
University of Alberta

REAL-TIME PROCESSING FOR
LOGARITHMIC CMOS IMAGE SENSORS

by

Jing Li

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science
in

Digital Signal & Image Processing

Department of Electrical and Computer Engineering

c© Jing Li
Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes

only. Where the thesis is converted to, or otherwise made available in digital form, the University
of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior

written permission.

Abstract

This thesis proposes a real-time Digital Signal Processing (DSP) design for logarithmic

CMOS image sensors. The design contains novel Fixed Pattern Noise (FPN) correction

and tone mapping methods suitable for fixed-point operation. Logarithmic CMOS im-

age sensors offer high Dynamic Range (DR) at video rate but suffer from nonlinear FPN.

FPN, due to parameter variation across pixels, results in lower image quality. A new

method based on the Taylor series is introduced to correct nonlinear FPN effectively and

efficiently. After FPN correction of a high-DR scene, reproducing it for display is chal-

lenging. Subjective DR needs to be communicated to human observers while objective

DR must be compressed to suit the DR of a standard display. A new method maps tones

of high-DR scenes for standard displays while limiting the visibility of camera noise. The

new FPN correction and tone mapping methods both exhibit low computational complex-

ity, which make them ideal for real-time processing. A fixed-point design of the proposed

DSP is developed to further reduce computational complexity, enabling lower power con-

sumption. Although experiments were done with a standard logarithmic CMOS image

sensor, the proposed methods may be applied to other nonlinear image sensors thanks to

their inherent generality.

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Dileepan Joseph. He is the
first professor I met after I came to the University of Alberta, and he introduced me to this
pretty interesting research area: electronic imaging. During the past two years, he taught
and guided me in how to do research, helped me to improve my writing and presentation
skills by editing my thesis and slides repeatedly, and inspired me to overcome difficulties
and gain confidence. Without his help and supervision, it would have been impossible for
me to finish my thesis on time with good quality.

I want to thank my parents especially. They encouraged me to go to Canada, a wonder-
ful and beautiful country, to receive a high-quality education. Otherwise, this memorable
journey would have been impossible. With their care and support, I was able to focus on
my study and research.

Also, I thank my aunt and her family in Calgary. They helped me when I first applied,
and made me feel warm and welcome when I just arrived. And I thank my girlfriend,
who read as a master’s student in parallel. Although our majors were totally different,
our discussions always inspired in me some new ideas. Moreover, she made my life in
Edmonton enjoyable and colourful, instead of boring and lonely!

Furthermore, my friends in the Electronic Imaging Lab deserve great gratitude. Dr.
Orit Skorka provided me a camera prototype she designed, and taught me how to use it.
The camera prototype, with my modifications, was used for all tests in the thesis. Dr. Ka-
mal Ranaweera provided a Visual C++ framework, which I modified with the assistance
of Adam Harrison, who helped me learn object-oriented programming. Additionally, both
Orit and Adam read parts of my thesis and gave me valuable feedback. Cindy Wong, who
was always glad to help me, gave me a lot of assistance with LaTeX typesetting. And Dr.
Alireza Mahmoodi, who is now working at PMC Sierra, guided me when I started Al-
tera FPGA design. Discussions with him also helped me review fundamentals of digital
circuit design.

I extend special thanks to all my friends in the department, in Edmonton, and in China.
They helped me a lot when I confronted technical and personal difficulties. All of them
helped and encouraged me to keep learning and to live happily!

I also thank the Natural Sciences and Engineering Research Council and the Graduate
Students’ Association for financial support. Additionally, I thank IMRIS, especially Dr.
Mark Alexiuk of IMRIS, for in-kind contributions to my research.

Finally, I acknowledge the contributions made by Jamie Hon, Lane Mitchelmore, and
Jesse Chen. Although they finished before I started, they worked on undergraduate re-
search projects with my supervisor that influenced our work.

Table of Contents

1 Introduction 1
1.1 Logarithmic CMOS Image Sensors . 2
1.2 Real-Time Processing . 5
1.3 Scope of the Thesis . 7

2 Fixed Pattern Noise Correction 10
2.1 Polynomial Regression . 11
2.2 Inverse Polynomial Regression . 13
2.3 Median Filtering . 15
2.4 Response Linearization . 15
2.5 Simple Tone Mapping . 16
2.6 Look-Up Table Implementation . 17
2.7 Results . 18

2.7.1 Matlab Experiments . 18
2.7.2 C++ Experiments . 20

2.8 Conclusion . 21

3 Noiseless Tone Mapping 24
3.1 Histogram Equalization . 25
3.2 Noise Ceilings . 28
3.3 Temporal Adaptation . 32
3.4 Results . 34

3.4.1 Matlab Experiments . 35
3.4.2 C++ Experiments . 35

3.5 Conclusion . 38

4 Fixed-Point Design 39
4.1 FPN Correction . 40

4.1.1 Static Round-Off Error . 41
4.1.2 Dynamic Round-Off Error . 43

4.2 Noiseless Tone Mapping . 44
4.2.1 Noise Ceilings . 44
4.2.2 Temporal Adaptation . 46

4.3 Results . 47
4.3.1 Matlab Experiments . 47

4.3.2 C++ Experiments . 52
4.4 Conclusion . 53

5 Conclusion 54
5.1 Contributions . 55

5.1.1 Fixed Pattern Noise Correction 56
5.1.2 Noiseless Tone Mapping . 57
5.1.3 Fixed-Point Design . 58

5.2 Future Work . 59
5.2.1 Fixed Pattern Noise and Temperature 59
5.2.2 Experiments with Digital Pixel Sensors 60
5.2.3 Noiseless Tone Mapping in an FPGA 60
5.2.4 Low-Dose X-Ray Imaging System 60

References 62

List of Figures

1.1 SNDR versus DR for human eye and image sensors. 3
1.2 Main components of a digital camera . 7
1.3 Disassembled prototype digital camera. 8

2.1 Three-parameter PR and IPR FPN correction. 19
2.2 RMS residual error of various FPN correction methods. 20
2.3 Response linearization using the calibration data 21
2.4 Captured images before/after three-parameter IPR FPN correction. 22
2.5 Video frames before/after three-parameter IPR FPN correction. 23

