
It can scarcely be denied that the supreme goal of all theory is to make the
irreducible basic elements as simple and as few as possible without having to

surrender the adequate representation of a single datum of experience.

– Albert Einstein, 1933.
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Abstract

Psycholinguistics has traditionally been defined as the study of how we process

units of language such as letters, words and sentences. But what about other

units? This dissertation concerns itself with short lexical sequences called n-

grams, longer than words but shorter than most sentences. N-grams can be

phrases (such as the 3-gram the great divide) or just fragments (such as the 4-

gram means nothing to a). Words are often thought to be the universal, atomic

building block of longer lexical sequences, but n-grams are equally capable of

carrying meaning and being combined to create any sentence. Are n-grams

more than just the sum of their parts (the sum of their words)? How do

language users process n-grams when they are asked to read them or produce

them? Using evidence that I have gathered, I will address these and other

questions with the goal of better understanding n-gram processing.
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Chapter 1

Introduction

There is a new and growing interest in psycholinguistics in the men-

tal representation of (not necessarily phrasal) lexical sequences and in

how knowledge of these sequences relates to word, phrase, and sentence

knowledge. In this chapter I summarize the evidence for the existence of

distinct mental representations for these types of sequences. Studies of

sentence processing, contextual ambiguity resolution, speech production

and compound word processing provide indirect evidence for frequency

effects for lexical sequences. Recent studies of adult reading behaviour

have looked more directly at the effects of holistic frequency on reading

performance. I end by considering the relevance of lexical sequences to

existing cognitive models of language and speculating on how they may

impact future models.

The urge to analyze language in a reductionist way has been evident from

the earliest psycholinguistic experiments. Language has long been conceived

of as a stream of discrete words that can be broken down into their compo-

nents (morphemes, syllables, phonemes, and letters) or combined together to

produce phrases or sentences. Relatively little consideration has been given

to linguistic units intermediate between these two levels of analysis: lexical

sequences that are not necessarily phrasal. In this chapter I address two main

questions: Are there any units of language that have a mental representation

that is larger than a word but smaller than a phrase, and do they matter to

models of human language use? I will review relevant research from the fields
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of psycholinguistics and linguistics that bear on these questions.

Though words and sentences have been studied extensively by psycholin-

guists, the concept of lexical sequences as a behaviorally relevant unit is a

relatively new one (Bybee & Scheibman, 1999) 1. The concept has been given

many names by different researchers. Some terms that have been used (not

quite identically) include: lexical bundles (Biber, Conrad, & Cortes, 2004),

formulae, collocations, adjuncts, idioms, multi-word expressions, multi-word

sequences, chunks, holophrases, prefabricated routines, lexical patterns, word

combinations, multi-word combinations, N-grams, and formulaic sequences

(Wray, 1998). Some definitions of these sequences allow for flexibility in inter-

vening words with open slots, some allow for arbitrarily long sequences, some

imply figurative meaning, and some imply semantic compositionality or non-

compositionality. The scope of these terms is potentially very large. In this

dissertation I will use the term n-grams, and limit it strictly to the subset of

non-lexicalized word sequences that are between two and five words long.

Despite the lack of consensus on the definition of formulaic sequences, lin-

guists agree that they are extremely prevalent in both spontaneous speech and

writing. Biber (1999) proposed that for a series of words to be considered to be

a formulaic sequence, it must occur at least ten times per million in a corpus

for sequences between two and four words long, and at least five times per mil-

lion for longer sequences. This is obviously an arbitrary threshold, but its use

has become a common way for investigators to identify formulaic sequences.

According to Erman and Warren (2000), over 50% of spoken and written lan-

guage is made up of such formulaic sequences. The Google Web1T Database

(Brants & Franz, 2006), which consists of approximately one trillion word

tokens of text found in publicly accessible Web pages, lists approximately 78

million formulaic sequences of two words, 244 million sequences of three words,

328 million of four words, and 294 million of five words. These numbers are

so large that it may seem beyond the scope of possibility that the human

1I will not directly address the extensive literature on compound word processing in
this dissertation, since it remains unclear if, or to what extent, lexicalized multi-morphemic
words are processed as n-grams.
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brain could represent any information about formulaic sequences. However, a

growing body of evidence suggests that they can. I begin by presenting a brief

history of the study of formulaic sequences and of the evidence suggesting that

they may be represented.

1.1 Foundations: Information & Learning The-

ory

The conceptual roots for conceiving language in terms of n-grams comes from

information theory. The behavioral manifestations of an information-theoretic

conceptualization of the mind have been studied in learning theory. In this

section I briefly review these two foundational theories.

1.1.1 Information Theory

One of the first people interested in the probabilistic nature of language was

Claude Shannon (Shannon, 1948). He demonstrated that strings of letters

generated at random with the constraint that they follow real bigram dis-

tributions produced words that were word-like and pronounceable, and that

sentences created by stringing together words in the same way produced sen-

tences that were sometimes readable. The computational resources he had

available for this work were of course tiny compared to those that exist today.

After discussing how sentences could be approximated using two-word transi-

tion probabilities, Shannon remarked that “It would be interesting if further

approximations could be constructed, but the labor involved becomes enor-

mous at the next stage.” (Shannon, 1948, p.8). Sixty years later, advances

in computational technology have made this enormous labor tractable. The

arguments made by Shannon (1948) form a foundational assumption of infor-

mation theory relevant to n-grams: that analyzing the probability of discrete

patterns in a signal can lead to insights about how to simplify the processing

of that signal. During the decade after Shannon’s paper was published, psy-

chologists delved into information theory. They felt that this new direction of

probabilistic inquiry would have powerful implications for the future of psy-
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cholinguistics (Osgood et al., 1954). However, during the Chomskian era that

followed, with its emphasis on rule-based generative models, almost no further

work was done on probabilistic models of psycholinguistics (Newmeyer, 1996).

The beginning of the large-data revolution in the 1990s marked the return of

probabilistic psycholinguistics (Jurafsky, 2003).

1.1.2 Learning Theory

Much of what we know about how organisms deal with statistically patterned

information comes from traditional learning theory. Learning theory and the-

ories of language learning and use have largely been de-coupled for decades, in

part due to the belief in the“poverty of the stimulus”— the claim originally due

to Chomsky (1980) that there is insufficient information in the language stream

for a language user to master language, especially with little or no negative

evidence. The corollaries (or, perhaps more accurately, the pre-assumptions)

of this claim were that language was special, that it required special resources

for learning and processing, and that therefore language learning could never

be explained by the same learning theories being used to explain other forms

of learning. I believe that the claim of the poverty of the stimulus is an

example of what the philosopher Daniel Dennett (1991, p. 401) has called

“Philosopher’s syndrome”: mistaking a failure of imagination into an insight

of necessity. One of the exciting aspects of work on sequences is that it schools

our imaginations, making it possible for us to imagine how traditional learning

theory might be able to account for language learning and use. It does this

by giving us a principled way of understanding how much information can

actually be extracted from the language stream. When we conceive of lan-

guage as a set of nested sequences (of letters or phonemes and words) whose

(first-order and higher-order2) co-occurrence probabilities may be simultane-

2First order co-occurrence refers to things that co-occur in close proximity — the normal
meaning of co-occurrence and the main focus of this dissertation. Second order co-occurrence
refers to things that do not occur in close proximity to each other but do occur in close
proximity to the same things — in other words, to things that share context. Second-order
co-occurrence is of central importance in co-occurrence models of semantics (see Landauer
& Dumais, 1997). Higher-order co-occurrences are well-defined and may be relevant, but
they are so far unstudied in language.
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ously computed, the language stream appears richer in information than it

has traditionally been imagined to be. Early learning theorists studied how

the frequency of exposure to a stimulus improved fluency in processing that

stimulus. A well-known outcome of increased exposure is increased processing

speed, as captured in the power law of learning (Newell, 1990; Speelman, 2005)

which describes the relationship between practice and performance in the ac-

quisition of a wide range of cognitive skills. Just as with other skills, exposure

to words has the largest impact in the early stages of language acquisition, but

after enough repeated exposure, the impact shrinks. The shape of the tail of

the learning distribution curve is a general property of practice. As such, any

theory of formulaic language will need to address how frequency of exposure

shapes learning. Diessel (2007), building on ideas from learning theorists (An-

derson, 1982; Newell, 1990), proposed three psychological mechanisms that

underpin frequency effects specifically in learning word sequences:

1. Increased frequency causes the strengthening of linguistic representa-

tions. Increased exposure reinforces the representation in memory. This,

in turn, influences the activation and interpretation of these representa-

tions during language use.

2. Increased frequency causes the strengthening of expectation. Words are

arranged in recurrent orders, and people develop expectations as to which

word or words may occur after a particular word or set of words.

3. Increased frequency causes the automatization of chunks. Words that

are frequently combined together may develop into discrete processing

units, where the boundaries between words become unclear and the

whole chunk becomes reduced or compressed, as, for example, in the

reduction of the phrase going to to gonna or the phrase don’t know to

dunno.

These three simple mechanisms together provide a set of tools for constructing

a rich model of language. I will return to the relationship between learning

theory, information theory, and n-grams in the final section of this chapter.
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1.2 Empirical Evidence of N-gram Processing

Learning theory and information theory provide the theoretical foundations

for building a model of how n-grams may be sufficient for building a model

of language. In this section I review some of the empirical evidence that

suggests that people are indeed sensitive to the probabilities of sequences,

across multiple dependent measures and subdomains of psychological research.

1.2.1 Evidence from memory research

Memory research has addressed word-association and how theories of episodic

memory may apply to the learning of associations. Recall accuracy are used

as a measure of well an association has been learned. By manipulating the

a priori co-occurrence between two words, one deduce whether or not those

a priori probabilities are impinging upon the strength of association of those

words, and therefore whether or not they were already associated in a person’s

mind. By manipulating the context of recall, one can deduce whether or not

that association is context-dependent.

The work of Prior and Bentin (2003) is a good example of this kind of work,

and of particular relevance. Prior and Bentin were interested in the possibility

of incidental word associations being stronger when the words were seen in a

sentence rather than when they were seen without any context. They used

a three-stage experiment. First, pairs of nouns were read by the subjects in

one of two styles: in a sentence or as separate words. Subjects were asked to

make an incidental semantic category judgment (flower or jewelry?). These

pairs were shown five times to each subject, during which time learning or

implicit memory encoding took place. Subjects were unaware that they would

later be asked to remember paired associations. In the second stage, subjects

performed an explicit learning task with the same words as in the first stage,

with the addition of a set of words that were not shown in the first stage.

They were asked to memorize word pairings for later testing. In the final

testing stage, subjects were asked to perform a cued-recall task (given one

member of a pair, recall the other one) and a new-old single word recognition
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test (with an equal number of old and new words). Critically, performance

on the cued-recall task was reliably more accurate for the incidental sentence

exposure stimuli than for the non-sentential stimuli. There was no difference

between the non-incidental stimuli and the non-sentential stimuli. To rule out

the confounding influence of sentence memorization, Prior and Bentin did the

experiment again, using five difference sentence contexts instead of repeating

the same sentence five times. This manipulation did not change the results.

Their conclusion, providing a basis for the psychological reality of n-grams,

was that the mere act of reading words in the context of a sentence triggers

an associative process that links co-occurring words together.

In a subsequent study, Prior and Bentin (2008) demonstrated that the

mechanism behind this phenomenon was that words are incidentally associ-

ated as part of semantic integration during sentence comprehension. They

used a similar experimental method, but instead of using only meaningful

sentences, they added syntactically acceptable but semantically anomalous

sentences such as The brown shoe pleased the tired fly. Consistent with their

previous (2003) study, they found that episodic memory of a shared context

created an association that transferred over to later paired memory tasks, but

only for the coherent sentences. Anomalous sentences created significantly

weaker associations. They also tested for sentence recall, finding that coherent

sentences were recalled much more accurately than anomalous sentences.

These results point to the quality of the memory traces as the source of

the association boost. Anomalous sentences that could not gain any boost

from semantic integration created weaker memory traces. To determine if

the explicit paired association task was required to obtain this effect, Prior

and Bentin (2008) conducted a final experiment using a set of anomalous and

coherent sentences. This time there was no explicit memorization during test.

Rather, implicit association was tested using a sequential new/old recognition

task. Subjects again had a strong associative priming effect for word pairs that

were seen in coherent sentences, but not for those that were seen in anomalous

sentences.

Together these findings have clear implications for a theory of n-gram pro-
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cessing. Words that appear during natural language use in the same context

build associations with each other over time, and this association process is

automatic and efficient when the context is semantically coherent.

1.2.2 Evidence from linguistic ambiguity research

Studies of lexical ambiguity in language have also provided empirical evidence

suggesting that we are sensitive to word co-occurrence frequencies. Evidence

that word co-occurrence statistics are involved in the interpretation of an am-

biguous sentence would imply that n-gram probabilities are both accessible

and used in normal language processing.

One of the first studies to approach semantic ambiguity effects from this

perspective was a study by Macdonald (1993). She looked at reading times just

after ambiguous words embedded in sentences, such as the word fires in the

sentence The union told reporters that the warehouse fires many workers each

spring without giving them proper notice. She found that there was a strong

tendency towards incorrect interpretations for ambiguous sentences when there

was a supportive bias towards the incorrect interpretation. Reading times were

reliably slower for sentences in that category. Both the probability of the first

word being the head or modifier and, most importantly, the probability of

the two words co-occurring accounted for variance in the ambiguity resolution

tasks.

1.2.3 Evidence from acceptability judgment research

Acceptability judgments are closely related to ambiguity judgments, and the

same logic applies for the use of acceptability judgment in studies of formulaic

sequences: evidence of word co-occurrence impinging on acceptability judg-

ments is taken as evidence that those co-occurrences are accessible and nor-

mally used in language processing. However, acceptability judgments are also

of particular interest because they address an important theoretical point of

contention, the poverty of the stimulus argument. One of motivations for the

poverty of the stimulus argument and related arguments for “special function-

ality” for language processing is that it just seems intuitively obvious that
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language users should not be able to understand sequences they have never

been exposed to, but it is also obvious that we can understand them. When

we think of sentences as being composed of multiple levels of co-occurrence

rather than as a single flat structure, it becomes possible to start doubting

that intuitively obvious belief: that is, it becomes possible to see the poverty

of the stimulus argument is a failure of imagination.

The key to overcoming the idea that unencountered sentences contain no

information is the idea of statistical smoothing (closely related to second order

co-occurrence, which was mentioned in Footnote 2). Statistical smoothing is a

set of techniques invented by natural language processing engineers that allows

them to assign probabilities greater than zero to word strings that have never

been encountered by their language models, and which therefore have empiri-

cal probabilities of zero from the model’s point of view. One technique, called

distance-weighted averaging, starts from the assumption that the probability

of a particular string is not only dependent on the transition probabilities of

words in that string, but also on the transition probabilities of words in strings

that are similar. For example, if we have never seen word aardvaark followed

by the word dig, we can compute the probability that word dig will follow

words that are related to aardvaark, and use the average probability of those

related strings to estimate the probability of the unencountered string. If the

language stream tells us that many other mammal names can be followed by

the word dig, then we have some reasonable grounds to assume that the unen-

countered phrase aardvaarks dig is probably acceptable. Roberts and Chater

(2008) used statistical smoothing to see if novel sentences would be more ac-

ceptable if they had a higher estimated probability. They extracted adjectives

and nouns from a corpus of English and constructed new sentences with them

that included novel (zero frequency) co-occurrence sequences. One example

of a pair of these zero frequency sequences is: The intolerable mediocrity will

be discussed and The unequivocal tsarist will be discussed. Adjectives that co-

occurred with similar nouns were the ones chosen by their statistical smoothing

technique. In the example given, the smoothed frequency of the first sentence

is higher than the second. Sentences with higher smoothed frequencies were
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rated significantly higher on a scale of acceptability by their participants. Ac-

ceptability for these types of sentences was accurately predicted by smoothed

co-occurrence probabilities. This is strong evidence for a probabilistic model

of lexical preference in these types of tasks.

1.2.4 Evidence from phonology research

Related evidence of sensitivity to subtle informational probabilities in the lex-

ical stream comes from studies of phonological reduction. The efficiency of

producing spoken language is predicted to increase with practice. Words that

co-occur together more frequently should receive more practice than words

that occur together less frequently and should, therefore, be more predictable

for the listener who will be able to understand the words even in a reduced

form. The information contained in word co-occurrence data should there-

fore predict phonologically reduction. One measure of word co-occurrence is

Mutual Information (Church & Hanks, 1990), which is defined the following

way:

MI(X;Y ) = log

(
(Frequency(XY ))

(Frequency(X))× (Frequency(Y ))

)
(1.1)

The MI between two linguistic tokens is the degree to which the first token

predicts the occurrence of the second. Several researchers have shown that

this informational measure predicts phonological reduction.

For example, Pluymaekers, Ernestus, and Baayen (2005a) studied face-to-

face conversations in Dutch and found that articulatory planning is continu-

ous and sensitive to informational redundancy. They focused on words using

the adjectival suffix -lijk and measured the time to say the words in different

contexts. One of the best predictors of phonological reduction was Mutual

Information for the preceding and following words. Similar findings have been

reported by Church and Hanks (1990), Bybee and Scheibman (1999) and By-

bee (2002).
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1.2.5 Evidence from eye movement studies

Many psycholinguists have begun using gaze tracking to gather data about the

location and time of visual fixation of subjects as they read natural language.

Eye-tracking measures take advantage of the fact that contextual predictability

has a large impact on the ease of processing a text. Ease of processing manifests

itself operationally in measures such as the probability of making a regression

(re-reading text that has already been read), how long a person fixates on each

word, and second-pass reading time (how much time is spent in re-reading).

One of the benefits of using this methodology in formulaic sequence research

is that the stimuli used can be more ecologically valid than in many other

paradigms, allowing for the study of regular text instead of just single words.

Furthermore, the fixation data are the outcome of automatic processes that

are independent of participant control and decision-making, allowing us to find

evidence that sequence probabilities affect the automatic functional structuring

of language processing. These factors make eye tracking a potentially powerful

tool to study responses to the probabilistic nature of language.

One of the first studies done on the influence of transitional probabilities

on eye movements was carried out by McDonald and Shillcock (2003). They

used corpus data from the British National Corpus (BNC) to calculate the

probability of the previous and next word when reading, looking for a rela-

tionship between this transitional probability and eye movements. They found

that both forward and backward transitional probabilities predicted an early

processing measure (first fixation duration, how long a person fixates on a

word for the first time) and a later processing measure (gaze duration) inde-

pendent of other factors such as length, launch distance, and word frequency.

As would be expected, first fixation and gaze duration were both shorter for

bigrams with higher transitional probabilities. They note that these results

were contingent on availability of parafoveal information about target words,

implying that frequency effects for fixations across word pairs depend on fast

feedback from the visual system using parafoveal preview of the next word.

McDonald and Shillcock (2003) propose that linguistic experience fosters the
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creation of a representation of contingency statistics. This ability to predict

upcoming words using lexical statistical information is a computationally in-

expensive mechanism that may contribute to proficient reading.

1.2.6 Evidence from reading speed and repetition stud-
ies

A more direct way to measure the effect of information measures on language

than looking at eye movements or phonological reduction is to look for effects of

sequence probabilities on reading speed. The assumption is that well-learned

sequences should be easier to read or repeat (as measured by reading or rep-

etition time) than less well-learned sequences. Despite the apparent ease by

which this kind of experiment can be carried out, this type of investigation has

not been attempted until very recently. Several experimental issues make this

type of research more difficult than it may seem. The first is that stimuli must

be carefully chosen because if care is not taken, any effects could be related to

the frequency of the individual words in the sequence, or perhaps to substrings

in the sequence (a two or three word sequence that is contained within a four

word sequence, for example). The second is that it is not trivial to obtain large

corpora and to calculate all the frequencies for all sequences of all lengths in

those corpora. Selecting matched stimuli from these lists is also a challenge.

For these reasons, some of the recent attempts to look at reading of formulaic

sequences have been weakened by a lack of experimental control.

For example Conklin and Schmitt (2008) found evidence that formulaic

(idiomatic) sequences, such as a breath of fresh air, were read faster than

near-identical sequences that had small changes in their word order rendering

them non-formulaic (e.g. fresh breath of some air). These were embedded in

short stories, and subjects read the stories in a self-paced reading task. Con-

klin and Schmitt reported facilitation (for both native and non-native English

speakers) for formulaic versus non-formulaic sequences embedded in short sto-

ries. Unfortunately they did not attempt to control for embedded sequence

frequency or substring frequency, weakening the relevance of their evidence.

In a similar experiment, N. C. Ellis and Simpson-Vlach (2009) looked at
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reading times for compositional formulas and used Mutual Information (MI)

and whole-sequence frequency to try to predict reading time performance (Ex-

periment 1). They chose to add MI to the list of predictors because they felt

that the MI score captured the coherence of the sequence whereas the fre-

quency of the whole sequence only captured familiarity. They found that MI

was a reliable predictor of RT, whereas sequence frequency was not. Interpre-

tation of the study is limited by the fact that they did not control for substring

frequency or substring MI and had a sample size of only 11 participants.

The first experiment to use strict substring frequency control was a study

of phrase repetition in children by Bannard and Matthews (2008). Taking

the usage-based language acquisition stance that was proposed by Tomasello

(2003), they wanted to investigate how children process frequent four word

sequences, pointing out that in child-directed speech, many sequences of this

length occur more frequently than single words. They proposed that children

simultaneously use several complementary representations of language at dif-

ferent levels of granularity (morpheme, word, and multi-word). The fact that

some sequences are very frequent may explain why children exploit them to

build representations. To deal with the issue of substring frequencies in these

four-word sequences, they used a technique that was first proposed by Taft

(1979) to investigate the contribution of morpheme frequency in regularly in-

flected words. Taft reasoned that if the frequency of whole forms affected pro-

cessing independently of the frequency of their components, then people must

be storing information about the whole forms. Bannard and Matthews (2008)

extended this reasoning to word sequences by hypothesizing that, when they

controlled for all component frequencies, any increase in speed or accuracy for

higher frequency word sequences would indicate whole sequence storage. They

found that the surface frequency of four word sequences predicted the accuracy

and speed with which two and three year-olds repeated these sequences and

therefore concluded that young children have a stored representation of those

sequences. They also pointed out that this is evidence against purely algorith-

mic processing of word combinations, as proposed by Ullman (2001). The same

authors recently used a similar experimental paradigm to look at the effects
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of predictability, semantic density, and entropy on performance (Matthews &

Bannard, 2010). As in their earlier study, they used stimuli that were matched

on all sub-sequence frequencies except the final one, two, or three words. For

each of the initial three words they calculated the slot entropy for the final

word’s slot, using the following entropy equation:

H(X) = −
∑
x∈X

p(x)log2p(x) (1.2)

where X is a slot, and p(x) is the probability of seeing word x in that posi-

tion (p. 467). Word sequences with a high slot entropy value have increased

uncertainty for what word goes in that slot. Such sequences might be easier

to generalize and therefore be easier to process for children than sequences

with lower slot entropy. They also calculated HAL-like co-occurrence vectors

(Burgess, 1998) for all the words that filled these slots and measured the sim-

ilarity of all these vectors using the cosine function. They then calculated a

measure of distributional homogeneity they called semantic density, which is

the mean pair-wise distance of all the possible completions in that slot. They

hypothesized that sequences with many semantically similar completions (e.g.

back in the ) might be processed differently from sequences with seman-

tically diverse completions (e.g. a piece of ). Since the ten sub-string

frequency measures for each four word sequence were highly multi-collinear,

they extracted four orthogonal dimensions using principal component analy-

sis (PCA), and entered these four principal component factors as predictors.

Their two- and three-year old subjects were more likely to correctly repeat

unfamiliar sequences with high slot entropy. The linear mixed effects model

they used included the PCA-based frequency factors, age, and semantic den-

sity, but semantic density was not a strong predictor for unfamiliar sequences.

For familiar sequences, the reverse was true: semantic density was a strong

predictor of accuracy but slot entropy was not. The authors were not able to

provide any explanation of why familiar sequences should show this effect, and

warn that it could have been due to peculiarities in their very small stimuli

set (only nine of the 27 stimuli were of this category). Their final conclusion

was that n-grams do have some psychological primacy across the life span, and
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play a role in language behaviour at the ages of two and three years.

The first study to look at the role of sequence frequency in adults was re-

cently reported by Arnon and Snider (2010). The goals and the rationale they

used were identical to those of Bannard and Matthews (2008) in that they

were looking to find speedier processing of sequences when they controlled

for component frequency. Another goal was to compare the threshold theory

of n-gram processing (advantages only for sequences of a frequency above a

particular frequency) versus a continuous effect of frequency (incremental ad-

vantages for all sequences spanning the full frequency spectrum). The stimuli

set was made up of matched pairs of four word sequences from three differ-

ent frequency bands (High, Medium and Low) measured in a twenty million

word corpus of transcribed spontaneous speech from telephone conversations.

Twenty-six subjects performed a timed plausibility judgment task on the se-

quences, with some of the items being nonsense (e.g. I saw man the and jump

during the pool) and the rest being matched pairs occurring with high fre-

quency (e.g. Don’t have to worry, 15.3 times/million) or low frequency (e.g.

Don’t have to wait, 1.5 times/million). To avoid repetition effects, each mem-

ber of a matched pair was presented in a different block, with a 5-minute filler

task between blocks. Despite these efforts, they did find a strong block effect

in the reaction times. They used linear mixed effects models to analyze their

data, included the frequency (coded as high or low) as a categorical predictor.

Models that included this dichotomous frequency predictor fit the data better

than models that didn’t include it. In a separate analysis that included data

from all three frequency categories, they used the sequence frequency as a con-

tinuous predictor. Models that used dichotomous frequency predictors fit the

data poorly when compared to the models with continuous frequency predic-

tors, leading them to conclude that sequence frequency influences processing

across the frequency spectrum.

Finally, the most recent work in this area was a study of reading times of

lexical bundles by Tremblay, Derwing, Libben, and Westbury (2011). As in

the first analysis done by Arnon and Snider (2010), they created a dichoto-

mous category for their stimuli. Sequences that occurred more than five times
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per million (e.g. in the middle of the) were hypothesized to have a process-

ing advantage over less frequent sequences (e.g. in the front of the). Their

choice of stimuli extends the type of sequence beyond those used byBannard

and Matthews (2008), Arnon and Snider (2010), and Matthews and Bannard

(2010), who all limited their stimuli to sequences that were either constituents

(verb phrases, noun phrases, prepositional phrases) or intonational phrases,

who all compared sequences that differed only in their final word, and who all

displayed the sequences out of sentential context. Tremblay et al. hoped to

show that frequency effects could be found for stimuli that were not restricted

in that way. They used only non-constituent sequences, matched them on

words in the non-final position, and embedded the sequences in valid sen-

tences such as I sat in the middle of the bullet train. To investigate sequence

reading performance, Tremblay et al. (2011) performed three self-paced read-

ing experiments: word-by-word reading, portion-by-portion reading and whole

sentence reading. In all of these self-paced reading experiments, HF/LF was

a strong predictor of reading speedup.

One question that arises is: Does the ease of processing that they found for

HF sequences come from practice effects during reading without any benefit

of a stored representation, or does it come from a stored representation that

exists because of their frequency? To tease these sources of facilitation apart,

Tremblay et al. created a memory task to look for recall advantages for n-

grams in working memory. Their rationale was that if HF sequences have a

holistic stored representation, the memory load for these sequences should be

smaller than for LF sequences, which should not be expected to have such

a representation. Two memory experiments were done: one in the auditory

modality and another in the visual modality. Each sequence was followed

by a list of six random words. Participants heard these read by a speech

synthesizer, and were asked to immediately type in all that they had heard.

The two dependent measures were accuracy of sentence recall and accuracy

of word recall. In the auditory modality the HF/LF predictor explained the

difference in sentence recall accuracy, but it did not explain the number of

words recalled in each of the trials. In the visual modality, the HF/LF predictor
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had a reliable effect for both sentence recall and number of words. These

results are evidence for stored representations of high frequency sequences.

However, there are some issues with the design of the experiment that need

to be addressed (as acknowledged by the authors): the factorial design creates

problems for continuous measures such as frequency, and lack of control for

substring frequency could be a confound.

1.3 Methodological issues in studying n-grams

The research on n-grams that I have discussed has involved many different

paradigms and methodologies with differing levels of stimulus selectivity. Fu-

ture research should aim to avoid the pitfalls of previous experiments and take

into account the experimental variables that are known to affect performance.

To aid in this process, I present a list of methodological issues that should be

considered during experimental design and analysis.

Frequency and collinearity

Tremblay et al. (2011) used a single categorical frequency variable to describe

their n-grams (one they called lexical bundles, defined as having a whole n-

gram frequency greater than or less than 10 occurrences per million words for

4-grams). The key difficulty with this approach is that power is lost when

a continuous variable is arbitrarily dichotomized (Baayen, 2010b). Since fre-

quency is a covariate and not a treatment variable, correlational designs are

much more appropriate for any studies involving stimuli made up of lexical

sequences. Some of the most common stimulus covariates that are taken into

consideration in single-word lexical processing experiments are orthographic

frequency, orthographic neighborhood size, mean bigram frequency, image-

ability/concreteness, length, and age of acquisition. Of these covariates, or-

thographic frequency often absorbs more variability in statistical models than

the others. For this reason, many experiments attempt to constrain their stim-

ulus sets so that these covariates do not reliably differ, other than for a single

manipulated factor. The danger in relying on this type of stimulus selection is
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that the number of items that satisfy these constraints may be so small that

the results can no longer be claimed to be applicable to any other words, as

the stimulus set is a nearly exhaustive list of the items in the language that

meet the criteria. Baayen and Hendrix (2011) point out that Arnon and Snider

(2010) should not have considered their stimuli to be generalizable beyond a

very small set of n-grams for this very reason. The potential list of stimuli

that fit these requirements is extremely small compared to the full set of n-

grams. Baayen and Hendrix (2011) argued that case items must be treated

as a fixed effect rather than a random effect. The reason that Arnon and

Snider (2010)employed their constraints (matched n-grams must not vary in

frequency except for a two frequency variables, the final word and the whole

4-gram frequency) was that they wanted to avoid undue influence of frequency

variability in the stimuli on the reading time they measured. The covaria-

tion of frequency is the most important issue to be dealt with, and I will now

discuss it in more detail. When moving from words to lexical sequences, the

issues of stimulus covariates are magnified: the powerful effect of frequency

now has many components. Each n-gram can be described by a large set of

frequencies: the whole n-gram frequency, the sub-component n-gram frequen-

cies, and the word frequencies. For example, the 3-gram the blue lagoon has

seven frequencies associated with it:

• One whole n-gram (the blue lagoon)

• Two 2-grams (the blue and blue lagoon)

• One non-contiguous 2-gram (the lagoon)

• Three single word frequencies (the, blue, and lagoon)

With longer n-grams, the number of frequency measures grows larger. As of

yet, the individual predictive properties of these frequencies are unclear and

their interactions have yet to be explored. What is known is that these fre-

quencies are often collinear. This makes it problematic to enter them into

statistical models that assume uncorrelated predictors. This problem is high-

lighted by a reanalysis of Arnon and Snider’s (2010) stimuli by Baayen and
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Hendrix (2011). They found that by applying a very powerful statistical model,

a generalized additive model, and added non-linear relationships between the

frequency variables and the reading time, a complex interaction of 4-gram fre-

quency and 4th word frequency emerged. Baayen and Hendrix (2011) found

a facilitatory effect of n-gram frequency across the full range of fourth word

frequencies. This effect of fourth word frequency, for a fixed n-gram frequency,

was non-linear and inverse U-shaped – the greatest response latencies were

predicted for intermediate fourth word frequencies. This is the danger of at-

tempting to eliminate the effect of frequency covariates by matching using only

a subset of these covariates.

The methods used by Matthews and Bannard (2010) to mitigate the influ-

ence of n-gram frequencies offer one solution to this issue. They used principal

component analysis (PCA) to transform the set of multi-collinear frequency co-

variates into uncorrelated set of principle components (PCs). They also tested

these PCs for collinearity before entering them into their regression model to

make sure that they were not confounded with each other. (Matthews & Ban-

nard, 2010, Appendix S2) (Matthews and Bannar, 2010, Appendix S2). This

method of analysis makes sense, and is not difficult to do. If these PCs are

entered into statistical models, their contribution can be easily understood and

taken into account.

Tremblay and Baayen (2010) chose to include all the component n-gram

probabilities into their statistical models without de-correlating them because

they found that the collinearity did not effect the outcome of their analy-

sis. They then added many other covariates, in particular the log conditional

probabilities (the log-transformed probability of obtaining a 4-gram given one

of the contained 3-grams for example.) They eliminated all frequencies that

did not improve the fit of their multiple regression model with mixed effects.

This demonstrates another approach to the problem of including frequency

information into statistical models: show how the complete set of covariates

influences the outcome, and demonstrate the null effect of multi-collinearity.

A more general statistical issue exists for experimental designs that involve

n-grams: the statistical models that are chosen must be suited to the data

19



collected. In most experiments discussed in this chapter the designs include

many fixed and random effects, both nested and crossed. Instead of merely

dealing with group averages, trial-level predictions make much more sense for

these types of experiments. For this reason, many analyses have used linear

mixed effects models that contain crossed random effects for items and subjects

(Baayen, 2008). Applying the by-item and by-subject ANOVA or multiple

regression without dealing with the crossed random effects structure of the

model leads to loss of power and other statistical problems (Baayen, 2008).

There is a final methodological issue that needs discussing: the volatile

nature of this area of investigation. With each new model presented, multiple

derivative statistical measures are being proposed. As we have seen, condi-

tional probability (Tremblay & Baayen, 2010), entropy (Matthews & Bannard,

2010) , and mutual information (N. C. Ellis & Simpson-Vlach, 2009) have all

been used to explain variations in response to n-gram stimuli. Whenever pos-

sible, researchers should attempt to calculate and enter these competing mea-

sures into their models and see if there is any evidence that they are reliable

predictors. It is difficult to keep track of these many new statistical measures,

but without a consistent focus from all investigators in the field it will be very

difficult to discern the informative measures from the less informative ones.

1.3.1 Models of probability, expectation and predictabil-
ity in language

In this final section before concluding, I consider how the evidence for the exis-

tence of n-gram effects fits with extant language models. Most psycholinguistic

models attempt to predict behaviour in word reading or sentence reading; rel-

atively few address word sequences. However, there are some models that

indirectly implicate sequence processing because they have the capacity to si-

multaneously take into account frequency at multiple granularities. I will focus

on these models.

Some of the first models that considered word sequences were built by peo-

ple investigating sentence processing. Mitchell, Cuetos, Corley, and Brysbaert

(1995) created an exposure-based model that looked at fine-grained versus
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coarse-grained analyses of sentences. In this kind of parsing research, the

goal is to model behaviour for sentences with ambiguous parses. They found

evidence against exclusively fine-grained (lexical) record keeping, as well as

abundant evidence suggesting that the statistical information used to resolve

ambiguities is based on counts using categories that are higher than the lexical

level. Mitchell et al. (1995) did not specifically mention word sequences, but

their work provides a pathway towards a sequence-processing model.

