
Computer Vision-Based Motion Control and State
Estimation for Unmanned Aerial Vehicles (UAVs)

by

Geoffrey Fink

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Control Systems

Department of Electrical and Computer Engineering

University of Alberta

c©Geoffrey Fink, 2018

Abstract

To achieve a fully autonomous unmanned aerial vehicle (UAV) the vehicle needs a

high level of self awareness. At a minimum it needs to know where it is and where it

wants to go. Computer vision (CV) is a logical solution to this problem. However,

using CV to solve motion control problems for UAVs is a challenging problem as both

the quadrotor dynamics and camera kinematics are nonlinear. Although both CV

and UAVs are not new topics there are relatively few fully autonomous experimental

results due to the difficulty in building and maintaining an experimental platform

and the high computation power required by many CV algorithms. Recent advances

in embedded computers have notably changed the field. This thesis focuses on

three important areas: developing a reliable and powerful UAV platform for testing

bleeding edge CV algorithms, dynamic image-based visual servoing (DIBVS), and

monocular visual state estimation (VSE).

In order to efficiently perform experimental research on nonlinear control and

CV, we developed the indoor Applied Nonlinear Control Lab (ANCL) quadrotor

platform. The design for our experimental platform was inspired from other indoor

flight test stands and we have prioritized open-source hardware and open-source

software. In addition to building the platform we derived a kinematic and dynamic

model of a quadrotor and then experimentally identified the system parameters.

Also, using a series of experiments we characterized the performance of the wire-

less communication network between the quadrotor and the motion capture system

(MCS) to improve the onboard position control.

This thesis proposes several DIBVS control laws for a quadrotor equipped with a

single fixed onboard camera. The motion control problem is to regulate the relative

ii

position and yaw of the vehicle to a target located on the ground. The control law

is termed dynamic as it based on the dynamics and kinematics of the vehicle. The

proposed designs use a nonlinear change of state coordinates, the virtual camera

method, adaptive control techniques, and image features. The control laws devel-

oped have proven convergence rates. Simulation and experimental results demon-

strate the methods’ ease of onboard implementation, performance, and robustness.

Next, in this thesis we develop a visual odometry (VO) system which is an on-

board CV-based navigation system. An important feature of VO systems is that

they are independent of a global navigation satellite system (GNSS). Our approach

uses inertial sensor measurements along with scaled position measurements from an

onboard CV system which implements a visual simultaneous localization and map-

ping (VSLAM) system. We study the observability of the visual inertial simultane-

ous localization and mapping (VISLAM) problem using a state transformation that

puts the system into linear time-varying (LTV) form and simplifies the observability

analysis. This leads to an observer design with sufficient conditions for convergence.

The observer fuses an accelerometer measurement from an inertial measurement

unit (IMU) with scaled position measurements from a VSLAM system to estimate

vehicle position and velocity. Our approach does not require an approximate lin-

earization of the model equations whereas typical solutions in the literature use an

extended Kalman filter (EKF) that linearizes the model equations. Simulations and

experimental results onboard a quadrotor UAV validate the proposed designs.

iii

Preface

• The research conducted for this thesis in Chapter 5 forms part of an interna-
tional research collaboration led by Professor Alan F. Lynch at the University
of Alberta, with Professor Klaus Röbenack and Mirko Franke at Technische
Universität Dresden.

• Section 4.1 has been published as [G. Fink, H. Xie, A. F. Lynch, and M. Jager-
sand, “Nonlinear dynamic visual servoing of a quadrotor,” Journal of Un-
manned Vehicle Systems, vol. 3, no. 1, pp. 1–21, 2015]. I was responsible for
the data collection and analysis as well as the manuscript composition. H. Xie
assisted with the analysis and contributed to manuscript edits. A. F. Lynch
and M. Jagersand were the supervisory authors and were involved with the
concept formation and manuscript composition.

• Section 4.2 with the exception of Section 4.2.1 has been published as [G. Fink,
H. Xie, A. F. Lynch, and M. Jagersand, “Experimental validation of dynamic
visual servoing for a quadrotor using a virtual camera,” in Proceedings of the
International Conference on Unmanned Aircraft Systems, Denver, CO, Jun.
2015, pp. 1231–1240]. I was responsible for the data collection and analysis
as well as the manuscript composition. H. Xie assisted with the analysis
and contributed to manuscript edits. A. F. Lynch and M. Jagersand were
the supervisory authors and were involved with the concept formation and
manuscript composition.

• Section 4.3 has been published as [H. Xie, G. Fink, A. F. Lynch, and M. Jager-
sand, “Adaptive dynamic visual servoing of a UAV,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 52, no. 5, pp. 2529–2538, 2016]. H. Xie
was responsible for the data collection and analysis as well as the manuscript
composition. I assisted with the data collection and analysis, and contributed
to manuscript edits. A. F. Lynch and M. Jagersand were the supervisory
authors and were involved with the concept formation and manuscript com-
position.

• Section 4.4 has been published as [G. Fink, H. Xie, A. F. Lynch, and M. Jager-
sand, “Dynamic visual servoing for a quadrotor using a virtual camera,” Un-
manned Systems, vol. 5, no. 1, pp. 1–17, 2017]. I was responsible for the data
collection and analysis as well as the manuscript composition. H. Xie assisted
with the analysis and contributed to manuscript edits. A. F. Lynch and M.
Jagersand were the supervisory authors and were involved with the concept
formation and manuscript composition.

iv

• Parts of Chapter 5 have been published as [G. Fink, M. Franke, A. F. Lynch,
K. Röbenack, and B. Godbolt, “Visual inertial SLAM: Application to un-
manned aerial vehicles,” in Proceedings of the IFAC World Congress Toulouse,
France, Jul. 2017, pp. 2001–2006]. I was responsible for the data collection
and analysis as well as the manuscript composition. M. Franke was responsi-
ble for the analysis and contributed to manuscript edits. A. F. Lynch and K.
Röbenack were the supervisory authors and were involved with the concept
formation and manuscript composition. B. Godbolt was involved with the
concept formation.

• Parts of Chapter 5 have been published as [G. Fink, M. Franke, A. F. Lynch,
K. Röbenack, and B. Godbolt, “Observer design for visual inertial SLAM
scale on a quadrotor UAV,” in Proceedings of the International Conference
on Unmanned Aircraft Systems, Miami, FL, Jun. 2017, pp. 830–839]. I
was responsible for the data collection and analysis as well as the manuscript
composition. M. Franke was responsible for the analysis and contributed to
manuscript edits. A. F. Lynch and K. Röbenack were the supervisory authors
and were involved with the concept formation and manuscript composition.
B. Godbolt was involved with the concept formation.

• Parts of Chapter 5 have been published as [G. Fink, M. Franke, A. F. Lynch,
and K. Röbenack, “Observer design for monocular visual inertial slam,” Au-
tomatisierungstechnik, vol. 66, no. 3, pp. 246–257, 2018]. I was responsible
for analysis as well as the manuscript composition. M. Franke was responsible
for the analysis and contributed to manuscript edits. A. F. Lynch and K.
Röbenack were the supervisory authors and were involved with the concept
formation and manuscript composition.

• The experimental platform as described in Chapter 3 was designed by myself.

• All the additional analysis and conclusions included in this thesis are my orig-
inal work.

v

To Abril

vi

Table of Contents

1 Introduction 1

1.1 Literature Review . 1

1.2 Overview of Thesis . 5

1.3 Contributions . 7

2 Quadrotor and Camera Modelling 9

2.1 Quadrotor Kinematics, Dynamics and Control 9

2.1.1 Representation of the Orientation 9

2.1.2 Quadrotor Rigid Body Dynamics 11

2.1.3 Force and Torque Model . 13

2.1.4 Quadrotor Control . 14

2.2 Computer Vision . 17

2.2.1 Camera Model . 17

2.2.2 Image Features . 19

2.2.3 Visual Servoing . 23

2.2.4 Homography . 25

3 Experimental Platform 31

3.1 Indoor Quadrotor Platform . 31

3.1.1 Quadrotors . 32

3.1.2 Autopilots . 32

3.1.3 Software . 38

3.2 Embedded Computer Vision System 44

3.2.1 Companion Computers . 44

3.2.2 Cameras . 46

3.3 Communication Network Characterization 46

3.3.1 Round Trip Experiment . 46

3.3.2 Throughput Experiment . 48

3.3.3 Complete Circuit Experiment 49

3.4 Summary . 50

4 Dynamic Image-Based Visual Servoing 53

4.1 State Transformation-Based Approach 54

4.1.1 Fundamentals . 54

4.1.2 Control . 57

4.1.3 Simulation Results . 61

4.1.4 Experimental Results . 62

vii

4.1.5 Summary . 68
4.2 Virtual Camera-Based Approach . 68

4.2.1 Image Moments . 68
4.2.2 Fundamentals . 79
4.2.3 Control . 80
4.2.4 Simulation Results . 82
4.2.5 Experimental Results . 83
4.2.6 Summary . 88

4.3 Adaptive Virtual Camera-Based Approach 88
4.3.1 Uncertainty Modelling . 88
4.3.2 Adaptive Control . 90
4.3.3 Simulation Results . 92
4.3.4 Experimental Results . 93
4.3.5 Summary . 95

4.4 Extensions to Virtual Camera-Based Approach 98
4.4.1 Moving Targets . 98
4.4.2 Non-horizontal Targets - Applying the Homography 100
4.4.3 Simulation Results . 103
4.4.4 Summary . 108

4.5 Conclusion . 111

5 Visual State Estimation 113
5.1 Monocular Visual Inertial SLAM . 114
5.2 Observability . 117
5.3 Observer Design . 125
5.4 Parallel Tracking and Mapping . 130
5.5 Simulation . 132

5.5.1 Simulations Results . 132
5.5.2 Summary . 135

5.6 Handheld Experiment . 137
5.6.1 Experimental Results . 137
5.6.2 Summary . 140

5.7 Flight Experiment . 140
5.7.1 Experimental Results . 140
5.7.2 Summary . 144

5.8 Conclusion . 144

6 Conclusion 145
6.1 Conclusions . 145
6.2 Future Work . 146

Bibliography 147

A ANCL Platform Pinouts 159

viii

List of Tables

2.1 Homography decomposition. 29

3.1 Experimental platform quadrotor parameters. 32
3.2 ANCL radio switches and flight modes. 42
3.3 Vicon packet overview. 47

4.1 Parameters for state transformation-based control. 62
4.2 Parameters for virtual camera-based control. 84
4.3 Error statistics for virtual camera experiment. 86
4.4 Parameters for adaptive virtual camera experiment. 92
4.5 Image feature error for adaptive virtual camera experiment. 97
4.6 Parameters for moving and non-horizontal virtual camera simulation 103
4.7 Parameters used to define ground plane and car trajectory. 108
4.8 A summary of the proposed DIBVS methods. 112

5.1 Parameters used in the VSE simulation. 134
5.2 RMSE of state trajectory for the VSE simulation. 135
5.3 Experimental observer parameters for hand held VSE experiment. . 137
5.4 Observer parameters for VSE experiment. 140
5.5 RMSE of state estimate error for the VSE experiment 143
5.6 Number of states per VSE observer. 144

A.1 Pixhawk Connector Pinouts . 159
A.2 PX4FMU Connector Pinouts . 160
A.3 PX4IO Connector Pinouts . 161
A.4 ANCL Custom Power Distribution Board Pinouts 163
A.5 Motor Power Distribution Board Connector Pinouts 163
A.6 RM024 Pinouts . 163
A.7 RN-XV Pinouts . 164
A.8 3DR Radio Pinouts . 164
A.9 FTDI PCB Pinouts . 164
A.10 FTDI Pinouts . 165

ix

List of Figures

2.1 Diagram of a quadrotor . 10

2.2 The roll-pitch-yaw (φ-θ-ψ) or ZYX Euler angles. 11

2.3 The two main configurations of quadrotors. 13

2.4 Angle definitions for torque calculations in non-square vehicles. . . . 14

2.5 Block diagram of the inner-outer control loop structure. 15

2.6 Model of a pinhole camera. 18

2.7 Radial distortion of an image. 20

2.8 Some common image features are conics, circle, lines and points. . . 20

2.9 Line image feature . 22

2.10 Block diagram of traditional visual servoing. 24

2.11 Block diagram of dynamic visual servoing. 24

2.12 A homography matrix transformation. 26

3.1 The ANCL quadrotor platform . 33

3.2 The Spektrum DX8 remote transmitter 34

3.3 Wiring diagram of the hardware interconnection. 35

3.4 Pixhawk autopilot - flight management unit. 36

3.5 A summary of the force-torque control system 38

3.6 Data flow diagram of the ANCL quadrotor. 39

3.7 The ANCL software state machine. 40

3.8 The ANCL radio transmitter control stick mappings. 43

3.9 The embedded computer vision system. 44

3.10 The Nvidia Jetson TX1 and TX2 . 45

3.11 The structure of the Mavlink Vicon packet. 48

3.12 The round trip experiment. 48

3.13 The throughput experiment. 49

3.14 The LED array used in the complete circuit experiment. 51

3.15 The complete circuit experiment. 52

4.1 Estimate of region of attraction. 59

4.2 Simulation results for state transformation experiment. 62

4.3 System trajectories for state transformation simulation. 63

4.4 Comparison of state transformation approach. 63

4.5 Image feature trajectories for state transformation experiment. . . . 64

4.6 Block diagram of the proposed control structure. 64

4.7 Experimental results of state transformation approach. 66

4.8 Experiment results of the spherical image moment approach. 66

x

4.9 Comparison of state transformation approach. 67
4.10 Results of state transformation approach with moving target. 67
4.11 A dense object defined in an image by a closed set of contours. . . . 69
4.12 Representation of orientation using image moments. 73
4.13 Discretization of a dense object defined in a binary image. 74
4.14 Image moment target frame. 77
4.15 Pinhole camera geometry model. 79
4.16 Simulation results of dynamic IBVS control law. 83
4.17 Experimental results of dynamic IBVS control law I. 84
4.18 Experimental results of dynamic IBVS control law II. 85
4.19 Time varying thrust constant. 87
4.20 Time evolution of thrust versus battery voltage. 90
4.21 Error trajectories for adaptive virtual camera experiment. 94
4.22 Parameter error trajectories for adaptive virtual camera experiment. 94
4.23 Image feature trajectories for adaptive virtual camera experiment. . 96
4.24 Images from adaptive virtual camera experiment. 96
4.25 Error trajectories for adaptive virtual camera experiment. 96
4.26 Inner loop performance during adaptive virtual camera experiment. . 97
4.27 Experimental trajectories of estimated parameters. 97
4.28 Virtual camera for non-horizontal targets. 101
4.29 Camera images for non-horizontal virtual camera simulation. 106
4.30 Height of camera for non-horizontal virtual camera simulation. . . . 106
4.31 Simulated roll-pitch estimation using a homography matrix. 106
4.32 Simulated ground and car trajectory. 107
4.33 Dynamic IBVS virtual camera car following experiment. 109
4.34 Experimental roll-pitch estimation using a homography matrix. . . . 109
4.35 Simulation results for non-horizontal target. 110

5.1 Reference frames for VISLAM modelling. 115
5.2 A flow diagram of the PTAM algorithm. 131
5.3 Measured signals from VISLAM simulation. 135
5.4 3 D position trajectory for the VISLAM simulation. 136
5.5 Rotation between the navigation frame and the vision frame. 136
5.6 Simulation results for VISLAM observers. 136
5.7 Estimated navigation to vision frame offset. 137
5.8 Screen shot from VISLAM experiment. 138
5.9 The 3 D map from PTAM during the VISLAM experiment. 138
5.10 Vehicle acceleration during the VISLAM experiment. 139
5.11 State estimates for VISLAM experiment. 139
5.12 Position trajectories for VISLAM experiment. 141
5.13 Velocity trajectories for VISLAM experiment. 141
5.14 Bias trajectories for VISLAM experiment. 141
5.15 Scale trajectory for VISLAM experiment. 141
5.16 The inputs and outputs for the VISLAM experiment. 141
5.17 Sample image from the flight. 143
5.18 The rotation from the navigation frame to the vision frame. 143

xi

List of Symbols

Ωi Angular speed of propeller i
Θi The angle from the basis vector b1 to the arm i
`i Distance from the motor i to the CoM

η ZYX Euler angles η = [φ, θ, ψ]T ∈ R3

κi Radial Distortion model coefficients
λi Focal length λi > 0, i ∈ [1, 2] (Chapter 2 & 4)
λ VSLAM map scale λ > 0 (Chapter 5)

ν Velocity screw ν = [vT , ωT]T ∈ R6

ωx Angular velocity of the vehicle in X frame
φ Roll angle
π Image Plane
πd Radial distortion Function
ψ Yaw angle
ρi Size of pixel ρi > 0
τx External torques acting on the vehicle in X frame
θ Pitch angle
∼ Equality up to non-zero scaling

A Camera calibration matrix
ax Acceleration in X frame

B Body frame with basis {b1, b2, b3}
bx Accelerometer bias in X frame

C Camera frame with basis {c1, c2, c3}
cθ cθ = cos θ

F x External forces acting on the vehicle in X frame
f` Focal length

gx Acceleration due to gravity in X frame

H Homography matrix

Jx Inertia Matrix in X frame

kτ Aerodynamic coefficient for torque

xii

kf Aerodynamic coefficient for force

L The interaction matrix or image Jacobian
lx Line in X frame

m Mass of the vehicle

N Navigation frame with basis {n1, n2, n3}

O A dense object with a continuous surface.

px Position (body or point) in X frame
pbc Position of origin of frame C relative to origin of frame B

q Unit quaternion

Rxy Rotation from frame Y to frame X , Rxy ∈ SO(3)

s Skew parameter of camera
sθ sθ = sin θ
sk(x) Skew symmetric operator
SO Special Orthogonal Group

T Target frame with basis {t1, t2, t3}
tθ tθ = tan θ

V Vision frame with basis {v1, v2, v3}
vx Linear velocity of the vehicle in X frame

Y x Image coordinates (Homogeneous) from the X camera
yx Image coordinates (Cartesian) from the X camera
y0 Principal point
yd Distorted image coordinates
yu Undistorted image coordinates

xiii

List of Acronyms

AGAST Adaptive and Generic Accelerated Segment Test
AHRS Attitude and Heading Reference System
ANCL Applied Nonlinear Control Lab
AO Adaptive Observer

BA Bundle Adjustment
BIBO Bounded-Input, Bounded-Output
BRIEF Binary Robust Independent Elementary Features
BRISK Binary Robust Invariant Scalable Keypoints

CenSurE Center Surround Extremas
CoM Centre of Mass
CV Computer Vision

DIBVS Dynamic Image-Based Visual Servoing
DIY Do-It-Yourself
DoF Degree of Freedom

EKF Extended Kalman Filter
ESC Electronic Speed Controller

FAST Features from Accelerated Segment Test
FoV Field of View
fps Frames per Second

GAS Globally Asymptotically Stable
GES Globally Exponentially Stable
GFTT Good Features to Track
GNSS Global Navigation Satellite System
GPIO General Purpose Input/Output
GPU Graphics Processing Unit

IBVS Image-Based Visual Servoing
IMU Inertial Measurement Unit

KF Kalman filter

xiv

LATCH Learned Attachment of Three Patch Codes
LES Locally Exponentially Stable
LTV Linear Time-Varying

MCS Motion Capture System

n D n-Dimensional

ORB Orientated FAST and rotated BRIEF

P Proportional
PBVS Position-Based Visual Servoing
PD Proportional-Derivative
PE Persistently Exciting
PID Proportional-Inegral-Derivative
PTAM Parallel Tracking and Mapping
PWM Pulse Width Modulation

RMSE Root Mean Square Error
ROS Robot Operating System

SFM Structure from Motion
SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization and Mapping
SURF Speeded Up Robust Feature

UAV Unmanned Aerial Vehicle
UCO Uniform Complete Observability
UD Uniformly Detectable
uORB Micro-Object Request Broker
USB Universal Synchronous Bus

VISLAM Visual Inertial Simultaneous Localization and Mapping
VO Visual Odometry
VS Visual Servoing
VSE Visual State Estimation
VSLAM Visual Simultaneous Localization and Mapping

xv

Chapter 1

Introduction

Unmanned aerial vehicles (UAVs) are used for a number of indoor and outdoor

applications such as search and rescue, surveillance, and infrastructure inspection.

To achieve a fully autonomous UAV the vehicle needs a high level of self awareness.

At a minimum it needs to know where it is and where it wants to go. A range

of sensors exist to try to fulfill this need, e.g., light detection and ranging (lidar)

systems, global navigation satellite systems (GNSSs), and cameras. For UAVs the

most commonly used positioning systems are GNSSs and motion capture systems

(MCSs) for outdoors and indoors, respectively. While there has been a lot of success

with these sensors they have some important limitations. Both GNSSs and MCSs are

external sensors and hence rely on a solid communication link between the vehicle

and the external sensor. This link can easily be broken due to occlusion or intentional

signal jamming. Furthermore, they can be inaccurate and do not provide a position

estimate relative to a target of interest. This has led to research on computer vision

(CV) to provide an alternate or augmentation source for performing state estimation.

CV provides a number of benefits over conventionally used sensors: it can be placed

onboard, it can run at a high frequency, and can provide rich information about a

scene such as relative position to a visual target. Additionally, cameras have the

advantage of being lightweight, small, low cost, low power, and passive.

1.1 Literature Review

Control of UAVs is an active and broad area of research (e.g., Kendoul [1], Kanellakis

and Nikolakopoulos [2]). Hence, this literature review is not meant to be exhaustive,

but instead we highlight some of the key works related to how CV can be used to

solve motion control problems for UAVs. The advancement of hardware has enabled

powerful CV algorithms to be run in real-time and low size, weight, power and cost

(SWaP-C) make them ideal for onboard use. However, there are still few published

1

experimental results with CV running in real-time autonomously onboard UAVs

due to the many difficulties of working with an inherently unstable system like a

quadrotor. Furthermore, key aspects of CV such as tracking are still not reliable

enough for industrial use in unstructured environments. Despite all of the difficulties

there have been some strong developments published over the last five to ten years.

Visual servoing (VS) is a control loop with visual feedback. It is divided into

two main approaches: position-based visual servoing (PBVS) and image-based visual

servoing (IBVS) (Hutchinson et al. [3]). In PBVS the pose of the vehicle is extracted

from the image and the motion control of the vehicle can be done using conventional

motion control techniques where the vehicle’s state is assumed measured. Examples

of PBVS methods applied to UAVs include Shakernia et al. [4], Altug et al. [5], Wu

et al. [6], Mejias et al. [7], Azrad et al. [8], Garcia Carrillo et al. [9], Fraundorfer et al.

[10], Sa and Corke [11]. In general, PBVS requires more a priori knowledge of the

target scene or object. For example, to track the relative pose between a UAV and a

target, some researchers assume that a computer aided design (CAD) model of the

target is known in advance, e.g., Tamadazte et al. [12]. The object corresponding

to this CAD model is identified in the environment and tracked. Because the CAD

model Euclidean dimensions are known, the relative Euclidean pose between the

UAV and the target can be calculated. Often a specially designed target marker

(e.g., landing pad pattern or AprilTags) is placed in the environment to facilitate

tracking, e.g., Lee et al. [13] or Lin et al. [14]. However, this limits usage in natural

unstructured environments. Target based tracking can be done with either static

targets placed on the ground or moving targets such as other vehicles. Motion

models of the targets may or may not be known. Tracking targets with known

motion include friendly vehicles that can communicate with the UAV e.g., a train

going at constant velocity on a known track.

Visual state estimation (VSE) can also be used to provide the pose of the ve-

hicle for PBVS (Bonin-Font et al. [15]). VSE methods rely on visual odometry

(VO) (Scaramuzza and Fraundorfer [16], Fraundorfer and Scaramuzza [17], Yousif

et al. [18]) or visual simultaneous localization and mapping (VSLAM) (Durrant-

Whyte and Bailey [19], Bailey and Durrant-Whyte [20], Neira et al. [21], Cadena

et al. [22]). The main difference between VO and VSLAM is that in VO just the

pose of the vehicle is being calculated whereas in VSLAM a map is being created at

the same time. One of the early VSLAM methods that arose from structure from

motion (SFM) (Civera et al. [23]) is parallel tracking and mapping (PTAM) (Klein

and Murray [24]). In it the authors proposed an algorithm that separates the track-

ing and mapping into two different threads and the mapping is based on keyframes

which are processed using bundle adjustment (BA) or optimization. Examples of

VSLAM include: Civera et al. [25] which proposes an inverse depth method for a

2

single camera; Fraundorfer et al. [10] which uses simultaneous localization and map-

ping (SLAM) with a front-facing stereo camera to perform mapping and exploration

for a quadrotor; S-PTAM (Pire et al. [26]) is modernized version of PTAM that uses

stereo vision; monoSLAM (Davison et al. [27]) which uses probabilistic mapping of a

sparse map; FastSLAM 2 (Montemerlo et al. [28]) which is based on a particle filter;

and ORB-SLAM2 (Mur-Artal and Tards [29]) which uses the oriented FAST and ro-

tated BRIEF (ORB) feature detector. In Geiger et al. [30] and Kümmerle et al. [31]

the authors propose standards to be able to compare VSLAM methods and provide

standard data sets. As with all real systems the output of VSLAM systems is not

perfect: the pose will drift over time and monocular systems will have an unknown

scale factor. In a recent comparison of VSLAM algorithms (Quattrini Li et al. [32])

the authors demonstrate the difficulty of applying the algorithms to new datasets.

They show sub-optimal performance, loss of localization and other challenges. Out

of all of the methods compared none of them could work on more then half of the

real world video sequences. It is also interesting to note that PTAM (the VSLAM

system used in this thesis) performed just as good as the new methods despite being

ten years old.

To overcome the unknown scale, performance, and drift issues data from other

sensors can be fused with the VSLAM pose. The most common sensor combination

is to combine VSLAM output with inertial measurement unit (IMU) measurements

due to their complimentary nature. These sensor fusion algorithms are called visual

inertial simultaneous localization and mapping (VISLAM). Loosely coupled VIS-

LAM fuses VSLAM and IMU with a filter (Bryson and Sukkarieh [33], Weiss [34]).

If, on the other hand, the algorithm jointly estimates all sensor states then they

are called tightly coupled, e.g., Leutenegger [35]. The advantage of loosely coupled

methods is that they limit the complexity, however, they disregard the correlations

between the sensors. In Concha et al. [36] the authors propose a tightly coupled

VISLAM that creates a dense map. Normally the literature focuses on sparse maps

such as point clouds.

Another challenge of SLAM-based motion control for flying UAVs in unknown

environments is that the coordinate frame recovered by SLAM is arbitrary and needs

to be aligned with the world frame. The precision of the executed trajectory will

depend both on this external alignment and the internal accuracy of the SLAM

model. IBVS on the other hand defines the error function in image coordinates and

does not depend on the quality or alignment of a global model. In our anecdotal

testing of the two systems we found reprojection errors on the order of ten pixels

for 3 D features in the SLAM map. By contrast single feature or patch registration

tracking can track to camera pixel precision (Lieberknecht et al. [37], Dick et al.

[38]). This means that for a given camera sensor resolution IBVS has the potential to

3

provide more accurate positioning. An additional challenge for monocular VSLAM

methods is that they need a large visual area to extract and compute coordinates

for 3 D points. Normally the map is made of a static scene terrain, although a large

moving object such as a ship would be possible.

We identify a number of dynamic IBVS approaches for UAVs that have ap-

peared in the literature: the spherical image moment based design, homography

based methods, the virtual spring approach, the virtual camera approach and the

state transformation approach. It is interesting to note that all the abovementioned

methods involve trying to recover a passivity property of the image feature kine-

matics to prove stability of the control.

One of the earliest approaches is the spherical image moment method (Hamel

and Mahony [39]). Here a dynamic IBVS controller based on a backstepping de-

sign is proposed. First order spherical image moments are used as a visual feature

and the resulting interaction matrix gives the system dynamics important passivity

properties. Further work in Hamel and Mahony [40] removes the requirement of an

attitude sensor which makes the stabilization problem more challenging. An impor-

tant extension to the work uses optical flow to estimate scaled linear velocity (Bras

et al. [41]).

Another popular tool in CV is the homography matrix. A homography matrix

relates the pose of two camera views of the same planar target (Ma et al. [42]).

In Metni and Hamel [43] the authors use a homography decomposition to obtain

a new image feature whose kinematics have a passivity property. In this approach

only the position of the UAV is controlled and control of the yaw orientation is not

addressed. Work in de Plinval et al. [44] proposes a homography-based feature error

vector that is diffeomorphically related to camera pose. A local stabilizing control

law is developed that only needs vehicle angular velocity and visual measurement

of a planar target.

Work in Ozawa and Chaumette [45] introduced a virtual spring approach where

image feature moments lead to an interaction matrix with an identity matrix in its

translational component. The work assumes knowledge of the desired height and

that feature points are coplanar and parallel to the image plane. This approach

is motivated by the UAV’s underactuation where increasing image feature error

reduces lateral position error. The control law is independent of linear velocity

and its asymptotic stability is proven. The virtual spring method is limited by the

assumption that the image plane is parallel to the target plane. Lateral motion of

a traditional underactuated quadrotor UAV requires roll and pitch motion which

means the image and target planes are no longer parallel. Even a small change in

roll or pitch may cause a large change in the interaction matrix.

Work in Lee et al. [13, 46] introduced an IBVS design based on a virtual image

4

plane. This plane has zero-roll and pitch and has the same position and yaw of the

real camera’s image plane. This virtual plane facilitates the estimation of depth of

image points. A classical IBVS method is used to generate a reference velocity screw,

and an adaptive sliding mode control is used in the inner loop. Work in Jabbari Asl

et al. [47] uses image moments in the same virtual plane and the feature kinematics

has a passivity like property. An adaptive backstepping controller is developed to

stabilize the feature error. Virtual camera methods require UAV attitude and linear

velocity measurements. In Jabbari Asl and Yoon [48] the authors combine optical

flow with the virtual camera approach to eliminate the need for an velocity estimate.

Work in Xie [49] proposed a state transformation to eliminate the angular ve-

locity dependence in the image kinematics. The state transformation was obtained

by solving a system of first-order homogeneous partial differential equations. It can

be shown that the virtual camera approach is a particular solution from the general

solution. Hence, this approach provides alternatives to the virtual camera trans-

formation for eliminating angular velocity from the image kinematics. In Xie et al.

[50] the authors propose an adaptive output feedback-based visual servoing law that

removes the requirement of translational velocity measurements.

Both PBVS and IBVS require the online tracking of real targets in real envi-

ronments. Tracking is a difficult problem and the tracking of multiple points might

restrict applicability to an artificial environment given current tracker performance.

Recent surveys (Galoogahi et al. [51], Liang et al. [52]) benchmarked state-of-the-art

object tracking algorithms. This work demonstrates tracking is a computationally

expensive process and lacks robust performance. The outputs of most modern track-

ers are a single point and a bounding box, with the point feature typically being

more robust than the bounding box.

CV algorithms running onboard unmanned vehicles is an active area of research.

The combined use of these technologies has led to some impressive accomplishments

such as the Mars rover project (Maimone et al. [53]). As new algorithms are be-

ing developed UAVs are becoming more and more autonomous. This review has

highlighted some of the important literature that has been published to date.

1.2 Overview of Thesis

This thesis is divided into three main parts: experimental platform design, VS, and

VSE. Before delving into the main content, we present an established nonlinear

quadrotor model in Chapter 2. We derive the kinematics, dynamics, force and

torque models of a quadrotor. Using this model, we present our inner-outer loop

control strategy for the vehicle. Next we examine the pinhole camera model. From

this model we define a point feature and derive its image kinematics. Lastly, we

5

present a brief introduction on VS. This chapter also helps to define the notation

that will be used throughout this thesis.

In Chapter 3 we present our experimental platform. Our indoor quadrotor plat-

form has gone through many hardware and software iterations over the course of

this thesis. Everything has been improved upon including the frame, autopilot, elec-

tronic speed controllers (ESCs), motors, propellers, and companion computers. As

part of the our model-based design we have also experimentally identified many of

the quadrotor model parameters. As our test stand is indoors, our Vicon MCS plays

an important role in both the control of the quadrotor and for verification of the

CV algorithms. In an effort optimize the performance of the network we propose

experiments to fully characterize the performance of the network used to transmit

MCS data to the vehicle.

In Chapter 4 we present state transformation and virtual camera dynamic image-

based visual servoing (DIBVS) methods. Additionally, we derive the image moments

features and their kinematics and we present the homography matrix and its decom-

position. We propose five different DIBVS control laws. The first virtual camera-

based method is a simple control law using a state transformation and just one image

feature point to control the lateral motion of the quadrotor. Then we propose four

control laws using the virtual camera method with image moment features. The

first is a straight forward application of the theory to validate that the method is

sufficiently robust to be used in experiment. Up until Fink et al. [54], only simu-

lated results of the approach were available. Next we extend the control law using

an adaptive scheme. Lastly, using the homography matrix we extend the method

for moving and non-horizontal targets. All of the control laws with the exception

of the homography matrix approach are experimentally implemented and validated.

Thorough experimental validation is a main theme of this thesis as it ensures the

theory can be used in practice.

In Chapter 5 we propose an observer design to estimate vehicle position, linear

velocity, and accelerometer bias. The observer fuses an accelerometer measurement

from an IMU and a scaled position estimate from a VSLAM system. The observer

depends on an attitude estimate from an attitude and heading reference system

(AHRS). A change of coordinates is used to transform the system into linear time-

varying (LTV) form. Using these coordinates we consider the observability of the

VISLAM problem. We prove that the observer is globally exponentially stable

(GES). Lastly, we simplify the assumptions on the system and provide an improved

stability proof. Finally, in Chapter 6 we present our conclusions and future work.

6

1.3 Contributions

The contributions of this thesis are summarized as follows:

Dynamic Image-Based Visual Servoing

• In Fink et al. [54] we proposed a DIBVS control for a quadrotor UAV equipped

with a single fixed onboard camera facing downward. The motion control prob-

lem was to regulate the relative lateral position of the vehicle to a stationary

target located on the ground. The proposed design uses nonlinear input-

dependent change of state coordinates and its error dynamics were proven to

be locally exponentially stable (LES).

• Next, in Fink et al. [55] we expanded the motion control problem to reg-

ulate the full 3 D relative position and yaw of the vehicle to a stationary

target located on the ground. The proposed design relies on the notion of a

virtual camera and image moment visual features to simplify the kinematics

and dynamics. The convergence of the closed-loop was proven to be globally

asymptotically stable (GAS).

• Later, in Xie et al. [56] we proposed an adaptive DIBVS control. The motion

control problem was as in [54], however, the adaptive design accounted for

unknown thrust constant, mass, gravity constant, attitude estimation errors,

and desired depth. The proposed design relies on the notion of a virtual camera

and image moment visual features to simplify the kinematics and dynamics.

The convergence of the closed-loop was proven to be GAS.

• Lastly, in Fink et al. [57] we further expanded the motion control problem for

the cases where the target is moving and for when the target is non-horizontal.

Similarly, the proposed design relies on the notion of a virtual camera and im-

age moment visual features. Furthermore, it introduced a homography matrix

decomposition to compensate for non-horizontal targets.

Monocular Visual Inertial Simultaneous Localization and Mapping

• In Fink et al. [58, 59, 60] we proposed an observer design to estimate vehi-

cle position, linear velocity, and accelerometer bias. The observer fuses an

accelerometer measurement from an IMU and scaled position estimates from

a VSLAM system. The observer depends on an attitude estimate from an

AHRS. A change of coordinates is used to transform the system into LTV

form. Using these coordinates we consider the observability of the VISLAM

problem. We prove that the observer is GES.

7

• In Fink et al. [61] we provided sufficient conditions for observer estimate error

convergence.

Experimental Platform

• The Applied Nonlinear Control Lab (ANCL) quadrotor platform was designed

and implemented in Fink et al. [54]. We remark that implementation could be

considered too mundane to be classified as a scientific contribution. However,

we argue that research on platform development is novel work which is required

to develop relevant control theory. Thanks in part to open-source projects,

the platform was developed with full configurability and this was essential to

develop a wide range of theory.

• The DIBVS controllers (Fink et al. [54, 55], Xie et al. [56], Fink et al. [57])

were experimentally validated on the ANCL platform. This is particularly

noteworthy due to the lack of experimental DIBVS results in the literature.

• The observers in Fink et al. [59, 60] were experimentally validated on the

ANCL platform. This is also of interest due to the CV algorithms being

implemented on embedded hardware.

• In Fink et al. [62] we characterized and then optimized the communication

between the quadrotor and the MCS.

8

Chapter 2

Quadrotor and Camera

Modelling

This chapter presents the mathematical models and defines the notation that will be

used throughout this thesis. In Section 2.1 we derive the quadrotor kinematics and

dynamics and then present a model-based proportional-integral-derivative (PID)

control law. In Section 2.2 we present a commonly used camera model and image

features, detectors, and descriptors. Lastly, we introduce the concept of visual

servoing (VS).

2.1 Quadrotor Kinematics, Dynamics and Control

This section presents an established nonlinear quadrotor model. The first two ref-

erence frames of interest are the navigation frame N and the body frame B. The

navigation frame is assumed inertial and has its origin fixed to the surface of the

earth. Its basis is the orthonormal set of vectors {n1, n2, n3} that are oriented north,

east, and down, respectively. The body frame has its origin fixed to the quadrotor’s

centre of mass (CoM) and its basis {b1, b2, b3} is oriented forward, right, and down,

respectively. Figure 2.1 shows frames N and B.

2.1.1 Representation of the Orientation

The rotation matrix Rnb∈ SO(3) describes the relative orientation of N and B [63].

The columns of Rnb are the direction cosines of the basis vectors of B and N . We

have

Rnb =

n1 · b1 n2 · b1 n3 · b1
n1 · b2 n2 · b2 n3 · b2
n1 · b3 n2 · b3 n3 · b3


9

�4
pn

f1

f2

f3

f4

b1

b2

b3

Ω1

Ω2

Ω3

Ω4

φ

θ ψ
n1

n2
n3

B

N

τ1

τ2

τ3

τ4

Figure 2.1: .
Diagram of a quadrotor showing frames N and B, Euler angles, and the forces and

torques generated by the propellers.