3.1 Image of a bathroom illuminated by lamps 26
3.2 Histograms of the bathroom image . 27
3.3 Bathroom image after histogram equalization 28
3.4 Bathroom image with simulated camera noise 29
3.5 RMS noise of noiseless tone mapping with iteration 31
3.6 Bathroom image after noiseless tone mapping 32
3.7 Flow chart of noiseless tone mapping. 33
3.8 Temporal adaptation during luminance change. 34
3.9 Captured images after different tone mappings. 36
3.10 Frames in captured video after different tone mappings 37

4.1 CDF of FPN correction coefficients . 41
4.2 Fixed-point design for FPN correction 42
4.3 Model of coefficient scaling and rounding 42
4.4 Model of first-level dynamic shifting . 43
4.5 Fixed-point design of first-order LPF . 47
4.6 FPN correction performance versus wordlength 49
4.7 Images after floating-point and fixed-point noiseless tone mapping 50
4.8 Frames after floating-point and fixed-point noiseless tone mapping 51
4.9 Frames from real-time fixed-point design 52

List of Acronyms

ADC Analog-to-Digital Converter

APS Active Pixel Sensor

ASIC Application-Specific Integrated Circuit

CCD Charge-Coupled Device

CDF Cumulative Distribution Function

CMOS Complementary Metal-Oxide-Semiconductor

DOF Degrees of Freedom

DPS Digital Pixel Sensor

DR Dynamic Range

DSP Digital Signal Processing

FPGA Field-Programmable Gate Array

FPN Fixed Pattern Noise

GLS General Least Squares

GPU Graphics Processing Unit

HVS Human Visual System

IPR Inverse Polynomial Regression

LPF Low-Pass Filter

LUT Look-Up Table

OLS Ordinary Least Squares

PCB Printed Circuit Board

PDF Probability Density Function

PPS Passive Pixel Sensor

PR Polynomial Regression

PSNR Peak SNR

PSNDR Peak SNDR

RMS Root Mean Square

SNR Signal-to-Noise Ratio

SNDR Signal-to-Noise-and-Distortion Ratio

VI Vertically-Integrated

Chapter 1

Introduction

Solid-state image sensors are widely used to capture visual information for different goals,
including scientific research, medical diagnosis, and consumer use. The development of
such image sensors has experienced two generations, which comprise Charge-Coupled
Device (CCD) and Complementary Metal-Oxide-Semiconductor (CMOS) Active Pixel
Sensor (APS) technology [1]. There are many different designs for CMOS image sen-
sors. Logarithmic CMOS image sensors have a great advantage in Dynamic Range (DR)
[2]. They are able to capture over six decades of luminance in one frame. For typical
linear CCD or CMOS image sensors, the DR can only span three decades. Moreover,
logarithmic response is a natural way to achieve high DR because encoding on a loga-
rithmic scale is similar to the human perception model [3]. Because of its superiority in
DR, logarithmic CMOS image sensors are an attractive alternative to replace conventional
linear image sensors to overcome the low DR limitation.

Unfortunately, logarithmic image sensors have been unable to compete with linear
image sensors in terms of image quality. The main drawback of logarithmic image sen-
sors is low Signal-to-Noise-and-Distortion Ratio (SNDR) because of low Signal-to-Noise
Ratio (SNR) and nonlinear Fixed Pattern Noise (FPN) that has been difficult to correct
efficiently. Integration of an Analog-to-Digital Converter (ADC) with each pixel is an
approach to improve the SNR [4]. Nonlinear FPN can be corrected by subsequent DSP
[5, 6, 7, 8]. Existing FPN correction algorithms trade off between performance and com-
plexity. The algorithm should be able to correct FPN effectively. Yet, its computational
efficiency is also very important.

Images and videos are often observed by humans. Logarithmic CMOS image sensors
are able to capture high-DR scenes. But capturing is only the first step of the electronic
imaging process. How to display high-DR scenes for human observers is the second part.
Emerging high-DR display equipment, with DR closer to possible scene DR, is a direct
solution [9]. However high-DR displays are unlikely to become widespread in the near
future for multiple reasons, including price and power consumption. An algorithm-based
approach is another solution, which has attracted a large amount of research interest.
The process of converting scene luminance to display luminance is known as tone map-
ping [10]. The DR of standard displays spans only two decades [11]. Tone mapping
algorithms compress the world DR of high-DR scenes to suit the display DR but also try

1

to keep perceived DR. Existing tone mapping algorithms have limited applicability to log-
arithmic image sensors, especially because there may be significant noise and distortion
in the images and videos in comparison to linear image sensors.

DSP is a key component for image sensors. It can improve the quality of images and
videos both during capture and display. This thesis proposes a complete DSP solution for
logarithmic image sensors, including FPN correction, tone mapping, and corresponding
fixed-point design. A background on logarithmic CMOS image sensors is given in Sec-
tion 1.1. Section 1.2 reviews the state of the art on real-time processing for logarithmic
pixels. Finally, the scope of the thesis is described in Section 1.3.

1.1 Logarithmic CMOS Image Sensors
Since 1970, CCD technology dominated the market of image sensors for three decades.
During that period, CMOS image sensors could not compete with CCD image sensors be-
cause CCD had high SNDR and small pixels [12]. However, the disadvantages of CCDs,
including high power consumption and the need for a specialized fabrication process, re-
stricted their applications [13]. With technology developments, CMOS was able to rival
CCD technology and even take over market share by overcoming the limitations of CCDs.

The advantages of CMOS image sensors are several. Lower power consumption
makes CMOS image sensors suitable for portable imaging devices such as digital cam-
eras in mobile phones [12]. Standard fabrication technologies enable high integration and
low price [14]. With CMOS sensors, multiple signal processing blocks can be integrated
readily, including ADCs and amplifiers [4]. Using these blocks, the function of a CMOS
image sensor comes closer to that of a human eye, which can process light information
before relaying it to the brain [3]. CCD and CMOS APS technologies represent first and
second-generation image sensors, respectively. A third generation, based on Vertically-
Integrated (VI) CMOS technology, is emerging [1]. Thanks to high compatibility, both
the second and third-generation technologies benefit from the scope of this thesis. For
logarithmic CMOS image sensors, low SNDR is still the main drawback when compared
to linear image sensors. High-DR displays are another challenge. Existing methods for
SNDR improvement and high-DR display are reviewed in this section.