Jurafsky (1996) created a probabilistic model of lexical access and dis-

ambiguation that gets closer to sequence modeling. He proposed a single

probabilistic algorithm that modeled both the access and disambiguation of

linguistic knowledge. The algorithm was based on a parallel parser that ranked

constructions by their conditional probability using a Bayesian or evidential

access algorithm that accounted for data from access and disambiguation ex-

periments by ranking constructions according to their posterior probability

given the evidence. This type of model is interesting because it unifies lexical

and supra-lexical information in a single probabilistic model. In a similar fash-

ion, Levy (2008) built an expectation-based model of sentence comprehension

that also included probabilistic information. Levy looked at a construct called

the surprisal of words in sentences. Surprisal, also called self-information, is a

measure of the information content associated with the outcome of a random

variable (Shannon, 1948). Levy created a parallel model using a constraint-

based, resource-allocation paradigm of ambiguity resolution. Like the work of

Mitchell et al. (1995) considered in the last paragraph, the ideas in these mod-

els were not directly applied to word sequences, but may help us understand

how to model them.

Bell, Brenier, Gregory, Girand, and Jurafsky (2009) created a model of

speech production that integrated sequence frequency. In their regression

study of conversational speech, they found that frequency, contextual pre-

dictability, and repetition each made separate contributions to the length of

time it took to produce words. They also found that content-and function-

word durations were affected differently by their frequency and predictability.

Content word utterances had shorter durations when more frequent, while
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function words had no change in their duration. Both content and function

words were influenced by predictability from the word following them. Sen-

sitivity to predictability from the preceding word was largely limited to very

frequent function words. This evidence supports the use of probabilistic in-

formation in planning articulation for speech but does not use any formal

mathematical models to predict word duration.

Automated speech recognition (ASR) is one domain of language studies

in which statistical models of language have become the dominant tool. Sta-

tistical methods, especially stochastic processing with hidden Markov models

(HMMs), were introduced to the field in the early 1970s. HMMs are the only

way ever found for computers to perform accurate ASR (Baker et al., 2009).

HMMs are trained from corpus data, and they learn to recognize conditional

probabilities in the input speech signal despite the high variability of speech.

HMMs can link the acoustic signal to candidate sequences, and ASR systems

include complex sequence models that increase the performance of the systems.

Google used probabilities from the world’s largest set of n-grams to beat

twenty other translation systems in translation accuracy at a competition con-

ducted by the Speech Group of the US National Institute of Standards and

Technology’s Information Access Division (Geer, 2005). This type of purely

statistical machine translation depends on simple models and large datasets,

whereas most other systems use complex sets of grammatical rules to trans-

late between languages. Although these two examples of word sequences being

used to help machines to perform linguistic tasks do not bear directly on the

question of human representations, they do provide suggestive evidence of the

utility of the information available in word sequence probabilities.

Another type of probabilistic model that deals with the temporal depen-

dencies of words is the connectionist Simple Recurrent Network model (SRN;

Elman, 1990). This model, extended by Loewenstein, Tabor, and Tanenhaus

(1999), uses a hidden layer of nodes that take the current state of the network

as input (hence the recurrency). SRNs have the ability to encode probabilities

of events across time, making them good candidates for understanding n-gram

effects. They have been trained to predict the next letter in a newspaper arti-
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cle corpus after being trained on similar text (Rodriguez, 2003). These models

assume that linguistic units are emergent consequences of a learning process

operating over the latent structure in the language stream. The lack of other

assumptions in this type of model allows n-gram units to emerge from the sta-

tistical information in the language stream, making it one of the few models

that does. Words emerge from a stream of letters, and sentences emerge from

a stream of words.

Finally, a recently proposed model by Baayen, Milin, Djurdjevic, Hendrix,

and Marelli (2011) is perhaps the best exemplar of the power of modeling

language using statistical learning algorithms. Their model uses the standard

learning equations of the Rescorla-Wagner model at equilibrium (Danks, 2003)

to model morphological processing effects. They go on to extend this model

beyond single words and compounds and show how it is also able to explain

the phrase frequency effects found by Arnon and Snider (2010). Remarkably,

Baayen et al’s model contains no representations that correspond to whole

words or whole phrases, only letter unigrams and bigrams. Nevertheless, the

statistical regularities observed by the model allow it to learn any regularities

from a language stream. This is the reason they call their model a naive dis-

criminative learning framework: the model begins with no information about

the language, and builds a precise representation of the language by learn-

ing how form maps to meaning without using any explicit rules for parsing.

The model applies the basic principles of discriminative learning to the prob-

lem of mapping form to meaning. They define the activation of a linguistic

meaning as the model’s estimate of the posterior probability of that meaning

given its unigrams and bigrams and the co-occurrence probabilities of these

unigrams, bigrams, and meanings. The simplicity of this model and its suc-

cess at modeling a wide variety of phenomena powerfully demonstrate that

probabilistic information processing can help explain data from experiments

on n-gram processing.
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1.4 Beyond rule-based descriptions of language

We began this chapter by arguing that there are two theoretical foundations

to studying n-grams: information theory and learning theory. I have reviewed

evidence showing that information-theoretic measures predict human behavior

on a wide range of language-related tasks, and reviewed a number of models

that allow for the learning of this information without assuming the existence

of any language-specific machinery. The study of n-grams can seem like a

curiosity, since it largely ignores the sentence structure and the special status

of grammatical phrases that many believe are what makes human language

special. However, a thorough investigation of n-gram effects may result in a

radical re-conceptualization of human language in the near future – indeed,

I believe that this re-conceptualization is already underway. I conceive of

language as a probability calculation across multiple levels of granularity (in-

cluding second-order co-occurrence, which is shared context), from phonemes

or letters to sentences. This conception allows several thorny problems – most

notably, the problem of the [alleged] poverty of the stimulus and the closely re-

lated problem of how we can understand sentences we have never encountered

(Plato’s Problem, see Landauer & Dumais, 1997)- to simply evaporate. The

success of Google’s n-gram based machine translation software and Baayen

et al. (2011) NDR model of language learning demonstrate empirically that

relatively simple and algorithmically well-defined processes of probability max-

imization could underlay much or all of language.

More generally, putting language on such a basis also allows us to see

a way to overthrow the philosophical dominance that rule-based models of

language processing have held for so long. I believe that rules are useless

as explanatory devices because (as David Bloor has written in a related but

different context): “Verbalised principles, rules and values are the phenomena

to be explained. They are dependent, not independent variables.” (Bloor,

1983, p. 137). Linguistic rules are high-level post-hoc descriptions of language.

The role of language scientists must not be merely to describe, but to explain,

and to do so with as few“special mechanisms”as possible. Statistical models of
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language that build on widely-accepted general learning principles best satisfy

the demands of Occam’s Razor, that the number of theoretical entities not be

multiplied beyond necessity.

One potential impediment to understanding word sequences is the predom-

inant concept of the mental lexicon. Lexical sequence representations do not

fit well within the standard models of a mental lexicon because these symbolic

stores cannot easily accommodate the information contained in non-lexical en-

tities. Sequences do, however, fit very well into Elman’s framework of lexical

knowledge without a lexicon (Baayen et al., 2011; Elman, 2009, 2011). As

Elman notes: “In this scheme of things there is no data structure that corre-

sponds to a lexicon. There are no lexical entries. Rather, there is a grammar

on which words operate. Crucially, the system has the capacity to reflect

generalizations that occur at multiple levels of granularity.” (Elman, 2009, p.

566) The multiple interactions of lexical context within a word sequence can be

seen as an emergent property of the system. I believe that this type of process

model shows the most promise for explaining n-gram effects in language.

This position is a controversial one: if there is no lexicon and no syntactic

rules to be implemented in the brain, what about all the language behaviour

that so obviously grammatical? There must be a mechanism that allows us to

produce and comprehend longer, more complex sequences, and it is possible

that our prodigious memory for n-grams and our ability to generalize patterns

using probabilistic smoothing may not fit the bill, but pushing these simple

models to their logical conclusion is undoubtedly worth the effort.

1.5 Summary

I have reviewed from various experimental paradigms that help justify more

empirical work as well as more theoretical development of the role of n-grams

in psycholinguistics. Even if the definition of an n-gram is limited to those

sequences that occur frequently, the number of word sequences is very large.

It may seem that retaining information about so many combinations of words

would be highly inefficient and a waste of finite mental resources. In addition, a
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mental representation of sequences implies that linguistic competence is built

from experience and nothing else. This implication was seen as counter to

psycholinguistic reality until very recently. With the shift currently taking

place in science to massive-data-driven inference, these ideas for alternate ways

of representing language have started to take root. By analyzing enormous

corpora and computing very large numbers of word transition probabilities, for

the first time we have a chance of approaching the issue of n-gram processing.

All this does not, of course, mean that human language is not special.

Clearly, human beings are able to pull more information out of the linguistic

stream than other animals, since human children are the only animals who have

ever become fluent language users (or even just language comprehenders) from

exposure to that stream. The language faculty is no more and no less than a

product of a quantitative improvement in the basic cognitive capabilities that

are seen in other organisms, rather than a qualitatively different process that is

seen in no other communicative organisms. This viewpoint is, I believe, most

consistent with the development of an evolutionarily grounded, biologically-

plausible scientific approach to the study of language. In the terminology of

semiotics, words are a type of sign. All n-grams are signs, but they are signs

built from simpler signs.

1.6 Three experimental studies

In the following three chapters I will report three lines of research that I have

conducted on n-gram processing. These studies use various stimuli, method-

ologies and experimental designs, but are unified by their goal of better un-

derstanding how we process n-grams.

The first line of research, presented in Chapter 2, investigates the percep-

tion of the subjective frequency of n-grams. Next, in Chapter 3, I investigate

the process of n-gram comprehension by looking at people’s eye movements

while reading n-grams. Finally in Chapter 4, the focus will be on production

rather than comprehension as I look at the words participants choose to com-

plete n-grams in a cloze task. These three chapters may be read in any order –
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the content of each chapter is independent from the others. In the final chapter

I will synthesize the results from these three disparate research projects and

build a coherent picture of a new understanding of n-gram processing.
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Chapter 2

The subjective frequency of
n-grams.

When asked to assign think about the subjective frequency of an n-
gram, what properties of the n-gram influence the respondent? N-grams
that were more frequently found in a corpus of English were read faster
than less frequent n-grams, an effect that is analogous to the frequency
effects in word reading and lexical decision. The subjective frequency
of words has also been extensively studied and linked to performance
on linguistic tasks. I investigated the capacity of people to gauge the
absolute and relative frequencies of n-grams. Subjective frequency rat-
ings were collected for 352 n-grams. Their subjective frequency ratings
showed a strong correlation with corpus frequency, in particular for n-
grams with the highest subjective frequency. These n-grams were then
paired up and used in a relative frequency decision task (e.g. Is green
hills more frequent than weekend trips?). Accuracy on this task was
reliably above chance, and the trial-level accuracy was best predicted
by a model that included the ratio of corpus frequencies of the whole n-
grams or the ratio of the frequencies of the component n-grams. These
results support models of reading that posit traces in long-term mem-
ory for n-grams as well as words, models that take advantage of the
probabilistic information in each n-gram.

2.1 Introduction

What are the grain sizes of language that are represented by our minds? The

word-sized unit has been the dominant size for most psycholinguistic research,

with the next largest unit being the sentence, which is made up of words.

There has been as of yet little work on groups of words called n-grams (Shaoul

& Westbury, 2011). N-grams are any combination of two or more words, and

are not restricted to complete, compositional phrases (both the red hat and the
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hat that are n-grams). Any stream of language can be broken down into its

component n-grams in the same way that a word can be segmented into mor-

phemes or phonemes. N-grams have similar properties to other units: each

n-gram will have a probability of occurring at any point in time, and that

probability will depend on the context. The probability of any n-gram oc-

curring can be estimated from its frequency of occurrence in a corpus, and

the larger the corpus, the more accurate the estimate (Kilgarriff & Grefen-

stette, 2011). N-gram probabilities throughout this chapter will derived from

frequency information found in a one trillion-word corpus of English web doc-

uments created by Google (Brants & Franz, 2006). These probabilities have

the potential to explain aspects of language behaviour that are beyond the

reach of non-probabilistic psychological models of language.

Some theories of language predict that there should be no effects for the

transitional probabilities of words in sentences or n-grams (Harris, 1951; Chom-

sky, 2005). In a generative framework of language, the long-term memory sys-

tem is not necessary for lexical sequence processing. This could be dismissed

as being theoretically unimportant for a system of rule representations, but

there is no point in differentiating competence from performance in empirical

psycholinguistic research. The power of the grammar/rule systems are able to

do all the heavy lifting without the need to gather probabilistic information

about words and word combinations (n-grams). Ullman (2001), for example,

describes language as a mental lexicon of memorized words that are arranged

by the rules contained in a mental grammar. The procedural operations in this

model, and others like it, assemble larger structures from hierarchical compo-

sitions of smaller structures (morphemes into words, words into sentences).

When these compositions are fully productive (e.g. walk – walked or ideas –

green ideas), they are posited to be purely rule driven. Any effects of n-gram

probability or frequency are inconsistent with these models because the unfold-

ing of abstract rule processing operations should not be affected by the amount

of experience with a stimulus. In some recent work on sex differences in lan-

guage processing, Ullman, Miranda, and Travers (2008) noted that ”women

depend more on lexical/declarative memory for the processing of complex lin-
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guistic forms, while men tend to rely more on the rule-governed combination

of these forms in the grammatical procedural system” (p. 301). This would

imply that humans universally use two distinct systems to process language,

a procedural system and a declarative system, and that women depend more

on one system than the other.

Compositional semantics is another area that has seen attempts at rule-

based theories of representation and processing. Jackendoff (2007) has offered

models that build semantic combinations from a set of lexical items and rela-

tionships, but the empirical validations of this model is not forthcoming. The

assumption of this and other semantic models is that the grain-size of language

is the word, and larger structures are based on operations on words, similar to

the syntactic dualism of words and rules (Pinker & Ullman, 2002).

N-grams and words share many properties, somehow represented as entries

in a lexicon, and that there is a search process across this lexicon as proposed

by Forster and Hector (2002)

The inherent unwieldiness of dualist models has spurred demand for more

parsimonious model that can explain our linguistic capabilities. These emer-

gentist theories of language propose that experience is used to build repre-

sentations of linguistic patterns without any need for systems of grammatical

rules (Baetes & Elman, 1993; Elman, 1990; Tomasello, 2003; Goldberg, 2006;

Bod, 2009; Dilkina, McClelland, & Plaut, 2010a; Baayen et al., 2011; Frank

& Bod, 2011). Why use the word emergent to describe language? A spirit of

reductionism has long been at the core of many theories of language (e.g. a

word is just the sum of its spelling, sound and meanings). Rather than un-

derstanding the whole by studying the parts, these new theories attempt to

generate the properties of the whole by understanding the parts. My definition

of the emergentist school of thought is broad and inclusive, but the trait that

links these models is consistent: these models all include linguistic context and

linguistic content and allow context and content to interact.

The following summary of current research on n-gram processing pro-

vide evidence for broad, probabilistic effects of linguistic experience on lan-

guage processing task, in turn providing support for this emergentist school of
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thought.

In the last few years there has been an increase in the number of stud-

ies reporting such probabilistic effects, in particular n-gram frequency effects.

Bannard and Matthews (2008) studied children’s production of n-grams, and

found that n-gram frequencies influence their accuracy when children repeat

back short phrases that differ only by one word. Arnon and Snider (2010)

replicated this effect using similar stimuli, a reading task and undergraduate

student participants. They found that participants read the more frequent n-

grams faster than the less frequent n-grams. In both studies the effect was not

due to the frequency of the individual words or substrings and it was observed

across the entire frequency range (for low, mid- and high frequency n-grams).

Matthews and Bannard (2010) found more accurate production of n-grams

when the experimenters asked 2 and 3-year olds to repeat them, even after

controlling for multicollinearity in the frequency measures. In the studies

mentioned so far, the authors limited all of their stimuli to n-grams that were

constituents (verb phrases, noun phrases or prepositional phrases) or intona-

tional phrases, meaning that they did not cross over traditional phrase bound-

aries. The first study to look at reading times for n-grams that were sampled

without imposing any restrictions on phrasehood was done by Tremblay et

al. (2011). They used only non-constituent n-grams in a self-paced reading

experiment and found that there was a whole n-gram frequency advantage.

Tremblay and Baayen (2010) followed up with an ERP study for an imme-

diate free recall task for sets of three non-constituent 4-grams. They found

that whole n-gram probability as well as internal word and 3-gram frequency

predicted recall as well as P1 and N1 amplitudes. These results suggest that

n-gram frequency is contributing something to the language system, and that

n-grams representations may operate alongside word representations.

Eye tracking experiments have also been used to look at n-gram frequency

effects. Siyanova-Chanturia, Conklin, and Heuven (2011) presented subjects

with two types of 3-grams: binomial phrases (bride and groom) and those same

phrases reversed (groom and bride). These two types of n-grams are naturally

very closely matched on many lexical variables, and they proposed that any
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differences in processing must arise from effects of n-gram frequency. The

binomial 3-grams had an average frequency in the BNC that was 10 times that

of the reversed 3-grams (2.473 per million versus 0.274 per million). Thirty

3-grams of each type were embedded in sentences and read by participants

in the eye tracker. They found that binomial phrases were read faster than

reversed phrases. They also found that phrasal frequency facilitated reading

even after taking into account the effect of phrase type, more evidence that

increased exposure to an n-gram contributes to its entrenchment.

If language is being represented as a stream of words and n-grams of differ-

ent lengths, it follows that we should be able to see implicit learning of word

sequences. Interestingly, Remillard (2010) recently reported that subjects were

able to implicitly learn 5th-order and 6th-order sequential probabilities of cer-

tain non-linguistic stimuli. In their experiment they taught their participants

to push one of six buttons corresponding to the location of a box on the screen.

After two sessions of training spread over two days, subjects showed improved

speed and accuracy in their responses. After 16 sessions of training were com-

pleted, participants were able to reliably predict the 5th element of a sequence

based on the conditional probability of the previous four elements. This result

provides some support to the idea that implicit learning of n-gram transitional

probabilities for 2, 3 , 4 and 5-grams is feasible.

In a related line of research, implicit sequence learning ability has been

shown to be linked to performance on language processing tasks by Conway,

Bauernschmidt, Huang, and Pisoni (2010). They looked for individual dif-

ferences in their participants’ perceive degraded speech, a task that is highly

dependent on the ability to predict upcoming words based on context. They

found that a reader’s sensitivity to sequential structure during implicit learn-

ing was the best predictor of these individual differences, even after taking

into account their performance on tasks measuring short-term and working

memory, attention and inhibition, and vocabulary.

Moving beyond orthographic frequency, other probabilistic measures are

now being studied. Tremblay and Tucker (2011) investigated the influence of

two additional measures, conditional logarithmic (log) probability, and Point-
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wise Mutual Information (PMI), on the recognition and production of 4-grams.

Conditional probability is a measure of likelihood of seeing a word given a spe-

cific context, or predictability. PMI is an index of how strongly words are

associated with each other and is calculated by dividing the probability of

the whole n-gram by the product of the individual word probabilities. They

asked participants to read 432 4-grams as quickly as possible after viewing

them and they recorded the onset time (the time taken to read the 4-gram

and prepare for the articulation) and duration of the utterance (the time to

articulate). N-gram frequency was found to explain much more of the deviance

in production durations than conditional probability or PMI, leading the au-

thors to conclude that n-gram frequency relates to the fluency of production

due to entrenchment from exposure. Recognition time, as measured by the

onset latency, had more deviance explained by conditional probability and

PMI, with a smaller contribution from frequency. This implies that the degree

of competition between n-gram family members is the main process underly-

ing recognition, which dovetails nicely with recent work on competition-based

models of recognition of compound words (Juhasz & Berkowitz, 2011; Kuper-

man, Schreuder, Bertram, & Baayen, 2009). In terms of which length n-gram

contributed most to explaining deviance in onset latencies, probabilistic mea-

sures for the 3-grams were strongest, followed by unigram probabilities. For

production duration, unigram probabilities were the dominant measure in re-

ducing deviance. Tremblay and Tucker propose that the 3-gram is a key unit of

language that is long enough to contain complex meaning, but short enough to

be processed efficiently. This pattern of results points to a complex, dynamic

system, with information from internal n-grams influencing the processing of

the wholes.

These studies all provide evidence for general n-gram frequency sensitiv-

ity, using different types of stimuli and different experimental paradigms. Is

frequency purely a measure of the familiarity of an n-gram? Frequency effects

can be also be thought of as complex phenomena that arise from more than

just pure exposure. The key realization is that repetition implies contextual

diversity, and so repetition itself may not be what gives high frequency n-
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grams their advantage (McDonald & Shillcock, 2001). Frequency is inevitably

correlated with many other measures. McDonald and Shillcock (2001) iden-

tified contextual distinctiveness (CD) as a measure that can explain effects of

orthographic frequency. CD was expressed as the relative entropy between a

word’s context and the context for all words in the language.

In a similar vein Baayen (2010a) calculated the contribution of 17 lexical

variables from many categories : frequency, genre distribution, CD, syntactic

entropy, morphological entropy, and orthographic features in predicting LDRT.

Once the other predictors were used to predict RT, orthographic frequency

did not contribute to the final model. This idea could be called the frequency-

effect-as-epiphenomenon position, another case of frequency effects emerging

from models that do not use lexical frequency counts. In these experiments a

key covariate used is n-gram frequency, but it is critically important to state

that frequency itself is at the heart of the process, but rather other probabilistic

measures of n-grams that we do not yet have access to, such as those mentioned

above, are involved. The models used here can tell us much despite the fact

that they are simpler and do not include the covariates mentioned above.

Over time n-grams do become more familiar. This feeling of familiarity

with a word sequence (its subjective frequency) must come into play when

reading n-grams. This study aims to delve deeper into the question of n-gram

subjective frequency and to better understand what is driving these varying

degrees of sequence familiarity.

The first question to be addressed in this work is: How does the probability

of an n-gram in a large corpus of text relate to the subjective frequency of the

n-gram? In the first part of the chapter I will attempt to detect any contribu-

tion of n-gram frequency to subjective frequency ratings. This evidence will

provide a basis for n-gram probability in the formation of n-gram familiarity.

The second question addressed is: How sensitive is the language system to

the relative probabilistic information contained in language? Subjective fre-

quency judgements are by definition absolute (from VERY FREQUENT to

VERY RARE), but relative frequency judgements change depending on what

n-grams are being compared. Comparing two very common n-grams may be
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different from comparing two very uncommon n-grams. Yet relative frequency

judgements should tap into the same implicit familiarity knowledge that is used

to generate subjective frequency ratings. In the second part of the chapter the

impact of n-gram probability on subjective relative frequency judgements is

investigated. Will there be an impact of the frequency of the internal n-grams,

the whole n-gram or both? My goal is to better understand how the proba-

bilistic information contained in n-grams influences their processing.

2.1.1 Words and N-grams

One theme in this research is the similarities between n-grams and words. Ev-

idence for this conjecture has come from many sources. Kuperman, Bertram,

and Baayen (2008) studied compound words, and found that compound word

frequencies, constituent lexeme frequencies, and conditional probabilities for

all the morphemes in the compound word had a role to play in their model

of compound word reading. Compound words are in many ways similar to

2-grams, leading me to speculate that models of n-grams may need to take

similar information into account. Since n-grams have been shown by Arnon

and Snider (2010) and Tremblay et al. (2011) and others to have a word-like

frequency advantage, it is possible that words and n-grams have even more in

common. I will first look at subjective frequency, a well studied aspect of word

knowledge.

2.1.2 Subjective and objective frequency of words and
n-grams

The subjective frequency of words has been investigated by psycholinguists

since the 1960s (see Gernsbacher, 1984 for a review). Connine, Mullennix, Sh-

ernoff, and Yelen (1990) found subjective frequency to be predictive of word

naming times when the stimuli were presented auditorily, but found no ef-

fect for orthographic frequency in this modality. This led Connine et al. to

conclude that objective and subjective frequency effects for words were task

and modality dependent. Furthermore, subjective frequency was concluded to

be a post-lexical component that was related to ease of production. Balota,
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Pilotti, and Cortese (2001) talked about what influences subjective frequency:

objective frequency and meaningfulness, as defined by Toglia (2009). They

found that meaningfulness was a better predictor of subjective frequency for

low frequency words and orthographic frequency was a better predictor of sub-

jective frequency for high frequency words. More recently, Colombo, Pasini,

and Balota (2006) used Italian words and found that subjective frequency and

meaningfulness explained variance in lexical decision response times, but not

in naming response times. Orthographic frequency explained variance for both

tasks. Thompson and Desrochers (2009) found lower correlations between the

orthographic frequency of low frequency words and their subjective frequen-

cies, replicating the results (Balota et al., 2001), but with French words.

Baayen, Feldman, and Schreuder (2006) attempted to explain the variabil-

ity in subjective frequency ratings using various objective predictors. They

built a statistical model that absorbed more than two thirds of the variance

in subjective word frequency ratings using predictors such as orthographic fre-

quency, written-spoken ratio, word category (noun or verb), noun-verb ratio,

orthographic neighbourhood density, derivational entropy and inflectional en-

tropy. These predictors are also important inputs into most models of visual

lexical decision response time and word naming response time. The parallels

between the two sets of predictive variables supports the notion that subjec-

tive frequency is an “off-line inverse of visual lexical decision” (Baayen et al.,

2006, p. 305).

What is subjective frequency? Subjective frequency is nothing more or

less than a self-reported measure that expresses a person’s introspective un-

derstanding of their amount of exposure to a stimulus. Lexical subjective

frequency data is collected by asking people to rate how frequently they have

encountered a word. The instructions in these experiments define encounters

as hearing the word, saying the word or reading the word. The variance in

these subjective frequency norms for words have been used to explain variance

in lexical decision tasks, word naming tasks and others. Taking an emergen-

tist stance, I posit that the subjective frequency rating for a word arises from

the same emergent process that is in play when we use words – from the in-
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teractions of various processes that operate according to very basic principles

of non-symbolic processing and representation (Elman, 2011). If n-grams are

word-like, an n-gram’s subjective frequency should be available to people dur-

ing a rating task, just as a word’s subjective frequency is available. In my first

experiment I collected subjective frequency norms for a set of n-grams and

then analyzed these ratings to see how strong their relationship to objective

frequency was. My hypothesis is that if n-grams have a word-like subjective

frequency, corpus frequency should be strongly correlated with subjective fre-

quency when the effect of constituent word and n-gram frequencies are taken

into account. Furthermore the direction of the correlation should be posi-

tive (higher ratings for more frequent n-grams), and the correlation should be

strongest for the most frequent n-grams, replicating the results of Balota et al.

(2001).

2.2 Experiment 1

There are many data sets available that provide subjective frequency ratings

for words (Balota et al., 2001), but there are no previous reports of the col-

lection of subjective frequency norms for n-grams. To see if n-grams would

have a stable, subjective frequency in the same way that words do, I collected

ratings and looked for similarities between n-gram ratings and word ratings.

2.2.1 Participants

One thousand five hundred and forty eight students at the University of Al-

berta participated in this experiment in exchange for partial course credit. The

mean age was 19.2 years old, 64% were females and 74% of the students were

native English speakers.

2.2.2 Methods and Materials

179 pairs of n-grams were chosen from the Google Web1T data set (Brants

& Franz, 2006): 60 pairs of 2-grams, 43 pairs of 3-grams, 36 pairs of 4-grams

and 38 pairs of 5-grams. The n-grams were chosen to cover a broad range
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of frequencies and relative frequencies. They were also grouped into pairs

and matched on the geometric mean of their constituent word frequencies.

This was done so that there would be no bias caused by the relative lexi-

cal frequency of the items when they were later used in a relative frequency

judgement task. Arnon and Snider (2010) chose to only use n-grams that were

intonational phrases, that is, n-grams that sound complete when uttered on

their own. The stimuli were not restricted to clausal or intonational units so as

to demonstrate that n-gram effects are not limited to those types of construc-

tions. The n-grams had frequencies ranging from the very frequent (1139 per

million, to the) to the very infrequent (0.00006 per million, to know and keep

the). Subjects were given a web-based survey with a seven point scale next to

each n-gram. The n-grams were presented in the same pseudo-random order

to all participants. The instructions stated: “Please rate how frequently the

phrases below are used. A rating of almost never means that the phrases are

used very rarely. A rating of very often means that the phrases are used very

frequently.” The two extremes of the scale were labeled, but the intermediate

ratings were not labeled. Each person was asked to rate 31 n-grams, providing

me with approximately 130 ratings per n-gram. Each subject also rated the

frequency of three nonsense n-grams (e.g. sanity toast blanket) to confirm that

they understood the instructions.

2.2.3 Results

Our participants understood the task I asked of them. The mean rating for

the nonsense n-grams was µ = 1.35, σ = 0.2, a very low rating on a scale of

1 to 7. The mean rating for all the sensible n-grams was µ = 3.83, σ = 1.07.

The nonsense n-gram ratings were removed from the rest of the analyses. I

measured rater reliability using the intra-class correlation coefficient (ICC,

Shrout & Fleiss, 1979). For all of the sub-groups of subjects who rated the

same set of 32 items, all the ICCs were greater than 0.37, and all of the 95%

confidence intervals around the ICCs did not include 0, showing consistency

in item ratings across participants.

To understand the relationship between the ratings I gathered and the cor-
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pus frequency of the n-grams, I had to see if the internal n-gram frequencies

were participating in driving the subjective ratings. This task is complicated

by the fact that all of these frequencies are highly inter-correlated, and en-

tering all the predictors simultaneously into a regression model could lead me

to mis-evaluate the importance of the predictors. Principle Component Anal-

ysis (PCA), chosen by Matthews and Bannard (2010) to reduce the multi-

collinearity of the component frequencies of their 4-grams, was considered as a

potential way to reduce multi-collinerarity in this experiment. A disadvantage

of PCA is that the orthogonal components that it produces can be extremely

difficult to interpret in terms of the original variables. To sidestep the problem

of multicollinearity while properly assessing which predictors are most relevant,

I made use of random forests. Random forests are a type of recursive partition-

ing algorithm for performing nonparametric regression with a large numbers

of predictors (Breiman, 2001). They are a powerful type of Classification and

Regression Tree (CART) method, and since they make no assumptions about

the types of relationships between variables they have been found to be supe-

rior to multiple regression in predicting performance on various tasks (Finch et

al., 2011). To understand which of my predictors was important, I measured

the conditional importance of each variable in a random forest model and then

only used the most important predictors in my regression models. A method

for performing this type of conditional importance analysis has been described

by Strobl, Malley, and Tutz (2009) in this way: variable importance is assessed

by permuting the data in each predictor variable and then testing the model

with the permuted variable and the remaining non-permuted variables until all

the variables have been permuted. The prediction accuracy of each inference

tree in the forest decreases substantially if the permuted variable was involved

in predicting the response. The difference in prediction accuracy before and

after permuting a variable, averaged over all trees, is one measure of variable

importance, the marginal permutation importance. An improvement on this

unconditional permutation importance measure is the conditional permutation

importance (Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 2008) in which the

permutation importance is conditioned on each of the partitions that arise from
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the recursive partitioning in the random forest as a conditioning grid. This

conditional variable importance is less susceptible to preferring correlated pre-

dictor variables and takes into account both main effects and interactions. In

all of my analyses I used the R package called party (Strobl et al., 2009),

and I tested my random forests with several different starting values to make

sure that the ranking of variable importance did not change depending on the

starting value. I report the results below after confirming that there was no

change in the ranking of conditional importance being caused by the initial

conditions of the pseudo-random number generator. The results of my analysis

are shown in Figure 2.2.3, and can be summarized as follows:

• For 2-grams, the whole n-gram and second word frequencies were impor-

tant.

• For 3-grams, the whole n-gram frequency was important, with a smaller

contribution from the third 2-gram’s frequency. Interestingly, the third

2-gram frequency, bf3, is the frequency with which the first and third

words appear together, which I call a split-gram.

• For 4-grams, the whole n-gram, the first 2-gram and the second 3-gram

frequencies were important.

• For 5-grams, the first 4-gram and the whole n-gram frequencies were

important.

Was n-gram frequency helpful in predicting my outcome variable? Using

the variables identified by the random forest analysis, I created linear models

for each size of n-gram with and without the whole n-gram frequency in each

model and then performed a model comparison. I compared the Akaike In-

formation Criterion (AIC, Akaike, 1974) of all the models to determine which

one had the best fit. The AIC is a measure of the quality of a model that

incorporates both the goodness of fit and the number of free parameters in the

model. Nested models with fewer parameters that have a better fit with the
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Figure 2.1: Importance for predictors in a random forest model of mean item
rating in Experiment 1. After creating random forest models, I calculated the
relative importance of all of the log transformed n-gram frequency variables in
predicting mean subjective frequency ratings adjusted for correlations between
predictor variables (both for the main effects and the interactions). The names
of the frequencies are abbreviated in the following manner: 2, 3 and 4-grams
are assigned the letters b,t, and q. The abbreviation tf2 stand for Second
Trigram Frequency. A full description of all these abbreviations is given in
Section 2.7.
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Table 2.1: Regression Model Comparisons for Experiment 1. Two models for
predicting the mean subjective frequency ratings of n-grams are given for each
size of n-gram, with the first model nested within the second. Models in bold
type were the best models for each type of n-gram. ∆df denotes the change in
the number of free parameters between the two models being compared.

AIC ∆df χ2 p
2-grams: n-gram freq only 330
2-grams: n-gram freq and w2f 317 1 15.98 0.00001
3-grams: n-gram freq only 212
3-grams: n-gram freq and bf3 206 1 8.07 0.00566
4-grams: n-gram freq only 154
4-grams: n-gram freq, bf1 & tf2 145 2 6.81 0.00200
5-grams: qf1 only 172
5-grams: qf1 and n-gram freq 174 1 0.29 0.59329

data are given a lower AIC. This means that the absolute value of the AIC is

not important, but rather the difference between two AIC values shows which

is better, and how much better. The results of these comparisons of nested

models are shown in Table 2.1.

The picture for the relationship between objective and subjective frequency

for n-grams is more complicated than the one for words described by Balota et

al. (2001); it is much more than a linear relationship between the meaningful-

ness of words or their simple whole form corpus frequency. There were effects

of the internal n-gram frequencies that came into play. In this section, I will

report regression effect sizes using Cohen’s f 2, a measure of effect sizes appro-

priate for regression models. Cohen (1988) suggested that effect sizes of 0.02,

0.15, and 0.35 should be considered as being small, medium, and large. Each

model was re-fit 1000 times with bootstrapped replicants giving a distribution

of f 2 values. I then calculated the 95% confidence interval of the effect size

from this distribution, reported below. For 2-grams, the subjective frequency

ratings were predicted by both the 2-gram’s frequency (f 2 = 0.45, 95% CI

0.32-0.56) and the second word’s frequency (f 2 = 0.07 , 95% CI 0.02-0.13).

This result could imply a recency effect: the frequency of the last word read

had more impact on the rating than the first word. For the 3-grams, the whole
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n-grams’s frequency had the largest effect size (f 2 = 0.45, 95% CI 0.27-0.59)

and there was a weak effect of the split-gram (f 2 = 0.05, 95% CI 0.01-0.14).

For the 4-grams, a more complicated model was the best fitting. The

whole n-gram frequency had the largest effect (f 2 = 0.34, 95% CI 0.17-0.51),

followed by a weak effect of the first bigram (f 2 = 0.08, 95% CI 0.01-0.19) and

an unreliable effect of the second trigram (f 2 = 0.03, 95% CI 0-0.11).

For the 5-grams, the addition of the whole n-gram frequency did not im-

prove the model, so the simpler model prevailed. This simpler model had a

strong effect of 4-gram frequency, with the effect size being (f 2 = 0.27, 95%

CI 0.14-0.43).

