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Abstract

The present study combined the kernel smoothing procedure and three
nonparametric DIF statistics—Cochran’s Z, Fisher’s 7 , and Goodman’s U— to
statistically test the difference between the kernel-smoothed IRF for reference group and
the IRF for focal group. Simulation studies were conducted to investigate the Type I error
and power of the proposed kernel-smoothed (KS) statistics. For the purpose of
comparison, the Type I error and power rates with no correction (NC) and with regression
correction (RC) were also include in the simulation. The results suggest that the kernel-
smoothed Cochran’s Z can be the statistic to test the difference between the kernel-

smoothed IRFs when the sample size was small. When the sample size was moderate and
large, the kernel-smoothed Cochran’s Z and Fisher’s z? could be the candidates.

However, we have to be aware of the fact that the Type I errors for both of them tend to

be liberal.
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Chapter I. Introduction

Overview

Differential item functioning (DIF) is of great interest to researchers and
educators given that DIF poses a potential threat to test fairness. As stated in the
Standards for Educational and Psychological Testing (Standards) (American
Educational Research Association, American Psychological Association, & National

Council on Measurement in Education, 1999),

The test is not biased or offensive with regard to race, sex, native language, ethnic
origin, geographic region, or other factors. Test developers are expected to exhibit
sensitivity to the demographic characteristics of test takers. Steps can be taken
during test development, validation, standardization, and documentation to
minimize the influence of cultural dependency, using statistics to identify
differential item difficulty, and examining the comparative accuracy of predictions
for different groups. (http://www.unl.edu/buros/bimm/html/lesson03.html)

Canadians have used large-scale standardized testing at many levels within the
education system since the 1980s (Rogers & Klinger, 2007). Whether at the
provincial, national, or international level, DIF in standardized testing is a constant
concern.

DIF occurs when examinees at the same ability level but from different
groups have a different probability of answering an item correctly. A variety of
parametric and nonparametric statistical procedures have been proposed to detect the
occurrence of DIF and to quantify the magnitude and the direction of DIF, such as
the item response theory (IRT) methods (Lord, 1980; Thissen, Steinberg, & Wainer,

1993), the Mantel-Haenszel statistic (MH; Holland & Thayer, 1988), the


http://www.unl.edu/buros/bimm/html/lesson03.html

Simultaneous Item Bias Test (SIBTEST) (Shealy & Stout, 1993a, 1993b), and
Logistic Regression (LR; Swaminathan & Rogers, 1990).

The IRT methods (Lord, 1980; Thissen, Steinberg, & Wainer, 1993) can be
considered as one of the pioneer procedures to detect DIF in the testing process.
These methods, based on item response theory (IRT), provide a useful theoretical
framework for DIF analysis because they explicitly use between-group differences in
the item parameters. The general framework of the IRT methods involves estimating
item parameters separately for the reference and focal groups. After placing the
groups on the same scale, differences between the item parameters for the two
groups can then be compared. When the parameters are identical for the two groups,
thg item does not display DIF. Otherwise, the item displays DIF.

Mantel and Haenszel (1959) introduced a procedure for the study of item
evaluation, This procedure then was adapted by Holland and Thayer (1988) for use
in assessing differential item functioning. It is based on the analysis of contingency
tables. This method differs from the IRT approaches in that examinees are typically
matched on an observed variable (such as total test score), and then proportions of
examinees in the focal and reference groups who answer the studied item correct or
incorrect are compared. The method has been shown to be effective with reasonably
small examinee samples (e.g., 200 examinees per group) (Holland & Thayer, 1988).

The SIBTEST procedure (Roussos & Stout, 1996; Shealy & Stout, 1993a) is
a relatively recent addition to the list of DIF statistics. Based on the ratio of the

weighted difference in proportion-correct scores (for reference and focal group



members) to its standard error, it includes a test of significance. It also includes
several conceptual innovations. The first of these is that the matching criterion is a
latent score rather than the observed score. Estimation of this matching score
includes a linear regression correction that has been shown to be useful in controlling
Type 1 errors (Shealy & Stout, 1993b). Additionally, SIBTEST allows for an
evaluation of DIF amplification or cancellation across items within a testlet or
bundle (Douglas, Roussos, & Stout, 1996).

Logistic regression (Swaminathan & Rogers, 1990) may be conceptualized as
a link between the contingency table methods (e.g., Mantel-Haenszel, SIBTEST) and
the IRT methods. The contingency table methods form groups based on discrete
score categories. By contrast, logistic regression treats the total score as a continuous
variable and predicts an examinee’s performance on the studied item based on the
examinee’s total score and group membership. The most notable feature of the
logistic regression procedure is that it is designed to identify both uniform
(unidirectional) DIF, which occurs when an item favors one group over another
throughout the ability continuum, and non-uniform (crossing) DIF, which occurs
when there is an ability-by-group membership interaction. Simulation studies in
which the MH and LR have been compared have been conducted by Rogers and
Swaminathan (1993). The study demonstrated that the Logistic regression procedure
is as powerful as the MH procedure in detecting uniform DIF, and more powerful

than the MH procedure in detecting non-uniform DIF.



A common feature among these DIF procedures is that they assess DIF
across the entire ability range of examinees (called global DIF). However, recent
studies have shown that DIF is sometimes present only in a specific range of ability
or the direction of DIF changes across ability levels (Local DIF). For example, Gierl
and Bolt (2001) provided a sample math item in an English-French translation test
for which DIF was detected only at localized places along the ability scale.

Recently, graphical inspection of non-parametrically estimated item
response functions (IRFs) has become a useful way of studying DIF, particularly
local DIF (e.g., Douglas, Stout & DiBello, 1996; Maydeu-Olivares, Morera, &
D'Zurilla, 1999; Scrams & McLeod, 2000; Ramsay, 1991, 2000). IRF defines the
probability of a correct response to an item as a function of examinee’s latent ability
(0) measured by the test. If F,(8) and P.(6) denote the IRFs for reference and
focal groups, respectively, then DIF occurs whenever P.(0) # P.(f) at some@. One
approach to estimating Pr(0) and P.(6) is to use the kernel smoothing procedure
where the functional relationship between an examinee’s latent ability () and the
probability of answering the item correctly can be estimated (Ramsay, 1991). The
benefit of using this nonparametric technique is that the IRFs can take any functional
form that is free of the systematic bias potentially suffered by parametric procedures
when the presumed parametric model may not reflect reality. TESTGRAF (Ramsay,
2000) is a procedure that can be used to graphically compare the kernel smoothed

focal and reference group IRFs so as to identify DIF items. However, the graphical



DIF analysis does not provide a hypothesis testing statistic that can be used

objectively to determine the occurrence of DIF.

Purpose of the Study

Therefore, the first purpose of this study is to apply the kernel smoothing
procedure to three nonparametric DIF statistics—Cochran’s Z, Fisher’s y?, and
Goodman’s U—to statistically test the significance of focal and reference group IRF
differences. The three statistics were used to test different performances among
ethnic groups by Marascuilo and Slaughter (1981). To use these statistics, examinees
were classified into a small number of ability groups (e.g., high, medium, low) based
on their internal test scores. The use of internal test scores as a matching criterion has
the potential to introduce bias into IRF comparisons when groups have different
latent ability distributions. More recently, Bolt and Gierl (2006) applied the
regression correction procedure currently used in SIBTEST to the three statistics in
an attempt to adjust the potential bias in the matching criterion. Their findings
suggested that the statistical performance of these DIF statistics was improved to
some degree when the regression correction procedure was applied. Hence, the
second purpose of the present study is to conduct a simulation study to investigate
whether the kernel smoothing procedure can further improve the performance of the

three modified statistics in terms of Type I error and power in DIF detection.

Organization of the Thesis

The thesis is organized in five chapters. Chapter II provides an overview of

the kernel smoothed IRF estimation technique and reviews the three nonparametric



DIF statistics considered in this research. Chapter III presents the detailed steps for
applying the kernel smoothing technique with the three statistics to test the
significance of IRF differences. The procedure and manipulated factors for the
simulation studies designed to assess Type I error and power are also described in
this Chapter. Chapter IV presents the results of the simulation studies. Chapter V
discusses the major findings and the implications of this study for DIF analysis.

Limitations of this study and directions for future research are also presented.



Chapter II: Literature Review

Kernel-Smoothed IRF Estimation

In the Item Response Theory framework, item response functions (IRFs) that
model the functional relationship between an examinee’s latent ability (#) and the
probability of answering the item correctly are usually specified in the form of
parametric models such as the Rasch, 2PL, and 3PL models. However, parametric
models cannot always estimate the item characteristics curve in an accurate and
efficient way. For example, the most widely used model, the 3PL model, is
problematic when an item is extremely easy. In this situation, there are virtually no
data available for estimating the guessing parameter c. As a result, large changes in
the parameter ¢ are compensated for by the corresponding changes in the
discrimination parameter @, which causes poor estimation of parameter a (Ramsay,
2000). Even when the item is of moderate difficulty, the covariances between the
3PL parameter estimates are high, and large amounts of data are required to estimate
the item parameters precisely (Thissen & Wainer, 1982). This outcome has led to
research for estimating IRFs without the restriction of a parameterized functional
form (Altman, 1992; Douglas, 1996, 1997; Douglas & Cohen, 2001; Ramsay, 1991,
2000).

Kernel smoothing is a nonparametric regression technique that has been
introduced in measurement practice (Ramsay, 1991). Nonparametric regression is a

set of techniques for estimating a regression curve without making strong



assumptions about the shape of the true regression function. Ramsay (1991)
discussed the use of kernel smoothing to estimate IRFs. The benefit of using kernel
smoothing is that the IRFs can take any functional form that is free of the systematic
bias potentially suffered by parametric procedures when the presumed model does
not fit the data perfectly. Using the kernel smoothing technique, Ramsay (2000)
developed a program for the graphical analysis of multiple choice and questionnaire
data: TESTGRAF. TESTGRAF can graphically present the kernel smoothed IRFs
and help the user visually compare the focal and reference group IRFs in order to
identify DIF items. For more detailed information about TESTGRAF, the reader is
referred to Ramsay (2000).