Based on their response model, image sensors can be divided into three categories:
linear, logarithmic, and others [2]. Compared with linear and other image sensors, log-
arithmic image sensors are able to provide high DR at video rates but they suffer from
low SNDR. However, no matter the category, the performance of all image sensors still
has difficulty competing with the human eye, although electronic imaging technologies
have had more than four decades of development [15]. Compared to the human eye, a
deficiency of modern image sensors is a trade off between SNDR and DR. In Fig. 1.1,
the SNDR and/or SNR versus DR of different image sensors are compared to the same
for the human eye. Commercial CCD and CMOS image sensors are mainly linear image
sensors. Many rival the human eye in SNDR while DR is worse. Academic logarithmic
CMOS image sensors have high DR, which is close to the human eye; SNDR is the main
drawback. Therefore, it is easy to understand there are two basic approaches to make

2

0 20 40 60 80 100 120 140 160
0

20

40

60

80

DR [dB]

P
ea

k
S

N
D

R
 a

nd
 S

N
R

 [d
B

]

1

1

2

2

3

3

4

4

5

6

6

7

7

8
9

10

10

11

12
13

13

14

1415

16

17

18

19
20

21

21
22

23

23

24

25

25

26

26

I
human eye
commercial CCD
commercial CMOS
academic CMOS
UofA (VI) CMOS

Figure 1.1: Linear sensors offer high SNR or SNDR while logarithmic sensors offer high
DR. Sensors 25 and 26 are logarithmic CMOS DPS and logarithmic VI-CMOS APS
prototypes, respectively, that were designed and tested at the University of Alberta. Log-
arithmic response offers high DR while pixel-level ADCs and nonlinear FPN correction
provide high SNDR. The figure is provided by Skorka [1], incorporating data by Mah-
moodi [16] and methods developed in this thesis.

image sensors with both high SNDR and high DR. One is to expand the DR of linear im-
age sensors to achieve high DR. On the other hand, improving the SNDR of logarithmic
image sensors is another feasible approach. Research in the Electronic Imaging Lab at
the University of Alberta focuses on the latter approach.

There are several important steps before captured light signals achieve final display
intensities. They include data conversion, FPN correction, and tone mapping. Data con-
version, from an analog signal to a digital signal, in image sensors is an important process.
With CMOS technology, data conversion can be achieved on-chip at three levels, which
are chip-level, column-level, or pixel-level. In data conversion methods, Nyquist-rate
ADCs and oversampling ADCs [17] are possible. Both the conversion level and method
can determine performance, including SNDR and frame rate, of the image sensor. Low
SNDR in logarithmic CMOS image sensors is caused by low SNR and high FPN. To deal
with low SNR, pixel-level ADCs are a promising solution [4]. Instead of employing an
ADC for the whole chip or one for each column, an ADC is integrated inside each pixel.
Besides high SNR, such Digital Pixel Sensor (DPS) technology provides other advan-
tages, such as low analog power consumption because of the low sampling frequency in
the pixel. In addition, due to parallel conversion, high-speed digital readout is possible. At
the University of Alberta, Mahmoodi [16] successfully designed and fabricated a logarith-
mic CMOS DPS prototype. The tests showed a Peak SNDR (PSNDR) of at least 36 dB,
which rivals the SNDR of the human eye. This result, along with a Peak SNR (PSNR)
of at least 45 dB, proved that DPS technology based on oversampling ADCs is able to

3

improve the SNR and SNDR of logarithmic CMOS image sensors significantly.
Although pixel-level ADCs improve the SNR of the logarithmic CMOS image sen-

sors, SNDR must also be improved for the image quality to be improved. SNDR equals
SNR only when FPN is perfectly corrected. Previously, researchers developed various
analog and digital methods to reduce high FPN in logarithmic pixels. Although analog
methods exhibit low delay [18, 19, 20], their performance is unsatisfactory with loga-
rithmic pixels due to complex FPN. Compared to analog methods, digital methods are
more accurate and flexible. Unfortunately, good performance methods, which can im-
prove SNDR to approximate SNR, have required high computational complexity. Unless
high power consumption is acceptable, this complexity makes the delay in FPN correc-
tion too long. Although many works about digital correction methods have been devel-
oped [5, 6, 7, 21], the restriction between performance and complexity still exists. An-
other main drawback of existing methods is they are tied to a specific response model.
The model-specific methods may confront problems because different logarithmic pixel
designs are possible. Moreover, the model of the standard design has evolved for accuracy
reasons [21]. An ideal FPN correction method should have good and stable performance
to make the SNDR close to the SNR over a high DR. At the same time, the computation
complexity should be feasible for low-power real-time processing. Finally, the generality
for different response models is a significant factor too.

After data conversion and FPN correction, digital images and videos of high quality
are captured. Then, they are often reproduced on display equipment or print paper for
human consumption. The conversion process from scene luminance to display luminance
is called tone mapping [10]. Logarithmic CMOS image sensors are able to capture high-
DR scenes. Yet, the DR of both standard display equipment and printed paper is much
lower than what is possible in real scenes. This limitation makes high-DR tone mapping
a challenging problem. Various methods have been developed from diverse ideas. The in-
tuitive method is DR extension of the display equipment. If the DR of display equipment
is close to possible scene DR, then display of high DR scenes is easier. Projector-based
and LED-based high-DR displays have been reported [9]. Other high-DR display sys-
tems are in development [22, 23]. Although performance is good, factors such as price
and power consumption prevent the widespread use of high-DR displays in the near fu-
ture. On the other hand, software-based tone mapping methods are widely used. Tone
mapping algorithms are mainly divided into global and local operators based on mapping
functions. Global operators employ spatially-invariant mapping functions. In contrast,
mapping functions may vary spatially for local operators. Popular operators have been
reported in both categories [10, 24, 25]. Generally, local operators may have superior
performance but suffer from high-computational complexity. Global operators can pro-
vide good performance for most cases and enjoy simplicity. For image sensors operating
at video rates, global operators are preferred because they are relatively easy to imple-
ment in real time. Previous tone mapping methods always assume that images and videos
are free of noise. However, this assumption is unsuitable for logarithmic image sensors.
Therefore, although good methods have been reported in the literature, a new method
needs to be developed for logarithmic image sensors.