In all the analyses above the amount of mulit-collinearity between the pre-

dictors was reasonable (in all models, κ < 8).

Finally, I noted that Balota et al. (2001) had found that the group of

words with the highest subjective frequency ratings had a strong relationship

between objective and subjective frequency, and that the opposite was true

for the words with the lowest subjective frequency ratings. I replicated this

result: I performed a median split on all of the items bases on their average

subjective frequency rating, and calculated a bootstrapped Pearson correlation

with corpus frequency for each of the two groups. The magnitude of the

correlations with frequency were larger for the set of items with the higher

subjective frequency ratings: for the upper half, r(177) = 0.22, 95% CI 0.19-

0.48, and for the lower half, r(176) = 0.11, 95% CI 0.01-0.19.

2.2.4 Discussion

In this exploratory look at the frequency measures that influence the subjective

ratings for n-grams I found a complex pattern of evidence for n-gram frequency

effects. Each n-gram size had a different pattern of frequency effects, with no

clear, over-arching pattern. The first interesting result was the size limitation

seen in the 5-gram data, which could be related to limitations of the short

term memory system. Participants were sensitive to the frequency of the first

four words of the 5-gram, and nothing else. This implies that the subjective

frequency estimation process either cannot use — or does not need to use —
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information about the probability of 5 words occurring together to accomplish

this task and perhaps other tasks like it. I interpret the results from the 2-

grams as showing more of a recency bias since the final word’s frequency in

the 2-grams had a large impact on the ratings, but the first word’s frequency

did not. For the 3- and 4-grams, the whole n-gram frequencies had very

large effects whereas the internal frequencies had relatively weak effects. The

key finding in this experiment was that, excluding the 5-grams, there was

strong evidence in the 2-,3- and 4-gram data for a dominant effect of whole

n-gram frequency (for all these effects, Cohen’s f 2 > 0.34) and a subordinate

effect of the sub-frequencies (for all these effects, Cohen’s f 2 < 0.08). This

supports my hypotheses about the sources of implicit frequency judgements,

and provides the justification for the next experiments on relative subjective

frequency estimation reported below.

2.3 Experiment 2

2.3.1 Relative frequency of words

With evidence from my subjective frequency rating task pointing towards n-

gram frequency effects for subjective frequency ratings, the next place I looked

for effects was in a more complicated task: relative frequency judgements. All

rating tasks are limited by the use of absolute Likert scales, which are not

immune to artifacts (for example, I have treated ordinal-scale data in the

ratings as if they were interval-scale, using the mean ratings instead of the

mode, etc.). To avoid these issues, I chose to develop a relative frequency task

that does not suffer from the same issues. In this type of task the participants

are shown two items at once and are asked to judge which one of them, in their

experience, is more frequent. I manipulated the relative corpus frequency of the

items, both in absolute terms (low frequency vs. low frequency, high frequency

vs. high frequency) and in relative terms (a very small difference in frequency

relative to each other or a very big difference). The power-law distribution of

n-grams provides ample examples of items that fall into all of these categories,

and the stimuli were chosen to cover a broad swath of the frequency spectrum
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to make sure that my results were generalizable to a majority of n-grams.

Before attempting this task with n-grams, I sought to confirm that a rel-

ative subjective frequency judgement task was reasonable and feasible with

simpler stimuli. I created a single word task that I could later extend to n-

grams, and looked for evidence that my paradigm was valid for investigating

relative frequency judgments.

2.3.2 Participants

Thirty-three students from the University of Alberta participated in this ex-

periment in exchange for partial course credit. The mean age was 19.4 years

and 57% of the participants were females. All were right-handed native En-

glish speakers. None had any visual or neurological disabilities that would

interfere with their participation.

2.3.3 Methods and Materials

120 pairs of words were chosen to meet specific experimental criteria. To avoid

any effects of a relative difference in orthographic neighbourhood size, each

pair of words had minimal difference between their Orthographic Levenshtein

Distance (OLD, Yap & Balota, 2009). The mean of the differences between the

OLD in all of the word pairs in my stimuli was 0.007 with a standard deviation

of 0.2, meaning that each word was matched with a word with an orthographic

neighborhood of almost identical size. I also used words of different lengths.

There were 51 pairs of four letter words, 37 pairs of five letter words and 32

pairs of six letter words. Each word pair was selected to provide the broadest

possible coverage of the frequency ratio space. The distribution of the item

frequencies is shown in Figure 2.2.

I used the ACTUATE experimental design package (Westbury, 2007) to

collect RT and accuracy data in my task. Each trial began with the display of

a fixation cross for a random period of time between 500ms and 1000ms. At

that point the fixation cross was removed and each pair of words, displayed

directly above and below the location of the cross. The words were displayed
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Figure 2.2: Distribution of relative frequencies of stimuli for all word pairs
presented in Experiment 2.
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in 18 point times roman font on a white background. Each subject had 10

practice trials and then all the word pairs were presented in pseudo-random

order. Participants were instructed to press the k key if the word on top was

more used more frequently or the m key if the word on the bottom was more

used more frequently. The more frequent n-gram appeared above the less

frequent n-gram 50% of the time. After completing ten practice trials with

feedback, all the experimental trial were completed without any feedback.

2.3.4 Results
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Figure 2.3: A) Relationship between item accuracy and log frequency ratio
for all the word pairs in Experiment 2. The green line is at the 50% accuracy
level. (B) Relationship between frequency ratio and response time for all the
word pairs in Experiment 2. In both of these graphs, Kendall’s τ is reported
rather than Pearson’s r due to the heteroskedasticity of the distribution, and
I have included bootstrapped 95% confidence intervals. The blue lines show
the LOWESS (locally weighted scatterplot smoothing) smooths.

I first used a graphical analysis to understand the relationship between my

two dependent variables and my predictors of interest. In Figure 2.3 (A), I

saw that the mean item accuracy increased with the ratio of the orthographic

frequencies (Kendall’s τ = 0.5, bootstrapped 95% CI 0.41,0.59). In Figure 2.3
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(B), I saw a negative relationship between the corpus frequency ratio and RT

(Kendall’s τ = −0.31, bootstrapped 95% CI -0.41,-0.18). To quantify these

effects, I created statistical models to fit the data. I used generalized linear

mixed effects models to understand the relationship between the independent

variables (such as stimulus properties) and the accuracy of the participants’

judgements (Baayen, Davidson, & Bates, 2008). As with the subjective fre-

quency data models above, I compared AIC values to find the best fitting

model, and the results of those comparisons are shown in Table 2.2. All mod-

els include two fully crossed random factors, Subject and Item.

Table 2.2: Accuracy Model Comparisons for Experiment 2. Pos is the position
of the higher frequency word, either above or below the fixation cross. Fre-
qRatio is the log transformed ratio of the word frequencies. The base model
included crossed random effects of subject and item, and random slopes were
fitted for each subject based on their sensitivity to the item’s frequency ratio.

AIC ∆df χ2 p
1) Base Model 3997
2) FreqRatio Only 3928 1 70.51 0.0000
3) Position + FreqRatio 3921 1 9.06 0.0026
4) Position + FreqRatio with Random Slopes 3908 0 15.09 0.0001
5) Position × FreqRatio with Random Slopes 3910 1 0.00 0.9509

Table 2.3: Coefficients for the fixed effects in the generalized linear mixed
effects model fitted to the observed accuracy for word pairs in Experiment 1.
FreqRatio is the log transformed ratio of the word frequencies and Position
is the location of the higher frequency word on the screen. This model also
included random intercepts of subject and item as well as random slopes for
each subject based on their sensitivity to the item’s frequency ratio.

Coef β SE(β) Wald’s z p
Intercept -0.65 0.20 -3.20 0.0014
FreqRatio 0.61 0.07 9.32 0.0000
Position 0.69 0.22 3.09 0.0020

The best fitting, simplest model was an additive model that included Po-

sition (the part of the screen that the higher frequency word was placed in) as
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well as the ratio of the frequencies, with the greater frequency ratio produc-

ing greater accuracy. The importance of the Position variable suggests that

the participants were more accurate when the more frequent word was placed

above the less frequent word. The accuracy of each subject on each item was

also a function of the frequency ratio, with the larger frequency ratios showing

greater accuracy, but the interactive model was not a better fit than the sim-

pler additive model, and contained more free parameters, forcing me to reject

it. Adding random slopes for the effect of the frequency on each subject im-

proved the model fit (χ2(1) = 15.09, p = 0.0001), implying that some subjects

were more sensitive to the frequency ratio information than others. The inclu-

sion of random slopes for each subject’s sensitivity to the frequency ratio did

not eliminate the effect of the frequency ratio. The slope for frequency ratio

remained significantly different from zero, as shown in Table 2.3. I did not

include the number of letters in the word in this analysis, since when I com-

pared the final model with a model that contained word length as an additive

effect, I found no improvement in model fitness (χ2(1) = 2.45, p = 0.12).

Table 2.4: RT Model Comparisons for Experiment 2. FreqRatio is the log
transformed ratio of the word frequencies. Length is the number of letters in
the word. The Random Slopes in these models were fitted for each subject
based on their sensitivity to the frequency ratio. All models except the first
one contain the fixed effect of previous trial RT.

AIC ∆df χ2 p
1) No Fixed Effects 2667
2) Base Model (includes PrevTrialRT) 2577 1 92.40 0.00000
3) FreqRatio Only 2537 1 41.03 0.00000
4) Length + FreqRatio 2523 1 16.93 0.00004
5) Length + FreqRatio with Random Slopes 2515 0 9.72 0.00183
6) Length × FreqRatio with Random Slopes 2517 1 0.15 0.69629

I also performed a linear mixed effects model comparison for the log trans-

formed response times obtained in this experiment to look at the processing

load involved in making this type of judgement. Before beginning the analysis,

I removed 88 outlier observations from the data set (2% of the data, RTs that
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were two and a half standard deviations above or below the grand mean RT).

Again, all of my models contained crossed random effects for Subject and Item,

but in this analysis, all models also included the log transformed RT from the

previous trial (the first trial for each subject was assigned that subject’s mean

RT). This predictor was inserted to account for inter-trial temporal dependen-

cies, which were pronounced in this experiment (Baayen & Milin, 2010). The

other predictors were the ratio of the word frequencies and the length of the

word in letters. In Table 2.4 I present the results of this model comparison.

From the model comparison I can infer that word length and the frequency

ratio are important predictors, but the interactive model was no better than

the simpler additive model. The best model included a random slope for

the effect of the frequency ratio on each subject. The fact that this model

was superior to all the others suggests that there was some variation in each

subject’s sensitivity to the frequency of the least frequent word. To confirm

that the position of the words did not influence RT, I compared the final model

with a model that contained word position as an additive effect, and found

that it did not improve the model (χ2(1) = 0.14, p = 0.7). There was also no

benefit in adding the trial number into the model (χ2(1) = 0.06, p = 0.8). The

direction of the relationships in the best model, shown in Table 2.5, provide

evidence for a negative relationship between frequency ratio and RT, meaning

that there was facilitation when the frequency ratio was larger. The opposite

direction was found for word length, due to the fact that longer words take

more time to read. The effect of Previous Trial RT was also positive, suggesting

that participants exhibited a spillover effect of RT across trials.

2.3.5 Discussion

I created a novel relative frequency judgement task for pairs of words and

found that the ratio of the words’ frequencies was a powerful predictor of the

participants’ accuracy in detecting the more frequent word as well as their

response time in the task. By matching word pairs on orthographic neigh-

bourhood size, I avoided potential confounds caused by orthographic encoding
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Table 2.5: MCMC-based estimates for the coefficients for the fixed effects in
the linear mixed effects model fitted to the observed RT in Experiment 2.
FreqRatio is the log-transformed ratio of the word frequencies, Length is the
length of the word in letters and PrevTrialRT is the log-transformed RT for
the preceding trial.

Estimated β β̄MCMC HPD lower HPD upper pMCMC

Intercept 6.0303 5.9852 5.7421 6.2320 0.0001
FreqRatio -0.0344 -0.0344 -0.0430 -0.0254 0.0001
Length 0.0471 0.0470 0.0255 0.0676 0.0001
PrevTrialRT 0.1415 0.1478 0.1189 0.1756 0.0001

differences. Word pairs that were very close in frequency were much more

difficult to judge accurately. Word pairs that were very close in frequency

also took longer to process, suggesting that there is a greater cognitive load

in distinguishing the relative frequency of items that are very similar in their

subjective frequency.

The pattern of reaction time results in this experiment are the inverse of

a well known reaction time effect, the symbolic distance effect (SDE, Banks,

1977; Moyer & Dumais, 1978). This effect has been found when the symbolic

magnitudes of stimuli are compared in a binary decision task. It takes longer

to make a decision about stimuli that have a greater difference in their sym-

bolic magnitude. An example of a typical stimulus would be Which is larger,

Jamaica or Canada?. In experiments on the SDE, this decision takes longer

than for the stimulus Which is larger, Jamaica or Cuba? The fact that an

effect in the opposite direction was found implies that the cognitive distance

between the frequency of two words is not a symbolic distance. It is more

likely correlate of familiarity, and the cognitive load is least when the words

are very distinct in their subjective frequency. Words that were very close in

frequency were harder to judge quickly, not easier.

Why was this so? Balota et al. (2001) and Baayen et al. (2006) found

a strong correlation between the subjective and objective frequency of words.

This experiment tapped into the same subjective knowledge of word frequency

used to rate subjective frequency and these results suggest that this implicit
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knowledge for words is being used to judge relative frequency. The accuracy

of the participants on this task shows the strong relationship between relative

corpus frequency and relative subjective frequency.

My next step was to extend this paradigm to the judgement of the relative

frequency of n-grams rather than words, making it possible to compare par-

ticipants’ performance on multi-word stimuli to their performance on single

word stimuli.

2.4 Experiment 3

2.4.1 Relative frequency of n-grams

In this experiment I applied the experimental paradigm that I found to be

sensitive to lexical frequency ratios in Experiment 2 to pairs of n-grams in-

stead of pairs of words. As I saw in the analysis of Experiment 1, n-grams are

composed of smaller n-grams, and the frequencies of those internal n-grams

can be predictive of performance on a subjective frequency task. To be certain

that the impact of the whole n-gram is real, my models needed to simultane-

ously take both the whole n-gram frequency and any relevant internal n-gram

frequencies into account. The results from Experiment 1 led me to speculate

that the same predictors that influenced absolute subjective frequency rating

would also influence subjective relative frequency judgements. Any similarities

in the patterns of results of Experiment 1 and this experiment would support

a common style of processing in both tasks.

2.4.2 Participants

Forty-nine students from the University of Alberta participated in this exper-

iment in exchange for partial course credit. The mean age was 19.3 years old,

and 65% were females. All were right-handed native English speakers. None of

them reported any visual or neurological issues that would interfere with their

ability to participate in the experiment. None had participated in Experiments

1 or 2.
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2.4.3 Materials
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Figure 2.4: Distribution of relative frequencies of stimuli for all n-gram pairs
presented in Experiment 3.

The same 179 pairs of n-grams that were rated by subjects in Experiment

1 were used to create pairs of n-grams that covered a wide range of frequency

ratios. Figure 2.4 shows the distribution of ratios for all the stimuli in this

experiment. The coverage of the majority of the frequency space was excellent,

covering most of the space, except for the upper left and upper right quad-

rants of the space, which are very sparse in the corpus. I wanted to control the

influence of the cue of word frequency in the n-grams and so I calculated the

geometric mean of the word frequencies of the words in each n-gram using the

unigram frequencies from the Google Web1T corpus (Brants & Franz, 2006).

I then matched each n-gram with an n-gram that had the identical geometric

mean. By doing this, I hoped to eliminate any relative frequency cues coming
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from individual words in the n-grams, cues that I knew to be salient, as I

found they influenced performance in the relative frequency judgement task

in Experiment 2. With the effect of lexical frequency balanced on each trial, I

restricted the source of variation to other types of information. The distribu-

tions of the frequency ratios of all of the n-grams used in this study are given

in Appendix B.

2.4.4 Methods

I used the same method as in Experiment 2. After ten practice trials with

feedback, all of the n-gram pairs were presented in pseudo-random order for

each participant, with no feedback. The more frequent n-gram appeared above

the less frequent n-gram 50% of the time. The presentation format and in-

structions were identical to those used in Experiment 2.

2.4.5 Results: Accuracy

The overall accuracy with which our participants identified the higher fre-

quency n-gram was above chance. I used a bootstrapped confidence interval

to assess the accuracy, and found that for 2-grams, the mean accuracy for

all subjects on all items was 0.6 (95% CI: 0.58-0.62), for the 3-grams it was

0.62 (95% CI: 0.6-0.64), for the 4-grams is was 0.57 (95% CI: 0.55-0.6), and

for the 5-grams it was 0.56 (95% CI: 0.54-0.58). Before attempting to model

the accuracy data, I investigated the relative conditional importance of all the

frequency ratio variables in predicting mean accuracy using the same random

forest methodology described in the analysis of Experiment 1. The relative im-

portance of the predictor variables in predicting the mean accuracy is shown in

Figure 2.5. Since there are the same large number of multi-collinear predictors

here in Experiment 3 as there were in Experiment 1, I wanted to see which

frequency components contributed the most. Before presenting a more formal

statistical analysis, I begin with this informal summary of the results of this

analysis:

• For 2-grams, the whole n-gram frequency ratio was important.
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Figure 2.5: Conditional importance of predictors in a random forest model for
accuracy in Experiment 3. After creating random forest models, I calculated
the relative conditional importance of all of the n-gram frequency variables
in predicting mean accuracy, adjusted for correlations between predictor vari-
ables, both for the main effects and interactions.
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• For 3-grams, the whole n-gram frequency ratio was important.

• For 4-grams, the second 3-gram’s frequency ratio was the most impor-

tant. The first trigram, first word and a split 3-gram, tf4 had weak

influence. The whole 4-gram frequency ratio was not a strong predictor.

• For 5-grams, the first 3-gram was a strong predictor along with a split

3-gram, tf8, made up of the first, second and fifth words of the n-gram.

The first 4-gram was a slightly weaker predictor. The whole 5-gram

frequency ratio was not a strong predictor.

Table 2.6: Accuracy GLME Model Comparisons for Experiment 3. All models
contain crossed random effects for subjects and items. Models in bold type
were the best models for each type of n-gram. All models include a random
intercept for each item and a random slope for the effect of the frequency on
each subject.

AIC ∆df χ2 p
2-grams: Position 3330
2-grams: Position + N-gram Ratio 3327 1 5.42 0.020
3-grams: Position 2387
3-grams: Position + N-gram Ratio 2372 1 16.47 0.000
4-grams: No fixed effects 2286
4-grams: tf1 Ratio + tf2 Ratio 2282 2 7.92 0.019
5-grams: No fixed effects 2381
5-grams: tf8 Ratio + tf1 Ratio 2378 2 7.21 0.027

Next I used generalized linear mixed effects models (Baayen et al., 2008)

to understand the relationship between the stimuli and the trial-level accuracy

of the participants’ judgements using the most important variables found in

each of the random forest models. Just as in my analysis of the data from the

single word experiment, Experiment 2, all of my models included the random

effect of item on the intercept crossed with a random slope for the effect of

the frequency ratio of each item on each subject. Stimulus position was only

included in the 2- and 3-gram models, as it did not enhance the model fitness

in the models for the other n-gram lengths. The comparison of these models
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is shown in Table 2.6. From the model comparison it becomes clear that

the ability of the models to predict trial-level accuracy improved when the

appropriate frequency ratios were added. I also compared these models shown

with other models that included predictors such as trial number and all the

individual word frequencies, but these models are not shown in my model

comparison table because these models were uniformly lower in fitness than

the models shown. Since the individual word frequencies were not found to

improve the fit of any of the models for accuracy for any of the n-gram types

in the experiment this method of matching pairs of n-grams was successful

in preventing lexical frequency cues from influencing the participants’ relative

frequency judgements. Finally, stimulus position did not improve the fitness in

the models for the 4-grams and 5-grams, and was dropped from those models.

2.4.6 Discussion: Accuracy

After inspecting the coefficients of my models, I noted that in all of my models,

except the 4-gram model, the direction of all the relationships was positive

– larger ratios led to a higher likelihood of a correct response. As seen in

the coefficients for the 4-gram model listed in Table 2.7, the two ratios are

pushing in opposite directions. The larger the ratio of the initial 3-gram, the

lower the likelihood of a correct response, with the reverse true for the second

3-gram. This points to the 3-grams being strong sources of information for the

judgement process. When these two sources were in conflict, accuracy on the

task decreased. In the model for the 5-grams shown in Table 2.8, the strength

of the effects of the tf8 and tf1 ratios were weak despite the results of the

model comparison which showed improvement in model fitness when I added

those two ratios to the model. Unlike all the other n-grams, the evidence from

my data for frequency effects influencing accuracy for 5-grams is too weak to

be considered likely.
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Table 2.7: Coefficients for the fixed effects in the generalized linear mixed
effects model fitted to the observed accuracy on 4-gram pairs in Experiment
3.

Coef β SE(β) Wald’s z p
Intercept 0.32 0.17 1.88 0.06
tf1 Ratio -0.11 0.05 -2.20 0.03
tf2 Ratio 0.16 0.06 2.45 0.01

Table 2.8: Coefficients for the fixed effects in the generalized linear mixed
effects model fitted to the observed accuracy on 5-gram pairs in Experiment
3.

Coef β SE(β) Wald’s z p
Intercept 0.27 0.15 1.82 0.07
tf8 Ratio 0.08 0.05 1.71 0.09
tf1 Ratio 0.04 0.03 1.50 0.13
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Figure 2.6: Importance for predictors in a random forest model for RT in
Experiment 3. After creating random forest models, I calculated the relative
importance of all of the n-gram frequency variables as well as string Length in
predicting mean subjective frequency ratings adjusted for correlations between
predictor variables, both for the main effects and interactions.
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Table 2.9: Markov-chained Monte Carlo (MCMC) based estimates of the co-
efficients for the fixed effects in the linear mixed effects model fitted to the
observed RTs on 4-gram pairs in Experiment 3.

Estimated β β̄MCMC HPD lower HPD upper pMCMC

Intercept 7.0148 6.7595 6.3329 7.1955 0.0001
Length -0.0013 -0.0012 -0.0054 0.0031 0.5692
PrevTrialRT 0.1170 0.1490 0.0995 0.1963 0.0001
bf1 Ratio 0.0222 0.0221 0.0081 0.0360 0.0030

2.4.7 Results: Response Time

To begin my analysis of the response time data, I performed a measurement of

the conditional importance of the predictors using random forests in the same

way as in Experiment 1, predicting mean log-transformed RT from all the

frequency ratios and the length (in letters) of the stimuli. The results of this

analysis are shown in Figure 2.6. For all n-grams except the 4-grams, Length

was the only predictor that was important. For 4-grams, the ratio of the first

2-grams was a important predictor of RT, and Length was not an important

predictor. To confirm the result of the random forest analysis, I attempted

to fit an item-level linear mixed effect model to the data for all the n-gram

RT data, but even with the addition of crossed random effects for subject and

item, only the 4-gram models showed any impact of n-gram frequency ratios

on model fitness. This correspondence between the random forest models and

the linear mixed effect models supported my decision to use random forest

models to identify important predictors. After fitting a model that included

Length as well as previous trial RT, I performed model criticism by removing

data with residuals that were greater or less than 2.5 times the mean residual.

This did not change the outcome of the analysis and indicated that my model

was not overly influenced by extreme values. The estimated coefficients for

all of the fixed effects in this model and their 95% highest posterior density

intervals are shown in Table 2.9.

I also performed a model comparison between the base model without the

effect of bf1Ratio and one with the effect of bf1Ratio. The comparison
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showed an improvement in model fitness for the second model: χ2( 1 ) = 9.28,

p = 0.002). The direction of this relationship was positive, meaning that items

with a larger ratio of their initial 2-grams were responded to more slowly. The

meaning of this relationship between the first 2-gram frequency and the RT is

opaque.

2.4.8 Discussion: Reaction Time

Response times in this task were affected by the number of letters in the n-

grams, but they were not predicted by any of the frequency ratios, except in the

case of the 4-grams, which showed a small effect for the first bigram frequency

ratio. This result was quite different from the results in the single word task in

Experiment 2, where response time increased as the frequency ratio decreased.

There was no symbolic distance effect or inverse distance effect. The reason

that the effect went away may be that the impact of the frequency ratios on

the cognitive load of the more complicated n-gram task is not very large. In

the case of the 4-grams, the reason for the increase in response time is, as yet,

unclear.

Thus far, I have extended the relative frequency judgement task from pairs

of words to pairs of n-grams. The results I obtained with n-grams for stim-

uli were similar to those with words – the ratio of certain n-gram frequencies

predicted the accuracy in detecting the more frequent n-grams. This result

suggests that the subjective frequency of n-grams is something that is accessi-

ble to us when it is useful. There appeared to be a preference in the 4-grams

and 5-grams trials to use the relative frequency of constituent 3-grams to make

a decision, which suggests that the relative frequency of n-grams made of 4

or more words was not used by the participants in this task. Potential expla-

nations for the difference in the type of frequency ratio that best predicted

accuracy changing for the shorter n-grams and the longer n-grams will be ad-

dressed in the next section along with the implications of the results of the

previous experiments.

In summary, I found in Experiment 3 that the probability that the partici-

pants could correctly identify the n-gram with the higher corpus frequency was

60



linked with the relative frequency of one or more n-grams. For shorter n-grams,

the whole n-gram frequency ratio was important and for longer n-grams, the

internal n-gram frequency ratios were important. N-gram probabilities of some

type were involved in all of my models.

2.5 Conclusion

In the three experiments presented here I looked at the subjective frequency

of words and n-grams and how it related to their objective frequency. In

Experiment 1, I found that, similar to those for words, the subjective ratings

of frequency for n-grams were correlated with their corpus frequencies. In

Experiment 2 I introduced a relative frequency judgement task and applied it

to the relative frequency of words. In Experiment 3 I extended this task to

n-grams, and I saw that the ratio of the frequencies of n-grams can predict

the likelihood of correctly choosing the higher frequency n-gram in a forced

choice task. My efforts to remove lexical frequency cues by matching stimuli

by the geometric mean of their component word frequencies were successful,

as I saw no predictive input from word frequencies or the ratio of their word

frequencies. Relative n-gram frequency was the key predictor of accuracy in

Experiment 3. These results imply that people have implicit access to the

relative frequency of n-grams, and that n-gram and word probabilities are

involved in our processing of n-grams, just as letter and word probabilities are

involved in our processing of words.

Subjective frequency knowledge is often used implicitly in many tasks,

linguistic and non-linguistic, such as word segmentation (Saffran, Aslin, &

Newport, 1996), lexical recognition (M. S. Seidenberg & McClelland, 1989),

visual object perception (Kirkham, Slemmer, & Johnson, 2002), social learn-

ing (Bandura, 1997) and many others. It is not surprising to see subjective

frequency effects for groups of words, but the sheer number of n-grams that

humans are exposed to in our lives makes it difficult to see how it is possible

to keep track of our familiarity with each n-gram. This concept of a mental

lexicon, with various entries for each word or compound word or n-gram, has
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been recently criticized by Elman (2009, 2011) and Dilkina, McClelland, and

Plaut (2010b). Using Elman’s ideas, I see n-gram representations as dynamic,

interactive relations between many types of non-symbolic knowledge. Memory

systems could be interacting with comprehension systems and production sys-

tems when reading n-grams. In this kind of representation, recall of episodic

memory traces, ease of articulatory simulation and ease of semantic accessi-

bility all contribute to our ability to judge the absolute and relative frequency

of n-grams. Frequency of exposure and the depth of the entrenchment of n-

grams can contribute to the strength of a representation in all of these mental

systems, and this could explain why my data show such a consistent influence

of n-gram frequency on performance in my tasks.

Another way that n-gram subjective frequency may emerge is from the

sensation of fluency which arises from accessing the meanings of an n-gram.

Much as lexical access takes longer for words that we do not know the meaning

of, n-gram access may take longer for n-grams that we do not know the mean-

ings of. If n-gram subjective frequency emerges from the same processes that

produce lexical subjective frequency, and if subjective frequency is related to

speed of recognition, then we can look at recent models of word recognition for

ideas on how this may happen. Some recent models posit a process of accu-

mulation of evidence when we read and recognize words (Norris & Kinoshita,

2008; Dilkina et al., 2010b; Baayen et al., 2011). One of these models, the

Naive Discriminative Reader (NDR) has already been applied to modeling the

reading of n-grams. It is important to note that the NDR does not assume

separate representations for word forms or n-gram forms, but rather shows the

emergence of morphological and lexical effects using nothing but sub-lexical

probabilistic information. Baayen and Hendrix (2011) used the NDR model

to predict reading times for the stimuli used by Arnon and Snider (2010). The

NDR model predicted the reading time from the model’s knowledge of the

statistical properties of pattern of letters and letter bigrams in the input. This

model is an example of the kinds of long-term memory traces that are being

created from our experience with words and n-grams– distributed probabilistic

traces. More work will need to be done to link subjective frequency models to
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models of reading, but I feel that this may be a promising direction to head

in if we are to discover what creates the qualia of word or n-gram frequency.

In my results there were some effects that I could not predict when I de-

signed my studies, but that I was able to detect due to the correlational design

of my experiments. By choosing stimuli that simultaneously covered a broad

span of frequencies and frequency ratios I was able to capture the influence

of component n-gram frequencies. For example in Experiment 1 I found that

both the n-gram frequency and the split bigram frequency bf3 contributed

to predicting participants subjective frequency ratings. This result suggests

that the first and third words are salient for subjective frequency judgements

in 3-grams, but not for other n-grams. These split-grams may be related to

discontiguous subtrees proposed by Bod (2009). They are used in Bod’s data-

oriented parsing (DOP) model to help explain our ability to parse nonadjacent

dependencies such as “BA carried more people than cargo in 2005” (Bod, 2009,

p. 764). This discontiguous subtree, more XX than bears a striking resem-

blance to the split 3-gram, and the influence of the split 3-gram’s frequency

might provide some behavioural support for parsing models that allow these

discontiguous constructions. In contrast, most of the other split-grams that

I included in my analyses (see Section 2.6 for the full list) had no detectable

influence on the outcomes. The only other time a split-gram entered one of

my models was in the relative frequency accuracy model for 5-grams, when

the 3-gram, consisting of the first, second and fifth words of the 5-gram rose in

importance above the other variables. More evidence will need to collected be-

fore any links can be made between probabilistic reading models and syntactic

models that presume a representation for many different types of split-grams.

Our results also hint at the existence of differences in the amount of in-

fluence of the various grain-sizes. If there was a recurring size of n-gram that

predicted performance in all of my tasks, it was the 3-gram. In Experiment 3,

3-gram frequency ratios were found to be the most salient n-grams for judging

the relative frequency of 3-, 4- and 5-grams. One possible explanation for this

could be that the probability of seeing groupings of three words provides a par-

ticularly strong signal to the language system compared to other size n-grams.
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This result extends the work of Tremblay and Tucker (2011) by finding that

3-gram ratios were being used in my tasks, just as they found that probabilistic

information in 3-grams was being used more than other n-gram sizes to rec-

ognize 4-grams in their experiment. Furthermore, in both absolute (Exp. 1)

and relative (Exp. 3) frequency judgments for 5-grams, the frequency of their

component n-grams were more predictive of the outcome than the frequency

of the 5-gram itself. These results suggest that when we read longer n-grams,

the subjective frequency of the shorter internal n-grams is involved somehow

in the process. This type of converging evidence strongly supports continued

exploration of the contribution of internal n-gram probabilities in future anal-

yses of n-gram processing. Such analyses could explore whether specific subset

of internal probabilities will come into play in the majority psycholinguistic

tasks.

If 3-gram frequency is implicated in the processing of 4-grams and 5-grams,

I speculate that 3-gram probability information is being used continuously dur-

ing reading longer streams of text, and is being done so implicitly. This simul-

taneous interaction between the probabilities of multiple n-gram components

in my evidence bears a striking resemblance to recent results from research into

processing polymorphemic and compound words, where lexeme/morpheme fre-

quency and meaning are all simultaneously involved in processing, even when

they are not required, or even helpful, for the task (Kuperman, Dambacher,

Nuthmann, & Kliegl, 2010; Kuperman et al., 2008; Gagné & Spalding, 2009;

Juhasz & Berkowitz, 2011). This probabilistic interaction within n-gram pro-

cessing buttresses the argument that n-gram processing may be analogous to

word processing, with the only difference being the length and probabilistic

complexity of the input. The possibility that words and n-grams are somehow

represented as entries in a lexicon, and that there is a search process across

this lexicon as proposed by Forster and Hector (2002), looks increasingly un-

tenable. The sheer number of representations that would be required in a

localist model of language that included words and n-grams in a lexicon would

be around 109, and even if this search could proceed faster than the fastest

known parallel search algorithms, it would still be too slow to be plausible.
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My results are compatible with an emergent account of lexical processing that

does not depend on unique representations for words or n-grams.