Kernel smoothing estimation is based on local averaging. Suppose one has a
set of independent variable valuesx,,i =1,...,n, and a corresponding set of dependent
variable values y,,i =1,...,n. The objective is to estimate a smooth curve defined by
function P with value P(x). For example, one might want to compute the value
P(x,) at an independent variable value x, , which is called the targeted point. The
targeted point may or may not coincide with any of the data values x,,i =1,...,n. An
intuitive way of estimating P(x,) is to compute the average of those values
¥,,i=1,...,n, associated with values x,,i =1,...,n, that are close to the targeted point
x, . This technique is called local averaging. Usually, one could let P(x,)be the
arithmetic mean of the y,s corresponding to the & x; s closest tox,, or, more

commonly, let P(x,) be the arithmetic mean of the y, s corresponding to the x;s



which are not more than / units from x, . Then the kernel smoothing regression

function can be written as:

D Y (&= ")y,
P(x,)= ’=’N
ZK( :

i=1

where K ( P ") is the kernel smoothing function and hx” is the argument of

the function K(u)and # is called the smoothing parameter or the bandwidth
parameter. The value of % controls the size of the difference between data value
x,,i=1,...,n and target point x, (see Hirdle (1990) and Ramsay (2000) for more
details). In TESTGRAF, A is set as a function of sample size N : #=1.1N"2,
Three commonly used kernel smoothing functions can be applied to define
local averaging: uniform, quadratic, and Gaussian (Ramsay, 1991). The three kernel

smoothing function are presented as follows:

Quadratic: K(u)=1-

Gaussian: K(u) = exp(

—-U

2
No matter which of the three functional forms is taken, K(u) is always zero or
positive for all values of the argument u, K(0)is always the maximum value taken
by K(u), and K(u) always goes to zero as u deviates more and more in either
direction from 0. In TESTGRAF, the Gaussian kernel smoothing function was

adopted.



When kernel smoothing is applied to IRF estimation, the independent
variable is 6,,i =1,...,n, the latent ability variable. The dependent variable is the

probabilities that examinees answer an item correctly, p,,i=1,...,n. Therefore, the

kernel smoothing regression function applied in IRF estimation can be written as:

NG -
. 2 K——p,
o)=L —"—,
D K= P )
i=1

-6
where K ( P %) is the kernel smoothing function, 6, is ability estimate for

examinee i, 0, is the target ability point, p, is the probability of answering the item
correctly by examinee i, and his the bandwidth parameter.

Although it is impossible to know the true value of the latent ability for each
examinee, the kernel smoothing procedure can be operationalized by using the
estimated latent ability for each examinee. In this sense, the kernel smoothing

regression equation above is written as follows:

ZK(' q)p,
b@,)=—s

N -0

2K

The details about the procedure used to estimate the latent ability variable, éi , are
presented in the chapter III of method.
Three Regression-corrected Nonparametric Statistics
Marascuilo and Slaughter (1981) proposed six statistical procedures for
identification of potentially biased test items. Three of these —Cochran’s Z, Fisher’s

2%, and Goodman’s U —were adapted by Bolt and Gierl (2006). They applied a
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regression correction procedure, which is currently implemented in SIBTEST, to
reduce measurement error in the matching criterion. These three statistics with the
regression correction are reviewed in this section.

Cochran’s Z test.

Cochran’s Z test evaluates the null hypothesis

against

where A, = p"m — p'm , in which p’mand p”m denote the probabilities of success
for examinees in reference and focal groups, respectively, for the valid subtest score
level k after using regression correction and A, is a specified value. If the null
hypothesis is rejected, one would conclude that a constant difference in the
probabilities of success exists across all of the ability levels. The estimate of A, A,,

can be computed as:

DAY
0= TN ®
Zka

where

— NRkNFk
T Ng +Np°

is the weight associated with each valid subtest score. The final test statistic is given

by
Z = —————AO ,
SEAO
where

11
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RO A (N + Ny

Under the null hypothesis, Z has a approximate standard normal distribution.
Therefore, the value of Z can be tested in terms of whether its absolute value is
greater than 1.96 at the 0.05 significance level.

Fisher’s y* test.

Fisher’s y? test evaluates the statistical dependence between group
membership (reference/focal) and item response (correct/incorrect) conditioned on
valid subtest score level k (Bolt & Gierl, 2006). Fisher’s y? provides an omnibus

test of:

against
H, : atleastone A, 0.
where A, = p’r — p"m , in which p*reand p*m denote the probabilities of success
for examinees in reference and focal groups, respectively, for the valid subtest score
level k after using regression correction.
The formula for the test statistic with regression correction applied is:

(N + Nge =D (Brieohigy — Pria g )?
?
(MReo + PRt )(Miko + Biro Y(Phit + 1) (Mo + M)

Xi=

where N, and Nj denote the total number of examinees having valid subtest score
k in the reference and focal group, respectively: nr., and nk, denote the regression-
corrected number of examinees (frequencies) in the reference and focal groups who
obtained valid subtest score k and answered the item correct; and #y,, and nj,

denote the regression-corrected number of examinees in each group who answered

12



the item incorrectly. The regression-corrected frequencies can be calculated using

the total number of examinees multiplied by the adjusted conditional proportion

correct or incorrect scores obtained from the SIBTEST extended output. The test

statistic is approximately distributed as a x> with one degree of freedom when

N + N 220 and each of nyy,, B, Mo, and np, is at least 3 (Kanji, 1993).
The y? statistic at each matching score level can also be summed across a

range of matching score levels to produce an omnibus test of DIF:

=270

keK

where K consists of all matching score levels of interest that satisfy the necessary
cell size criteria for a suitable y? approximation. The test statistic y? is distributed
asa y’ with degrees of freedom equal to the number of matching score levels
included in X .
Goodman’s U ftest.
Goodman’s U test evaluates whether the amount of DIF in an item varies
across ability levels. In statistical terms, Goodman’s U is used to test
Hy:A=A,==A, =A,,
against
H, :H, is false.

The formula for computing the test statistics is:

U=> WA, ~4,),

k

13



Zk”W,,A

= £ isthe average difference between IRFs across all valid
Kk

where A =

. 1
subtest scores with A, defined the same way as for the Cochran’s Z test, #, = —=

Ay

is the weight applied to the displacement quantity (Ak —Ao) , and

is the error variance.

SE? = Pu(l=Pw) | Pn(l- D)
g NRk NFk

The same requirements as for the Fisher’s 2 test needs to be met for
Goodman’s U'test (i.e., Ng; + Ng =20, and each of nk,, nhy, Pho, and ni, is at
least 3). The test statistic U is approximately distributed as a y?2 distribution under
H,with degrees of freedom equal to the number of valid subtest score categories
used in the computation of U.

Bolt and Gierl (2006) conducted both a simulation study and a real data study
to assess each of the three statistics. Two factors, sample size and ability distribution
difference, were manipulated in the simulation study. Simulation study for Type I
error was conducted for both not corrected and corrected statistics, but the power
study was only conducted for the three corrected statistics. The results from the Type
I error study demonstrated the effectiveness of the regression correction procedure in
improving the performance of the three DIF statistics in some conditions. However,
the Type I error rates were still high after regression correction, ranging from 0.12 to
0.20, when there was an ability distribution difference and sample size was large.
Moreover, the Type I error rates using regression correction for highly
discriminating and easy items were high across the three statistics. For example,

under one simulation condition, three items had Type I error rates of .48, .78 and .43,

14



respectively, for the regression-corrected Fisher's y2, .54, .92, and .55 for the
regression-corrected Cochran's Z, and .26, .62, and .26 for the regression-corrected
Goodman's U. In the real data study, data from six high school certification
examinations were used to study global and local DIF across English- and Chinese-
speaking student groups. Based on the degree of agreement among the three statistic
test, the items may be candidates for local DIF analysis were selected. By testing for
DIF at any location along the ability scale for candidate items, Fisher’s y* and
Goodman’s U, but not Cochran’s Z, appeared to be useful in identifying items that

may display DIF at some ability levels but not others.
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Chapter I1I: Method

Three Kernel-Smoothed Statistics

The calculation of the kernel-smoothed statistics for Fisher’s 7 ?, Cochran’s
Z, and Goodman’s U involved four steps. In step 1, the estimates of latent ability
variable for each examinee in each group, é, i =1,2,...,n, were obtained by using the
kernel smoothing procedure. In step 2, matching subtest true scores were calculated
and the frequencies of matching subtest true scores in each group were determined.
In step 3, the kernel-smoothed estimates of the studied items IRF corresponding to
each subtest scores were obtained. In step 4, the three statistics were calculated based
on the kernel-smoothed studied item IRF and the frequencies of matching subtest
true scores. Steps 1 to 3 were adapted from Douglas, Stout, and DiBello’ s (1996)
study, where the kernel smoothing procedure was used to improve the performance
of SIBTEST.

Step 1: Estimate the latent ability. Suppose there are m matching subtest
items and 2#n examinees in a test. To simplify, the number of examinees in each
group is equal (i.e., # examinees in reference group and » examinees in focal
group). Consider item j, j =1,2,...,m of the matching subtest items in one group, for
instance, the reference group. Rank the number-correct scores of the matching
subtest items among the »n examinees for this group with item j excluded. The rank
for each examinee is divided by # to put the score on the [0, 1] scale. The obtained
rank for examinee i is denoted by 6. For each item j, kernel smoothing

estimation was completed using the formula:
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)
L K=,
D i=1
P, 0,) = N W _g
K i
2. ()

where Y, is the score (1 or 0) of the ith examinee’s on item j of the matching
subtest, K(u) is the kernel smoothing function, 6, is the target ability point, and /4

is the bandwidth parameter. In Douglas, Stout, and DiBello’s (1996) study, the

quadratic kernel smoothing function (i.e., K(u)=1- uz,]u

<1) and the bandwidth .

parameter /# = 0.7N % was used. The same kernel smoothing function and

bandwidth parameter were adopted in this study. The estimates of latent ability 6,

were obtained by summing ﬁj 6y for j=1.2,.,m;that s
éi - Zi)j(éi(j)) )
=

The estimates of latent ability, éf,i =1,2,...,n, ranged from 0 to m because
each 13j (é,(f N, (i =1,2,....,m;j =1,2,...,m) ranges from 0 to 1. However, the estimates
of latent ability, é, ,i =1,2,...,n, are separately calculated for reference and focal
groups. Different ability distributions for the reference and focal groups will affect
the estimation of abilities. Therefore, the estimates of latent abilities from two groups
were pooled and converted to percentile estimates on the uniform ability scale that
ranged from 0 to 1. Then, the estimates of pooled latent ability, denoted by
é,.’,i =1,2,...,2n, were obtained based on the percentile rank of é,.,i =1,2,...,n after
reference and focal groups were combined.