4

Thanks to CMOS technology, logarithmic image sensors have advantages, such as
high integration, low power consumption, and low cost. Additionally, they are able to of-
fer high DR at video rates. They are a promising alternative to overcome the problem of
low DR with linear image sensors. However, they suffer from low SNDR because of low
SNR and high FPN. SNR can be improved through pixel-level ADC while digital correc-
tion can reduce FPN. Then, a tone mapping algorithm maps the luminance in a captured
high-DR scene to display intensity. DSP performance directly affects the competitiveness
of logarithmic CMOS image sensors with linear image sensors.

1.2 Real-Time Processing
DSP can be performed on different platforms, such as a desktop computer, a digital signal
processor, an Field-Programmable Gate Array (FPGA), or an Application-Specific Inte-
grated Circuit (ASIC). In any platform, DSP computation costs a period of time to get
results, which introduces a delay between the original signal input and processed signal
output. DSP applications can be divided into two types based on the constraint of delay,
including real-time processing and non-real-time processing [26]. In this thesis, non-real-
time processing is called offline processing. Offline DSP focuses on digital signals stored
beforehand. With offline processing, what matters is the correctness and accuracy of the
computation. The computational duration is not a significant factor because there is no
strict constraint on the delay between input and output. On the other hand, stringent time
demands exist with real-time processing. The DSP component must complete process-
ing tasks within a certain duration, with a required accuracy, because the input signal
will not wait. Therefore, real-time DSP entails high demands on the design of DSP al-
gorithms and hardware. The computational complexity of a DSP algorithm should be
feasible for real-time processing in the chosen hardware. Although the hardware where
real-time processing is achieved should be able to provide high-computational speed and
abundant-computational resources [26], hardware performance comes at a cost, which in-
cludes power consumption during operation. Besides functional performance, low power
consumption is an important factor. It is especially appreciated for portable devices such
as digital cameras. Logarithmic image sensors need real-time processing when they work
at video rate. Existing designs are reviewed and limitations are analyzed below.

Logarithmic CMOS image sensors can provide high DR at video rate. Instead of still-
image cameras, high-DR video cameras have more extensive applications in different
fields. Machine vision can employ high-DR video cameras. Applications such as driver
assistance may benefit from the high-DR of logarithmic image sensors [8]. Similar appli-
cations include safety surveillance [27] and quality control [28]. All of these applications
propose stringent requirements on the DSP. Long delays can have serious consequences.
Besides functional performance, reasonable power consumption is an important factor
too because high power consumption may bring inconvenience. Real-time processing is
also very important to the consumer market. For a high-DR video camera based on a
logarithmic image sensor, it is difficult to imagine consumers accepting a long delay, say
if fluid output is not visible during video capture. Moreover, short battery life is very

5

annoying. Therefore, for wider application, efficient real-time processing is necessary for
logarithmic image sensors in video cameras.

Although research has been done on correcting the FPN of logarithmic image sensors,
it has focused on offline processing. The trade off between performance and complexity
has not been overcome. Some methods, such as Otim’s correction [21] and Joseph’s one
or two-parameter correction [5], can be implemented in real time [7]. However, the cor-
rection performance is not good enough. High performance correction, like Joseph’s
three-parameter correction [5], suffers from high computational complexity, which im-
pedes real-time implementation. Schneider reported a FPN correction method that was
implemented in an FPGA evaluation board based on fixed-point operation [8]. In that
method, piecewise linear functions instead of a nonlinear model made the real-time pro-
cess straightforward. Yet, the simplified model resulted in degraded performance in the
dark and at the piecewise knots. An ideal real-time FPN correction method should not
sacrifice performance for efficiency and vice versa. In addition, high compatibility to
evolving models is preferred.

With the developments of high-DR rendering and photography technologies, the is-
sue of high-DR reproduction has attracted a large amount of interest in academia and
industry. Some high-DR displays have been developed and marketed but only in a high-
end market [9, 22, 23]. Before high-DR displays replace standard displays in the market,
software-based methods for tone mapping will continue to be important. However, the
conditions for real-time tone mapping are similar to those for real-time FPN correction.
Onerous computation and a complicated structure would make real-time implementation
of tone mapping difficult. At present, real-time tone mapping is achieved by implement-
ing existing methods in a Graphics Processing Unit (GPU), an FPGA, or an ASIC. These
platforms can process signals at high frame rate to make video fluid. Goodnight et al.
realized “photographic tone reproduction” in a GPU [29]. Yet, the size and power con-
sumption make the GPU approach infeasible for portable imaging devices. Hassan et
al. [30] presented a FPGA-based architecture for the same algorithm. Wang et al. [31] de-
signed and tested an ASIC implementing part of the same method. Moreover, Wang et al.
also proposed an ASIC design for another tone mapping algorithm [32]. They reported a
fluid frame rate for high resolution videos. However, all of these works are not developed
for logarithmic image sensors. In contrast, real-time tone mapping for logarithmic image
sensors is nearly non-existent [11]. Besides good DR-compression performance and real-
time feasibility, residual noise and distortion in captured images and videos needs to be
considered. Therefore, a specific method needs to be developed for better performance.

Real-time DSP raises strict demands on the algorithm design and hardware imple-
mentation. The computational complexity of the DSP algorithm must be feasible, while
the required accuracy is ensured. Low computational complexity can reduce the power
consumption, which is very significant for portable devices. Existing logarithmic FPN
corrections mainly focus on offline processing. The methods which can be achieved in
real time do not have good enough correction performance. On the other hand, real-time
tone mapping is nearly non-existent for logarithmic image sensors, although a few general
tone mapping algorithms were implemented in a GPU, FPGA, or ASIC to meet real-time

6

 Digital signal processing

Scene Optics

Auto-focus

 Micro-lens array

 Colour filter array

 Image sensor

Analog-to-digital

converter (ADC)

10
11
0

Figure 1.2: The components of a digital camera comprise mainly a lens, a color filter, an
image sensor, one or more ADCs, and DSP. The ADCs in CMOS digital camera may be
at chip level, column level, or pixel level. The work in this thesis focuses on the DSP part.
(This figure was created by Orit Skorka and modified by Jing Li.)

demands [29, 30, 31]. Logarithmic image sensors cannot work at video rates with high
quality without real-time processing. For more extensive applications, real-time DSP with
high performance is needed specifically for logarithmic image sensors.