The elementary rotation matrices are rotation matrices that rotate about just a

single axes. They are

R1(θ) =

⎡
⎢⎢⎣
1 0 0

0 cθ −sθ

0 sθ cθ

⎤
⎥⎥⎦ , R2(θ) =

⎡
⎢⎢⎣

cθ 0 sθ

0 1 0

−sθ 0 cθ

⎤
⎥⎥⎦ , R3(θ) =

⎡
⎢⎢⎣
cθ −sθ 0

sθ cθ 0

0 0 1

⎤
⎥⎥⎦

where cθ = cos θ and sθ = sin θ. This thesis typically parametrizes the rotation

between the navigation frame N and the body frame B with the so-called roll-pitch-

yaw (φ-θ-ψ) or ZYX Euler angles. The rotation matrix when parametrized by the

Euler angles is

Rb
n(η) = R3(ψ)R2(θ)R1(φ) (2.1)

=

⎡
⎢⎢⎣
cψ −sψ 0

sψ cψ 0

0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
cθ 0 sθ

0 1 0

−sθ 0 cθ

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1 0 0

0 cφ −sφ
0 sφ cφ

⎤
⎥⎥⎦ (2.2)

=

⎡
⎢⎢⎣
cθcψ sφsθcψ − cφsψ cψsθcφ + sψsφ

cθsψ sψsθsφ + cψcφ cφsθsψ − sφcψ

−sθ cθsφ cθcφ

⎤
⎥⎥⎦ (2.3)

where η = [φ, θ, ψ]T . The downside of using the Euler angle approximation is the

gimbal lock problem. There is a singularity when θ = π/2+kπ, k ∈ Z. Normally this

10

n2

n3

n1,b1

b2

b3

φ

(a) Roll (φ)

n1

n3

n2,b2

b1

b3

θ

(b) Pitch (θ)

n1

n2
n3,b3

b1

b2

ψ

(c) Yaw (ψ)

Figure 2.2: The roll-pitch-yaw (φ-θ-ψ) or ZYX Euler angles.

singularity is only encountered in acrobatic flight. However, typical visual servoing

(VS) applications do not approach the singularity. The advantage of the Euler

angles is that they can be easily visualized as seen in Figure 2.2.

The unit quaternion q is used to represent rotations. Quaternions are a minimal

representation of a rotation without singularities, however, each rotation does not

have a unique quaternion, as there is double coverage. In the quaternion q =

[q0, q1, q2, q3]T , q0 is the scalar part of the quaternion and [q1, q2, q3] is the vector

part. The rotation matrix parametrized by a unit quaternion is

Rbn(q) =

q
2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2.4)

2.1.2 Quadrotor Rigid Body Dynamics

The rigid body kinematics and dynamics of the vehicle expressed in N are

ṗn = vn (2.5a)

mv̇n = RnbF
b +mgn (2.5b)

Ṙnb = sk(ωn)Rnb (2.5c)

Jnẇn = −ωn × Jnωn +Rnb τ
b (2.5d)

where pn ∈ R3 is the position of the vehicle in N , vn ∈ R3 is the linear velocity

of the vehicle in N , ωn ∈ R3 is the angular velocity of the vehicle in N , m ∈ R
is the mass of the vehicle, gn ∈ R3 is the acceleration due to gravity, Jn ∈ R3×3

is the inertia matrix of the vehicle in N . The external force and torque acting on

the vehicle are denoted F b ∈ R3, τ b ∈ R3, respectively, and the skew operator sk(x)

11

maps a vector to a skew symmetric matrix

sk(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0


where x = [x1, x2, x3]T . We use the notation xyi to denote the ith component of the

vector x in the Y frame. Depending on the control law it is sometimes convenient

to examine the dynamics in B.

ṗb = −ωb × pb + vb (2.6a)

mv̇b = −mωb × vb + F b +mRbng
n (2.6b)

Ṙnb = Rnb sk(ωb) (2.6c)

Jbω̇b = −ωb × Jbωb + τ b (2.6d)

where pb ∈ R3 is the position of the vehicle in B, vb ∈ R3 is the linear velocity of

the vehicle in B, ωb ∈ R3 is the angular velocity of the vehicle in B, and Jb ∈ R3×3

is the inertia matrix of the vehicle in B.

The moment of inertia in N is time-varying, however, it can be calculated from

the constant moment of inertia in B. The relationship between the inertia in N
and B is

Jn = Rnb J
bRbn (2.7)

If the Euler angles are chosen then the rotational kinematics is

η̇ = W (η)ωb (2.8)

where

W (η) =


1 sφtθ cφtθ

0 cφ −sφ

0
sφ
cθ

cφ
cθ

 (2.9)

where tξ = tan ξ. For small θ and φ,

W (η) ≈ I

η̇ ≈ ωb

If quaternions are chosen then the rotational kinematics is

q̇ =
1

2
W (q)ωb (2.10)

12

Prop. 2 Prop. 3

Prop. 1Prop. 4

b1

b2

b3

(a) “×” Quadrotor Configuration

Prop. 2

Prop. 3

Prop. 1

Prop. 4
b1

b2

b3

(b) “+” Quadrotor Configuration

Figure 2.3: The two main configurations of quadrotors.

where

W (q) =


q3 −q2 q1

q2 q3 −q0

−q1 q0 q3

−q0 −q1 −q2

 (2.11)

2.1.3 Force and Torque Model

Figure 2.1 illustrates the positive directions of F b and τ b. We have

F b = [0, 0,−
4∑
i=1

fi]
T and fi = kfiΩ

2
i (2.12)

where Ωi > 0 is the rotational speed of Propeller i and kf i > 0 is an aerodynamic

coefficient. Quadrotors can have arbitrary arm length and motor positions, but are

typically built in one of two main physical configurations. Figure 2.3 shows these

two configurations. In the generic case the torque applied to the vehicle is calculated

by projecting the torque of each propeller into the directions b1 and b2.

τ b =


4∑
i=1

τ1i

4∑
i=1

τ2i

kτ1Ω2
1 + kτ2Ω2

2 − kτ3Ω2
3 − kτ4Ω2

4


T

(2.13)

where

τ1i = `ifi sin Θi

τ2i = `ifi cos Θi

(2.14)

13

Prop. i

b1

b2

b3

Θi
`i

Figure 2.4: Angle definitions for torque calculations in non-square vehicles.

and `i is the distance from the motor to the centre of mass of the vehicle, kτ i > 0 is

an aerodynamic constant, and Θi is the angle from the basis vector b1 to the arm i

as seen in Figure 2.4. If the vehicle is in one of the common configurations then the

expression for torque can be simplified. The most common configuration used in the

literature is the “+” design where the front of the vehicle (i.e., in the b1 direction)

is orientated towards Propeller 3. Then the torque is

τ b =

 `(f b2 − f b1)

`(f b3 − f b4)

kτ1Ω2
1 + kτ2Ω2

2 − kτ3Ω2
3 − kτ4Ω2

4


T

(2.15)

where ` = `1 = `2 = `3 = `4, Θ1 = 90◦, Θ2 = −90◦, Θ3 = 0, and Θ4 = 180◦. The

second configuration is the “×” design which is used in this thesis. Here, the front

of the vehicle is oriented between Propellers 3 and 1, and the right of the vehicle

lies between Propellers 1 and 4. The torque applied to the vehicle is

τ b =


√̀

2
(f2 + f3 − f1 − f4)

√̀
2
(f1 + f3 − f2 − f4)

kτ1Ω2
1 + kτ2Ω2

2 − kτ3Ω2
3 − kτ4Ω2

4


T

(2.16)

where Θ1 = 45◦, Θ2 = −135◦, Θ3 = −45◦, and Θ4 = 135◦.

The commonly used simple input models for F b and τ b are chosen to obtain a

simple control law. These models could be generalized to include aerodynamic ef-

fects such as blade flapping and drag force which have been proven to be important

experimentally [64, 65]. Furthermore in practice kf and kτ are not constants, but

they are approximately linear close to hover. Lastly, this model neglects any gyro-

scopic torques due to variation in the angular momentum of the propellers. Further

details regarding modelling can be found in [66–70].

2.1.4 Quadrotor Control

The control of unmanned aerial vehicles (UAVs) is typically divided up into an inner

and outer loop. We adopt this structure here as shown in Figure 2.5. This two-loop

14

Outer

Loop
Inner Loop

Vehicle

F b

η∗

η, η̇

pb,vb,ψ

τ b

pb
∗
,ψ∗

Figure 2.5: Block diagram of the inner-outer control loop structure. The inner loop
controls the orientation η of the vehicle, and the outer loop provides a roll and pitch
reference η∗ to the inner loop in order to achieve control of lateral motion.

structure is often used independent of the sensors employed (e.g., camera or global

navigation satellite system (GNSS)). The inner loop tracks an orientation reference

of the vehicle and the outer loop provides a roll and pitch reference to the inner

loop in order to achieve control of lateral motion. The two loop structure arises

in part from a difference in the structural properties of UAVs: the outer loop has

slow dynamics and the inner loop has fast dynamics. The two loop structure also

provides a practical solution to motion control found in many autopilots [71, 72]. A

theoretical analysis of this structure is in [73]. We define the state vector

x = [(pb)T , (vb)T , ηT , (ωb)T]T

At hover, the state is xhover = [(pb)T , 0, [0, 0, ψ], 0]T and the linearized dynamics

in (2.6) are

ṗb = vb (2.17a)

mv̇b = F b +mgn (2.17b)

η̇ = ωb (2.17c)

Jω̇b = τ b (2.17d)

The outer loop controls the vehicle’s position pn by applying a thrust F b in the

desired direction (θ∗, φ∗). It can be controlled with a PID controller with gravity

15

compensation.

θ∗ = kp1ep1 + ki1

∫ t

0
ep1(τ)dτ + kd1ėp1

φ∗ = kp2ep2 + ki2

∫ t

0
ep2(τ)dτ + kd2ėp2

F b = kp3ep3 + ki3

∫ t

0
ep3(τ)dτ + kd3ėp3 +mgn

(2.18)

where the error signal is

ep = R3(ψ)
(
pn∗ − pn

)
and pn∗∈ R3 is the desired position in N , and kpi > 0, kii > 0, kdi > 0, i ∈ {1, 2, 3}
are constant scalar control gains.

The inner loop controls the orientation η of the vehicle by applying torque τ b.

It is often controlled with a PID controller:

τ b1 = kpφeφ + kiφ

∫ t

0
eφ(τ)dτ + kdφėφ

τ b2 = kpθeθ + kiθ

∫ t

0
eθ(τ)dτ + kdθėθ

τ b3 = kpψeψ + kiψ

∫ t

0
eψ(τ)dτ + kdψ ėψ

(2.19)

where eη = η∗ − η is the error signal and kpi > 0, kii > 0, kdi > 0, i ∈ {φ, θ, ψ} are

constant scalar control gains. Typically in practice, a proportional-derivative (PD)

controller is used for roll and pitch i.e., kiθ = kiφ = 0, a proportional (P) controller is

used for yaw i.e., kiψ = kdψ = 0. A UAV generates the force from each propeller by

commanding a propeller speed Ωi. The relationship between the propeller velocity

to torque and propeller velocity to force is assumed known. The control signals are

mapped to the individual propeller speeds using the vehicle’s geometry as previously

defined. When the vehicle is in the “+” configuration, the propeller velocities are
Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =


−`kf `kf 0 0

0 0 `kf −`kf
kτ kτ −kτ −kτ
kf kf kf kf


−1 

τ b1
τ b2
τ b3
F b

 (2.20)

When the vehicle is in the “×” configuration, the propeller velocities are

16


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =



−`kf√
2

`kf√
2

`kf√
2

−`kf√
2

`kf√
2

−`kf√
2

`kf√
2

−`kf√
2

kτ kτ −kτ −kτ
kf kf kf kf



−1 
τ b1
τ b2
τ b3
F b

 (2.21)

We note that the above matrices are always invertible as they are full rank

when `, kτ , kf > 0. In summary the model assumes that the relationships from Ω2
i to

F b and τ b are known and linear. We assume the propeller speeds can be controlled

arbitrarily fast (i.e., there are no propellor motor system dynamics).

2.2 Computer Vision

Computer vision has been well studied in the literature, e.g., [42, 74]. This section

presents the most common model for image formation and defines the image features,

detectors, and descriptors. Lastly, it provides a brief introduction on VS and the

homography matrix.

2.2.1 Camera Model

Figure 2.6 illustrates the commonly used pinhole camera model. The relationship

between a Euclidean point pn in N expressed in C to the projective coordinates (or

homogeneous coordinates) Y c is

π : (pc ∈ R3 − {0} : pc3 > 0)→ R2 (2.22)

: pc → Apc (2.23)

where A ∈ R3×3 is the intrinsic camera calibration matrix that is defined as

A =

λ1 s y10

0 λ2 y20

0 0 1

 (2.24)

where λi > 0, i ∈ [1, 2] is the focal length of the camera in pixels, s ∈ R is the skew

parameter, y0 ∈ R2 is the principal point, and f` ∈ R2 is the focal length in pixels.

In camera literature the navigation frame is often referred to as world coordinates.

The focal length in pixels is related to the focal length in meters by

λ1 =
f`
ρ1
, and λ2 =

f`
ρ2

(2.25)

where f` ∈ R is the focal length, and ρi > 0, i ∈ [1, 2] is the size of the pixel in

17

y2

y1

C

c1

c3
f`

c2

Image Plane π

Image Feature
y = [y1, y2]

Visual Feature
pc = [pc1, p

c
2, p

c
3]

Figure 2.6: Model of a pinhole camera with a visual feature point pc and the image
feature y on the image plane π.

meters. The aspect ratio of the camera is λ1/λ2. In homogeneous coordinates the

image coordinate Y c is

Y c ∼ Apc

where ∼ represents equality up to a scaling of a non-zero number. In Cartesian

coordinates the image coordinate Y c is

yc1 =
λ1p

c
1 + spc2
pc3

+ yc10

yc2 =
λ2p

c
2

pc3
+ yc20

(2.26)

Lens Distortion

For applications that require higher accuracy the projection model is not sufficient

and lens distortion should be taken into account [75, 76]. The most common lens

distortion model is radial distortion. Let πd be the radial distortion function

πd : ru → rd (2.27)

18

with
∂πd
∂ru

(0) = 1 (2.28)

and the function is invertible over the entire image where ru ∈ R =‖yu‖2,

rd ∈ R =‖yd‖2, yu is the undistorted image coordinate and yd is the distorted image

coordinate. The undistorted image is

yu =
π−1
d (rd)

rd
yd (2.29)

The polynomial model is (2.29) re-written as an infinite series:

yu =

1 +
∞∑
i=1

κir
2i
d

 yd (2.30)

where κi ∈ R are constant parameters. It has been shown that using just the first

parameter κ1 can achieve of accuracy of less then 0.1 pixels. Hence the truncated

undistorted coordinates are

yu ≈
(

1 + κ1r
2
d

)
(2.31)

For high-distortion lenses or fish-eye lenses it may be necessary to take into account

the higher order terms.

Another widely used model for fish-eye lenses is the field of view (FoV) model:

yu =
tan(κrd)

2 tan(κ/2)
(2.32)

where κ is the field of view of the lens. The FoV model can also be extended by

adding the higher order terms of the polynomial model. Figure 2.7 demonstrates

the affect of radial distortion on straight lines in an image.

2.2.2 Image Features

Image features are the building blocks for solving a computer vision task. They con-

tain information about an image such as point, lines, or more complicated objects.

This section defines the most common image features used in VS and visual state

estimation. Figure 2.8a shows an example of point features, lines features, circle

features and conic features. To extract these features you need five points to deter-

mine a conic, three for a circle, two for a line, and one for a point. A point feature is

extracted from an image by using colour thresholding. Figure 2.8b shows simulated

colour blue thresholding of the image features with additive Gaussian noise. In the

figure anywhere there is blue colour it is marked in white and everywhere else is

black. After thresholding, various computer vision algorithms can determine how

19

(a) Undistributed Image
κ1 = 0

(b) Barrel Distortion
κ1 > 0

(c) Pincushion Distortion
κ1 < 0

Figure 2.7: Radial distortion of an image.

100 200 300 400 500 600

100

200

300

400

(a) Image Features

100 200 300 400 500 600

100

200

300

400

(b) Image Feature Detection

−50 0 50

−500

0

500

(c) Hough Transform

Figure 2.8: Some common image features are conics, circle, lines and points. Colour
thresholding along with the Hough transform can be used to detect line features.

many blobs there are, the size of the blobs and other useful information such as

their moments. A point image feature can be centre of a colour blob. Similarly,

a line feature can be computed as the line between the centre of two colour blobs.

However, if there is an actual line in the image is it more common to extract the line

feature using a Hough transform. Hough transforms can also be used to extract cir-

cles and conics, however with each degree of freedom (DoF) the complexity increases

exponentially. Hence, the Hough transform is typically not used for anything but

lines or circles. Figure 2.8c shows the Hough transform of the image using a “hot”

colour map, i.e., areas where it is more probable to have a line will be white and

least probable will be black. In Figure 2.8c the highest probable spot where there is

a line is highlighted in green. This line is then redrawn on top of Figure 2.8b in red.

More advanced image features are typically calculated from basic image features.

For example, you can obtain a plane or a cube from a set of points. Similarly, if the

physical dimensions of a complex object are known, e.g., a car, it can be extracted

from just a few points.

20

Point Features

One of the simplest image features is a point. From (2.26), given a 3 D point pc

expressed in the camera frame, the projection of pc onto the image plane π is a 2 D

point feature y with coordinates

y =

y1

y2

 =


λ1
pc1
pc3

+ y10

λ2
pc2
pc3

+ y20

 (2.33)

Here we have take the camera skew s = 0 which is a good approximation for most

modern cameras. The single point image feature kinematics can be found by differ-

entiating (2.33) with respect to time [3]:

ẏ = Lν =
[
Lv Lω

]vc
ωc

 (2.34)

where L is the interaction matrix or image Jacobian, ν is the velocity screw of the

camera in C, and

Lv =

−
λ1

p3
0

y1 − y10

p3

0 −λ2

p3

y2 − y20

p3

 (2.35)

Lω =


(y1 − y10)(y2 − y20)

λ2
−(y1 − y10)2 + λ2

λ1

λ1

λ2
(y2 − y20)

(y2 − y20)2 + λ2

λ2
−(y1 − y10)(y2 − y20)

λ1
−λ2

λ1
(y1 − y10)

 (2.36)

Line Features

Another basic feature is the line feature. In projective geometry a line is the dual

of a point. i.e., the role of points and lines can be swapped in axioms or theories

about the properties of lines and points. A 3 D line can be represented by a base

point p0 and a vector v that represents the direction of the line. Equivalently, this

can also be seen as the intersection of two planes as seen in Figure 2.9a.A1p1 +B1p2 + C1p3 +D1 = 0

A2p1 +B2p2 + C2p3 +D2 = 0
(2.37)

We exclude the degenerate case when D1 = D0. This happens when the line passes

through the origin of the camera and the camera would only see a point in the

21

y2

y1

C
c1

c2

c3

π

l

p0 v
y1

y2

ρ

α

l

π

(a) A 3 D line projected onto the image
plane π.

(b) A 2 D line l on the image plane π.

Figure 2.9: Line image feature

image. Any homogeneous image point Y ∈ R3 that is on the line l̄ ∈ R3 satisfies

the orthogonality equation.

l̄TY = 0 (2.38)

We choose to parameterize the line as l = (α, ρ) where

l̄TY =
[
sα cα −ρ

]y1

y2

1

 = y1sα + y2cα − ρ = 0 (2.39)

We note that this representation is ambiguous as the same line can be parameterized

by (α + 2kπ, ρ) or (α + (2k + 1)π,−ρ) where k ∈ Z. Without loss of generality α

can be restricted to lie in

(
−π

2
,
π

2

]
. The positive direction of α is from the line to

the axis y1 as is shown in Figure 2.9b. We note that the typical parameterization

of a line as y2 = my1 + b is a poor choice of parameterization as it cannot represent

vertical lines.

Next the line kinematics are derived by differentiating (2.39) with respect to

time.

l̇ = L`ν =
[
Lv` Lω`

]vc
ωc

 (2.40)

22

where

Lv` =

(
1

Di

)−Aicα +Bisα 0

0 Aiρsα +Biρcα + Ci

sα cα −ρ
sα cα −ρ


Lω` =

 ρsα ρcα 1

(1 + ρ2)cα −(1 + ρ2)sα 0


where

i =

1, if D1 6= 0

2, otherwise

Feature Detectors and Descriptors

A feature is a point of interest in the image based on some criterion, e.g., a corner.

There many different features used in computer vision (CV). Some of the most

common features detectors are good features to track (GFTT) [77], scale-invariant

feature transform (SIFT) [78], features from accelerated segment test (FAST) [79],

speeded up robust feature (SURF) [80], center surround extremas (CenSurE) [81],

adaptive and generic accelerated segment test (AGAST) [82], and oriented FAST

and rotated BRIEF (ORB) [83]. Very closely related to the feature detectors are

feature descriptors. A feature descriptor is a vector of values that describe an

image patch around a image feature. A descriptor can be as simple as the image

coordinates of the feature or it can be more complicated. Some of the most used

descriptors are SIFT, SURF, ORB, binary robust independent elementary features

(BRIEF) [84], binary robust invariant scalable keypoints (BRISK) [85], and learned

attachment of three patch codes (LATCH) [86]. As can be seen from the list some of

the algorithms (SIFT, SURF, and ORB) are both feature detectors and descriptors.

Often in the literature both the feature detector and descriptors will be referred to

together as simply an image feature.

2.2.3 Visual Servoing

It is well established that computer vision is a natural sensor for increasing a robot’s

autonomy in uncertain environments as it provides information about the actual

situation [42]. In the case of UAVs, this has led to research on using computer

vision as a replacement for GNSS for localizing the vehicle and motion control.

Visual servoing (VS) refers to motion control which relies on computer vision. For

example, visual servoing was applied to autonomous landing of a UAV in [87] and

to pole inspection in [88].

23

Camera
Outer Loop:

VS
Inner Loop:
Kinematic

Vehicle

y vb
∗

vb

τ b, F b

pnc , Rnc

Figure 2.10: Block diagram of the traditional inner-outer control loop structure for
visual servoing.

Camera
Outer Loop:

Dynamic VS
Inner Loop

Vehicle

F b

y

η∗

η

vb, η

τ b

pnc , Rnc

Figure 2.11: Block diagram of dynamic visual servoing with a inner-outer control
loop structure.

Typically, the control structure of VS is divided into two loops [3]. As seen in Fig-

ure 2.10, an inner loop accepts a reference velocity and determines force and torque

inputs to control the robot’s velocity at a relatively high bandwidth (e.g., 200 Hz).

An outer loop uses video camera feedback to generate reference velocities for the

inner loop. It operates at a relatively low frequency due to the low rate at which

images are acquired and processed (e.g., 30 Hz). As discussed in Chapter 1, VS

is divided into two main approaches: position-based visual servoing (PBVS) and

image-based visual servoing (IBVS) [3]. In PBVS the pose of the vehicle is ex-

tracted from the image and the motion control of the vehicle can be done using

typical motion control techniques. In this case the vision system can be thought of

as a generic position sensor similar to GNSS or a laser proximity sensor. On the

other hand, IBVS minimizes an error function which is directly computed from fea-

tures in the image plane. Both IBVS and PBVS approaches have distinct advantages

and disadvantages depending on the application considered.

A classical IBVS for a fully actuated 6 DoF vehicle solves for the desired velocity

screw of the vehicle by using at least three point features. The interaction matrix

in (2.34) for each point are stacked and the stacked matrix is inverted. Such an

approach can lead to singularities and it neglects the dynamics of the vehicle. For the

case of an underactuated UAV, angular and linear velocity cannot be independently

specified. It is assumed that the vehicle can perfectly track the reference velocity

and design is based on a purely kinematic vehicle model. However, the importance

24

of including the dynamics of the vehicle is underlined in [47, 89] for both high speed

tasks and underactuated systems.

The configuration space of a quadrotor is six-dimensional whereas it only has

four inputs. Hence, it is underactuated. The roll and pitch are directly coupled

to translational acceleration which makes makes it difficult to apply a conventional

kinematics-based visual servoing design. Hence, we include the vehicle’s linear ve-

locity dynamics in the control design. We refer to visual servoing that directly

accounts for vehicle dynamics as dynamic visual servoing. A block diagram of dy-

namic VS is shown in Figure 2.11. Dynamic image-based visual servoing (DIBVS)

approaches for UAVs that have appeared in the literature include spherical image

moment-based designs [39, 41, 90–92], homography based methods [43, 44, 93], a

virtual spring approach [45], virtual camera approaches [13, 46, 47], and a nonlin-

ear state transformation approach [54]. Although dynamic visual servoing has clear

practical significance, few published works have thorough experimental results. In

Chapter 4 we propose a number of IBVS controls and present their experimental

validation.

2.2.4 Homography

A useful tool for IBVS is the homography matrix which embeds information about

the relative pose of a camera given two images of the same planar object [42].

Following [42, 74], we consider two views of a point on a planar target as shown

in Figure 2.12. The two camera frames C1 = {c1
1, c

1
2, c

1
3} and C2 = {c2

1, c
2
2, c

2
3} are

related by a translation r1 and rotation R2
1. We denote the image plane coordinates

of n points in the two cameras to be y1
i , y

2
i ∈ R2, 1 ≤ i ≤ n. The homogeneous

representations of these vectors are denoted Y 1
i , Y

2
i ∈ R3, 1 ≤ i ≤ n. A homography

mapping H ∈ R3×3 is a matrix which transforms Y 1
i to Y 2

i according to

Y 2
i ∼ HY 1

i

where ∼ represents equality up to a nonzero scaling. We note that the matrix H

can be arbitrarily scaled, therefore it has eight degrees of freedom. When a homog-

raphy is induced by a static plane it can be decomposed into a translation r1 and

a rotation R2
1 assuming that the optical centre of the camera never passes through

the plane. Such a situation is physically impossible as the camera would have to

pass through the target. That is, we have

H = A

(
R2

1 +
1

d1
r1n1T

)
A−1 (2.41)

where A is the matrix of intrinsic camera parameters, d1 is the perpendicular dis-

25

Target

C1 C2

π
1 π2

y1
i y2

i

H

R2
1, r

1

d1

n1

Figure 2.12: A homography matrix H transforms the image coordinates Y 1
i ∈ R3

into Y 2
i ∈ R3 of two views of the same 3 D point.

tance from the camera frame C1 to the target plane, n1 is the unit normal of the

target plane expressed in C1, r1 is the displacement of the origin of C2 relative to

the origin of C1 expressed in C1, and R2
1 is the rotation matrix which describes the

relative orientation of C1 and C2. Without loss of generality we take A = I which

assumes camera calibration has been performed. In practice, cameras can be easily

calibrated to subpixel error. As an alternative, the points in the images can be

normalized using a similarity transform that moves the centroid of the points in the

images to the origin and scales the average distance of the points from the origin

to
√

2. This approach yields acceptable results in practice. Normalization, via either

the camera’s intrinsic parameters or by a similarity transform, is an important step

of the algorithm to provide suitable accuracy in the estimate of the homography [74].

Homography Composition

The homography

H =

H11 H12 H13

H21 H22 H23

H31 H32 H33


can be calculated using at least n ≥ 4 co-planar point correspondences in the two

images using the planar homography constraint

sk(Y 2
i)HY 1

i = 0, 1 ≤ i ≤ n (2.42)

Since the constraint is linear we can rewrite it as

χHs = 0 (2.43)

26

where Hs = [H11, H21, H31, H12, H22, H32, H13, H23, H33]T ,

χ =


kron(Y 1

1 , sk(Y 2
1))T

kron(Y 1
2 , sk(Y 2

2))T

...

kron(Y 1
n , sk(Y 2

n))T

 ∈ R3n×9 (2.44)

and kron(A,B) ∈ Rmk×nl is the Kronecker product of A ∈ Rm×n and B ∈ Rk×l:

kron(A,B) =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

 (2.45)

To solve (2.43) uniquely (up to a scale factor) we need rank(χ) = 8. This is only

possible if there exists a set of 4 points out of n on the plane such that no three of

them are co-linear. Since Y j
i contains noise we find the optimal χ by solving

min
||Hs||2=1

||χHs||2 (2.46)

using linear least squares to obtain Hs up to a scale factor. To solve (2.46), we

compute the SVD of χ = UΣV T where U, V ∈ R9×9 are orthogonal,

Σ = diag([σ1, . . . , σ9]) ∈ R9×9

and σ1 ≥ · · · ≥ σ9 > 0. Since V is orthogonal and defining ξ = V THs then

||Hs||2 = ||V V THs||2 = ||V ξ||2 = ||ξ||2

Hence,

min
||Hs||2=1

||χHs||22 = min
||ξ||22=1

||UΣξ||22 = min
||ξ||22=1

||Σξ||22

= min
||ξ||22=1

σ2
1ξ

2
1 + · · ·+ σ2

9ξ
2
9 = σ2

9

Thus the minimizing ξ = [0, 0, . . . , 0, 1]T and

Hs
l = V [0, 0, . . . , 0, 1]T , (2.47)

27

i.e., the ninth column of V . We form a scaled homography matrix Hl from solu-

tion Hs
l , i.e.,

H = λHl (2.48)

The magnitude of scale factor λ is given by

|λ| = σ2(Hl) (2.49)

where σ2(Hl) is the second largest singular value of Hl. To ensure the sign of H is

correct we verify the constraint

(Y 2
i)THY 1

i > 0, 1 ≤ i ≤ K (2.50)

Homography Decomposition

There are multiple algorithms to decompose a homography matrix [42, 74, 94]. Here

we will use a modified version of the SVD algorithm. There are four mathematical

solutions to the decomposition of H into R2
1, 1

d1 r
1, and n1. Only two of these

solutions are physically meaningful, and to choose the correct solution additional

information about the scene is required.

Given that HTH is symmetric we can diagonalize it as

HTH = V ΣV T (2.51)

where V =
[
v1 v2 v3

]
∈ SO(3), vi ∈ R3, and Σ = diag([σ2

1, σ
2
2, σ

3
3]), where

σi, 1 ≤ i ≤ 3 denote the singular values of the estimated H. Next, we define two

unit length vectors u1 and u2 such that their length is preserved under the map H

and that {v2, u1, sk(v2)u1} and {v2, u2, sk(v2)u2} are orthonormal bases of R3. We

have the expressions

u1 =

√
1− σ2

3v1 +
√
σ2

1 − 1v3√
σ2

1 − σ2
3

u2 =

√
1− σ2

3v1 −
√
σ2

1 − 1v3√
σ2

1 − σ2
3

(2.52)

We define the following matrices

U1 =
[
v2 u1 sk(v2)u1

]
U2 =

[
v2 u2 sk(v2)u2

]
W1 =

[
Hv2 Hu1 sk(Hv2)Hu1

]
W2 =

[
Hv2 Hu2 sk(Hv2)Hu2

]
(2.53)

28

i R2
1i n1

i (1/d1)r1i
1 W1U

T
1 sk(v2)u1 (H −W1U

T
1) sk(v2)u1

2 W2U
T
2 sk(v2)u2 (H −W2U

T
2) sk(v2)u2

3 W1U
T
1 sk(u1)v2 (W1U

T
1 −H) sk(v2)u1

4 W2U
T
2 sk(u2)v2 (W2U

T
2 −H) sk(v2)u2

Table 2.1: Four solutions of the decomposition of H = R2
1 + 1

d1 rn
1T into

{R2
1i,

1
d1 r

1
i , n

1
i }, i = 1, 2, 3, 4.

such that

R2
1U1 = W1

R2
1U2 = W2

Due to the sign ambiguity in 1
d1 r

1n1T we obtain four decompositions of

H = R2
1 + 1

d1 r
1n1T denoted {Ri, 1

d1 r
1
i , n

1
i }, i = 1, 2, 3, 4 as shown in Table 2.1. From

these four solutions we can extract two relevant solutions using the positive depth

constraint

(n1)T e3 > 0 (2.54)

to obtain two solutions.

The control method requires the scaled relative pose between the desired and

current frames. We describe two methods for picking the correct solution from the

homography decomposition data. The first method computes the homography be-

tween consecutive images and relies on the fact that images vary continuously in

time. This implies the correct solution for R2
1, n1 and 1

d1 r
1 are also continuous in

time. The incorrect solution has no guarantee of continuity and can make large

jumps. Initially we pick one of the solutions arbitrarily which we assume is correct.

We monitor both solutions for discontinuities in the parameters. If one of the solu-

tions exhibits a discontinuity, we can determine the correct solution. This method

suffers from the two limitations. First, it requires slow movement in the image and

a fast frame rate. Second, the two solutions can meet making it impossible to de-

termine the correct solution for subsequent time. In this case, the method is reset

and we must arbitrarily choose a solution. The method relies on the robustness of

the control law to incorrect choices of the solution.

In this work we chose a simpler method to picking the correct solution which

relies on a known target plane normal vector n1 in the initial image. Rather than

calculate the homography between consecutive frames we compute the homography

between the initial and current images. This helps eliminate any accumulation of

error in the estimate of the scaled relative pose. The choice of correct solution is

determined by comparing the estimated normal vector with its known value. Assum-

29

ing a known target image and normal is not restrictive in that tracking algorithms

require an initial image. We require additionally that the user specifies the initial

target orientation. We remark that the method does not require any geometric

information about the target and maintains the benefits of IBVS given that the

control law is still calculated directly in the image plane.

30

Chapter 3

Experimental Platform

In order to efficiently perform experimental research on nonlinear control and visual

servoing of unmanned aerial vehicles (UAVs), we developed the indoor Applied

Nonlinear Control Lab (ANCL) quadrotor platform at the University of Alberta in

Edmonton, Canada. The design for our experimental platform was inspired by:

• Eidgenössische Technische Hochschule Zürich’s (ETHZ’s) “The Flying Ma-

chine Arena” [95, 96]

• University of Pennsylvania’s GRASP Laboratory [97]

• Massachusetts Institute of Technology’s (MIT’s) Aerospace Controls Labora-

tory (ACL) [98]

Over the course of this PhD the hardware has undergone various revisions. In

general an emphasis has been focused on open-source and open-hardware platforms

that have been developed as research platforms.

3.1 Indoor Quadrotor Platform

The ANCL indoor quadrotor UAV platform consists of a laboratory, a motion cap-

ture system (MCS), various autopilots, quadrotors, computer vision systems, and

cameras. The flight volume is 4 m x 5 m x 2 m and has an eight camera Bonita 3

Vicon MCS surrounding it. Each MCS camera has a frame rate of 240 frames per

second (fps) and a resolution of 640 × 480 pixel resolution. The overall Vicon system

has a 2 ms delay and can calculate the vehicle pose at up to 200 Hz with millimetre

accuracy. A ground station computer runs QGroundControl (QGC) [99] which is an

open-source ground control software which is intended to be used with any Mavlink

enable drone. QGC is used to setup the UAV (e.g., parameter values and attitude

and heading reference system (AHRS) calibration), visualize UAV sensor data, and

perform mission planning.

31

Quadrotor I

Parameter Value

m 1.6 kg
J1 0.03 kg·m2

J2 0.03 kg·m2

J3 0.05 kg·m2

` 0.25 m
Θ1,−Θ3 45◦

−Θ2,Θ4 135◦

Quadrotor II

Parameter Value

m 2.3 kg
` 0.28 m
Θ1,−Θ3 57◦

−Θ2,Θ4 123◦

Table 3.1: Experimental platform quadrotor parameters.

3.1.1 Quadrotors

We custom built two quadrotor systems using 3D Robotics quadrotor do-it-yourself

(DIY) frames. The vehicles are shown in Figure 3.1. The arms are aluminum, and

the legs and body are carbon fibre. The quadrotors are equipped with 8 channel

Spektrum satellite receiver paired with a Spektrum DX8 radio transmitter for man-

ual control. The radio is shown in Figure 3.2. Pulse width modulation (PWM)

outputs drive four Afro 30 A electronic speed controllers (ESCs) which power four

Turnigy 1100 KV Brushless Outrunner Motors and four APC 11 inch multi-rotor

propellers. The ESCs run SimonK firmware which is open-source ESC firmware de-

signed for faster response time and improved multi-rotor performance [100]. Power

is supplied by a Turnigy 3 cell 5000 mAh lithium polymer battery (LiPo) battery.

An onboard LairdTech 2.4 GHz radio communicates with a personal computer (PC)

running the Vicon Tracker software which computes the vehicle pose and computes

a using a low pass-filtered finite difference velocity estimate by low pass differentiat-

ing. This data is received by the autopilot which is interfaced to a matching onboard

LairdTech radio. The ANCL quadrotors I and II, as seen in Figure 3.1, weigh about

1.6 kg and 2.3 kg, respectively, including the battery, the vision computer and cam-

eras. They measure 25 cm and 28 cm, respectively, from the centre of the vehicle

to the motor shafts. Table 3.1 summarizes the quadrotor model parameters.

3.1.2 Autopilots

The autopilot is based on Pixhawk autopilot hardware which is an open-hardware

project which runs the open source PX4 software [72]. In particular we use the

PX4FMUv1 (Pixhawk autopilot - flight management unit - version 1) and the PX4IO

(Pixhawk Input/Output Module). The PX4FMUv1 contains a 168 MHz ARM pro-

cessor, a 3 D accelerometer, two 3 D gyroscope, a 3 D magnetometer, and a pressure

sensor. The PX4FMU and PX4IO have a number of different hardware interfaces

such universal asynchronous receiver/transmitter (UART), inter-integrated circuit

32

LairdTech RadioLairdTech Radio

PropellerPropeller

MotorMotor

PX4PX4

3DR Radio3DR Radio

LIPOLIPO

Downward Camera (Pixy)Downward Camera (Pixy)

Vicon MarkerVicon Marker

(a) The first quadrotor: Quadrotor I

PropellerPropeller

MotorMotor

Wifly RadioWifly Radio

LairdTech RadioLairdTech Radio

Jetson TX1Jetson TX1

PX4PX4

Forward CameraForward Camera

LIPOLIPO

Downward CameraDownward Camera

GPSGPS Safety SwitchSafety Switch Vicon MarkerVicon Marker

(b) The second quadrotor: Quadrotor II

Figure 3.1: The ANCL quadrotor platform.