Step 2: Calculate the frequency of matching subtest true scores. To calculate

the frequency of matching subtest true scores, the é,’,i =1,2,...,2n obtained from step
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1 were aligned to the matching subtest true score &,k = 0,1,2,...,m . In this study, the

centre value was used to categorize the estimates of latent ability. For example, if the
estimate of latent ability éi’ for an examinee was 1.1, which fell in the interval of
[0.5, 1.5), then the matching subtest true score of 1 was assigned to this examinee. In
doing so, the estimates of latent ability can be aligned to matching subtest true
and the result is denoted by ék, k=0,1,2,...,m. Consequently, the frequency of each
matching subtest true score for examinees could be calculated.

Step 3: Estimate kernel-smoothed IRF of studied item. To estimate the kernel-

smoothed IRF of studied item, the kernel smoothing procedure is used according to
v g -9
2K,
P@,)== =
k&%,
h

M

1
N
=1

I

where Y, is the response to the studied item of the ith examinee, é,.' is the pooled
estimate of latent ability which is obtained from step 1, and 0, is the target ability
point. In this step, target ability point is set as (m +1) points between 0 and 1 (i.e.,

é -6,
h

s Vs Fseees ™ Vo Vi )+ Aggtin, K(

) is the quadratic kernel smoothing function

and 4 =0.7N"*is the bandwidth parameter.
Then, the estimated probability difference for each studied item under the

condition of ability level ék between reference and focal groups was calculated using

Ay =B — B,
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Step 4: Calculate the three Kernel-smoothed statistic: Cochran’s Z, Fisher’s
x>, and Goodman’s U. The final step is to calculate the three kernel-smoothed test
statistics.

For the kernel-smoothed Cochran’s Z, the null hypothesis is the same as the

one described in Chapter II. The formula for kernel-smoothed Cochran’s Z is:

7 = A ,
SE;,
Z VVéh Aa"
where A, = +=L is the weighted average difference between IRFs across all
2.Wa
k=0

valid subtest scores with Aok which is defined in Step 3. The standard error of A, is

given by:
2 - A 2 A a
SE? = 1 C W NRékpRék(l—pRék)+NFékaé,(l_pFék)
Ay~ m é, ) )2 ’
QW) Ve, * Neg)
k=
where W, = —-—M, and Np; and N, are defined as the same way as for
* N w, t N 6, . *

kernel-smoothed Fisher’s y” described above. p 6, and p, 5, are the estimated
probabilities for each studied item for ability level ék. Under the null hypothesis, Z
has a standard normal distribution.

For the kernel-smoothed Fisher’s y?, the null hypothesis is the same as the
one described in Chapter II. However, the formula for the test statistic with kernel

smoothing applied is different from the one with correction regression applied:

(NRék + NFék - 1)(nRéko nFéky B nRékl nFékO )2

2 —
X,

b

(nRéko + nRéu )(nRéko + nFékO )(nRékl + nFékl )(nFéko + nFékl )
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where N, and N, denote the total number of examinees having ability level 6,

in the reference and focal group respectively, #,;

and n,, denotes the kernel-
smoothed number of examinees (frequencies obtained from step 2) in the reference
and focal groups who obtained valid subtest score ék ,and Mo and Mo denotes the
kernel-smoothed number of examinees in each group who obtained valid subtest
score &, . The test statistics can only be calculated when N z6, T Npg =20 and each
of s> Mra, > Mri and Mg isatleast3 for x} to approximate the chi-square

distribution with 1 degree of freedom.

The z7 statistic at each matching score level can also be summed across a

range of matching score levels to produce an omnibus test of DIF:

X5 = 2%

keK
where K consists of all matching score levels of interest that satisfy the necessary
cell size criteria for a suitable y? approximation. The test statistic x5, is distributed
asa y° with degrees of freedom equal to the number of matching score levels

included inK .

For the Goodman’s U, the kernel-smoothed formula is:

~

L (Aek Ao)2

U=) ——,
= SEA&
Z Wék Ao"
where [&0 = —’-‘-‘—"m— is defined the same way as for the kernel-smoothed
2
k=0

i)Ré,,(l—i)Rék) ﬁFé,‘(l_ﬁFék) . .
+ is the error variance.

Cochran’s Z test and SEAZI‘ =
Rb, Fo,
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Under the null hypothesis, U approximates the y2 distribution with degrees

of freedom equal to the number of valid subtest scores providing that

Nys, + Ngg, 220, and each of n n Pri > and Mo is at least 3.

Ré“ ’ Fék] ? RO,

Type I Error Study

A simulation study was conducted to investigate the Type I error rates of the
three proposed kernel-smoothed statistics in DIF detection. Three factors expected to
affect the probability of a Type I error were considered: sample size, ability
distribution difference, and item parameters of the studied item. Item response data
were generated from a three-parameter logistic (3PL) item response model. Each
generated test consisted of 26 items, 25 matching subtest items and a studied item.
To compare the results of Type I error rates using regression correction with those
from kernel-smoothed correction, the same 25 no-DIF matching items used in Bolt
and Gierl's (2006) Type I error study were used in this simulation study. Table 1
contains the item parameters for the 25 items. Table 2 shows the summary
information for these factors. In total, 3 (sample size) x 4 (ability distribution) x 4
(studied item) = 48 tests were generated to investigate the Type I error rates for the
three proposed kernel-smoothed statistics. For each test, 100 replications were
performed. Two-sided hypothesis tests were used with a significance level of 0.05.
For comparison purpose, the Type I error rates with no correction and regression

correction were also calculated under each simulation condition.
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Table 1. Matching Items Parameters in Type I Error and Power Studies

Matching Item Parameter
Item a b c
1 1.53 1.21 0.20
2 0.89 -0.65 0.20
3 1.46 -0.09 0.20
4 0.73 0.65 0.20
5 1.39 1.99 0.20
6 0.49 0.22 0.20
7 0.52 -0.67 0.20
8 0.97 -0.38 0.20
9 1.10 1.78 0.20
10 0.81 -0.37 0.20
11 1.09 -0.75 0.20
12 0.64 -0.25 0.20
13 1.39 -1.07 0.20
14 1.23 2,78 0.20
15 0.42 0.72 0.20
16 1.46 -1.59 0.20
17 1.45 -2.00 0.20
18 1.18 -1.00 0.20
19 0.41 -0.49 0.20
20 1.00 -0.68 0.20
21 1.07 1.23 0.20
22 0.63 0.82 0.20
23 1.58 -1.66 0.20
24 1.00 -0.56 0.20
25 0.87 1.73 0.20

Table 2. Manipulated Factors in Type I Error Study

Sample Size Ability Distribution Item Parameter
Ref. Foc. Ref. Foc. a B c
500 500 Ne(0, 1) Neg(0, 1) 1.00 -0.75 0.20
1000 1000 Ne(0 1) Nr(0 2) 1.00 0.75 0.20
2500 2500 Np(05,1) Np(-051) 1.50 -0.75 0.20
Nr(0.5, 1) Ne(-0.5,2) 1.50 0.75 0.20

Sample Size

The first factor manipulated was sample size. The results of many studies have
revealed that sample sizes can influence the Type I error and power rates of DIF
procedures (e.g., Bolt & Gierl, 2006; Douglas, Stout & DiBello, 1996; Jodoin &

Gierl, 2001; Narayanan & Swaminathan, 1994; Roussos & Stout, 1996b). For

22



example, in Bolt and Gierl’s study (2006), both the Type I error and power rates
became inflated as the sample size increased for the three statistics using the
regression correction. Three levels of sample size were considered in this simulation
study. Let nz and n; denote the reference and focal group sample sizes, respectively.
Values of ny,n, were set at (500, 500), (1000, 1000), and (2500, 2500),
representing a small, moderate, and large sample sizes. Given the reference and focal
groups have the same number of examinees, sample size was balanced across all
conditions.
Ability Distribution

The second manipulated factor was the difference between the ability
distributions of the reference and focal groups. Group ability mean was commonly
used to reflect group differences in the previous DIF simulation studies (e.g.,
Douglas, Stout & DiBello, 1996; Fidalgo, Ferreres, & Muniz, 2004; Gierl, Jodoin, &
Ackerman, 2000; Narayanan & Swaminathan, 1994; Roussos & Stout, 1996b).
However, Bolt and Gierl (2006) suggested that group ability standard deviation
differences can also cause substantial variation in Type I error and power rates of
DIF procedures. Therefore, differences in both group ability mean and standard
deviation were considered in the present study. Normal distributions for both groups
were assumed. Four situations were considered: Ng (0, 1) versus Ng (0, 1), Ngr (0, 1)

versus Nr (0, 2), Ng (0.5, 1) versus Ng (-0.5, 1), and Ng (0.5, 1) versus Ng (-0.5, 2).
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Item Parameters

Although item parameters were not a manipulated factor in Bolt and Gierl
(2006)’s study, they pointed out that Type I error rates of the three statistics were
inflated under certain items, especially for easy or difficult items. In addition, their
study showed that the power rates of the three statistics varied when items differed in
discrimination and/or difficulty. Consequently, the item parameters of the studied
item were manipulated in the Type I error study.