1.3 Scope of the Thesis
In Fig. 1.2, the main imaging components of digital cameras are shown. This thesis,
which focuses on the final component of Fig. 1.2, provides a completed real-time pro-
cessing design for logarithmic CMOS image sensors. The design improves the image
quality in real time. First, a novel algorithm for FPN correction is introduced. Tests
prove that the proposed method can overcome existing limitations. After high DR scenes
are captured, videos need to be rendered for standard DR display equipment for human
consumption. A new tone-mapping algorithm is designed to compress the DR while pre-
serving the perceived DR and restricting noise magnification. FPN correction and tone
mapping methods are both developed first for floating-point operation. To facilitate ini-
tial prototyping, a high-level programming language, namely Matlab, is used. However,
floating-point operation and Matlab are not ideal decisions for a real-time system due
to their computational complexity. High complexity implies high power consumption.
Therefore, a corresponding fixed-point design implemented in C is provided in the thesis.
It brings low complexity, which is especially important for portable devices where power
consumption is critical. The rest of this section gives brief descriptions of following chap-
ters. A prototype digital camera, which is used in experiments of this thesis, is introduced
too.

Chapter 2 presents the novel FPN correction method. The new method is developed
based on a Taylor series expansion and polynomial regression. It overcomes a limitation
between correction performance and computational complexity. Response linearization,
which is included, renders metric scene stimulus from corrected digital response using
spline interpolation. No circuit response models are needed, which means the proposed
method is not tied to a specific model. Such flexibility is a consequence of using numerical

7

Figure 1.3: Prototype of a digital camera with a logarithmic CMOS image sensor. The
PCB board and QuickUSB board are connected by a ribbon cable. The boards are put
inside the camera body. (This picture was taken by Orit Skorka.)

methods.
The details of noiseless tone mapping are introduced in Chapter 3. The goal of this

tone mapping algorithm is the real-time reproduction of high-DR scenes for standard DR
display equipment with high fidelity. It prevents the camera noise after tone mapping
based on histogram equalization from exceeding a visibility threshold. The adaptation
process of the human eye is also considered. A Low-Pass Filter (LPF) is applied to frame
information, which approximates the natural adaptation process. Abrupt DR changes are
avoided in video output.

Chapter 4 describes a fixed-point design of the novel FPN correction and noiseless
tone mapping methods. For FPN correction, the correction coefficients are first scaled.
Then, a correction is computed through pipelined fixed-point operation. Fixed-point error
is modeled and analyzed. For noiseless tone mapping, Look-Up Table (LUT)s are an ideal
method for fixed-point implementation. Instead of staying constant, the LUT that stores
the mapping function updates with each frame based on fixed-point operations. A pro-
gram is coded to compute the performance of the proposed methods versus wordlengths.
Then, an optimal design is determined considering both performances and wordlengths.
Besides offering low complexity, the fixed-point design also ensures the proposed meth-
ods will have low power consumption with a planned FPGA implementation.

The proposed methods are suitable for a variety of nonlinear image sensors, including
various logarithmic [33] and linear-logarithmic sensors [7, 20]. All the tests presented in
this thesis were performed with a CMOS APS logarithmic image sensor, the schematic for
which is well known [5]. This sensor was designed by Orit Skorka, in her PhD research. It
was fabricated in a 0.35µm TSMC process through CMC Microsystems [33]. The array
tested includes 90×120 pixels, having a 10µm pitch. A prototype digital camera, also de-
signed by Orit Skorka, was fabricated to test the image sensor. It includes a camera body, a

8

lens (Fujinon CF25HA-1), a custom-made Printed Circuit Board (PCB), and a QuickUSB
board. A photo of the disassembled prototype is shown in Fig. 1.3. The custom-made
PCB accommodates the image sensor, a 16-bit ADC (Texas Instruments ADS8411), and
other off-the-shelf electronic components that are needed for power supply, biasing, and
digital communication. The QuickUSB board includes an Altera Cyclone II FPGA that
operates at 48 MHz [34]. Address and control signals are generated by the FPGA for the
image sensor and ADC. The FPGA reads data from the ADC and sends it to a PC, which
has an Intel Pentium D 2.80 GHz CPU and 2 GB of DDR2 memory. The PC processes
the captured data in real time. Kamal Ranaweera and Adam Harrison, a postdoctoral
fellow and a PhD student, developed the Visual C++ framework for camera setup, data
readout, and video display. Then, the proposed DSP algorithms, programmed in C, were
embedded in the framework to form the completed real-time system.

Finally, Chapter 5 summarizes the novelty and significance of contributions in this
thesis. Some relevant future work is discussed, including FPN correction considering the
factor of temperature, the performance of the proposed methods with a DPS array, and
noiseless tone mapping implementation in an FPGA. The potential application of the
presented methods to the invisible band is also mentioned.

9

Chapter 2

Fixed Pattern Noise Correction

Fixed pattern noise (FPN) is caused by parameter differences going from one pixel to
another in an image sensor. Both linear pixels and nonlinear pixels are susceptible to
FPN. Compared with CCD image sensors, CMOS image sensors suffer from more serious
FPN. The readout buffers and amplifiers are different for each pixel in a CMOS image
sensor, so it causes relatively high FPN [3]. For FPN in linear pixels, many relevant papers
have been published and some excellent methods have been proposed [35]. Similarly, a
large amount of work has been done for FPN in nonlinear pixels. Some researchers
prefer using analog techniques [18, 19, 20], which have an important advantage, namely
speed. The correction part is in the pixel, and the corrected value is output with little
delay. However, most analog FPN correction is only able to correct offset FPN. FPN in
nonlinear pixels is much more complicated than offset FPN. For example, the response
model of a logarithmic pixel keeps getting more accurate and more complex; it is now a
four-parameter model [21]. So the correction performance of analog methods are far from
good.