33

AntennaAntennaKill SwitchKill Switch BindBind Spare SwitchSpare Switch

PowerPower LCDLCD Menu ButtonMenu Button

MainMain
ModeMode
SwitchSwitch

ThrustThrust
&&

YawYaw

SecondarySecondary
ModeMode
SwitchSwitch

PitchPitch
&&

RollRoll

S1S1 S2S2

S3S3 S4S4

S5S5 S6S6

B3B3

B2B2

B1B1

Figure 3.2: The Spektrum DX8 remote transmitter

(I2C), and PWM outputs. Later on the PX4FMUv1 and PX4IO were repackaged

into a single board called the Pixhawk Autopilot or the PX4FMUv2. In this thesis

we refer to the PX4FMUv2 as PX4. See Figure 3.3 for an overview of the hardware

interconnection of the various components and Appendix A for an explanation of the

labels used in the figure. The PX4FMUv1 and PX4FMUv2 are shown in Figure 3.4.

One of the main purposes of an autopilot is implement the vehicle’s control laws.

In practice it can be difficult to implement control laws exactly the same as in theory.

One important difference is that outputs are often normalized. e.g., a quadrotor can

not directly apply a force, instead the controller will output a normalized thrust

signal. This signal controls each motor between zero and maximum propeller speed.

Starting with the outer control loop as in (2.18) the control law becomes

uf = kp3ep3 + ki3

∫ t

0
ep3(τ)dτ + kd3ėp3 + ug (3.1)

where uf ∈ [0, 1] is the normalized thrust control signal and ug ∈ [0, 1] is the

normalized gravity compensation. We have reused the gains kp3, ki3, kd3 in (2.18)

for convenience. The values of the gains in (2.18) and (3.1) will be different for a

similar motion control response. Similarly, the inner loop as in (2.19) is normalized.

34

L
iP

o
P

ow
er

M
P

D
B

E
S

C
1

E
S

C
2

E
S

C
3

E
S

C
4

M
ot

or
1

M
ot

or
2

M
ot

or
3

M
o
to

r
4

P
X

4

B
u

zz
er

S
p

ek
tr

u
m

R
a
d

io
2

R
ad

io
1

S
w

it
ch

G
P

S
S

er
ia

l

L
1

J
1

D
9
D

1
0
D

1

D
2

D
3

D
4

D
5
D

6
D

7
D

8

E
1
E

2

E
3

E
1
E

2

E
3

E
1
E

2

E
3

E
1
E

2

E
3

M
1

M
1

M
1

M
1

J
2

J
3

P
8

P
2
2

P
3
P

2
P

1
P

1
4
P

1
5
P

1
2
P

1
3

R
1

R
1

S
1

B
1

S
1

G
1

S
1

c 1

c 2

c 3

c 4 c 4 c 4 c 4

c 5
c 5

c 5
c 5

c 5

c 6
c 6

c 6
c 6

c 7
c 8

c 9
c 1

0
c 1

1
c 1

2
c 1

3

F
ig

u
re

3.
3:

W
ir

in
g

d
ia

gr
am

of
th

e
h

ar
d

w
ar

e
in

te
rc

on
n

ec
ti

o
n

.

35

GPSGPS F1F1

Multi-Multi-
ConnectorConnector

F2F2

USBUSB

F6F6

ResetReset

F3F3

JTAGJTAG

F4F4

Expansion BusExpansion Bus
(PX4IO)(PX4IO)

F8F8

(a) PX4FMUv1 - Top

Expansion BusExpansion Bus
PX4IOPX4IO

F8F8 MicroSD SlotMicroSD SlotF11F11

ArmingArming
SwitchSwitch

F10F10

JTAGJTAG

F4F4

(b) PX4FMUv1 - Bottom

SpektrumSpektrum
RadioRadio

P1P1

Telemetry 2Telemetry 2
(MCS Link)(MCS Link)

P2P2

Telemetry 1Telemetry 1
(CV Computer)(CV Computer)

P3P3ADCADC

P8P8
USBUSB

P4P4

SPISPI P5P5

PowerPower

P6P6

StatusStatus
LEDLED

P7P7

ADCADC

P9P9

I2CI2CP10P10

CANCAN
P11P11

GPSGPSP12P12

DeveloperDeveloper
ConsoleConsole

P13P13

BuzzerBuzzer

P14P14

ArmingArming
SwitchSwitch

P15P15

(c) PX4FMUv2

Figure 3.4: Pixhawk autopilot - flight management unit.

36

ubτ1 = kpφeφ + kiφ

∫ t

0
eφ(τ)dτ + kdφėφ

ubτ2 = kpθeθ + kiθ

∫ t

0
eθ(τ)dτ + kdθėθ

ubτ3 = kpψeψ + kiψ

∫ t

0
eψ(τ)dτ + kdψ ėψ

(3.2)

Next the control signals are mixed together to form the normalized propeller con-

trol signals uΩ. When the vehicle is in the“+” configuration, the propeller velocities

are 
u2

Ω1

u2
Ω2

u2
Ω3

u2
Ω4

 =


−1 0 1 1

1 0 1 1

0 1 −1 1

0 −1 −1 1




uτ1

uτ2

uτ3

uf

 (3.3)

For the ANCL quadrotor I or any vehicle in the “×” configuration, the propeller

velocities are 
u2

Ω1

u2
Ω2

u2
Ω3

u2
Ω4

 =


−1/
√

2 1/
√

2 1 1

1/
√

2 −1/
√

2 1 1

1/
√

2 1/
√

2 −1 1

−1/
√

2 −1/
√

2 −1 1




uτ1

uτ2

uτ3

uf

 (3.4)

Lastly, for the ANCL quadrotor II, the propeller velocities are
u2

Ω1

u2
Ω2

u2
Ω3

u2
Ω4

 =


sin(−56.6◦) cos(−56.6◦) 1 1

sin(123.4◦) cos(−123.4◦) 1 1

− sin(−123.4◦) − cos(−123.4◦) −1 1

− sin(56.6◦) − cos(56.6◦) −1 1




uτ1

uτ2

uτ3

uf

 (3.5)

The above mixing can cause the propeller control signals to saturate which can

result in undesired behaviour of the quadrotor. Instead of a hard saturation, all of

the propeller velocities are re-scaled so that the saturating actuator is limited to 1.

Lastly, the propeller control signal is converted to a PWM signal.

uPWM =
kuΩ + min

max−min
(3.6)

where k is a positive constant scaling factor and min and max are the minimum

and maximum PWM signals. We note that in practice typical values are k = 1000,

min = 1000 and max = 2000 and uPWM ∈ [1000, 2000] µs. This PWM signal is the

physical output of the PX4 and is the input used by the ESCs to control the voltage

37

Outer Loop
(2.18) and (3.1)

Inner Loop
(3.2)

Mixer
(3.4) and (3.6)

ESC

Motor
(2.12) and (2.13)

vn∗, pn∗, ψ∗

Rb
n
∗

uτ

uf

uPWM

V

fi, i ∈ [1, 2, 3, 4]

(a) Practical model

Outer Loop
(2.18)

Inner Loop
(2.19)

Mixer
(2.21)

ESC

Motor
(2.12) and (2.13)

vn∗, pn∗, ψ∗

Rb
n
∗

τ b

F b

Ω

fi, i ∈ [1, 2, 3, 4]

(b) Idealized model

Figure 3.5: A summary of the force-torque control system

to the motor. The above process is summarized in Figure 3.5.

3.1.3 Software

In understanding how the entire software system functions it is important to examine

how data flows to and from the quadrotor as well as in the quadrotor. An overview of

the data flow on the ANCL quadrotor is in Figure 3.6. The backbone of the system is

the micro-object request broker (uORB) module (src/modules/uORB). It is the ob-

ject broker for the inter-process communication and is based on a publish-subscribe

design pattern of the same name. Any number of sensors can be attached to the

PX4. The most important internal sensors are described briefly below. MPU6000

(src/drivers/mpu6000) is a six-axis gyroscope and accelerometer. It provides the

raw measurements of angular velocity and acceleration to the system. L3GD20

(src/drivers/l3gd20) is a three dimensional gyroscope. It can also provide raw an-

gular velocity measurements to the system. HMC5883l (src/drivers/hmc5883) is

a three dimension magnetometer. It provides the raw measurement of magnetic

38

S
T

M
ic

ro
L

3
G

D
2
0
H

1
6

b
it

g
y
ro

sc
o
p

e

S
T

M
ic

ro
L

S
M

3
0
3
D

1
4

b
it

a
cc

el
er

o
m

et
er

m
a
g
n
et

o
m

et
er

In
v
en

se
n
se

M
P

U
6
0
0
0

3
-a

x
is

a
cc

el
er

o
m

et
er

g
y
ro

sc
o
p

e

M
E

A
S

M
S
5
6
1
1

b
a
ro

m
et

er

C
M

3
-U

3
-1

3
Y

3
C

-C
S

ca
m

er
a

L
a
ir

d
T

ec
h

R
M

0
2
4
-P

1
2
5
-M

-3
0

2
.4

G
H

z
T

ra
n
sc

ei
v
er

V
ic

o
n

M
o
ti

o
n

C
a
p
u
tr

e
S
y
st

em

S
p

ek
tr

u
m

S
P

M
8
8
0
0

D
X

8
8
C

H
T

ra
n
sm

it
te

r
S
p

ek
tr

u
m

S
P

M
9
6
4
5

D
S
M

X
R

em
o
te

R
ec

ei
v
er

U
B

lo
x

L
E

A
-6

H
G

P
S

R
ec

ei
v
er

G
P

S
S
a
te

ll
it

es

In
te

rn
al

S
en

so
rs

E
x
te

rn
al

S
en

so
rs

R
ad

io
s

S
en

so
rs

uORB

p
n
,
v
n

p
n
,
v
n

ω
b

a
b
,
bb

a
b
,
ω
b

y

p
n
,
v
n

p
n
,
v
n

L
a
n
d

D
et

ec
to

r

C
o
m

m
a
n
d
er

N
a v

ig
a
to

r

S
ta

te
M

a
ch

in
es

uORB

M
C

A
tt

it
u
d
e

C
o
n
tr

o
l

M
C

P
o
si

ti
o
n

C
o
n
tr

o
l

M
C

IB
V

S
C

o
n
tr

o
l

C
on

tr
o
ll

er
s

p
n
∗
,
v
n
∗
,
ψ
∗
,

p
n
,
v
n
,
ψ

R
b n
∗
,
R
b n

s∗
,
s

R
b n
∗
,
F
b
∗

τ
b
∗

R
b n
∗
,
F
b
∗

Im
a
g
e

M
o
m

en
ts

&
V

ir
tu

a
l

C
a
m

er
a

L
o
ca

l
P

o
si

ti
o
n

E
st

im
a
to

r

A
tt

it
u
d
e

E
st

im
a
to

r
Q

E
K

F

P
o
si

ti
o
n

E
st

im
a
to

r
IN

A
V

E
st

im
a
to

rs

ω
b
,
a
b
,
bb

,
p
n
,
v
n

ω
b
,
a
b
,
bb

ω
b
,
a
b
,
bb

,
p
n
,
v
n

ω
b
,
a
b
,
bb

,
p
n
,
v
n

y
,R
θ
φ

R
b n
,
p
n
,
v
n

R
b n

p
n
,
v
n

p
n
,
v
n

s

P
W

M

G
P

IO

L
o
g
g
er

B
u
zz

er

P
h
y
si

ca
l

O
u

tp
u

ts

M
ix

er
F
b
,
τ
b

f i

F
ig

u
re

3.
6:

D
at

a
fl

ow
d

ia
gr

am
of

th
e

A
N

C
L

q
u

ad
ro

to
r.

u
O

R
B

is
th

e
ob

je
ct

b
ro

ke
r

fo
r

th
e

in
te

r-
p

ro
ce

ss
co

m
m

u
n

ic
a
ti

o
n

b
a
se

d
o
n

th
e

p
u

b
li

sh
-s

u
b

sc
ri

b
e

d
es

ig
n

p
at

te
rn

.

39

Quadrotor
Start

Preflight

Standby

Armed

Manual

ANCL Manual

ANCL Auto 1
(Setpoint)

ANCL Auto 2
(Trajectory)

(Visual Servoing)
Quadrotor
Stopped

Powered
on

Successful
boot

Safety
Off

Remote
Arm

Main
Mode
Switch

Secondary
Mode
Switch

Secondary
Mode
Switch

Secondary
Mode
Switch

Secondary
Mode
Switch

Main
Mode
Switch

Remote
De-Arm

Safety
On

MCS
Lost

MCS
Lost

MCS
Lost

Loss
of

Tracking

Kill
Switch

Kill
Switch

Kill
Switch

Kill
Switch

Kill
Switch

Unsuccessful
Boot

Figure 3.7: The ANCL internal software state machine for the quadrotor autopilot.

40

north. However, the accuracy indoors can be degraded due to iron inside the build-

ing. MS5611 (src/drivers/ms5611) is a barometric pressure sensor. It provides

the raw pressure data to the system. The platform also has three important ex-

ternal sensors. The Vicon (src/modules/mavlink) MCS provides the position and

velocity of the vehicle. The Vicon cameras are connected to an offboard computer

that calculates the position of the vehicle using reflective markers. The computer

then calculates a low pass filtered finite difference estimate of the vehicle’s linear

velocity. Then the Vicon data is sent via a radio to the PX4. If the quadrotor

is flying outdoors, it is also equipped a GPS (src/drivers/gps) module for position

feedback. The last external sensor is the Spektrum Remote Control Transmitter

(src/drivers/spektrum rc) used for manual control of the quadrotor and for switch-

ing between control modes. There are various options for estimating its full state on

the PX4. The default estimator on the PX4 is it’s EKF module (src/modules/ekf2).

This module calculates the vehicle’s attitude, position and velocity. At the time we

last merged the source code from the official PX4 repository it was not possible

to use the EKF2 module with a MCS1. Instead we use the Quaternion Attitude

Estimator (src/modules/attitude estimator q) and the Local Position Estimator

(src/modules/local position estimator). The attitude estimator uses quaternions

to keep track of the attitude and mixes the roll and pitch estimates from the ac-

celerometer, the heading from the the MCS, and the gyroscope measurements. The

Local Position Estimator uses the position and velocity estimates from the MCS.

It also uses the accelerometer data to extrapolate the position and velocity esti-

mates in between data from the MCS. Onboard the PX4 the Commander module

(src/modules/commander) maintains the main state machine. The state machine

can be seen in Figure 3.7. It has been simplified for clarity. A typical flight would

involve the following steps:

• The PX4 is powered on.

• The system starts all of its sensor’s and does a preflight check.

• The user turns the safety switch off. When the safety is engaged the motors

will not spin.

• Using the remote control, the user engages the motors. At this stage the user

can fly in Manual Mode. This means that on the remote the left stick is

mapped to thrust and yaw torque. The right stick is mapped to roll and pitch

torque. There is no position feedback in this mode and typically the position

of the quadrotor will slowly drift even with a zero roll and pitch torque.

1Release v1.5.5 - Jan. 25, 2017 - https://github.com/PX4/Firmware/commit/

00334ad76d03b5abc2144f1ebba7faf691448f5c

41

https://github.com/PX4/Firmware/commit/00334ad76d03b5abc2144f1ebba7faf691448f5c
https://github.com/PX4/Firmware/commit/00334ad76d03b5abc2144f1ebba7faf691448f5c

Mode
Switch

Secondary
Mode
Switch

Flight
Mode

Thrust
Stick

Controls:

Roll-Pitch-
Yaw Sticks

Control:

Outer
Loop

Feedback
1 1 Manual Thrust Torque Open loop

3 1
ANCL
Manual

Vertical
Body

Velocity

Body
Velocity

Position and
velocity

3 2
ANCL

Automatic
Mode 1

Autonomous
(MCS)

Autonomous
(MCS)

Position and
velocity

3 3
ANCL

Automatic
Mode 2

Autonomous
(VS)

Autonomous
(VS)

Image
features

Table 3.2: ANCL radio switches and flight modes.

• Next the user uses the remote to switch into the ANCL Manual Mode. Now

the left stick is mapped to vertical velocity and yaw speed. The right stick is

mapped to horizontal velocity.

• Next the user uses the remote to switch into the ANCL Automatic Mode 1.

This mode is completely autonomous. In this mode the quadrotor will fly to

a setpoint and hold its position. It is typically set to the centre of the room

and one metre off the ground pn∗ = [0, 0,−1]T m.

• Next the user uses the remote to switch into the ANCL Automatic Mode 2.

This mode is also completely autonomous. In this mode the quadrotor will

do one of two missions. In the first it will follow a trajectory such as a circle

around the lab. The second mission is typically a visual servoing (VS) control

law.

• Once the mission is done the user uses the remote to switch back into the

ANCL Manual Mode to land the quadrotor.

• Once the quadrotor has landed the user uses the remote to turn off the motors.

• The user now re-engages the safety.

• The PX4 is powered off.

A summary of the radio transmitter control sticks is shown in Figure 3.8 and a

summary of the flight modes is shown in Table 3.2.

One of the most important groups of modules are the controllers. As seen in Sec-

tion 2.1 The main control structure is split into two loops. The outer loop is imple-

mented in the Multicopter Position Control module (src/modules/mc pos control)

and the inner loop in the Multicopter Attitude Control module

42

Zero Position

φ∗ = 0

θ∗ = 0

ψ∗ = 0

F b = 0

Start Motors

φ∗ = 0

θ∗ = 0

ψ∗ = 1

F b = 0

Stop Motors

φ∗ = 0

θ∗ = 0

ψ∗ = −1

F b = 0

Full Throttle

φ∗ = 0

θ∗ = 0

ψ∗ = 0

F b = 1

Roll Right

φ∗ = 0

θ∗ = 1

ψ∗ = 0

F b = 0.5

Roll Left

φ∗ = 0

θ∗ = −1

ψ∗ = 0

F b = 0.5

Pitch Forward

φ∗ = −1

θ∗ = 0

ψ∗ = 0

F b = 0.5

Pitch Backwards

φ∗ = 1

θ∗ = 0

ψ∗ = 0

F b = 0.5

Figure 3.8: The ANCL radio transmitter control stick mappings.

43

Vicon RadioVicon Radio

AntennaAntenna

SSDSSD

pxCOMexpxCOMex

LIPOLIPO

PX4PX4

KontronKontron

USBUSB

CameraCamera

EthernetEthernet

ViconVicon
MarkerMarker

Figure 3.9: The embedded computer vision system.

(src/modules/mc att control). The control design for these modules is based off [101].

If we are running a VS mission the control for the image-based visual servoing (IBVS)

control law is in the MC IBVS Control module (src/modules/mc ibvs). The state

machine and the position control module handles the switching between the different

outer loop controllers.

The last important group of modules are the physical output. The ESCs and in

turn the motors are controlled via a PWM signal (src/drivers/px4io). Also, onboard

the PX4 all of the uORB data is logged on an internal micro secure digital (SD)

card (src/modules/logger).

3.2 Embedded Computer Vision System

The vision computer is a separate system from the PX4, but it is still located

physically on the quadrotor. The computer vision system has gone through a number

of iterations and its hardware consists of a camera and a computer system.

3.2.1 Companion Computers

The first iterations of the computer was system used a Raspberry Pi which is a low

cost ARM-based computer running Linux. The second iteration used a CMUcam5

Pixy [102]. It can find hundreds of objects based on their colour up to 50 fps. It

44

PowerPower FanFan UARTUART

CSICSI

HDMIHDMI

TX1TX1

I2SI2S

USBUSB

J11J11 J12J12 J13J13

J9J9

J7J7

J4J4 J5J5

J2J2 J3J3

J10J10

J8J8
J1J1

J6J6

(a) J100 Top

SD CardSD Card

MB1MB1

MB2MB2

MB3MB3

JTAGJTAG

J14J14

J15J15J16J16

J17J17

(b) J100 Bottom (c) Jetson TX1

Figure 3.10: The Nvidia Jetson TX1 and the Auvidea J100 carrier board.

transmits image point features from a 320 × 200 image at a rate of about 25 Hz.

Our current computer vision system is an Jetson TX1. The Jetson TX1 has a 64 bit

ARM central processing unit (CPU) and a graphics processing unit (GPU) with

256 Nvidia CUDA cores. The Jetson TX1 is mounted on an Auvidea carrier board

that has a serial connection to the PX4 for transferring vision data to the autopilot.

The carrier board and TX1 is shown in Figure 3.10. We are in the process of phasing

out the TX1 for the TX2 which provides better performance. It has a better CPU,

GPU, more RAM and more storage. It is pin compatible with the TX1 which allows

it to run on the same carrier board. All of the companion computer were mounted

on the quadrotor and connected to the PX4 via a serial connection.

To enable faster prototyping of computer vision algorithms we developed a high

performance computer vision system shown in Figure 3.9. This box includes a PX4,

a camera, and a Pixhawk baseboard with an embedded computer. The embedded

computer is a Kontron COM Express Module with an Intel i7-2655LE processor

module, 8 GB RAM, and an Intel GMA X4500 integrated graphics card. The

computer runs Ubuntu Linux and the robot operating system (ROS) [103]. The

box has an solid state drive (SSD) to store camera images for post-processing. The

attached camera is a Chameleon 2. Lastly, Vicon markers are mounted on the

outside of the box to measure its pose. The entire vehicle system weight including

battery and computer vision system is 1.6 kg.

For sensor fusion problems like visual inertial simultaneous localization and map-

ping (VISLAM) a source of error can be frame misalignment between C, B and the

inertial measurement unit (IMU). In theory the IMU and the MCS sensor are placed

at the centre of mass (CoM) of the vehicle which is the origin of B. However, in

practice the exact CoM is unknown and the sensors cannot be physically placed

there. Additionally, to be able to compare the estimated pose of the vehicle to the

ground truth measured by our MCS, the transformation from the N to V has to be

45

accurately measured. We used the methods from [104] to estimate the inter-sensor

calibration.

3.2.2 Cameras

Our main camera is the FLIR (previously Point Grey) Chameleon 3 USB 3 camera.

It is attached to the quadrotor facing down about 5 cm below the quadrotor’s CoM,

i.e., pbcam ≈ [0, 0, 0.05]T m. This global shutter camera can achieve framerates of

up to 149 Hz when taking a photo at a resolution of 1280 × 1024. Our secondary

camera is the Chameleon 2 universal synchronous bus (USB) camera. It is also a

global shutter camera that can achieve framerates of up to 18 Hz when taking a

photo at a resolution of 1296 × 964. Both the Raspberry Pi and the Jetson TX1

can use camera serial interface (CSI) cameras such as the Raspberry Pi Camera V2

(Sony IMX219) which can achieve up to 240 Hz when taking a photo at a resolution

of 960 × 540. The main downside of this camera is that it has a rolling shutter.

3.3 Communication Network Characterization

Being able to describe the behaviour and characteristics of our communication net-

work is crucial to developing algorithms to accurately obtain the pose of the vehicle

after it has been sent from the ground station to the vehicle. The stability of network

control system is now a well established branch of control engineering [105]. In the

ANCL platform we use a Vicon packet that is 24 bytes. We use the Mavlink protocol

to transmit the data. It adds an additional eight bytes of overhead that adds check-

sum and sequencing information to the packet. The checksum uses ITU X.25 and

SAE AS-4 standards. See Figure 3.11 and Table 3.3 for an overview of the packet

design. We designed the following experiments to identify the delay, the sources

of the delay and the behaviour of the delay in our system. Apart from the delay

we were also trying to measure any other problems that degrade the quality of the

network such as packet loss and out of order packets.

3.3.1 Round Trip Experiment

The first experiment that we designed was a round trip experiment. In this exper-

iment we would send a packet from our ground station PC to the PX4 using the

LairdTech radios. In order to minimize any processing time on both the ground

station and the PX4 all other applications were closed. The experiment was then

as follows: at time t1 on the ground station computer a packet was sent via the

LairdTech radio to the same radio on the PX4. It was then sent back to the ground

station where it was read in and verified at time t2. For this experiment it was

46

Variable Precision Value Description

T uint32 t Time in ms on the MCS clock

POS int16 pn Position in N in mm

VEL int16 vn Estimated Velocity in N in mm/s

ATT int16 q Attitude unit quaternion of Rbn

(a) Vicon Packet (Payload)

Variable Precision Value Description

STX uint8 0xFF Packet start sign

LEN uint8 n = 24 Length of payload

SEQ uint8 - Packet sequence to detect packet loss

SYS uint8 42
System ID of the sending system to
differentiate between different UAVs

COMP uint8 20 Component ID

MSG uint8 217 Message ID

PAYLOAD - -
Data of Message. Here it is the Vicon
Packet

CK uint16 - Checksum of bytes 1· · · (n+ 6)

(b) Mavlink Version 1

Variable Precision Value Description

STX uint8 0xFD Packet start sign

LEN uint8 n = 24 Length of payload

ICMPT uint8 -
Incompatible flags (Flags must be
understood)

CMPT uint8 -
Compatible flags (Can be ignored if not
understood)

SEQ uint8 - Packet sequence to detect packet loss

SYS uint8 180
System ID of the sending system to
differentiate between different UAVs

COMP uint8 20 Component ID

MSG uint8[3] 217 Message ID

TSYS uint8 - Target System ID (Optional)

TCMPID uint8 - Target Component ID (Optional)

PAYLOAD - -
Data of Message. Here it is the Vicon
Packet

CK uint16 - Checksum of bytes 1· · · (n+ 6)

SIG unit8[13] - Signature (Optional)

(c) Mavlink Version 2

Table 3.3: Vicon packet overview.

47

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T POS VEL ATT

(a) Vicon Packet (Payload)

0 1 2 3 4 5 6 · · · n + 6 n + 7 n + 8

STX LEN SEQ SYS COMP MSG PAYLOAD CK

(b) The structure of a Mavlink version 1 packet.

0 1 2 3 4 5 6 7 8 9

STX LEN ICMPT CMPT SEQ SYS COMP MSG

10 11 12 · · · n + 12 n + 13 n + 14 n + 15 · · · n + 28

TSYS TCOMP PAYLOAD CK SIG

(c) The structure of a Mavlink version 2 packet. The signature is optional.

Figure 3.11: The structure of the Mavlink Vicon packet.

Trial
2000 4000 6000 8000 10000

t
t
(m

s)

5

10

15

20

25

Figure 3.12: The one-way transmission time tt in the round trip experiment where
a Vicon packet was sent to the PX4 and then immediately sent back.

assumed that any processing time or buffering by the drivers and radios is a con-

stant and included as part of the transmitting time. Secondly, it was assumed that

the time for the PX4 to read, verify, and write the packet back to the radio was

negligible. The last assumption is that is that the probability to lose a packet is

random and is equal in both directions. Therefore the time to transmit tt a packet

is

tt =
t2 − t1

2

After 10,000 runs we obtained an average tt = 14.8 ms as shown in Figure 3.12

During this experiment 1.4% of the sent packets were lost, 94.4% were sent within

±1 ms of the average tt, and 3.9% of the packets were received later than the average.

3.3.2 Throughput Experiment

In the previous experiment only one packet was sent at a time which measures a

minimum time. In a more realistic scenario there is a constant stream of data. In

48

Trial
5 10 15 20 25

S
u
cc
es
s
R
at
e
(%

)

0.98

0.985

0.99

0.995

(a)

Rate (Hz)
100 200 300

S
u
cc
es
s
R
a
te

(%
)

0.7

0.8

0.9

1

(b)

Rate (Hz)
100 200 300

C
P
U

U
sa
ge

(%
)

4

6

8

10

12

(c)

Figure 3.13: The throughput experiment where a constant stream of Vicon packets
were sent to the PX4.

this experiment we would send N packets continuously from the ground station to

the quadrotor, and the number of packets received at the PX4 is denoted by M . We

define the percentage of packet loss as

loss =
N −M
N

.

After 25 trials sending 1000 packets per trial at a rate of 100 Hz we obtained an

average success rate of greater than 99% as shown in Figure 3.13a. Next, we repeated

the same experiment but sending 10,000 packets per trial and we varied the rate at

which we sent the data from 100 Hz to 300 Hz. We measured both the success rate

and the CPU usage as seen in Figure 3.13b and Figure 3.13c, respectively.

3.3.3 Complete Circuit Experiment

The final experiment performed was based on the complete time it takes for the

MCS to calculate the pose of the vehicle and send the data to the PX4. The Bonita

Cameras emit 617 nm light which is reflected by the markers on the quadrotor back

to the cameras. When a marker is seen by any of the cameras, its position in the

image is collected by the Vicon Tracker software where it is used to help triangulate

the 3 D position of the quadrotor. To simulate the reflection of a marker we used

an array of light-emitting diodes (LEDs) emitting nearly the same wavelength. We

designed a simple circuit as shown in the Figure 3.14 to create a object with eight

LEDs that represented two of the quadrotor’s reflective markers. To use an external

power supply to power the eight LEDs the circuit contains an optocoupler 4N25.

The LEDs are placed in clusters to increase the surface area of the LEDs. The pairs

of LEDs are placed in parallel. The input to the optocoupler is the output of one of

the PX4’s general purpose input/outputs (GPIOs). We could toggle on and off the

array of LEDs using the PX4. On the PX4 whenever the GPIO pin is toggled high

the time t1 is recorded and when it is toggled low t2 is recorded. At the same time

when the pin is set high the LEDs are turned on, the Vicon MCS sees the LEDs and

49

calculates the position of the LEDs, the ground station then sends the position to

PX4 where the time is recorded every time a packet is received. The LEDs are left

on for 10 s and then turned off for 3 s. In this experiment we are measuring multiple

times of interest: ton is the time it takes for the first Vicon packet to arrive after the

LEDs were turned on, toff is the time the last packet was received after the LEDs

were turned off, and tavg is the average time between packets excluding the first

packet. We also counted the total number of packets received denoted by N . From

this experiment we expect to measure that tavg is the same amount of time that the

MCS takes in between sending data (0.01 ms). N should be the product of the total

time the LED was on, the rate at which the MCS sends data and the average success

rate calculated in the first experiment, i.e.,N ≈ (10 s)(100 Hz)(99 %) = 990. The

abovementioned times are defined as

ton = t1 − tfirst

toff = t2 − tlast

tavg =
1

N − 1

N∑
i=2

∆ti

where ∆ti = ticurrent − tiprevious. In this experiment we neglected the delay of the

optocoupler as the delay is in nano-seconds. The experiment was repeated 100 times.

From this experiment was can see that ton > toff and ton > tavg as the MCS needs

additional time to find an object compared to the time it takes to track an object

already being tracked. In practice the quadrotor should never be lost from the MCS

so the first data point is removed from the average time. Lastly we can observe

that the delay is not constant. We obtained a mean of 26 ms, but the value varied

from 20 ms to 33 ms. These values are in line with our first experiment where the

transmission time was about 15 ms. A summary of these results is in Figure 3.15.

The computation time of the Vicon MCS can be seen to be almost exactly 10 ms

while tracking the LEDs, however, it needs an additional 25 ms to find the object

when the LEDs are first turned on.

3.4 Summary

In this chapter we presented the ANCL quadrotor platform which made use of open

source and open hardware projects. Like most autopilot platforms it is in a constant

stage of change as newer technology emerges. The platform we developed will be

an important tool for keeping abreast with research on computer vision applied

to UAVs. The platform is used in the next two chapters for VS and visual state

estimation (VSE).

50

3.3V

100 Ω

1

2

3

5

4

6

4N25

10 kΩ

10 V

100 Ω

53 Ω

100 Ω

100 Ω

100 Ω

100 Ω

(a) Circuit Diagram

LEDsLEDs

LEDsLEDs

10 V10 V

PX4 GPIOPX4 GPIO

4N254N25

(b) Circuit

Figure 3.14: The LED array used in the complete circuit experiment.

51

Trial
20 40 60 80 100

t
(m

s)

0

20

40

60

(a) The time is takes to receive a packet af-
ter the LEDs were turned on ton (black), the
time it takes to receive the last packet after
the LEDs were turned off toff (blue) and the
average time in between packets tavg (green).

Trial
20 40 60 80 100

S
u
cc
es
s
R
at
e
(%

)

98

98.5

99

99.5

100

(b) The success rate of each trial. We can see
one trial drops well below the average when
the radios temporarily lost connection during
a trial.

t (s)
0 5 10

P
ac
ke
t
R
ec
ei
ve
d

0

0.5

1

(c) Close up of the first trial in the experi-
ment. The blue line denotes when the LEDs
are turned on and every received packet is
marked in red.

t (s)
1.1 1.15 1.2

P
ac
k
et

R
ec
ei
ve
d

0

0.5

1

ton

(d) The first trial’s ton measurement. The blue
line denotes when the LEDs are turned on and
every received packet is marked in red.

t (s)
4.95 5 5.05

P
ac
ke
t
R
ec
ei
ve
d

0

0.5

1

∆ti

(e) An example ti from the first trial that is
used to compute tavg. The blue line denotes
when the LEDs are turned on and every re-
ceived packet is marked in red.

t (s)
11.15 11.2 11.25

P
ac
ke
t
R
ec
ei
ve
d

0

0.5

1

toff

(f) Example toff measurements from the first
trial. The blue line denotes when the LEDs are
turned on and every received packet is marked
in red.

Figure 3.15: The complete circuit experiment that measures the time it takes for
the PX4 to receive a packet from the Vicon MCS.

52

Chapter 4

Dynamic Image-Based Visual

Servoing

A conventional visual servoing design usually assumes the inner loop tracks its ref-

erence velocity perfectly. Analysis and design is based on a purely kinematic vehicle

model. However, it is pointed out in [89] that the dynamics of a robot should be

considered for high speed tasks or when the system is underactuated. We refer

to a visual servo control which directly accounts for vehicle dynamics as dynamic

visual servoing (VS). The importance of treating the dynamics of a vehicle is also

underlined in [47]. Although dynamic VS has clear practical significance, there is

relatively sparse literature on the topic for any type of robotic application. This is

likely due in part to the difficulty in rigorously accounting for the nonlinearity of

the camera’s perspective projection and the vehicle’s dynamics.

In Section 4.1 we present our state transformation method that was originally

published in [54]. The section presents a method for nonlinear dynamic image-based

visual servoing (DIBVS) using just a single feature point. Next, in Section 4.2 we

present the virtual camera method. We begin by deriving image moments features

and their kinematics. Next, we derive a control law using the virtual camera method

and then experimentally validate it. This method was originally published in [55].

In Section 4.3 we extend our virtual camera method to be adaptive to various system

parameters. This extension was originally published in [56]. Then we propose two

more extensions to the virtual camera method in Section 4.4. First we extend the

method for moving targets. Second, we use a homography matrix methods for

non-horizontal targets. These extensions were originally publish in [57]. Lastly, in

Section 4.5 we summarize our findings on DIBVS.

53

4.1 State Transformation-Based Approach

In this section we present our state transformation-based DIBVS approach that was

originally published in [54]. This section focuses on outer loop control where the

objective is to regulate lateral position above a visual target on the ground.

4.1.1 Fundamentals

We recall the image feature kinematics (2.34) and translational velocity dynamics

(2.6):

ẏ = Lvv
b + Lωω

b

mv̇b = −mωb × vb + F b +mRbng
n

(4.1)

The state transformation method assumes perfect control of vb3 and ωb3 so that

vb3 = ωb3 = 0. As well, it only considers small η which implies ω ≈ η̇. It assumes that

the body frame B and the camera frame C are the same frame. Lastly, it assumes

that λ = λ1 = λ2. Under these assumptions (4.1) becomes a two degree of freedom

(DoF) system

Σ2D



ẏ1 = −λv
b
1

pb3
− λ2 + (y1 − y10)2

λ
θ̇ +

(y1 − y10)(y2 − y20)

λ
φ̇

v̇b1 = −gθ

ẏ2 = −λv2

pb3
+
λ2 + (y2 − y20)2

λ
φ̇− (y1 − y10)(y2 − y20)

λ
θ̇

v̇b2 = gφ

(4.2)

where the inputs are θ and φ. This method considers the two decoupled nominal

one DoF systems as a basis for the outer loop control design. This model choice

is justified by both a robustness analysis given below and comes from the two loop

control structure chosen.

The nominal one DoF dynamics considered are

Σ1D,θ


ẏ1 = −λv

b
1

pb3
− λ2 + (y1 − y10)2

λ
θ̇

v̇b1 = −gθ
(4.3)

Σ1D,φ


ẏ2 = −λv

b
2

pb3
+
λ2 + (y2 − y20)2

λ
φ̇

v̇b2 = gφ

(4.4)

where the input to subsystem Σ1D,θ is θ and input to Σ1D,φ is φ.

A challenge with controlling the nonlinear dynamics in (4.2) to (4.4) is the ap-

54

pearance of the derivative of the input, i.e., φ̇ and θ̇. To account for this we make use

of work in [106] which considers the problem of reducing the order of the input deriva-

tive in state space representations. This approach makes use of state transformations

which depend on state and input and its derivatives. To present the conditions for

the existence of the state transformation, the following definitions from [107, 108]

are needed. A smooth vector field f : Rn → Rn is denoted f(x) =
∑n

i=1 fi(x) ∂
∂xi

where ∂
∂xi

denotes the ith unit vector field in the x-coordinates. Given two smooth

vector fields f and g the Lie bracket is denoted [f, g](x) = ∂g
∂x f −

∂f
∂x g. Given the

state space form

ẋ = f(x, u, u̇), x ∈ Rn, u ∈ Rm

the goal is to attempt to construct a state transformation

z = z(x, u)

which leads to a classical state space form system

ż = f̃(z, u)

where all the input derivatives in f̃ have been removed.