A Type I error is found when a non-DIF item is detected as showing DIF.
Therefore, to study the Type I error rates for the three statistics using kernel-
smoothing, the studied item was simulated as a non-DIF item. The item parameters
were the same for both the focal and the reference groups. The discrimination
parameter was set at 1 or 1.5, the difficulty parameter was set at -0.75 or 0.75, and
the guessing parameter was set at 0.2. In total, four items were used in the Type I
error study. Their item parameters were (1, -0.75, 0.2), (1, 0.75, 0.2), (1.5, -0.75,
0.2), and (1.5, 0.75, 0.2), respectively. Therefore, each simulated test consisted of 25
matching items and one of these four items. The item parameters of the 26 items are
the same for the reference and focal groups.

Power Study

The power study was designed to investigate the performance of the three

kernel-smoothed statistics in detecting DIF items. Three DIF items were studied,
ranging from easy to difficult with varying amounts of discrimination. The item

parameters for each studied item are given in Table 3. Each simulated test consisted
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of 25 matching items and one of the studied items. The power study employed the
same 25 matching subtest items used in the Type I error study. Sample size and
ability distribution were also manipulated with the same levels as those in the Type I
error study. A total of 3 (sample size) x 4 (ability distribution) x 3 (studied item) =
36 tests were generated. For each test, 100 data sets were simulated. Two-sided
hypothesis tests were used to examine the occurrence of DIF for the studied item
using an alpha level of 0.05. For the purpose of comparison, the power rates with no
correction and with regression correction were also calculated under each simulation

condition.

Table 3. Parameters for Studied Items in Power Study

Item parameter

Studied
Item Group a b 4
1 Ref. 1.50 0.00 0.20
Foc. 0.50 0.00 0.20
2 Ref. 2.00 1.00 0.20
Foc. 0.40 0.00 0.20
3 Ref. 1.80 0.00 0.20
Foc. 0.40 0.50 0.20
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Chapter 1V: Results

Type I Error Study

Type I Error results for Cochran’s Z, Fisher’s y?, and Goodman’s U tests
under the different simulation conditions described in the previous chapter are
presented in Tables 4 to 6, respectively. Each table compares the Type I error rates
for the corresponding test when no correction (NC), regression correction (RC), and
kernel smoothing (KS) were used under each simulation condition. For each test, the
impact of the manipulated factors in this study—ability distribution, sample size, and
item parameter—on the Type I error rate is also summarized.

Given that only 100 replications were conducted for each condition, the
standard error was relatively large for this simulated Type I error study (0.02).
Therefore, the lower and upper limits of 95 percent confidence interval for the
nominal Type I error at 0.05 level were 0.01 and 0.09. Use of this interval would
mean that values less than 0.01 would imply a conservative test while values greater
than 0.09 would imply a liberal test. This did not seem reasonable. Therefore, the
lower and upper limits were modified as follows: the empirical Type I error rate was
considered conservative if it was less than 0.02, reasonable if it was greater than or
equal to 0.02 and less than or equal to 0.08, and liberal if it was greater than 0.08.
Cochran’s Z

Table 4 presents the empirical Type I error rates of the Cochran’s Z test across

different simulation conditions. For the Ng (0, 1) and N (0, 1) (i.e., no ability
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distribution differences between reference and focal groups), the empirical Type I
error rates using NC, RC, and KS were all in the inclusive range of 0.02 to 0.08 when
the sample size was small (500/500). This indicated that the three procedures
produced reasonable Type I error rates across the studied items when there was no
ability difference and the sample size was small. Under moderate sample size
(1000/1000), the empirical Type I error was conservative for item 2 (0.01) using NC
and for item 1 (0.01) using RC. The remaining empirical Type I error rates were
reasonable. Under the large sample size (2500/2500) condition, the empirical Type I
error rates using NC were conservative (0.01) for items 1 and 4. Likewise, the
empirical Type I error rates using RC were conservative (0.01) for items 1 and 4.
Using KS, the Type I errors were liberal for item 3 (0.09) and item 4 (0.12).
Therefore, as the sample size increased, the Type I error rates using the NC and RC
procedures tended to be conservative while the Type I error rates using the KS
procedure tended to be liberal when there was no ability difference between reference
and focal groups. There was no noticeable influence of item parameters to Type |
error under this condition.

For the N (0, 1) and Ng (0, 2) (i.e., no difference for ability mean, one standard
deviation for reference group, and two standard deviation for focal group) condition,
the empirical Type I error rates using NC, RC, and KS were all reasonable under the
500/500 sample size condition. For the 1000/1000 sample size, the empirical Type I
error rates using NC were liberal for items 1 and 3, while the values for items 2 and 4

were reasonable. The Type I error rates using RC were reasonable across the four
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studied items. In contrast, the empirical Type I error rates using KS were inflated for
three items; the error rates for items 2, 3, 4 were liberal, ranging from 0.09 to 0.13.
When sample size was increased to 2500/2500, the Type I error rates using NC were
liberal for items 3 and 4 — 0.12 and 0.14, respectively. The Type I error using RC was
conservative for item 2 (0.00), while the Type I errors using KS were liberal for items
1 and 4 (0.09 and 0.13, respectively). The remaining Type I error rates were
reasonable. Therefore, as the sample size increased, the Type I errors using NC and
KS tended to be liberal while the Type I error for RC tended to be conservative when
there was no difference between mean ability and the standard deviations differed by
one. There was no system influence on the Type I error rates due to item parameters.
For the Ng (0.5, 1) and Ny (-0.5, 1) (i.e., no difference for standard deviation, the
ability mean was 0.5 for reference group and -0.5 for focal group) condition, when the
sample size was small, one of the four empirical Type I error rates using NC was
liberal (0.10 for item 3), two of the four Type I error rates using RC were conservative
(0.00 for item1 and 0.01 for item 3), and the remaining were reasonable. For the
moderate sample size (1000/1000) condition, the empirical Type I error rates using
NC were liberal for all four items, ranging from 0.09 to 0.16. On the other hand, all
four Type I errors using RC were conservative: 0.00 for items 2 and 4 and 0.01 for
items 1 and 3. Using KS, three of the Type I error rates were liberal, ranging from
0.09 to 0.14. Lastly, for the largest sample size (2500/2500), the empirical Type I
error rates using NC were inflated for all four items, ranging from 0.36 to 0.62. The

Type I error rates using RC were conservative (0.00) for items 2 and 3 and reasonable
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for items 1 and 4 (0.03 and 0.02, respectively). The Type I error rates using KS were
reasonable with one exception, 0.09 for item 1. Therefore, when there was mean
ability distribution difference, NC produced liberal Type I error when sample size was
moderate and large. The Type I error rates using RC tended to be conservative across
small, moderate, and large sample sizes. Lastly, the Type I error rates using KS
tended to be reasonable when sample size was small, liberal when sample size was
moderate, and reasonable when sample size was large. No systematic influence was
found for item parameters under this condition.

For the Ng (0.5, 1) and Ng (-0.5, 2) (i.e., the ability mean was 0.5 for reference
group and -0.5 for focal group, the standard deviation was 1 for reference group and 2
for focal group,) condition, when the sample size was small, one Type I error rate was
liberal (0.11 for item 3) using NC, one was conservative (0.00 for item 1) using RC,
and one was liberal (0.09 for item 3) using KS. The remaining rates empirical Type I
error rates were reasonable. When the sample size was moderate, two Type I errors
using NC were liberal (items 1 and 3) and three Type I errors using KS were liberal
(items 1, 3, and 4). The remaining Type I error were reasonable. When the sample
size was large, the same Type I error pattern observed for the moderate sample size
condition was observed for NC and KS. Using RC, however, two Type I errors were
conservative (0.01 for items 2 and 4). Different from the three ability distribution
conditions above, the results for the Ng (0.5, 1) and N (-0.5, 2) condition showed
strong impact of item difficulty (b-parameter). The empirical Type I error rate using

NC for items | and 3 (b-parameters for items | and 3 were -0.75) increased noticeably
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as the sample size increased. For item 1, for example, the Type I error rates increased
from 0.05, to 0.11, and then to 0.28 when the sample size increased from small to
moderate to large. In contrast, the empirical Type I error rates using NC were
reasonable across the different sample size conditions for items 2 and 4 (b-parameters
for items 2 and 4 were 0.75). For example, for item 2, the Type I error rates were
0.03, 0.02, and 0.02 when the sample sizes were 500/500, 1000/1000, and 2500/2500,
respectively. Using RC and KS, however, the impact of item difficulty was not found.
To summarize, for the Cochran’s Z test, the empirical Type I error rates using
NC were affected by sample size, ability distribution differences, and item parameter
values. When there was no mean ability difference between the reference and focal
groups, the empirical Type I error rates using NC were reasonable when the sample
size was small and conservative or reasonable when the sample size was large or
moderate. However, when there were differences between mean abilities or between
the standard deviations of the ability distributions of the reference and focal groups,
the Type I error rates using NC increased as sample size increased. When the
reference and focal groups differed in both mean ability and standard deviation (Ng
(0.5, 1) and N (-0.5, 2)), Type I error rates were inflated for the easy items (items 1
and 3), but not for the difficult items (items 2 and 4), as sample size increased. But,
the results suggested that the item parameters did not strongly affect the Type I error
rates using RC and KS when the sample size was small and there was no mean ability

difference. However, when there was a difference between the mean abilities, the
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empirical Type I error rates using RC tended to be conservative while the KS Type I
error rates tended to be liberal as sample size increased.
Fisher’s y*

Table 5 displays the Type I error rates of the Fisher’s y* test across different
conditions. As shown in Table 5, for the Ng (0, 1) and Ny (0, 1) condition, the
empirical Type I error rates using NC were reasonable except for item 4 (0.01) when
the sample size was 500/500. The Type I error rates using RC were reasonable across
all the studied items. In contrast, the empirical Type I error rates using KS were
conservative except for item 4 (0.03). When the sample size was 1000/1000, the
empirical Type I error rates using NC and RC were reasonable across all the studied
items. Alternatively, the Type I error rates using KS were conservative except for
item 4 (0.02). When the sample size was large (2500/2500), the empirical Type I error
using NC and RC were reasonable, ranging from 0.05 to 0.07. The empirical Type I
error rates using KS were conservative except for item 4 (0.03). Therefore, the
empirical Type I error rates using the three procedures were stable as sample size
increased. The rates using NC and RC tended to be reasonable while the rates using
KS tended to be conservative when there was no ability difference. Influence of item
parameters was found under this condition. The Type I error rates using KS for item 4
(e=1.5, b=0.75, and ¢=0.20) were reasonable while the rates for the remaining items
(items 1, 2, and 3) were conservative as sample size varied.