The work presented in this chapter supports the notion that n-gram prob-

ability is a new and important element in psycholinguistics, one that will allow

us to explore language processing in new ways. The vast majority of models

for word and sentence processing have thus far avoided dealing with the impact

of arbitrary n-grams on language performance. I have presented experimental

evidence that the granularity of language extends beyond words to n-grams,

and that the probability of n-grams influences their subjective frequency. The

evidence I have presented here, built upon the work of many others, suggests

that subjective n-gram probability effects exist at many grain-sizes. Consider-

ing the accumulation of evidence presented here, the time has come to bring

n-gram probability information into language processing models. New models

of reading, such as the NDR model (Baayen et al., 2011) that can predict

n-gram frequency effects and incorporate linguistic knowledge of patterns of

varying sizes and levels of abstraction will give us the necessary context to

better understand experimental results and to determine what cognitive limi-

tations shape our ability to process n-grams. There may be fundamental upper

bounds to the complexity of the probabilistic information that we can use when

reading n-grams and those constraints will require further exploration before

they become clearly defined.
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2.6 Experimental Stimuli

Table 2.10: 2-grams and 3-grams used in Experiment 3.
2-grams 3-grams
richest man : push ahead who never returned : committed to tradition
at least : due to rare vinyl records : juvenile detention facility
wheat flour : snack foods long curly hair : dubious scientific value
boxer shorts : midterm exam hip and stylish : never been easier
to work : the future may end up : cast members of
diet pill : prime minister residents who are : until my final
human rights : hang out high school students : step by step
make sure : this album with the result : told from the
over time : not pay to be accurate : offered the single
start leaning : veterans studied discovers that the : but owners of
metric tons : inner workings just as she : the women sent
music on : and freedom not good enough : with old structures
aware of : copies of almost every city : space around him
we finally : wildlife in the property of : value of the
conveniently located : periodic table the way of : was not the
is hard : night of an opportunity to : the end result
rather than : no longer the fact that : at the end
people enjoy : published since procedures outlined in : designed to convince
can we : be important on fossil fuels : pass intercepted by
up until : once we sooner or later : paves the way
end up : my friends of their respective : can be used
law enforcement : cell phones boys and girls : black and silver
cash machines : work visas that most people : to paying that
watching the : and pull you will find : feel free to
to the : and in man and woman : has one too
the pain : limits of the first time : going to be
string quartet : alarm bells was added to : of the material
hope that : made on credit card debts : their offending behaviour
items from : what are congestive heart failure : deputy prime minister
and pleasure : he only chopped fresh parsley : gall bladder surgery
to others : may only be forgiven for : among the passengers
swimming pools : winning streak just about anyone : manage it well
health care : figure out appear to be : who is now
travel tips : water shortage is usually required : return your application
green hills : weekend trips one or two : not yet been
the following : and most can you do : to be done
active in : for ideas must also be : and from yellow
heart disease : motor vehicle ever so slightly : an accurate understanding
brussel sprouts : crankshaft pulley work in the : next to the
that are : some of law enforcement agencies : prescription drug coverage
heavy snoring : paranoia starts popular tourist attractions : minimize potential impacts
final phase : latest songs densely populated areas : happy belated birthday
most recently : every game vast majority of : need to escape
youth in : your foot
several times : her eyes
of our : more and
parking lot : law firms
affordable toy : scores suffer
all the : been the
be able : not know
human body : no jurisdiction
recent novel : little wings
umbilical cord : drought tolerant
with you : much of
people with : the streets
minimum wage : crude oil
whitewater rafting : unleavened bread
the time : has and
as do : any by
snowboard rental : lighter burden
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Table 2.11: 4-grams used in Experiment 3.
4-grams
be based in the : the business is on
of matter and energy : by means of local
physical and mental disabilities : feel really sad about
protection of human rights : realized that he had
affair of the heart : incredible success in the
are not the cause : and the first paper
and the country was : is of a whole
it is found to : is made at a
this appears to be : first introduced to the
is part of the : and is home to
has been approved by : who you truly are
is the time to : is the year the
part of the first : that the author is
information for the current : home of the latest
brag about having heard : crops genetically engineered to
in males and females : company policies and procedures
is the only system : in one year is
for the following reasons : be present during the
is the best it : the second is by
may be impossible to : that was collected from
and also have the : and the date is
this is the point : the time we are
guess is that the : felt to be a
was in the room : to be works of
is the first of : the following is the
part of the unique : find food for the
is to be a : is the time of
and the time is : the information is the
have the day of : is to the children
is to get you : are we to be
will feature case studies : trampled in the dust
you say you are : the role of design
is an outstanding example : need to start thinking
killed by hostile fire : metric weights and measures
starting in the new : in court was a
played a central role : making false statements in
part of the search : is to avoid a
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Table 2.12: 5-grams used in Experiment 3.
5-grams
and to see that the : to the case on the
win friends and influence people : was rumoured that he had
at the end of each : to change the lives of
is the purchase of a : or for the development of
about what can happen to : and learn everything there is
the beginning of the next : of what the year has
all water under the bridge : is at least four times
thank you so much for : always ready to help you
which they have already received : had a distinct impact on
of their registered owners and : serve as a guide to
there are plenty of opportunities : given over a long period
is less like an annoying : are paying close attention to
if we did not know : gives us a sense of
is the name of a : of the city by the
support the full range of : be able to accept a
couple of weeks or so : a very active forum for
gave birth to a beautiful : help you organize your home
used as a kind of : all of whom had the
that the changes in the : and that he is a
data that can not be : in the front or back
it did not seem to : to help you prepare for
be implemented in the future : but good enough for a
so you can find out : a chance of showers and
play an active role in : safer to keep it here
was sentenced to six months : opportunity to introduce ourselves as
here and there in the : and at the beginning the
preparation for life in the : the result of arbitrary and
has nothing to do with : ask to speak to a
with an interesting story or : occurred early in the project
ways to get rid of : at least one year after
that all words are spelled : we propose to carry out
would like to see this : were also of the opinion
appear within a few moments : keep in mind when picking
finally took the plunge and : stable at room temperature for
of the ability of his : to know and keep the
going to have to get : the various properties of the
and can be used for : the first step in the
of the last day of : may not be on the
is a leader in the : and now the process of
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2.7 Distribution of n-gram frequency ratios in

Experiment 3

Table 2.13: Descriptive statistics for 2-grams used in Experiment 3 (log-
transformed).

Mean SD Min Max
N-gram Ratio 1.13 1.01 0.00 5.35
First Word Ratio / wf1Ratio 0.18 2.44 -6.56 7.00
Second Word Ratio / wf2Ratio -0.01 2.62 -6.00 7.17

Table 2.14: Descriptive statistics for 3-grams used in Experiment 3 (log-
transformed).

Mean SD Min Max
N-gram Ratio 2.50 2.24 0.01 8.82
First Word Ratio / wf1Ratio 0.45 3.01 -6.12 5.60
Second Word Ratio / wf2Ratio -0.76 3.20 -9.89 4.19
Third Word Ratio / wf3Ratio 0.42 3.00 -6.82 7.58
First Bigram Ratio / bf1Ratio 0.54 2.97 -6.48 8.28
Second Bigram Ratio / bf2Ratio 0.78 2.55 -4.28 7.70
Third Bigram Ratio / bf3Ratio
Split-gram: w1, w3 0.41 5.29 -13.15 14.03

Table 2.15: Descriptive statistics for 4-grams used in Experiment 3 (log-
transformed).

Mean SD Min Max
N-gram Ratio 1.91 1.22 0.05 4.58
First Word Ratio / wf1Ratio -0.28 2.24 -5.19 8.33
Second Word Ratio / wf2Ratio 1.34 3.00 -5.08 6.47
Third Word Ratio / wf3Ratio 0.09 3.05 -8.36 6.51
Fourth Word Ratio / wf4Ratio -1.08 2.70 -6.39 4.58
First Bigram Ratio / bf1Ratio 1.21 2.53 -3.52 7.40
Second Bigram Ratio / bf2Ratio 1.43 4.29 -13.23 11.92
Third Bigram Ratio / bf3Ratio -0.26 3.07 -5.25 5.91
Fourth Bigram Ratio / bf4Ratio
Split-gram: w1 ,w3 -0.12 4.32 -11.62 7.30
Fifth Bigram Ratio / bf5Ratio
Split-gram: w2 ,w4 0.12 3.52 -6.85 7.97
Sixth Bigram Ratio / bf6Ratio
Split-gram: w1 ,w4 -1.27 4.75 -11.83 6.45
First Trigram Ratio / tf1Ratio 1.62 2.83 -3.84 9.30
Second Trigram Ratio / tf2Ratio 1.36 2.34 -4.75 6.30
Third Trigram Ratio / tf3Ratio
Split-gram: w1 , w2 ,w4 0.94 4.77 -9.96 12.54
Fourth Trigram Ratio / tf4Ratio
Split-gram: w1 , w3 ,w4 -0.50 4.86 -8.73 11.63
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Table 2.16: Descriptive statistics for 5-grams used in Experiment 3 (log-
transformed).

Mean SD Min Max
N-gram Ratio 2.11 2.10 0.00 7.51
First Word Ratio / wf1Ratio -0.51 2.76 -7.03 5.97
Second Word Ratio / wf2Ratio 0.72 3.38 -8.30 5.79
Third Word Ratio / wf3Ratio -0.15 4.11 -6.60 7.53
Fourth Word Ratio / wf4Ratio 0.89 3.28 -5.36 7.16
Fifth Word Ratio / wf5Ratio -0.89 2.55 -7.75 4.13
First Bigram Ratio / bf1Ratio 0.41 2.96 -6.34 7.86
Second Bigram Ratio / bf2Ratio 0.29 3.03 -8.15 7.52
Third Bigram Ratio / bf3Ratio 1.21 3.45 -8.92 8.28
Fourth Bigram Ratio / bf4Ratio 0.32 3.39 -5.98 8.73
Fifth Bigram Ratio / bf5Ratio
Split-gram: w1 ,w3 -1.17 5.71 -10.24 12.30
Sixth Bigram Ratio / bf6Ratio
Split-gram: w1 ,w4 0.56 5.12 -12.67 12.24
Seventh Bigram Ratio / bf7Ratio
Split-gram: w1 ,w5 -0.38 4.37 -6.65 15.59
Eighth Bigram Ratio / bf8Ratio
Split-gram: w2 ,w4 1.45 5.59 -9.21 16.26
Ninth Bigram Ratio / bf9Ratio
Split-gram: w2 ,w5 -0.13 5.48 -15.95 10.38
Tenth Bigram Ratio / bf10Ratio
Split-gram: w3 ,w5 -0.37 4.46 -13.69 9.69
First Trigram Ratio / tf1Ratio 0.13 3.23 -7.43 7.95
Second Trigram Ratio / tf2Ratio 1.70 2.96 -4.37 7.27
Third Trigram Ratio / tf3Ratio 0.89 3.42 -6.43 7.52
Fourth Trigram Ratio / tf4Ratio
Split-gram: w1 ,w3 ,w4 0.81 5.96 -10.73 12.22
Fifth Trigram Ratio / tf5Ratio
Split-gram: w1 ,w4 ,w5 0.14 4.82 -10.41 10.43
Sixth Trigram Ratio / tf6Ratio
Split-gram: w2 ,w4 ,w5 0.67 6.44 -12.99 15.26
Seventh Trigram Ratio / tf7Ratio
Split-gram: w1 ,w2 ,w4 1.72 4.16 -6.58 10.98
Eighth Trigram Ratio / tf8Ratio
Split-gram: w1 ,w2 ,w5 0.18 5.95 -11.23 15.10
First Quadgram Ratio / qf1Ratio 2.03 3.00 -2.87 9.20
Second Quadgram Ratio / qf2Ratio 1.78 2.45 -2.45 6.52
Third Quadgram Ratio / qf3Ratio
Split-gram: w1 ,w3 ,w4 ,w5 -0.26 5.98 -11.60 14.02
Fourth Quadgram Ratio / qf4Ratio
Split-gram: w1 ,w2 ,w4 ,w5 -0.26 4.65 -9.92 10.96
Fifth Quadgram Ratio / qf5Ratio
Split-gram: w1 ,w2 ,w3 ,w5 1.69 5.44 -8.84 11.63
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Chapter 3

Probabilistic information
influences eye movements when
reading trigrams.

In the previous chapter we learned about our abilities to remember n-

grams. How does this n-gram knowledge influence comprehension? N-

grams contain a wealth of probabilistic information that is potentially

useful to readers. To better understand which information is relevant

and how it is used by the language system, we examined eye move-

ments of participants while they read 1000 trigrams that were sampled

strategically from an extremely large, diverse set of trigrams selected

from a corpus of English web pages. Each stimulus was sampled from

one of 1000 different combinations of n-gram frequency bands, provid-

ing unprecedented coverage of the probability space of trigrams. An

examination of reading times for n-grams showed that having a higher

frequency has a generally facilitatory effect, but there were also complex,

non-linear interactions between n-gram frequency and other probabilis-

tic measures. The probability of making one or more regressive saccades

during reading was found to be best predicted by a model that contained

non-linear interactions that included frequency and other measures of

information. The way we read a trigram is intimately linked to the

probabilistic information that it contains.
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3.1 Introduction

If one thinks of written language as a stream of words, then reading is noth-

ing more than identifying those words as quickly and accurately as possible.

There is a wealth of information contained in this stream, and experienced

readers may be taking advantage of this information to improve the efficiency

of their reading. In particular, the probabilistic information contained in word

transitions and multi-word transitions allow a reader to develop some expec-

tations about what words will appear ahead in the stream. There is a natural

bias towards looking at words as the key unit of languange in this stream, but

there is no clear reason for this bias. The contents of the language stream

could be equally well thought of as a stream of groups of words — multi-word

units known as n-grams. The psycholinguistics of n-gram processing is a new

and vibrant area. Results from initial studies of n-gram reading offer evidence

from a wide variety of paradigms suggesting that readers are sensitive to n-

gram information (see Shaoul & Westbury, 2011 for a review). The question I

will attempt to address in this chapter is: which different types of probabilistic

information are contributing to n-gram reading efficiency and how do they all

interact? By looking at the timing of eye motion when reading trigrams, I

hope to explore this complex problem.

Why is this problem complex? Corpus-based sources of probabilistic in-

formation entail an explosion in the number of potential predictors for each

stimulus. In particular, for every new predictor found, the number of possible

ways that this predictor can interact with other known predictors needs to be

considered. In this chapter I will look at trigrams and their component words

and bigrams. The number of potential interactions that could be included in

a model increases quickly. Yet trigrams are less complex than larger n-grams.

I chose to study trigrams because they are complex enough to get at the in-

terplay of probabilistic information while being computationally tractable.

Our goal in this exploration was to seek out empirical confirmation that

both n-gram and and inter-lexical probability measures contribute to the way

that we read sequences of words. These inter-lexical predictors, such as bigram

72



entropy, are new and, to my knowledge, no other studies have looked at the

impact of probability and entropy on eye movement when reading n-grams.

In new areas of psycholinguistics it is unwise to limit in any way the scope of

the investigation by imposing a priori experimental hypotheses about how my

measures of probability will influence behavior. This exploration of trigram

reading is guided by a desire to explore the interactions of all possible inputs to

the reading system, and by finding which statistical model best fits the data.

By exploring as much of the stimulus space as possible I hope to stimulate the

development of new theories of reading.

Why are eye-movements an interesting entry-point for studying n-gram

effects? The theoretical issue is whether cognition is rational or not. Anderson

(1990) proposed approaching cognitive problems by defining the goals and

constraints involved, and then developing a model that implements an optimal

solution within those constraints. After comparing the model’s performance

with that of humans we can think about the similarities and this will help us

see if the mind is actually using the best method of solving the problem.

The problem faced by the mind when trying to read is that if connecting

visual information with linguistic meaning. One part of this very complex

process is the placement of visual fixations, the timing of these fixations and

saccades. Recent work by Levy, Bicknell, Slattery, and Rayner (2009) has

provided evidence that the reading system makes use of uncertainty about

context when processing new words, showing that the if information is available

that will improve the ability to process the meaning of text, the visual system

will take advantage of this information. The theoretical question that will

be addressed in the chapter is: does the visual system take advantage of the

n-gram information that has amassed as it has accumulated many years of

experience?

Let’s now delve into the relevant work on the reading system’s relation to a

wide variety of probabilistic information contained in streams of language. The

most relevant work on n-gram processing from Chapter 1 will be highlighted

and described in more detail below.

Some interesting findings have been come from in experiments on read-
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ing multimorphemic words (derived words or compound words). Multimor-

phemic word reading research is relevant to my research because the way that

morphemes make up multimorphemic words may have similarities to the way

words make up n-grams. Studies of eye movement when reading multimor-

phemic words have produced advances in our understanding of compound

word reading. These models are allowing researched to model and predict

the time-course of compound word reading. Kuperman et al. (2008), Kuper-

man, Dambacher, et al. (2010), Kuperman et al. (2009), and Juhasz and

Berkowitz (2011) have all found interactions between probabilistic variables.

All these studies found that morphological complexity or relative entropy pre-

dicts processing times for compound words. The consensus from these studies

is that there are multiple routes to processing compound words: a whole word

route, a lexeme route and perhaps other routes. They also find trade-offs and

interactions between these routes. The Probabilistic Model of Information

Sources (PROMISE) model proposed by Kuperman et al. (2009) is one of

the first models to explain the evidence from multimorphemic word reading

— it is a model that includes probabilistic information as a predictor of ease

of lexical access. Lexical processing is easier and faster for words that carry

more information. It is a parallel, interactive model that allows for the simul-

taneous processing of information at multiple levels (from letters up to words).

Due to this dynamic, interactive nature, they state that “the effect of virtu-

ally any single information source on the speed of word recognition can range

from facilitatory to negligibly small to inhibitory depending on the effects of

other such sources and the likelihoods that those other sources are available

for processing.” (Kuperman, Bertram, & Baayen, 2010, p. 95). They go on to

point out that considering any one information source in isolation from others

by keeping the values of other information sources constant (i.e. by match-

ing stimuli) is bound to miss the essentially interactive use of information in

multimorphemic word recognition. I will heed this warning as I study n-gram

reading, and avoid the use of factorial designs.

As noted in Chapter 1, there is evidence that n-gram processing is in-

fluenced by the frequency of that n-gram, independent of the frequency of its
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component words and bigrams. Bannard and Matthews (2008), Matthews and

Bannard (2010) and Arnon and Clark (2011) found this effect in children’s pro-

duction of language. Arnon and Snider (2010), Tremblay and Baayen (2010)

and Tremblay et al. (2011) found it in the reading speed and memory retrieval

pattern of adults. Tremblay and Tucker (2011) found it in the production of

n-grams by adults.

One study has used eye movement to look at n-gram frequency effects.

Siyanova-Chanturia et al. (2011) presented both L1 and L2 subjects with

two types of 3-grams: binomial phrases (bride and groom) and those same

phrases reversed (groom and bride). These two types of n-grams are naturally

very closely matched on many lexical variables, and they proposed that any

differences in processing must arise from effects of n-gram frequency. The

binomial 3-grams had an average frequency in the BNC that was 10 times that

of the reversed 3-grams (2.473 per million versus 0.274 per million). Thirty

3-grams of each type were embedded in sentences and read by participants in

the eye tracker. Measuring eye movements they found that binomial phrases

were read faster than reversed phrases by L1 speakers but not L2 speakers.

They also found that phrasal frequency facilitated reading even after taking

into account the effect of phrase type, providing more evidence that increased

exposure to an n-gram contributes to its entrenchment. The stimuli used in this

experiment were culled from a very small subset of the full range of 3-grams,

which helped eliminate unwanted variability, but limits the applicability of the

results to non-binomial phrases.

Columbus, Bolger, and Baayen (2010, 2011) also looked at the effect of fre-

quency and idiomaticity on word fixation times when reading n-gram embed-

ded in sentences. They found that for semantically transparent, non-idiomatic

n-grams, there were shorter first fixation durations for words in n-grams with

higher frequencies. Kliegl, Nuthmann, and Engbert (2006) describes the mas-

sive impact of sentence context on word reading, and for this reason I chose

to use bare trigrams rather than trigrams embedded in sentences. This type

of stimuli offers the possibility of consistent fixation of the first word of the

trigram, and eliminates the affect of previous context on the way the trigram
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is read.

Our goal in this study was to look at the way that people read groups of

three words, which I refer to as trigrams. One major methodological issue

with the research done so far is that the number of stimuli in each experiment

was relatively small, and therefore the portion of frequency space covered by

these experiments was also small relative to the size of the frequency space of all

trigrams used in English. Undoubtedly there are parts of the trigram frequency

space that were left untouched by all of these experiments. The stimuli in my

experiment were selected to provide the broadest possible coverage of all of the

frequency spectra with the aim of finding if the relationship between whole

trigram frequency and reading time would hold true for this representative

sample. Another issue that arises with the research done so far is that the

temporal resolution of the data collected has in general been low. Collecting

response times for the reading of the whole n-gram, as well as reading times for

each word, it becomes possible to see how the reading of n-grams progresses.

How much of an impact will there be of whole-n-gram measures on the reading

of the parts? In compound word reading Kuperman et al. (2008) found that

whole word frequency influenced first fixation durations, so there is a potential

for this type of effect to be found in n-grams as well.

3.2 Probabilistic Information

In the work discussed above several measures of probability and information

have been used in the analysis of n-grams. N-gram frequencies are clearly

the probability of an n-gram occurring in a language stream, and have been

found to predict familiarity ratings (see Section 2.2.4). To move beyond sim-

ple frequency, I will look at other measures that are derived from frequency

counts. The first derived measure that I will be looking at is Pointwise Mu-

tual Information (PMI, Fano & Hawkins, 1961), which comes from the field

of information science. It is used to measure the degree to which words in

a stream occur together more frequently than would be expected by chance.

Increased PMI means a stronger association between the words, while a lower
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PMI means that the co-occurrence of the words is more likely due to chance.

To put it another way, high PMI n-grams are those with much greater coher-

ence than is expected by chance (N. C. Ellis & Simpson-Vlach, 2009; Bell et

al., 2009; Pluymaekers, Ernestus, & Baayen, 2005b; Gregory, Raymond, Bell,

Fosler-Lussier, & Jurafsky, 1999). I calculated the PMI in the following way

for the trigrams:

PMItrigram = log

(
Ptrigram

Pw1 × Pw2 × Pw3

)
(3.1)

where Pw1 is the probability of the first word of the trigram. For all of my

calculations I used the log transformed frequency of the item in the Google

Web1T corpus (Brants & Franz, 2006) as an estimate of the probability of the

item. There have been two studies so far that use PMI in relation to n-gram

processing. N. C. Ellis and Simpson-Vlach (2009) looked at reading times of

n-grams and used PMI and n-gram frequency to try to predict reading time

performance. They found that n-gram frequency was not a strong predictor

of reading time, whereas PMI was.

PMI has been called a measure of lexical association or coherence by N. C.

Ellis and Simpson-Vlach (2009). There have been criticisms of the PMI mea-

sure, in particular by Kilgarriff (2005), who noted that PMI is problematic

because it assumes that the distributions of words in an n-gram are indepen-

dent. His argument is that this cannot be true because non-random contextual

relationships are what define language, so words never occur at random. For

this reason, PMI can be said to over-estimate the true amount of association

between words in an n-gram. Another aspect of n-gram frequencies and n-

gram PMI measures is that they are not conditional in any way. They provide

valuable information about the nature of an n-gram, but they do not take

into account local context and local predictability. If my theory of n-gram

processing is truly information-centric, it should include contextual measures.

One way to measure contextual regularities is to use entropy or information

content.

The amount of information in a trigram can be looked at in several ways. I

looked at three types of information in particular: the final bigram information
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content and the second and third words’ information content. Information

content is the average amount of information conveyed by a particular n-gram,

and it is a function of the probability of each n-gram given each possible context

C. This measure is similar to entropy in that it measures the disorder, or the

unpredictability of an n-gram; the more contexts an n-gram frequently appears

in, the less predictable it will be from contextual cues. I calculated the average

information content for n-grams in the same way that Piantadosi, Tily, and

Gibson (2011) did for words. The average negative conditional log probability

of an n-gram given its contexts, or its average surprisal, is estimated from

corpus frequencies in the follow way:

ICNgram = − 1

N

N∑
i=1

logP (Ngram|C = ci) (3.2)

ICNgram = − 1

N

N∑
i=1

log

(
P (Ngram

⋂
C = ci)

P (C = ci)

)
(3.3)

where Ngram is a bigram or word, N is the number of times the Ngram appears

in the corpus and C is a context word or bigram. To account for the lack of

access to the original Web1T corpus to calculate the IC, a token-count weighted

average was used across all the contexts.

The IC can be thought of as the average surprisal, averaged across all of

the occurrences of the n-gram in the corpus. To make the idea of IC clearer, I

will use as an example the trigram was so ludicrously, one of the stimuli that

will be used later on in this Chapter. I use the acronym w3IC to refer to the

IC for the third word in this trigram, ludicrously. The w3IC for ludicrously

is 12, the highest in the stimulus set. In contrast, an example of a final word

with a small w3IC would be the final word in the trigram front porch of ( of,

w3IC = 1.23). Essentially the w3IC captures, on average, how surprising it

is to see the third word, given the first two. High average surprisal means

that the third word is highly informative. To capture the informativeness of

the entire n-gram, I calculated the sum of all the average information content

values w2IC, w3IC and b2IC. I call this number total information content

(TIC). This summing allows me to capture the overall local informativeness of

the n-gram and its components in one variable.
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I am not the first to look at information and PMI when studying n-grams.

Tremblay and Tucker (2011) have recently used probabilistic measures includ-

ing PMI and conditional probability while studying n-gram processing. They

asked their participants to read 462 quadragrams out loud. When choosing

their quadragrams, they did not put restrictions on the completeness of the n-

grams, allowing both complete ones (I don’t really know) and incomplete ones

(at the age of). They looked at n-gram frequency, conditional probability, and

PMI to see how these measures interacted in their models to predict onset la-

tency and the production duration. Their measure of conditional probability

is similar to my measure of information content, allowing me to easily compare

my results to theirs. For onset latency they found a facilitative effect of phrasal

completeness, and they found interactions between frequency and conditional

probability. For the production durations, n-gram frequencies were dominant,

with less contribution from conditional probability and PMI. I will measure

the total duration of reading the trigram, which is comparable to the onset

latency discussed in Tremblay and Tucker (2011). If I find a negative effect

of phrase completeness on reading time, a negative effect of frequency, and

interactions between PMI and information content, then I will have replicated

their findings.

3.3 Methods

3.3.1 Participants

Twenty-one native speakers of Canadian English took part in the eye move-

ment experiment. All participants were recruited from introductory Linguistics

courses offered by the Department of Linguistics at the University of Alberta.

Participants received partial course credit for their participation. All par-

ticipants had normal or corrected-to-normal vision. Ethics approval for this

experiment was obtained from the University of Alberta before data was col-

lected.
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3.3.2 Materials

I used the Google Web1T n-gram data (Brants & Franz, 2006) as my source of

the internal frequencies for all 258,599,481 lower-case trigrams in the corpus.

Each trigram has seven frequencies associated with it: w1f (first word), w2f

(second word), w3f (third word), b1f (first bigram), b2f (second bigram), b3f

(split gram of w1 and w3) and the whole trigram frequency. I then selectively

sampled from the full set of approximately 300 million trigrams in such a way

that there was a representative trigram from each of the possible combinations

of values of the log10 of the frequency of each of the seven components. An

example of one of these frequency band combinations is shown in Figure 3.1.

Any trigram that satisfied
this set of inequalities:

0.1 ≤ w1f ≤ 1
1 ≤ w2f ≤ 10

0.01 ≤ w3f ≤ 0.1
0.001 ≤ b1f ≤ 0.01

0.0001 ≤ b2f ≤ 0.001
10 ≤ b3f ≤ 100

and
0.00001 ≤ Trigram Frequency

≤ 0.0001

Figure 3.1: One of the 1000 frequency bands that were used to select stimuli.

The total number of unique frequency bins that contained one or more

trigrams from the full set of 300 million trigrams was about 27,000. If I used

one trigram from each of these bins, the number of stimuli to present would be

unreasonably large. I instead randomly sampled 1000 frequency bands from

this set of 27,000 frequency bands, and then randomly sampled one trigram

from all the trigrams in each of the 1000 frequency bands.

Lemke, Tremblay, and Tucker (2009) asked subjects to produce 4-grams

and found that n-grams that were full constituents (I don’t want to) were

produced faster that those that were not (in the middle of). Most of the

trigrams in this experiment were not syntactic constituents (and into the), but
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there were a minority that could conceivably be uttered in conversation (such

as chopped fresh marjoram). To avoid any confounds that could be linked to

constituency, I measured the subjective completeness of all of the stimuli. I

recruited 29 new participants (all graduate students) who did not participate

in the eye-tracking experiment to rate the completeness of 250 stimuli (the set

of 1000 stimuli was divided into 4 parts). Each participant chose the word

YES or NO for each stimulus as an answer to the question ”Could this phrase

be used on its own?”. The average of these ratings was calculated for each

stimulus, and as expected, the majority of items were judged by the majority

of the raters to be incomplete. 72% of the items had an average rating below

0.5 (mean: 0.31, median: 0.22, standard deviation:0.3). The mean rating is

included in the list of predictors in Table 3.1 as mncmplt.

All analyses were done using the R language and environment, version

2.13 (R Development Core Team, 2009), the mgcv package (Wood, 2006), the

lme4 package (Pinheiro & Bates, 2009) and the languageR package (Baayen

et al., 2008).

3.3.3 Procedure

The stimuli were presented on a CRT monitor using the Experiment Builder

™ software (SR Research Ltd., Mississauga, Ontario, Canada). The data were

collected using an Eyelink II ™ head-mounted eye tracking system (SR Research

Ltd., Mississauga, Ontario, Canada). Eye movements were collected using

pupil-only sampling at a rate of 500Hz.

Each experiment session was preceded by 10 practice trials, with rest and

recalibration breaks occurring after each block (approximately every 5 min-

utes). Both the practice and 1000 experimental items were randomly ordered

for each participant. Participants were seated at a comfortable distance from

the screen (approximately 70 cm). They were asked to silently read the phrases

for meaning as quickly and as naturally as possible. The trigrams were pre-

sented in white Courier font on a black screen following a fixation cross. All

stimuli were presented on the left of the screen, halfway from the top. The

participant read the trigram, and then cued the next trigram by moving their
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gaze to an invisible boundary (100 pixels wide) on the right side of the monitor.

The gaze-contingent cue was used in this experiment to prevent participants

from moving their eyes down to a keyboard, foot-pedal or mouse before the

trial ended, a likely outcome given that only three words were presented at a

time. Another benefit was that the gaze-contingent cue prevented re-reading

of the trigram.

Since some of my pilot data suggested that, given the opportunity, subjects

tended to move their eyes to the invisible boundary without actually fixating on

any of the words, I added an extra task to ensure that participants processed

the meaning of the stimuli. On 5% of the trials (50 trials in all randomly

interspersed with the other trials) participants were asked to create sentences

using the most recently seen trigram and a cue word. These cue words were

presented in the top left region of the screen after the trigram was removed

from the display. An example of this type of trial would be: seeing the trigram

in the road then seeing the cue word fork. A plausible utterance would be

There was a fork in the road. Responses were manually scored by the authors

as grammatically plausible (0), partially plausible (-0.5), or implausible (-1)

by the experimenters. All participants had scores above 90% on the sentence

creation task, so none were excluded. These sentence creation trials were

removed from the data files and were not included in any of my analyses.

The stimuli were presented in white, fixed-pitch font (Courier New) on

a black screen, following a fixation cross presented between two and three

character spaces into the first word of the trigram. All stimuli were presented

from the centre left of the screen, while instructions were presented centrally

from the top, and key words for the sentence creation task were presented in

the top left region of the screen. Data from two participants was not included

due to technical errors during data acquisition.

All participants completed the task in under two hours, and none reported

any adverse effects due to the duration of the experiment.
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3.3.4 Data Preparation

I gathered information from the Google Web1T data set and other information

from my experiment to create my initial list of predictors, listed in Table 3.1.

Following a convention from Kuperman, Bertram, and Baayen (2010), when

the abbreviation for a predictor is preceded by the letter s, the predictor has

been centred and scaled (i.e. PMI becomes sPMI).

As noted by Matthews and Bannard (2010) and Tremblay and Tucker

(2011), measures of lexical and n-gram probability are inevitably highly inter-

correlated (for example, a trigram with a high frequency initial bigram will

almost always have a high frequency word in it). The statistical analysis of

experiments with highly inter-correlated predictors can be problematic, par-

ticularly when using multivariate regression. When left untouched, predictor

co-linearity can cause estimates of slopes to be suppressed or enhanced (Fried-

man & Wall, 2005). Therefore, before proceeding with any inference, I ana-

lyzed the degree of multi-collinearity in the predictors 1. Many of the predictors

are highly correlated; in particular sPMI is correlated with the frequency of

the first and second words and the frequency of the first bigram. The intra-

experimental word frequency measures are also problematic: approximately

60% of all the words used in the trigrams I presented were seen more than

once and so I expected the experimental frequency of the words in the 1000

trigrams to be strongly related to their corpus frequencies, which they were

(r > 0.73, p < 0.001 for all three). I measured the degree of the problem by

calculating the condition number, κ (Belsley, Kuh, & Welsch, 2004), which was

κ = 5.5e + 11, where a condition number greater than 30 indicates a danger-

ous amount of collinearity. My approach to reducing multi-collinearity was to

isolate a subset of predictors that were highly inter-correlated and were never

going to be analyzed individually in my regression models. The these eleven

predictors that I chose are listed in Table 3.1. I used Principle Component

Analysis (PCA) to extract orthogonal principle components from this set, and

after the application of PCA I found that the first five principle components

1A visualization of the multi-collinearity is given in Figure 3.7 in Section 3.10
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explained 95% of variance in the predictors. The new set of predictors, with

eleven predictors replaced by the five principle components, is shown in Fig-

ure 3.8. Strong correlations persisted between PMI and two of the principal

components (PC1 and PC2) (r = 0.50 and r = 0.59). Despite these intercor-

relations, the condition number fell to an acceptable level of κ = 17 . The

change in the pattern of intercorrelations after PCA is shown in Appendix

3.10.

Name Abbreviation Description Included
in PCA

N-gram Frequency ngramfreq The corpus frequency of the n-gram. No
Pointwise Mutual Information PMI The discrepancy between the probabil-

ity of the words occurring together given
their joint distribution and the probabil-
ity of their occurring together based only
their individual distributions, assuming
independence.

No

Second Word IC w2IC The average amount of information con-
tained in the second word of a trigram,
given the first word of the trigram as con-
text.

No

Third Word IC w3IC The average amount of information con-
tained in the third word of a trigram,
given the first two words of the trigram
as context.

No

Second Bigram IC b2IC The average amount of information con-
tained in the second bigram of a trigram,
given the first word of the trigram as con-
text.

No

Total IC TIC The sum of the above three IC values for
each trigram.

No

Closed Class Word cc1, cc2, cc3 Closed class word in positions 1, 2 or 3 No
First Word Frequency w1f The corpus frequency of the first word. Yes
Second Word Frequency w2f The corpus frequency of the second word. Yes
Third Word Frequency w3f The corpus frequency of the third word. Yes
First Bigram Frequency b1f The corpus frequency of the first bigram. Yes
Second Bigram Frequency b2f The corpus frequency of the second bi-

gram.
Yes

Third Bigram Frequency b3f The corpus frequency of the third bigram,
the split-gram.

Yes

First Word Exp. Frequency xfq1 The within-experiment frequency of the
first word.

Yes

Second Word Exp. Frequency xfq2 The within-experiment frequency of the
second word.

Yes

Third Word Exp. Frequency xfq3 The within-experiment frequency of the
third word.

Yes

Ngram Length length Length of the n-gram in letters, including
spaces.

Yes

Completeness mncmplt Mean rating of completeness. Yes

Table 3.1: Inputs to the statistical models. All frequencies are log-transformed.
.
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3.4 Statistical Methodology

In all of the following analyses, I used the following methodology. First, I

tested for non-linear relationships between the predictors of interest. If there

were any non-linear relationships, I selected to use Generalized Additive Mod-

els, or GAMs (Wood, 2006), to better understand my data (for an extensive

exploration of GAMs in psycholinguistic experimental analyses, see Baayen,

Kuperman, & Bertram, 2010). If there were no non-linear relationships, I used

Linear Mixed Effects models instead (Bates, in preparation; Pinheiro & Bates,

2009).

I also checked each dependent measure for temporal inter-dependencies

and whenever I found a strong correlation between the measurement of the

dependent variable in a trial and same measurement in the previous trial, I

added the previous trial’s duration into all models. I also checked for practice

effects, and when they existed, I included the standardized trial number in

my analyses. This allowed me to explain any variability in the data due to

experimental position.

A stepwise model selection process was applied during these analyses in

which two nested models were compared to see which one had the best balance

between fit and complexity. Predictors were added (or subtracted) one by one

and only retained more complex models that were improvements over simpler

models.

Finally to see if the models were being unduly impacted by outliers, I

applied a model criticism method in which I refitted the model to a subset of

the dataset that contained all data points that had residuals that were over

2.5 standard deviations larger or smaller than the mean of the residuals. In all

of the following analyses neither the direction nor the reliability of the effects

differed between the original model and the model with the data points that

caused the residual outliers removed.
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3.5 Results

In the eye-tracking paradigm both the location and timing of fixations is

recorded, meaning that there are many possible dependent measures that I

could attempt to predict with my set of predictors. My interest is the sensi-

tivity of the reading system to probabilistic information contained within the

trigrams, and so I chose to analyze measures that were likely to reflect the in-

fluence of this type of information. I first looked at the sum of all the fixations

when reading the trigram, the most directly comparable measure to reading

time as measured in many other studies. I then looked at the existence of

regressive saccades in each trial as well as the total number of fixations in a

trial. Finally, I broke the total time into two shorter intervals: the gaze time

for the first word and the gaze time for the first and second words.