From [106, Thm.1], the necessary and sufficient conditions for the existence of a

state transformation from Σ1D,θ into a classical state space form Σ̃1D,θ are given by[
∂
∂θ ,
[
∂
∂θ ,F

]]
= 0 (4.5)

where the prolonged vector field F is defined as

F = ẏ1
∂

∂y1

+ v̇b1
∂

∂vb1
+ θ̇

∂

∂θ

Similarly, the transformation from Σ1D,φ to Σ̃1D,φ exists if and only if[
∂
∂φ ,
[
∂
∂φ ,F

]]
= 0 (4.6)

where

F = ẏ2
∂

∂y2

+ v̇b2
∂

∂vb2
+ φ̇

∂

∂φ

Straightforward calculations show both (4.5) and (4.6) hold and therefore the trans-

formations exists. A simple choice for the transformations from Σ1D,θ to Σ̃1D,θ

55

is

z1 = arctan

(
y1 − y10

λ

)
+ θ

z2 = vb1

(4.7)

where u1 = θ. The transformation from Σ1D,φ to Σ̃1D,φ is

z3 = arctan

(
y2 − y20

λ

)
− φ

z4 = vb2

(4.8)

where u2 = φ. The transformed dynamics are

Σ̃1D,θ


ż1 = − 1

pb3
z2 cos2(z1 − u1)

ż2 = −gu1

(4.9)

Σ̃1D,φ


ż3 = − 1

pb3
z4 cos2(z3 − u2)

ż4 = gu2

(4.10)

There are three cases to consider for the two dimensional dynamics Σ2D. First, the

conditions to remove θ̇ alone are[
∂
∂θ ,
[
∂
∂θ ,F

]]
=

[
∂
∂θ ,
[
∂
∂φ ,F

]]
= 0 (4.11)

where

F = ẏ1
∂

∂y1

+ ẏ2
∂

∂y2

+ v̇b1
∂

∂vb1
+ v̇2

∂

∂vb2
+ θ̇

∂

∂θ
+ φ̇

∂

∂φ

Second, the conditions to remove φ̇ alone are[
∂
∂φ ,
[
∂
∂φ ,F

]]
=

[
∂
∂φ ,
[
∂
∂θ ,F

]]
= 0 (4.12)

Finally, the conditions to remove both θ̇ and φ̇ are (4.11) and (4.12) and[[
∂
∂θ ,F

]
,
[
∂
∂φ ,F

]]
= 0 (4.13)

Although (4.11) and (4.12) hold,[[
∂
∂θ ,F

]
,
[
∂
∂φ ,F

]]
= y2

∂

∂y1

− y1
∂

∂y2

6= 0

and therefore both of the input derivatives can not be eliminated simultaneously

56

from Σ2D. Thus, we choose to apply the transformations (4.7) and (4.8) which

partially remove the input derivative dependence. The transformed system becomes

Σ̃2D



ż1 = − 1

pb3
z2 cos2(z1 − u1) + λ tan(z1 − u1) tan(z3 + u2)u̇2

ż2 = −gu1

ż3 = − 1

pb3
z4 cos2(z3 + u2)− λ tan(z1 − u1) tan(z3 + u2)u̇1

ż4 = gu2

(4.14)

The control design is performed in the z-coordinates and uses 1 DoF models Σ̃1D,θ

and Σ̃1D,φ. Theorem 4.1 below provides this control design and proves its exponen-

tial stability.

4.1.2 Control

We define a control law to regulate the relative lateral position of the vehicle to a

stationary target located on the ground.

Theorem 4.1. The origins of the one DoF closed-loop dynamics Σ1D,θ and Σ1D,φ

defined in (4.3) and (4.4) with inputs

θ = −k1k2

k1 arctan

(
y1 − y10

λ

)
− vb1

1 + k2
1k2

and φ = k3k4

k3 arctan

(
y2 − y20

λ

)
− vb2

1 + k2
3k4

(4.15)

are locally exponentially stable where k1, k3 > 0 and k2, k4 >
1

gpb3
.

Proof : To stabilize the dynamics Σ̃1D,θ in (4.9) we consider V1 = 1
2z

2
1 then

V̇1 = z1ż1 = − 1

pb3
z1z2 cos2(z1 − u1)

If we treat z2 as an input to the system and assign z2 = k1z1 where k1 > 0 then

V̇1 = −k1

pb3
z2

1 cos2(z1 − u1) ≤ 0

Next, we define the following Lyapunov function candidate

V2 =
1

2
z2

1 +
1

2
q2

57

where q = z1 − z2
k1

then

V̇2 = z1ż1 + qq̇

= −k1

pb3
z2

1 cos2(z1 − u1) +
q

k1pb3
(k2

1q cos2(z1 − u1) + gpb3u1)

Letting u1 = −k2
1k2q gives

V̇2 = − 1

pb3

[
z1 z2

]
M

z1

z2


where

M1 =

 gpb3k1k2 cos2(z1 + k2
1k2z1 − k1k2z2)− gpb3k2

cos2(z1 + k2
1k2z1 − k1k2z2)− gpb3k2

1
k1

(
gpb3k2 − cos2(z1 + k2

1k2z1 − k1k2z2)
)

For M1 > 0 we require

det(M1) =
(
gpb3k2 − cos2(z1 + k2

1k2z1 − k1k2z2)
)

cos2(z1 + k2
1k2z1 − k1k2z2) > 0

and gpb3k1k2 > 0. We can satisfy this constraint by restricting z to the region

{(z1, z2) ∈ R2 : |z1 + k2
1k2z1 − k1k2z2| < π

2 − ε, 0 < ε < π
2 }, k1 > 0, and k2 >

1
gpb3

.

Then V̇2 ≤ − 1
pb3
λmin(M1)‖z‖2 holds where

λmin =
(
a−

√
a2 − c

)
/2

where a = − sin2 (ε) + gk2p
b
3 + gk1

2k2p
b
3 and c = 4 sin2 (ε) k2

1

(
cos2 ε− 1 + gk2p

b
3

)
.

This ensures the equilibrium z1 = z2 = 0 is locally exponentially stable and since

the change of coordinates is Lipschitz on its domain, stability is preserved for the

original (y1, v
b
1)-coordinates. An analogous proof applies to subsystem Σ̃1D,φ with

V4 =
1

2
z2

3 +
1

2

(
z3 −

z4

k3

)2

�

The choice of controller gains k1, k2 determine the shape of the regions of at-

traction. To compute an estimate of the region of attraction for (4.9) we find the

intersection of the ellipse

V2 =
1

2
z2

1 +
1

2

(
z1 −

z2

k1

)2

= c

58

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

z1

z
2

Ω̃c1

(a) (z1, z2)-coordinates: Ω̃c1
(b)

((
y1 − y10

λ

)
, vc1

)
-coordinates: Ωc1

Figure 4.1: Estimates of regions of attraction for controller gains k1 = 0.6, k2 = 0.49.
These controller gains are used in Section 5.5.1.

with the lines

L1 = {(z1, z2) ∈ R2 : z1 + k2
1k2z1 − k1k2z2 = π/2}

L2 = {(z1, z2) ∈ R2 : z1 + k2
1k2z1 − k1k2z2 = −π/2}

The expression for c is

c =
π2

8(k4
1k

2
2 + 1)

An estimate of the region of attraction is Ω̃c1 = {(z1, z2) ∈ R2 : V2 < c}. This set

can be expressed in the (y1, v
b
1)-coordinates using the coordinate transformation; we

denote this set Ωc1. Examples of these estimated regions of attraction are given in

Figure 4.1a and Figure 4.1b.

To show the stability of the two DoF dynamics Σ2D with input (4.15) we make

use of a result from [109, Lem.9.1] for perturbed systems. We define

z = [z1, z2, z3, z4]T

and recall the dynamics Σ2D

ż1 = − 1

pb3
z2 cos2(z1 − u1) + λ tan(z1 − u1) tan(z3 + u2)u̇2︸ ︷︷ ︸

∆1

ż2 = −gu1

ż3 = − 1

pb3
z4 cos2(z3 + u2)− λ tan(z1 − u1) tan(z3 + u2)u̇1︸ ︷︷ ︸

∆3

ż4 = gu2

(4.16)

59

where we have defined a disturbance vector

∆(z) = [∆1(z), 0,∆3(z), 0]T

with ∆(0) = 0. We remark that the dynamics (4.16) is a closed-loop system but

we have not substituted the expression for inputs u1, u2 given in (4.15) in order to

simplify presentation. We make use of the Lyapunov function candidates for the

nominal systems which were given in Theorem 4.1 to define

V (z) = V2(z1, z2) + V4(z3, z4)

=
1

2
z2

1 +
1

2
(z1 −

z2

k1
)2 +

1

2
z2

3 +
1

2
(z3 −

z4

k1
)2

Due to the symmetry of roll and pitch dynamics we set k3 = k1 and k4 = k2. As

well, from Theorem 4.1 we know

c1‖z‖2 ≤ V ≤ c2‖z‖2 and V̇ < c3‖z‖2

where c1, c2 and c3 are positive constants. Furthermore, we have

∥∥∥∂V∂z ∥∥∥2
=

(
2z1 −

z2

k1

)2

+

(
z1

k1
− z2

k2
1

)2

+

(
2z3 −

z4

k1

)2

+

(
z3

k1
− z4

k2
1

)2

= zT

M2 0

0 M2

 z
where

M2 =


4k2

1 + 1

k2
1

−2k2
1 + 1

k3
1

−2k2
1 + 1

k3
1

k2
1 + 1

k4
1


Hence, ∥∥∥∂V∂z ∥∥∥ ≤√λmax(M2)‖z‖ ≤ c4‖z‖

where c4 > 0. On a subset D of the origin we can calculate

γ =
∥∥q(z)∥∥∞ = max

i

4∑
j=1

∣∣∣ ∂qi∂zj

∣∣∣ =
4∑
j=1

∣∣∣∂q1∂zj

∣∣∣
which ensures

∥∥∆(z)
∥∥ ≤ 2γ‖z‖ on D. There exists controller gains k1, k2 such that

γ < c3/c4 and this implies z = 0 is a locally exponentially stable equilibrium of the

perturbed system (4.16). The region where the conditions for exponential stability

hold can be determined numerically.

60

4.1.3 Simulation Results

We considered three different cases in simulation. The first simulation is the ideal

case where we simulate the two DoF dynamics Σ2D in (4.2) where we have a “perfect”

inner loop control. That is, we ignore the rotational dynamics (2.6d) and can in-

stantly control the roll and pitch angles. In the second case we include proportional-

derivative (PD) controlled rotational dynamics and proportional-integral-derivative

(PID) controlled height dynamics from (2.18).

The third simulation compares our controller against the DIBVS method in [91].

We simplify this approach to control only lateral motion which results in the image-

based visual servoing (IBVS) law

F b3 = −k
2
1k2

m
δ2 (4.17)

where

δ2 =
mv

k1
− δ1 and δ1 = s−RT s∗

where k1, k2 > 0 are controller gains, and s is the image feature in spherical coor-

dinates, and s∗ = [0, 0, 1]T is the desired image feature. The spherical coordinates

are calculated from the 2 D image coordinates y = [y1, y2, f]T using s = y/‖y‖. To

improve fairness of the comparison we replaced the visual height controller with the

PID controller used in our experiments. In this simulation the complete dynam-

ics (2.6) is used. The inner loop is controlled by a well tuned PD controller. We

use the controller gains kpθ = kpφ = 16, kdθ = kdφ = 6.4, kpz = 16, kiz = 0.1 and

kdz = 6.4. The spherical coordinates are calculated assuming no calibration error.

In all three simulation cases we use the same controller gains k1 = 0.6 and

k2 = 0.49. The simulations take the same value for the scaled focal length as λ =

f/ρ ≈ 2.8 mm/2.75 µm ≈ 1020 pixels. The camera takes images at a rate of 20 Hz

with a resolution of 640 × 480 pixels. This is in-line with the capabilities of the

Pixy. We initialize the vehicle’s height to 1 m above the ground (i.e., pn3 (0) = −1 m)

and take a desired height setpoint of 1.5 m (i.e., pn3
∗ = −1.5 m). A summary of the

simulation parameters is in Table 4.1.

Figure 4.2 and Figure 4.3 contain the trajectories of y, θ, φ, vb1, and vb2 for the

ideal and non-ideal cases, respectively. The performance of the non-ideal simulation

is degraded but still convergent. The speed of response in y is similar in both cases,

but there is more overshoot in the non-ideal case. The θ, φ trajectories in the non-

ideal case are oscillatory. Other choice of inner loop gains can limit the oscillations

but would require too much control effort to be practically useful. In fact, in flight

tests the range of stable inner loop gains is quite limited and finding stable gains

was a significant challenge. In Figure 4.4 the system states using controller (4.17)

61

Parameter Value

k1 0.6
k2 0.49
g 9.81 m/s2

pn3 (0) −1.0 m
pn3
∗ −1.5 m

vn(0) (0, 0) m/s
Image Size 640× 480 pixels
y(0) (150,−150) pixels

Table 4.1: Controller gains and simulation parameters for state transformation ex-
periment.

Figure 4.2: Ideal simulation results of the two DoF dynamics Σ2D with perfect inner
loop control of roll and pitch angles.

are plotted in solid blue line and those corresponding to the proposed controller are

plotted with a dashed line. From the figure we can see that the performance of the

two controllers has been tuned to be similar. The trajectory of y in the camera image

is shown in Figures 4.5a to 4.5c. The initial image feature location is shown in red,

and the goal location is shown in green. The trajectories of the image feature in the

image plane are shown in Figure 4.5c. The trajectories for the proposed controller

and (4.17) are almost identical.

4.1.4 Experimental Results

In this section we present the experimental performance of the proposed control

on the Applied Nonlinear Control Lab (ANCL) quadrotor unmanned aerial vehicle

(UAV) platform using Quadrotor I. This demonstrates the method’s robustness to

various model uncertainties and the feasibility of implementation on embedded hard-

62

Figure 4.3: System trajectories for the non-ideal case in simulation. The inner loop
roll-pitch tracking is achieved with a PD controller. The simulation includes the
disturbances entering the image feature kinematics which where neglected in the
control design. The system state is in blue and the reference angles for the inner
loop are in red.

Figure 4.4: Comparison of the proposed approach with that in [91]. The system
states for the proposed control are in dashed blue, and the results for the control in
[91] are in solid blue. The reference angles for the inner PD loop are in red.

63

y1

y
2

(a) Ideal simulation results

y1

y
2

(b) Non-ideal simulation results

y1

y
2

(c) Comparison to other dynam-
ical IBVS results [91]

y1

y
2

(d) Experimental results

y1

y
2

(e) Other dynamic IBVS
Experimental results [91]

y1

y
2

(f) Experimental image feature
trajectories with multiple initial
conditions.

Figure 4.5: Image feature trajectories for the experimental and simulation results.
The initial image feature location is shown in red, and the goal location is in green.

Camera Dynamic VS Inner Loop

Vehicle

F b

y

η∗

η

vn

τ b

pn, η

pn3 , ṗn3
Height

Controller
Vicon

Figure 4.6: Block diagram of the proposed control structure.

64

ware where resources are limited. Additionally, we implemented the controller (4.17)

from [91] for comparison. In practice our approach requires the implementation of

an inner attitude control. We choose a simple PID control structure for roll and

pitch as is often used in practice. For safety, tuning of the inner loop gains required

an outer loop position control due to the coupled nature of the rotational and trans-

lational dynamics. The Vicon system initially provided position feedback in three

DoF to facilitate the tuning stage. Once a satisfactory inner-loop performance was

obtained, we implemented the DIBVS control one axis at time. The control gains

were tuned online to obtain k1 = 0.6 and k2 = 0.49. The lateral velocity estimates

used in the IBVS control law were obtained from the Vicon system. Yaw was reg-

ulated using proportional control and the onboard magnetometer. The use of a

magnetometer to control yaw indoors was possible even with the existence of dis-

turbance magnetic fields. This was because stabilization only required a constant

reference value; not necessarily an accurate measurement of the earth’s magnetic

field. The height was controlled using PID and the Vicon estimate of altitude and

vertical velocity. The experiments were performed in two phases. An initial phase

consisted of using the Vicon to control all positional DoFs. This allowed us to avoid

ground effects and ensure the image feature was in the camera’s field of view. The

second phase involved switching to the proposed control. A block diagram of the

control structure used in the experiments is shown in Figure 4.6.

We demonstrated the robustness of the controller to a wide range of initial

conditions in pn1 , p
n
2 , p

n
3 , ψ. The pn1 and pn2 position were varied up to 90 cm in all

directions from the desired visual feature. The quadrotor was always initialized

at about 25 cm below the desired height. The initial yaw was varied in a range

of 60 degrees. The height and yaw controllers would then regulate the height to

pn3
∗ = −1.5 m and yaw to ψ∗ = 0. The experiments show that disturbances due to

nonzero v3 and ψ̇ do not affect closed-loop performance. As seen in Figure 4.5f, the

controller successfully stabilizes the wide range of initial conditions.

We evaluate the steady-state performance of the controllers in Figure 4.7 and

Figure 4.5d. Clearly, the proposed control demonstrates good hover performance

with y1, y2 having maximum amplitudes of 71 and 102 pixels, respectively. The

Vicon data shows that this corresponds to variation in displacements of 0.18 m and

0.32 m in the n1 and n2 axes, respectively. Roll and pitch angles have relatively small

variation and exhibit non-zero average values due to non-ideal weight distribution in

the vehicle. Such a weight imbalance means zero roll and pitch create large lateral

velocity and cause the image feature to rapidly leave the camera’s field of view. The

experimental results demonstrate robustness to unmodelled dynamics neglected in

the design.

To further evaluate the robustness of the proposed controller, the visual target

65

Figure 4.7: Experimental results of the proposed algorithm. System states are shown
in blue and the reference angles for the inner PD loop are in red.

Figure 4.8: Experimental results of the control in [91]. System states are shown in
blue and the reference angles for the inner PD loop are in red.

66

(a) Proposed Controller (b) Controller from [91]

Figure 4.9: Experimental results of the error in lateral position for the proposed
control and that in [91].

IBVS Engaged

IBVS Engaged

Figure 4.10: Experimental results for a moving target. The quadrotor trajectory is
red and target trajectory is blue.

was attached to a remote control car that was driven around the lab. Vicon markers

were placed on the car to establish ground truth data. As seen in Figure 4.10 the

tracking error is similar in magnitude to the static target experiment.

As in Section 4.1.3 we implemented the DIBVS control in [91]. As it is difficult to

compare controller performance on different experimental platforms, implementing

this control on our platform allows for a fair comparison with the proposed method.

The experimental results of (4.17) are shown in Figure 4.8. The performance is

similar to the proposed controller. Figure 4.9 shows that in both experiments the

vehicle remained within a radius of about 30 cm from the origin. The lateral errors

are defined as e1 = pn1
∗ − pn1 and e2 = pn2

∗ − pn2 . For the proposed control the

standard deviation of the lateral errors were 4 cm and 5 cm for the n1 and n2 axis,

respectively. For (4.17) the standard deviation of the lateral errors were 8 cm and

9 cm for the n1 and n2 axis, respectively. Other experimental quadrotor results such

as [64] show similar results with a non-vision-based position controller and without

compensation for advanced aerodynamic effects such as blade flapping and drag

force. Their position control which compensates for these effects improved hovering

performance from 40 cm to 10 cm radial error. On the other hand, our controller

does not rely on position estimates and hovers in a radius of about 30 cm. Another

67

experimentally validated non-vision-based position controller is presented in [98].

This control provides hover performance in a circle of about 20 cm radius. Few

experimental results for IBVS for UAVs have been published. Even fewer results

exist for DIBVS laws. An exception is the work in [110] which presents a comparison

of a number of IBVS algorithms including that in [91]. Some of these controllers are

DIBVS and have hover performance similar to the proposed controller. However,

they have increased complexity due to the spherical projection used.

4.1.5 Summary

In this section we investigated the control of a quadrotor using nonlinear DIBVS to

regulate the lateral position of the vehicle relative to a static visual feature point

on the ground. The control relies on a single visual feature point which can be

robustly obtained and can be defined generically depending on the application. The

convergence of the proposed control law is proven to be locally exponentially sta-

ble and an estimate of the region of attraction is provided. An indoor quadrotor

platform was implemented and used to validate the control successfully. The results

demonstrate robustness to various unmodelled effects including non-ideal inner loop

performance and variation in the uncontrolled DoF (i.e., yaw and altitude) which

are modelled as a disturbance. The proposed control is compared to a state-of-the-

art DIBVS approach and benefits from reduced complexity with a similar level of

performance.

4.2 Virtual Camera-Based Approach

4.2.1 Image Moments

Image moments are important visual features for VS as they are simple to calculate

and can provide decoupled image feature kinematics. LetO(t) be a dense object with

a continuous surface in the image π(t) and is defined by a set of closed contours C(t)
as shown in Figure 4.11. For the sake of clarity of presentation this section breaks

from the standard notation defined in this thesis and instead of denoting the position

of the target in frame C as pc = [pc1, p
c
2, p

c
3]T we denote it P = [X,Y, Z]T . Instead

of using y = [y1, y2]T we denote a point in the image plane we use p = [x, y]T .

Instead of using vc = [vc1, v
c
2, v

c
3]T we denote the velocity of the target in frame C as

v = [vx, vy, vz]
T . Instead of using ωc = [ωc1, ω

c
2, ω

c
3]T we denote the angular velocity

of the camera in C as ω = [ωx, ωy, ωz]
T .

68

y1

y2

π

O

dy1

dy2

C1

C2

C3

C4

Figure 4.11: A dense object O defined in the binary image π by a closed set of
contours C = {C1, C2, C3, C4}.

Continuous Image

We begin by examining a continuous image of the object [111]. The moments mij

of the image are

mij(t) =

∫ ∫
O
f(x, y) dx dy (4.18)

where f(x, y) = xiyj . Centred moments are of particular interest to visual servoing

as they are invariant to 2 D translational motion. The centred moments are

μij(t) =

∫ ∫
O
fμ(x, y) dx dy (4.19)

where fμ = (x − xg)
i(y − yg)

j , the geometric centre of the object is cg = [xg, yg]
T

and

xg = m10/m00 (4.20)

yg = m01/m00 (4.21)

Next the image feature kinematics with respect to the camera are calculated by

differentiating the image moments with respect to time.

ṁij =

∫ ∫
O

(
∂f
∂x ẋ+ ∂f

∂y ẏ + f(x, y)
(
∂ẋ
∂x + ∂ẏ

∂y

))
dx dy (4.22)

69

Similarly, for the centred image moments

µ̇ij =

∫ ∫
O

(
∂fµ
∂x (ẋ− ẋg) +

∂fµ
∂y (ẏ − ẏg) + fµ(x, y)

(
∂ẋ
∂x + ∂ẏ

∂y

))
dx dy (4.23)

To be able to do VS the interaction matrix or Jacobian Lij for each moment needs

to be calculated. ẋ
ẏ

 = Lij

v
ω

 (4.24)

To begin, the depth of the object Z is expressed as a continuous function of the

image coordinates.
1

Z
=

∑
p≥0,q≥0

Apqx
pyq (4.25)

Next the single point image kinematics (2.34) are combined with (4.22), (4.24) and

(4.25).

Lij =



−
∑

p,q(i+ p)Apqmi+p−1,j+q

−
∑

p,q(j + q)Apqmi+p,j+q−1∑
p,q(i+ j + p+ q + 2)Apqmi+p,j+q

(i+ j + 3)mi,j+1 + jmi,j−1

(i+ j + 3)mi+1,j − imi−1,j

imi−1,j − jmi+1,j−1



T

(4.26)

However, the translational terms of the interaction matrix for order i + j require

image moments at a minimum of order i+ j + p+ q+ 2. Furthermore, they require

all of the terms Apq and therefore are not a good candidate for VS. However, the

kinematics can be simplified by assuming that the object is planar and thus the

points are related by the following constraints

1

Z
= Ax+By + C (4.27)

The combination of (4.27), (2.34), and (4.24) is

ẋ = −(Ax+By + C)vx + x(Ax+By + C)vz + xyωx − (1 + x2)ωy + yωz (4.28)

ẏ = −(Ax+By + C)vy + y(Ax+By + C)vz + (1 + y2)ωx − xyωy − xωz (4.29)

70

Thus

∂f
∂x = ixi−1yj

∂f
∂y = jxiyj−1

∂ẋ
∂x = −Avx + (2Ax+By + C)vz + yωx − 2xωy
∂ ẏ
∂y = −Bvy + (Ax+ 2By + C)vz + 2yωx − xωy

(4.30)

The interaction matrix can then be calculated by substituting (4.30) into (4.22).

Lij =



−i(Amij +Bmi−1,j+1 + Cmi−1,j)−Amij

−j(Ami+1,j−1 +Bmij + Cmi,j−1)−Bmij

(i+ j + 3)(Ami+1,j +Bmi,j+1 + Cmij)− Cmij

(i+ j + 3)mi,j+1 + jmi,j−1

−(i+ j + 3)mi+1,j − imi−1,j

imi−1,j+1 − jmi+1,j−1



T

(4.31)

Now the translational terms of the interaction matrix for order i + j only requires

image moments of order i+ j + 1. Similarly, the interaction matrix for the centred

image moments is

Lij =



−(i+ 1)Aµij − iBµi−1,j+1

−jAµi+1,j−1 − (j + 1)Bµij

−Aµwy +Bµwx + (i+ j + 2)Cµij

(i+ j + 3)µi,j+1 + ixgµi−1,j+1 + (i+ 2j + 3)ygµij − 4i
µ11

m00
µi−1,j − 4j

µ02

m00
µi,j−1

−(i+ j + 3)µi+1,j − (2i+ j + 3)xgµij − jygµi+1,j−1 + 4i
µ20

m00
µi−1,j + 4j

µ11

m00
µi,j−1

iµi−1,j+1 − jµi+1,j−1



T

(4.32)

where α = i+ j + 3.

The next step is to choose what features will be good for VS. For simplicity we

assume the object is parallel to image plane (i.e.,A = B = 0 and C = 1/Z). Later in

this thesis we will use this assumption as the basis for the virtual camera approach

for IBVS. Next, we analyze a visual feature relating to the depth of the image. We

choose the area moment. Let

sz = a = m00 (4.33)

71

The interaction matrix of the area feature is

Lsz = L00

=
[
0 0 2Cm00 3m01 −3m01 0

]
= a

[
0 0 2C 3yg −3xg 0

] (4.34)

We can see that ṡz depends linearly on a, but it is not decoupled. Normalizing the

area is a better choice. Next we choose

sz = Z∗
√
a∗/a (4.35)

where a∗ and Z∗ are the desired area and depth of the object, respectively. Using the

relationship Z∗
√
a∗ = Z

√
a we can solve for the interaction matrix of the normalized

area feature.

Lsz =

[
0 0 −1

−3szyg
2

3szxg
2

0

]
(4.36)

Now the interaction matrix is decoupled. Next, we choose features for the lateral

motion in the X and Y directions. Let sx = xg = m10/m00 and sy = yg = m01/m00.

Then the interaction matrix for this feature is

Lsx
Lsy

 =

−C 0 Cxg (xgyg +
4µ11

m00
) −(1 + x2

g +
4µ20

m00
) yg

0 −C Cyg (1 + y2
g +

4µ20

m00
) −(xgyg +

4µ11

m00
) −xg

 (4.37)

We can see that the ṡx and ṡy have the terms −Cvx and −Cvy, respectively. and

thus they are still coupled with vz. We note that the coupling with ωx and ωy

will not be a problem with the virtual camera approach because ωx = ωy = 0.

Fortunately, we can use the same area normalization to correct this problem. Let

sx = xgZ
∗√a∗/a

sy = ygZ
∗√a∗/a (4.38)

then

Lsx
Lsy

 =

−1 0 0 sz(
−xgyg

2 +
4µ11

m00
) −sz(1−

x2
g

2 +
4µ20

m00
) sy

0 −1 0 sz(1−
y2
g

2 +
4µ02

m00
) −sz(−xgyg

2 +
4µ11

m00
) −sx

 (4.39)

The image feature kinematics are now independent of vz and depend linearly on vx

and vy.

Now we move on to the orientation of the object θ. It can be calculated in various

ways. We define the orientation by using the principal axis theorem. Second order

72

y1

y2

π

O
θ

cg

Figure 4.12: The orientation θ of the object O is calculated by approximating the
object as an ellipse and measuring the orientation of the ellipse with respect to the
image.

centred image moments are used to approximate an ellipse about the geometric

centre of the object cg and then we measure the orientation of the ellipse with

respect to the image as seen in Figure 4.12.

θ = 0.5 arctan

(
2μ11

μ20 − μ02

)
(4.40)

Then the interaction matrix is

Lsψ =
[
0 0 0 α β −1

]
(4.41)

where

α =
−(2μ211 + μ02(μ02 − μ20))xg + μ11(μ20 + μ02)yg + 5(μ12(μ20 − μ02) + μ11(μ03 − μ21))

(μ20 − μ02)2 + 4μ211

β =
μ11(μ20 + μ02)xg +−(2μ211 + μ20(μ20 − μ02))yg + 5(μ21(μ02 − μ20) + μ11(μ30 − μ12))

(μ20 − μ02)2 + 4μ211

Discrete Image

Figure 4.13 shows the same dense object as before, but now in a 10×10 pixel image.

Each pixel is a binary 1 or 0. With a perfect tracker all of the highlighted grey

pixels will be found and hence be a 1. All the white pixels will be a 0. In this

case we can see that object is fairly well represented in the image and there are

73

y1

y2

π

O

Figure 4.13: Discretization of a dense object O defined in the binary image π.

only a few minor discretization errors. The discretization errors become negligible

in high resolution images. However, in tracking it is extremely difficult to correctly

find one hundred percent of the pixels relating to the object. Even if the object

is a single colour tracking often misses part of the object due to highlights from

nearby lights and will often mislabel pixels that are not part of the image. On the

other hand, trackers are good at following blobs. This allows us to instead represent

the object by n points which are in turn blobs. This is a very practical solution

to a currently difficult computer vision (CV) problem. It does require that either

artificial markers are placed on the object being tracked, or visually distinct parts of

the object can also be chosen. Another example to highlight the difference between

the two methods is tracking a face. There are two main methods. The first option

would be track by skin colour. This will give us the rough shape of a face, but it

will exclude hair and eyes. It will also have problems with changes in lighting. The

second option is to track the eyes. Then from the position of the eyes, the entire

position of the face can be extrapolated. The drawback of tracking eyes is if one eye

is closed or occluded, the face tracking fails. The choice of tracking method does not

affect the subsequent image moments other then how the area feature is calculated.

To analyze the discrete image of the object we begin by defining the discrete

image moment [112]. Given a set of n image points {p1, · · · , pn} where pi = {xi, yi}
the discrete image moments are

mij =
n∑

k=1

xiky
j
k (4.42)

74

and for the discrete image the centred moments are

µij =
n∑
k=1

(xk − xg)i(yk − yg)j (4.43)

Similar to the continuous case, the image feature kinematics for the image moments

are

ṁij =

n∑
k=1

(
ixi−1
k yjkẋk + jxiky

j−1
k ẏk

)
(4.44)

and for the centred image moments they are

µ̇ij =
n∑
k=1

(
ixi−1
k yjk(ẋk − ẋg) + jxiky

j−1
k (ẏk − ẏg)

)
(4.45)

Thus the interaction matrix for the image moments is

Lij =



−i(Amij +Bmi−1,j+1 + Cmi−1,j)

−j(Ami+1,j−1 +Bmij + Cmi,j−1)

(i+ j)(Ami+1,j +Bmi,j+1 + Cmij)

(i+ j)mi,j+1 + jmi,j−1

−(i+ j)mi+1,j − imi−1,j

imi−1,j+1 − jmi+1,j−1



T

(4.46)

and for the centred image moments it is

Lij =



−iAµij − iBµi−1,j+1

−jAµi+1,j−1 − jBµij
−Aµwy +Bµwx + (i+ j)Cµij

(i+ j)µi,j+1 + ixgµi−1,j+1 + (i+ 2j)ygµij − i
µ11

m00
µi−1,j − j

µ02

m00
µi,j−1

−(i+ j)µi+1,j − (2i+ j)xgµij − jygµi+1,j−1 + i
µ20

m00
µi−1,j + j

µ11

m00
µi,j−1

iµi−1,j+1 − jµi+1,j−1



T

(4.47)

If we want to use the same images features used for continuous images, we must first

reexamine the area feature. Recalling in the continuous case the area is a = m00. If

the entire object is being tracked in the image then the area feature can remain the

same. The area is simply the number of pixels/points and ȧ = ṁ00 = ṅ. However,

if the object is represented by a fixed set of n points that are being tracked on the

object then m00 is a poor choice for the area feature as n is constant and ȧ = 0.

75

Instead, second order centred image moments can be used

a = µ02 + µ20 (4.48)

From here we can re-use the same moments image features as in (4.38), (4.38)

and (4.40) and following the same method used for continuous images and assuming

the object is parallel to the image plane we calculate the interaction matrix to be
ṡx

ṡy

ṡz

ṡψ

 =


Lsx

Lsy

Lsz

Lsψ


vc
ωc

 (4.49)

where 
Lsx

Lsy

Lsz

Lsψ

 =


−1 0 0 M1 M2 sy

0 −1 0 M3 M4 −sx
0 0 −1 M5 M6 0

0 0 0 M7 M8 −1

 (4.50)

where

M1 =
−sz(xg(ygµ02 + xgµ11 + µ21 + µ03)m00 − aµ11)

am00

M2 =
−sz(am00 − xg(xgµ20 + ygµ11 + µ12 + µ30)m00 + aµ20)

am00

M3 =
sz(am00 − yg(ygµ02 + xgµ11 + µ21 + µ03)m00 + aµ02)

am00

M4 =
−sz(yg(xgµ20 + ygµ11 + µ12 + µ30)m00 + aµ11)

am00

M5 =
−sz(sy + ygµ02 + xgµ11 + µ21 + µ03)

a

M6 =
sz(sx + xgµ20 + ygµ11 + µ12 + µ30)

a

M7 =
−(2µ2

11 + µ02(µ02 − µ20))xg + µ11sy + 5(µ12(µ20 − µ02) + µ11(µ03 − µ21))

(µ20 − µ02)2 + 4µ2
11

M8 =
µ11sx +−(2µ2

11 + µ20(µ20 − µ02))yg + 5(µ21(µ02 − µ20) + µ11(µ30 − µ12))

(µ20 − µ02)2 + 4µ2
11

Moving Target

To extend our work to moving targets we define the target in the navigation frameN .

We assume there are n > 1 target point correspondences in the images. These points

76

c1

c2
pn1

P̄n

t1

t2

ψt

P3

P2

P4

P1

t3

c3

Figure 4.14: Target composed of n = 4 points denoted pi, 1 ≤ i ≤ 4. The position of
the geometric centre is denoted p̄n =

∑n
i=1 p

n
i , where pik is pi expressed in N . The

angle between target frame T and N is ψt.

make up a target which remains horizontal and can rotate about its geometric centre.

Figure 4.14 shows a target composed of four (i.e.,n = 4) points. A frame T is

attached to the target. The origin of T is at the geometric centre of the target.

We denote this geometric centre by vector P̄ . The basis of T is {t1, t2, t3} which

is defined so that the t1 − t2 plane is parallel to the n1 − n2 plane, and t3 = n3.

The yaw between N and T is denoted ψt and its positive direction is defined in

Figure 4.14.

Summary

The image moments we have defined simplify the image kinematics. Returning to the

notation used throughout this thesis the image moment feature s = [s1, s2, s3, s4]T is

a function of the image coordinates {y1, · · · , yn},where yi = [y1i, y2i]
T and 1 ≤ i ≤ n

in the camera C and is defined as

s1 = s3y1g (4.51a)

s2 = s3y2g (4.51b)

s3 =

√
µ∗20 + µ∗02

µ20 + µ02
(4.51c)

s4 =
1

2
arctan

(
2µ11

µ20 − µ02

)
(4.51d)

77

where

y1g =
1

n

n∑
k=1

y1k

y2g =
1

n

n∑
k=1

y2k

µij =
n∑
k=1

(
y1k − y1g

)i (
y2k − y2g

)j
and µ∗ij is the desired value of µij which corresponds to when the vehicle is in its

desired pose. Then the image kinematics isṡ1

ṡ2

ṡ3

 =
−1

p3
∗

λ 0 0

0 λ 0

0 0 1

 ṽv +

 s2

−s1

0

 ψ̇ (4.52a)

ṡ4 =
˙̃
ψ (4.52b)

where p∗3 denotes desired depth and

ṽ = RT
ψ̃

(vn − v̄nt)

ψ̃ = ψ − ψt

Rψ =

cψ −sψ 0

sψ cψ 0

0 0 1


and assuming that θ = φ = θ̇ = φ̇ = 0 and that the pixels are square λ1 = λ2.

The image features s1, s2, s3 are used to control the translational motion of the

vehicle, and s4 controls the yaw motion. Without loss of generality, we regulate the

image feature s to a desired value s∗ = [0, 0, 1, 0]T . This ensures the vehicle’s lateral

position tracks the target’s geometric centre, its yaw is the same as the target, and

its height above the target is pv3
∗. Nonzero s∗1 and s∗2 values can be chosen, but

are less practically relevant since we require the target to remain in the camera’s

limited field of view. The values of s∗3 and s∗4 can be chosen to regulate specific

desired heights and yaw. We remark in practice that the choice of s∗1 = s∗2 = 0 does

not imply that the camera is directly above the geometric centre of the target. An

offset can exist due to misalignment between the body and camera frames; and the

centre of mass and geometric centre.

78

cv1
c1

cv2

cv3

c2c3

N

n3

n1

C,V

n2

P

yv

y

ψ

yv1

yv2

y1

y2

Figure 4.15: Pinhole camera geometry model and frame definition.

4.2.2 Fundamentals

Virtual Camera

In order to get rid of the roll and pitch dependency in (4.52) we introduce the notion

of a virtual camera [46, 47]. The virtual camera has the same intrinsic parameters

as the real camera and the same optical centre, but it is oriented such that its image

plane is parallel to the n1-n2 ground plane. That is, the origin of the virtual camera

frame, denoted V, is fixed to the origin of C and moves with the vehicle. We denote

the basis of V as [cv1, c
v
2, c

v
3]. The virtual and real cameras are shown in Figure 4.15.

A point expressed in the virtual camera frame is

pv = [pv1, p
v
2, p

v
3]T = Rθφp

c

where

Rθφ =

 cθ sφsθ cφsθ

0 cφ −sφ

−sθ sφcθ cφcθ


Its kinematics is

ṗv = −ψ̇ sk (n3)pv − vv (4.53)

where vv = [vv1 , v
v
2 , v

v
3]T = Rθφv

c is the velocity of the camera expressed in V [47].

The corresponding projected image point yv in the virtual camera image plane is

yv = [yv1 , y
v
2]T =

[
λ1
pv1
pv3
, λ2

pv2
pv3

]T
(4.54)

The conversion from the real camera image coordinate to virtual camera image

79

coordinate is

yv =
1

β

λ1 0 0

0 λ2 0

Rθφ
λ2y1

λ1y2

λ1λ2

 (4.55)

where

β = nT3 Rθφ

λ2y1

λ1y2

λ1λ2

 = λ1λ2cφcθ − y1λ2sθ + y2λ1sφcθ

Based on (4.53) and (4.54) we can solve for the image kinematics in the virtual

camera:

ẏv =
1

pv3

−λ1 0 yv1
0 −λ2 yv2

 vv +
1

λ1λ2

 λ2
1y
v
2

−λ2
2y
v
1

 ψ̇
These kinematics have the important property that they are independent of the roll

and pitch rates unlike those of the real camera in (2.34). In fact, the virtual camera

can be seen as defining new state coordinates in which dependence on roll and pitch

rates is eliminated [113]. The new coordinates are similar in nature to those used in

our state transformation [54] where they were also used to eliminate roll and pitch

rates.