Digital processing of acquired images can reduce the FPN in nonlinear pixels. Com-
pared with analog techniques, the digital method is able to correct FPN more accurately.
Meanwhile, it is more flexible since it is usually achieved in an embedded system. Joseph
and Collins [5] used images of multiple uniform scenes to calibrate parameters of loga-
rithmic pixels. In three-parameter correction, response linearization was included with
the FPN correction. This method has restrictions between correction performance and
calibration complexity while it is specific for the logarithmic response model. Schnei-
der [6] developed a method to approximate a logarithmic response with three different
lines in different domains. Although this method is realizable in a real-time system, ap-
proximating a nonlinear model with a piecewise linear function is problematic. Also,
the performance of this method strongly depends on the specific model and its accu-
racy. For a combined linear-logarithmic CMOS image sensor, Storm et al. [7] used a
reference current for two-parameter logarithmic calibration. Otim et al. [21] developed
a four-parameter model for the logarithmic response, which is more accurate than the
three-parameter model of Joseph and Collins [5]. Nevertheless, Otim et al. only used a
two-parameter method for FPN correction, where the correction method approximates the
nonlinear model with a linear model.

10

Compared with FPN correction, response linearization is a relatively new problem
since only nonlinear-response pixels need it. Hoefflinger and Schneider mentioned the
response linearization problem and proposed a method [8]. Their algorithm is specific to
the logarithmic response model of Joseph and Collins [5]. Moreover, it is closely tied to
the associated FPN correction method. As mentioned before, the model keeps changing
and the pixel configuration may change too. For example, this method will not work for
the four-parameter model. A similar method for a new model is difficult to develop.

Existing methods can reduce FPN in nonlinear pixels but they always have restrictions
in correction performance, calculation complexity, and generality. They try to simplify
the nonlinear model to a linear model, or to approximate the nonlinear model with a linear
model. Few of them try to correct FPN directly based on a nonlinear model. In addition,
little research about response linearization has been done.

This chapter describes a new method for nonlinear FPN correction and response lin-
earization. It is based on a Taylor series, Polynomial Regression (PR), and spline inter-
polation. The existing restrictions, including low performance, high computation com-
plexity, and low generality, are overcome. Developing a new method for calibration and
correction mainly includes two steps. The first step is based on PR, which is general for
different monotonic nonlinear models, and easy for low-order correction but difficult or
impossible for high-order correction. The second step is switching to Inverse Polynomial
Regression (IPR), which is general for different monotonic nonlinear models too. More
importantly, the IPR method only needs arithmetic operations for correction of any order.
For response linearization, no model analysis is needed, thanks to a numerical method.

2.1 Polynomial Regression
The method of Joseph and Collins [5] for calibration and correction is divided into three
kinds based on the number of model parameters that vary spatially. The one (offset) and
two (offset and gain) parameter methods only need low-complexity calculations. How-
ever, the performance of these FPN corrections is not good enough. The three (offset,
gain, and bias) parameter method has good performance on FPN correction but calibra-
tion needs iteration. Also, the non-arithmetic three-parameter correction causes difficulty
when implementing it in hardware to meet a real-time demand.

Based on previous work in an image of N pixels, the actual response yij of the jth
pixel to stimulus xi is

yij = fj(xi) + εij . (2.1)

Let the difference between the actual response yij and the estimated response fj(xi) be
the residual error εij . This residual error is assumed to be statistically independent for
different observations and pixels, and is further assumed to follow a zero-mean Gaussian
distribution. Unlike previous work, the response model is expressed here by an abstract
function fj , instead of, for example, a logarithmic model, because the new method is
general for different models.

11

The average response of all pixels in an image sensor to the same luminance is re-
garded as an ideal response without FPN. FPN correction, as described by Joseph [3],
is about obtaining an ideal response for each pixel from its actual response. Calibration
is categorized based on the number of parameters in the response model. For one and
two-parameter models, the estimated responses fj(xi) are linear functions of the average
response ȳi of all pixels to luminance xi, and only a linear regression is needed even for a
nonlinear pixel. Three-parameter calibration needed an iterative approach, which is very
complex.

These low-order polynomial models raise the question of whether higher-order poly-
nomials can replace the original nonlinear model for three-parameter calibration, and even
for a response model that is nonlinear but not logarithmic. Because averaging filters the
residual error, the average response ȳi of all pixels to a luminance xi can be expressed as

ȳi =
1

N

N∑
j=1

yij ≈
1

N

N∑
j=1

fj(xi) ≡ F (xi). (2.2)

Assuming that each response function fj is monotonic to luminance xi, the average re-
sponse ȳi is likewise monotonic. So the inverse function

xi = F−1(ȳi) (2.3)

exists, whereby luminance xi is a function of average response ȳi. Response yij in (2.1)
is a function of luminance xi, so the actual response yij is a function of average response
ȳi as

yij = fj(F
−1(ȳi)) + εij . (2.4)

With the Taylor series theorem, the actual response yij can be approximated through
any order polynomial of the average response ȳi. If the order is high enough, the Taylor
series error is very small compared to the residual error εij and can be neglected. For
example, the P order polynomial is

yij = aj0 + aj1ȳi + aj2ȳ
2
i + · · ·+ ajP ȳ

P
i + εij . (2.5)

Equation (2.5) can be expressed using matrix-vector notation as
y1j

y2j
...

yMj

 =

1 ȳ1 ȳ2

1 · · · ȳP1
1 ȳ2 ȳ2

2 · · · ȳP2
...

...
...

1 ȳM ȳ2
M · · · ȳPM

aj0
aj1
...
ajP

+

ε1j
ε2j
...
εMj

 , (2.6)

which is equivalent to the simpler equation:

yj = Yaj + εj . (2.7)

12

So this is an Ordinary Least Squares (OLS) problem. It can be solved in Matlab for the
best fit parameter vector of each pixel by

âj = Y \ yj . (2.8)

Calibration has built the relationship between the ideal response (average response)
and the actual response. This method for any order calibration is general and Matlab
can solve (2.8) easily. Correction will use the relationship to recover an ideal response
from an actual response, given an image yj to be corrected. For P order calibration, the
corrected image ŷj is defined by the roots of

yj = âj0 + âj1ŷj + âj2ŷ
2
j + · · ·+ âjP ŷ

P
j . (2.9)

If P = 1, this is a trivial problem, because solving N linear equations is very easy. If P
= 2, now the problem becomes solving N quadratic equations. They can be solved using
square root calculations, which are not arithmetic operations. If P ≥ 3, the problem
becomes very difficult analytically. There are no analytic solutions for getting the roots
of P ≥ 5 polynomials. Solving P ≥ 3 polynomials is usually done iteratively, and this
must be done for every pixel independently.