For the Ng (0, 1) and Ng (0, 2) condition, when sample size was small, the Type

I error rates using NC were reasonable except for item 1 (0.11). The Type I error rates
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using RC were reasonable while the rates using KS were conservative across all the
studied items. When the sample size was moderate, the Type [ error rates using NC
increased noticeably: the Type I errors were liberal for all four items, ranging from
0.14 to 0.17. Using RC, the empirical Type I error rates for items 1 and 2 were liberal
(both were 0.12) while the rates for items 3 and 4 were reasonable (0.05 and 0.07,
respectively). The Type I error rates using KS were conservative across the studied
items (0.00 for items 1, 2 and 3, 0.01 for item 4). When sample size was large, the
empirical Type I error rates using NC were again liberal, ranging from 0.22 to 0.44. In
addition, they were approximately two times higher than the value for the moderate
sample size condition with one exception (approximately three times for item 4). The
empirical Type I error rates using RC under this condition were reasonable for items 1
and 3 (0.07 and 0.08, respectively) and liberal for items 2 and 4 (0.09 and 0.12,
respectively). Using KS, the empirical Type I error rates were conservative for items
1 and 2 (both were 0.00) and reasonable for items 3 and 4 (both were 0.02). As
sample size increased, the Type I error rates were inflated noticeably using NC,
tended to be liberal using RC, and tended to be conservative consistently using KS.
No systematic influence of item parameters was found for the three procedures in this
condition.

For the Ng (0.5, 1) and Ng (-0.5, 1) condition, when sample size was small, the
empirical Type I error rates using NC for item 1 and 3 were reasonable (0.06 and
0.08, respectively). On the other hand, the rates for item 2 and 4 were liberal (both

were 0.25). Using RC, the empirical Type I error rates were reasonable with one
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exception (0.16 for item 2). The empirical Type I error rates using KS were
conservative across all four studied items. When the sample size was moderate, the
empirical Type I error rates using NC were liberal, ranging from 0.25 to 0.39. Using
RC, the Type I error rates were also liberal with one exception (0.07 for item 4). In
contrast, the rates using KS were conservative for items 1 and 4 (both were 0.00) and
reasonable for items 2 and 3 (0.03 and 0.04, respectively). When the sample size was
large, the empirical Type I error rates using NC were liberal and larger than that for
the moderate sample size, ranging from 0.57 to 0.81. The Type I error rates using RC
were reasonable for items 1 and 4 (both were 0.07) and liberal for items 2 and 3 (0.12
and 0.09, respectively). Using KS, however, the empirical Type | error rates were
reasonable with one exception (0.01 for item 2). When there was mean ability
distribution difference, influence of item parameters was found for NC. The Type |
errors using NC for difficult items (items 2 and 4) were liberal regardless of sample
size. In contrast, the Type I error rates for easy items (items 1 and 3) were reasonable
when the sample size was small and then became liberal as the sample size increased.
For the Ng (0.5, 1) and Ng (0.5, 2) condition, when sample size was small, the
empirical Type I error using NC and RC were reasonable with one exception (0.00 for
item 3 using RC). However, the Type I error rates using KS were conservative for all
studied items. When the sample size was moderate, the Type I error rates using NC
were liberal for items 1 and 3 (0.39 and 0.42, respectively), while the rates for items 2
and 4 were reasonable (both were 0.08). The empirical Type I errors using RC were

liberal, ranging from 0.11 to 0.19, with one exception (0.07 for item 2). But the rates
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were lower than the rates using NC. The Type I error rates using KS were
conservative except for item 1 (0.02). When the sample size was large, the empirical
Type I error rates using NC for items 1 and 3 were liberal and larger than for the
moderate size condition (0.48 vs. 0.39 for item 1, 0.84 vs. 0.42 for item 3). On the
other hand, the rates for item 2 and 4 were still reasonable (0.08 and 0.07,
respectively). Using RC, the Type I error rates were liberal with one exception (0.06
for item 2). Using KS, the empirical Type I error rates were conservative except for
item 3 (0.05). Like the pattern of the results for Cochran’s Z test, the b-parameter,
influenced the Type I error rates using NC when there were differences between the
mean abilities and the standard deviations. As sample size increased, the empirical
Type I error rates using NC for easy items (b-parameters for items 1 and 3 were -0.75)
increased. For example, the Type I error rates for item 3 increased from 0.07, to 0.42,
and then to 0.84 when sample size increased from small, to moderate, and to large. On
the other hand, the empirical Type I error rates using NC were reasonable across
different sample size conditions for difficult items (b-parameters for items 2 and 4
were 0.75). For example, for item 4, the Type I error rates were 0.07, 0.08, and 0.07
when the sample sizes were 500/500, 1000/1000, and 2500/2500. In contrast, item
parameter did not influence the Type I error when RC and KS were used.

To summarize, for Fisher’s y?, the empirical Type I error rates using NC were
affected by the manipulated factors, including sample size, ability distribution, and
item parameters. When the sample size was small, the Type I error rates using NC

were reasonable with few exceptions (0.25 for item 2 and 0.25 for item 4) under the
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Ng (0.5, 1) and Nr (-0.5, 1) condition. However, the Type I error rates using NC
increased as sample size increased and ability mean and standard deviation each
differed by one. In addition, under the Ny (0.5, 1) and Nf (-0.5, 2) condition, Type 1
error rates using NC were influenced by item difficulty. Using RC, the empirical Type
I error rates increased as sample size increased for items 1 and 3. The rates also
increased when there were differences between the ability distributions for items 1
and 3. However, the degree of increase for RC was smaller than for NC, Using KS,

the empirical Type I error rates were conservative or reasonable across simulation
conditions.
Goodman’s U

The results for Goodman’s U test using NC, RC and KS are summarized in
Table 6. For the Nr (0, 1) and N (0, 1) condition, when the sample size was small,
the empirical Type I error rates using NC and RS were reasonable, with one exception
(0.01 for item 4 using NC). The Type I error rates using KS were conservative across
all four studied items. When the sample size was moderate and large, the Type I error
rates using NC and RC were reasonable while the rates using KS were conservative
across all studied items. The sample size and item parameter did not show any impact
on the Type I error rates using the three procedures when there was no difference

between ability means and standard deviations.
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For the Ng (0, 1) and Nr (0, 2) condition, when the sample size was small, the
empirical Type I error rates using NC were reasonable except for item 1 (0.01), while
the rates using RC were reasonable for all studied items. Using KS, the Type I error
rates were conservative except for item 3 (0.04). When the sample size was moderate,
all four Type I error rates using NC were liberal, ranging from 0.09 to 0.17. Two rates
using RC were also liberal, 0.09 for item 1 and 0.11 for item 2. All the Type I error
rates using KS were conservative. When the sample size was large, the Type I error
rates using NC were liberal for all studied items, ranging from 0.15 to 0.25. The error
rates using RC were liberal for items 2 (0.09) and 4 (0.11), and reasonable for items 1
(0.02) and 3 (0.06). Using KS, the error rates were again conservative (0.00 for all
items). When standard deviation differences presented, the empirical Type I error
rates using NC and RC became inflated as sample size increased. While the Type I
error rates using KS were consistently conservative across the different sample size
conditions. In contrast, item parameter did not influence the Type I error when NC,
RC, and KS were used.

For the Ng (0.5, 1) and Ng (0.5, 1) condition, when the sample size was small,
the empirical Type I error rates using NC and RC were reasonable with one exception
(0.01 for item 1 using RC). The error rates using KS were conservative for all items.
When the sample size was moderate, the rates using NC and RC were reasonable
except for item 3 (0.14 using NC and 0.12 using RC). The rates using KS were still
conservative for all items. When the sample size was large, two of the Type I error

rates using NC (0.03 and 0.05 for items 1 and 2) were reasonable and two of the rates
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(0.14 and 0.12 for items 3 and 4) were liberal. All the Type I error rates using RC
were reasonable, ranging from 0.02 to 0.08. Using KS, the empirical Type I error
rates were conservative for all the items. When there was difference between the
mean abilities, the empirical Type I error rates using NC were inflated for a few items
as sample size increased. While the Type I error rates using RC were reasonable as
sample size increased with one exception (item 3 under moderate sample size). Again,
the rates using KS were consistently conservative across the different sample size
conditions. The item discrimination parameter (a parameter) influenced the Type |
errors when NC was used. Using NC, the Type I error rates for items 1 and 2 (a=1.00)
were reasonable for all three sample sizes while the rates for items 3 and 4 (a=1.50)
were reasonable when the sample size was small and liberal when the sample sizes
were moderate and large (with one exception of 0.04 for item 4 when the sample size
was moderate). In contrast, item discrimination did not influence the Type I error
when RC and KS were used.