Image Moments in the Virtual Camera

The features defined in (4.51) are selected to control the motion of the vehicle. The

assumption that φ = θ = φ̇ = θ̇ = 0 is no longer needed as they are defined to be

identically zero in the virtual camera.

4.2.3 Control

We define a control law to regulate the relative position and yaw of the vehicle

to a stationary target located on the ground. To derive the control we make two

assumptions that simplify the presentation, but are not necessary. The first is a

small angle approximation i.e., we assume that the roll and pitch angles are small.

Hence, thrust in the virtual camera frame is

F v = F v3 [−sθcφ, sφ,−cθcφ]T

≈ F v3 [−θ, φ,−1]T
(4.56)

This is a very practical assumption as the vehicle has to have small roll and pitch

angles to keep the target in the camera’s field of view. The second assumption is

that the inertia matrix is diagonal J = diag(J1, J2, J3) i.e., the quadrotor is symmet-

rical. To derive a control law we write the dynamics (2.6) with the image moment

80

kinematics (4.52) as

ṡ1 = −k2v
v
1 + s2ψ̇ (4.57a)

ṡ2 = −k2v
v
2 − s1ψ̇ (4.57b)

ṡ3 = −k1v
v
3 (4.57c)

v̇v1 = vv2ψ̇ + uθ (4.57d)

v̇v2 = −vv1ψ̇ + uφ (4.57e)

v̇v3 = uF (4.57f)

ṡ4 = −ψ̇ (4.57g)

ψ̇ = uψ (4.57h)

where k1 = 1/pv3
∗, k2 = λk1, and the inputs are uF = −F v3 /m+ g, uθ = −F v3 θ/m,

uφ = F v3 φ/m and uψ =
∫ t

0 τ
b
3/J3.

Theorem 4.2. The subsystem (4.57a) to (4.57f) is globally asymptotically stable

(GAS) and the subsystem (4.57g) and (4.57h) is globally exponentially stable (GES)

with the input

uF = −kh2

(
1

kh1
vv3 − s3 + 1

)
(4.58a)

uθ = −k`2(vv1/k`1 − s1) (4.58b)

uφ = −k`2(vv2/k`1 − s2) (4.58c)

uψ = kψ/J3s4 (4.58d)

where kh1, kh2, k`1, k`2 and kψ are positive constant gains such that pv3
∗kh2 > k2

h1

and pv3
∗k`2 > k2

`1.

Proof. First we consider the translational motion subsystem (4.57a) to (4.57f) and

define error signals

δ1 =
1

λ1
s1

δ2 =
1

λ2
s2

δ3 = s3 − 1

δ4 = vv1/k`1 − δ1

δ5 = vv2/k`1 − δ2

δ6 = vv3/kh1 − δ3

81

We consider the Lyapunov function candidate

V1 =
1

2
δ2

3 +
1

2
δ2

6

so that

V̇1 =− kh1k1

(
δ2

3 + δ3δ6

)
+ δ6uF /kh1

+ kh1k1δ6(δ3 + δ6)

Let uF = −kh2δ6 then

V̇1 = −kh1k1δ
2
3 − (1/kh1)

(
kh2 − k2

h1k1

)
δ2

6

If kh2 > k2
h1k1 then V̇1 is negative definite. Next we consider the Lyapunov function

candidate

V2 =
1

2
δ2

1 +
k2

2
δ2

2 +
1

2
δ2

4 +
k2

2
δ2

5

then

V̇2 = (uθδ4 + uφδ5)/k`1 + k`1k1

(
−δ2

1 − δ2
2 + δ2

4 + δ2
5

)
Let uθ = −k`2δ4 and uφ = −k`2δ5 then

V̇2 = −k`1k1(δ2
1 + δ2

2)− (k`2 − k1k
2
`1)(δ2

4 + δ2
5)/k`1

If k`2 > k2
`1k1 then V̇2 is negative definite. Lastly, consider the Lyapunov function

candidate V = V1 + V2 and then V̇ is negative definite and the subsystem (4.57a)

to (4.57f) is GAS. For the yaw subsystem (4.57g) and (4.57h) we substitute the

control law (4.58d) into the dynamics (4.52b) and obtain the closed loop dynamics

ṡ4 = −kψs4

which is GES.

4.2.4 Simulation Results

To validate the proposed control we simulated it in Simulink. The simulation in-

cludes the rigid body dynamics and kinematics from (2.6), the pinhole camera from

(2.33), and the control laws (4.58). We use the quadrotor and camera parameters in

Table 3.1. We used the PID inner loop control in (2.19). We remark the control law

for torque (2.19) combined with uF determine the propeller velocities based on the

simplified model given in Section 2.1. To calculate the desired yaw ψ̂∗ used in the

inner loop we integrate the control from the outer loop ψ̂∗ =
∫
ψ̇∗(τ)dτ =

∫
uψ(τ)dτ

82

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (s)

e
s

es1
es2
es3
es4

(a) Error in image features s

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (sec)

e
P
(m

)

eP 1
eP 2
eP 3

(b) Error in position Pn

0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

[φ
,
θ
]
(◦
)

t (s)

φ∗

φ
θ∗

θ

(c) Roll φ and pitch θ

0 5 10 15
−60

−50

−40

−30

−20

−10

0

10

20

30

e
ψ
(◦
)

t (s)

(d) Error in yaw eψ (e) Image feature trajec-
tory

Figure 4.16: Simulation results of dynamic IBVS control law.

In the simulations the initial quadrotor position is pn(0) = [0.25, 0.25,−1] m

and the desired position is pn∗ = [0, 0,−1.5] m. The initial yaw is ψ(0) = 45◦ and

desired yaw is ψ∗ = 0◦. Two visual markers were located on the ground 36 cm apart

at [−0.18, 0, 0] m and [0.18, 0, 0] m. The controller gains are kh1 = 4.4, kh2 = 1.0,

k`1 = 1.2 and k`2 = 0.4. Lastly, the thrust coefficient was taken to be kf = 40 N. A

summary of these parameters is in Table 4.2. The simulation results are shown in

Figure 4.16. Figure 4.16a shows the error of the image features es rapidly converging

to zero where esi = s∗i−si, i = 1, 2, 3, 4. Similarly in Figure 4.16b the error in position

of the quadrotor converges to zero where epi = pni
∗− pni , i = 1, 2, 3. In Figure 4.16c,

the roll φ and pitch θ angles (solid lines) converge to their zero reference values

(dashed lines) and in Figure 4.16d the error in the yaw eψ (solid line) converges to

zero as does the error in the desired yaw (dashed line) defined by e∗ψ = ψ∗ − ψ̂∗.
Finally, in Figure 4.16e the trajectories of the image point features are shown in the

camera image. The image features at time t = 0 s are denoted by a circle and at

time t = 30 s by an x.

4.2.5 Experimental Results

The experiments performed on the ANCL platform were similar to the simulations.

We used the same controller gains as in Table 4.2. In the experiment two visual

markers were placed on the ground 36 cm apart. The quadrotor was placed between

83

Parameter Value

[kh1, kh2] [4.4, 1.0]
[k`1, k`2] [1.2, 0.4]
kψ 0.60
[kpφ, kiφ, kdφ], [10, 1, 3]
[kpθ, kiθ, kdθ], [10, 1, 3]
[kpψ, kiψ, kdψ], [6, 1, 3]
kf 40 N
pn(0) [0.25, 0.25,−1.0] m
pn∗ [0, 0,−1.5] m
ψ(0) 45◦

ψ∗ 0◦

Table 4.2: Simulation and experimental parameters for virtual camera experiment

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (s)

e
s

es1
es2
es3
es4

(a) Error in image features s

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (sec)

e
P
(m

)

eP 1
eP 2
eP 3

(b) Error in position Pn

0 10 20 30 40 50 60
−10

−8

−6

−4

−2

0

2

4

6

8

10

[φ
,
θ
]
(◦
)

t (s)

φ∗

φ
θ∗

θ

(c) Roll φ and pitch θ

0 50
-60

-40

-20

0

20

(d) Yaw ψ (e) Image feature tra-
jectory

Figure 4.17: Experimental results of dynamic IBVS control law using ANCL’s
Quadrotor I.

84

0 20 40 60
-1

-0.5

0

0.5

1

(a) Error in image features s

0 20 40 60
-1

-0.5

0

0.5

1

(b) Error in position pn

0 20 40 60
-10

-5

0

5

10

(c) Roll φ and pitch θ

0 20 40 60
-60

-40

-20

0

20

(d) Yaw ψ (e) Image feature tra-
jectory

Figure 4.18: Experimental results of dynamic IBVS control law using ANCL’s
Quadrotor II.

the two markers and manually flown to about [0.1, 0.1,−1.0] m to ensure that the

markers were in the camera’s field of view and to be above any ground effects. The

initial yaw angle was about 50◦. At this time the DIBVS controller was turned on

and run for about 60 s. The experimental results are shown in Figure 4.17. Fig-

ure 4.17a shows the components of error in the image features es rapidly converging

to a bounded trajectory near 0. We remark that the oscillations in s1 and s2 are

probably caused by tracking error in the inner loop control and the performance

is inline with our visual servoing experiments on the same platform in [54]. The

error s4 slowly converges to zero. Over the period of 60 s the height of the vehicle

dropped about 10 cm. This is to be expected as the battery voltage drops and for

the same thrust control signal less thrust will be generated. In Figure 4.17b error

in vehicle position ePi = pni
∗− pni , i = 1, 2, 3 converges to a bounded trajectory near

zero. Table 4.3 shows the mean and standard deviation of the error signals. The

magnitude of errors are inline with our past work [54]. Relative to that work here

we control all four DoF’s (3 D position and yaw). Figure 4.17c shows the roll and

pitch angles. In Figure 4.17d the error in the yaw angle ψ converges to zero. Finally,

in Figure 4.17e the trajectories of the image point features are shown in the image

plane in pixels. The image features at time t = 0 s are denoted by a circle and at

time t = 60 s by an cross.

As seen in Figure 4.17a and Figure 4.17b, the height of the vehicle drops about

85

O
ri

g
in

a
l

Q
u

a
d

ro
to

r
P

la
tf

o
rm

L
a
te

st
Q

u
a
d

ro
to

r
P

la
tf

o
rm

(Q
u

a
d

ro
to

r
I)

(Q
u

a
d

ro
to

r
II

)

V
a
ri

a
b

le
M

e
a
n

E
rr

o
r

M
e
a
n

A
b

so
lu

te
E

rr
o
r

S
ta

n
d

a
rd

D
e
v
ia

ti
o
n

o
f

E
rr

o
r

M
e
a
n

E
rr

o
r

M
e
a
n

A
b

so
lu

te
E

rr
o
r

S
ta

n
d

a
rd

D
e
v
ia

ti
o
n

o
f

E
rr

o
r

U
n

it
s

e s
1

0.
11

85
0.

15
34

0.
15

37
0.

05
41

0.
05

46
0
.0

3
0
1

-
e s

2
0.

06
24

0
.1

67
4

0.
21

62
−

0.
01

90
0.

03
03

0
.0

3
4
0

-
e s

3
0.

12
49

0.
12

49
0.

03
95

0.
52

90
0.

52
90

0
.0

3
7
0

-
e s

4
0.

04
74

0.
06

26
0.

06
12

0.
00

01
0.

01
85

0
.0

2
2
2

-

e p
1

3.
78

6.
04

6.
81

2.
87

2.
91

1
.7

3
cm

e p
2

−
0.

16
5.

31
7.

13
−

1.
52

2.
46

2
.7

5
cm

e p
3

−
5.

42
5.

64
4.

20
−

54
.4

5
54
.4

5
4
.2

6
cm

e φ
−

1.
31

52
1.

38
45

1.
04

48
−

0.
00

35
0.

25
11

0
.3

1
7
8

◦

e θ
−

3.
43

88
3.

43
88

0.
84

71
0.

00
87

0.
31

50
0
.4

0
2
1

◦

e ψ
1.

63
02

2.
14

72
3.

69
0.

00
28

0.
63

99
0
.7

6
7
0

◦

T
ab

le
4.

3:
M

ea
n

an
d

st
an

d
ar

d
d

ev
ia

ti
on

of
er

ro
r

fo
r

th
e

v
ir

tu
al

ca
m

er
a

ex
p

er
im

en
ta

l
d

at
a

u
si

n
g

th
e

o
ri

g
in

a
l

A
N

C
L

q
u

a
d

ro
to

r
(2

0
1
5
)

an
d

th
e

la
te

st
A

N
C

L
q
u

ad
ro

to
r

(2
01

7)
.

86

(a) Drop in battery voltage

t (s)
0 20 40 60 80

u
i

0

0.5

1

(b) Control signal ui

t (s)
20 40 60

k
f
(N

)

15

16

17

18

19

20

(c) Estimated thrust coefficient (red)
and data (blue)

t (s)
20 40 60

f
(N

)

3.5

4

4.5

(d) Estimated force fi (blue) and hover
force mg/4 (red)

Figure 4.19: Time varying thrust constant.

10 cm over a period of about one minute. This is expected as the integral term in

the control law (4.58a) was disabled (i.e., khi = 0). As the battery voltage drops,

less thrust is generated for the same control signal. Although the control signal

increases slightly due to the increased error, it is insufficient to compensate for the

decrease in thrust coefficient. Figure 4.19a and Figure 4.19b shows battery voltage

and thrust input ui, respectively. To estimate the thrust constant in force model

(2.12) we assume that each propeller generates the same thrust and denote thrust

coefficient kf = kfi, i = 1, 2, 3, 4. We also assume the quadrotor is hovering. In this

case the thrust coefficient is given by kf = 0.25mg/u2
i . We model the dependence

of kf on time as linear:

kf (t) = kf1t+ kf0 (4.59)

A least squares fit for the thrust coefficients in model (4.59) is performed. This

model is shown in Figure 4.19c. Figure 4.19d shows estimated force fi compared to

the assumed hover force mg/4. In simulation we used (4.59) to show the integral

term in (4.58a) can compensate for a decrease in thrust coefficient.

After the quadrotor platform was updated in 2017 the flight test was re-run and

87

the results are shown in Figure 4.181. The mean of the error was similar in both

of the experiments, but with the new platform the standard deviation is about an

order of magnitude less. Table 4.3 shows the mean and standard deviation of the

error signals.

4.2.6 Summary

In this section we investigated the control of a quadrotor using a nonlinear DIBVS to

regulate the position and yaw of the vehicle relative to visual features on the ground.

The control relies on two or more visual feature point which can be robustly obtained

and can be defined generically depending on the application. The convergence of

the translational kinematics and dynamics with the proposed control law is proven

to be GAS and the yaw motion is proven to be GES. An indoor quadrotor platform

was used to validate the control successfully. The results demonstrate a robust-

ness to various unmodelled effects including non-ideal inner loop performance, mass

imbalances, change in battery voltage, and relative pose between V and B.

4.3 Adaptive Virtual Camera-Based Approach

In this section we present out adaptive virtual camera-based DIBVS approach that

was originally publish in [56].

4.3.1 Uncertainty Modelling

From our previous experimental results in [54] we observed that lateral image fea-

ture error converged to a non-zero constant. As confirmed by our simulation and

experimental results we conclude bias errors in Euler angle estimates from the at-

titude and heading reference system (AHRS) are the cause of this image feature

error. To account for this error we model the actual roll angle φ = φm − φe as the

difference between the measured roll φm and a constant bias error φe. Similarly

the actual pitch angle θ = θm − θe is the difference between the measured pitch

θm and a constant bias error θe. The errors φe and θe will be treated as additive

input disturbances to the outer loop and compensated with the adaptive control. In

simulation we have observed that even a small value of φe and θe can lead to large

image error. Although we treat φe and θe as input disturbances in the force model,

we assume the small biases have negligible influence on the kinematics of the image

moments (4.52a). This assumption is practical and made to simplify the derivation

of the control law. The justification for this assumption is that the difference be-

tween image coordinates in the ideal virtual camera (with zero roll and pitch) and

1A video of this experiment is available at https://youtu.be/IUi_vm2Y8ak

88

https://youtu.be/IUi_vm2Y8ak

the real virtual camera (tilted due to small bias error) is negligible when height is

large relative to lateral motion. To show small bias leads to negligible difference in

image coordinates, we provide the following argument. First, we define the ideal

virtual camera frame with zero roll and pitch as V∗. Any vector X can be expressed

in the real virtual camera frame V and V∗ as

Xv = RθφR
b
nX

n

Xv∗ = RT3 X
n

From above two equations we obtain

Xv = R2(θm)R1(φm)RT1 (φm − φe)RT2 (θm − θe)RT3 (ψ)Xn

For small φe and θe we have the approximation

Xv ≈ RT1 (−φe)RT2 (−θe)Xv∗ (4.60)

With the approximations sξ ≈ ξ, cξ ≈ 1 and (4.60), the projected image point

coordinates of any 3 D point P in the virtual cameras are

pv = λ

 pv∗1 −θepv∗3
pv∗3 +θepv∗1 −φepv∗2

pv∗2 +φepv∗3
pv∗3 +θepv∗1 −φepv∗2

 (4.61)

pv∗ = λ

pv∗1pv∗3
pv∗2
pv∗3

 (4.62)

where [pv∗1 , p
v∗
2 , p

v∗
3] are the coordinates of P in frame V∗. The difference of coordi-

nates in two camera image planes is

pv − pv∗ = λ

−θe(pv∗3)2−θe(pv∗1)2+φepv∗1 pv∗2
(pv∗3)2+θepv∗1 pv∗3 −φepv∗2 pv∗3
−φe(pv∗3)2−θepv∗1 pv∗2 +φe(pv∗2)2

(pv∗3)2+θepv∗1 pv∗3 −φepv∗2 pv∗3

 (4.63)

The magnitudes of φe and θe are far less than the magnitudes of pv∗1 , p
v∗
2 , p

v∗
3 , and

the magnitudes of pv∗1 and pv∗2 are less than the magnitude of pv∗3 in most visual

servoing applications. Hence, we have the approximate bound

∥∥pv − pv∗∥∥ ≤ √2λ
(
2|θe|+ |φe|

)
(4.64)

Therefore, we can conclude ‖pv − pv∗‖ is negligible for small bias error φe and θe.

During the system identification of the UAV model we observed the thrust con-

stant kf slowly decreases with time as the battery voltage drops during a flight.

89

200 400 600 800 1000
0

5

10

15

20

time (sec)

T
h
ru
st

f
(N

)
200 400 600 800 1000

7

8

9

10

11

12

time (sec)

B
a
tt
er
y
V
o
lt
a
g
e
(V

)

Figure 4.20: Time evolution of thrust. PWM pulse width is set to 1.4 ms.

This is shown in Figure 4.20 for one Turnigy 1100 KV brushless motor attached to

an 11×4.5” propeller. The motor is powered by two 3 cell 2600 mAh LiPo batteries.

To compensate for its variation we treat kf as an unknown constant parameter. The

control objective in this section is to regulate the image feature s to its desired value

s∗ while adapting to uncertainty in mass m, thrust constant kf , desired depth pv∗3 ,

and the constant biases φe and θe that appear in force model F v.

4.3.2 Adaptive Control

In our previous work [54] we observed that reference roll-pitch angles have to be

limited to a small range to avoid the target leaving the camera’s field of view (FoV).

The camera used in our experiments has a 75◦ horizontal FoV and 47◦ vertical FoV.

Given the small range of roll and pitch we make a small angle approximation so

that the force model becomes

F v = kfu

−s(θm−θe)c(φm−φe)

s(φm−φe)

−c(θm−θe)c(φm−φe)

 ≈ kfu
−θm + θe

φm − φe
−1

 (4.65)

where u = F v3 /kf . Based on (2.6), (4.52) and (4.65) we write the height subsystem

as

ṡ3 = − 1

pv∗3
vv3 (4.66a)

v̇v3 = g − kfu/m (4.66b)

In this subsystem the control input is chosen as the thrust u and the control law is

designed as

u =
(
Kh2 + ĈzK

2
h1

)
δh2 + Ĉg (4.67)

with
˙̂
Cg = Khgδh2 (4.68)

90

where

δh1 = s3 − 1 (4.69)

δh2 =
vv3
Kh1

− δh1 (4.70)

Kh1, Kh2, Khg are positive control gains, Ĉg is the estimate of Cg = mg
kf

, and Ĉz

is the estimate of Cz = m
pv∗3 kf

. The update laws for Ĉg is in (4.68) and Ĉz is given

in (4.76).

Again from (2.6), (4.52) and (4.65) the lateral subsystem dynamics isṡ1

ṡ2

 = − λ

Zv∗

vv1
vv1

+

 s2

−s1

 ψ̇ (4.71a)

v̇v1
v̇v2

 =
kfu

m

−θm + θe

φm − φe

−
−vv2
vv1

 ψ̇ (4.71b)

In this subsystem we choose φ and θ as inputs and the control is taken as

u

 θm

−φm

 = u

 θ̂e

−φ̂e

+ λĈzK
2
l1δl2 +Kl2δl2 (4.72)

where θ̂m and φ̂m are the estimates of θe and φe, respectively. The update law for

θ̂m and φ̂m is  ˙̂
θe
˙̂
φe

 = uKlrp

1 0

0 −1

 δl2 (4.73)

where Kl1, Kl2, Klrp are positive gains, and

δl1 =

s1

s2

 (4.74)

δl2 =
1

Kl1

vv1
vv2

− δl1 (4.75)

The update law for Ĉz in (4.67) and (4.72) is

˙̂
Cz = Kz

(
λKl1δ

T
l2δl2 +Kh1δ

2
h2

)
(4.76)

where Kz > 0.

91

Inner Loop

Parameter Value

Kpφ 0.3390
Kpθ 0.3459
Kpψ 0.3900
Kiφ 0.0890
Kiθ 0.0990
Kiψ 0.0890
Kdφ 0.0390
Kdθ 0.0390
Kdψ 0.0059

Outer loop

Parameter Value

Kh1 0.9000
Kh2 0.0900
Khg 0.0400
Kl1 0.3182
Kl2 0.0700
Klrp 0.0200
Kψ 0.5000
Kz 0.0100

Table 4.4: Control gains for adaptive virtual camera experiment.

In order to make s4 converge to zero the yaw rate reference is set as

ψ = Kψ

∫ t

0
s4(ξ)dξ (4.77)

where Kψ > 0.

Theorem 4.3. The equilibrium [δh1, δh2, δl1, δl2, s4]T = 0 of the closed-loop system

(4.66), (4.71), (4.52b) with control law (4.67), (4.72), (4.77) and parameter update

laws (4.68), (4.73), (4.76) is GAS.

See [56] for a proof.

4.3.3 Simulation Results

The visual servoing objective is to make the vehicle hover at a constant position and

yaw by regulating the image feature error. We consider two cases in simulation. The

first case is the proposed control law with parameter update laws (4.68) and (4.73)

turned off. This case extends the state transformation results in [54] and serves as

a reference for comparison to the adaptive case. In the second case we simulate the

complete proposed adaptive control law. We use the model parameters in Table 3.1,

take thrust coefficient kf = 40 N/ms2, and desired depth pv∗3 = 1.335 m. The initial

displacement of the vehicle in the camera frame is [0.15,−0.15,−1]T m with zero

roll and pitch angles, and the initial value of yaw is π/3 rad. The initial values of

vv and ωc are zero. Both φe and θe are set to 2◦. The estimates of Cg, φe, θe used

in the control law are 0.38, 0, 0, respectively. We use two target points located

at coordinates [−0.18, 0, 0]T and [0.18, 0, 0]T in N . The control gains are given in

Table 4.4. The image feature error is denoted

es = [es1, es2, es3, es3]T = s− s∗

92

The desired 3 D translational displacement of the UAV is denoted pn∗ and the

translational error is

ep = [ep1, ep2, ep3]T = pn − pn∗

where pn∗ = [0.0477,−0.0468,−1.335]T m. This value of pn∗ corresponds to es = 0.

The desired yaw of the UAV is ψ∗ and yaw tracking error is

eψ = ψ − ψ∗

The trajectories of es, ep, and eψ are shown in Figure 4.21. From this figure we

observe that image features es converges to [−0.4991, 0.4989,−0.1378]T when the

adaptive law is off. The vehicle position error is ep = [0.2310,−0.2266, 0.2083]T m.

This significant 3 D position error is due to the additive input disturbance φe, θe,

and the inaccurate estimate of kf/m. Next we turn on the parameter update laws

to ensure es and ep converge to zero.

The estimates φ̂e, θ̂e, Ĉg and Ĉz are shown in Figure 4.22. It can be seen that

both φ̂e and θ̂e converges to their actual value 2◦ = 0.0349 rad. The estimate

Ĉg also converges to 0.3924 which corresponds to the amount of thrust needed to

compensate gravity. The value of Ĉz converges to 0.0075 kg·ms2/m·N. Since there is

no uncertainty in the yaw kinematics, in both simulation cases es4 and eψ converge to

zero. Hence, the simulations show that the proposed adaptive control compensates

for constant additive input disturbances and uncertainty in kf and pv∗3 .

4.3.4 Experimental Results

In practice the state measurements contain noise which would lead to divergence of

the adaptive law in (4.76). A typical solution to this problem is to use the projection

algorithm as in [114]. This requires a range of Cz as prior knowledge. However, we

observe that if Kl2 > λCzK
2
l1,Kh2 > CzK

2
h1, and the term Ĉz in (4.67), (4.72) is

deleted, the closed loop remains asymptotically stable. Since both solutions assume

a known range for Cz, we choose the method which eliminates Ĉz and tune the

value of Kh2 and Kh1. This leads to a simpler implementation. Hence, the control

law (4.67) and parameter update (4.68) are implemented as

u = Kh2δh2 +Khg

∫ t

0
δh2(ξ)dξ (4.78)

Next, we note that when the vehicle is hovering u is approximately constant to

compensate gravity. Thus, we assume u in (4.72) is constant, and the control (4.72)

93

(a) Non-adaptive case (b) Adaptive case

Figure 4.21: Trajectories of image feature error es, vehicle’s 3 D position error ep,
and eψ.

0 10 20
0

0.02

0.04

time (sec)

φ̂
e
,
θ̂
e
(r
a
d
)

φ̂e

θ̂e

0 10 20
0.38

0.39

0.4

time (sec)

Ĉ
g
(m

s)

0 10 20
0

0.005

0.01

time (sec)

Ĉ
z
(s

2
·
m
s/
m

2
)

Figure 4.22: Trajectories of estimated parameters φ̂e, θ̂e, Ĉg, and Ĉz.

94

and parameter update law (4.73) are implemented as θm

−φm

 = Kl2δl2 +Klrp

∫ t

0
δl2(ξ)dξ (4.79)

The values of the control gains in (4.78), (4.79), and (4.77) are the same as in the

simulation and are given in Table 4.4. The inner loop control gains are also given

in Table 4.4.

As in the simulation we consider two cases in experiment, i.e., with the adaptive

law (4.68) and (4.73) on and off. In the adaptive case, the initial values of φ̂e,

θ̂e are set to zero. The estimate value of Cg in the non-adaptive case is 0.435,

which is obtained from a manual flight test, and this value is the initial value of

Ĉg in the adaptive case. The trajectory of the image feature error es for the non-

adaptive case and the adaptive case is given in Figure 4.23a and Figure 4.23b,

respectively. The trajectories of two image points are shown in Figure 4.24, where

the initial coordinates are shown as a square and the circle denotes the final point.

Figure 4.25a and Figure 4.25b show the corresponding 3 D translational error ep and

eψ. Typical inner-loop tracking performance is shown in Figure 4.26. Figure 4.27

illustrates the estimates φ̂e, θ̂e, and Ĉg. Based on the above mentioned plots, both

cases reach steady state in about 15 seconds. Table 4.5 and Table 4.5 give the

mean and standard deviation of es, ep and eψ after 15 seconds. It can be seen from

Figure 4.23 that the es3 in the non-adaptive case is slowly reducing because the

voltage of battery is slowly dropping while in the adaptive case the es3 stays around

0. We also observe from Table 4.5 that in the adaptive case the mean value of es1

and es2 are significantly reduced with similar standard deviations. The trajectories

of es4 converge to zero for both cases, and the performance for regulating the yaw

motion in the two cases are similar. This is to be expected since the same control

law (4.77) is used. The trajectories in the image plane shown in Figure 4.24 are

consistent with Table 4.5. That is, the lower mean values of es1, es2 correspond to a

more centred steady state image coordinates. Figure 4.25 and Table 4.5 show the 3 D

position errors in the adaptive case are much smaller than the non-adaptive case.

Hence, we conclude that the proposed control provides improved visual servoing

motion control.

4.3.5 Summary

We have presented an adaptive DIBVS control which uses image moment features

from projected points in a virtual camera image. The image moment features in

the virtual camera image lead to a simple interaction matrix. The proof of global

asymptotic stability of the error dynamics is given for the case of target points in

95

0 50

−0.2

0

0.2

0.4

0.6

time (sec)

e
s
1
(m

m
)

0 50

−0.6

−0.4

−0.2

0

time (sec)

e
s
2
(m

m
)

0 50

−0.1

0

0.1

0.2

time (sec)

e
s
3

0 50

−1

−0.5

0

time (sec)

e
s
4
(r
a
d
)

(a) Non-adaptive case

0 50

−0.2

0

0.2

0.4

0.6

time (sec)

e
s
1
(m

m
)

0 50

−0.6

−0.4

−0.2

0

time (sec)

e
s
2
(m

m
)

0 50

−0.1

0

0.1

0.2

time (sec)

e
s
3

0 50

−1

−0.5

0

time (sec)

e
s
4
(r
a
d
)

(b) Adaptive case

Figure 4.23: Experimental trajectories of image feature error es.

−150 −100 −50 0 50 100 150
−100

−50

0

50

100

y1 (Pixel)

y
2
(P

ix
el
)

(a) Non-adaptive case

−150 −100 −50 0 50 100 150
−100

−50

0

50

100

y1 (Pixel)

y
2
(P

ix
el
)

(b) Adaptive case

Figure 4.24: Images points trajectories. The starting position is denoted with a
square and the final position is denoted with a circle.

(a) Non-adaptive case (b) Adaptive case

Figure 4.25: Experimental error trajectories of vehicle’s 3 D position error ep and eψ.

96

0 20 40 60

−0.05

0

0.05

time (sec)

ro
ll
(r
a
d
)

φd
φ

0 20 40 60

−0.1

−0.05

0

time (sec)

p
it
ch

(r
a
d
)

θd
θ

Figure 4.26: Roll and pitch tracking performance during adaptive virtual camera
experiment.

0 20 40 60

−0.01

0

0.01

0.02

time (sec)

φ̂
e
(r
a
d
)

0 20 40 60

−0.04

−0.02

0

time (sec)

θ̂
e
(r
a
d
)

0 20 40 60

0.44

0.45

0.46

0.47

time (sec)

Ĉ
g
(m

s)

Figure 4.27: Experimental trajectories of estimated parameters φ̂e, θ̂e, and Ĉg.

Adaptive control Non-adaptive control

Image
Mean

Standard
Mean

Standard
Feature Deviation Deviation

es1 0.0041 0.1291 0.2456 0.1042
es2 -0.0067 0.1847 -0.2250 0.1694
es3 -0.0047 0.0196 0.0517 0.0297
es4 0.0171 0.0652 0.0192 0.0602
ep1 -0.0077 0.0718 -0.1276 0.0586
ep2 -0.0015 0.0770 0.1158 0.0696
ep3 0.0035 0.0214 -0.0740 0.0437
eψ 0.0703 0.0613 -0.1083 0.0824

Table 4.5: Image feature error for adaptive virtual camera experiment.

97

a horizontal plane. The proposed control does not require an estimate of depth,

known mass, and thrust coefficient. The method is robust to measurement bias in

roll and pitch. An indoor quadrotor platform is used to validate the control. The

results demonstrates improved performance with lower mean image and position

error. We explain how the proposed control can be extended to the non-horizontal

target case for motion control in the translational degrees of freedom.

4.4 Extensions to Virtual Camera-Based Approach

In this section we present two extensions for the virtual camera-based DIBVS ap-

proach that were originally publish in [57].

4.4.1 Moving Targets

Similar to Section 4.2.3, the control objective in this section is to develop a control

law that regulates the relative position and yaw of the vehicle to a target. However,

in this section the target is now free to move. Once again to simplify the presentation

we make the small angle assumption, the diagonal inertial matrix assumption, and

the assumption that camera frame C and the body frame B are identical. The

dynamics of the quadrotor and the target in the virtual camera frame V is

˙̃vv = − ˙̃
ψ sk(e3)ṽv + ge3 + F v/m− āvt (4.80)

where āvt is the acceleration of the target. We assume knowledge of ψ̇t and v̄vt

(e.g., transmitted from a friendly vehicle or measured from optical flow). To derive

a control law we write the dynamics (4.80) with the image moment kinematics (4.52)

as

ṡ1 = −λkpṽv1 + s2ψ̇ (4.81a)

ṡ2 = −λkpṽv2 − s1ψ̇ (4.81b)

ṡ3 = −kpṽv3 (4.81c)

˙̃vv1 = ṽv2ψ̇ + uθ (4.81d)

˙̃vv2 = −ṽv1ψ̇ + uφ (4.81e)

˙̃vv3 = uF (4.81f)

ṡ4 = uψ (4.81g)

where δ3 = s3 − 1, kp = 1/pv3
∗, and the inputs are uθ = −F v3 θ/m − ṽ2ψ̇t − āvt1,

uφ = F v3 φ/m+ ṽ1ψ̇t − āvt2, uF = −F v3 /m+ g − āvt3, and uψ = − ˙̃
ψ.

98

Theorem 4.4. The subsystem (4.81a) to (4.81f) is GAS and the subsystem (4.81g)

is GES with the input

uF = khdv
v
3 − khpδ3 − khi

∫ t

0
δ3(ε)dε (4.82a)

uθ = −k`2(ṽv1/k`1 − s1) (4.82b)

uφ = −k`2(ṽv2/k`1 − s2) (4.82c)

uψ = kψs4 (4.82d)

where khp, khd, khi, k`1, k`2 and kψ are positive constant gains such that khi < khpkhd

and P v3
∗k`2 > k2

`1.

Proof. First we consider the height motion subsystem (4.81c) and (4.81f) and we

define the following error signal

δ3 = s3 − 1

In addition we augment the state by an integral term

ζ =

∫ t

0
δ3(ε) dε

Let uF = khpδ3 − khd ˙̃vv3 + khiζ then the closed loop dynamics areδ̇3

v̇v3
ζ̇

 =

 0 −kp 0

khp −khd khi

1 0 0


δ3

ṽv3
ζ


Then if khp, khd, khi > 0 and khi < kpkhpkhd the closed loop origin of the height

motion subsystem is GES. Next, we consider the translational motion subsystem

(4.81a), (4.81b), (4.81c), and (4.81d) and define error signals

δ1 =
1

λ
s1

δ2 =
1

λ
s2

δ4 = ṽv1/k`1 − δ1

δ5 = ṽv2/k`1 − δ2

and consider the Lyapunov function candidate

V =
1

2
δ2

1 +
1

2
δ2

2 +
1

2
δ2

4 +
1

2
δ2

5

99

then

V̇ = (uθδ4 + uφδ5)/k`1 + k`1kp

(
−δ2

1 − δ2
2 + δ2

4 + δ2
5

)
Let uθ = −k`2δ4 and uφ = −k`2δ5 then

V̇ = −k`1kp(δ2
1 + δ2

2)− (k`2 − kpk2
`1)(δ2

4 + δ2
5)/k`1

If k`2 > k2
`1kp then V̇2 is negative definite. Therefore the translational subsys-

tem (4.81a) to (4.81f) is GAS. For the yawsubsystem (4.81g) we substitute the

control law (4.82d) into the dynamics (4.52b) and obtain

ṡ4 = −kψs4

which is GES.

The control law requires an initialization and main phase. In the initialization

phase the quadrotor is manually hovered so that the target is in the camera’s field of

view. The user then selects the target, indicates its orientation in the camera frame

and the desired distance to the target. Note that the desired distance to the target

is not specified in metres, but is an image feature. That is, the user selects the

desired scale in the image: larger (closer), the same (maintain distance), or smaller

(further away). This feature can be changed at anytime during flight.

4.4.2 Non-horizontal Targets - Applying the Homography

In previous work [47, 55] it was assumed that the planar target was horizontal. This

assumption was made so that the concept of a virtual camera as used in [55] could

be applied. If the virtual camera is applied to non-horizontal targets it has been

shown that steady state error results in the image features, especially in the third

component s3 which is related to relative height. In this section we compensate for

non-horizontal target planes using a homography decomposition which can be used

to estimate the orientation between the camera image plane and target plane.

After computing the homography decomposition we use it to define a new virtual

camera frame V ′. The following discussion explains how this new frame compensates

for non-horizontal targets. The following assumptions are made to provide a precise

description of the pose of V ′ without having to know the geometry of the target and

the relative pose from the camera to the target.

Assumptions:

1. The target rotates about its geometric centre.

100

d1

θ

r1
3C1

C2

V′
1

V′
2

Figure 4.28: An initial desired image is taken from C1 of the horizontal target. The
virtual camera associated with C1 and the rotated target is V ′1. The virtual camera
associated with C2 and the rotated target is V ′2.

2. The target plane in the desired image is parallel to the camera plane,

i.e.,n1 = [0, 0, 1]T .

3. The camera is centred laterally above the target, i.e., the geometric centre of

the target lies on the c3 axis.

The frame V ′ has the same lateral position and orientation relative to the target

as the camera to the desired scene. That is, only the height of the camera can

differ relative to the desired case. Using V ′ we can estimate the area of the target

independent of the target and camera’s orientation. We remark that virtual camera

V introduced in Section 4.2 remains parallel to the ground. Using a combination

of V and V ′ we can define image features that behave as if the target is always

parallel to the ground.

Figure 4.28 illustrates the idea when relative motion is restricted to one DoF in

the c3 direction, and the target plane can rotate by an angle θ. The 3 D case is

restricted to relative camera motion in the c3 direction and the target can rotate in

two rotational DoF. The extension of the 2 D case to the 3 D case is straightforward.