This PR calibration has very low calculation complexity since Y in (2.8) is fixed for
each pixel. Moreover, the calibration needs to be done only once for each image sensor
since the parameters are fixed. However, correction is different because it needs to meet
a real-time demand. High-order correction with this approach cannot meet a real-time
demand. Therefore, the PR method is still an imperfect solution to FPN correction.

2.2 Inverse Polynomial Regression
The restriction of the PR method, which was discussed in Section 2.1, inspires developing
a better method for correction. PR correction recovers an ideal response from an actual
response using relationship (2.9). Solving this high-order equation is difficult so we return
to (2.4). If it is inverted as

ȳi = F (f−1
j (yij − εij)) ≈ F (f−1

j (yij)) + ε′ij , (2.10)

where

ε′ij = −
dF (f−1

j (yij))

dyij
εij , (2.11)

then ȳi can be expressed as any order polynomial of yij through a Taylor series. As with
(2.5), the P order polynomial is

ȳi = a′j0 + a′j1yij + a′j2y
2
ij + · · ·+ a′jPy

P
ij + ε′ij . (2.12)

13

Similar to PR, this can be expressed as
ȳ1

ȳ2
...
ȳM

 =

1 y1j y2

1j · · · yP1j
1 y2j y2

2j · · · yP2j
...

...
...

1 yMj y2
Mj · · · yPMj

a′j0
a′j1
...
a′jP

+

ε′1j
ε′2j
...
ε′Mj

 , (2.13)

which is equivalent to the simpler equation:

ȳ = Yja
′
j + ε′j . (2.14)

For this relationship, the parameter vector in (2.14) needs to be estimated. In PR, the
residual error εij is assumed to be statistically independent from observation to observa-
tion and pixel to pixel, with a zero-mean Gaussian distribution. This assumption has been
confirmed as reliable for logarithmic CMOS image sensors [3]. So with PR, parameter
estimation by the OLS method is equivalent to maximum likelihood estimation. However,
with IPR, the residual error ε′ij would depend on observation and pixel index. In theory,
General Least Squares (GLS) should be used instead of OLS. Prewhitening will be the
first step of GLS. However, determining the statistics of residual error ε′ij is not easy,
although (2.11) is the starting point. For now, prewhitening is neglected and OLS is used
to solve the problem.

Matlab can find the parameter vector â′j that best fits the data through

â′j = Yj \ ȳ. (2.15)

Compared to PR calibration, IPR calibration will be a little more complex since the ma-
trix Yj will be different for each pixel. However, since the calibration only needs to
be done once for each image sensor and not in real time, this increase in complexity is
insignificant.

Although the IPR calibration is a little more complex, the IPR correction is much sim-
pler. Given an image yj for P order correction, the corrected image ŷj can be expressed
as

ŷj = â′j0 + â′j1yj + â′j2y
2
j + · · ·+ âjPy

P
j . (2.16)

This correction only needs arithmetic calculations. However, calculating (2.16) di-
rectly is not a good idea. It is numerically inefficient to take integer powers by repeated
multiplication. If (2.16) is expressed in another form, i.e.,

ŷj = (. . .((â′jP)yj + â′j(P−1))yj + â′j(P−2). . .)yj + â′j0, (2.17)

the power calculation can be avoided and the calculations can be pipelined in hardware.
This method of FPN correction is very suitable for real-time implementation.

14

2.3 Median Filtering
Although the new FPN correction algorithm is able to correct FPN efficiently, it is unable
to correct “dead” pixels. Dead pixels may cause salt-and-pepper noise. In image process-
ing, the median filter is a very popular order-statistic filter. Compared with linear smooth-
ing filters of similar size, median filters can reduce salt-and-pepper noise effectively with
less blurring [36]. In our system, we use the cross median filter, whose neighborhood only
has three or five pixels. For most pixels, the filter uses the center pixel and four nearest
neighbors. For border pixels, the filter uses the center pixel and the two nearest pixels
along the same border. For the four corner pixels, the filter uses three pixels too. They are
the center pixel and the two nearest pixels.

The cross median filter has two main advantages. Firstly, it has a very small neigh-
borhood. Few calculations ensures high execution efficiency. The second advantage is
that an odd-point median filter can be equally placed before or after any pixel-wise and
monotonic image processing function. Although the cross median filter is introduced in
this section because its function is correction, it is actually implemented after response
linearization and simple tone mapping, which are explained next.

2.4 Response Linearization
Response linearization is about rendering the scene stimulus (luminance) from the pixel
response, which may be nonlinear. The problems with existing methods for response
linearization are similar to the problems with existing FPN calibration and correction
methods: they are tied to a specific model and are difficult to calculate. Now we have
a new method for response linearization, which is based on spline interpolation. Com-
pared to polynomial interpolation, spline interpolation is preferred due to its ability to
avoid round-off error and oscillations. In practice, cubic splines are most frequently used.
The reason is that they show desired smoothness while keeping the simplest represen-
tation [37]. Similar to the proposed method for FPN calibration and correction, the new
method for response linearization is a general method suitable for different response mod-
els.

The mission of response linearization is to recover a scene estimate x̂j from the cor-
rected image ŷj . Considering (2.3), if we know F−1(y) then, given corrected image ŷj ,
we calculate

x̂j = F−1(ŷj). (2.18)

However, the response model is abstract and a general method is preferred. Instead of cir-
cuit analysis to model F−1(y), we develop an empirical model using spline interpolation.
It is called inverse spline interpolation because we model an inverse function.

In the inverse spline interpolation, the logarithm of luminance, ln(x), is used instead
of the luminance x. The relationship between ln(x) and response y is approximately
linear for a logarithmic or logarithmic-like pixel. However, the relationship between x
and y is highly nonlinear. So the response linearization will be from y to ln(x) and then

15

to x. Other kinds of nonlinear pixels can use a similar approach, with or without an
intermediate mapping to ln(x).

Assuming xi is measured during calibration, we have data (xi, ȳi), where 1 ≤ i ≤M .
The inverse spline model is:

ln(x̂j) = S(ŷj), (2.19)

where

S(y) =

S1(y), y ≤ ȳ2

S2(y), ȳ2 < y ≤ ȳ3
...