3.5.1 First Analysis: Total Duration

Our first analysis was of the total duration of the trial, the sum of the durations

of all of the fixations. Based on the previous studies (Arnon & Snider, 2010;

Bannard & Matthews, 2008; Matthews & Bannard, 2010; Tremblay & Baayen,

2010; Tremblay & Tucker, 2011), I predicted that there would be a facilitation

for trigrams that were more frequent. The stimulus set was larger than the sets

used in these previous studies, and contained a broader sampling of n-grams.

The reading durations in the data set were not normally distributed, vio-

lating the normality assumption of the statistical models. The standard log

and inverse transformations did not produce normally distributed transformed

reading durations. To find a better way to transform the reading times so that

they would be approximately normally distributed, I used the method de-

scribed by Box and Cox (1964) and found that by exponentiating the RTs

to the power of 0.18 the RTs were approximately normally distributed. Af-

ter transforming the reading times, the skewness, g1, of the distribution was

reduced from 1.2 to 0.3. In all references to the total reading time in the

following analyses, transformed reading times were used.
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Table 3.2: Model Comparisons for models predicting total reading time for a
trigram. ∆AIC denotes the change in AIC between two models.

AIC ∆AIC

Relative
Model
Likelihood

Model 1: Random Intercepts for Participant and fixed effects of PC1-
PC5, sTrial and PrevTrialDur

-13617

Model 2: Model 1 + cc2 -13699 -83 8.4e+17
Model 3: Model 2 + cc3 -13721 -22 5.8e+04
Model 4: Model 3 + n-gram frequency ⊗ sPMI -13974 -252 6.1e+54
Model 5: Model 4 + sTIC ⊗ sPMI -14043 -70 1.3e+15

I created a base model, Model 1, which was made up of an additive combi-

nation of the sTrial, PrevTrialDur, and the principal components PC1 to PC5

(cc1 did not contribute in any of the models and was therefore removed from

all models). This model also contained random intercepts for participants. I

then compared this base model to models that were identical except that it

included additive and non-linear interactive effects for n-gram frequency, infor-

mation content and PMI. I compared these models to Model 1, and when the

new model was superior to the simpler model as judged by a Log Likelihood

Ratio Test (LLRT), it was retained.

A comparison of the relative fitness of all the models is shown in Table 3.2.

To make clearer the amount of improvement in these models, I transformed

the difference in the AIC values for these nested models (∆AIC) into a measure

of relative model likelihood. Relative model likelihood is calculated using the

difference in the AIC values for the models, as described by Burnham and

Anderson (2002).

Relative Model Likelihood = e
−∆AIC

2 . (3.4)

In the first step, Model 2 improved on Model 1 by adding linear effects for the

lexical class of the second word, cc2. Model 3 added the effect of cc3, and then

in Model 4 I added a non-linear interaction (called a tensor product smooth

in GAMs2) between n-gram frequency and pointwise mutual information. In

Model 5, the best model, I added a tensor product smooth for TIC and PMI.

All other non-linear interactions were investigated, but none increased the

2This is a smooth surface that is a three-dimensional version of a smooth curved line.
The symbol used to denote the tensor product is ⊗.
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model likelihood. TIC improved the fix of the best model, and later additions

of w2IC, w3IC and b2IC did not, so they were left out of all models.

β̄ SE(β) t p|t|
Intercept 2.577 0.030 85.07 0
PC1 0.023 0.002 11.24 3.4e-29
PC2 0.037 0.002 19.08 2.2e-80
PC3 -0.011 0.001 -9.65 5.4e-22
PC4 -0.022 0.002 -12.76 4.1e-37
PC5 -0.026 0.002 -13.18 1.8e-39
sTrial -0.042 0.001 -32.49 5.8e-225
PrevTrialDur 0.271 0.007 40.35 0
cc2 0.033 0.004 8.07 7.7e-16
cc3 -0.017 0.004 -4.14 3.5e-05

Table 3.3: Coefficients for linear predictors in the best fitting GAM for the
total reading duration of the trigrams.

The parametric coefficients for Model 5 are shown in Table 3.3. The prin-

cipal components PC1 to PC5 all contributed to the model fit, showing that

word and bigram frequencies, length and n-gram completeness were involved

in determining reading time. PC4 is heavily loaded on the completeness rating

with a positive correlation, and since the coefficient for PC4 in this model is

negative, trigrams that were rated higher in completeness were read faster.

There were strong effects of trial number (negative, showing a practice effect)

and reading time on the previous trial (positive, showing the a spillover effect

of reading time to the next trial). The open/closed class category of the first

word was eliminated during model selection, but the lexical class of the sec-

ond and third words remained in the final model. Having a closed class word

in the second position of a trigram caused the reading time to increase while

having a closed class word in the third position caused it to decrease. There

were no linear effects of n-gram frequency effect, PMI or TIC, but there were

non-linear interactions for all three, as we shall see.

Two non-linear interactions were found during model selection. The es-

timated degrees of freedom for these tensor product terms and the smooth
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Table 3.4: Model Coefficients for smooth predictors in the best fitting GAM for the total reading

duration of the trigrams. The ⊗ symbol denotes the tensor product.
Estimated Df Estimated

Residual Df
F pbayseian

N-gram Frequency ⊗ sPMI 14.83 17.26 8.30 8.4e-22
sTIC ⊗ sPMI 11.05 13.33 5.98 1.8e-11
Random Intercept for Subject (Spline) 17.92 18.00 167.10 0

term for the random intercepts for participants are shown in Table 3.4. The

first non-linear interaction was between n-gram frequency and PMI, visualized

in Figure 3.2A, the largest slowdown occurring when the log transformed fre-

quency was between -2 and -4. This pattern is suggestive of an interference

effect: if PMI reflects an n-gram’s cohesiveness, then a lack of cohesiveness

interfered with the facilitation that comes from exposure and entrenchment,

except for the lowest frequency trigrams, where high PMI caused a slight slow-

down.

The second non-linear interaction, shown in Figure 3.2B, was between TIC

and PMI. From a visual inspection of the contour plot, it appears that low

TIC n-grams were read more slowly at the extremes of the range sPMI. When

sPMI was not extreme (between -1 and 1), trigrams were read the fastest,

independent of their TIC. When the sPMI was smallest (-1 to -2), both high

TIC and low TIC trigrams were read the slowest. When ssPMI was high

(greater than 2) and sTIC was low (less than 0), there was another slowdown.

The forces driving these relationships will be explored further in the last part

of this chapter, Section 3.6.

3.5.2 Discussion

This result provides evidence that my model predicting n-gram reading time

had to be more complex than those presented by Arnon and Snider (2010),

Siyanova-Chanturia et al. (2011) and Tremblay and Tucker (2011). Both n-

gram frequency and TIC interacted with PMI in my model. This is evidence

that all of these probabilistic measures are important to the reading system

— leaving any of them out would create an incomplete model. The way that
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Figure 3.2: A) Partial Effects of N-gram Frequency and Pointwise Mutual
Information Tensor Product Smooths on Total Reading Time. B) Partial
Effects of Total Information Content and Pointwise Mutual Information Tensor
Product Smooths on Total Reading Time. The dependent measure has been
transformed back to milliseconds before plotting, using the reverse of the Box-
Cox transformation.
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they interact can provide insight into how information, cohesiveness and en-

trenchment come together to produce the observed behaviour. Importantly,

these effects were part of a multivariate model that included linear effects for

the other predictors: whether the n-gram is judged to be a constituent or not,

the word and bigram frequencies, and the length of the n-gram.

From total reading time I will move on to the second dependent measure,

regressive saccades.

3.5.3 Second Analysis: Regressive Saccades

The existence of regressive saccades (both intra-word and inter-word) within

a trial was another outcome I examined. Regressive saccades occur when the

first pass at reading does not give sufficient information to the reader (Vitu &

McConkie, 2000). The location of the beginning and end point of the regressive

saccade are also interesting to analyze. Probabilistic information about the n-

grams might be able to help predict the location of the regressive saccade,

but due to the complexity of the analysis, it was not attempted. Would my

measures of probability and information content be predictive of the existence

of regressive saccades? As with my analysis of reading duration, I proceeded

with a similar forward stepwise model selection analysis, attempting to add all

of my predictors to increasingly complex models. The dependent measure was

a binary variable that I set to 1 if there were one or more regressive saccades

in a trial. Most of the trials (74.9%) contained no regressive saccades, 21.6%

contained one, 3.1% contained two, 0.4% contained three and 0.1% contained

four, meaning that 25.1% of the trials had one or more saccades.

Since the outcome is binary in nature (no regressive saccades vs. one or

more regressive saccades), I proceeded to use logistic GAMs with a logit link

function instead of the Gaussian type. I also included a random intercept for

each subject in all of the models, but did not include random intercepts for

each item as this did not improve the fitness of any of the models.

To begin the stepwise forward model selection, I built a base GAM model,

Model 1, using only the parametric model elements (PC1-PC5, cc1-cc3, sTrial

91



Table 3.5: Model Comparisons for models predicting probability of one or
more regressive saccades in a trial. ∆AIC denotes the change in AIC between
two models.

AIC ∆AIC

Relative
Model
Likelihood

Model 1: Random intercepts for participant, PC1-PC5, cc3, sTrial
and Previous Trial Regressive Saccade

17363

Model 2: Model 1 + n-gram frequency ⊗ sTIC 17342 -21 4e+04
Model 3: Model 2 + sPMI ⊗ sTIC 17268 -74 1e+16

and Previous Trial Regressive Saccade) and the random intercepts for each

subject. I then added interactions of interest one by one, and only retained

models that were superior to a simpler model when a Log Likelihood Ratio

Test (LLRT) was performed. A listing of all these nested models and their

AIC measure of model fitness is shown in Table 3.5. After each new term is

added, I report the relative model likelihood of each model when compared to

the previous model. Each of the non-linear interactions added caused the new

model to be over 100 times more likely than the previous model, confirming the

relevance of all of the interactions to improving the final model. Model 2 added

the non-linear interaction of trigram frequency and total information content

to Model 1. Finally, Model 3 added the non-linear interaction of pointwise

mutual information and total information content to Model 2. First I will

explain the parametric effects of the predictors shown in Table 3.6, and then

move on to the non-linear interactions listed in Table 3.7.

Each of the principal components made a contribution, accounting for the

effects of unigram frequencies, bigram frequencies, length and completeness.

The effect of having a closed class word in the first or second positions increased

the probability of making a regressive saccade, whereas having a closed class

word in the third position was inhibitory for regressive saccades. There was

also a decrease in the probability of making a regressive saccade as participants

progressed in the experiment, likely a practice effect. There was an increase

in the probability of making a regressive saccade when a participant made

one or more regressive saccades on the immediately preceding trial, an inter-

92



−8 −6 −4 −2 0 2

−
3

−
2

−
1

0
1

2
3

A

 Log Ngram
Frequency 

 s
T

IC
 

 0.16 

 0.16 

 0.18 

 0.18 

 0.2 

 0.22 
 0.22 

 0.24  0.26 

−2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

B

 sPMI 

 s
T

IC
 

 0.1 

 0.15 

 0.15 

 0
.2

 

 0
.2

 

 0
.2

5 

 0.3  0.35 

 0.4 
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trial for A) Interaction between n-gram frequency and sTIC. B) Interaction
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β̄ SE(β) z p|z|
Intercept -1.453 0.194 -7.48 7.7e-14
PC1 0.138 0.025 5.62 1.9e-08
PC2 0.134 0.026 5.17 2.4e-07
PC3 -0.091 0.020 -4.54 5.7e-06
PC4 -0.195 0.025 -7.78 7.2e-15
PC5 0.263 0.029 8.93 4.1e-19
cc1 0.239 0.061 3.92 8.8e-05
cc2 0.388 0.062 6.22 5e-10
cc3 -0.485 0.062 -7.80 6.2e-15
sTrial -0.369 0.020 -18.93 7e-80
Regr Sacc on Prev Trial 0.238 0.043 5.58 2.4e-08

Table 3.6: Model Coefficients for linear predictors in Regressive Saccade probability GAM

trial spillover effect. The predictors related to the probabilistic measures for

the whole n-gram frequency and information content were only predictive when

entered into non-linear interactions. The first interaction that was added to the

base model was an interaction between n-gram frequency and TIC. Visualized

in Figure 3.3A, this surface has a peak in regressive saccade probability when

the sTIC is high (between 0 and 3), with a peak for trigrams that have a log

frequency of around -2. The probability of a regressive saccade was lower for

very low frequency words (log frequency ≤ -6) across the range of TIC values.

Estimated Df Estimated
Residual Df

F pbayseian

N-gram Frequency ⊗ sTIC 6.01 7.37 64.34 3.2e-11
sTIC ⊗ sPMI 7.78 10.25 78.72 1.2e-12
Random Intercept for Subject 17.79 18.00 1331.96 5.7e-272

Table 3.7: Regressive Saccade Model Parameters for smooth predictors in the GAM

The next non-linear interaction detected was between PMI and TIC. This

surface, shown in Figure 3.3B, has a peak probability when sTIC is less than -2

and the sPMI is below -1. When sPMI is between -0.5 and -2, the probability

falls for all values of sTIC. Less cohesive trigrams that are less predictable

induced regressive saccades more often than other trigrams.
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3.5.4 Discussion

Again, as I saw with the total duration analysis, TIC had an interactive re-

lationship with PMI. Unlike in the total duration analysis though, TIC did

interact with frequency in the best model of predicting regressive saccades. In-

teractive relationships trumped simple relationships during my stepwise mod-

elling and frequency, PMI and TIC were both involved. N-grams with a higher

TIC and a medium or high frequency were more likely to cause regressive sac-

cades. The familiar n-grams with higher average surprisal may have forced a

reassessment of the stimulus. Low PMI generally increased the likelihood of a

regressive saccade, with a small modulation based on the TIC.

How good is my model at discriminating the observed existence of saccades

using the model’s predictions? The Somers’ Dxy Rank Correlation for my

model is 0.5, 95% CI: 0.49 - 0.52 and the ROC-AUC (Receiver Operating

Characteristic - Area Under Curve) is 0.75, 95% CI: 0.74 - 0.76, a fair level of

discrimination.

The next dependent measure I will analyze is the total number of fixations

in each trial.

3.5.5 Third Analysis: Number of Fixations

The number of fixations made during the reading of a trigram is another

measurable variable of interest. Would my measures of probability and infor-

mation help me predict how many fixations each participant would make on

each trigram? The analysis of the fixation counts follows.

To make sure that my analysis was not biased by the number of regressive

saccades in each trial, I subtracted the number fixations after regressive sac-

cades in each trial from the total number of fixations. The median number of

fixations was 5 and the standard deviation was 1.57. The distribution of these

fixation counts was still skewed, and so I applied a log transformation to the

fixation counts. After transforming the fixation counts the skewness, g1, of

the distribution was reduced from 1.2 to 0.093. This is the dependent variable
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Table 3.8: Model Comparisons for models predicting total fixations for a tri-
gram. ∆AIC denotes the change in AIC between two models. All random
slopes were for the random effect of subject.

AIC ∆AIC

Relative
Model
Likelihood

Model 1: Random intercepts for Participants and Items with random
slopes for PrevTrialDur and sTrial

-214

Model 2: Model 1 + random slopes for sPMI and sPMI -248 -34 3e+07
Model 3: Model 2 + cc2 -272 -24 1e+05
Model 4: Model 3 + n-gram frequency -282 -10 1e+02
Model 5: Model 4 + sPMI × cc2 -292 -10 1e+02
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Figure 3.4: Partial effect of the interaction between Pointwise Mutual Infor-
mation and class of second word in predicting the number of fixations.
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that I entered into all of the models.

I added random slopes per subject for predictors along with the predic-

tors themselves to find out if the effect was generalizable. In this process, I

retained three new random slopes for each subject: Pointwise Mutual Infor-

mation (sPMI), longitudinal effects (sTrial) and previous trial duration (Pre-

vTrialDur). In Model 3, the closed class status of the second word was added,

causing an increase in model likelihood. In Model 4, n-gram frequency was

added, and in the final model, Model 5, an interaction between sPMI and cc2

was added, which was the best model of all.

Table 3.9: MCMC-based estimates for the coefficients for the fixed effects in
the linear mixed effects model fitted to the observed total fixations.

Estimated β β̄MCMC HPD lower HPD upper pMCMC

Intercept 0.7299 0.7256 0.6296 0.8252 0.0002
n-gram frequency -0.0072 -0.0071 -0.0117 -0.0027 0.0012
PC1 0.0226 0.0227 0.0156 0.0290 0.0002
PC2 0.0452 0.0454 0.0372 0.0529 0.0002
PC3 -0.0146 -0.0146 -0.0194 -0.0100 0.0002
PC4 -0.0225 -0.0225 -0.0288 -0.0151 0.0002
PC5 -0.0633 -0.0634 -0.0717 -0.0553 0.0002
sTrial -0.0344 -0.0344 -0.0569 -0.0130 0.0040
PrevTrialDur 0.2084 0.2096 0.1843 0.2361 0.0002
sPMI 0.0202 0.0199 0.0040 0.0363 0.0176
cc2 0.0459 0.0459 0.0284 0.0631 0.0002
sPMI × cc2 -0.0232 -0.0232 -0.0360 -0.0114 0.0002

The fixed effect coefficients for Model 5 are shown in Figure 3.9. As with

total duration, PC1-PC5, sTrial and PrevTrialDur all contributed to explain-

ing variability. Above and beyond all of these predictors, the two predictors of

greatest interest are cc2 and n-gram frequency. There was an increase in the

number of fixations when the second word was a closed class word. Finally

there was a decrease in the number of fixations for n-grams of higher frequency.

The partial effect of the interaction term in the model is shown in Figure 3.4.

The estimated standard deviations for all of the random effects in my model

are reported in Table 3.10 along with the 95% highest posterior density credible

intervals from the MCMC simulations. All of the standard deviations are

within the 95% HPD intervals.
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Table 3.10: MCMC-based estimates for the random effects in the linear mixed
effects model fitted to the observed number of fixations.

Standard Dev HPD lower HPD upper
Random Intercept: Item 0.072 0.060 0.070
Random Intercept: Subject 0.049 0.014 0.057
Random Slope: PrevTrialDur for Subjects 0.044 0.032 0.063
Random Slope: sTrial for Subjects 0.014 0.009 0.023
Random Slope: sPMI for Subjects 0.209 0.087 0.197
Residual 0.232 0.230 0.235

3.5.6 Discussion

Our best model predicting the number of fixations showed linear effects of

frequency and PMI, but no interactions between frequency and PMI, and no

involvement of any information content variable at all. Why did none of infor-

mation content predictors improve the quality of the model during the stepwise

model selection? It seems logical that more predictable trigrams should have

fewer fixations, but I did not find any such effects. This is quite different from

the situation with both total duration and regressive saccades.

There was more efficient reading (fewer fixations) for high frequency n-

grams, a replication of the effect found by Siyanova-Chanturia et al. (2011).

The interaction of PMI and cc2 is of primary interest because when the second

word was a closed class word, PMI had almost no effect on the number of

fixations. When the second word was an open class word, higher PMI trigrams

had more fixations. It is unclear why this should be but I can speculate that

the coherency of trigrams created the need for caution during the planning of

the saccades. The care taken during the reading of the coherent trigrams may

have influenced the number of fixations.

The final group of variables I analyzed were the sub-gazes. Considering the

trigrams as unitary wholes, the full gaze time should include all of the fixations

made during the reading of that trigram. I divided this gaze into sub-gazes in

much the same way that other researcher have done when looking at the sub-

gazes made within a compound word (Kuperman et al., 2008). I hypothesized

that there would be an unfolding of information that could be detected by

modeling the sub-gazes. I defined two sub-gazes, the first sub-gaze (SG1) and

the second sub-gaze (SG2). SG1 is the sum of the fixations on the first word
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in the trigram before there are any intra-word regressive saccades. SG2 is the

sum of the fixations on the first and second words in the trigram before there

are any inter-word regressive saccades or intra-word regressive saccades.

3.5.7 Fourth Analysis: First Sub-gaze

The analysis of the sub-gaze measures differs slightly from the previous analy-

ses in that new predictors for word length. All of my previous analyses included

the number of letters in the whole trigram, but I wanted to account for the

effect of the length of the first word in my analysis of SG1, the sum of fixations

on the first word. I added this predictor to my standard set predictors and

called it SG1Len, with the centered and scaled version called sSG1Len. All the

other predictors in these models are the same predictors described in Table 3.1.

To confirm that I did not increase the amount of multi-collinearity by adding

this predictor, I re-calculated κ for all of my predictors, and it was 50, which

is high and could lead to an increased risk of suppression or enhancement.

Friedman and Wall (2005) have looked at regression when predictors are

highly correlated, and they note that it is often beneficial to include predictors

that are inter-correlated in a regression model. They note that“it is reasonable

to consider highly correlated independent variables.” (Friedman & Wall, 2005,

p.135). To test for any impact of suppression and enhancement due to the

collinearity of sSG1Len and PC3 (r = 0.62) on my regression coefficients, I

compared all models with a sub-model that did not contain PC3. In all cases

neither the direction nor the reliability of the effects of the remaining predictors

in the models changed, indicating that the collinearity was acceptable.

I found a correlation between the first sub-gaze time and and the total

reading time on the trial before it (r =0.13, 95% CI: 0.11 - 0.14). I did not find

a relationship between SG1 and the position in the stimulus list ( r =-0.0022,

95% CI: -0.017 - 0.014). I added random slopes for each subject for both of

these predictors in all of the models, and despite the lack of a correlation in the

aggregate, the random effect of sTrial for subjects was a beneficial predictor

in all models. The fixed effect of sTrial, though, did not contribute, and was
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Table 3.11: Model Comparisons for models predicting SG1 for a trigram.
∆AIC denotes the change in AIC between two models. All random slopes
were for for the random effect of subject.

AIC ∆AIC

Relative
Model
Likelihood

Model 1: Random intercepts for Participants and Items, sSG1Len and
random slopes for same

10036

Model 2: Model 1 + random slopes for sTrial 9831 -205 3e+44
Model 3: Model 2 + sPMI and random slopes for same 9818 -14 9e+02
Model 4: Model 3 + PrevTrialDur and random slopes for same 9691 -127 3e+27
Model 5: Model 4 + PC1, PC2, PC3, and PC5 9298 -393 2e+85
Model 6: Model 5 + cc1 9287 -11 3e+02
Model 7: Model 6 + Ngram Freq 9274 -13 7e+02
Model 8: Model 7 + sPMI × cc1 9255 -18 8e+03

dropped during model selection.

Table 3.12: MCMC-based estimates for the coefficients for the fixed effects in
the linear mixed effects model fitted to the observed SG1.

Estimated β β̄MCMC HPD lower HPD upper pMCMC

Intercept 5.0802 5.0800 4.9636 5.2034 0.001
sPMI 0.0653 0.0649 0.0479 0.0825 0.001
cc1 -0.0395 -0.0390 -0.0587 -0.0187 0.001
n-gram frequency -0.0089 -0.0087 -0.0131 -0.0045 0.001
PC1 -0.0407 -0.0405 -0.0474 -0.0333 0.001
PC2 -0.0167 -0.0166 -0.0255 -0.0085 0.001
PC3 0.0353 0.0353 0.0285 0.0415 0.001
PC5 0.0321 0.0321 0.0228 0.0414 0.001
sSG1Len 0.0978 0.0980 0.0828 0.1164 0.001
PrevTrialDur 0.0780 0.0781 0.0670 0.0899 0.001
sPMI × cc1 -0.0323 -0.0321 -0.0463 -0.0201 0.001

Before adding any fixed effects, I added random subject effects for certain

predictors. In this process, I retained four new random slopes for each subject:

the effect of the length of the first word (cSG1Len), the effect of the position

in the experiment (sTrial), the effect of the trigram’s pointwise mutual infor-

mation (sPMI) and the duration of the previous trial (PrevTrialDur). As can

be seen from Table 3.11 the addition of these random slopes greatly improved

the nested models. I continued to add predictors one by one, but for brevity’s

sake, I report a smaller number of models here, grouping similar predictors. In

Model 5, I added the first set of fixed effects: the effects of first word length,

previous trial duration and closed/open class category of the first word (cc2

and cc3 did not contribute anything). These three predictors improved the
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Table 3.13: MCMC-based estimates for the random effects in the linear mixed
effects model fitted to the observed SG1.

Standard Dev HPD lower HPD upper
Random Intercept: Item 0.069 0.057 0.069
Random Intercept: Subject 0.081 0.021 0.138
Random Slope: sPMI for Subjects 0.021 0.015 0.033
Random Slope: sSG1Len for Subjects 0.037 0.027 0.057
Random Slope: sTrial for Subjects 0.015 0.008 0.025
Random Slope: PrevTrialDur for Subjects 0.011 0.001 0.016
Residual 0.307 0.305 0.312

model, despite the fact there were already random slopes for PrevTrialDur

and sSG1Len in the model. Also, the position in the experiment, sTrial, did

not improve the model, and so it was left out. The second of the standard

predictors to be dropped during the stepwise forward modeling was PC4. In

Model 6, PC4 did not contribute to improving the fitness of the model. To help

understand this fact, I point to the loading for this principle component, shown

in appendix 3.8. PC4 is most strongly correlated with the mean completeness

rating. In the context of the first sub-gaze, the lack of a contribution from the

completeness of the trigram is sensible, as the participants have not yet seen

much of the second or third word. In Model 7 I added only n-gram frequency,

PMI and first bigram information content, as all the other information-related

predictors did not improve the model fitness. The final model, Model 8, added

an interaction between the PMI for the trigram and the class of the first word.

This was the best fitting model found, and I will now report the parameter

estimates for this model.

In Table 3.12, the estimated coefficients for all of the fixed effects are shown

along with the MCMC simulation results. All of the 95% highest posterior

density credible intervals did not contain zero, showing that none of the fixed

effects were null effects. The partial effects of all of these predictors (except for

PC1, PC2, PC3 and PC5) are shown in Figure 3.5. Due to the combination of

effects in each of the principle components, I can only report that my model

accounted for variability due to the inputs to the PCA: word and bigram

frequency, trigram length and completeness. The effect of increasing PMI was

an increase in sub-gaze time. When the first word was a closed class word, all
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Figure 3.5: Partial effect of the interaction between Pointwise Mutual Infor-
mation and class of first word in predicting SG1.
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other things, including word length, being equal, subgaze time was shorter.

Another early effect of a whole n-gram property was found: the first

subgaze was shorter for trigrams that were more frequent. The largest of

the fixed effects was the length of the first word, with shorter words having a

shorter sub-gaze than longer words.

There was also an inter-trial temporal dependency, with a slowdown in the

first sub-gaze in trials that were preceded by a slow trial.

The final fixed effect was the interaction between the class of the first word

and the PMI of the trigram. For trigrams with high PMI, the trigrams that

started with a closed class word had a shorter first word sub-gaze than those

that started with an open class word. The sub-gaze times were not influenced

by the class of the first word for low-PMI trigrams (Figure 3.5).

The estimated standard deviations for all of the random effects in my model

are reported in Table 3.13 along with the 95% highest posterior density credible

intervals from the MCMC simulations. All of the standard deviations are will

within the 95% HPD intervals.

3.5.8 Discussion

The early impact of probabilistic measures for the whole sequence (n-gram

frequency and PMI) show how sensitive the visual system is to the context

around words. The amount of information about the second word that is

available during the reading time for SG1 is not large, and yet I found whole-

trigram effects. The PMI of the trigram influenced the reading time of the first

word in the trigram, even after taking into account the frequency and lexical

class of the first word. In the same way, a trigram with a greater frequency had

a faster reading time of the first word than one with a lower frequency. These

results imply that coherence, entrenchment and predictability of the trigram

have a very early influence on the reading of the trigram.

The interaction between cc1 and PMI implies a very early interaction be-

tween lexical class and coherence. N-grams with open class words in the first

position had a larger slowdown due to PMI than n-grams with closed class

words in the first position. As with the fixation data, the coherency of tri-
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grams made the readers proceed with caution.

I now move on to the final dependent measure, the second sub-gaze, SG2.

3.5.9 Fifth Analysis: Second Sub-gaze

The second sub-gaze, SG2, included all the fixations on the first and second

words in the trigram before fixating on the third word or before any regressive

saccades. My methodology was identical to the one used for SG1.

The fixed effect of sTrial did not contribute to the model, and was dropped

during model selection. I also checked to see if the amount of multi-collinearity

had changed when I added the two new predictors, sSG2Len and sW3Len, and

as with SG1, the condition number was above the acceptable amount (κ = 50).

As with SG1, I tested for any impact of suppression and enhancement due to

the collinearity of sSG2Len and PC2 (r = 0.78) on the regression coefficients.

I compared all models with a sub-model that did not contain PC2. As with

SG1, neither the direction nor the reliability of the effects of the remaining

predictors in the models changed when PC2 was removed, indicating that the

collinearity was not distorting my results.

The steps in my model comparison are listed in Table 3.14. As with SG1,

my first model contained no fixed effects, only the random intercepts for sub-

jects and items and random slopes for the centered measure of the number of

letters in the first two words, sSG2Len. The next three models added random

slopes for sTrial, PrevTrialDur and the standardized length of the third word,

sW3Len. All of these random effects improved model fitness. Model 5 added

the fixed effects of sSG2Len, PrevTrialDur and sW3Len, and these fixed effects

explained variability above and beyond the random effects of these predictors.

The next model included fixed effects for cc1 and cc2. The predictor cc3 was

dropped at this point as it did not improve model fitness, perhaps due to the

lack of lexical access for the third word. PC2, PC3 and PC5 were also added at

this point, but PC1 and PC4 were dropped from the model. Since all the words

in the trigram had not been read yet, the reason for the lack of an impact for

PC4, which was loaded on phrasal completeness, seems clear. Why did PC1
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Table 3.14: Model Comparisons for models predicting SG2 for a trigram.
∆AIC denotes the change in AIC between two models. All random slopes
were for for the random effect of subject.

AIC ∆AIC

Relative
Model
Likelihood

Model 1: Random intercepts for Participants and
Items, Random Slopes for sSG2Len

8106

Model 2: Model 1 + Random Slopes for sTrial 7817 -289 5e+62
Model 3: Model 2 + Random Slopes for PrevTri-
alDur

7558 -259 2e+56

Model 4: Model 3 + Random Slopes for sW3Len 7023 -535 1e+116
Model 5: Model 4 + sSG2Len, PrevTrialDur and
sW3Len

6880 -144 1e+31

Model 6: Model 5 + cc1, cc2, PC2, PC3, and PC5 6742 -138 8e+29
Model 7: Model 6 + sb2IC 6730 -13 6e+02
Model 8: Model 7 + sPMI × cc2 6676 -53 4e+11
Model 9: Model 8 + sPMI × n-gram freq 6666 -10 1e+02

drop out at this point? Perhaps it can also be explained by the loadings: PC1

loaded most heavily on variables related to the frequency of the third word in

the trigram, w3f and xfq3. Since the third word has not been read yet there

is no way for its frequency to impact the reading time.

Table 3.15: MCMC-based estimates for the coefficients for the fixed effects in
the linear mixed effects model fitted to the observed SG2.

Estimated β β̄MCMC HPD lower HPD upper pMCMC

Intercept 5.4725 5.4721 5.3259 5.5965 0.002
sPMI -0.0126 -0.0130 -0.0355 0.0126 0.284
n-gram frequency -0.0008 -0.0008 -0.0054 0.0040 0.764
sb2IC -0.0197 -0.0197 -0.0297 -0.0077 0.002
cc1 -0.0438 -0.0437 -0.0652 -0.0239 0.002
cc2 0.0350 0.0351 0.0146 0.0564 0.004
PC2 0.0332 0.0334 0.0234 0.0428 0.002
PC3 -0.0167 -0.0165 -0.0239 -0.0080 0.002
PC5 0.0262 0.0259 0.0105 0.0411 0.002
PrevTrialDur 0.1387 0.1390 0.1192 0.1569 0.002
sSG2Len 0.1347 0.1345 0.1130 0.1534 0.002
sW3Len -0.0817 -0.0822 -0.1013 -0.0664 0.002
sPMI × n-gram freq -0.0056 -0.0056 -0.0087 -0.0028 0.002
sPMI × cc2 -0.0629 -0.0628 -0.0800 -0.0494 0.002

The next model included a crucial predictor, the second bigram’s informa-
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tion content. This number represents the predictability of the second bigram

(word 2 and word 3) based on the first word. All the other information con-

tent predictors were dropped at this stage, including TIC, as they could not

explain any more variability. The final two models added interactions, the

first being an interaction between PMI and cc2. The second interaction was

between sPMI and the n-gram frequency. Both of these interactions improved

the models, bringing us to the final model, Model 9. The coefficients for this

model are shown in Table 3.15. Only two of the of the 95% HPD intervals con-

tain 0, the main effects of sPMI and n-gram frequency. These two fixed effects

were left in the final model because both of these predictors were involved in

interactions.

The amount of information in the second bigram facilitated the reading of

the first two words. This result supports the argument that the predictability

of words is influencing the performance of the reading system, even when many

other inputs are being taken into account. Even though the eyes had not yet

fixated on the third word, the ability of the first word to help predict the

next two words was having an effect on the reading time up to that point.

The effects of the lexical class of the first and second words are also clear – a

closed class word in the first position led to a shorter SG2, whereas a closed

class word in the second position let to a longer SG2, mirroring the results for

total duration and fixation count. As in my previous analyses, there was an

inter-trial spillover effect, with trials that were preceded by slowly processed

trigram having a longer SG2. The effects of the combined length of the first and

second words, SG2Len, was strong: trigrams with a larger SG2Len took longer

to read. The effect of the length of the third, as yet unseen, word on SG2 was

in the opposite direction, with shorter third words leading to slower reading

of the first two words (this effect may have supplanted the effect of the cc3

variable, which dropped out during model selection). As for the interactions,

the first one between PMI and trigram frequency is plotted in Figure 3.6A. As

the frequency of the n-gram increased, the direction of the PMI effect changed

from positive to negative. For very rare trigrams, the higher PMI trigrams

were read more slowly than the lower PMI trigrams. For common trigrams,
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the higher PMI trigrams were read faster than the lower PMI trigrams. The

final interaction between the lexical class category of the second word and

the PMI is shown in 3.6B. When there was a closed class word in the second

position, the trigram’s PMI had a facilitatory effect on SG2, whereas when

the second word was not a closed class word, PMI had an inhibitory effect on

SG2.
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Figure 3.6: Partial effects of predictors in linear mixed effects model predicting
SG2. A) Interaction between Pointwise Mutual Information and log n-gram
frequency, B) Interaction between Pointwise Mutual Information and class of
second word.

Discussion

As with the total duration data, the SG2 data showed an interaction between

frequency and PMI. Even when the participants had not yet fixated on the

final word of the trigram, the coherence and the entrenchment of the n-grams
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Table 3.16: MCMC-based estimates for the random effects in the linear mixed
effects model fitted to the observed SG2.