For the Ng (0.5, 1) and Ny (-0.5, 2) condition, when the sample size was small,
the empirical Type I errors using NC and RC were reasonable except for item 3 (0.00
for both NC and RC). The Type I error rates using KS were conservative for all
studied items. When the sample size was moderate, the Type I error rates using NC
for items 1 and 3 were liberal (0.11 and 0.14, respectively), while the error rates for
items 2 and 4 were reasonable (0.07 and 0.05, respectively). The empirical Type I
error using RC were liberal, ranging from 0.11 to 0.19, with one exception (0.07 for

item 4). The Type I error rates using KS were conservative for all studied items.
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When the sample size was large, the empirical Type I error rates using NC for item 1
and 3 were liberal (0.27 and 0.37, respectively). On the other hand, the rates for item
2 and 4 were reasonable (0.05 and 0.06, respectively). Using RC, the Type I error
rates were liberal for all four studied items. Using KS, the empirical Type I error rates
were conservative across all items. When both ability means and standard deviations
differed between the reference and focal groups, the Type I error rates using NC were
influenced by item difficulty (b-parameter) as in Cochran’s Z and Fisher’s y tests.
As sample size increased, the empirical Type I error rates using NC for difficult items
(b-parameters for items 1 and 3 were 0.75) increased. For example, the Type I error
rates for item 1 increased from 0.04 to 0.11 and then to 0.27 when sample size
increased from small to moderate and to large. On the other hand, the empirical Type
I error rates using NC were reasonable across different sample size conditions for
easy items (b-parameters for items 2 and 4 were -0.75). For example, for item 4, the
Type 1 error rates were 0.06, 0.05, and 0.06 when the sample sizes were 500/500,
1000/1000, and 2500/2500. In contrast, item difficulty did not influence the Type I
error when RC and KS were used.

To summarize, for Goodman’s U statistic, the manipulated factors affected the
empirical Type I error rates when NC was applied. When there were no ability
differences between two groups, the Type I error rates using NC were reasonable
regardless of sample size. Conversely, when the ability means differed, the Type I
error rates turned to liberal across all items when the sample sizes were moderate and

large. Item parameters influenced the Type I error rates using NC when ability means
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and standard deviations differed between two groups (i.e. the N (0.5, 1) and Nf (-0.5,
2) condition). The Type error rates tended to be inflated for easy items (b = -0.75)
than the rates for the difficult items (b = 0.75). Using RC, the empirical Type I error
rates was influenced by sample size and ability distribution. When there was no
ability difference, the Type I error rates using RC were reasonable as sample size
increased. When there was ability difference, the Type I error rates tended to be
liberal for items 1 and 3, especially under moderate sample size. When KS was used
for Goodman’s U, the empirical Type I error rates were consistently conservative
level (most of them were equal to zeros).
Power Study

The results of power study for Cochran’s Z, Fisher’s x>, and Goodman’s U
tests under the different simulation conditions considered in this study are presented
in Tables 7 to 9. In the power study, three distinct DIF items were studied, ranging
from easy to difficult with varying amounts of discrimination. The selection of these
items was based on the Douglas, Stout and DiBello’s study (1996). The item
parameters for each of these items were provided in Table 4. The remaining factors
and their levels, sample size, and ability distribution were the same as those
considered in the Type I error study.

In order to interpret the power results, power rates were categorized as low,
moderate, and high according to Cohen’s (1962, 1992) criteria. He found that the
mean power rate to detect medium effect sizes was 0.48 at the two-tailed 0.05 level of

significance (1962). Also, he argued that a procedure could be considered as having

42



excellent power if its power rates were above 0.80 (1992). Therefore, in the present
study, power was considered low if the rate was less than 0.48, moderate if the rate
was in the closed interval 0.48 and 0.80, and high if the rate exceeded 0.80.
Cochran’s Z

Table 7 displays the results using NC, RC, and KS for the Cochran’s Z test.
For the Ng (0, 1) and Ng (0, 1) condition, when the sample size was small, the power
rates using NC, RC, and KS varied across the three studied items. For item 1, the
power rates using NC and RC were low, at 0.04 for both. In contrast, the power rate
using KS was higher, but still low, at 0.29. For item 2, the power rates were 1.00
when NC, RC, and KS were used, indicating that all three procedures correctly
identified the occurrence of DIF across the 100 generated data sets. For item 3, the
power rates using NC and RC were low, at 0.34 and 0.33, respectively, while the rate
using KS was high at 0.84. When the sample size was moderate, the power rates using
NC and RC were low for item 1 (0.02 for NC and RC), while the power rate using KS
was low, at 0.43. For item 2, the power rates were again high at 1.00 across three
procedures. For item 3, the rates were both moderate (0.64) for NC and RC, while the
power rate using KS was high (0.95).When sample size was large, the power rates
using NC, RC, and KS were high across the three studied items, ranging from 0.82 to

1.00, with two exceptions (0.01 for NC and 0.02 for RC for item 1).
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For the Ng (0, 1) and Ng (0, 2) condition, when the sample size was small, the
power rates using NC, RC, and KS shared the similar trend with the N (0, 1) and
Nr (0, 1) condition. That is, for item 1, the power rates were low using NC and RC
(0.04 and 0.09, respectively), while the power using KS was higher, but still low, at
0.33. For item 2, the power rates were 1.00 when NC, RC, and KS were used. For
item 3, the power rates using NC and RC were low, at 0.11 and 0.13, respectively,
while the rate using KS was moderate at 0.75. When the sample size was moderate,
the power rates using NC and RC were low for item 1 (0.01 for NC and 0.00 for RC),
while the power rate using KS was moderate, at 0.52. For item 2, the power rates were
again high at 1.00 across three procedures. For item 3, the rates were both low for NC
(0.31) and RC (0.30), while the power rate using KS was high (0.98). When sample
size was large, the power rates using NC, RC, and KS were high across all studied
items, ranging from 0.88 to 1.00, with two exceptions (0.03 for NC and 0.04 for RC
for item 1).

For the Ng (0.5, 1) and Nf (-0.5, 1) condition, when sample size was small, the
power rates using NC, RC, and KS for item 1 were low (0.06, 0.04 and 0.29,
respectively). For item 2, the power rates using NC, RC, and KS were all high and
close to 1.00, ranging from 0.98 to 0.99. For item 3, the power rates were low for NC
(0.33), low for RC (0.10), and high for KS (0.85). When the sample size was
moderate, the power rates using NC and RC for item 1 remained low, 0.12 and 0.02,
respectively, and the rate using KS was moderate (0.55). For item 2, the power rates

using NC, RC, and KS were high (1.00, 1.00, and 0.98). For item 3, the power rates
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were moderate for NC (0.74), low for RC (0.24), and high for KS (0.94). When
sample size was large, the power rates were high across procedures and items, except
for NC (0.51) and RC (0.00) for item 1.

For the Ng (0.5, 1) and Ng (-0.5, 2) condition, when the sample size was small,
the power rates using NC and RC for item 1 were low, 0.09 and 0.06 respectively. In
contrast, the power rate using KS for item 1 was moderate (0.78). For item 2, the
power rates using NC and RC were both moderate (0.73 and 0.79). However, the
power rate using KS was still high for item 2 (0.97). For item 3, the power rates using
NC and RC were low (0.30 and 0.25), while the power rates using KS was high
(0.99). When the sample size was moderate, the power rates using NC and RC for
item 1| were low (0.16 and 0.04), while the power using KS was high (0.98). For item
2, the power rates were high for all three procedures, 0.99, 1.00, and 1.00,
respectively. The power rates using NC and RC were low (0.42 and 0.31,
respectively) for item 3, while the rate using KS was high (1.00). When the sample
size was large, the power rates were high across the procedures and items with two
exceptions: the power rates for item 1 using NC (0.45) and using RC (0.19).

To summarize, for Cochran’s Z, NC and RC yielded low power for item 1
(ranging from 0.00 to 0.45) consistently with one exception (0.51 for NC at large
sample size when Ng (0.5, 1) and N (-0.5 ,2)), but moderate to high power for item 2
(ranging from 0.73 to 1.00) across different sample sizes and ability distributions. For
item 3, NC and RC yielded comparable power rates when there was no ability mean

difference. However, NC produced better power rates than RC when there was ability
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mean difference between groups. KS produced higher power rates across different
conditions for Cochran’s Z. The results showed the superiority using KS procedure
for Cochran’s Z to detect DIF.
Fisher’s y*

The power results using NC, RC, and KS for Fisher’s z* are summarized in
Table 8. For the Ng (0,1) and N (0,1) condition, when the sample size was small, the
power rates using NC, RC, and KS for item 1 were low (0.41, 0.38, and 0.19,
respectively). For item 2, the power rates using all three procedures were high (1.00
for all of them). For item 3, the power rates using NC, RC, and KS were moderate
(0.73, 0.76, and 0.79, respectively). When the sample size was moderate, the power
rates were high across the three procedures and studied items with one exception
(0.47 for item 1 using KS), ranging from 0.92 to 1.00. When sample size was large,
all the power rates were high for all the procedures and studied items, ranging from
0.96 to 1.00.

For the Ng (0, 1) and Ng (0, 2) condition, when the sample size was small, the
power rates using NC, RC, and KS for item 1 were low (0.27, 0.33, and 0.07,
respectively). For item 2, the power rates using NC, RC, and KS were high (1.00,
1.00, and 0.99, respectively). For item 3, the power rates using NC were low (0.45),
while the rates using RC and KS were moderate (0.63, and 0.53). When sample size
was moderate, the power rates for item 1 were moderate (0.70) using NC, high (0.80)

using RC, and low (0.35) using KS. For items 2 and 3, the power rates using NC, RC,
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and KS were high, ranging from 0,98 to 1.00. When sample size was large, the power
rates were high (1.00) across all procedures and items.

For the Ng (0.5, 1) and Ng (0.5, 1) condition, when the sample size was small,
the power rates using NC and RC for item 1 were moderate (0.62 and 0.49,
respectively), while the power rate using KS was low (0.18). For items 2 and 3, the
power rates were high across NC, RC, and KS, ranging from 0.82 to 0.95. When the
sample sizes were moderate and large, the power rates were high across all procedures
and studied items with one exception (0.60 for item 1 using KS when the sample size
was moderate), ranging from 0.91 to 1.00.