In the figure an initial desired image Y 1 is taken from the camera C1 of the target

in its desired position (green). Next, suppose the target rotates about its geometric

centre (denoted by a red “x”) by an angle θ. At this point if another image were

taken with C1 then the length (area in 3 D) of the target in the image will have

decreased. Given this condition, the control law would attempt to lower the camera

to increase the length of the target. However, the control objective is to regulate

101

the height above the target independent of the target’s orientation. To solve this

problem a homography matrix H is estimated between the desired image (camera C1

with a horizontal target) and the current image (camera C1 with a non-horizontal

target). Next, the homography is decomposed into the rotation and scaled trans-

lation of the camera. Since the decomposition and estimation of the homography

assumes the target is static and only the camera moves, we can effectively rotate

the camera about the target’s geometric centre by an angle θ to V ′1. An image

taken from virtual camera V ′1 will show the same target length as the desired image

and thus the control law will not command the camera to move. If at some point

in time the camera were to move to C2 and take an image of the non-horizontal

target, the length of the target in the vehicle could be exactly the same as its length

in the desired image. A control law based on the original virtual camera V would

incorrectly not command the camera to move upwards. A homography is calculated

between the image taken in C1 of the horizontal target and the image in C2 of the

non-horizontal target. This homography is decomposed to define the virtual cam-

era V ′2. The length of the target in V ′2 will be less than in the desired image and

the camera will be commanded to rise.

The image Y ′ ∈ R3 in the virtual camera frame V ′ is approximately given by

Y ′ ∼ A

1 0 0

0 1 0

0 0 1− (1
d1 r

1
3)2

A−1Y ∗ (4.83)

where Y ∗ ∈ R3 denotes the image in the desired camera frame. The scaled displace-

ment 1
d1 r

1
3 is obtained from the homography decomposition as explained in Sec-

tion 2.2.4. Relation (4.83) is equivalent to

yv
′

=
1

1− (1
d1 r

1
3)2

y∗ (4.84)

where yv
′ ∈ R2 denotes the image in V ′, and y∗ ∈ R2 is the desired image.

The feature is given by

s′3 =

√
µ
′∗
20 + µ

′∗
02

µ
′
20 + µ

′
02

(4.85)

which simplifies to

s′3 =

√√√√∑K
k=1(yv

′
1k

∗
)2 + (yv

′
2k

∗
)2∑K

k=1(yv
′

1k)
2 + (yv

′
2k)

2

102

Parameter Value

[khp, khd, khi] [4.4, 1.0, 1.0]
[k`1, k`2] [1.2, 0.4]
kψ 0.60
α 0.5
[kpφ, kiφ, kdφ] [10, 1, 3]
[kpθ, kiθ, kdθ] [10, 1, 3]
[kpψ, kiψ, kdψ] [6, 1, 3]
kf 18− 0.02t N
pn(0) [0.25, 0.25,−1.0] m
pn∗ [0, 0,−1.5] m
ψ(0) 45◦

ψt(t) 0◦

Table 4.6: Simulation parameters for the virtual camera experiments with moving
and non-horizontal targets.

since yv
′

1g = yv
′

2g = 0 by assumption. The kinematics of the feature is

ṡ′3 =
−vv′3

P v
′

3
∗ (4.86)

Both virtual camera frames V and V ′ rely on assumptions. That is, V assumes

that the target is horizontal, but makes no assumptions about the pose of the camera.

On the other hand V ′ allows for non-horizontal targets, but assumes the camera is

constrained to move vertically above the target. In order to exploit the benefits of

both virtual frames, we combine the area moment features into one feature s̃3. The

resulting image feature vector s̃ is defined as

s̃1 = s′3s1/s3

s̃2 = s′3s2/s3

s̃3 = αs3 + (1− α)s′3

s̃4 = s4

(4.87)

where α ∈ [0, 1] is a tuning parameter. In practice we have found that an equal

weighting (i.e.,α = 1/2) of two features to yield good results. The algorithm is

summarized in Algorithm 1.

4.4.3 Simulation Results

In the non-horizontal target case complexity of the control law increases given the

homography decomposition is computed. At the time of publication of [54] these

computations could not be implemented on the ANCL quadrotor platform. Hence, a

103

Algorithm 1 Dynamic Visual Servoing

1: function Main Loop
2: Takeoff
3: Hover
4: while User wishes to track object do
5: {y1, n1, a∗} ← Ini()
6: Track({y1, n1, a∗})
7: end while
8: Land
9: end function

Initialization Phase:

10: function ini
11: y1 ← User select target in image
12: n1 ← User select orientation of target in image
13: a∗ ← User selects desired distance of target
14: end function

Main Phase:

15: function TRACK({y1, n1, a∗})
16: y ← Take Image . (2.33)
17: y2 ← Track points in image(y)
18: H ← Estimate Homography(y1,y2)
19: R, 1

d1 r
1 ← Decompose Homography(H,n1)

20: Rθφ ← Get attitude from AHRS
21: s ← Calc Image Features(y2,Rθφ) . (4.51)
22: s′ ← Estimate target area(y1,1

dr
1) . (4.83)

23: s̃ ← Update Image Features(s,s′) . (4.87)
24: F b,η∗ ← Outer Loop(s̃,vv,vv∗,ψ̇∗) . (4.82)
25: τ ← Inner Loop(η,η∗,ω) . (2.19)
26: Repeat
27: end function

104

Simulink simulation was used for validation. The simulations include the rigid body

dynamics and kinematics (2.6), the pinhole camera (2.33), the virtual cameras (4.55)

and (4.84), the image features (4.51) and their modifications (4.87). The algorithm

used is described in Algorithm 1. We chose the visual target to be a “car” which

is represented by four points in the shape of an arrow that points in the forward

direction of the car. There is no requirement to know additional information about

the target’s geometry such as its dimensions. We simulate a control assuming the

target acceleration is zero. This avoids the requirement of measuring this quantity

and makes the control more practical.

In the first simulation the quadrotor was initialized directly above the stationary

car that was rotated by one radian (57◦) about its roll axis. The control objective

was to regulate height above the car and the proposed method is compared with

that previously developed in [55]. The camera images for the simulation are given

in Figure 4.29. The motion is such that initial (shown as circle) and final images

(shown as cross) are almost identical. We observe that in both the initial real

camera image (Figure 4.29b) and the trajectory of the virtual camera image for V
(Figure 4.29c) the car appears compressed in the vertical axis of the image due to

the inclined target. This leads to a reduced area which is measured by moment

feature s3 and thus the quadrotor flies closer to car to increase the target’s area in

the image. Both the desired image (Figure 4.29a) and the image in the new virtual

camera V ′ are identical in this case.

Figure 4.30 shows height trajectories for a number of cases. Figure 4.30a com-

pares height using the proposed method (green) and the previous approach (blue).

The desired height is 1.5 m and the proposed algorithm provides a smaller steady

state error relative to the previous work. Figure 4.30b shows the effect of time vary-

ing thrust coefficient when an integrator is not used in the control (khi = 0). In

this case height for both of the algorithms drops significantly. Figure 4.30c shows

the result with the integrator enabled (khi = 1). Figure 4.31 shows the result of the

homography decomposition with roll and pitch estimated to less then one degree of

error.

In the second simulation we define a surface on which the car travels:

z(x, y) = c1e
−(x−x01)2

cx1
+
−(y(t)−y01)2

cy1 + c2e
−(x−x02)2

cx2
+
−(y−y02)2

cy2

105

(a) Desired camera image (b) Initial real camera image

(c) Virtual camera V image (d) New virtual camera V ′ image

Figure 4.29: Simulated camera images using the proposed method and the approach
in [55]. The control objective is to regulate height above the target.

0 10 20 30

t (s)

1.4

1.45

1.5

−
ξ 3

(m
)

(a) Ideal battery

0 5 10 15

t (s)

1.4

1.45

1.5

−
ξ 3

(m
)

(b) Real battery without
integrator compensation

0 10 20 30

t (s)

1.4

1.45

1.5

−
ξ 3

(m
)

(c) Real battery with in-
tegrator compensation

Figure 4.30: Simulated height of the camera using the proposed method (green) and
the previous approach in [55] (blue).

0 10 20 30

t (s)

-20

0

20

40

60

[φ
,
θ
]
(◦
)

(a) Roll and pitch estimates (solid
red) and actual values (dashed red)

0 10 20 30

t (s)

-0.2

0

0.2

0.4

0.6

0.8

[e
φ
,
e
θ
]
(◦
)

(b) Error in estimation

Figure 4.31: Roll (blue) and pitch (green) estimation using a homography decom-
position.

106

x (m)

-1 -0.5 0 0.5 1

z
(m

)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

y = -1.0

y = -0.5

y= 0.0

y = 0.5

y=1.0

(a)

1

x (m)

0
-1-1

0

y (m)

-1

0

-0.5

1

z
(m

)

(b)

Figure 4.32: The ground plane and the trajectory of the car (red).

The car’s path P̄n(t) is defined by

P̄n1 (t) =


rt
t0

0 ≤ t < t0

r cos(t/ct − t0) t ≥ t0

P̄n2 (t) =

0 0 ≤ t < t0

r sin(t/ct − t0) t ≥ t0

P̄n3 (t) = z(P̄n1 (t), P̄n2 (t))

The car’s attitude is such that it is level to the tangent of the surface z. Its yaw

angle is zero until after the car completes one full circle then it follows a sine wave.

The attitude of the car is given by

φ(x, y, t) = 2

(
x(t)− x01

cx1
+
x(t)− x02

cx2

)
z(x(t), y(t))

θ(x, y, t) = −2

(
y(t)− y01

cy1
+
y(t)− y02

cy2

)
z(x(t), y(t))

ψ(t) =

0 0 ≤ t < t1

sin(t/ctψ − t1) t ≥ t1

The surface z and the car’s trajectory [cx, cy, cz]
T (red) is shown in Figure 4.32. The

constants used are in Table 4.7.

We ran the car following simulation using the previous algorithm where the

velocity of the target is assumed to be zero and the target is assumed horizontal [55]

and the proposed algorithm where the velocity of the target is no longer assumed

to be zero and the target can be non-horizontal. The result of the simulations are

shown in Figures 4.33 and 4.35.

107

Parameter Value

c1 −0.5
c2 −0.2
(x01, y01) (−0.2, 0.4)
(y02, y02) (0.2, 0.2)
cx1 0.7
cy1 0.8
cx2 1
cy3 1
ct 5
ctψ

2π
5

t0 3
t1 2πct + t0
r 0.5

Table 4.7: Simulation parameters used to define ground plane and car trajectory.

Figure 4.33 shows relatively poor performance of the previous method. From

Figure 4.33a the point features of the car in the image exhibit large variation, and

this causes large error in the moment image features as shown in Figure 4.33c.

Figure 4.33f shows loss of yaw tracking for t ≥ t1. Although in Figure 4.33d the

vehicle shows bounded lateral position tracking error, the magnitudes of error are

large. The non-zero tracking error is from assuming the target accelerations āvt is

zero.

Figure 4.35 shows increased tracking performance using the proposed method.

We observe from Figure 4.35a that the point features of the car exhibit small vari-

ation, and image feature error is reduced as shown in Figure 4.35d. Figures 4.35e

and 4.35g show good tracking performance for lateral position and yaw. Figure 4.34a

shows the roll and pitch computed from the homography decomposition versus ac-

tual roll and pitch. Figure 4.34b gives the error trajectories for these angles, and we

observe magnitudes less than about 5◦. Another measure of error for a homography

matrix is the backward and forward projection error:

ef = HY1 − Y2, eb = H−1Y2 − Y1

These errors are less then one pixel over the entire simulation.

4.4.4 Summary

In this section we investigated a nonlinear DIBVS for a quadrotor which regulates

the relative position and yaw to a moving target. The control relies on four or

more visual feature points in a plane. These point features are a relatively easy

to track, and the target geometry can be generically defined and is not assumed

108

(a) Camera image (b) Virtual image V

0 20 40 60

t (s)

-1

-0.5

0

0.5

1

e
s
(m

)

(c) Image features (d) Lateral position

0 20 40 60

t (s)

-5

0

5

[φ
,
θ
]
(◦
)

(e) Roll and pitch

0 20 40 60

t (s)

-100

-50

0

50

100

ψ
(◦
)

(f) Yaw ψ, ψt

Figure 4.33: Experiment using a dynamic IBVS based on the virtual camera V. The
quadrotor (blue) follows a car (red).

0 20 40 60

t (s)

-40

-20

0

20

40

[φ
,
θ
]
(◦
)

(a) Roll and pitch estimates (solid)
and actual values (dashed red)

0 20 40 60

t (s)

-10

-5

0

5

10

[e
φ
,
e
θ
]
(◦
)

(b) Error in estimation

Figure 4.34: Roll (blue) and pitch (green) estimation using a homography decom-
position.

109

(a) Camera image (b) Virtual image V (c) Virtual image V ′

0 20 40 60

t (s)

-1

-0.5

0

0.5

1

e
s
(m

)

(d) Image features (e) Lateral position

0 20 40 60

t (s)

-5

0

5

[φ
,
θ
]
(◦
)

(f) Roll and pitch

0 20 40 60

t (s)

-100

-50

0

50

100

ψ
(◦
)

(g) Yaw ψ, ψt

Figure 4.35: Simulation while using the proposed algorithm where the quadrotor
(blue) followed a car (red).

110

known. The general nature of the target makes the visual servoing law broadly

applicable. Simulation results demonstrate the proposed algorithm’s performance

relative to previously published work in [54] where the target was assumed horizontal

and static.

4.5 Conclusion

In this chapter we investigated the control of a quadrotor using nonlinear DIBVS

to regulate the lateral position of the vehicle relative to a static and moving visual

feature point on the ground. All of the control laws are dynamic in that they directly

account for the vehicles dynamics. All of the proposed methods shares the same idea

of rewriting the dynamics into a form where the design is simplified. A summary of

the proposed control laws are show in Table 4.8.

Another important aspect of this work is that it is validated in simulation and

experiment. In contrast to most of the work on DIBVS, our approach is vali-

dated experimentally which demonstrates the method is robust to model uncer-

tainty (e.g., errors in modelling aerodynamic forces and changes in height and yaw

which are neglected in design). When compared to other DIBVS control laws in the

literature the proposed control laws demonstrate similar performance and benefit

from reduced computational complexity. This is an important attribute for onboard

implementation with inexpensive microcontrollers.

111

N
a
m

e
E

q
u

a
ti

o
n

S
ta

b
il
it

y
R

e
su

lt
T

a
rg

e
t

A
d

d
it

io
n

a
l

A
ss

u
m

p
ti

o
n

s

G
en

er
al

iz
ed

S
ta

te
T

ra
n

sf
or

m
at

io
n

T
h

eo
re

m
4.

1
L

E
S

n
=

1
p

oi
n
t

(b
lo

b
),

st
at

io
n

ar
y

•
P

er
fe

ct
co

n
tr

o
l

o
f
v
b 3

a
n

d
ω
b 3

•
S

m
al

l
co

u
p

li
n

g
te

rm
s
y 1
y 2
φ̇

a
n

d
y 1
y 2
θ̇

•
K

n
ow

n
q
u

a
d

ro
to

r
p

a
ra

m
et

er
s
m

,
k
τ
,
k
f

V
ir

tu
al

C
am

er
a

T
h

eo
re

m
4.

2
G

A
S

n
≥

2
p

oi
n
ts

(b
lo

b
s)

,
st

at
io

n
ar

y,
h

or
iz

on
ta

l

•
K

n
ow

n
q
u

a
d

ro
to

r
p

a
ra

m
et

er
s
m

,
k
τ
,
k
f

A
d

ap
ti

v
e

V
ir

tu
al

C
am

er
a

T
h

eo
re

m
4.

3
G

A
S

n
≥

2
p

oi
n
ts

(b
lo

b
s)

,
st

at
io

n
ar

y,
h

or
iz

on
ta

l

•
C

on
st

a
n
t

o
r

sl
ow

ly
m

ov
in

g
p

a
ra

m
et

er
s

M
ov

in
g

T
ar

ge
ts

T
h

eo
re

m
4.

4
G

A
S

n
≥

2
p

oi
n
ts

(b
lo

b
s)

,
m

ov
in

g,
h

or
iz

on
ta

l

•
K

n
ow

n
ta

rg
et

ve
lo

ci
ty

•
K

n
ow

n
q
u

a
d

ro
to

r
p

a
ra

m
et

er
s
m

,
k
τ
,
k
f

N
on

-h
or

iz
on

ta
l

T
ar

ge
ts

A
lg

or
it

h
m

1
-

n
≥

4
p

oi
n
ts

(b
lo

b
s)

,
st

at
io

n
ar

y

•
T

ar
ge

t
p

la
n

e
in

th
e

d
es

ir
ed

im
a
g
e

is
p

a
ra

ll
el

to
th

e
ca

m
er

a
p

la
n

e

•
T

h
e

ca
m

er
a

is
ce

n
tr

ed
la

te
ra

ll
y

a
b

ov
e

th
e

ta
rg

et

•
T

h
e

ta
rg

et
ro

ta
te

s
a
b

o
u

t
it

s
g
eo

m
et

ri
c

ce
n
tr

e

T
ab

le
4.

8:
A

su
m

m
ar

y
of

th
e

p
ro

p
os

ed
D

IB
V

S
m

et
h

o
d

s.
A

ll
of

th
e

m
et

h
o
d

s
as

su
m

e:
th

e
im

ag
e

fe
a
tu

re
s

a
re

in
th

e
F

o
V

a
n

d
b

ei
n

g
tr

a
ck

ed
at

al
l

ti
m

es
,

th
e

q
u

ad
ro

to
r

is
sy

m
m

et
ri

ca
l

(D
ia

go
n

al
in

er
ti

a
m

at
ri

x
),

sm
al

l
an

gl
e

as
su

m
p

ti
on

η
a
n

d
a

k
n

ow
n

ve
h

ic
le

a
tt

it
u

d
e

a
n

d
v
el

o
ci

ty
.

112

Chapter 5

Visual State Estimation

Visual odometry (VO) is the process of determining a camera’s pose with respect

to its environment [16, 17]. While there are many different methods of VO it typi-

cally involves finding visual features in an image, tracking or matching the features

in subsequent images, and then motion estimation based on triangulation of the

matched features. Closely related to VO is visual simultaneous localization and

mapping (VSLAM). In addition to the localization, VSLAM also computes a map

of the environment. One of the main benefits of which is loop closure. A survey on

state of the art VSLAM methods is in [115].

VSLAM has been solved using a variety of cameras including stereo [116, 117],

monocular [34, 118], and depth sensing [119, 120]. In this work we chose to use

a monocular camera system and an inertial measurement unit (IMU) for visual

state estimation (VSE) for practical reasons, i.e., visual inertial simultaneous local-

ization and mapping (VISLAM). Monocular camera systems suffer from a lack of

metric depth information. This would appear to motivate stereo cameras, however,

stereo cameras need the observed scene to be within a small range according the

displacement between the cameras. Once the scene is outside of this range the two

images are the same and the metric depth information is lost. Inertial sensors are a

natural choice to use as an aiding measurement as they are already onboard most

unmanned aerial vehicles (UAVs). It is interesting to note the visual inertial systems

are inspired by biology given that humans have the same sensors.

There is much work in the literature trying to solve the visual navigation prob-

lem. Here we highlight a few relevant papers. While work in [27] does not use

inertial sensors they solve the scale problem by placing a calibration object with

known measurements in front on camera. Unfortunately this solution is not ro-

bust to VSLAM reinitialization. When VSLAM systems lose tracking they have to

reset. They can lose tracking due to occlusions (i.e., flying through a cloud), fast

motion, by looking at uniform surfaces (e.g., a white floor), or non-static environ-

113

ments (i.e., flying over water). A truly autonomous system will need the ability

to handle outages. In [121] and [118] the authors propose extended Kalman filter

(EKF)-based VISLAM methods. In [36] the authors present an optimization-based

VISLAM method. In all of the papers the authors present good experimental re-

sults, but require linearization of the state equations and provide no observability

analysis. If an observability analysis is presented in the literature (e.g., [34]) they

commonly use local weak observability defined in [122]. The downside of this ap-

proach is that the results are local, do not show when the system is unobservable,

and do not lead to an observer design.

Developing VSLAM systems for UAVs presents a number of challenges. Onboard

processing is required since radio links and ground station processing would intro-

duce delay and limit autonomy. For outdoor flights the system must operate in large

outdoor environments where weather, time of day, and fast six degree of freedom

(DoF) motion lead to blurred or underexposed images. Existing research is often

restricted to simplified environments, e.g., hand-held cameras in small-scale indoor

environments [27]. Our work proposes an approach which is feasible to implement

using hardware typically found onboard UAVs.

We focus on the estimation of linear components of the state and the proposed

observers assume the rotational components of the state are estimated by an on-

board attitude and heading reference system (AHRS). This assumption is not typ-

ically made in existing work. However, it is not restrictive as all UAVs have an

AHRS onboard which is required for attitude stabilization. A typical application

for the proposed observers is to maintain an accurate position measurement during

intervals where global navigation satellite system (GNSS) or motion capture system

(MCS) measurements are lost. An AHRS is typically implemented by fusing 3 axis

accelerometer, 3 axis gyroscope, and 3 axis magnetometer measurements. Without

external aiding measurements (e.g., GNSS) and under the usual assumption of near

hover flight, the estimate of such an AHRS will slowly drift. However, we have found

experimentally that this error is negligible over a typical quadrotor battery charge

and hence ignored. For aggressive maneuvers with large linear acceleration the VS-

LAM attitude can be used to generate an improved attitude estimate. However,

including attitude as a state in the VISLAM problem is left for future work.

5.1 Monocular Visual Inertial SLAM

System modelling requires the four frames of references shown in Figure 5.1. The

navigation frame N which is assumed inertial, the body frame B which is located

at the centre of mass (CoM) of the UAV, the camera frame C located at the cam-

era’s optical centre and is rigidly attached to the UAV, and the vision frame V

114

n3

n2

n1N

v3

v2

v1

V

c3

c2

c1C

b3
b2

b1B

pnb

pnv

pvc

Figure 5.1: The reference frames used for VISLAM modelling. A navigation frame
N , body frame B, camera frame C, and vision frame V are shown.

which is the reference frame defined by the VSLAM system. The basis of N , B, C,
and V are {n1, n2, n3}, {b1, b2, b3}, {c1, c2, c3}, and {v1, v2, v3}, respectively. The

frames B and C are assumed offset by a known constant displacement pbc ∈ R3 and

rotation Rcb ∈ SO(3) which can be computed in an initial calibration experiment.

Superscripts on a vector indicate the frame in which it is represented.

We denote pnb , v
n
b , a

n
b ∈ R3 as the position, velocity, and acceleration of the origin

of B expressed in N , respectively. An onboard IMU contains an accelerometer which

measures specific force f bs ∈ R3.

f bs = ab − gb

where gb ∈ R3 is acceleration due to gravity. We model the accelerometer measure-

ments as including a constant bias bb ∈ R3. Hence, anb can be expressed in terms of

the accelerometer measurement f bs as

anb = Rnb (f bs + bb) + gn (5.1)

where Rnb ∈ SO(3) is the rotation between B and N , and gn ∈ R3 is acceleration due

to gravity. The value of Rnb is measured by the onboard AHRS and gn is assumed

known.

The output y ∈ R3 that VSLAM systems provide is a scaled measurement of

the position of the camera in V which is denoted pvc ∈ R3. The scale parameter

is denoted λ > 0. It also measures Rvc which is the rotation between C and V.

The constant scale factor λ is due a monocular VSLAM system’s inability to sense

depth of features. Although we consider the specific monocular parallel tracking

and mapping (PTAM) VSLAM system, any algorithm can be used in its place.

115

The value of λ is different every time PTAM starts or after re-initialization

when tracking fails. PTAM can lose tracking due to occlusions (i.e., flying through

a cloud), fast motion, by looking at uniform surfaces (e.g., a white floor), or non-

static environments (i.e., flying over water). Hence, it is essential for the VISLAM

system to be able to reconverge to its new value.

Since Rnb and Rvc are measured and Rcb is available from a pre-flight calibration

procedure, we can compute

Rvn = RvcR
c
bR

b
n (5.2)

The dynamics of the system in terms of the AHRS, IMU, and VSLAM measure-

ments is
ṗnb = vnb

v̇nb = Rnb (f bs + bb) + gn

ḃb = 0

λ̇ = 0

ṗnv = 0

y = λpvc = λRvn(Rnb p
b
c + pnb − pnv)

(5.3)

We have not included measurement noise in (5.3) which is present in the physical

system. This is done to simplify the presentation of the observer design and observ-

ability analysis. In the simulations measurement noise is included. For convenience

we define

ζ = Rnb f
b
s + gn

We remark that the output measurement y depends on the relative pose between

the origins of N and V. This constant offset is unknown. However it can be deter-

mined algebraically when a reference measurement at a known position is available,

e.g., the vehicle at time tref is placed at a reference position pnb (tref):

pnv = Rnb (tref)p
b
c + pnb (tref)−Rnv

y(tref)

λ
(5.4)

Having a convergent observer for the scale factor λ and the relative position (pnb −pnv)

is required to make use of this algebraic relationship and to obtain the position pnb
of the UAV in an absolute reference frame such as GNSS. In presence of noise a

simple low pass filter can be used alternatively to (5.4):

˙̂pnv =
1

Tp

(
Rnb (tref)p

b
c + pnb (tref)− R̂nv

y(tref)

λ̂
− p̂nv

)
(5.5)

where Tp > 0 is a time constant. For rotation between N and V also a low pass

filter could be used as an alternative to (5.2). In order to assure fast convergence

116

and steady state accuracy in presence of noise we decided to use a filter with an one

dimensional Kalman gain kη > 0

˙̂ηvn = kη (ηvn − η̂vn)

k̇η = −k2
η + qη

(5.6)

where q > 0, ηvn ∈ R3 is Rvn = RvcR
c
bR

b
n ∈ SO(3) expressed in the ZYX Euler angles

and kη(0) > 0.

5.2 Observability

We remark that most works on VSLAM analyzes the nonlinear observability of a

system using the concept of local weak observability defined in [122]. In this work

we separate the rotational dynamics from the translational dynamics and propose

a coordinate transform that allows us to analyze the observability of the system

using linear system theory. One of the main advantages of this approach is that

local weak observability only states that a neighbourhood exists where the system

is observable. From [123, Theorem 9.10] we are able to derive stronger conclusions

about when the system is observable and equally as important when the system is

not observable.

Observability Definitions

First, we recall some pertinent definitions and theorems about observability. We

consider the system Σ

Σ :

ẋ = f(x, u)

y = g(x)

where u ∈ Ω, a subset of Rm, x ∈ Rn, y ∈ Rp and f and g are C∞ functions. For

linear systems

ẋ = A(t)x+B(t)u

y = C(t)x
(5.7)

Definition 5.1. [123, Definition 9.7] The linear system (5.7) is observable on [t0, t1]

if any initial state x(t0) = x0 is uniquely determined by the corresponding response

y(t) for t ∈ [t0, t1].

Theorem 5.1. [123, Theorem 9.10] Let q be a positive integer such that, for

t ∈ [t0, t1], C(t) is q-times continuously differentiable, and A(t) is (q − 1)-times

differentiable. Then the linear state equation (5.7) is observable on [t0, t1] if for

117

some ta ∈ [t0, t1] the observability matrix O satisfies

rank(O) = n

where

O =


N0(ta)

N1(ta)
...

Nq(ta)


and

N0 = C(t)

Ni = Ni−1A(t) +
dNi−1

dt
, i = 1, 2, . . . , q

Definition 5.2. [124] The pair (A,C) is uniformly detectable (UD) if there exists

constants S > 0, T > 0, b > 0 and 0 ≤ d < 1, such that whenever

‖Φ(t+ T, t)x‖ ≥ d‖x‖

for some x ∈ Rn and t, then

xTW (t+ S, t)x ≥ bxTx

where

W (t+ S, t) =

∫ t+S

t
ΦT (s, t)CT (s)C(s)Φ(s, t) ds

with A and C bounded.

For our observability analysis we use the notion of uniform complete observabil-

ity (UCO) which ensures convergence of the Kalman Filter [125]. We denote Φ(s, t),

s, t ∈ R as the transition matrix associated with A. We have

∂Φ
∂s (s, t) = A(s)Φ(s, t)

Φ(t, t) = I

The observability Gramian for (A,C) is

M(s, t) =

∫ s

t
ΦT (τ, t)CT (τ)Σ(τ)C(τ)Φ(τ, t) dτ

where s ≥ t ≥ 0, and Σ(t) ∈ Rm×m is a bounded symmetric positive definite matrix.

118

Definition 5.3. The pair (A,C) is UCO if there exists positive constants α, β, T

such that

∀t ≥ 0 : αI ≤M(t+ T, t) ≤ βI

where A and C are bounded.

As UCO is difficult to check, following Sontag [126], a necessary and sufficient

rank condition can be given which is based on the observability matrix Ok.

Theorem 5.2. The matrix pair (A,C) is UCO if for every nontrivial interval

[t0, t1] ⊆ R such that 0 ≤ t0 ≤ t1 there exists a t∗ ∈ [t0, t1] and some non-negative

integer k such that

rankOk(t∗) = n (5.8)

where

Ok = [CT0 , C
T
1 , · · · , CTk]T

and

Ci =


C, i = 0

Ci−1A+
dCi−1

dt
, 1 ≤ i ≤ k

with A and C bounded and sufficiently smooth. Furthermore, if A and C are analytic

the rank condition is also necessary.

In other words, we can say the pair (A,C) is not observable if there exists

some nontrivial interval [t0, t1] ⊆ R such that 0 ≤ t0 ≤ t1, for all t∗ ∈ [t0, t1]:

rankOk(t∗) < n and (A,C) is analytic.

Now we examine nonlinear observability from [122]. We consider the system Σ

and the input-output map of the pair (Σ, x0).

Definition 5.4. [122] Σ is locally weakly observable at x0 if there exists a neigh-

bourhood U of x0 such that for every open neighbourhood V of x0 contained in U ,

IV (x0) ∩ U = {x0}; and Σ is locally weakly observable if it is so at every x ∈M .

Theorem 5.3. [122, Theorem 3.1] If Σ satisfies the observability rank condition at

x0 then Σ is locally weakly observable at x0.

rank(O) = n

where

O = dG(x0)

119

where the elements of dG are the finite linear combinations of dLf1(· · · (Lfk(gi)) and

f j(x) = f(x, uj) for some constant uj ∈ Ω, Lfgi(x) is the Lie derivative of gi with

respect to f at x ∈M ,

Lfjgi(x) =
∂gi(x)

∂x
f j(x)

and

Lf1Lf2gi(x) =
∂Lf2gi(x)

∂x
f1(x)

One DoF Observability

We start by examining observability for the one DoF VISLAM problem. This simpler

setting provides insight for treating the general three DoF case. The dynamics is

ṗn = vn

v̇n = an

y = λpn

where pn ∈ R is position, vn ∈ R is velocity, an ∈ R is the acceleration of the vehicle,

and y ∈ R is the scaled position from the VSLAM system. For simplicity we neglect

gravity from specific force: f bs = ab − bb, where bb ∈ R denotes bias. The bias and

the VSLAM map scale are included in the system state for observability analysis.

The extended dynamics is

ṗn = vn

v̇n = bn + u

ḃn = 0

λ̇ = 0

y = λpn

(5.9)

where u = fns . We note that in the one DoF model fns = f bs and bn = bb. In the

observability analysis we treat u as a parameter. We propose the following change

of coordinates

z1 = λpn

z2 = λvn

z3 = λbn

z4 = λ

This change of coordinates is globally defined provided λ > 0. Here we have take

z1, z2, z3 as the Lie derivatives of the output function λpn. These derivatives are often

120

used for normal form observer design. The dynamics of (5.9) in the z coordinates is

ż = Az

y = Cz

where

A =


0 1 0 0

0 0 1 u

0 0 0 0

0 0 0 0


C =

[
1 0 0 0

]
Using Theorem 5.1 we calculate the observability matrix to be

O =



1 0 0 0

0 1 0 0

0 0 1 u

0 0 0 u̇
...

...
...

...

0 0 0 u(q−2)


∈ R(q+1)×4

A sufficient condition for observability is that O be full rank. The matrix is full

rank, i.e., rankO = 4, when u is non constant. This implies that when the vehicle

is accelerating the system is observable.

Three DoF Observability

In order to simplify the observability analysis and later the observer design, we

introduce the state transformation

z = λ[(pnb − pnv)T , (vnb)T , (bb)T , 1]T (5.10)

As a result of the discussion in the previous section we have chosen z1 = λ(pnb − pnv)

as a component of the state and not directly λpnb . The absolute position estimate p̂nb
can be calculated algebraically by using ẑ and (5.5) once the observer for z converges.

Expressed in the z-coordinates, (5.3) is an linear time-varying (LTV) dynamics

ż = A(t)z

y = C(t)z
(5.11)

121

where z ∈ Rn, y ∈ Rm, n = 10, m = 3,

A(t) =


0 I 0 0

0 0 Rnb (t) ζ(t)

0 0 0 0

0 0 0 0


C(t) =

[
Rvn 0 0 RvnR

n
b (t)pbc

]
(5.12)

and where we have introduced the time-varying signal ζ(t) = Rnb (t)f bs (t) + gn.

In (5.12) we have indicated which quantities are explicitly time-varying. To simplify

notation below we drop this time-dependence.

Using Theorem 5.2 and the VISLAM dynamics defined in (5.11) and (5.12), we

have

Ok =



Rvn 0 0 RvnR
n
b p

b
c

0 Rvn 0 RvnṘ
n
b p

b
c

0 0 RvnR
n
b Rvnζ +RvnR̈

n
b p

b
c

0 0 RvnṘ
n
b Rvnζ̇ +RvnR

n
b

(3)pbc
...

...
...

...

0 0 RvnR
n
b

(k−2) Rvnζ
(k−2) +RvnR

n
b

(k)pbc


where Ok ∈ Rm(k+1)×n. Before examining the rank of Ok we first define the Guttman

rank additivity formula [127]. Given the matrix M ∈ Rm×n and the submatrices

Mij of appropriate size such that

M =

M11 M12

M21 M22


and M11 is square and nonsingular then the Guttman rank additivity formula is

rankM = rankM11 + rank(M22 −M21M
−1
11 M12) (5.13)

Now, to compute the rank of Ok it has been partitioned as shown above. The upper

left submatrix has rank of six. Thus, only the rank of the lower right submatrix

has to be considered. We apply (5.13) to the lower right submatrix of Ok with

M11 = RvnR
n
b to obtain

rankO = 9 + rank δ

122

and rank δ = rank δ̄ where

δ = blkdiag(Rvn, . . . , R
v
n) · δ̄

δ̄ =


ζ̇ +Rnb

(3)pbc − ṘnbRbn(ζ + R̈nb p
b
c)

...

ζ(k−2) +Rnb
(k)pbc −Rnb

(k−2)Rbn(ζ + R̈nb p
b
c)


and δ, δ̄ ∈ R3(k−2)×1. The system is UCO if δ̄ is nonzero. Taking the derivative

of δ̄`(t) leads to
˙̄δ`(t) = δ`+1(t)−Rnb

(`)(t)Rbn(t)δ̄1(t).

Thus if δ̄1(t) = 0 then δ̄(t) = 0 and therefore δ̄1(t) must be nonzero for Ok(t) to have

full rank. We can see when there is no camera offset (i.e., pbc = 0) then the system is

UCO when ||ζ̇ − sk(ωn)ζ|| > 0, where ωn ∈ R3 is the angular velocity of the vehicle

in N and Ṙnb = sk(ωn)Rnb . On the other hand when if there is no acceleration

(i.e., pbc = 0 and v̇n = 0) and Rnb (t) is analytic then the system is not observable. We

can also see that the system is not observable when it is accelerating constantly and

not rotating (ζ = const. and ωb = 0). In these cases the observability matrix Ok

is a constant and thus the rank condition with k = n − 1 becomes necessary and

sufficient for observability [126].

Three DoF Nonlinear Observability

Most works in the literature (e.g., [34]) use the condition for nonlinear observability

from Theorem 5.3. For completeness we present the observability analysis here.

Given the extended dynamics in (5.3) we have

f(x) =


vnb
Rnb b

03×1

0


g(x) =

[
g1 g2 g3

]

=


03×3

Rnb
01×3

03×3


h(x) = λRvn(Rnb p

b
c + pnb − pnv)

(5.14)

123

where

x = [(pnb − pnv)T , (vnb)T , (bb)T , λ]T

To calculate the observability matrix we first calculate

G = [GT1 ,GT2 ,GT3 ,GT4]T (5.15)

where

G1 =



h

Lfh
L2
fh

L3
fh
...


=



λRvn(Rnb p
b
c + pnb − pnv)

λRvnv
n

λRvnR
n
b b
b

0
...


, G2 =



Lg1Lfh
Lg1Lg1Lfh
Lg2Lg1Lfh
Lg3Lg1Lfh

...


=



λRvnr1
n
b

0

0

0
...



G3 =



Lg2Lfh
Lg1Lg2Lfh
Lg2Lg2Lfh
Lg3Lg2Lfh

...


=



λRvnr2
n
b

0

0

0
...


, G4 =



Lg3Lfh
Lg1Lg3Lfh
Lg2Lg3Lfh
Lg3Lg3Lfh

...


=



λRvnr3
n
b

0

0

0
...


where Rnb = [r1

n
b , r1

n
b , r3

n
b]. Then

O = dG = [dGT1 ,dGT2 ,dGT3 ,dGT4]T (5.16)

where

dG1 =



λRvn 0 0 Rvn(Rnb p
b
c + pnb − pnv)

0 λRvn 0 Rvnv
n
b

0 0 λRvnR
n
b RvnR

n
b b
b

0 0 0 0
...

...
...

...



dG2 =



0 0 0 Rvnr1
n
b

0 0 0 0

0 0 0 0

0 0 0 0
...

...
...

...


, dG3 =



0 0 0 Rvnr2
n
b

0 0 0 0

0 0 0 0

0 0 0 0
...

...
...

...


, dG4 =



0 0 0 Rvnr3
n
b

0 0 0 0

0 0 0 0

0 0 0 0
...

...
...

...


Lastly, we calculate the rank(O) = 10 and thus O is full rank and the system is

locally weakly observable. However, when compared to the observability analysis

in Section 5.2 it is difficult to draw conclusions on the effect that u and pbc have on

124

the observability. In fact it appears to observable regardless of u. Furthermore, this

analysis does not lead to an observer design where as the previous section’s rank

condition is necessary and sufficient for UCO and UCO leads to multiple observer

designs.