Standard Dev HPD lower HPD upper
Random Intercept: Item 0.088 0.074 0.084
Random Intercept: Subject 0.313 0.120 0.284
Random Slope: sW3Len for Subjects 0.027 0.021 0.046
Random Slope: sSG1Len for Subjects 0.027 0.021 0.041
Random Slope: sTrial for Subjects 0.029 0.021 0.043
Random Slope: PrevTrialDur for Subjects 0.040 0.006 0.040
Residual 0.281 0.280 0.286

begin interacting. As with SG1, this effect points to fast, parallel dynamism in

the reading system. After all of the other variables were entered in the model,

these interactions were still relevant. I left the simple effects of PMI and n-gram

frequencey in the final model because they were involved in interactions, but,

just as I saw in the total reading duration analysis, there were no simple effects

of PMI or frequency. As with SG1, the completeness information contained in

PC4 did not contribute, and so PC4 was dropped out of the model. This shows

some of the temporal unfolding in the reading of these trigrams: completeness

ratings only entered into models that allowed for the viewing of the full n-

grams.

As with the fixation counts and SG1, there was an interaction between

lexical class and PMI, with the same increase of reading time for higher PMI

trigrams when the second word was an open class word. The predictability of

the last two words based on the first word, b2IC, also entered into this model,

which again shows how the scope of SG2 gives preference to a more germane

measure (b2IC) over a more global measure (TIC).

To help make sense of all the evidence presented here, I will now attempt

to synthesize what have learned in the next section.

3.6 Conclusion

The current study presented university students with 1000 trigrams that cov-

ered a large swath of the frequency space for three-word combinations in En-

glish to examine the effect of probabilistic information on their eye movements.

The statistical models included many measures including word frequencies, bi-
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gram frequencies, completeness ratings, longitudinal effects, temporal depen-

dencies and word class. Participants showed sensitivity across the full range

of stimuli to n-gram frequency, information content and pointwise mutual in-

formation after taking into account all the other measures already included

in the models. In contrast with other research on n-gram reading, the ef-

fect of n-gram frequency was not purely facilitatory. My experimental design

and methodology allowed me to find regions of frequency space where lower

frequency n-grams were read faster than higher frequency n-grams.

Some of the previous experiments that looked at the effects of n-gram

frequency on n-gram reading did not include in their models all of the prob-

abilistic measures I have used here. This leaves open the question of whether

there were uncontrolled sources of variance driving performance, or whether

the results could be generalized beyond the restrictive set of stimuli they drew

from. The number and variety of covariates presented here is unparalleled,

and even when all the covariates were accounted for, n-gram frequency effects

were still in the best models.

Another criticism that could be made of earlier studies is the size of the

stimuli sets and the selective sampling of stimuli. The size of the stimuli set

I have used in this study and the method of randomly sampling stimuli from

an extremely large list of trigrams allow me to say that the effects I have

found generalize to the majority of trigrams. N-gram frequency was not the

only probabilistic measure to aid in predicting eye movements. PMI and IC

also made a contribution in some of these models. I will now discuss the

contributions of each of these measures and relate them to my view of reading

trigrams.

3.6.1 Contribution of Frequency

A linear effect of n-gram frequency was included in the best models for only

two of the five measures: total fixations and SG1. In these two cases, n-gram

entrenchment improved processing efficiency: reading was faster with fewer

fixations. As for the other three dependent variables, n-gram frequency was

part of an interaction term in the models of total duration, regressive saccades
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and SG2. In both total duration and SG2, there is evidence for interference be-

tween entrenchment (frequency) and coherence (PMI). This interference may

arise from a clash of expectations: high frequency n-grams that are incoher-

ent interfere with fluent reading, as we see from a trigram with low PMI and

high frequency, increase in the. There were no simple effects of frequency in

any models for the other measures, but there were consistent interactions with

other variables: frequency interacted with PMI in the models for total dura-

tion and SG2, and frequency interacted with TIC in my model for regressive

saccades. The non-linear interaction was strongest in low PMI n-grams in my

total duration data (Figure 3.2A). This frequency PMI interaction appeared

again in the reading time for SG2, with a similar pattern: low frequency n-

grams were read faster if they were coherent, whereas the same was not true

for high frequency n-grams (Figure 3.6A). Why did Arnon and Snider (2010)

and Siyanova-Chanturia et al. (2011) find a linear frequency effect on reading

efficiency where I did not? One possible explanation is the lack of PMI in

their experimental design. Since my stimuli contained n-grams with great va-

riety of frequencies, and since I was looking for interactions between frequency

and other probabilistic information, I was able to detect the interaction. The

frequency-PMI interaction I found may have absorbed all the variability that

could have been explained by frequency or PMI, making the main effects of

frequency and PMI superfluous (as seen in the coefficients for frequency and

sPMI in Table 3.15). The results presented here suggest that the effect of

n-gram entrenchment (as measured by orthographic frequency) is consistently

modulated by other aspects of the n-gram— the coherence and predictability.

How could whole trigram frequency influence SG1? Looking to computa-

tional models of gaze may provide some clarity. Two parallel reading models,

SWIFT (Engbert, Nuthmann, Richter, & Kliegl, 2005; Kliegl et al., 2006) and

context-sensitive Mr. Chips (Bicknell & Levy, 2010), predict such benefits.

SWIFT is a spatially distributed processing model of eye movement that takes

into account properties of the oculomotor system and the process of word

recognition. Mr. Chips (Legge, Klitz, & Tjan, 1997) is another model of eye

movement, an ideal observer model that yields optimal performance within
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the constraints of the human visual system. Bicknell and Levy (2010) recently

modified the Mr. Chips model to enable the inclusion of contextual informa-

tion in predicting eye motion. By using a bigram language model, that is a

model that includes the contextual effects of the previous word, Mr. Chips is

able to more accurately predict saccade size than a model without contextual

information. Any speed-up in the reading time of the first word of a high

frequency trigram would be explained by the parafoveal preview of the entire

trigram from the first word (Rayner, Inhoff, Morrison, Slowiaczek, & Bertera,

1981). The further implication of this result is that there were parafoveal-on-

foveal effects3 for not only the second word but also the third word (Kliegl,

Risse, & Laubrock, 2007). Angele and Rayner (2011) have questioned the ex-

istence of these parafoveal-on-foveal effects, and the EZ-reader model of eye

movement does not predict such effects (Rayner, 2009). The evidence pre-

sented here is compatible with SWIFT and the modified Mr. Chips, that is

to say, models that take statistical, probabilistic information into account at

multiple grain sizes.

3.6.2 Contribution of PMI

PMI, my measure of phrasal cohesion, entered into many of the models I

presented here. It interacted with n-gram frequency in predicting total reading

time and with b1IC and w1IC in predicting regressive saccades. It interacted

with cc2 in predicting the number of fixations. It interacted with cc1 in my

model for SG1, which is an early stage of reading. PMI interacted with n-gram

frequency and cc2 in my model predicting SG2. If there is a general pattern

to be found in the contribution of PMI, it is that, like frequency, it is highly

interactive. The data show how PMI modulates or is modulated by other

inputs. For both total reading time and SG2, the modulation took place at

the extremes of the range of PMI. The reasons I can propose for this pattern

are speculative, but they have to do with the nature of semantic coherence.

By looking at items with extreme PMI values we can begin to see what

3These are effects due to the parafoveal information from fixation on a word being com-
bined with the foveal information from the next fixation
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could be going on. The two trigrams with the highest PMI scores are covetous

griping miser (sPMI = 3.91) and obstructive pulmonary disease (sPMI =

3.11) while the two trigrams with the lowest PMI are for provided the (sPMI =

−2.08) and reserved of the (sPMI = −2.1). The trigram with the median

PMI in the stimulus set was a glorious new (sPMI = −0.14). When reading

these trigrams the subjective feeling of cohesion increasing with PMI is clear.

Incoherent n-grams were harder to read in most cases, but when they were

uninformative, coherent n-grams were also hard to read (see Figure 3.2B).

A similar pattern arose in the regressive saccade model (Figure 3.3B). PMI

interacted with the lexical class of the second word in all relevant models for

number of fixations and SG2 — in these interactions, the direction of the PMI

effect flipped depending the class of the second word. I discuss this pattern

further below when I discuss cc2.

3.6.3 Contribution of TIC

The holistic information content measure, TIC, entered into the best models

for predicting total reading time and regressive saccades. In both cases there

was an interaction between coherence (PMI) and informativeness (TIC). In

both total duration and regressive saccade analyses, the combination of both

low sPMI and an sTIC between -2 and 2 was followed by slower reading times

and a greater chance of regressive saccades. An example of this kind of stimulus

can be seen in the trigram in got the (sPMI = −1.92, sTIC = −1.12). When

both PMI and TIC were larger, reading was more fluent, even when all other

aspects of the n-gram were taken into account. An example of one these

coherent, highly information rich trigrams is freight train rumbles (sPMI =

2.09, sTIC = 1.86). When length, component n-gram frequencies and all

the other variables were taken into account, there was a reading advantage

(less regressive saccades, faster reading) for n-grams like freight train rumbles.

TIC did not contribute to predicting the total number of fixations, SG1, but

b2IC did contribute to predicting SG2. This is another example of how the

informativeness of the second bigram is having an impact on the reading of

the first bigram.
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3.6.4 Contribution of cc2

The class of the second word in the n-gram was a predictor that entered into

many models. Closed class words in that position increased the total reading

time, SG2, and the total number of fixations 4. These findings suggest that

words I marked as closed class words (shown in Appendix 3.9) added a cogni-

tive load to the task when they were in the middle of trigram. Since the effect

of cc2 is seen in models that have already taken into account the impact of

phrasal completeness, the effect of cc2 must be independent of completeness.

Why else would closed class words in the second position have such robust

and widespread effects on trigram reading? I speculate that it may be because

closed class words rarely occur at the end of a phrase and therefore prime the

language system to expect more words ahead with more information. When

there are two more words (cc1), this expectation is satisfied in a situation

where there are no prior words that might be re-assessed. When there are no

more words (cc3), the lack of further input may stop the system from making

predictions altogether. Only when a single word follows (cc2) does the sys-

tem find the expectation of more information unsatisfied while also having the

possibility of a reinterpretation of a previously seen word.

Our results were similar in many ways to those of Tremblay and Tucker

(2011). Their measure of onset latency and my measure of total duration of

reading both had simple effects of length and n-gram completeness and all of

these effects were in the same direction. Tremblay and Tucker (2011) found

interactions between the frequency of the second word in their quadragram and

information content and mutual information, which I did not find in the data.

They attribute these effects to their experimental paradigm, in which their

fixation marker appeared near the second word of each quadragram, allowing

the frequency of the second word to influence the reading of the whole n-gram.

As Baayen et al. (2010) point out, these empirical interactions between the

whole and the parts imply interactive, dynamic processing of information in the

brain. Sequential, modular models will not predict this amount of interaction.

4It is likely that it did not enter into the model for SG1 due to the fact that the second
word had not been seen yet.
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I too found interactions, both non-linear and linear, in all of the analyses. My

replication of these interactive effects supports the idea that probability and

information content are concurrently impacting the reading of word groups.

Are these results generalizable to reading more than trigrams? The eco-

logical validity of reading trigrams out of context is debatable, but so is the

ecological validity of reading single words. The task that I asked the partici-

pants to execute is uncommon, but I believe that it is still ecologically valid.

In everyday, real world situations, such as jumping to the first line of a new

page in a book, we often encounter groups of words that are mid-sentence.

Any of the trigrams that I used as stimuli could be at the beginning of the

line. In these situations we are still able to continue reading – our reading

systems are able to make do with this truncated input. Furthermore, the par-

ticipants were able to consistently extract the meaning from the trigrams in

the sentence production trials and create valid sentences, and I feel there is not

reason why they could not have done so for every item. I take their success at

completing the sentence production task as evidence that they were process-

ing the meaning of the trigrams, as fragmented as they were. This is why my

results speak to reading in general, not merely to reading bare trigrams. The

advantage obtained from avoiding embedding the trigrams in longer sentences

is the elimination of the longitudinal effects of previous context. By isolating

trigram, the processes taking place during the reading of short n-grams can be

teased apart.

There is a connection between this evidence and evidence from lexical pro-

cessing research. This body of work suggests that information accumulates as

we listen to speech or read (Rayner & Pollatsek, 1989; Elman, 1990, 2011).

Some recent models of reading proposed by Norris and Kinoshita (2008), Dilk-

ina et al. (2010b) and Baayen et al. (2011) look at this process of accumula-

tion as a way of explaining experimental evidence from reading. One of these

models, the Naive Discriminative Reader (NDR, Baayen et al., 2011) is partic-

ularly interesting because it does not contain representations for word forms

or n-gram forms, but rather shows the emergence of morphological and lexical

effects using nothing but sub-lexical probabilistic information. This model has
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been applied to modeling the frequency effects when reading n-grams. Baayen

and Hendrix (2011) used the NDR model to predict reading times for the stim-

uli used by Arnon and Snider (2010). The NDR model predicted the reading

time from the model’s knowledge of the statistical properties of patterns of

letters and letter bigrams in the input. The data I have presented here would

be an interesting challenge for these types of models. In particular, if the in-

teractions between frequency, PMI and TIC emerge spontaneously from the

sub-lexical patterns in each speaker’s language experience, it would be a very

persuasive argument for the relevance of non-lexical models of language.

3.7 Final Thoughts

In the introduction to this chapter, I explained my theoretical motivation for

studying eye movements while reading n-grams: to further explore the possi-

bility that the reading system is rationally using all the information available

to read words in context more rapidly. The complex interactions between

the many probabilistic measures included in the models have explained other-

wise unexplainable variation in reading performance. This is evidence for the

position that the reading system is using n-gram information in these micro-

contexts to better process words. Any theoretical framework that chose to not

include this information in a reading model would be sub-optimal by definition.

The interactivity between the many sources of information is a telltale sign

of a dynamic system (Kuperman et al., 2008). Models of language process-

ing that don’t allow for the free flow of information throughout the language

system (from ocular control to semantic integration) do not make sense in the

face of my evidence. The processing of the first word in the trigram was in-

fluenced by the probabilistic relationships between all the words in trigram, a

truly fascinating result. They eye movements of our readers were optimized

by the effects of linguistic usage and experience. This implies that theories

of language performance will need to take into account the contexts that a

person is exposed to, as well as the local context. The way we read emerges

from the interactive, simultaneous combination of many complex inputs.
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The breadth of the stimuli set used in this study has allowed me to delve

into the complexities of reading isolated trigrams. I found that total reading

time was predicted by a combination of many factors with unique contributions

made by the interactions between n-gram frequency, TIC and PMI. The size

and scope of my trigram sample and the sensitivity of my analytical meth-

ods have provided the first detailed perspective on how we read three-word

groups. All three types of probabilistic information were involved in predict-

ing eye movements, all helping to predict the efficiency of reading. My results

support the position that this sensitivity stems from the probabilistic nature

of language and the probabilistic processing that it enables. It also shows that

despite the presentation of the trigram outside of its normal linguistic context,

the holistic effects are strong.
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3.8 Appendix: Variable loadings for principal

components PC1 to PC5

PC1 PC2 PC3 PC4 PC5
w1f 0.02 -0.35 -0.49 0.03 -0.05
w2f -0.06 -0.44 0.39 -0.05 -0.01
w3f -0.52 0.17 0.01 0.13 -0.15
b1f 0.06 -0.5 -0.03 -0.05 -0.5
b2f -0.35 -0.14 0.34 0.36 -0.13
b3f -0.34 -0.08 -0.35 0.39 0.14
xfq1 0.05 -0.28 -0.48 -0.01 -0.18
xfq2 -0.05 -0.4 0.35 -0.16 -0.01
xfq3 -0.48 0.17 -0.04 -0.04 -0.41
length 0.32 0.34 0.05 -0.01 -0.69
mncmplt 0.38 -0.04 0.12 0.81 -0.05

Table 3.17: Loading of the first 5 principal components in the PCA solution for frequency, length and

completeness. Correlations over 0.4 are shown in boldface. Correlations over 0.7 are shown in italics.
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3.9 Appendix: Closed class word list

a about after against all alongside an and any are
around as aside at atop away back be because been
being between but by can did do even ever few

for forward from get got has have he here herself
his if in into is it just may me more

much no not of off on only or other our
out per please rather same shall should so something than

thanks that the their them they this those throughout thus
to too under upon us was we well were what

when where whether which who whose why will with without
would you your

Table 3.18: The list of words used to classify closed class words in our stimulus
list.
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3.10 Appendix: Intercorrelations of predictors

before and after PCA.
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Figure 3.7: Matrix of correlations for all predictors before orthogonalization.
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stimulus sampling technique used enabled us to have the broad coverage seen
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wise Pearson correlations for all the predictors, with the size of the font used
showing the size of the correlation. The diagonal contains histograms for each
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Chapter 4

N-gram probability effects in a
cloze task.

We now know more about our memory for n-grams and how we read
and comprehend n-grams. This chapter will delve into how we produce
words in context, how we create n-grams. The paradigm I will used is
the fill-in-the-blank task, or cloze task, is common in educational mate-
rials and psychological tests. Until recently, addressing the question of
how to predict which words people will choose in a cloze task, that had
not had its cloze probability measured previously, was impractical. In
this paper I will harness the richness of large-scale corpora to look at the
influence of lexical micro-context on word choice in the cloze task. In
two experiments I asked young adults to complete short phrases called
n-grams. The probabilistic properties of the n-grams were predictive of
the frequency with which each word was produced. Furthermore, in the
second experiment, the order in which the words were generated was
predicted by the conditional probability of the word occurring in that
micro-context in a corpus. These results suggest that the cloze task is
essentially a memory task and the choice of certain words over others
is driven by the probability of the word given the micro-context.

4.1 Introduction

When we read or hear language, we are concurrently processing what is per-

ceived and predicting what will happen next. Landmark studies of antici-

pation in language perception have allowed us to understand how we react

to expected versus unexpected words (Kutas & Hillyard, 1984; DeLong, Ur-

bach, & Kutas, 2005). Bar (2007) goes as far as to say that “memory-based

predictions/association-based predictions” are one of the unifying principles of

the brain (p. 280). In this paper I will look beyond the influence of concurrent
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prediction in linguistic comprehension and investigate the use of anticipation

in linguistic production. In particular, I will expose the participants to incom-

plete fragments of language and invite them to complete them, a type of cloze

task (Taylor, 1953). I hypothesize that contextual, probabilistic prediction will

play a part in completing these phrases because there is strong evidence that

we anticipate upcoming words during sentence processing (Kamide, 2008). A

similar process may be taking place during the completion of a cloze task. I

propose that the word chosen in a cloze task is the first one provided by the

language prediction system, working within the constraints of the context.

This raises a larger theoretical question: what is a language prediction sys-

tem and what does it base its predictions on? The fundamental theoretical

shift that is happening in psycholinguistics is a shift towards theories of lan-

guage that posit the existence of very simple statistical learning processes at

the heart of language acquisition and processing. The theories proposed by

Frank and Bod (2011), Elman (2011) and Baayen et al. (2011) rest on the

idea that complex language behaviour emerges from a very simple process,

and the statistical structure of the input is sufficient to explain our linguistic

abilities. Looking at our language prediction system from this vantage point,

all that is needed to predict words in a language stream is exposure to the sta-

tistical structure of a language. Using that probabilistic information, a person

can begin to predict and anticipate words from context. However, there is an

alternative possibility, one that cannot be dismissed outright. That position

would be one in which prediction from context is not the dominant influence —

sources of information other than the micro-context might be the main factor

in word choice in an n-gram cloze task. This is the theoretical question I hope

to address in this chapter: how does contextual probabilistic information take

part in the process of choosing a word in a cloze task?

A first step in getting closer to answering this question is to define the

term cloze task, first proposed by Taylor (1953). The word cloze was chosen

because it harkened back to the gestalt principle of closure in the visual sense

— if people are exposed to a partial drawing or photograph they perceive a

whole by filling in the missing information (W. Ellis, 1999). The linguistic
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cloze task was originally devised as a method to measure the readability of

texts. A certain number of words in a text were replaced with blanks, and

naive readers were asked to fill in the blanks with the words that made sense

in the contexts given. If the accuracy on the cloze task was high, the text was

considered very readable, implying that texts that were more predictable were

easier to read.

Before the coining of the term cloze task, in 1951, Claude Shannon cal-

culated the entropy of English using a letter cloze task and a small corpus

(Shannon, 1951). He was not addressing psycholinguistic questions, but his

influential paper spurred psychologists to look at information, entropy and

redundancy in language. One of the first studies to use the cloze task as a

window into the psychology of language was carried out by Fillenbaum, Jones,

and Rapoport (1963). They deleted words from transcripts of spoken English

at 5 different rates (every 2nd, 3rd, 4th 5th or 6th word) and measured sub-

jects’ accuracy for all of these deletion rates. They also counted how often

the word was replaced with a word different from the original word but of the

same lexical class. They found that performance was better than chance at all

the different deletion rates, showing the powerful impact of context on perfor-

mance. Despite this, there was a great deal of item variability in the accuracy

data, with some contexts enabling greater item accuracy than others. The key

discovery in this study was that context strongly constrains what subjects will

produce when asked to fill in the blanks, paving the way for computational

studies of cloze task completion.

Once the computational resources became available to build digital cor-

pora, find the word frequencies in these corpora (Francis & Kucera, 1982),

and calculate probabilistic measures from these corpora, researchers began to

look at the cloze task as an experimental behaviour that could be predicted.

Up to this point, human rating norms were the only way to calculate the

cloze probability. The second wave of studies attempted to understand the

results of cloze experiments based on the distributional properties of language

as observed in corpora.

Finn (1977) was the first to use the ideas of entropy and information from
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Shannon (1948, 1951) to analyze a cloze task. He used data from a cloze ex-

periment done by Bormuth (1966) to calculate the information, taking into

account both the orthographic frequency of the words and the number of com-

pletions given by subjects. He found that if the words replaced by blanks had

high amounts of information (and were low frequency) they were less likely to

be correctly chosen in the cloze task. Low information/high frequency words

were more likely to match the original word. The reason for this was that

the constraints on the high frequency words (which were mostly closed class

words) by the context of content words (open class words) was strong. In con-

trast, the constraints placed by open class words (such as cat) on the preceding

closed class word (a cat?, the cat?, some cat?) were found to be weak. This

attempt to understand the relevant sources of variation in the cloze task was

valiant, but was limited by the quality of the frequency info that was available

at the time.

Beattie and Butterworth (1979) did ground-breaking work on the interac-

tions between lexical frequency and cloze probability. They looked at pauses of

more than 200 ms in spontaneous speech and noted the frequency of the words

after the pauses. Judges were then asked to fill in a transcription of the speech

data where the words after the pauses had been replaced by blanks. Beattie

and Butterworth found that the corpus frequency of the missing word was

correlated with the cloze probability given by the number of judges choosing

that word. As in all the other research on the cloze task, the cloze probability

of a word in a certain context was defined as the probability that a panel of

judges will choose that word when asked to fill in the blanks. If 10 out of 25

judges pick a certain word in that context, the cloze probability is said to be

0.4. This was the only way to analyze data from experiments that used the

cloze task, by comparing the new results to cloze norms. Two problems exist

with this definition of cloze probability: 1) The inconsistency of human judges

can render cloze norms too noisy to be useful, and 2) When there are a large

number of meaningful completions possible, a panel of judges, each providing

its solution to the cloze riddle, cannot provide enough completions to give

probabilities for all possible meaningful completions. The theoretical signifi-
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cance of this correlation between orthographic frequency and cloze probability

was not appreciated at the time, but this result was evidence for frequency

effects in the process of generating a response in a cloze task.

McKenna (1986) proposed that the responses in a cloze task could be pre-

dicted based on the associative strength of the words in their semantic cat-

egories. He built a computational simulation that searched through lists of

word categories from the norms given by Battig and Montague (1969). His

explanation of the process of completing a cloze was that “At the semantic

level, a single schema associated with a key constraint is used as the basis of a

memory search. Sub-schemata in the form of individual words are examined in

the order of associative strength until a word that meets additional constraints

(if there are any) imposed by context is encountered.” (McKenna, 1986, p.493)

This model is far removed from my theoretical stance, but the core concepts

of memory retrieval within constraints remains important.

There has also been research on a verbal production variant of the cloze

task that directly addresses the interplay between frequency and contextual

constraint. Griffin and Bock (1998) asked participants to complete a sentence

with a word that was cued with a drawing. They manipulated the spoken

frequency of the word cued by the picture and the amount of constraint created

by the context. They found that when the context was highly constraining the

effect of frequency on the word chosen was diminished. When the context was

less constraining or even incongruous, high frequency words were chosen over

low frequency words. This was evidence that both verbal and written cloze

tasks are influence by orthographic frequency of the response word.

Smith and Levy (2011) asked subjects to complete sentence-initial 4-grams

and compared their responses with the most frequent continuations form the

Google Web1T corpus. They found that subjects response were sensitive to

corpus probabilities, and the responses from the subjects were more variable

than the corpus. They then asked a different group of subjects to read some of

these 5-grams that they found in the first experiment, and calculated reading

times for these critical 5th words. They found that the a model without control

covariates found an effect for cloze probability, but once the covariates (lexical
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frequency, concreteness, contextual diversity and length) were added, these

effects were no longer significant. The question of what drives word choice in a

cloze task was left unresolved, but there was a tantalizing possibility proffered:

that real-word experience and prediction from experience is behind it.

Cloze norms

The value of cloze probabilities to experiment designers in many fields is high.

There have been several popular lists that have been used to help design

psycholinguistic experiments where the predictability of a word in context

is critical such as event-related potential (ERP) experiments that measure

expectancy violations (Kutas & Hillyard, 1984). Bloom and Fischler (1980)

produced one of the first set of norms, a set of 329 sentences. Recently a

larger set of 498 norms has been released by Block and Baldwin (2010), and

the N400 effect was validated for these contexts. The goal of these norms is

to find the most highly semantically constrained contexts possible, such as

the sentence She could tell he was mad by the tone of his , which their

subject completed with voice 99% of the time. 400 of the 498 sentence have a

top completion that is dominant (defined as a cloze probability between .67 to

.99). They achieved their goal of finding and norming many highly constrained

sentences, but all of these norming studies do not delve into the sources of con-

straint, nor do they try to understand the source of the variability in their data.

The issue with the analysis of cloze norms is the generalizability of the data.

To know the cloze probability of an arbitrary piece of language it would be

necessary to collect more human judgements, impractical for large amounts of

text.

Are sentences and paragraphs the only type of stimuli that make sense

in a cloze task? In many types of reading activities we are not exposed to a

sentence-worth’s of context. For example, reading a narrow column of text will

inevitable cause a group of three or four words to be cut off, and the reader

will have to look down to the next line to continue the sentence. These short

groups of words are what I will call n-grams. There has been a recent growth

in the number of studies investigating the processing of n-grams. Arnon and
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Snider (2010) showed that more frequent n-grams were read faster than less

frequent n-grams. Tremblay and Tucker (2011) measured how long it took

subjects to read an n-gram and also how long it took them to produce the n-

gram. Probabilistic predictors were able to explain much of the variability in

reading the n-grams aloud (see Shaoul & Westbury, 2011 for a comprehensive

review).

In this study I will look at how n-gram statistics from a corpus can predict

our choices when we complete a linguistic fragment, an n-gram. The n-grams

that I will use are 3 or 4 words long, much shorter than sentences used in most

previous research on the cloze task. The shorter length reduces the amount

of context and increases the number of possible completions of an n-gram

cloze task. These differences force us to look at other types of psycholinguistic

paradigms for theoretically relevant work.

One type of research that may be germane is work on free association (Nel-

son, McEvoy, & Dennis, 2000). The classic free association task is to provide

a cue (such as bread) to many subjects and count the frequency of the various

responses (such as butter). Nelson et al. (2000) characterize free association as

a memory task, and point to evidence from cued recall experiments (Nelson,

McKinney, Gee, & Janczura, 1998) and false memory experiments (McEvoy,

Nelson, & Komatsu, 1999) that support the predictive power of associative

strength in memory tasks. They conclude that the probability of a response

being given is a manifestation of its associative strength in memory, noting

that the “strength of a response reflects the number of its instances in mem-

ory, with stronger associations reflecting larger numbers of instances” (Nelson

et al., 2000, p.896).

How similar is the free word association task to the n-gram cloze task?

The context of a single word is less than that of a 3-gram, but the process

of producing “the first word that comes to mind” may be similar for both

free word-word association and free n-gram-word association. When presented

with a short n-gram, such as third most popular, it is conceivable that a pool

of associates emerges, and that the strongest associate is chosen first. One

question I hope to address in this chapter is what information is producing
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this emergence of candidates and what factors determine the order that they

are selected from this pool.

Another way to view the cloze task is as a strategic test of memory retrieval.

Pickering and Garrod (2007) argue that language comprehension involves mak-

ing simultaneous predictions at different linguistic levels and that these predic-

tions are generated by the language production system. They report increased

muscle activity in the lips and tongue when listening to speech but not when

listening to non-speech noise as evidence for an automatic forward-modeling

system. In their system comprehension and production are tightly coupled

and the motor production system facilitates language comprehension just as

the comprehension system facilitates production. Pickering and Garrod (2007)

is persuasive when he argues that language knowledge, stored in memory, ex-

erts its contribution to behaviour by way of predictions. The advantages of a

constant simulation or emulation of the external is becoming a foundational

idea in psycholinguistics (Willems & Hagoort, 2007). In looking at how we

process and complete n-grams, an emulation framework may help us explain

how completions are chosen. To understand how written production systems

choose a word, I will look at what kind of information could be used by a

hypothetical emulator to predict an upcoming word in a stream of words.

The context found in an n-gram puts certain constraints on what words

can fill an empty slot. Semantic and syntactic constraints are the most studied

constraints. The constraint that I hope to add to this list is the constraint of

memory: if there is a implicit or explicit memory of seeing or writing an

n-gram, that n-gram should be accessible during the completion of a cloze

task. Conversely if there are no memory traces for an n-gram, the likelihood

of predicting a completion using that n-gram is much lower. I will assume in

these experiments that the probabilistic measures of the n-grams are correlated

with the participants’ language experience, and the effects of the constraints

of experience will be seen in the responses the participants give.

New tools have become available in the current era of psycholinguists that

allow for new approaches to the question of constrained language production.

In particular, corpus data-driven research has begun to let us investigate the
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probabilistic nature of language in new ways. One asset is the enormous cor-

pora of electronic texts, and the computational resources to calculate lexical

statistics across these corpora. A case in point is the Google Web1T corpus

(Brants & Franz, 2006) that I will be using exclusively as my source of prob-

abilistic information about language in this paper. It is a corpus made up of

one trillion words of English web page text. Using the immense computing

infrastructure at Google, the authors were able to count all the occurrences of

all the word groups or n-grams from two to five words long (but only those

that occurred more than 40 times per trillion). These frequencies are a rich

source of information about the word grouping patterns of English and give

us an unprecedented ability to estimate the probability of word co-occurrence

on the web. There are, undoubtedly, differences in the language experience

of individuals that are not captured by the broad coverage of the web corpus,

but the immense number of n-grams included in the Web1T corpus make it

invaluable to those seeking to understand the influence of n-gram probability

on lexical processing. By using the information in this large corpus I hope to

better understand performance on cloze tasks.

4.2 Statistical Considerations

It has been duly noted that there are individual differences in cloze tasks and

verbal fluency tasks, even among non-pathological populations. There will

also be individual differences seen in the data collected in my experiments.

There is a need to account for the theoretically uninteresting variation caused

by individual differences between subjects and between items. Baayen (2008)

recommends using mixed effects models with crossed random effects to account

for the variability in these types of experiments. I will use various statistical

tools in this paper, and I will use mixed models whenever there is theoretically

irrelevant within-subject or within-item variability.

In all of my analyses I will use model selection to perform statistical infer-

ence. Models that had the best balance between fit and complexity will the

ones I report, and this balance is always measured by using the Log Likelihood
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Ratio Test (LLRT) or the Akaike Information Criterion (AIC), which penalize

overly complex models.

The multi-colinnearity of the predictors in all of my models were checked

using the condition number measure, κ. When necessary, I applied princi-

ple component analysis (PCA) to produce a set of orthogonal predictors that

explained the same variability as the original predictors.

Finally, I performed model criticism on all of the models presented in the

paper: I located those observations that led to residuals greater than 2.5 stan-

dard deviations away from the mean of the residuals and temporarily dropped

them from the data. I then reanalyzed the data using this subset and checked

to see if there were any large fluctuations in the size or direction of the effects.

I only present models here that were stable during model criticism.

4.3 Experiment 1

The original cloze task was characterized by a long passage of around 200 to 300

words with a certain percentage of the words removed (Taylor, 1953). Later

psycholinguistic studies shortened the stimuli to single sentences, sometimes

forcing the blank to always be in the same position (sentence-final for example)

(Schwanenflugel & LaCount, 1988). As the amount of context shrinks, the task

itself changes. One question I will address in this study is: What happens when

the context is reduced almost to the minimum, to two or three words? The

poverty of context should reduce the constraints on the number of meaningful

ways to complete the fragment and allow a greater variety of completions than

for longer sentences or passages. Most of the n-grams I will use in my studies

are not complete constituents and some will remain fragmentary even after

filling in the blank (e.g.nothing to do with the).

If the statistical properties of the English language, in particular the fre-

quencies with which words occur together, are reflected in the memories of the

participants, the frequency of n-grams captured in the Web1T corpus should

help predict the likelihood that the participants will choose a certain comple-

tion in this cloze task.
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4.3.1 Participants

2110 undergraduate students at the University of Alberta participated in this

study as part of a larger group of web-based surveys. 74% of the participants

indicated that English was their first language. All participants had university-

level English abilities and so all 2110 were included in the dataset.

4.3.2 Materials

Two sets of n-grams were created. This first set was the letter-completion task

stimuli. 22 n-grams from the Web1T corpus, 12 trigrams and 10 quadragrams,

were chosen at random, and in each of these n-grams a critical letter was

removed. The n-grams were chosen in such way that the number of possible

completions attested to in the corpus for the critical letter varied in the corpus

from 2 to 11, µ = 4.9, σ = 2.7.

In an identical way I chose 23 5-grams from the same corpus, deleting one

word from each n-gram in such a way as to create variety in the number of

possible completions. These varied from 3 to 5792, µ = 384, σ = 1194.

4.3.3 Procedure

The survey was administered using custom web-based software. All partici-

pants completed the web survey at a time and location of their choosing. In

the pre-survey instructions they were requested to find a quiet location where

they would not be disturbed before starting to complete the survey.

Participants were asked to take note of the first phrase that came to mind

when reading each of the incomplete phrases. They were instructed to fill in the

blanks with the missing letter (letter completion) or word (word completion)

for that phrase. They were also requested to take care and make sure that

the completed phrase would make sense. Almost all of the participants fully

completed the survey: out of 92,840 responses, only 1247 (1.3%) were left

blank. For the word completion survey the fields did not allow more than 12

characters to be entered, making the maximum word length for those responses

12 letters.
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4.3.4 Results
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Figure 4.1: Item level scatterplots for all items in the letter completion task
with best fitting linear regression line. To make the graphs easier to read, the
log-transformed rank is shown on the y-axis. The outcome of the analyses are
identical when the untransformed rank is used.

To reduce the impact from idiosyncratic responses in the word completion

task, I removed all responses that were given by less than three participants for

each item. This entailed removing 8445 responses (18.2% of the data) from the

word completion dataset, and no responses from the letter completion dataset.

I also dropped all responses which created n-grams that had a frequency of

less than 40 times per trillion on the Web1T corpus (the lower bound of the

frequency range in that corpus). By doing this I removed most of the non-

sensical responses that were given more than 2 times, such as I have get the.

In letter completion data, I dropped 8,878 responses (19% of the data), and
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for the word completion dataset, I dropped 11,578 more responses (25% of the

data). After removing all the idiosyncratic, nonsense responses I was left with

36,991 responses for the letter completion task and 33,219 responses for the

word completion task. This was the final data set that I used in the following

analysis.