For the Ng (0.5, 1) and Nr (-0.5, 2) condition, when the sample size was small,
the power rates using NC, RC, and KS were low for item 1 (0.34, 0.40, and 0.44,
respectively). For items 2 and 3, the power rates using NC, RC, and KS were high
with one exception (0.79 for item 2 using KS), ranging from 0.80 to 1.00. When the
sample sizes were moderate and large, the power rates were high across procedures
and items, ranging from 0.91 to 1.00.

To summarize, for item 1, all procedures yielded low power with two
exceptions (0.62 for NC and 0.49 for RC at Ng (0.5, 1) and N (-0.5, 1)) when the
sample size was small, NC and RC produced high power with one exception (0.70 for
NC at Ng (0, 1) and N (0, 2) when the sample size was moderate), while KS
produced moderate to high power with two exceptions (0.47 and 0.35 when there was
no mean difference and sample size was moderate) when the sample sizes were

moderate and large. For item 2, all procedures produced high power rates with one
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exception (0.79 for KS at Ny (0.5, 1) and N (-0.5, 2) when the sample size was
small). For item 3, all procedures yielded moderate to high power rates across
different sample sizes and ability distributions with one exception (0.45 for NC when
the sample size was small at Ny (0, 1) and Ng (0, 2)).
Goodman’s U

Table 9 shows the power study results using NC, RC, and KS for Goodman’s
U test. For the Ng (0, 1) and Nr (0, 1) condition, when the sample size was small, the
power rates using NC and RC were low across studied items, ranging from 0.30 to
0.35, with the exception of item 3 using RC (0.70). In contrast, the power rates using
KS were 0.00 for all items. When the sample size was moderate, the power rates using
NC and RC were high across all studied items, ranging from 0.89 to 1.00. However,
the power rate using KS was low for the three studied items (0.08 for item 1, 0.01 for
item 2, and 0.15 for item 3). When the sample size was large, the power rates using
NC and RC were all high (1.00) across items. In contrast, the power rates using KS
were low for items 1 and 2 (0.40 and 0.29, respectively) and high for item 3 (0.86).

For the Ng (0, 1) and Ng (0, 2) condition, when the sample size was small, the
power rates using NC and RC were, with one exception, low across the three studied
items, ranging from 0.26 to 0.42. The power rates for item 3 using RC was moderate
(0.51). In contrast, the power rates using KS were 0.00 for all items. When the sample
size was moderate, the power rates using NC and RC were moderate for item 1 (0.64

and 0.77, respectively). However, the rates using NC and RC were high for items 2
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and 3. Using KS, the power rates were low across studied items (0.00 for item 1, 0.05
for item 2, and 0.05 for item 3). When the sample size was large, the power rates using
NC and RC were high across studied items, ranging from 0.98 to 1.00. The power
rates using KS were low for item 1 (0.31), moderate for item 2 (0.73), and high for
item 3 (0.83).

For the Ng (0.5, 1) and N (-0.5, 1) condition, when the sample size was small,
the power rates using NC and RC were low for items 1 and 2, ranging from 0.31 to
0.37, while the rates using NC and RC were moderate for item 3 (0.54 and 0.59,
respectively). In contrast, the powers using KS were 0.00 for all items. When the
sample size was moderate, the power rates using NC and RC were high across all
studied items, ranging from 0.81 to 0.98. However, the power rate using KS was low
for the three studied items (0.00 for item 1, 0.00 for item 2, and 0.01 for item 3).
When the sample size was large, the power rates using NC and RC were all high
(1.00) across items. Meanwhile, the power rates using KS were low for the three
items (0.04, 0.06, and 0.19, respectively).

For the Ng (0.5, 1) and N (-0.5, 2) condition, when the sample size was small,
the power rates using NC and RC were low for item 1 (0.14 and 0.28, respectively).
For items 2 and 3, the rates were low using NC (0.43 and 0.37, respectively) and
moderate using RC (0.48 and 0.53, respectively). Again, the power rates using KS
were 0.00 for all items. When the sample size was moderate, for item 1, the power
rates were low using NC (0.46) and moderate using RC (0.70). For items 2 ana 3, the
rates were high when NC and RC were used, ranging from 0.86 to 0.96. However, the
power rate using KS was low for the three studied items (0.00 for item 1, 6.27 for
item 2, and 0.00 for item 3). When the sample size was large, the power rates using

NC and RC were all high across items, ranging from 0.98 to 1.00. Meanwhile, the
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power rates using KS were low for items 1 and 3 (0.03 and 0.08, respectively) and
high for item 2 (1.00).

To summarize, for item 1, NC and RC yielded low power when the sample
size was small. When the sample sizes were moderate, NC and RC produced
moderate to high power rates with one exception (0.46 using NC at Ng (0.5, 1), Ng (-
0.5, 2) conditions). When the sample size was large, NC and RC yielded high power.
However, KS produced low power for item 1 regardless sample size and ability
distributions. For item 2, NC and RC yielded low power when the sample size was
small with one exception (0.48 using RC at Ng (0.5, 1) and N (-0.5, 2)). When the
sample size was moderate and large, NC and RC produced high power rates.
However, KS produced low power rates regardless sample size and ability distribution
with two exceptions (0.73 and 1.00 at Ng (0, 1), Nr (0, 2) and Ng (0.5, 1), N¢ (-0.5, 2)
conditions when the sample size was large). For item 3, NC yielded low power rates
while RC yielded moderate power rates when the sample size was small. When the
sample sizes were moderate and large, NC and RC produced high power rates for
item 3 as the ability distribution varied. However, KS yielded low power rates for
item 3 regardless sample size and ability distribution with two exceptions (0.86 and
0.83 at Ng (0, 1), Ng (0, 1) and Ng (0, 1), N (0, 2) conditions when the sample size

was large).
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Chapter V: Discussion and Future Directions

Summary of Purpose and Method

Recently, practitioners and researchers have become interested in the graphical
comparison of non-parametrically estimated IRFs for DIF analysis. This is because
the graphical comparison of non-parametrically estimated reference and focal group
IRFs has the potential to detect both non-uniform DIF and local DIF without making
strict assumptions about the student ability distribution and the functional forms of
IRFs. However, in order to objectively determine the occurrence of IRF differences,
DIF hypothesis testing statistics are needed. Ramsay (1991) introduced kernel
smoothing, a general technique for nonparametric estimation, to measurement
practice. However, the procedure Ramsay proposed does not provide a hypothesis
testing statistic that can be used objectively to determine the occurrence of DIF.

The present study combined the kernel smoothing procedure and three
nonparametric DIF statistics—Cochran’s Z, Fisher’s ¥, and Goodman’s U— to
statistically test the difference between the kernel-smoothed IRF for reference group
and the IRF for focal group. To calculate the kernel-smoothed statistics, examinees’
latent abilities were estimated using the kernel smoothing technique and these
estimates served as the matching criterion for DIF detection. Using the latent ability
estimates rather than subtest observed scores as the matching criterion can be
considered as a latent-variable-matched DIF procedure (Douglas, Stout & DiBello,
1996). This procedure avoids the potential problems introduced by bias in DIF
detection when groups have different latent ability distributions. After latent ability
estimation, the true score for each examinee and the frequency of the true scores were
calculated. The kernel smoothing technique was also applied in the calculation of the
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probabilities of answering the studied item correctly for the examinees in reference
and focal groups at certain ability level.

Simulation studies were conducted to investigate the Type I error and power of
the proposed kernel-smoothed (KS) statistics. For Type I error study, three factors
expected to affect the probability of a Type I error were considered: sample size,
ability distribution difference, and item parameters of the studied item. There were
three levels in the factor of sample size, four levels in the factor of ability distribution,
and four levels in the factor of item parameters. In total, 3 (sample size) x 4 (ability
distribution) x 4 (studied item) = 48 tests were generated to investigate the Type 1
error rates for the three proposed kernel-smoothed statistics. 100 replications were
performed for each test. For power study, the three factors as the same as in Type |
error study were manipulated. There were three levels in the factor of sample size,
four levels in the factor of ability distribution, and three levels in the factor of item
parameters. In total, 3 (sample size) x 4 (ability distribution) x 3 (studied item) = 36
tests were generated to investigate the power performance for the three kernel-
smoothed statistics. Two-sided hypothesis tests were used with a significance level of
0.05 for both Type I error and power studies. The Type I error and power rates of
Kernel Smoothed (KS) statistics were compared to those with No Correction (NC)
and Regression Correction (RC) to evaluate the performance of the new statistics

introduced in this study.

Summary of Main Findings and Conclusion

Type I Errors
The summary findings are presented in terms of the percentages of Type I errors
that were classified as conservative, moderate, and liberal. As shown in Table 10, the

percentages are classified by sample size (small (500,500), moderate (1000, 1000),
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and large (2500, 2500) given the results revealed that Type I error was influenced by

sample size. The percentages are further classified by statistics used (Cochran’s Z,

Fisher’s ¥ ’ , and Goodman’ U) and procedures (no correction (NC), regression
correction (RC), and kernel smoothing (KS). The discussion is organized in terms of
sample size.

Table 10. Percentages of Type I Errors Classified as Conservative, Moderate, and

Liberal according to Statistics and Procedures

Sample

size Small Moderate Large

z ¥ wuwl|l z ¥ wuwl| z 1 wu

NC 0.0 6.3 250! 6.3 0.0 0.0 12.5 0.0 0.0
Conservative RC 188 6.3 6.3 31.3 0.0 0.0 43.8 0.0 0.0
KS 00 938 938 | 0.0 75.0 100.0| 0.0 56.3 100.0

NC 875 750 750} 438 375 563 | 375 375 500
Reasonable RC 813 875 938} 688 500 625 | 563 563 875
KS 938 63 63 | 438 250 00 [ 563 438 0.0

NC 125 188 00 | 500 625 438 | 500 625 500
Liberal RC 00 63 00 0.0 500 375 | 00 438 125
KS 63 00 00 | 563 0.0 00 [ 438 00 0.0

Note: Z for Cochran’s Z, y 2 for Fisher’s 4 2, and U for Goodman’s U;
NC for No Correction, RC for Regression Correction, and KS for Kernel Smoothing.