5.3 Observer Design

The typical observer used in the literature is an EKF. The EKF equations are

˙̂x = f(x̂, u) +K(y − h(x̂)) (5.17)

Ṗ = −PHTR−1CP + FP + PF T +Q (5.18)

K = PHTR−1 (5.19)

where Q ∈ Rn×n is the process noise covariance, R ∈ Rm×m is the measurement

noise covariance and

F =
∂f

∂x

∣∣∣∣
x̂

H =
∂h

∂x

∣∣∣∣
x̂

When applied to the dynamics for the VISLAM problem (5.3) we obtain

f(x, u) =


vnb

Rnb b
b + u

0

0


h(x) = λRvn(Rnb p

b
c + pnb − pnv)

F =


0 I 0 0

0 0 Rnb 0

0 0 0 0

0 0 0 0


H =

[
Rvnλ̂ 0 0 RvnR

n
b p

b
c +Rvn(ˆpnb − pnv)

]

(5.20)

where x = [(pnb − pnv)T , (vnb)T , (bb)T , λ]T and u = ζ = Rnb f
b
s + gn. We note that

f(x, u) is LTV and does not require linearization, however, h(x) is nonlinear.

A better observer is to use the coordinate transform in (5.10) to obtain the

125

dynamics in (5.3) and then use a Kalman filter (KF). The KF equations are

˙̂z = Aẑ +K(y − Cẑ)

Ṗ = −KCP +AP + PAT +Q

K = PCTR−1

(5.21)

where P ∈ Rn×n is the covariance matrix, K ∈ Rn×m is the Kalman gain, Q ∈ Rn×n

is the process noise covariance and R ∈ Rm×m is the measurement noise covariance.

We remark UCO is a sufficient condition to ensure the stability of a KF for output

error systems [128].

Lastly, we propose an adaptive observer (AO) for (5.11) following the design

in [129] which is an extension of [130]. We consider a general system form

˙̄z = Āz̄ + Ψθ

y = C̄z̄ +Ξθ
(5.22)

where z̄ ∈ Rn̄, Ā ∈ Rn̄×n̄, C̄ ∈ Rm×n̄, Ψ ∈ Rn̄×p, and Ξ ∈ Rm×p are known

time-varying matrices and θ ∈ Rp is a vector of unknown constant parameters.

In [129, 130] two assumptions are given which are necessary to show convergence

of the observer error dynamics. For these assumptions no conditions had been given

such that they hold. Hence in the following theorem we determine a sufficient

condition that assures convergence of the adaptive observer presented afterwards.

Theorem 5.4. If (A,C) with A and C bounded is UCO then:

1. There exists a bounded, locally integrable, time-varying matrix K̄(t) ∈ Rn̄×m

such that the system

η̇ = (Ā− K̄C̄)η (5.23)

is exponentially stable.

2. Let Υ ∈ Rn̄×p be generated by

Υ̇ = (Ā− K̄C̄)Υ + Ψ − K̄Ξ (5.24)

The signal Ψ − K̄Ξ is persistently exciting (PE), i.e., there exists constants α,

β, T and a bounded symmetric positive-definite matrix Σ such that

αI ≤
t+T∫
t

ZT (τ)Σ(τ)Z(τ)dτ ≤ βI, t ≥ 0 (5.25)

where Z(τ) = Ξ(τ) + C̄(τ)Υ (τ).

126

Proof.

1. Following [124, Corollary 5.1] and interpreting it for the continuous time case

there exists a bounded, locally integrable, time-varying matrix K̄(t) such

that (5.23) is exponentially stable if and only if the pair (Ā, C̄) is UD Def-

inition 5.2. Clearly, UCO is a sufficient condition for UD. It is easy to see

that

Φ(s, t) =

Φ̄(s, t)
∫ s
t Φ̄(s, τ)Ψ(τ) dτ

0 1



where Φ̄ is the transition matrix associated with Ā. Thus we get

M(s, t) =

M̄(s, t) ∗
∗ ∗


where M̄(s, t) is the observability Gramian for the pair (Ā, C̄). Hence if (A,C)

is UCO it immediately it follows that (Ā, C̄) is UCO and therefore UD. This

proves Condition 1.

2. We introduce the state matrix

X(t) = [Υ T (t), I]T ∈ Rn×p

and rewrite (5.24) as

Ẋ =

Ā− K̄C̄ Ψ − K̄Ξ
0 0

X
= (A−KC)X

where K(t) = [K̄T (t), 0]T ∈ Rn×m is bounded and locally integrable. Let the

pair (A,C) be UCO, then the pair (A − KC,C) is also UCO [131]. Thus

there exists positive constants α, β, T such that for every bounded symmetric

positive definite matrix Σ(s) ∈ Rm×m

αI ≤
∫ t+T

t
Φ̃T (s, t)CT (s)Σ(s)C(s)Φ̃(s, t) ds ≤ βI (5.26)

where Φ̃ denotes the transition matrix associated to A−KC. Left and right

127

sided multiplication of (5.26) with XT (t) and X(t) respectively yields

ᾱI ≤
∫ t+T

t
XT (s)CT (s)Σ(s)C(s)X(s) ds ≤ β̄I (5.27)

where ᾱ, β̄ are positive constants. The lower bound ᾱ exists sinceXT (t)X(t) ≥
I. The boundedness of X implies β̄ exists. Applying the definitions of C and

X to (5.27) provides

ᾱI ≤
∫ t+T

t
ZT (τ)Σ(s)ZT (τ) ds ≤ β̄I

Hence we have proven Condition 2.

Theorem 5.5. If (A,C) is UCO then

˙̄̂z = Āˆ̄z + Ψθ̂ + (K̄ + ΥΓZΣ)(y − C̄ ˆ̄z −Ξθ̂)
˙̂
θ = ΓZTΣ(y − C̄ẑ −Ξθ̂)

(5.28)

where Γ is a positive definite symmetric matrix, is a globally exponentially stable

(GES) joint state and parameter observer for system (5.22).

For completeness we present a proof based on [129, 130] that requires the fol-

lowing lemma [131, 132].

Lemma 5.1. Let Ω(t) ∈ Rm×p be bounded for all t ≥ 0 and Γ ∈ Rp×p be any

symmetric positive definite matrix. If there exists constants δ, T > 0 such that for

all t ≥ 0 then ẋ(t) = ΓΩT (t)Ω(t)x(t) where x(t) ∈ Rp is exponentially stable.

Proof. We combine the equations from (5.28) to obtain

˙̄̂z = Āˆ̄z + Ψθ̂ + K̄(y − C̄ ˆ̄z −Ξθ̂) + Υ
˙̂
θ

Next, we define the error signals z̃ = z̄ − ˆ̄z and θ̃ = θ − θ̂. Given that θ̇ = 0 we

obtain

˙̃z = (Ā− K̄C̄)z̃ + Ψθ̃ − K̄Ξθ̃ + Υ
˙̃
θ (5.29)

Next, we define the linear combination η = z̃ − Υ θ̃ and thus

η̇ = (Ā− K̄C̄)(η + Υ θ̃) + Ψθ̃ − K̄Ξθ̃ − Υ̇ θ̃

= (Ā− K̄C̄)η +
(

(Ā− K̄C̄)Υ + Ψ − K̄Ξ − Υ̇
)
θ̃

128

Substitution of Υ̇ into η̇ yields

η̇ = (Ā− K̄C̄)η

By assumption (Ā−KC̄) is asymptotically stable, thus η(t)→ 0 as t→∞. Next,

we examine the behavior of θ̃:

˙̃
θ = −ΓZTΣ(y − C̄ẑ +Ξθ̃)

= −ΓZTΣ(C̄z̃ +Ξθ̃)

= −ΓZTΣ
(
C̄(η + Υ θ̃) +Ξθ̃

) (5.30)

Because η(t) → 0 as t → ∞ and all quantities in (5.30) are bounded it is sufficient

for asymptotic stability of θ̃ to consider the dynamics

˙̃
θ = −ΓZTΣ

(
C̄Υ θ̃ +Ξθ̃

)
= −ΓZTΣZθ̃

Finally we apply Lemma 5.1 with Ω = Σ
1
2Z and x = θ̃ and we see that θ̃(t) → 0

when t→∞.

Next, we examine the non-deterministic system.

˙̄z = Āz̄ + Ψθ + nz

θ̇ = nθ

y = C̄z̄ +Ξθ + ny

(5.31)

with noise terms nz ∈ Rn̄, nθ ∈ Rp and ny ∈ Rm.

Theorem 5.6. If the matrix pair (Ā, C̄) with Ā(t) and C̄(t) bounded is UCO and

the noise terms nz, nθ, and ny are bounded then the state and parameter estimation

errors of the adaptive observer (5.28) applied to the system (5.31) are also bounded.

Proof. The proof is based on [129] and then we apply Theorem 5.5. First, we redefine

the error signals from (5.29) and (5.30) to include the noise terms:

˙̃z = (Ā− K̄C̄)z̃ + Ψθ̃ − K̄Ξθ + nz − K̄ny − Υnθ
˙̃
θ = −ΓZTΣ

(
C̄(η + Υ θ̃ + ny) +Ξθ̃

)
+ nθ

(5.32)

From Theorem 5.5 the deterministic versions of z̃ and θ̃ have been proven to be

exponentially stable hence the homogeneous part of (5.32) is exponentially stable.

From [133, Theorem 1 on p. 196] because nz, nθ, and ny are bound and (5.29)

129

and (5.30) are exponentially stable then the error signals (5.32) are uniformly

bounded-input, bounded-output (BIBO) stable.

For the VISLAM problem the parameters of (5.22) are

Ā =

0 I 0

0 0 Rnb
0 0 0

 ∈ R9×9

Ψ =

0

ζ

0

 ∈ R9×1

C̄ =
[
Rvn 0 0

]
∈ R3×9

Ξ = RvnR
n
b p

b
c ∈ R3×1

(5.33)

where θ = λ and z̄ = λ[(pnb −pnv)T , (vnb)T , (bb)T]T ∈ R9. From Theorem 5.5, the rank

condition given in Theorem 5.2 ensure exponential convergence of the error in state

and parameter estimates.

Choosing observer gain matrix K̄ is a nontrivial problem. As the system is LTV,

a suitable constant gain is not straightforward to find. Therefore, a Kalman gain is

used. This will be stabilizing as the UCO condition holds. The matrix Γ ∈ Rp×p

is difficult to tune such that the observer (5.28) has a sufficient convergence rate

and robustness to noise. This led to a time-varying Γ (t) based on a recursive least

squares algorithm with exponential forgetting factor proposed in [129]. We adapt

this approach and use the adaption scheme

Γ̇ = −γ1Γ (CΥ + Ψ)T (CΥ + Ψ)Γ + γ2(y − Cẑ − Ψθ̂)T (y − Cẑ − Ψθ̂)θ̂T θ̂Γ (5.34)

where γ1 > 0, γ2 > 0.

5.4 Parallel Tracking and Mapping

Many VSLAM methods have been proposed in the literature [115]. We choose the

PTAM method which is a camera tracking system originally developed for aug-

mented reality [24]. PTAM separates tracking and mapping into two separate

threads. This allows tracking to run as fast as possible (typically at the frame

rate of the camera), and the computationally demanding bundle adjustment (BA)

(i.e., nonlinear optimization) is run at a slower rate. PTAM uses a keyframe-based

algorithm, which means it optimizes its state over select keyframes and discards all

other frames. These keyframes are distributed over space and allow the algorithm to

130

Tracking Mapping

Camera Initialisation

Pose Estimation

Map point projection

Coarse scale fea-
ture matching
& Pose update

Fine scale feature
matching &
Pose update

Update KF data assoc.
Integrate KF into map

Add new features

New
KF?

Local BA
Local
Conv?

Global BA
Global
Conv?

Update data association

no

yes

yes

no

no

yes

Figure 5.2: A flow diagram of the PTAM algorithm.

remove redundant information within the images. This allows the algorithm to run

in real time. Bundle adjustment or optimization-based VSLAM methods have been

shown to be more accurate and computationally efficient relative to filter-based ap-

proaches [134]. Every time a new image is received, the tracking algorithm attempts

to locate itself to the nearest keyframe using coarse-to-fine feature matching. First,

an estimate of the camera pose is obtained by using a decaying velocity model. Us-

ing this rough pose estimate the algorithm projects a relatively small number of 3 D

points back onto the image. A pinhole camera model which includes barrel radial

distortion is used for this projection. See Section 2.2.1. After the small number of

3 D features have been projected back onto the image the next step is to match

the image features and update the pose. This process is then repeated with a large

number of 3 D features to fine tune the pose. Both the coarse and fine pose updates

are computed by iteratively solving the problem

arg min
p,R

∑
j∈S

Obj

(
|ej |
σj

, σT

)

where j is the image feature, S is the set of coarse or fine image features, σj is

the standard deviation of the measurement noise, Obj(·, σT) is the Tukey biweight

objective function, and σT is a median-based estimate of the distribution’s standard

deviation derived from all of the residuals. The reprojection error ej is calculated

131

by using the camera model (2.33), (2.31). The original PTAM algorithm tracked

around fifty features per image, but on modern hardware it can track thousands of

features.

The mapping thread goes through multiple stages depending on the amount of

processor time it receives. Its first job is to decide when to add another keyframe.

If it decides to add a new frame, it will calculate and store the new map features.

If the algorithm does not need to add a new keyframe it will do a local BA over

the last few images. After a local BA has been completed, PTAM will do a global

BA over all keyframes in its map. Lastly, if the BA has converged and no new

keyframes are needed, the algorithm will attempt to refine the data associated with

the map by making new measurements or revising measurements in old keyframes.

Outlier points can also be deleted at this time. A BA is performed by iteratively

minimizing the same objective function as in the pose updates, but it is now done

over all keyframes (i.e., global BA) or some keyframes (i.e., local BA).

arg min
p,R

N∑
i=1

∑
j∈Si

Obj

(
|ej |
σj

, σT

)

where N is the number of keyframes and Si is the set of image features in keyframe

i. Outlier points can be deleted at this time.

One of the main problems with using the original PTAM algorithm is that it

did not scale well to large environments. Multiple extensions have been proposed

(e.g., [34, 118]) to make it more suitable for UAVs. The version of PTAM used

in this work is based off the Eidgenössische Technische Hochschule Zürich (ETHZ)

PTAM [34] which makes a number of improvements including defining a maximum

number of keyframes, automatic re-initialization, and improved tracker speeds. Ad-

ditionally, a robot operating system (ROS) wrapper was added [103]. A summary

of the PTAM Algorithm is show in Figure 5.2.

5.5 Simulation

5.5.1 Simulations Results

To validate the proposed adaptive observer we simulated it in Matlab/Simulink. A

comparison was performed with a KF designed in the z-coordinates and an EKF

in the original x-coordinates. We simulated the dynamics in (5.3), the observers

in (5.17), (5.21) and (5.33), and the filters in (5.5) and (5.6). The vehicle followed

132

the path

pn(t) =

 0.7 · cos(0.7 · t)
0.7 · sin(0.7 · t)

0.1 · sin(0.35 · t) + 0.03 · t− 1


and had an angular acceleration of

τ b(t) =

 10−4 sin(t+ 1)

10−4 sin(t+ 1.5)

10−4 sin(t+ 2)


The parameters used in the simulation are summarized in Table 5.1.

The results of the simulation demonstrate the stability of the observers and

their robustness to noise. All of the measured signals are shown in Figure 5.3. The

measured acceleration has large variance and bias. Similarly, the measured scaled

position has a large variance. The rotation matrices are represented by the ZYX

Euler angles where Rxy is described by ηxy . Both the measured attitude from N to B
and V to C also include noise. It is important to note in the figure at t = 30 s the

VSLAM system lost tracking and was reset. The system can be reset by occlusion of

the camera (e.g., flying through a cloud), fast motion, by looking at uniform surfaces

(e.g., a white floor), or from a non-static scene (e.g., flying over water). In reality

the outage would be for a finite t > 0 s where the only option for navigation left for

the vehicle is dead reckoning. In the simulation we ignored the outage time as it it

not relevant to this paper. Figure 5.4 shows the 3 D position trajectory of the UAV

during the simulation.

In Figure 5.5 we see the rotational offset between the navigation frame N and

the vision frame V. We can see that at time t = 30 s the orientation of the frame

is reset. In the figure the actual signal is blue, the measured signal is red, and the

output of the low pass filter is in green. The filter converges sufficiently fast that

its does not affect the cascaded observers.

Figure 5.6 shows the state trajectories (position, velocity, bias and scale) for the

EKF in the original coordinates, the KF in the z-coordinates, and the proposed

adaptive observer. It can be seen that the EKF performs well for the first 30 s,

the point where the simulated VSLAM system was forced to reinitialize. Tuning

the EKF to get satisfactory convergence for large as well as for small values of the

scale λ is challenging. The KF and the AO on the other hand show good performance

independent of the value for scale. Furthermore, we can see the negative affect of

slow convergence of the scale factor has on the estimated position and velocity.

Next, in Figure 5.7 we see the translational offset from N to V that is used

to get the estimate of the absolute vehicle position pnb out of the relative position

133

Parameter Value Units

PAO(0) blkdiag(I, I, I) diag(m2/s2,m2/s4,m2/s4)

QAO blkdiag(0, 10−4I, 10−4I) diag(m2/s3,m2/s5,m2/s5)

RAO 0.5 · 10−3I diag(m2,m2,m2)

Σ I 1/(m2 s)

Γ (0) 50 -

γ1 2 · 10−3 -

γ2 5 · 10−3 -

PEKF(0), PKF(0) blkdiag(PAO(0), 0.1) diag(m2/s2,m2/s4,m2/s4, -)

QEKF, QKF blkdiag(QAO, 10−4) diag(m2/s3,m2/s5,m2/s5, 1/s)

REKF, RKF RAO diag(m2,m2,m2)

(a) Observer parameters.

Parameter Value Units

pnb (0) [0.7, 0,−1]T m

vnb (0) [0, 0.49, 0.035]T m/s

bb [1,−1, 0.5]T m/s2

λ(t < 30) 2 -

λ(t ≥ 30) 0.5 -

(pnb − pnv) [0, 0, 0]T m

v̂nb (0) [0, 0, 0]T m/s

b̂b(0) [0, 0, 0]T m/s2

λ̂(0) 1 -

(b) State and observer initial conditions.

Parameter Value Units

gn [0, 0, 9.81]T m/s2

ωb(0) [0, 0, 0]T rad/s

Rbn(0) I -

ηnv(t < 30) [20, 40, 60]T deg

ηnv(t ≥ 30) [−60,−20, 70]T deg

p̂nb (tref = 0) pnb (t = 0) m

p̂nb (tref = 30) p̂nb (t = 30) m

(c) Miscellaneous parameters.

Table 5.1: Parameters used in the VSE simulation.

134

t (s)
0 20 40 60

f
b s
(m

/s
2
)

-20

-10

0

10

20

(a) Specific force in B
t (s)

0 20 40 60

y
(p
ix
el
·
m
)

-8

-6

-4

-2

0

2

(b) VSLAM output - scaled position

t (s)
0 20 40 60

η
b n
(d
eg
)

-180

-90

0

90

180

(c) Vehicle attitude in N
t (s)

0 20 40 60

η
c v
(d
eg
)

-180

-90

0

90

(d) Camera attitude in V

Figure 5.3: The measured signals from the VISLAM simulation. The actual signal
is black and the measured noisy and biased signal is in red, green and blue. At time
t = 30 s the VSLAM system was forced to reset.

State EKF KF AO

pnb (m) 0.50 0.31 0.29

vnb (m/s) 0.32 0.21 0.19

bb (m/s2) 0.09 0.11 0.13

λ 0.60 0.52 0.47

Table 5.2: RMSE of state trajectory for the VSE simulation.

estimate for (pnb − pnv). It is important to note that the translational subsystem

relies on a convergent estimate of the scale factor. Finally, the root mean square

error (RMSE) for the states and the different observers over the entire simulation

is given in Table 5.2. It also shows that the AO and the KF outperform the EKF.

5.5.2 Summary

Compared to the typical EKF-based approach our approach demonstrated improved

performance.

135

-10

pnb,2 (m)
1-1

pnb,1 (m)
01

-0.5

0

1

-1

0.5

p
n b,
3
(m

)

Figure 5.4: 3 D position trajectory of pnb
for the VISLAM simulation.

t (s)
0 20 40 60

η
v n
(d
eg
)

-90

-45

0

45

90

Figure 5.5: The Rotation between the
navigation frameN and the vision frame
V. The actual signal is blue, the mea-
sured signal is red, and the output of
the low pass filter is in green.

t (s)
0 20 40 60

p
n b
(m

)

-3

-2

-1

0

1

2

3

t (s)
0 20 40 60

p
n b
(m

)

-3

-2

-1

0

1

2

3

t (s)
0 20 40 60

p
n b
(m

)
-3

-2

-1

0

1

2

3

t (s)
0 20 40 60

v
n b
(m

/s
)

-2

-1

0

1

2

t (s)
0 20 40 60

v
n b
(m

/s
)

-2

-1

0

1

2

t (s)
0 20 40 60

v
n b
(m

/s
)

-2

-1

0

1

2

t (s)
0 20 40 60

b
b
(m

/s
2
)

-2

-1

0

1

2

t (s)
0 20 40 60

b
b
(m

/s
2
)

-2

-1

0

1

2

t (s)
0 20 40 60

b
b
(m

/s
2
)

-2

-1

0

1

2

t (s)
0 20 40 60

λ

0

1

2

3

(a) EKF

t (s)
0 20 40 60

λ

0

1

2

3

(b) KF

t (s)
0 20 40 60

λ

0

1

2

3

(c) AO

Figure 5.6: Simulated position, velocity, bias, and scale trajectories. The actual
trajectories are denoted by solid lines and the estimated trajectories are dashed.

136

t (s)
0 20 40 60

p
n v
(d
eg
)

-10

-5

0

5

10

(a) EKF

t (s)
0 20 40 60

p
n v
(d
eg
)

-10

-5

0

5

10

(b) KF

t (s)
0 20 40 60

p
n v
(d
eg
)

-10

-5

0

5

10

(c) AO

Figure 5.7: Simulated trajectories for position offset pnv from the vision frame V to
the navigation frame N . The actual position offset is denoted by solid lines and the
estimated offset is dashed.

KF, EKF AO

Q blkdiag(0, 0, 106 · I, 5× 105) blkdiag(0, 0, 106)

R diag(4× 103, 4× 103, 28) diag(4× 103, 4× 103, 28)

Γ - 100

Σ - 7× 103 ·R−1

Table 5.3: Experimental observer parameters for hand held VSE experiment.

5.6 Handheld Experiment

5.6.1 Experimental Results

Using the computer vision system shown in Figure 3.9 we manually moved the box

with the camera and IMU around the lab exciting all three axes of the accelerometer.

To simulate a UAV flying over a city we placed a play rug of an overhead view of a

city onto the laboratory floor. Table 5.3 provides the observer parameters. A screen

shot of the camera view during the experiment is shown in Figure 5.8. The coloured

points shown in Figure 5.8 are 3 D map points being tracked in the current image.

In Figure 5.9 the scaled 3 D map created by PTAM during the experiment is shown.

The coloured points are the 3 D map point being tracked and the coordinate axes

represent the pose of the keyframes. The acceleration as measured by the vehicle

in B during the experiment is shown in Figure 5.10. The observer estimates are

shown in Figure 5.11. The figure shows the AO and KF have convergent position,

velocity, and bias estimates. The EKF diverges and no noise parameters could

be found that ensure convergence. It is interesting to note the bias estimates for

all observers are not constant as predicted by our model (5.3). This is due to a

misalignment of the IMU to B which introduces an error in f bs . We observed the

KF and AO are robust to this model error whereas the EKF was not.

137

Figure 5.8: A screen shot of the camera view during the experiment. The coloured
points are 3 D points from the map that are being tracked in the image.

Figure 5.9: A scaled 3 D map created by PTAM during the experiment. The
coloured points are 3 D map point being tracking and the red axes represent
keyframe poses.

138

t (s)
0 50

a
b 1
(m

/s
2
)

-3

-2

-1

0

1

t (s)
0 50

a
b 2
(m

/s
2
)

-3

-2

-1

0

1

t (s)
0 50

a
b 3
(m

/s
2
)

8

10

Figure 5.10: Vehicle acceleration during the VISLAM experiment.

Figure 5.11: State estimates for AO (green), KF (blue), and EKF (red). MCS
ground truth is in black.

139

Observer Gains

EKF R−1 = 50I, Q = blkdiag (0, 0.01I, 0.05I, 0)

KF R−1 = 100I, Q = blkdiag (0, 0.01I, 0.05I, 0)

AKG R−1 = 1000I, Q = blkdiag (0, 0.01I, 0.05I),

Σ = 100I, Γ = 2

ACG K = [50I, 25I, 32I]T , Σ = 100I, Γ = 36

Table 5.4: Observer parameters for VSE experiment.

5.6.2 Summary

In this section we presented the experimental validation of the proposed observers

including a comparison with an EKF. Results showed the proposed observers con-

verged in face of errors in f bs . The experiment showed the EKF did not converge

due to this error.

5.7 Flight Experiment

5.7.1 Experimental Results

In experiment we examined the scenario of a quadrotor flying in a circle trajectory:

pn∗(t) =

a cos(wt)

a sin(wt)

−1


T

where pn∗(t) is the desired position of the quadrotor in N , a = 0.55 m and

w = 0.70 Hz. This trajectory was chosen as it is a simple pattern that excites the

accelerometer in two axis, but has zero acceleration in the third. The experiments

compared four observers: an EKF (5.17) in the original coordinates, an KF (5.21)

in the z coordinates, and two adaptive observers (5.33). One with a constant gain

(ACG) and one with a Kalman gain (AKG). The observer parameters used in the

experiment are shown in Table 5.4. All of the observers started with an initial

estimate

x̂(0) =


p̂n(0)

v̂n(0)

b̂b(0)

λ̂(0)

 =


[0, 0, 0]T

[0, 0, 0]T

[−0.5, 0, 0.5]T

1


140

(a) EKF (b) KF (c) AKG (d) ACG

Figure 5.12: Position trajectories. The actual position is solid and estimated is
dashed.

(a) EKF (b) KF (c) AKG (d) ACG

Figure 5.13: Velocity trajectories. The actual velocity is solid and estimated is
dashed.

(a) EKF (b) KF (c) AKG (d) ACG

Figure 5.14: Bias trajectories. The actual bias is solid and estimated is dashed.

(a) EKF (b) KF (c) AKG (d) ACG

Figure 5.15: Scale trajectory. The actual scale is solid and estimated is dashed.

(a) Specific Force (b) Specific Force (c) Specific Force (d) Scaled Output

Figure 5.16: The input (specific force) and output (scaled position) of the simulated
quadrotor dynamics. The raw accelerometer values are in blue and the filtered
values are in green.

141

Using the Applied Nonlinear Control Lab (ANCL) quadrotor platform we flew

the quadrotor in a circle trajectory. To simulate a UAV flying over a city we placed

a play rug of an overhead view of a city onto the laboratory floor. A screen shot

of the camera view during the experiment is shown in Figure 5.17. The green

crosses shown in the figure are the 2 D image features being tracked in the current

image. Figure 5.16 shows the specific force and scaled position measured during the

experiment. Specific force was low-pass filtered before being used in the observer

designs. Figure 5.12–Figure 5.15 show the trajectories of the state estimate for the

four observers: position, velocity, bias, and scale, respectively. The figures show all

four observers have convergent states estimates. In general all of the observers had

slow, but acceptable, convergence of the VSLAM scale. The convergence rate can be

increased with larger gains, but the observers become less robust. The RMSE for the

states over the entire experiment is shown in Table 5.5. The table shows improved

performance of the proposed observers over the existing EKF. The RMSE position

error between VSLAM system using the actual scale and the MCS is 0.1 mm for the

entire flight. We note that the actual accelerometer bias and VSLAM scale are not

known. A pre-calibration was performed on the accelerometer to remove a constant

bias and is needed to run the PX4’s AHRS. This pre-calibration is not prefect and

does not account for the turn on bias. Hence, we assume for these experiments the

bias is bb ≈ [0, 0, 0]T . The actual scale was calculated numerically as the scale value

that minimizes the position error between the MCS and the VSLAM system. We

can calculate the rotation between the navigation frame N and the vision frame V
algebraically as follows

Rnv = RnbR
b
cR

v
c
T (5.35)

where Rbc is the rotation from C to B, and Rvc is the rotation from C to V. The

onboard AHRS measures Rnb and the VSLAM system measures Rvc . We roughly

estimated

Rbc =

0 −1 0

1 0 0

0 0 1


In Figure 5.18 we see the estimated value of Rvn expressed using ZYX Euler an-

gles ηnv. The dashed line was calculated using (5.35) and the solid line was calcu-

lated using the nonlinear least squares. There is an approximately [12, 10, 7]T degree

difference between the two estimates. This difference can be explained by small er-

rors in the inter-sensor calibrations. Inter-sensor calibration can be improved by

using methods such as [104].

142

Figure 5.17: Sample image from the flight. The highlighted points are the 2 D image
features being tracked.

State EKF KF AKG ACG

pn (m) 0.09 0.07 0.06 0.09

vn (m/s) 0.08 0.07 0.05 0.15

bb (m/s2) 0.11 0.11 0.07 0.16

λ 0.19 0.15 0.12 0.06

Table 5.5: RMSE of state estimate error for the VSE experiment

Figure 5.18: The rotation Rvn between the navigation frame N and the vision
frame V. The values are calculated using nonlinear least square (solid) and algebraic
(dashed) methods.

143

Observer EKF KF AKG ACG

States 10 10 9 9

Parameters 0 0 1 1

Covariance Matrix 10× 10 10× 10 9× 9 -

Υ 0 0 9 9

Total 110 110 100 19

Minimum Representation 65 65 64 19

Table 5.6: Number of states per VSE observer.

5.7.2 Summary

Experimental results of the observers showed accurate position and velocity esti-

mates even when processing noisy flight data.

5.8 Conclusion

In this chapter we presented an observability analysis for the VISLAM problem and

proposed an adaptive observer. We fused the scaled position measurement from a

VSLAM system with IMU measurements. We then introduced a coordinate trans-

formation which put the system into a LTV coordinates. We presented conditions

for the stability of the adaptive observer given in terms of UCO. Compared to the

typical EKF-based approach our approach demonstrated improved performance, did

not require linearization of the state equations, and we provided a stability proof for

the observer. An important difference between the four observers is the numbers of

states required. For the EKF and KF there are ten states for the dynamics plus a

n × n covariance matrix. Due to the covariance matrix being symmetric is can be

represented by n(n + 1)/2 states. The adaptive observers have one less state and

one parameter. They require an extra n states due to Υ . Additionally the adaptive

observer with a Kalman gain has a covariance matrix. A summary of the number of

states is shown in Table 5.6. Experimental results of the observers showed accurate

position and velocity estimates even when processing noisy flight data.

144

Chapter 6

Conclusion

6.1 Conclusions

With the goal of creating a fully autonomous unmanned aerial vehicle (UAV), we cre-

ated the Applied Nonlinear Control Lab (ANCL) quadrotor platform. The quadro-

tor can be used for any number of applications such as surveillance or infrastructure

inspection. This thesis helps develop some of the tools necessary for almost all

autonomous missions. When global navigation satellite system (GNSS) is not avail-

able, computer vision (CV) is one of the best options for stable flight. CV can

provide accurate state estimation for both position-based visual servoing (PBVS)

and image-based visual servoing (IBVS).

In this thesis we presented the ANCL quadrotor platform. It has been designed

with both open source and open hardware concepts in mind. Like most modern

hardware platforms it is in a constant state of change as newer technology emerges.

Increasingly more complicated CV algorithms and more advanced control strategies

are being made possible onboard UAVs. It has proven itself to be a powerful research

platform in nonlinear controls and CV as it has been used in many published exper-

iments. Furthermore, it has been an essential education tool for understanding CV

and control theory. An important aspect of this work is that all of the algorithms

were validated in experiment whereas most of the work in the literature on visual

servoing (VS) has not.

In this thesis we investigated the control of a quadrotor using nonlinear dynamic

image-based visual servoing (DIBVS) to regulate the lateral position of the vehicle

relative to a static and moving visual feature point on the ground. All of the control

laws are dynamic in that they directly account for the vehicles dynamics. They also

share the same idea of rewriting the dynamics into a form where the design is sim-

plified. Our approach is validated experimentally which demonstrates the method

is robust to model uncertainty (e.g., errors in modelling aerodynamic forces). When

145

compared to other DIBVS control laws in the literature the proposed control laws

demonstrate similar performance and benefit from reduced computational complex-

ity. This is an important attribute for onboard implementation with inexpensive

microcontrollers.

Lastly, in this thesis we presented an observability analysis for the visual inertial

simultaneous localization and mapping (VISLAM) problem and proposed an adap-

tive observer. We fused the scaled position measurement from a visual simultaneous

localization and mapping (VSLAM) system with inertial measurement unit (IMU)

measurements. We then introduced a coordinate transform that made the system

linear time-varying (LTV). We presented conditions for the stability of the adaptive

observer given in terms of uniform complete observability (UCO). Compared to the

typical extended Kalman filter (EKF)-based approach our approach demonstrated

improved performance, did not require linearization of the state equations, and pro-

vided a stability proof for the observer. An important difference between the four

observers is the numbers of states required. For the EKF and Kalman filter (KF)

there are ten states for the dynamics plus a n × n covariance matrix. Due to the

covariance matrix being symmetric is can be represented by n(n+ 1)/2 states. The

adaptive observers have one less state and one parameter. They require an extra

n states due to Υ . Additionally the adaptive observer with a Kalman gain has a

covariance matrix. Experimental results of the observers showed accurate position

and velocity estimates even when processing noisy flight data.

6.2 Future Work

There is still a lot of research left to be done in CV for UAVs. The algorithms

developed throughout this thesis are the basic building blocks for many UAV mis-

sions. However, there are a few remaining challenges before they become widely

used in industry. First and foremost is the reliability and robustness of CV tracking

algorithms. There is no perfect tracking algorithm and the aviation industry has

very high safety standard for UAVs. If CV is being used to follow a target and the

trackers loses the target then the UAV can land and there are not a lot of safety

concerns. However, if the UAV is using CV for its state estimate and then it loses

tracking it can cause flyways or crashes. Another problem with CV happens with

occlusion. It is relatively easy to have a third party object come between the tar-

get/environment and the camera. This is also almost entirely out of the control of

the UAV. Thirdly, trackers rely on the target being tracked to be visually constant.

This means the object can not be transparent, change in shape, size or colour. Due

to varying light conditions the colour of the target is constantly changing. Lastly, a

lot of CV rely on a static environment. For example, with VSLAM it is not possible

146

over a busy street or water as most of the image will not be static, hence almost all

of the points being tracked in the image will be noise. Despite these challenges the

future of CV looks promising and is always improving.

The IBVS control laws presented in this thesis are sound building blocks for more

intricate control schemes. Current research is moving towards auxiliary topics such

as input saturation or output feedback. Other current area of research are optical

flow algorithms and sensorless velocity output feedback. This is because the current

IBVS laws require a linear velocity estimate. Additional research is also being done

on more complicated missions such as coordinated flight or slung loads.

VSLAM methods are continuously being improved and can offer up to centimetre

accuracy. Algorithms are now able to handle much larger areas with faster camera

movement. While VSLAM methods have made great improvements they still suffer

from the same problems as described above with CV. VISLAM methods obviously

rely on good quality measurements from the VSLAM methods. Sensor fusion with

multiple sensors are making VISLAM methods more robust. Future research will

also focus on tightly coupled methods which greatly increases the complexity of the

algorithm, but can also account for all of the correlations between the sensors and

thus increase the accuracy.

147

Bibliography

[1] F. Kendoul, “Survey of advances in guidance, navigation, and control of un-
manned rotorcraft systems,” Journal of Field Robotics, vol. 29, no. 2, pp.
315–378, Mar./Apr. 2012.

[2] C. Kanellakis and G. Nikolakopoulos, “Survey on computer vision for UAVs:
Current developments and trends,” Journal of Intelligent & Robotic Systems,
vol. 87, no. 1, pp. 141–168, Jul. 2017.

[3] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo control,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 5, pp. 651–670,
Oct. 1996.

[4] O. Shakernia, Y. Ma, T. J. Koo, and S. Sastry, “Landing an unmanned air
vehicle: Vision based motion estimation and nonlinear control,” Asian Journal
Control, vol. 1, no. 3, pp. 128–145, Sep. 1999.

[5] E. Altug, J. Ostrowski, and C. Taylor, “Control of a quadrotor using dual
camera visual feedback,” in Proceedings of the 2003 IEEE International Con-
ference on Robotics and Automation, vol. 3, Taipei, Taiwan, Sep. 2003, pp.
4294–4299.

[6] A. D. Wu, E. N. Johnson, and A. A. Proctor, “Vision-aided inertial naviga-
tion for flight control,” Journal of Aerospace Computing, Information, and
Communication, vol. 2, no. 9, pp. 348–360, 2005.

[7] L. Mejias, P. Campoy, S. Saripalli, and G. S. Sukhatme, “A visual servoing
approach for tracking features in urban areas using an autonomous helicopter,”
in Proceedings of the 2006 IEEE International Conference on Robotics and
Automation, Orlando, FL, May 2006, pp. 2503–2508.

[8] S. Azrad, F. Kendoul, and K. Nonami, “Visual servoing of quadrotor micro-air
vehicle using color-based tracking algorithm,” Journal of System Design and
Dynamics, vol. 4, no. 2, pp. 255–268, 2010.

[9] L. Garcia Carrillo, E. Rondon, A. Sanchez, A. Dzul, and R. Lozano, “Sta-
bilization and trajectory tracking of a quad-rotor using vision,” Journal of
Intelligent Robotic Systems, vol. 61, no. 1, pp. 103–118, 2011.

[10] F. Fraundorfer, L. Heng, D. Honegger, G. Lee, L. Meier, P. Tanskanen, and
M. Pollefeys, “Vision-based autonomous mapping and exploration using a

148

quadrotor MAV,” in Proceedings of the 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Vilamoura, Portugal, Oct. 2012,
pp. 4557–4564.

[11] I. Sa and P. Corke, “Close-quarters quadrotor flying for a pole inspection with
position based visual servoing and high-speed vision,” in Proceedings of the
2014 International Conference on Unmanned Aircraft Systems, May 2014, pp.
623–631.

[12] B. Tamadazte, E. Marchand, S. Dembélé, and N. L. Fort-Piat, “CAD model-
based tracking and 3D visual-based control for MEMS microassembly,” The
International Journal of Robotics Research, vol. 29, no. 11, pp. 1416–1434,
2010.