First I will look at the results from the letter completion task. The fre-

quency of each response was tabulated, and those frequencies were then as-

signed a rank, the dependent measure of interest. In Figure 4.1, the relation-

ship between rank and corpus frequency is shown for each item. Out of 22

items, 15 had negative relationships, but the number of response types for

some items was very small. For inferential purposes all the items were pooled

and a linear mixed effects model was used to analyze the effect of frequency

when the random effect of item was included in the model. Compared to a

model with no fixed effects and the random effect of item, a second model

with the fixed effect of corpus frequency and the random effect of item was a

better model (χ2(1) = 30.6 , p = 3.2e-08). In completing these words with a

letter, the frequency of the word completed is of concern. For examples in the

case of the stimulus the at is, the frequency of the n-gramthe cat is in the

corpus is higher than the frequency of the fat is, but the frequency of the word

cat is lower than the frequency of the word fat. To investigate the additional

impact of word frequency, I created a third model that included both n-gram

frequency and word frequency (and the random effect of item). It was no

better than the simpler model that did not include word frequency (χ2(1) =

1.2 , p = 0.27). Word frequency was not predictive of the rank of the cloze

completion.

As with the data from the letter completion task, I calculated the frequen-

cies of each of the responses in the word completion task to use as the outcome

variable. After a visual inspection of the relationship between response rank

and corpus frequency, shown in Figure 4.2, I noted that 21 of the 22 items had

negative slopes. To confirm this negative relationship I entered all of this data

into a linear mixed effects model, first with no fixed effects and a random effect
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Figure 4.2: Item level scatterplots for all items in the word completion task
with best fitting linear regression line. To make the graphs easier to read, the
log-transformed rank is shown on the y-axis. The outcome of the analyses are
identical when the untransformed rank is used.

134



of item. I then created a model with the fixed effect of corpus frequency and

the random effect of item. It was a better model than the first model. (χ2(1) =

22.3 , p = 2.3e-06). Again, a third model was created with the addition of the

fixed effect of word frequency, and it was no fitter than the model with only

n-gram frequency (χ2(1) = 0.53 , p = 0.47).

4.3.5 Discussion

The n-gram frequency, but not the word frequency, aided in predicting how

participants would complete n-grams in a close task. The raw frequency of

a n-gram is merely a count of occurrences in a corpus. N-grams with a high

corpus frequency were likely to have been seen more often by our participants,

making these contexts more familiar, and this could explain my results, but I

feel that there is more to this story.

McDonald and Shillcock (2001) and Baayen (2010a) have shown that pure

repetition is not what gives high frequency words their advantage in lexical

processing tasks. By necessity, orthographic frequency is correlated to many

other probabilistic measures that are more psychologically relevant than ex-

posure. Baayen argues strongly that context effects are more important than

pure repetition effects. Also, McDonald and Shillcock (2001) found that con-

textual distinctiveness (CD) can subsume orthographic frequency in predicting

behaviour. CD intimately linked to the micro-context, the n-gram, because it

is the relative entropy between a word’s micro-context and a distribution that

ignores context. CD can be thought of as a word’s informativeness about its

contexts. Baayen (2010a) has looked at the contribution to predicting lexical

decision RT of 17 lexical variables from many categories : frequency, genre

distribution, CD, syntactic entropy, morphological entropy, and orthographic

features. He found that once other predictors were entered into a model of

RT, very little variability was left for orthographic frequency to explain. This

suggests that frequency effects are epiphenomena. Further buttressing the ar-

gument for the frequency-effect-as-epiphenomenon position, a computational

model, the Naive Discriminative Reader (NDR, Baayen et al., 2011) has found

frequency effects in simulated lexical access without having any lexical rep-
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resentations, but rater only sub-lexical, letter n-gram representations. These

sub-lexical context effects that mimic frequency effects show how the illusion

of orthographic frequency effects comes to be.

This view of frequency is relevant to this experiment because n-grams are

almost always embedded a context, the sentence, and n-grams that are more

frequent will get a boost from their contextual distinctiveness in much the same

way that words do. McDonald and Shillcock (2001) and Baayen (2010a) re-

stricted their discussion to frequency effect for single words, but the similarity

of frequency effects in the processing of words and n-grams has been demon-

strated in multiple experimental paradigms as described in Chapter 1. The

n-gram frequency effect seen in my experiment was not simply a consequence

of repetition-based learning but rather a consequence of reduced processing

effort arising from the contextual distinctiveness of the n-grams.

If we think of frequency as an epiphenomenon that measures how we learned

to link n-gram form to n-gram meaning, then it is actually n-gram learning

that drove the choices in the cloze completion. The participants relied on their

memory of learned mappings, and chose the first letter or word that they re-

membered. The Web1T corpus captured the combined linguistic experience of

many people writing in many registers, and the response distribution reflected

this diversity: less people associated with the lower frequency n-grams because

their personal experience falls to the tails of the distribution of experience.

This experiment provided evidence of a memory-based production process,

but the small number of items and the single response per item by each subject

limited the number of questions I could ask of the data. To probe this n-gram

completion process more deeply I followed it up with a second experiment.

4.4 Experiment 2

To address the limitations of a single completion per subject per item in Exper-

iment 1 I used a different methodology in Experiment 2 to allow each subject

to list multiple completions. I posited that if participants were given the op-

portunity to generate many completions as the could (up to 20), allowing us
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to probe differences in the productivity of n-grams. I would now be able to an-

alyze the order in which the completions were generated, giving me a window

into the sources of relative accessibility of the responses. Finally, to simplify

the experiment, the position of the blank in the stimuli was limited to the be-

ginning of the stimulus (prepending) or the end of the stimulus (appending).

By limiting the location of the responses to either the beginning or the end of

a trigram I am able to calculate the conditional probability of each response

in the Web1T corpus allowing me to investigate how the predictability of a

word in context can influence behaviour in a cloze task.

A relevant body of work to Experiment 2 is the study of verbal fluency.

In verbal fluency studies the subject is presented with a categorical cue and

asked to generate as many members of that category as possible in a fixed

amount of time, usually one minute (Ruff, Light, Parker, & Levin, 1997). The

categories are often letter categories (”Words that begin with the letter F.”) or

semantic categories (”Animals”). The letter fluency task is in some ways similar

to the n-gram completion task, where I asked the subjects to generate up to

twenty members of a category without time limits. My categories are slightly

different (”Words that can be joined to the 3-gram chocolate chip cookie”) but

the response space is essentially the same as that in the letter cloze task: a

subset of all words in the language. Owing to these similarities, I will also

attempt to understand my results in the context of research done on verbal

fluency. Unfortunately most studies of verbal fluency depend on a manual

coding of the responses, looking for clusters of similar responses (fast, faster,

fastest, fasting,... (Troyer, 2000). I did not attempt these types of analyses,

but I was able to measure the total number of responses produced, which is

also one of the main outcomes of verbal fluency studies.

One of the few studies that used a task similar to ours was one by Owens,

O’Boyle, McMahon, Ming, and Smith (1997). They were interested in speech

recognition systems and had built a weighted average n-gram language model

that predicted words based on their probability given the previous context.

They used the 1 million word Brown corpus (Kučera & Francis, 1967) to train

the model, then used the model to calculate the top 30 completions for 768
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fragments. The same fragments were given to 8 human participants asking

them to provide a ranked list of completions for fragments of text such as the

republicans must hold a under the county. The results of the statistical

model and the humans were compared with the intention of measuring the

quality of the model. They found that their model was almost as good as

the humans in picking the word that had been deleted from the passage (21%

versus 26% correct) and was almost as good for getting the correct answer

within the first three tries (72% versus 80% correct). From a psychological

point of view it is fascinating that humans performing this task produce such

similar responses to a statistical model of memory built on n-grams. My

corpus is larger than the one used by Owens et al. by a factor of 106 and my

methodology is different but my hypothesis is that my n-gram probabilities

will have a similar predictive power for the participants’ performance in a

multiple-response cloze task.

Another study of interest by Crowe (1998) looked at the change in the

responses to a verbal fluency task over time. Subjects were given one minute

to complete letter and semantic fluency tasks, and the number of responses

was counted over each 15 second interval.Crowe noted that the largest number

were produced in the first 15 seconds and progressively smaller numbers of

responses were produced for each of the following three 15-second periods.

Also, the orthographic frequency of the words was higher for the first words

produced, and lower for the later words. This task is similar to my task, and

I will be able to analyze the order of production to see if the same pattern

appears in my results.

Unsworth, Spillers, and Brewer (2010) conducted a verbal fluency study

and found that working memory capacity (WMC) was the most effective pre-

dictor of individual differences in verbal fluency, with some additional con-

tribution of vocabulary size. They hypothesize that WMC is involved in the

maintenance of category cues and in the monitoring of the retrieval of re-

sponses from memory. According to Unsworth et al. and Rosen and Engle

(1997), fluency arises from a combination of strategic (WMC) and associative

(vocabulary) processes. In this study I did not collect any data that would
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allow me to study individual differences in the participants. I used statisti-

cal methods to account for the random effects of participant, and individual

differences in WMC is likely one of the sources of subject variability.

4.4.1 Participants

Using a custom web experiment management system, I recruited 864 under-

graduate students from the University of Alberta. All were self-described na-

tive speakers of English.

4.4.2 Materials

I randomly sampled 240 trigrams from the Web1T corpus to cover a broad

range of frequencies. As in Experiment 1, I sampled these trigrams at random

without regard for their status as constituents. Most of the trigrams in the

corpus are very low frequency, and so a minority of the stimuli may appear to

be malformed (e.g. in the to). Rather than try to filter out these items using

arbitrary criteria I left them in the stimulus set and gave them no special

treatment, but the inclusion of these items may have been the reason for the

large number of responses that were eliminated from the data as explained

below.

4.4.3 Procedure

The instructions about how and where to complete the survey were identical

to the procedure in Experiment 1. The participants were randomly assigned

into one of 30 groups and each group was asked to complete a different survey.

Each survey consisted of a set of 8 trigrams for a total of 240 trigrams. Par-

ticipants were asked to type in a word either before or after the trigram, and

were given twenty fields to use for each trigram. If all 864 participants had

provided 20 completions for each of the 8 trigrams they saw, the maximum

total number of observations would have come to 138,240. I did not receive

this many responses, perhaps due to the decision not to set any restrictions

on the minimum number of responses in the experiment. Participants were
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allowed to submit surveys with between 0 and 20 responses per item and still

receive credit for their participation. I obtained 77,621 data points, an overall

response rate of 56%.

This survey was part of a larger package of surveys that took approximately

50 minutes to complete in total. The other surveys in the package did not

contain any tasks that were similar to this task. This survey was always the

last of the web surveys to be administered in the package.

The instructions at the beginning of the survey asked participants to fill

in a blank with the first word that came to mind, and to avoid changing the

order of their responses once they had typed in a word. They were instructed

to only type in one response per line, either before or after the n-gram. It

was explicitly noted that all completed phrases should make sense. They were

also asked not to consult books, web pages or other resources when thinking

about how to complete these n-grams. As in Experiment 1 the maximum word

length was 12 letters.

There were some entries that were excluded because participants typed

a word both before and after the n-gram. After eliminating 7,925 responses

because of this type of double entry error, I was left with 69,696 observations.

4.4.4 Results

The first analysis I attempted on this data was similar to the analysis I did

for Experiment 1: I tried to predict the frequency of responding, or cloze

probability, of each type of response.

To filter out nonsense responses I removed data for responses that did not

have a corresponding entry in the Web1T corpus. As has been noted by Hahn

and Sivley (2011), there is an issue with the Google Web1T data from Brants

and Franz (2006): due to technological constraints, it is very computationally

expensive to collect frequencies for very rare n-grams. For this reason the

corpus only contains data for n-grams that occurred 40 times per trillion or

greater. Since my trigram stimuli were drawn at random from the Web1T

corpus, and since most trigrams are rare, many low frequency trigrams were

drawn (the full list of stimuli are given in Appendix 4.7). Finding a sensible
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completion to a very low frequency proved to be extremely difficult for the par-

ticipants. This may explain why most of the participants’ 4-gram responses

were in the range of 0 to 39 occurrences per trillion, leaving them out of the

Web1T 4-gram data. Without a 4-gram frequency measure, I cannot include

these responses in my model. A casual inspection of these removed responses

showed them to be almost all nonsensical. After removing all responses with-

out Web1T frequency data, the number of types present dropped from 47,438

types to 8,066 types translating to a drop from 69,696 responses to 18,356 re-

sponses. Of the 51,340 observations that were dropped, 33114 were singletons.

Following Nelson, McEvoy, and Schreiber (1998), all idiosyncratic responses

were dropped from the dataset. The number of observations per type was still

quite small: the mean number of observations per type was 2.2 ( σ = 2.6,

range = 2 to 29).

During this process of removing idiosyncratic responses the number of stim-

uli left in my data set dropped from 240 to 201, meaning that 39 items produced

4-gram responses that were all absent from the Web1T corpus (a total of 937

observations). A description of the 39 items that were dropped at this point

is provided in Section 4.8.

The final data set was split into two sub-groups: responses that were

prepended (7,461 observations of 3,248 types) or appended (10,895 observa-

tions of 4,818 types). These are the data sets that I will analyze.

I hypothesized that if many participants produced the same response for

an item, that response may be preferred because it has been seen in that

context before, and this contextual cue aided in retrieving a memory involving

that context. Consequently I expected that the conditional probability of that

response in the Web1T corpus should be predictive of the response rank. The

conditional probabilities for the responses were calculated as:

P (Response Word|Trigram) =
P (Response Word

⋂
Trigram)

P (Trigram)
=
P (Quadragram)

P (Trigram)

I entered this variable along with my other predictors and began fitting models

to the data.

Each response has Web1T frequencies for all of the contained words, bi-
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grams and trigrams, but since they are high inter-correlated, they cannot be

entered into my model until the degree of multi-collinearity is reduced. I used

PCA to extract the first four principle components from the set of the 12 fre-

quency variables. The four new predictors are uncorrelated with each other,

and combined they explain 85% of the variability in the original predictors.

Using these four principle components I reduced the collinearity in my model’s

predictors to an acceptable level. The four principle components are referred

to as PC1 to PC4.

I detected non-linear relationships in my models, and so I chose to use

Generalized Additive Models (GAMs, Wood, 2006) to better understand the

data. I included the random effect of item (as a smooth) in all of my analyses

because I needed to take into account the relationship within the group of

responses given for each stimulus.

Since the response frequency variable was not normally distributed, I chose

to use Poisson distribution and the log link function instead of the Gaussian

distribution. These counts are not completely independent because once a

response is counted, it is no longer among the possible candidates of words to

be counted, but this issue should not influence our results in an experiment of

this size.

After following a stepwise forward model selection procedure for both

prepended and appended datasets, the best models were almost identical.

They both contained the following:

• A random effect for each trigram.

• The effect of the conditional probability of each response word given the

trigram (taken from the Web1T corpus)

• PCs derived from the word, bigram and trigram frequencies within the

quadragram (but not the quadragram’s frequency itself)

• The response length (in letters)

The other predictors that were temporarily entered into models but did

not improve the models were: the frequency of the whole response 4-gram, the
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stimulus PMI and the response PMI. Frequency may have dropped out of the

models because it is similar to conditional probability and did not absorb any

new variability above and beyond conditional probability.

The estimates for the model’s degrees of freedom in my final models are

shown in Tables 4.1 and 4.2. The only linear relationship is the one for the

conditional probability of the prepended responses, with an edf of 1. Since

the relationships with PC1, PC2 and PC4 are not theoretically relevant, they

will not be discussed. To understand the relationships in the GAMs it is

vital to study the shapes of the smooths, shown in Figure 4.3. For both the

prepended and appended responses, the conditional probability of the response

in the corpus had a positive, mostly linear relationship with the participants’

frequency of producing that response. To reiterate, the more predictive the

context of a response, the more likely more people would choose the response

(Figure 4.3 A and B).

The effect of length was negative for the appended responses (Figure 4.3

C). Longer responses were less frequent than shorter responses. For prepended

responses, the relation was more complex (Figure 4.3 D). It is unclear why this

smooth is this shape, but the only possibility is that there were some numbers

of letters that were more common, and each of the peaks corresponds to one

of these common word lengths.

Estimated Df Estimated
Residual
Df

F pbayseian

PC1 8.41 8.82 36.17 3.2e-05
PC3 8.00 8.66 57.74 2.6e-09
PC4 7.44 8.15 74.35 8e-13
Response Length (Let-
ters)

6.82 7.80 260.43 7.3e-52

P (First word|Trigram) 3.31 4.16 540.86 1.4e-115
Random Effect of Item 192.14 212.06 1080.23 2.7e-116

Table 4.1: Model coefficients for smooths predicting response frequency in the best fitting GAM for the

prepended responses.
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Estimated Df Estimated
Residual
Df

F pbayseian

PC1 7.23 7.97 52.26 1.4e-08
Response Length (Let-
ters)

6.82 7.87 95.35 3.2e-17

P (Last Word|Trigram) 4.89 6.00 1221.13 1.3e-260
Random Effect of Item 176.20 200.19 965.14 1.9e-100

Table 4.2: Model coefficients for smooths predicting response frequency in the best fitting GAM for the

appended responses.

After taking into account the frequencies of the component n-grams and

the length of the words, the conditional probability measured in the Web1T

corpus was predictive of the frequency of the response, or the cloze probability.

This evidence supports the hypothesis that n-gram memory drives word choice

in my task.

4.4.5 Response Entropy and Family Size

The first question I asked of the data was: What influenced the participants’

choices as to whether to place a response before or after the stimulus? To

measure this I counted the total number of responses for each stimulus in each

position and then divided them to create a position ratio: a ratio greater than

1 for items that had more prepended responses than appended responses and a

ratio less than 1 for items that had more appended responses than prepended

responses.

In all the following analyses, I created saturated linear models that included

all of my predictors derived from the stimuli (whole n-gram frequency, com-

ponent frequencies, pointwise mutual information and entropy), including all

two-way interactions. Pointwise mutual information (PMI, Fano & Hawkins,

1961) is defined as the degree to which words in an n-gram occur together

more frequently than would be expected by chance. For the trigram stimuli it
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Figure 4.3: Plots of the smooths from the GAM models for response fre-
quency. Relationship between conditional probability and response frequency
for prepended (A) and appended (B) responses. Relationship between response
length and response frequency for prepended (C) and appended (D) responses.
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Figure 4.4: Scatter plots including best fit regression lines and 95% confidence
intervals for A) the relationship between trigram 3rd word frequency and the
ratio of numbers of appended and prepended responses, and B) the relationship
between trigram PMI and response entropy (for prepended responses).

was calculated using the following formula:

PMItrigram = log

(
Ptrigram

Pw1 × Pw2 × Pw3

)
(4.1)

where Pw1 is the probability of the first word occurring alone and Ptrigram is the

probability of the three words occurring together. In the field of information

theory, entropy, H, was defined by Shannon (1948) to be:

HN-gram = −
N∑
i=1

PN-gramlogPN-gram (4.2)

where there are N n-grams in a family, each with a probability of PN-gram. I

calculated these two values for each of my 240 stimuli. In the case of entropy, I

calculated the entropy for both the prepended family and the appended family

separately.

During my analysis I used a backward elimination model comparison pro-

cedure to eliminate predictors that could be removed without hurting the fit

of the model. Using the log likelihood ratio test, I eliminated predictors one

by one until I found the model with the best balance of complexity and fit.

The best model for position choice retained only one of my predictors,

the frequency of the final word in the stimulus. This model found a negative
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linear relationship between the log transformed frequency of the final word of

the stimulus and the log transformed position ratio (β = −0.11, t(2) = −7,

p = 2e − 11). This model was a significant improvement over the null model

in a log likelihood ratio test (χ2(1) = 45, p = 1.6e − 11). A visualization of

this relationship is shown in Figure 4.4A. Closed class words are much more

frequent than open class words therefore this frequency effect may be related

to the class of the final word. This interpretation would imply that if a closed

class/function word was at the end of one of my trigrams it would increase the

proportion of responses at the end of the trigram making the position ratio

smaller. An open class word at the end of a stimulus correlated with less

appended responses and more prepended responses.

The second analysis was of the response distributions. From a theoretical

perspective, production is necessarily constrained by experience. How are the

probabilistic properties of the trigram stimuli influencing the distribution of

the responses that the participants produced? I counted the number of distinct

responses made for each stimulus and called this number the family size of the

responses for that item. I then calculated the entropy of those responses as

well, providing a measure of the amount of order/disorder for the responses

to a stimulus. Since the location of the response (before or after the stimulus)

will change the constraints that arise from the distribution of completions in

the Web1T corpus, I analyzed these two data sets separately. I retained all

the idiosyncratic responses for this analysis as they did not impact the results

(all of the effects I found were identical when I removed the idiosyncratic

responses).

For the responses that were prepended to a stimulus, I found that the

none of my models were able to reliably predict the family size of the response

set, but there was one model that was able to predict the entropy of the

response set. This model found a positive linear relationship between the PMI

of the stimulus and the entropy of the responses (β = 0.17, t(238) = 5.3,

p = 3e − 07). Stimuli that had a higher PMI had higher entropy, or less

order, in the set of n-grams created by prepending a word. This model was
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Figure 4.5: Contour plot of the fit for the linear regression model for family
size predicted by PMI and Entropy for appended responses.
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a significant improvement over the null model in a log likelihood ratio test

(χ2(1) = 27, p = 2.6e − 07). A visualization of this relationship is shown in

Figure 4.4B.

In contrast to the prepended trials, the response entropy data for the ap-

pended words did not have any strong relationships with the predictors but

there was a relationship found for the family size. The first model included

the PMI of the stimulus, and this model was significantly better than the null

model (χ2(1) = 9.9, p = 0.0016). This model was compared to one that also

included the entropy calculated from the Web1T corpus (the predictability

of the final word based on the preceding three words). After including the

entropy predictor in the model there was further improvement (χ2(1) = 8.3,

p = 0.004). In the final model the coefficient for the effect of PMI was neg-

ative (β = −8.7 , t(237) = −3.1, p = 0.0019), meaning that trigrams with a

greater PMI had response families with smaller family sizes. The coefficient

for the effect of entropy was positive (β = 4.4, t(237) = 2.9, p = 0.0042),

and therefore trigrams that were less predictive of the next word in the corpus

had a greater variety of responses. A contour plot for the fit of this model is

shown in Figure 4.5, and can be thought of as a plane intersecting the space

of possible family sizes. The greatest variety of responses was produced for

stimuli with high entropy and low PMI, and the least variety of responses was

produced for stimuli with low entropy and high PMI.

These results demonstrate the differences in the process of choosing prepended

versus appended completions, which depended on the frequency of the final

word. The properties of the stimulus influenced the participants productivity

as well as the amount of order in the response distributions for each item.

4.4.6 Response Order

In this final analysis I looked at the order in which the responses were gener-

ated by the subjects. Each response has a position in the response list from

1st to 20th. I fit models that predicted that position for each response. I

used the same set of 18,357 that I used in the previous analysis. I only re-

tained observations for 230 stimuli as 10 of the stimuli were left out under this
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criterion.

The dependent measure in this analysis is not a continuous, normally dis-

tributed variable. Rather it is an ordinal, categorical variable (participants

chose what order to list their responses, and 1 is before 2, etc). Linear models

are not well suited to analyze ordinal categorical data; they assume that the

outcome is continuous and can make predictions that extend beyond the range

of possible outcomes. Cumulative Link Models (CLM), also called cumulative

logit models, are a type of ordinal regression model that is well suited to an-

alyzing my data (Agresti, 2010). I used a type of CLM that can also include

crossed random effects, Cumulative Link Mixed Models (CLMM). Further-

more, my data satisfy the proportional odds assumption, that the relationship

between any two pairs of outcome groups is the same. I used the ordinal

package (Christensen, 2011) in R (R Development Core Team, 2009) for this

analysis.

I have two very different types of responses to analyze, responses that were

prepended and those that were appended. To better understand the contrast

between these two types of responses, I split my dataset in two: 7,464 observa-

tions of prepended responses and 10,893 observations of appended responses.

I will report the results for these subset separately but the process that I used

to build my models was identical.

I used forward stepwise model selection that included all of the predictors as

well as interactions between them. All models included crossed random effects

for subjects and items. I compared nested models and retained the models

that had the best balance of fit and complexity. All models were compared

using the log likelihood ratio test.

The best models for the two data segments were:

logit(P (Yi) ≤ j) = θj − βFreq 1st Wordi
− βP (First word|Trigram)i − µsubjecti − µitemi

(4.3)

logit(P (Zi) ≤ j) = θj − βFreq 2nd Trigrami
− βP (Last word|Trigram)i −µsubjecti −µitemi

(4.4)
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Yi = order of generation for prepended responses

Zi = order of generation for appended responses

i = 1, ..., Nobservations

j = 1, ..., Ncategories − 1

where θ is the vector of response category thresholds, µsubject is the vector of

random intercepts for subjects and µitem is the vector of random intercepts for

items.

β̄ SE(β) z p|z|
Log Response 1st Word Freq -0.248 0.035 -7.08 1.5e-12
P (First word|Trigram) -0.151 0.013 -12.12 8.5e-34

Table 4.3: Coefficient estimates from a cumulative link mixed model for re-
sponse order for prepended responses.

The estimated fixed effect coefficients in my first CLMM for the prepended

responses (Equation 4.3) are shown in Table 4.3. The first predictor that re-

mained in the model was the frequency of the critical first word. The frequency

of this word, the one the participants chose, had a negative relationship in-

dicating that responses with a high frequency word in the first position were

produced before responses with a low frequency word. The second predictor

was the conditional probability of the response word given the trigram. The

sign of this coeffecient was also negative. The lower the conditional probability,

the earlier the response of was generated. Neither bigram, trigram, quadra-

gram frequencies nor PMI were retained during this model selection process

as they did not contribute and explanatory power to the model.

β̄ SE(β) z p|z|
Log Response 2nd Trigram Freq -0.156 0.031 -5.10 3.4e-07
P (Last word|Trigram) -0.184 0.013 -14.24 5.5e-46

Table 4.4: Coefficient estimates from a cumulative link mixed model for re-
sponse order for appended responses.
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For the appended responses, the best model (Equation 4.4) included two

fixed effects, shown in Table 4.4. The first predictor was the 2nd (final) tri-

gram and frequency. It had a negative relationship with the order in which

the responses were produced. Responses with a higher frequency final trigram

(bottom part of the) were produced earlier than responses with a lower fre-

quency final trigram (chocolate chip cookie lover). The final predictor in

this model was the conditional probability of the final responded word given

the preceding trigram. This effect was negative, showing that words that were

more likely to occur after the trigram in the Web1T corpus given the trigram

context were generated earlier. As with the prepended responses, the other

n-gram frequencies and PMI did not enter the model.

These results provide evidence that the search process the participants

used to generate responses in this cloze task was sensitive to the conditional

probabilities of the n-grams that were created. The predictors that remained

in the models can help us understand this search process. For the prepended

responses, high frequency words were the first to be generated, in particular

high frequency words that were part of a high-probability n-gram. For the

appended responses, words that had a high conditional probability given the

preceding context were generated first, in particular those word that created

a high frequency trigram.

Our only n-gram frequency effect was position dependent. The frequency

of the trigram containing the response word constrained the search process

when the response was appended, but not when it was prepended. This result

is very similar to the results obtained by Griffin and Bock (1998) in their verbal

production task. Their frequency effect was also modulated by the amount of

contextual constraint in their sentences.

4.4.7 Discussion

Experiment 2 expanded on Experiment 1 by allowing participants to provide

multiple completions for each stimulus. The design of the experiment also

allowed me to calculate the conditional probability in the Web1T corpus of

each response provided by the participants. I found support for the effects
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of conditional probability in the response frequencies and the in the order of

generation of the responses. I also found effects of the entropy and PMI of the

stimuli on the entropy of the responses and the family size of the responses.

Our results mirror those Crowe (1998) for the prepended responses. As in

his letter and semantic verbal fluency tasks, I found evidence that higher fre-

quency words were produced earlier. The same was not true for the appended

responses where the word frequency of the responded word did enter into the

model because it did not help explain the order data. The amount of con-

straint created by the letter categories and semantic categories in the verbal

fluency tasks is much less than the amount of constraint in the n-gram cloze

task and this may explain the difference between the appended and prepended

responses. Crowe (1998) proposed a mental store of high frequency responses

that eventually get depleted and force participants to use a different, slower

search strategy to complete the task. My data do not support this model

since I found a continuous, linear, negative trend for the order of the subjects’

responses, with not change in strategy evident.

I will discuss how the data from Experiment 2 fits into the larger landscape

of psycholinguistic theory in the following section.

4.5 Conclusion

I performed two experiments where I asked participants to complete n-grams

that required either a letter or word to be added to them. The only constraints

in this task were the other words in the n-gram, the linguistic micro-context.

I uncovered evidence that probabilistic measures derived from large samples

of language predict which words participants choose to complete these cloze

n-grams and the order in which they generate them. For the first time I ap-

plied frequencies, conditional probabilities, PMIs and entropies extracted from

a one trillion word corpus of English to this type of psycholinguistic task. The

relationship between the corpus measures and the observed behaviour imply

that a similar kind of probabilistic information is available to the language

system when choosing a completion in a cloze task. Since the conditional
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probability of a word in context can only be learned from linguistic experi-

ence, and since experiences are stored in memory, I submit that the process

of completing the cloze task was a memory process. I will now incorporate

theoretical considerations from research on linguistic memory and cognition

to better understand how this probabilistic information is used in the process

of completing fragments.

First I will look to the research on memory for theoretical considerations.

How much of the cloze task response process can be ascribed to memory,

to recall? The answer must be tied to the process of remembering words.

Tulving (1985) famously drew a distinction between episodic and semantic

memory. Abstract word memory, along with memory for other types of factual

knowledge, was categorized as semantic memory. Memories for events were

categorized as episodic. Under this assumption of a separate lexical memory

store, the first psycholinguistic models of lexical memory were simple affairs —

memory was seen as containing localist units for each word, and each of those

word memories was said to have a certain strength plus links to associates

(Collins & Loftus, 1975). These models did not include episodic memories for

words in the lexical memory model. In a break with these ideas, distributed

connectionist models have challenged the validity of localist models since the

1980s (M. Seidenberg & McClelland, 1989; Sibley, Kello, Plaut, & Elman,

2008). Elman (2011, 2009) has eloquently shown how lexical relationships can

arise from temporal statistical patterns and how meaning can emerge from

distributed systems without any local semantic representations in memory. In

his dynamic model of lexical memory there is no need to differentiate between

episodic and semantic — all information from episodic memory is captured

in the probability space representation of the language. Despite the lack of

consensus on the representation of language in memory, we can still look to

evidence from memory research for some perspective on my results from the

n-gram cloze task. I found evidence for frequency and contextual probability

effects in the responses. If there are similar frequency and context effects in

analogous memory tasks, this would support my position that performing the

cloze task relies heavily on memory systems.
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The statistical properties of language have been thought of as a nuisance

variable in many studies because they have been found to influence memory

tasks that use words as stimuli. Instead of trying to eliminate frequency effects

by matching and counter-balancing average frequency, Criss, Aue, and Smith

(2010) systematically manipulated the contextual variability and orthographic

frequency of the cues and targets in a paired associated cued recall task. They

found that high frequency targets were recalled better, independent of the

context variability and frequency of the cue. The frequency of the cue did

not influence recall, but cues with low context variability had the effect of

improving recall performance. Is this result relevant in light of my results?

From the perspective of memory theory, the cloze task could be thought of

as a cued recall task without a study list, but with an enormous amount of

exposure to the stimuli. The n-gram is what the participant uses to probe

memory. In light of these similarities, the results from their cued recall task

and my cloze task are convergent. As in their cued recall task, high frequency

targets were recalled more frequently (our result from Experiment 1). The

constraint created by a low context variability cue improved recall, and it

also increased the number of responses recalled for items in Experiment 2

(independent of the main effect of PMI, see Figure 4.5). Finally, the frequency

of the cue was not a strong predictor of response order for the appended

responses, which is similar to a forward recall task. This parallels their finding

that cue frequency did not affect their recall probability. The similarity of the

pattern suggests that a similar process is taking place during cued recall and

the cloze task.

There are similarities between the n-gram cloze task and the lexical free

association task. Nelson et al. (2000) proposed a theory of the free associa-

tion process that models word choice as a system that samples a word from a

distribution of candidate words when participants are given a certain free asso-

ciation cue. The context of three or four words that were given in the n-gram

cloze task was greater than that of the single word cue in the free association

task. With the increased constraint, it is difficult to see how the sampling

process proposed by Nelson et al. (2000) is directly relevant to the n-gram
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completion process (similar to the difficulty in aligning my results with the re-

sults from verbal fluency research). Recently Nelson and McEvoy (2007) have

suggested that associations are best modelled as entangled quantum states.

These models may have more relevance to the question of n-gram processing,

but these quantum formalisms are currently in the embryonic stages of devel-

opment and cannot be used to computationally model behavioural data yet.

It appears that there no evidence for convergence

In the discussion of Experiment 1 I noted the importance of contextual

distinctiveness in explaining frequency effects (McDonald & Shillcock, 2001).

This point was further supported in Experiment 2 where raw n-gram frequency

was subsumed by conditional probability in the analysis of response frequen-

cies and response order. These results appear to differ with those of Arnon

and Snider (2010) and others, who found raw frequency predicted changes in

behaviour. I continue to argue that n-grams are being processed in a similar

way to words. The reason for this apparent discord in the results is due to

a confounding of frequency with other important variables. I propose that

the n-gram frequency benefit that has been found in recent psycholinguistic

experiments is not a consequence of the raw count of exposure. Rather, much

like the effect of word frequency, the effect of n-gram frequency is epiphenom-

enal. Baayen (2010a) has argued persuasively that the information from the

linguistic context is what dictates facilitation, not merely exposure. My results

provide further evidence that context, captured in conditional probability, is

the a dominant force in processing n-grams.

This research is exploratory in nature and not a definitive adjudication.

This is the first n-gram cloze task experiment that I know of. I have not as

of yet fit any computational models to this data but I believe it would be

beneficial to attempt to computationally simulate the data I have collected.

To spur the development of computational models of word generation I have

provided all the raw data from my experiments at the following location: http:

//tinyurl.com/ClozeExperiment.

After minimal modification, some current computational models of multi-

word reading, such as the NDR (Baayen et al., 2011), the Bayesian Reader
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(Norris & Kinoshita, 2008), simple recurrent networks (Mirman, Graf Estes, &

Magnuson, 2010) and neural networks (Dilkina, McClelland, & Plaut, 2010c)

are potentially capable of modelling this data. All of these computational

models are trained on a corpus of text and build a large network of probabilis-

tic relations between form and meaning. The NDR is particularly promising

because it has already been applied to multi-word input (Baayen & Hendrix,

2011). The NDR can generate predictions about upcoming words in a stream

using the conditional probability of the sub-lexical information which is con-

tained in the models association network. I hope to apply the NDR model to

this data to see how well it can simulate the participants’ cloze task perfor-

mance. Simulations by computational models will undoubtedly reveal more

about the workings of the word production process. If these prediction-based

computational models turn out to be good models of the cloze task I created,

it will validate the concept of the automatic forward-modeling system put

forward by Pickering and Garrod (2007).

The existence of micro-context effects has implications for models of word

selection in language production. My results are only directly applicable to

isolated short n-grams, but it is conceivable that during the production of

longer utterances, and the writing of text, the probabilities from the micro-

context of the previous few words has a effect on the next word produced.

