Fisher's x1, all the power rates were high across three 

procedures. In contrast, while all the power rates for Goodman's U were high using 

NC and RC, the majority of power rates were low using KS (66.7%), which shared 

the similar pattern with the moderate sample size. 

In summary, the attention was paid to high power level for KS procedure this 

time. Cochran's Z produced better power than Fisher's %2 and Goodman's U when 

kernel smoothing was used under small sample size (58.3% vs. 41.7% and 0.0%). In 

contrast, under the condition of moderate and large sample sizes, Cochran's Z and 

Fisher's x2 produced the same better power than Goodman's U when kernel 

smoothing was applied. Again, the best power rate under moderate sample size was 

regression-corrected Fisher's %2 (100.0%) instead of kernel-smoothed Cochran's Z 

(75.0%). 

Conclusion 

In this study, the kernel smoothing procedure was applied to three 

nonparametric DIF statistics—Cochran's Z, Fisher's^2, and Goodman's U—to 

statistically test the difference between the kernel-smoothed IRF for reference and 

focal groups. Simulation studies were conducted to investigate the Type I errors and 
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power performance for these statistics. Results indicated that, among the three 

statistics, Cochran's Z showed the best performance in detecting the kernel-smoothed 

IRF differences for reference and focal groups under small sample size conditions. In 

comparison, when the sample size was moderate or large, both Cochran's Z and 

Fisher's x1 produced relatively high power rates in detecting kernel-smoothed IRF 

differences. However, the Type I errors of kernel-smoothed Cochran's Z tend to be 

liberal while the Type I errors of kernel-smoothed Fisher's %2 tended to be 

conservative under moderate and large sample size conditions. 

Results showed that Goodman's U performed poorly when used with kernel-

smoothed non-parametrically graphical DIF procedures: The Type I error rates were 

conservative for most simulation conditions; the power rates were low across items 

and ability distribution conditions when sample size was small. Even when the sample 

size was large, the power rates for Goodman's [/using KS were still much lower than 

those using NC and RC. One possible reason is that Goodman's [/used error variance 

instead of weighted error variance, as used in Cochran's Zand Fisher's x2 • these 

result suggested that some DIF statistics are not suitable to be used with non-

parametrically graphical DIF procedure. 

Implications for Practice 

The results of the present study have practical implications. The performance 

of the Cochran's Z statistics improved significantly when kernel smoothing was 

applied compared to the power and Type I error rates from NC and RC. This result is 

of particular value because it provides researchers and practitioners with a new 

method for statistically confirming their findings from non-parametrically graphical 

DIF analysis. In turn, this result also suggested that the kernel smoothing procedure 
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has the potential to improve the performance of nonparametric DIF statistics because 

it can reduce the local error variance and instability often associated with 

nonparametric IRFs. 

Limitations of this Study and Directions for Future Research 

The most important limitation in this study is that the three kernel-smoothed 

statistics were not applied to real data situation. Only simulation studies were 

conducted. Although using 3PL or 2PL item response model to generate simulated 

data is a common method in the literature, it is not clear whether it is appropriate to 

use parametric methods to generate data and then analyze the generated data using 

non-parametric estimation procedure. Therefore, applying these procedures to real 

data situation is important. 

Among the three non-parametric statistics considered in this study, the 

performance of only one statistic, the Cochran's Z, was significantly improved by the 

kernel smoothed procedure in testing non-parametrically graphical DIF analysis. The 

second direction for future research therefore is related to the modification of Fisher's 

%2 and Goodman's Ustatistics to improve their performance in testing non-

parametrically graphical DIF. For example, the performance of Goodman's [/may be 

improved if the weighted error variance instead of error variance is used. 
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