[13] D. Lee, T. Ryan, and H. Kim, “Autonomous landing of a VTOL UAV on
a moving platform using image-based visual servoing,” in Proceedings of the
2012 IEEE International Conference on Robotics and Automation, Saint Paul,
MN, 2012, pp. 971–976.

[14] S. Lin, M. A. Garratt, and A. J. Lambert, “Monocular vision-based real-time
target recognition and tracking for autonomously landing an uav in a cluttered
shipboard environment,” Autonomous Robots, vol. 41, no. 4, pp. 881–901, Apr.
2017.

[15] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual navigation for mobile robots:
A survey,” Journal of Intelligent and Robotic Systems, vol. 53, no. 3, pp.
263–296, 2008.

[16] D. Scaramuzza and F. Fraundorfer, “Visual odometry: Part I: The first 30
years and fundamentals,” IEEE Robotics and Automation Magazine, vol. 18,
no. 4, pp. 80–92, Dec. 2011.

[17] F. Fraundorfer and D. Scaramuzza, “Visual odometry : Part II: Matching,
robustness, optimization, and applications,” IEEE Robotics and Automation
Magazine, vol. 19, no. 2, pp. 78–90, Jun. 2012.

[18] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An overview to visual
odometry and visual slam: Applications to mobile robotics,” Intelligent In-
dustrial Systems, vol. 1, no. 4, pp. 289–311, Dec. 2015.

[19] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping:
part I,” IEEE Robotics and Automation Magazine, vol. 13, no. 2, pp. 99–110,
Jun. 2006.

[20] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping
(SLAM): part II,” IEEE Robotics and Automation Magazine, vol. 13, no. 3,
pp. 108–117, 2006.

[21] J. Neira, A. J. Davison, and J. J. Leonard, “Guest editorial special issue on
visual SLAM,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 929–931,
Oct. 2008.

149

[22] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J. J. Leonard, “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Transactions on Robotics,
vol. 32, no. 6, pp. 1309–1332, Dec. 2016.

[23] J. Civera, A. J. Davison, and J. M. Mart́ınez Montiel, Structure from Motion
using the Extended Kalman Filter. Springer Berlin Heidelberg, 2012, vol. 75.

[24] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proceedings of the 2007 IEEE and ACM International Sympo-
sium on Mixed and Augmented Reality, Nara, Japan, Nov. 2007, pp. 225–234.

[25] J. Civera, A. Davison, and J. Montiel, “Inverse depth parametrization for
monocular SLAM,” Robotics, IEEE Transactions on, vol. 24, no. 5, pp. 932–
945, Oct. 2008.

[26] T. Pire, T. Fischer, G. Castro, P. DeCristforis, J. Civera, and J. JacoboBerlles,
“S-PTAM: Stereo parallel tracking and mapping,” Robotics and Autonomous
Systems, vol. 93, no. Supplement C, pp. 27 – 42, 2017.

[27] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-
time single camera SLAM,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 29, no. 6, pp. 1052–1067, Jun. 2007.

[28] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0: An
improved particle filtering algorithm for simultaneous localization and map-
ping that provably converges,” in Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003.

[29] R. Mur-Artal and J. D. Tards, “ORB-SLAM2: An open-source slam system
for monocular, stereo, and RGB-D cameras,” IEEE Transactions on Robotics,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

[30] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
KITTI dataset,” The International Journal of Robotics Research, vol. 32,
no. 11, pp. 1231–1237, 2013.

[31] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stach-
niss, and A. Kleiner, “On measuring the accuracy of SLAM algorithms,” Au-
tonomous Robots, vol. 27, no. 4, p. 387, Sep. 2009.

[32] A. Quattrini Li, A. Coskun, S. M. Doherty, S. Ghasemlou, A. S. Jagtap,
M. Modasshir, S. Rahman, A. Singh, M. Xanthidis, J. M. O’Kane, and I. Rek-
leitis, Experimental Comparison of Open Source Vision-Based State Estima-
tion Algorithms. Cham: Springer International Publishing, 2017, pp. 775–786.

[33] M. Bryson and S. Sukkarieh, Inertial Sensor-Based Simultaneous Localization
and Mapping for UAVs. Dordrecht: Springer Netherlands, 2015, pp. 401–431.

[34] S. M. Weiss, “Vision based navigation for micro helicopters,” Ph.D. disserta-
tion, ETH Zürich, Zürich, Switzerland, 2012.

150

[35] S. Leutenegger, “Design and algorithms for efficient and robust autonomous
operation,” Ph.D. dissertation, ETH Zürich, Zürich, Switzerland, 2014.

[36] A. Concha, G. Loianna, V. Kumar, and J. Civera, “Visual-inertial direct
SLAM,” in Proceedings of the 2016 IEEE International Conference on Robotics
and Automation, Stockholm, Sweeden, May 2016.

[37] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab, “A dataset and evalu-
ation methodology for template-based tracking algorithms,” in Proceedings of
the 2009 IEEE and ACM International Symposium on Mixed and Augmented
Reality, Oct. 2009, pp. 145–151.

[38] T. Dick, C. Perez, M. Jagersand, and A. Shademan, “Realtime registration-
based tracking via approximate nearest neighbour search,” in Proceedings of
Robotics: Science and Systems, Berlin, Germany, Jun. 2013.

[39] T. Hamel and R. Mahony, “Visual servoing of an under-actuated dynamic
rigid-body system: an image-based approach,” IEEE Transactions on Robotics
and Automation, vol. 18, no. 2, pp. 187–198, 2002.

[40] ——, “Image based visual servo control for a class of aerial robotic systems,”
Automatica, vol. 43, no. 11, pp. 1975–1983, Nov. 2007.

[41] F. L. Bras, R. Mahony, T. Hamel, and P. Binetti, “Dynamic image-based vi-
sual servo control for an aerial robot: Theory and experiments,” International
Journal of Optomechatronics, vol. 2, no. 3, pp. 296–325, 2008.

[42] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invitation to 3D Vision: From
Images to Geometric Models. New York, NY: Springer-Verlag, 2003.

[43] N. Metni and T. Hamel, “Visual tracking control of aerial robotic systems with
adaptive depth estimation,” International Journal of Control, Automation and
Systems, vol. 5, no. 1, pp. 51–60, 2007.

[44] H. de Plinval, P. Morin, P. Mouyon, and T. Hamel, “Visual servoing for un-
deractuated VTOL UAVs: a linear, homography-based framework,” Interna-
tional Journal of Robust. Nonlinear Control, vol. 24, no. 16, pp. 2285–2308,
Apr. 2013.

[45] R. Ozawa and F. Chaumette, “Dynamic visual servoing with image moments
for an unmanned aerial vehicle using a virtual spring approach,” Advanced
Robotics, vol. 27, no. 9, pp. 683–696, 2013.

[46] D. Lee, H. Lim, H. Kim, Y. Kim, and K. Seong, “Adaptive image-based
visual servoing for an underactuated quadrotor system,” Journal of Guidance,
Control, and Dynamics, vol. 35, no. 4, pp. 1335–1353, 2012.

[47] H. Jabbari Asl, G. Oriolo, and H. Bolandi, “An adaptive scheme for image-
based visual servoing of an underactuated UAV,” International Journal of
Robotics and Automation, vol. 29, no. 1, pp. 92–104, 2014.

151

[48] H. Jabbari Asl and J. Yoon, “Robust image-based control of the quadrotor
unmanned aerial vehicle,” Nonlinear Dynamics, vol. 85, no. 3, pp. 2035–2048,
Aug. 2016.

[49] H. Xie, “Dynamic visual servoing of rotary wing unmanned aerial vehicles,”
Ph.D. dissertation, University of Alberta, Edmonton, AB, Feb. 2016.

[50] H. Xie, K. H. Low, and Z. He, “Adaptive visual servoing of unmanned aerial
vehicles in gps-denied environments,” IEEE/ASME Transactions on Mecha-
tronics, vol. 22, no. 6, pp. 2554–2563, Dec. 2017.

[51] H. K. Galoogahi, A. Fagg, C. Huang, D. Ramanan, and S. Lucey,
“Need for speed: A benchmark for higher frame rate object tracking,”
Computing Research Repository, vol. abs/1703.05884, 2017. [Online].
Available: http://arxiv.org/abs/1703.05884

[52] P. Liang, Y. Wu, and H. Ling, “Planar object tracking in the wild:
A benchmark,” Computing Research Repository, 2017. [Online]. Available:
http://arxiv.org/abs/1703.07938

[53] M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual odometry on
the mars exploration rovers,” Journal of Field Robotics, vol. 24, no. 3, pp.
169–186, 2007.

[54] G. Fink, H. Xie, A. F. Lynch, and M. Jagersand, “Nonlinear dynamic visual
servoing of a quadrotor,” Journal of Unmanned Vehicle Systems, vol. 3, no. 1,
pp. 1–21, 2015.

[55] ——, “Experimental validation of dynamic visual servoing for a quadrotor
using a virtual camera,” in Proceedings of the 2015 International Conference
on Unmanned Aircraft Systems, Denver, CO, Jun. 2015, pp. 1231–1240.

[56] H. Xie, G. Fink, A. F. Lynch, and M. Jagersand, “Adaptive dynamic visual
servoing of a UAV,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 52, no. 5, pp. 2529–2538, 2016.

[57] G. Fink, H. Xie, A. F. Lynch, and M. Jagersand, “Dynamic visual servoing
for a quadrotor using a virtual camera,” Unmanned Systems, vol. 5, no. 1, pp.
1–17, 2017.

[58] G. Fink, M. Franke, and A. F. Lynch, “Visual inertial slam: Application
to unmanned aerial vehicles,” in Proceedings of the 2016 Unmanned Systems
Canada Conference, Edmonton, AB, Nov. 2016, pp. 1–6, student paper award.

[59] G. Fink, M. Franke, A. F. Lynch, K. Röbenack, and B. Godbolt, “Visual
inertial SLAM: Application to unmanned aerial vehicles,” in Procedings of the
20th IFAC World Congress, Toulouse, France, Jul. 2017, pp. 2001–2006.

[60] ——, “Observer design for visual inertial SLAM scale on a quadrotor UAV,”
in Proceedings of the 2017 International Conference on Unmanned Aircraft
Systems, Miami, FL, Jun. 2017, pp. 830–839.

152

http://arxiv.org/abs/1703.05884
http://arxiv.org/abs/1703.07938

[61] G. Fink, M. Franke, A. F. Lynch, and K. Röbenack, “Observer design for
monocular visual inertial SLAM,” Automatisierungstechnik, vol. 66, no. 3, pp.
246–257, Mar. 2018.

[62] G. Fink, A. Othmane, M. Konz, D. Kastelan, and A. F. Lynch, “Motion
control of unmanned aerial vehicles (UAV’s) with time delay compensation,”
in Proceedings of the 2015 Unmanned Systems Canada Conference, Halifax,
NS, Nov. 2015, student paper finalist.

[63] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modelling and Con-
trol. New York, NY: Wiley, 2006.

[64] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Precision
flight control for a multi-vehicle quadrotor helicopter testbed,” Control Engi-
neering Practice, vol. 19, no. 9, pp. 1023–1036, 2011.

[65] S. Omari, M.-D. Hua, G. Ducard, and T. Hamel, “Nonlinear control of VTOL
UAVs incorporating flapping dynamics,” in Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo, Nov. 2013,
pp. 2419–2425.

[66] S. Bouabdallah, “Design and control of quadrotors with application to au-
tonomous flying,” Ph.D. dissertation, Ecole Polytechnique Federale de Lu-
asanne, Lausanne, Switzerland, 2007.

[67] R. Beard and T. McLain, Small Unmanned Aircraft: Theory and Practice.
New Jersey, USA: Princeton University Press, 2012.

[68] M. Bangura, M. Melega, R. Naldi, and R. Mahony, “Aerodynamics of rotor
blades for quadrotors,” ArXiv e-prints, p. 42, Jan. 2016. [Online]. Available:
http://arxiv.org/abs/1601.00733

[69] P. Castillo, R. Lozano, and A. Dzul, Modelling and control of mini flying
machines. New York City, USA: Springer-Verlag, 2005.

[70] R. Mahony, R. W. Beard, and V. Kumar, Modeling and Control of Aerial
Robots. Cham: Springer International Publishing, 2016, pp. 1307–1334.

[71] B. Godbolt, “Experimental nonlinear control of a helicopter unmanned aerial
vehicle (UAV),” Ph.D. dissertation, University of Alberta, Edmonton, AB,
2013.

[72] L. Meier, “PX4 autopilot,” http://pixhawk.org/ [accessed 01 Jan 2018],
Institute for Visual Computing, Swiss Federal Institute of Technology Zurich,
2016. [Online]. Available: http://pixhawk.org/

[73] F. Kendoul, I. Fantoni, R. Lozano et al., “Asymptotic stability of hierarchi-
cal inner-outer loop-based flight controllers,” in Procedings of the 17th IFAC
World Congress, 2008, pp. 1741–1746.

[74] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
2nd ed., ser. Cambridge Books Online. Cambridge, England: Cambridge
University Press, 2003, vol. 1.

153

http://arxiv.org/abs/1601.00733
http://pixhawk.org/
http://pixhawk.org/

[75] F. Devernay and O. Faugeras, “Straight lines have to be straight: Automatic
calibration and removal of distortion from scenes of structured enviroments,”
Machine Vision and Applications, vol. 13, no. 1, pp. 14–24, Aug. 2001.

[76] J. Kannala and S. S. Brandt, “A generic camera model and calibration method
for conventional, wide-angle, and fish-eye lenses,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1335–1340, Aug.
2006.

[77] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision and Pat-
tern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer Society
Conference on, Jun. 1994, pp. 593–600.

[78] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” In-
ternational Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[79] E. Rosten and T. Drummond, Machine Learning for High-Speed Corner De-
tection. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 430–443.

[80] H. Bay, T. Tuytelaars, and L. Van Gool, SURF: Speeded Up Robust Features.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404–417.

[81] M. Agrawal, K. Konolige, and M. R. Blas, CenSurE: Center Surround Ex-
tremas for Realtime Feature Detection and Matching. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 102–115.

[82] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, Adaptive and
Generic Corner Detection Based on the Accelerated Segment Test. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 183–196.

[83] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in 2011 International Conference on Computer
Vision, Nov. 2011, pp. 2564–2571.

[84] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, BRIEF: Binary Robust Inde-
pendent Elementary Features. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 778–792.

[85] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust invariant
scalable keypoints,” in 2011 International Conference on Computer Vision,
Nov. 2011, pp. 2548–2555.

[86] G. Levi and T. Hassner, “LATCH: Learned arrangements of three patch
codes,” in Proceedings of the 2016 IEEE Winter Conference on Applications
of Computer Vision, Mar. 2016, pp. 1–9.

[87] B. Herissé, T. Hamel, R. Mahony, and F. X. Russotto, “Landing a VTOL un-
manned aerial vehicle on a moving platform using optical flow,” IEEE Trans-
actions on Robotics, vol. 28, no. 1, pp. 77–89, Feb. 2012.

[88] I. Sa, S. Hrabar, and P. Corke, “Inspection of pole-like structures using a
vision-controlled VTOL UAV and shared autonomy,” in Proceedings of the

154

2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sep. 2014, pp. 4819–4826.

[89] F. Chaumette and S. Hutchinson, “Visual servo control. II. Advanced ap-
proaches,” IEEE Robotics and Automation Magazine, vol. 14, no. 1, pp. 109–
118, Mar. 2007.

[90] O. Bourquardez, R. Mahony, T. Hamel, and F. Chaumette, “Stability and per-
formance of image based visual servo control using first order spherical image
moments,” in Proceedings of the 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, Oct. 2006, pp. 4304–4309.

[91] N. Guenard, T. Hamel, and R. Mahony, “A practical visual servo control for
an unmanned aerial vehicle,” IEEE Transactions on Robotics and Automation,
vol. 24, no. 2, pp. 331–340, 2008.

[92] R. Mahony, P. Corke, and T. Hamel, “Dynamic image-based visual servo
control using centroid and optic flow features,” Transactions of the ASME,
Journal of Dynamic Systems, Measurement and Control, vol. 130, no. 1, pp.
1–12, 2007.

[93] H. de Plinval, P. Morin, P. Mouyon, and T. Hamel, “Visual servoing for under-
actuated VTOL UAVs: A linear, homography-based approach,” in Proceed-
ings of the 2011 IEEE International Conference on Robotics and Automation,
Shanghai, China, May 2011, pp. 3004–3010.

[94] O. Faugeras, Q.-T. Luong, and T. Papadopoulou, The Geometry of Multiple
Images: The Laws That Govern The Formation of Images of A Scene and
Some of Their Applications. Cambridge, MA, USA: MIT Press, 2001.

[95] S. Lupashin, A. Schollig, M. Hehn, and R. D’Andrea, “The flying machine
arena as of 2010,” in Proceedings of the 2011 IEEE International Conference
on Robotics and Automation, Shanghai, China, May 2011, pp. 2970–2971.

[96] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and
R. D’Andrea, “A platform for aerial robotics research and demonstration:
The flying machine arena,” Mechatronics, vol. 24, no. 1, pp. 41–54, 2014.

[97] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multiple
micro-UAV testbed,” IEEE Robotics and Automation Magazine, vol. 17, no. 3,
pp. 56–65, Sep. 2010.

[98] J. How, B. Bethihke, A. Frank, D. Dale, and J. Vian, “Real-time indoor au-
tonomous vehicle test environment,” IEEE Control Systems Magazine, vol. 28,
no. 2, pp. 51–64, Apr. 2008.

[99] L. Meier, “QGroundControl,” http://www.qgroundcontrol.org/ [accessed 01
Jan 2018], Institute for Visual Computing, Swiss Federal Institute of
Technology Zurich, 2017. [Online]. Available: http://www.qgroundcontrol.
org/

[100] S. Kirby, “SimonK Firmware,” https://github.com/sim-/tgy [accessed 01 Jan
2018], 2018. [Online]. Available: https://github.com/sim-/tgy

155

http://www.qgroundcontrol.org/
http://www.qgroundcontrol.org/
http://www.qgroundcontrol.org/
https://github.com/sim-/tgy
https://github.com/sim-/tgy

[101] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and con-
trol for quadrotors,” in 2011 IEEE International Conference on Robotics and
Automation. IEEE, 2011.

[102] “Pixy CMUcam5,” http://www.cmucam.org/projects/cmucam5/wiki/ [Ac-
cessed Jan. 1, 2018], 2018. [Online]. Available: http://www.cmucam.org/
projects/cmucam5/wiki/

[103] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: an open-source robot operating system,” ICRA workshop
on open source software, vol. 3, no. 3.2, p. 5, 2009.

[104] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibra-
tion for multi-sensor systems,” in Proceedings of the 2013 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Tokyo, Japan, Nov.
2013, pp. 1280–1286.

[105] W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control sys-
tems,” Control Systems, IEEE, vol. 21, no. 1, pp. 84–99, Feb. 2001.

[106] E. Delaleau and W. Respondek, “Lowering the orders of derivatives of con-
trols in generalized state space systems,” Journal of Mathematical Systems,
Estimation, and Control, vol. 5, no. 3, pp. 1–27, 1995, (Summary: 375–378).

[107] R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive, and
Robust. Hertfordshire, United Kingdom: Prentice Hall, 1995.

[108] A. Isidori, Nonlinear Control Systems. New York City, USA: Springer-Verlag,
1991.

[109] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice
Hall, 2002.

[110] O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel, and
L. Eck, “Image-based visual servo control of the translation kinematics of
a quadrotor aerial vehicle,” IEEE Transactions on Robotics, vol. 25, no. 3, pp.
743–749, Jun. 2009.

[111] O. Tahri and F. Chaumette, “Point-based and region-based image moments
for visual servoing of planar objects,” Robotics, IEEE Transactions on, vol. 21,
no. 6, pp. 1116–1127, Dec. 2005.

[112] ——, “Image moments: generic descriptors for decoupled image-based visual
servo,” in Proceedings of the 2004 IEEE International Conference on Robotics
and Automation, vol. 2, Apr. 2004, pp. 1185–1190Vol.2.

[113] H. Xie and A. F. Lynch, “State transformation-based dynamic visual servoing
for an unmanned aerial vehicle,” International Journal of Control, vol. 89,
no. 5, pp. 892–908, 2016.

[114] H. K. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ: Prentice
Hall, 1996.

156

http://www.cmucam.org/projects/cmucam5/wiki/
http://www.cmucam.org/projects/cmucam5/wiki/
http://www.cmucam.org/projects/cmucam5/wiki/

[115] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual
simultaneous localization and mapping: A survey,” Artificial Intelligence Re-
view, vol. 43, no. 1, pp. 55–81, Jan. 2015.

[116] K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and M. Suppa, “Stereo
vision based indoor/outdoor navigation for flying robots,” in Proceedings of the
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Tokyo, Japan, Nov. 2013, pp. 3955–3962.

[117] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-
based visual-inertial odometry using nonlinear optimization,” International
Journal of Robotics Research, vol. 34, no. 3, pp. 314–334, Dec. 2014.

[118] J. Engel, J. Sturm, and D. Cremers, “Scale-aware navigation of a low-cost
quadrocopter with a monocular camera,” Robotics and Autonomous Systems,
vol. 62, no. 11, pp. 1646–1656, 2014, special Issue on Visual Control of Mobile
Robots.

[119] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for RGB-
D cameras,” in Proceedings of the 2013 IEEE International Conference on
Robotics and Automation, Karlsruhe, Germany, May 2013, pp. 3748–3754.

[120] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Fox, and N. Roy, “Vi-
sual odometry and mapping for autonomous flight using an RGB-D cam-
era,” in Proceedings of the 2011 International Symposium of Robotic Research,
Flagstaff, AZ, 2011, pp. 235–252.

[121] A. Mourikis and S. Roumeliotis, “A multi-state constraint Kalman filter for
vision-aided inertial navigation,” in Proceedings of the 2007 IEEE Interna-
tional Conference on Robotics and Automation, Rome, Italy, Apr. 2007, pp.
3565–3572.

[122] R. Hermann and A. Krener, “Nonlinear controllability and observability,”
IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 728–740, Oct.
1977.

[123] W. Rugh, Linear System Theory, 2nd ed. Englewood Cliffs, NJ: Prentice
Hall, 1996.

[124] B. D. O. Anderson and J. Moore, “Time-varying feedback laws for decentral-
ized control,” IEEE Transactions on Automatic Control, vol. 26, no. 5, pp.
1133–1139, Oct. 1981.

[125] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction
theory,” Transactions of the ASME, series D, Journal of Basic Engineering,
vol. 83, pp. 95–108, Mar. 1961.

[126] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimen-
sional Systems, 2nd ed. New York, NY: Springer-Verlag, 1998.

[127] S. Puntanen and G. P. H. Styan, “Historical introduction: Issai Schur and the
early development of the Schur Complement,” in The Schur Complement and
Its Applications, F. Zhang, Ed. Boston, MA: Springer US, 2005, pp. 1–16.

157

[128] B. Ni and Q. Zhang, “Stability of the Kalman filter for continuous time output
error systems,” Systems and Control Letters, vol. 94, pp. 172–180, 2016.

[129] X. Li, Q. Zhang, and H. Su, “An adaptive observer for joint estimation of states
and parameters in both state and output equations,” International Journal of
Adaptive Control and Signal Processing, vol. 25, no. 9, pp. 831–842, 2011.

[130] Q. Zhang, “Adaptive observer for multiple-input-multiple-output (MIMO) lin-
ear time-varying systems,” IEEE Transactions on Automatic Control, vol. 47,
no. 3, pp. 525–529, Mar. 2002.

[131] B. D. O. Anderson, R. R. Bitmead, C. R. Johnson, Jr., P. V. Kokotovic, R. L.
Kosut, I. M. Mareels, L. Praly, and B. D. Riedle, Stability of Adaptive Systems:
Passivity and Averaging Analysis. Cambridge, MA, USA: MIT Press, 1986.

[132] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Englewood
Cliffs, NJ: Prentice Hall, 1989.

[133] R. Brockett, “4: Stability,” in Finite Dimensional Linear Systems. Philadel-
phia, PA: Society for Industrial and Applied Mathematics, 1970, pp. 183–227.

[134] H. Strasdat, J. Montiel, and A. Davison, “Real-time monocular SLAM: Why
filter?” in Proceedings of the 2010 IEEE International Conference on Robotics
and Automation, Anchorage, AK, May 2010, pp. 2657–2664.

158

Appendix A

ANCL Platform Pinouts

Table A.1: Pixhawk Connector Pinouts

Pin Function Description

P2

TELE 1&2

1 VCC 5V 5 V power supply

2 TX UART5 Console Port - Transmit Output

3 RX UART5 Console Port - Receive Input

4 CTS Clear to Send

5 RTS Ready To Send

6 GND Ground

P5

SPI

1 VCC 5V 5 V power supply

2 SPI EXT SCK Serial Clock

3 SPI EXT MISO sending data from a master to a slave

4 SPI EXT MOSI sending data from a slave to a master

5 !SPI EXT NSS !master-to-slave and slave-to-master permutation

6 !GPIO EXT !General-purpose input/output

7 GND Ground

P6

PWR

1 VCC 5 V power supply

2 VCC 5 V power supply

3 CURRENT 3.3 V

4 VOLTAGE 3.3 V

5 GND Ground

6 GND Ground

P8

ADC 3.3

1 VCC 5V 5 V power supply

2 ADC IN Up to 3.3v

3 GND Ground

4 ADC IN Up to 3.3v

5 GND Ground

P9

ADC 6.6

1 VCC 5V 5 V power supply

2 ADC IN Up to 6.6v

3 GND Ground

P10

I2C

1 VCC 5V 5 V power supply

2 SCL Serial Clock Line

3 SDA Serial Data Line

4 GND Ground

Continued on next page

159

Table A.1 – Pixhawk Connector Pinouts (Continued)

Pin Function Description

P11

CAN

1 VCC 5V 5 V power supply

2 CAN H CAN High

3 CAN L CAN Low

4 GND Ground

P12

GPS

1 VCC 5V 5 V power supply

2 TX UART5 Console Port - Transmit Output

3 RX UART5 Console Port - Receive Input

4 CAN2 TX CAN Transmit Output

5 CAN2 RX CAN Receive Input

6 GND Ground

P15

SWITCH

1 VCC 5V 5 V power supply

2 !IO LED SAFETY

3 SAFETY Ground

Table A.2: PX4FMU Connector Pinouts

Pin Function Description

F1

GPS

1 VDD GPS (5V default) 5 V power supply

2 USART6 TX USART6 Console port - Transmit output

3 USART6 RX USART6 Console port - Receive input

4 NC Not connected

5 GND Ground

F2

Multi Port

1 VDD-5V 5 V power supply

2 VDD-3V3 3 V power supply

3 GPIO EXT1 / AR.S1 General-purpose input/output,external interrupt??

4 GPIO EXT2 / AR.S2 General-purpose input/output,??

5 BATTERY MONITOR

(3-18V)

Battery monitor

6 PPM INPUT (3-5V) Pulse Position Modulation Input

7 USART1 RX USART1 Console Port - Receive input

8 USART1 TX USART1 Console Port - Transmit output

9 UART2 RX / SRV1 /

AR.RX

UART2 Console Port - Recive Input / SERVO1 /

10 USART2 RTS / SRV2 /

AR.S3

USART2 Console Port - Ready To Send / SERVO2 /

11 USART2 CTS / SRV3 /

AR.S4

USART2 Console Port - Clear To Send / SERVO3 /

12 USART2 TX / SRV4 /

AR.TX

USART4 Console Port - Transmit Output / SERVO4 /

13 I2C1 SDA I2C1- Serial Data Line

14 I2C1 SCL I2C1- Serial Clock Line

15 GND Ground

Continued on next page

160

Table A.2 – PX4FMU Connector Pinouts (Continued)

Pin Function Description

F8

BUS

1 VDD-5V 5 V power supply

2 VDD-5V 5 V power supply

3 GND Ground

4 GND Ground

5 CAN2 TX Single ended TX output of CAN port 2

6 CAN2 RX Single ended RX input of CAN port 2

7 USART1 TX USART1 Console Port- Transmit Output

8 USART1 RX USART1 Console Port- Receive Input

9 I2C3 SCL I2C3- Serial Clock Line

10 I2C3 SDA I2C3- Serial Data Line

11 ADC123 IN10 Analog to Digital Converter ?

12 -

13 UART6 TX USART6 Console Port- Transmit Output

14 UART6 RX USART5 Console Port - Receive Input

15 UART5 TX USART5 Console Port- Transmit Output

16 UART5 RX USART5 Console Port - Receive Input

17 I2C2 SCL I2C2- Serial Clock Line

18 I2C2 SDA I2C2- Serial Data Line

19 USART2 CTS USART2 Console Port - Clear to send

20 USART2 RTS USART2 Console Port - Ready To Send

21 USART2 TX USART2 Console Port- Transmit Output

22 USART2 RX USART2 Console Port - Receive Input

23 PPM INPUT Pulse Position Modulation Input

24 GPIO EXT1 General-purpose input/output?

25 GPIO EXT2 General-purpose input/output?

26 BUZZER

27 GND Ground

28 ADC123 IN11 Analog to Digital Converter ?

29 ADC123 IN12 Analog to Digital Converter ?

30 ADC123 IN13 Analog to Digital Converter ?

Table A.3: PX4IO Connector Pinouts

Pin Function Description

I1

FMU

UART5

1 VCC 5V 5 V power supply

2 TX UART5 Console Port - Transmit Output

3 RX UART5 Console Port - Receive Input

4 NC Not Connected

5 GND Ground

I2

FMU Pres

1 VCC 5V 5 V power supply

2 SIGNAL

3 GND Ground

I3

FMU

USART5

1 VCC 5V 5 V power supply

2 TX USART2 Console Port - Transmit Output

3 RX USART2 Console Port - Receive Input

4 NC Not Connected

5 GND Ground

I4

FMU I2C3

1 VCC 5V 5 V power supply

2 SCL Serial Clock Line

3 SDL Serial Data Line

4 GND Ground

Continued on next page

161

Table A.3 – PX4IO Connector Pinouts (Continued)

Pin Function Discription

I5&6

RL1&2

1 C

2 NO

I7&8

AC1&2

1 VCC 5 5 v Power supply

2 GND Ground

I9

FMU SPI

1 VCC 5V 5 V power supply

2 SPI2 SCK SPI Serial Clock

3 SPI2 MISO sending data from the master to a slave

4 SPI2 MOSI sending data from the slave to a master

5 SPI2 NSS master-to-slave and slave-to-master permutation

6 NC Not connected

7 GND Ground

I10

SPEK IN

1 VCC 3V 3 V power supply

2 SPECTRUM

3 GND Ground

I11

FMU CAN

1 VCC 5V 5 V power supply

2 CAN L

3 CAN H

4 GND Ground

I12

IO

USART2

1 VCC 5V 5 V power supply

2 TX USART2 Console Port - Transmit Output

3 RX USART2 Console Port - Receive Input

4 NC Not connected

5 GND Ground

I14

BOOT

1 TX 5V

2 RX

3 GND Ground

I15

PPM

1 PPM/S.BUS IN

2 VCC 5V 5v Power supply

3 GND Ground

I16

SERVOS

1 SERVO 1

2 SERVO 2

3 SERVO 3

4 SERVO 4

5 SERVO 5

6 SERVO 6

7 SERVO 7

8 SERVO 8

I17

BAT

1 VBAT (6.3-18V)

2 GND Ground

I18

SBUS

1 S.BUS OUT 5V

2 VCC 5V 5v Power supply

3 GND Ground

I20

ALARM

1 POSITIVE

2 NEGATIVE

I21

SFTY SW

1 VCC 3V3

2 LED3

3 SAFETY

162

Table A.4: ANCL Custom Power Distribution Board Pinouts

Pin Function Description

J1
1 VDD Battery VDD

2 GND Ground

J2
1 VDD Motor VDD

2 GND Ground

J3
1 VDD 5 V

2 GND Ground

J4
1 VDD Battery VDD

2 GND Ground

Table A.5: Motor Power Distribution Board Connector Pinouts

Pin Function Description

D1-D4
1 VDDS 12 V Power Supply

2 GND Ground

D5-D8

1 - -

2 - -

3 - -

D10

1 PWM Signal Motor 1 PWM Signal

2 PWM Signal Motor 2 PWM Signal

3 PWM Signal Motor 3 PWM Signal

4 PWM Signal Motor 4 PWM Signal

Table A.6: RM024 Pinouts

Pin Function Description

R1

XBee

Adapter

Board

1 VCC 3.3 V 2.3 - 3.6 V ±50 mV ripple (must be connected)

2 TXD Asynchronous serial data output from transceiver

3 RXD Asynchronous serial data input to transceiver

4 GIO 6 Reserved for future use. Do not connect.

5 Reset Module reset.

6 GIO 1 Generic Output

7 GIO 0 Generic Output / Hop Frame

8 DNC Do Not Connect

9 SLEEP P9

10 GND Signal Ground

11 P11 CMD/Data

12 CTS Clear to Send

13 GIO 5 Reserved for future use. Do not connect.

14 GIO 4 Generic Input

15 P15 In Range

16 RTS Request to Send

17 GIO 2 RS485 Driver Enable

18 GIO 8 Generic Input

19 GIO 3 PWM Output

20 GIO 7 Analog to Digital input

R2 1 U.FL Connector RF connector for high-frequency signals up to 6 GHz

163

Table A.7: RN-XV Pinouts

Pin Function Description

R1

XBee

Adapter

Board

1 VDD 3V3 3.3V regulated power input to the module

2 UART TX UART TX, 8mA drive, 3.3V tolerant

3 UART RX UART RX, 3.3V tolerant

4 GPIO 8 GPIO, 24mA drive, 3.3V tolerant

5 RESET Optional Module Reset Signal (active low), 100k Pull up, apply

pulse of at least 160us, 3.3V Tolerant

6 GPIO 5 GPIO, 24mA drive, 3.3V tolerant

7 GPIO 7 GPIO, 24mA drive, 3.3V tolerant

8 GPIO 9 Enable Adhoc mode, Restore factory defaults, 8mA drive, 3.3V

tolerant

9 GPIO 1 GPIO, 8mA drive, 3.3V tolerant

10 GND Ground

11 GPIO 14 GPIO, 8mA drive, 3.3V tolerant

12 UART RTS UART RTS flow control, 8mA drive, 3.3V tolerant

13 GPIO 4/SEN 6 GPIO, 24mA drive, 3.3V tolerant/ADC input , (3.3V tolerant).

Defaults to GPIO 4

14 Not Used

15 GPIO 6/SEN 7 GPIO, 24mA drive, 3.3V tolerant/ADC input, (3.3V tolerant).

Defaults to GPIO 6

16 UART CTS UART CTS flow control, 3.3V tolerant

17 SENSOR 5 Sensor Interface, Analog input to module, (3.3V tolerant)

18 GPIO 3/SEN 4 GPIO, 8mA drive, 3.3V tolerant/ADC input (3.3V tolerant).

Defaults to GPIO 3

19 GPIO 2/SEN 3 GPIO, 8mA drive, 3.3V tolerant/ADC input (3.3V tolerant).

Defaults to SEN 3

20 SEN 2 Sensor Interface, Analog input to module, 3.3V tolerant

Table A.8: 3DR Radio Pinouts

Pin Function Description

R1

TTL

Pinouts

1 RTS Request To Send Control Output / Handshake signal

2 TX Transmit Asynchronous Data output

3 RX Receive Asynchronous Data input

4 VCC 5 V power supply

5 CTS Clear to Send Control input / Handshake signal

6 GND Ground

R2

Antenna
1 Antenna U.FL Radio Connector

Table A.9: FTDI PCB Pinouts

Pin Function Description

P1

TTL

Pinouts

1 VCC 3.3 V power supply

2 TXD Transmit Asynchronous Data output

3 RXD Receive Asynchronous Data input

P2

USB

1 GND Ground

2 USB1-D- USB 2.0 data

3 USB1-D+ USB 2.0 data

4 5 V 5 V power

Continued on next page

164

Table A.9 – FTDI PCB Pinouts (Continued)

Pin Function Description

P3

TTL

Pinouts

1 RTS # Request To Send Control Output / Handshake signal

2 GND Ground

3 CTS # Clear to Send Control input / Handshake signal

Table A.10: FTDI Pinouts

Pin Function Description

P1

TTL

Pinouts

1 GND Ground (Black)

2 CTS # Clear to Send Control input / Handshake signal (Brown)

3 VCC 3.3 V power supply (Red)

4 TXD Transmit Asynchronous Data output (Orange)

5 RXD Receive Asynchronous Data input (Yellow)

6 RTS # Request To Send Control Output / Handshake signal (Green)

P2

USB

1 5 V 5 V power

2 USB1-D+ USB 2.0 data

3 USB1-D- USB 2.0 data

4 GND Ground

165

	Abstract
	Preface
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	List of Acronyms

	Introduction
	Literature Review
	Overview of Thesis
	Contributions

	Quadrotor and Camera Modelling
	Quadrotor Kinematics, Dynamics and Control
	Representation of the Orientation
	Quadrotor Rigid Body Dynamics
	Force and Torque Model
	Quadrotor Control

	Computer Vision
	Camera Model
	Image Features
	Visual Servoing
	Homography

	Experimental Platform
	Indoor Quadrotor Platform
	Quadrotors
	Autopilots
	Software

	Embedded Computer Vision System
	Companion Computers
	Cameras

	Communication Network Characterization
	Round Trip Experiment
	Throughput Experiment
	Complete Circuit Experiment

	Summary

	Dynamic Image-Based Visual Servoing
	State Transformation-Based Approach
	Fundamentals
	Control
	Simulation Results
	Experimental Results
	Summary

	Virtual Camera-Based Approach
	Image Moments
	Fundamentals
	Control
	Simulation Results
	Experimental Results
	Summary

	Adaptive Virtual Camera-Based Approach
	Uncertainty Modelling
	Adaptive Control
	Simulation Results
	Experimental Results
	Summary

	Extensions to Virtual Camera-Based Approach
	Moving Targets
	Non-horizontal Targets - Applying the Homography
	Simulation Results
	Summary

	Conclusion

	Visual State Estimation
	Monocular Visual Inertial SLAM
	Observability
	Observer Design
	Parallel Tracking and Mapping
	Simulation
	Simulations Results
	Summary

	Handheld Experiment
	Experimental Results
	Summary

	Flight Experiment
	Experimental Results
	Summary

	Conclusion

	Conclusion
	Conclusions
	Future Work

	Bibliography
	ANCL Platform Pinouts