Once that word is chosen, the micro-context moves forward and begins to

influence the choice of the next word, and so on. The question that can now

be addressed is: how do the micro-context (the local quadragram, for example)

and the macro-context (the sentence or paragraph) interact when language is

being produced. The power of human memory to retain n-gram experiences

helps explain the extraordinary fluency that adults exhibit when speaking and

writing. My results may also have implications for theories of verbal Working

Memory (WM). Cowan (2008) proposed that WM functions emerge from the

temporary activation of domain-specific long-term representation under the

guidance of attention. Acheson and MacDonald (2009) feel that serial ordering

in language production is intimately linked to verbal WM. My n-gram results

expand the grain size of long-term representations that must be activated
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during language production. Future research into verbal WM may find that

n-gram memory is involved in many verbal WM tasks.

Future research with cloze tasks will not only help us understand how we

read groups of words and choose words during production, but also how we

learn the meanings of n-grams. There is plentiful evidence that infants use the

statistical patterns of language to learn how to speak and understand speech

(Saffran et al., 1996). Infants have been shown to use statistical learning when

learning both artificial and natural languages (Hay, Pelucchi, Estes, & Saffran,

2011) and recently implicit statistical learning has been seen in adults as well

(Conway et al., 2010). The cloze task can provide valuable data about how

our word selection processes operate, and computational models can help us

link language acquisition theories and language processing models.

There are powerful anticipatory processes at play in single word process-

ing, n-gram processing, and sentence processing. The impact of context in the

n-gram cloze experiments was pervasive and suggestive of a link between con-

textual memory and word selection. Without the computational infrastructure

and extensive n-gram frequency data that is now readily available I would not

have been able to attempt to understand the processes underlying word choice

in a cloze task. As the large data trend continues to progress other previously

intractable problems in psycholinguistics may soon become tractable as well.
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4.6 Appendix: Stimuli, Experiment 1

Letter Completion Word Completion
could you ay to do with the
the at is an exception to the
in the one have no time to
with a ag keep a firm on
going to reak go in the face
lots of arts at some in time
the ay to share your with others
into the aves pull out all the
and illing in the taller of the
is a it album of all time
ate with the is on thin ice
ell and then going to a tonight

you want to eep the midterm will be
what are you iving the effects of warming
the house is old I was my bike
had been ought in it is a day
is a ap of no matter what is
I have et the best interest of the
it is the eat would you like to
got a an in the is to help
of the eal was on the basis of
look at the ash looking for a vacation

found out how to

Table 4.5: Stimuli for the letter and word completion tasks.
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4.7 Appendix: Stimuli, Experiment 2
Trigrams Trigrams (cont) Trigrams (cont)
a couple weeks hanging out in potentially toxic compounds
a minimum threshold happily ever after press release can
a more moderate have more to preyed upon the
a report detailing have not been printable on your
about what the hereby certifies that printable telephone numbers
account at official homeland security threats quality of and
act on behalf identify the potential quality to your
affair with a if you are quite a variety
aggregate amount payable illustrative purposes only rarely the case
an agent who image of an reliable but not
an income stream implication or otherwise reliable migration from
an unbelievably low in into the relocating overseas canadians
and all my in the advance repeats of the
and are of in the greatest residential real estate
and in the in the helping reverse chronological order
and into the in the moment revolves around the
and on behalf in the to scripts for the
and the return in tracking the shall be certified
are health care including air conditioning shines white light
are to facilitate including more than shipping rates for
as to claim increase in the small engine repair
as to state instructor led training sooner rather than
asbestos attorney lawyer internally powered by source software community
at game show into the website speak not of
authorize appropriations for is against a specs of the
backed sequin belt is approaching a speeds of up
bacterial flagellum is is designed in strictly prohibited without
barriers to entry is to elucidate submitting to a
because it did it just comes subsequent to this
bird flu virus its jurisdiction the talk about what
bottom part of java mortgage calculator technical to make
brutally murdered his judicial paperwork that text have been
business and for keen interest in the entire class
but to a kiln lime production the film have
butchering technique of liberates toxic gas the on position
by telling the locally advanced or the on site
by the thread mad doctoring skills the response you
calories you burn make it the the same the
can be huge member at the the special meaning
can be left molecular mass of third most popular
can be required more rather than those with an
center offers a more support than thoughts with the
chocolate chip cookie more will determine to and establish
chronic pain condition musical or comedy to be impeached
click here if my bloody valentine to force the
combined shipping rates not can not to into the
comes back to obligated to pay to please contact
comparing store ratings obstructive pulmonary disease to rental cars
comply with a of an underlined to say goodbye
components is not of cruises aboard to that contained
compulsive behaviors which of it comes to the years
constitute endorsements of of members for to those offered
cooling plant setting of the what treasure trove of
credited alongside another of things past trusted source for
details of and of ulcers caused tucked away in
did not like of your password two consecutive years
died last week on by his under difficult circumstances
dietary supplements have on store shelves unequally yoked with
dietary supplements with on this page urinary tract infection
distinction between public one able to used to love
ditch and bank one iota of usher dashboard confessional
doting grandpa of one of this virtually all of
ears perked up organizations all over was above the
electric mixer until our cover showed way it was
electromagnetic waves of our staff who website shall be
explores essences of outdoor activities such weight loss vitamin
fits nicely into outline of your when he fought
flattens out the particles in the wherever they are
floodlit tennis court payment details and which equals the
for something new pending renewal or which may be
for the most per day or who carried out
friends and the per year of whoever posted them
from the finest performance of three with obtaining the
front porch of perked me up with too many
fullest extent of physical high all with you can

160



gallons per day pill weight loss workshops held in
genetically modified organisms place to consider worthy of more
glutton for punishment pleads guilty to years of credited
grain leather upper polyester blend fabric you realize that
hang to dry polyphonic ring tones you would on
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4.8 Appendix: Analysis of items dropped from

Experiment 2

The full list of items that were eliminated from the dataset is provided in

Table 4.6. Descriptive statistics for these two groups are given in Table 4.7.

The dropped stimuli were an average lower in frequency, lower in entropy and

higher in PMI than the retained stimuli.

Items Dropped from Exp.2
account at official explores essences of
asbestos attorney lawyer to those offered
backed sequin belt at game show
cooling plant setting implication or otherwise
ditch and bank relocating overseas canadians
homeland security threats unequally yoked with
java mortgage calculator constitute endorsements of
judicial paperwork that of an underlined
kiln lime production of the what
reliable migration from our cover showed
technical to make hang to dry
usher dashboard confessional internally powered by
in the to shines white light
printable telephone numbers as to claim
liberates toxic gas to rental cars
including air conditioning the film have
mad doctoring skills not can not
whoever posted them to into the
the on site compulsive behaviors which
of cruises aboard

Table 4.6: Trigram Stimuli dropped from in Experiment 2 due to lack of
quadragram frequency data in the Web1T corpus.

Statistic Mean for Dropped
Stimuli

Mean for Retained
Stimuli

Cohen’s d′, 95% CI

Log Frequency -4.05 -1.52 1.39 (1.3 , 1.5)
Log Entropy -8.6 -6.1 1.41 (1.3 , 1.5)
PMI 11.61 7.12 0.85 (0.7 , 1)

Table 4.7: Comparison of dropped and retained stimuli. Bootstrapped 95%
confidence intervals for Cohen’s measure of effect size, d′, are included.
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Chapter 5

The nature of n-gram processing

Up to this point I have presented my case for an information-centric view of

n-gram processing based on the work of those before me and the results of my

experiments. In Chapter 1 I reviewed the history of n-gram research within

the context of psycholinguistic inquiry. An explanation of the current state

of n-gram research led to an exposition on the rationale for my research. In

the following chapters I described my results from three distinct lines of re-

search that involved n-gram processing. The subjective frequency of n-grams

was investigated in Chapter 2, the reading of n-grams in Chapter 3 and the

production of n-grams in Chapter 4. These three lines of research had much

in common: they all used n-grams as the experimental stimuli and they all

attempted to uncover relationships between corpus-derived probabilistic mea-

sures of n-grams and the participant’s behaviour. They differed in the type of

task that was involved and the dependent variable that was measured.

5.1 General Discussion

In this final chapter I will bring together the conclusions drawn from each of

these lines of research and offer my thought about what my research has to

say about the nature of n-gram processing.

After summarizing my conclusions, I will then address how my research

relates to certain ongoing debates in psycholinguistics. The main issues that I

will touch upon in this chapter are: the debates on the nature of the lexicon,

the debates on the importance of linguistic storage vs. linguistic computation,
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and the debates about emergentist models of language.

The evidence I have brought forth in this dissertation paints a complex

picture of n-gram processing, but there are some general conclusions that I

can now make about it.

5.1.1 N-grams are more than the sum of their parts

It is not enough to have information about the individual words in an n-

gram. There is an independent, important contribution to be made by holistic

information. I have taken precautions in my experiments to always include

the effects of lexical, component n-gram and whole n-gram statistics into my

models of experimental phenomena. The finding across the gross majority of

my experiments was that the holistic variables invariably made contributions

above and beyond the component variables. First, the whole n-gram frequency

was involved in subjective frequency judgements. Second, the whole n-gram

frequency, coherency and information content were predictive of the reading

time, probability of regressive saccade, and number of fixations. There was

also an early effect of n-gram frequency on first word reading time. Third,

the whole n-gram conditional probability was the most influential predictor of

cloze performance (Chapter 4, Experiment 2). All of this gives strong support

to my assertion that all n-grams are full-fledged psychological entities.

This conclusion may appear to obvious to any user of language, but in

many ways it is a subtle point. It is indeed obvious that changing the order

of any two words in an n-gram could completely change how it is processed,

despite the fact that the same words are involved. N-grams contain not just

information from the words they contain, but also information about the order

in which they are sequenced. The subtlety here is that for non-compositional

n-grams (the majority of the stimuli used in my experiments), there is no

clear semantic analysis. Yet despite their incompleteness as phrases, they have

holistic properties. The generality of our holistic effects are the hallmark of

sub-symbolic processes, and not predicted from symbolic, parse-based theories.

This view of non-syntactic processing is not without its detractors. The

theory proposed by Jackendoff (2007) or others who subscribe to theories of
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syntactic modules and the segmentation of sentences based on parsing would

not align with this view. Kuperberg (2007) has looked at the many studies on

the time course of the N400 and the P600 syntax signals in ERP data and she

takes a conciliatory tone. She finds a modular syntax-then-semantics theory

implausible, and lays out a dual process model, with a fast semantic memory-

based constraint processing system operating in parallel with a combinatoric

system, and with the two systems exchanging information during sentence

comprehension. In future ERP studies it will be possible to discern if n-grams

are engaging in this combinatoric system that is sensitive to morpho-syntactic

and thematic-semantic constraints.

5.1.2 N-gram processing is an anticipatory process

How do my results help explain the anticipatory nature of n-gram processing?

In this section I will describe how each line of research provided evidence of

prediction.

The first line of research into subjective frequency judgements was not di-

rectly investigating how n-grams were read, but there is one aspect of these

experiments that has an indirect relationship with prediction. I speculated

that the reason that n-gram frequency was correlated with the subjective fre-

quency ratings was that higher frequency n-grams had more diverse contexts.

Contextual diversity implies lower relative entropy (Baayen, 2010a) and there-

fore greater predictability. My data is insufficient to determine if the signal

contained in the entropy of the n-gram (above and beyond its frequency) is

involved in the production of subjective frequency ratings or relative frequency

judgements, but future research may allow us to untangle frequency and en-

tropy and better understand this phenomenon. If an experimenter selected

matched pairs of n-grams which had very similar frequencies but differed in

their contextual predictability (or vice versa), new conclusions could be made

about the relationship between prediction and subjective frequency processing.

In Chapters 3 and 4, there was a temporal component to each task. In the

trigram reading task, the participants have a visual fixation on the first word,

and then they read the rest of the trigram, usually without any regressive
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saccades, finally moving their eyes off the screen to signal the end of the trial.

In the analysis of SG1 and SG2, the unfolding of the process became clear. The

reading time for the first word was partially influenced by n-gram frequency

and TIC, but the reading time for the first two words was not. I take this as

a signal that there was an early prediction made by the reading system about

how familiar and informative the n-gram would be based on the first word and

a para-foveal preview of the second word. No more information was gained

during the reading of the second word, explaining why the reading time of

the first two words was not influenced by the n-gram statistics. For the full

reading time for all three words, n-gram frequency and TIC effects returned.

This is perhaps the clearest evidence from my research that the visual system

and the reading system are fully interactive and share significant amounts of

information, with the lexical prediction system guiding the saccadic system to

optimize reading times for trigrams.

Despite the fact that I did not collect any timing data in the cloze task

experiments (in particular, Experiment 2), there is a clearly anticipatory aspect

to the results. In that experiment, the participants read a trigram and then

produced a word that created a quadragram. When they read each trigram,

they saw the blanks in the order they read the stimulus, meaning that the

position of the blanks became part of the visual experience. Even though

the provided instructions asked them to “type in the first word that comes to

mind”, the order in which they generated their responses was related to the

order that they thought of the responses. The statistical relationship between

the trigram and the completion word was between conditional probability of

the temporal sequence of all four words occurring together in the corpus. The

answer that was easiest to anticipate (due to its likelihood) was the produced

first. This demonstrates how an unwritten, anticipated word can influence the

way the n-gram preceding it or succeeding it was processed.

Altmann and Mirković (2009, p. 585) identified four principles that define

anticipatory, incremental models of language:

1. Mapping across domains: Structure in language has signifi-
cance only insofar as it covaries with, and enables predictions
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of, structure in the external world (event structure). Sen-
tence comprehension consists in realizing a mapping between
sentence structures and event structures.

2. Prediction: “Knowledge” of the language can be operational-
ized as the ability to predict on the basis of the current and
prior context (both linguistic and, if available, nonlinguistic)
how the language may unfold subsequently, and what con-
comitant changes in real-world states are entailed by the event
structures described by that unfolding language. Such predic-
tions constitute the realization of the mapping between sen-
tence structures and event structures

3. Context: Concurrent linguistic and nonlinguistic inputs, and
the prior internal states of the system (together comprising
the context), each “drive” the predictive process, and none is
more privileged than the other except insofar as one may be
more predictive than the other with respect to the subsequent
unfolding of the input.

4. Representation across time: The representation of prior in-
ternal states enables the predictive process to operate across
multiple time frames and multiple levels of representational
abstraction. The “grain size” of prediction is thus variable,
with respect to both its temporal resolution and the level of
representational abstraction at which predictions are made.

The above quote refers to sentence processing, but the same process is unde-

niably taking place during n-gram processing. The fourth principle is particu-

larly relevant. It is the idea of the flexible grain size that makes these models

capable of modelling n-gram behavioural data.

Altmann and Mirković (2009) also point out that the idea of mental simu-

lation proposed by Pickering and Garrod (2007) and Glenberg (1997) is com-

patible with incremental models like Simple Recurrent Network models (SRNs,

Elman, 1990). Simulation would be the equivalent of changes to the internal

state of the common language and sensorimotor domain state-space. Changes

in the state of the real-world or the body could be predicted from events de-

scribed in language (i.e. I hit the .... enabling the simulation of a motor

program for the arm and helping to predict the following word, which could

likely be ball.).

All of these anticipatory aspects of n-gram processing support more gen-
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eral notions of forward-modeling as a basic function of the language systems

in the mind. This is what Bar called the “pro-active brain” (Bar, 2007, 2009).

Van Berkum (2008) has used ERP methods to show this process in action

during language use. Frank and Vigliocco (in press) have built a model of

sentence comprehension that treats sentence processing as mental simulation

of the “real world” with anticipation at the core of the model. Kukona, Fang,

Aicher, Chen, and Magnuson (2011) have also looked at anticipation fixation

on upcoming words in a sentence based on prediction and situational con-

straints. All this activity is evidence for a strong interest in the anticipatory

processing that takes place when using language. Below I will discuss possible

future directions for mental simulation research.

5.1.3 N-gram Frequency Effects are epiphenomenal

The question of orthographic frequency is another one that I have addressed

in this dissertation. What is frequency measuring? In particular, the results

presented in Chapters 3 and 4 showed how entropy, information and condi-

tional probability interact with or supplant pure corpus frequency in models

predicting performance on various n-gram tasks. Following the ideas of Baayen

(2010a) and McDonald and Shillcock (2001), I conclude that in much this same

way that lexical frequency effects are epiphenomenonal, n-gram frequency ef-

fects are also epiphenomenonal. N-gram frequency indirectly measures con-

textual richness, and the way that it influences subjective ratings of frequency,

reading speed or completion probability in a cloze task is a function of this

contextual richness.

Do any theories of language agree on the epiphenomenal nature of frequency

effects? One theory of reading that relies heavily on contextual diversity is

the Lexical Quality Hypothesis (Perfetti, Hart, Verhoeven, Elbro, & Reitsma,

2002). At the core of this theory is the idea that the richer the representation

of the word in an individual, the faster and more accurately he or she will

be able to process those words. The quality of the lexical representations is

measured by testing a person’s ability to spell words correctly. All representa-

tions are the result of exposure to words, so this theory predicts that readers
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who read more will have more exposure to context and therefore richer repre-

sentations. If one were to extend the Lexical Quality Hypothesis to n-grams,

how would the theory look? The theory calls upon two types of processes to

explain word reading performance: top-down processes (inference from con-

textual, semantic and world knowledge) vs. bottom-up (perceptual recognition

processing). Experimental work by Andrews and Bond (2009) has found that

expert readers use less top-down processing and more bottom-up processing

when recognizing words. The representations required by the bottom-up pro-

cess in the Lexical Quality Hypothesis are “minimally constrained by semantic

context” (Perfetti, 1992). The Lexical Quality Hypothesis tries to understand

the interplay between these two types of processes.

It is unclear if the same interplay between top-down and bottom-up pro-

cesses described by Perfetti (1992) are at play during n-gram processing. One

way that I speculate n-grams are involved in reading is that there are con-

current “sliding windows” for words, bigrams and trigrams. As these windows

slide forward, certain bigrams or trigrams that are high in contextual diversity

may appear in the window at any point in time. Depending on the individual’s

experience with that n-gram, the individual may recognize the n-gram. If there

were to be a theory based on this idea, that theory might be called the N-gram

Quality Hypothesis. It would predict that expert readers would be better at

accessing the meaning of those n-grams that are “minimally constrained by

semantic context”. I will discuss this possibility further in the final section of

this chapter.

5.1.4 N-grams and the existence of a mental lexicon:
Storage versus computation

There is no real debate about the purpose of language: language is for convey-

ing meaning. Words have meaning, and words can be listed in a dictionary,

with their meanings listed next to them. The real question for believers in

a mental lexicon is how is that meaning represented in the brain? In this

dissertation I have not explicitly asked my subjects to perform any semantic

tasks with n-grams, so it may seem odd for me to try to weigh in on the issue
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of the mental lexicon and the semantic information that it may or may not

contain, but there is a very relevant point to be made here. The critics of

the localist models of the mental lexicon have make strong arguments against

any type of static representation based on the impact of context on words

(Elman, 2009, 2011). In Elman’s lexicon-free theory of meaning, the meaning

of words correspond to one of innumerable mental states. These mental states

are islands of stability in a dynamic state-space, and are an emergent property

of a complex, dynamic system. N-grams are merely one type of context that

can change the meaning of a word, and since any type of stimulus can push

the system into a new state, n-grams are going to be one of the constructions

that will help explain how dynamic models of meaning work. Furthermore,

the meaning of n-grams will also be a point in state-space that is determined

by the context that the n-gram was found in. This is the elegance of Elman’s

idea; the grain-size of meaning is not restricted to the morpheme or the word:

as the unit of language grows, the dynamic system still tracks the meaning of

that stream at all points in time, both before it is stable (while the meaning

is unclear) and when it is stable and the meaning emerges.

Another point to be made is that all the work on single word reading

has pointed to lexical access being inseparable from lexical semantic access

(Binder et al., 2003). The only logical conclusion we can make for n-grams is

that they too can be accessed, and so n-gram access must also be insepara-

ble from n-gram semantic access. The semantics of n-grams does not have to

be localist: HAL (Lund & Burgess, 1996), LSA (Landauer & Dumais, 1997),

HiDEx (Shaoul & Westbury, 2008) and BEAGLE (Jones & Mewhort, 2007)

are good examples of emergent models of semantics that show how meaning

can arise from co-occurrence. I can only speculate about how n-gram seman-

tics work, but there is no reason other than practical, computational hurdles

that prevents all of these models from explaining the meanings of n-grams

from co-occurrence. The BEAGLE model already contains a holographic rep-

resentation of all n-grams in a corpus, and can use this information to predict

word transitions. BEAGLE is not billed as a model of n-gram semantics,

but I believe that with some modification, it could be used to model n-gram
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semantics.

This brings us to another ongoing debate: are the meanings of complex

words stored or computed? What about the meaning of n-grams? Are they

stored along with the n-gram or are they computed on-the-fly as the words roll

in to the language module? This fire has been fanned by some of the rhetoric in

the initial papers on n-gram processing (the rhetoric in Arnon & Snider, 2010

for example). This whole debate between storage and computation is a red

herring. When language is seen as being completely dynamic and interactive,

the dichotomy of “stored” and “computed” becomes untenable because it is

clearly false.

Before the work of Bannard and Matthews (2008), Arnon and Snider (2010)

and Tremblay et al. (2011) there was much theoretical discussion but not

much empirical evidence for n-gram processing. There was an overarching

assumption that certain n-grams would rise above some arbitrary threshold

and achieve a special status (often called lexical bundle-hood), creating a clean

way of dividing n-grams into two categories: “lexicalized sequences”and“other”

(Biber, 1999). This idea fit well with the computations versus storage debate.

Lexical bundles would be stored whereas all other n-grams would not. The

results from my research have clearly shown that there is no evidence for a

dichotomy. By using a large corpus and picking n-grams at random to create

representative samples spanning the full frequency range, I have found that the

effect of the prevalence of an n-gram is not dichotomous (for more on the issues

around factorialization and its consequences, see Baayen, 2010b). This graded

effect of probability, for both linear and non-linear effects, is a side-effect of

the emergent nature of n-gram processing.

Since I have called the debate about storage and computation unneces-

sary, what about the memory system? My point is not that we do not use

our memory to remember words, n-grams and their meanings. Rather, the

dynamics of lexical access and n-gram access are a type of memory process.

The results from my studies do shed some light on this. In Chapter 2 the fre-

quency of exposure of an n-gram, estimated by its corpus frequency, predicted

performance on the subjective frequency tasks. The only conceivable way for
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participants to measure their own amount of experience with an n-gram is to

(implicitly or explicitly) use their memory systems. In Chapter 3, I described

how the interplay of word frequency, bigram frequency, TIC, PMI, and trigram

frequency influenced how trigrams were read. The key point is that PMI, TIC

and trigram frequency are properties of the whole, not of the parts. Since

participants were required to hold each trigram in working memory between

trials, the reading time of each trigram also reflects the simultaneous recall of

the meaning of each trigram from long-term memory.

Furthermore, I discuss in Chapter 4 the similarity between the task of

completing an n-gram and the task of paired associate recall, a classic example

of an episodic memory retrieval task. There is much more work left to do to

bridge the worlds of memory research and psycholinguistics, but the recent

growth in memory models that take temporal state into account and deal with

complex dynamics shows that there is more common ground now than before

(Squire & Kandel, 2000; Raffone & Leeuwen, 2003). One example of this union

of memory model and language model has been proposed by Zwaan (2008)

who has a theory of experiential memory traces and mental simulation that

can explain language comprehension. In this model, multi-model memories,

traces of temporal patterns of perceptual or motor activity, can be cues into

temporal patterns. The concept proposed is one of presonance, a combination

of prediction and resonance. This model was applied to explain embodied

language cognition, but it shows how episodic experience and memory systems

can be linked to explain language processing1.

There is one more concept from memory research that the work of Zwaan

(2008) brings to mind. That is the idea of gist memories and verbatim memo-

ries (Brainerd & Reyna, 2002). Their fuzzy-trace theory of memory was devel-

oped to explain memory illusions such as the DRM false memory phenomenon

(Deese, 1959; Roediger & McDermott, 1995), but also has been applied to deci-

sion making and other areas. It is interesting to speculate about the possibility

1In an interesting case of parallel terminology, Jones and Mewhort (2007) also use the
term resonance to describe how an n-gram query pattern (which they call a probe vector
such as thomas is able to retrieve the word jefferson from the full set of holographic
vectors representing the English language.
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that every time we read an n-gram we are laying down both a verbatim trace

and a gist trace. This idea may help us understand how we are able to process

the meanings of so many variations of an n-gram (the child said, the brat said,

the brat screamed , a brat screamed, etc.) without needing to retrieve all of the

verbatim traces. Fuzzy-trace theory is not a computational model, but some

of the current crop of dynamic models of language and memory may be able to

model the effects of gist processing which would make n-grams flexible. If an

trigram had two words in common with another trigram, and if those words

were in the same position, a dynamic model of memory would end up in a

certain region of state space that would contain all n-grams that satisfied that

constraint. This process of n-gram comparison is speculative but conceivable

as a way to implement gist memories for n-grams.

5.1.5 Language as an emergent process

Forster (1979) proposed that word processing has a functional autonomy, and

that lexical identification was encapsulated and immune from contaminations

by context, and Fodor (1983) went further and proposed a highly modular

mental architecture. If one were to try to shoehorn the ideas of n-gram pro-

cessing into a series of modular processes, the results would be dismal. There

is no discrete set of black boxes operating independently and in a certain

order that can explain the massively interactive effects of information and

conditional probability in my studies. The only solution is to accept the emer-

gentist school of thought and reject this serialized way thinking. By allowing

all levels of processing to fully interact, the observed behavior begins to make

sense. N-gram recognition processes interact with word recognition processes,

transitional probabilities interact with sub-lexical statistics, and new input

continuously changes the state of the system.

There are still those who hold tight to the “symbols and rules” approach

to language systems. Jackendoff (2002) shrugs off emergentist models as irrel-

evant to human language comprehension. His most current model is steadfast

in its loyalty to sequential, directed processing (Jackendoff, 2007). Meanwhile

SRNs and other types of models are quickly beginning to dominate the field.
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These detailed computational models are capable of explaining how meaning is

constructed as language unfolds. To add to the already long list of models using

SRNs, Crocker, Knoeferle, and Mayberry (2010) have created an emergentist

model of language based on Elman’s SRN, that computes the interaction of

utterances and visual attention. Misyak, Christiansen, and Tomblin (2010)

have used an SRN to predict human performance patterns in a sequential

learning task. This is the first study to provide a link between linguistic and

non-linguistic learning of probabilistic sequences 2.

Another emergentist model that uses truly sub-symbolic information to

explain lexical and supra-lexical phenomena is the Naive Discriminative Reader

model developed by Baayen et al. (2011). This model is a two-layer symbolic

network model built using the equilibrium equations of the Rescorla-Wagner

model (Danks, 2003). Building a complex mapping between letter bigram

cues and semantic representations, it is able to simulate frequency effects,

morphological family size effects, and some initial n-gram frequency effects

(Baayen & Hendrix, 2011). The NDR reader is a truly emergentist model,

with all these effects arising simply from the interaction of all the sub-symbolic

learning taking place at the letter bigram level.

Are there only two types of models at play, or are there more worth con-

sidering? The simpler associationist, network models are more attractive than

the complicated, nativist systems. Is there a third way? One family of non-

connectionist models are the Bayesian models. The Bayesian Reader (Norris &

Kinoshita, 2008) is one such model. Bayesian models represent the world as a

set of competing hypotheses, and the task of the models is to choose the most

likely hypothesis, given the evidence and the level of uncertainty surrounding

it. Tenenbaum, Kemp, Griffiths, and Goodman (2011) argues that Bayesian

models are valid and relevant, but Kwisthout, Wareham, and Rooij (2011)

have criticized these models on the grounds that they cannot be approximated

or computed within a reasonable amount of time.

2Incidentally, Christiansen, Conway, and Onnis (in press) found that linguistic and non-
linguistic sequential learning, as modelled by Misyak et al. (2010), produce very similar
ERP responses, implying that language shares domain-general processing substrata with
other sequence processing systems.
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There is still a strong resistance to emergentist models in many quarters.

Why is it so hard to shift from sequential viewpoints to emergent viewpoints?

Some have proposed that the sequential process schema are an ingrained, intu-

itive first attempt at explaining all phenomena (Chi, 2005; Chi, Roscoe, Slotta,

Roy, & Chase, 2011). Many phenomena that we observe our whole lives, such

as the way that our blood moves around (directed by the heart, moving from

point A to point B) are not emergent. When young adults and even some

scientists are faced with emergent phenomena, such as the way ants collect

food (without the aid of a queen ant telling them where to look or how to co-

operate), they are initially resistant to the notion of emergence. In chemistry

classes, for example, the way that ink diffuses in water is confusing to students,

even after the emergent explanation is taught. This is one of many examples

of emergent phenomena that are often misunderstood. Chi et al. (2011) has

listed criteria for identifying emergent phenomena, and they fit the language

system to a tee. Using their terminology, words would be the “agents”, and

they note that (1) in emergent systems the interactions of the entire collection

of all the agents together “cause” the observable pattern, not any one special

type of agent. (2) All the interactions have equal status with respect to the

pattern. (3) Agents’ interactions and the pattern can behave in disjoint or

non-matching ways. (4) Interactions are undertaken by the agents with the

intention of achieving local goals only, without any intention of causing the

(changes) in the pattern. The pattern emerges from the local interactions of

all the agents. (5) The pattern is caused by the collective summing or net ef-

fect of all the interactions at each point in time. (Chi et al., 2011, p. 10). This

difficulty in understanding the difference between emergent and non-emergent

phenomena in all the sciences (including physics, chemistry and biology) is a

ongoing issue, but psycholinguistics should move forward and accept the fact

that the mind is a emergent phenomenon and that there is no other way to

explain the combined action of all the brain activity we observe.
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5.2 Future directions

The sub-field of n-gram processing holds great potential for the field of psy-

cholinguistics. Because of their short length, they are amenable to techniques

that quickly balloon in complexity when faced with longer stimuli, like sen-

tences. In particular, models that take into account temporal dependency and

initial conditions can take advantage of experimental results from n-gram ex-

periments and attempt to explain n-gram processing phenomena that would

be impossible to attempt with current computational resources on longer pas-

sages.

After completing these three lines of research described here, many ideas

for potential follow-up studies have occurred to me. The individual experience

of the feeling of familiarity with words is something that has no compelling

computational model. Orthographic frequency can only explain a portion of

the variability in subjective frequency judgements. Larger datasets of subjec-

tive frequency ratings for n-grams should be collected using the representative

sampling techniques I developed in Chapter 3. With thousands of n-grams

rated by hundreds of participants a much more nuanced view of subjective

frequency would emerge. N-gram entropy effects might become apparent, but

other features, such as semantic coherence might also have an influence.

New directions also came to mind after working with the n-gram reading

eye-movement data. When people read sentences, they may be segmenting

them into n-grams to better understand their meaning. By looking at fixations

in natural reading of longer passages and focussing on which words are skipped

and where the eyes pause, it might be possible to detect real-time n-gram

processing. Concurrent ERP data collection could help detect the markers

of n-gram detection in the dynamics of the electrical activity. Studying n-

gram processing using neuroimaging techniques such as fMRI and functional

Near Infrared Spectroscopy (fNIRS, Bunce, Izzetoglu, Izzetoglu, Onaral, &

Pourrezaei, 2006) is another option. With careful attention to the experimental

design it should be possible to create contrasting conditions that would allow

the researcher to tease apart the effects of different anticipatory processes.
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There remains much more to be done in n-gram production research as

well. Instead of asking participants to produce one word to complete a 4-

gram, why not ask them to produce two or even three words? This reduction

in the amount of constraint could allow a greater variety of responses to be

collected, and, using the statistical methods that I proposed in Chapter 4,

the probability of each word selection could be calculated in the context of

each word. This data would also be valuable to researchers who are creating

dynamic models of language production, as the initial conditions would be the

same across all subjects for each trial, but the outcome would often be very

different.

All of my research presented here would not have been possible without the

corpus of web documents made available by Brants and Franz (2006). The size

of the corpus (1 trillion words) and the quality of the n-gram counts inspired

me to attempt this research and I am grateful to Google for their generosity.

In the future I see larger and better corpora being produced for us by the

scientific community. Already Google has released 100 million word corpora

for non-English languages (Brants & Franz, 2009). In the cloze task research,

I noted that there were many 4-grams that were plausible, but not included

in the Web1T database and this fact leads me to the conclusion that better

corpora are vital to the continuation of n-gram processing research.

Corpus quality is not only related to size. The content of the corpus also

matters. It is obvious that the Web1T corpus has a specific web-centric bias to

some of its frequency data (one of the most frequent trigrams in the database

is all rights reserved, which is most definitely not that frequent in everyday

usage). A challenge for future n-gram research will be to find large, relevant

corpora to improve the selection of stimuli and to improve the quality of the

computational models that are trained on the corpus and are then used to

simulate behaviour (Recchia & Jones, 2009). Corpora that incorporate more

spoken language and that approximate the reading patterns of people over

their lifespan would be best. Until such corpora are available, psycholinguists

will have to use resources such as the Google Web1T corpus which provides

the broadest coverage currently available.
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Another untouched area of n-gram processing is the study of individual

differences: Are expert readers (those who have better reading speed and

comprehension) better at n-gram processing tasks than normal readers? If

they are, then n-gram processing skills may be one of the key skills, along

with word identification, that should be practiced to improve reading. As

Stanovich (2000) notes in his review of reading research, there have been on-

going “Reading Wars” over the best method of teaching children to read, and

these wars will continue until we have a better understanding of how the psy-

chology of reading works. Quick and accurate n-gram identification could help

poor readers become better at reading. Identification of n-gram processing

deficiencies in those with speech or language impairments could be beneficial

in offering them the best type of therapy. For those with certain types of

aphasia, n-gram related therapy may also aid them in improving speech and

understanding. Much work will need to be done on n-gram processing.

Language acquisition research can now be expanded to include the acquisi-

tion of n-gram knowledge. Bannard and Matthews (2008) and Matthews and

Bannard (2010) have already show how young children are sensitive to n-gram

probabilities. Using all the techniques available to developmental psycholin-

guists it will be possible to probe for the first detectable n-gram understanding,

and how sensitivity to context changes over the lifespan. There is already one

emergentist model of language acquisition, the DevLex model, that has been

developed by Li (2009). It uses SRNs and self-organizing maps (SOM, Ko-

honen & Somervuo, 1998) to build a dynamic model of lexical learning and

language acquisition. One possible way forward would be to extend the DevLex

model to handle n-grams, another would be to use the NDR model (Baayen

et al., 2011) and expose it to child-directed speech corpora during training to

see if it can simulate the word-explosion that takes place in small children.

Finally, the most important challenge: building accurate, psychologically

plausible computational models. I have repeatedly expressed my preference

for distributed, non-symbolic models because I think they have the greatest

likelihood of capturing the complexity of n-gram phenomena. They can cap-

ture the temporal dynamism of the language stream, its dependence on initial
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conditions, its non-linearity and its massive interactivity.

After studying n-gram processing with three different paradigms and syn-

thesizing the evidence, I feel that I have contributed novel and valuable insights

into how n-grams are processed. It remains to be seen if the current trend of ac-

tive interest into n-grams continues at its current pace, but if it does, n-grams

will help us understand how the mind is capable of the incredibly difficult task

of understanding and producing language.
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