Small sample size. For Cochran’s Z, the majority of Type I errors were

reasonable using NC (87.5%), using RC (81.3%), and using KS (93.8%). There
appears to be superior using KS compared with using NC or RC. For Fisher’s y?, the
majority of Type I error rates were also reasonable using NC (75.0%) and RC
(87.5%). In contrast, the majority of Type I error rates were conservative using KS
(93.8%). For Goodman’s U, the similar pattern as for Fisher’s y? was found. That is,

the majority of Type I error rates were reasonable using NC (75.0%) and RC (93.8%),

while the majority of Type I error were conservative using KS (93.8%).
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Moderate sample size. Comparison of the pattern of percentages for the
moderate size sample size condition with the pattern noted above for the small sample
size condition reveals that there was an interaction between sample size, test statistic,
and procedures. For example, while the majority of Type I errors for Cochran’s Z
were reasonable using RC (68.8%), the majority was less than that observed when the
sample size was small (68.8% vs. 87.5%). Further, 31.3% of Type I errors using RC
were conservative when the sample size was moderate, but 18.8% when the sample
size was small. In contrast, the majority of Type I errors using NC were liberal
(50.0%), while only 12.5% of Type I errors were liberal when the sample size was
small. Similarly, 56.3% of Type I errors were liberal using KS when the sample size
was moderate, but only 6.3% Type I errors was liberal when the sample size was

small.

In contrast, the incidence of Type I errors for Fisher’s y* and Goodman’s U
was more evenly divided between reasonable and liberal when NC and RC were used.
Take Fisher’s Zz as an example, 37.5% and 50.0% were reasonable using NC and

RC, while 62.5% and 50.0% were liberal. While all of the conservative Type I errors

occurred for KS when the sample size was moderate, no reasonable and liberal Type I

errors occurred for KS. In contrast, the liberal Type I errors for Fisher’s 4 ’ and
Goodman’s U are essentially evenly divided between NC and RC.

Large sample size. The patterns of results for the large and moderate sample
sizes are more comparable to each other than to the pattern for the small sample size,
thereby clarifying the nature of the contribution of sample size to the interaction noted
above. For example, while a large majority of Type I errors were reasonable for

Cochran’s Z (87.5%), when the sample size was small, the Type I errors were more
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evenly divided between the three error size intervals for both Fisher’s y? and
Goodman’s U for both moderate and large sample sizes.

In summary, the attention was only paid to reasonable Type I errors for KS
procedure since the main purpose of present study is to find a suitable statistic to
detect the occurrence of DIF when kernel smoothing procedure was applied.
Cochran’s Z produced better Type I errors than Fisher’s y* and Goodman’s U when
kernel smoothing was used across the three sample sizes (93.8% vs. 6.3% and 6.3%
for small sample size, 43.8% vs. 25.0% and 0.0% for moderate sample size, and
56.3% vs. 43.8% and 0.0% for large sample size). However, the percentages of
reasonable Type I errors for the kernel-smoothed Cochran’s Z were not the highest
one when the sample sizes were moderate and large. The Regression-corrected
Cochran’s Z produced the best Type I errors (68.8%) under moderate sample size and
the regression-corrected Goodman’s U had the best Type I errors (87.5%) under large
sample size.

Power

The summary findings are presented in terms of the percentages of power that
were classified as low, moderate, and high. As shown in Table 11, the percentages are
classified by sample size (small (500,500), moderate (1000, 1000), and large (2500,

2500). Like the structure of Type I errors, the percentages are further classified by

statistics used (Cochran’s Z, Fisher’s £ ’ , and Goodman’ U) and procedures (no
correction (NC), regression correction (RC), and kernel smoothing (KS). The
discussion is also organized in terms of sample size.

Small sample size. For Cochran’s Z, the majority of power rates were low using
NC (66.7%) and using RC (66.7%). In contrast, the majority of power rates were high

using KS (58.3%). Therefore, there appears to be superior using KS compared with
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using NC or RC. For Fisher’s 7, half of power rates using NC were low while half
of power rates using RC were high. The power rates using KS were approximately
evenly divided among low (33.3%), moderate (25.0%), and high (41.7%). This
finding indicates that RC and KS improved the power performance of Fisher’s > and
RC produced even better results than KS (50.0% vs. 41.7%). For Goodman’s U, the
majority of power rates were low using NC (91.7%) and KS (100.0%). In contrast, the
power rates using RC were evenly divided between low and moderate. This suggests
that none of the three procedures had adequate power for Goodman’s U when the
sample size was small.

Table 11. Percentages of Power Classified as Low, Moderate, and High according to

Statistics and Procedures

Sample
size Small Moderate Large
z 2 vl z x vl z 2 w
NC 66.7 50.0 917! 50.0 0.0 8.3 250 0.0 0.0
Low RC 66.7 250 583 | 58.3 0.0 0.0 33.3 00 0.0

KS 250 333 100.0| 83 16.7 100.0| 0.0 00 667

NC 83 167 83 | 167 83 8.3 8.3 0.0 0.0
Moderate RC 83 250 417 | 83 0.0 16.7 | 0.0 0.0 0.0
KS 16.7 250 0.0 | 16.7 8.3 0.0 0.0 0.0 8.3

NC | 250 333 00 | 333 917 833 | 66.7 100.0 100.0
High RC | 250 500 00 | 333 1000 833 | 66.7 100.0 100.0
KS 583 417 00 ;750 750 0.0 {1000 1000 25.0

Note: Z for Cochran’s Z, ¥ 2 for Fisher’s X 2 , and U for Goodman’s U;
NC for No Correction, RC for Regression Correction, and KS for Kernel Smoothing,
Moderate sample size. For Cochran’s Z, the patterns of results for the moderate
sample size are comparable with the results for the small sample sizes. The majority
of power rates were also low using NC (50.0%), using RC (58.3%), but the majority
was less than that observed when the sample size was small (50.0% vs.66.7% for NC,
58.3% vs. 66.7% for RC). In contrast, the majority of power rates were high using KS

(75.0%) and the majority was more than that observed when the sample size was
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small (75.0% vs. 58.3%). For Fisher’s y?, the majority of power rates were high
regardless using NC (91.7%), using RC (100.0%), or using KS (75.0%). In contrast,
while the majority of power rates for Goodman’s U were high using NC (83.3%) and
RC (83.3%), all of power rates were low using KS.

Large sample size. The patterns of power rates for the large sample size are
more convergent than the small and moderate sample sizes. For example, for
Cochran’s Z, two of third power rates were high using NC and RC. The remaining
rates were low. For Fisher’s x*, all the power rates were high across three
procedures. In contrast, while all the power rates for Goodman’s U were high using
NC and RC, the majority of power rates were low using KS (66.7%), which shared
the similar pattern with the moderate sample size.

In summary, the attention was paid to high power level for KS procedure this
time. Cochran’s Z produced better power than Fisher’s 7? and Goodman’s U when
kernel smoothing was used under small sample size (58.3% vs. 41.7% and 0.0%). In
contrast, under the condition of moderate and large sample sizes, Cochran’s Z and
Fisher’s z? produced the same better power than Goodman’s U when kernel
smoothing was applied. Again, the best power rate under moderate sample size was
regression-corrected Fisher’s y? (100.0%) instead of kernel-smoothed Cochran’s Z
(75.0%).

Conclusion

In this study, the kernel smoothing procedure was applied to three
nonparametric DIF statistics—Cochran’s Z, Fisher’s y?, and Goodman’s U—to
statistically test the difference between the kernel-smoothed IRF for reference and

focal groups. Simulation studies were conducted to investigate the Type I errors and
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power performance for these statistics. Results indicated that, among the three
statistics, Cochran’s Z showed the best performance in detecting the kernel-smoothed
IRF differences for reference and focal groups under small sample size conditions. In
comparison, when the sample size was moderate or large, both Cochran’s Z and
Fisher’s y? produced relatively high power rates in detecting kernel-smoothed IRF
differences. However, the Type I errors of kernel-smoothed Cochran’s Z tend to be
liberal while the Type I errors of kernel-smoothed Fisher’s z? tended to be
conservative under moderate and large sample size conditions.

Results showed that Goodman’s U performed poorly when used with kernel-
smoothed non-parametrically graphical DIF procedures: The Type I error rates were
conservative for most simulation conditions; the power rates were low across items
and ability distribution conditions when sample size was small. Even when the sample
size was large, the power rates for Goodman’s U using KS were still much lower than

those using NC and RC. One possible reason is that Goodman’s U used error variance
instead of weighted error variance, as used in Cochran’s Z and Fisher’s xz . these

result suggested that some DIF statistics are not suitable to be used with non-

parametrically graphical DIF procedure.

Implications for Practice

The results of the present study have practical implications. The performance
of the Cochran’s Z statistics improved significantly when kernel smoothing was
applied compared to the power and Type I error rates from NC and RC. This result is
of particular value because it provides researchers and practitioners with a new
method for statistically confirming their findings from non-parametrically graphical

DIF analysis. In turn, this result also suggested that the kernel smoothing procedure
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has the potential to improve the performance of nonparametric DIF statistics because
it can reduce the local error variance and instability often associated with

nonparametric IRFs.

Limitations of this Study and Directions for Future Research

The most important limitation in this study is that the three kernel-smoothed
statistics were not applied to real data situation. Only simulation studies were
conducted. Although using 3PL or 2PL item response model to generate simulated
data is a common method in the literature, it is not clear whether it is appropriate to
use parametric methods to generate data and then analyze the generated data using
non-parametric estimation procedure. Therefore, applying these procedures to real
data situation is important.

Among the three non-parametric statistics considered in this study, the
performance of only one statistic, the Cochran’s Z, was significantly improved by the
kernel smoothed procedure in testing non-parametrically graphical DIF analysis. The

second direction for future research therefore is related to the modification of Fisher’s
z* and Goodman’s U statistics to improve their performance in testing non-

parametrically graphical DIF. For example, the performance of Goodman’s U may be

improved if the weighted error variance instead of error variance is used.
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