...
SM−1(y), ȳM−1 < y

For the linear spline, the expression for Si(y) is very simple since there are only two
parameters. The equation is

Si(y) = bi0 + bi1(y − ȳi). (2.20)

For the cubic spline, which is a cubic polynomial, the equation is

Si(y) = bi0 + bi1(y − ȳi) + bi2(y − ȳi)2 + bi3(y − ȳi)3. (2.21)

There are four parameters in (2.21) so the calculation complexity is higher than in (2.20).
As with (2.16) and (2.17), it is better to rewrite (2.21) as:

Si(y) = bi0 + (y − ȳi)(bi1 + (y − ȳi)(bi2 + bi3(y − ȳi))). (2.22)

With a linear spline, the function after interpolation will always be monotonic. This
is desirable since F−1 is expected to be monotonic. Coefficients for parameters bik of
the linear spline are calculated in the standard manner for linear spline interpolation [37].
However, cubic spline interpolation will not ensure that the function is monotonic even if
the data points are monotonic. Therefore, cubic Hermite spline interpolation is actually
employed [38]. As with FPN calibration, the coefficients bik are calculated once, and are
then used to calculate (2.19) repeatedly.

After the inverse spline interpolation, we have ln(x̂j). To complete the linearization,
exponentiation is required, i.e.,

x̂j = exp(S(ŷj)). (2.23)

2.5 Simple Tone Mapping
The advantage of nonlinear pixels, such as logarithmic pixels, is mainly to capture a high
DR image. Tone mapping, discussed further in Chapter 3, is required to represent cap-
tured scenes appropriately on a display device, such as a monitor. A simple tone-mapping
algorithm, based on the IEC sRGB standard [39] is presented here. In an image, we need

16

to define a white point xwhite. Usually, the white point is the highest pixel stimulus. How-
ever, in a high DR image, assigning the white point as the highest pixel stimulus may
cause serious underexposure in parts that are relatively darker. So the white point xwhite

will be kept as a parameter and not be automatically computed.
Equations (2.24)–(2.26) give the details of this simple tone mapping. After defining

the white point, each pixel stimulus is normalized as

x̂′j =
x̂j
xwhite

, (2.24)

where x̂j is the estimated stimulus, as in (2.23). After we get a normalized stimulus, a
normalized gray value is calculated according to the sRGB standard:

wj =

0, x̂′j ≤ 0
12.92 · x̂′j , 0 < x̂′j ≤ 0.00304

1.055 · x̂′1/2.4j − 0.055, 0.00304 < x̂′j < 1
1, x̂′j ≥ 1

(2.25)

Because the white point xwhite may not be the maximum value of pixel stimulus, the
normalized gray value wj is assigned 1 when the normalized stimulus x̂′j is greater than
1. Finally, we compute an 8-bit gray value:

Wj = round(255 · wj). (2.26)

Our proposed methods, including FPN correction and response linearization, are gen-
eral for various nonlinear pixels. To use it with a logarithmic image sensor, the response
linearization needs exponentiation, as in (2.23). However, because we have ln (x̂j) af-
ter the inverse spline interpolation, a small modification can make the performance better.
Exponentiation will not be used during response linearization. It will be calculated during
simple tone mapping. Equation (2.24) can be transfered to logarithmic form, i.e.,

ln(x̂′j) = ln(x̂j)− ln(xwhite). (2.27)

Therefore, (2.25) is also rewritten:

wj =

exp(ln(12.92) + ln(x̂′j)), ln(x̂′j) ≤ ln(0.00304)
exp(ln(1.055) + 1

2.4
ln(x̂′j))− 0.055, ln(0.00304) < ln(x̂′j) < 0

1, ln(x̂′j) ≥ 0
(2.28)

Equation (2.26) will not change. This form avoids calculating unnecessary logarithms and
exponents (power calculations) in the simple tone mapping. It reduces the computation
complexity and improves the accuracy.

2.6 Look-Up Table Implementation
The computational complexity of simple tone mapping is low. However, the piecewise
functions in both response linearization and simple tone mapping need selection opera-
tors that adversely affect computational efficiency. The simple tone mapping is a pixel-
wise operator. Moreover, the interpolated function is fixed for an image sensor while the

17

mapping function stays constant. So employing a LUT is an ideal alternative to direct
computation.

The simple tone mapping follows the response linearization. Because we modified
the sRGB tone mapping to avoid unnecessary calculations, only response normalization
is needed. Two LUTs are adopted for achieving the required two steps. The whole process
is:

ŷj → LUT1 → ln(x̂j)→ ln(x̂′j)→ LUT2 → Wj . (2.29)

First, the calculation of (2.19) is achieved by LUT1. Next, the estimated stimulus in
logarithmic scale ln(x̂j) is normalized by the white point ln(x̂white), which only needs
subtraction. The result is the input to LUT2, which maps the normalized response ln(x̂′j)
to the display intensity Wj , a composition of (2.26) and (2.28). Because the spline inter-
polant and mapping function are fixed for each image sensor, the two LUTs can be built
once offline. No updates are needed during real-time processing, even with a tunable
white point.

2.7 Results
Experiments were done using a digital camera prototype with a logarithmic CMOS image
sensor, which has been described in Section 1.3. The proposed algorithms were first pro-
grammed in Matlab. Then they were programmed in C, which is embedded in a Visual
C++ framework. Programming in Matlab helps to analyze the results of FPN correc-
tion and response linearization quantitatively. For real-time applications, computational
complexity is a key factor. Languages with high efficiency, such as C or C++, are more
suitable. Therefore, the experiments are divided in two parts. Matlab experiments focus
on offline performance. Real-time performance is tested in Visual C++. The experiment
methods and results are discussed below.

2.7.1 Matlab Experiments
In the experiment, we took the sun as the light source. A sheet of white paper was illu-
minated by the sun. Fifteen effective luminances were achieved by changing the aperture
of the camera. At each luminance, ten uniform images were captured for calibration. The
tests in Matlab mainly focused on quantitative performance through offline analysis.

In Matlab, the ten uniform images at each luminance were averaged to reduce the
temporal noise. The calibration program used the average image at each luminance as the
ideal response to calculate the correction coefficients. Both PR and IPR calibration and
correction were done. Fig. 2.1 compares the performance of three-parameter PR and IPR
correction for three pixels. The corrected response of each individual pixel approximates
the ideal response very well. Both methods have nearly the same performance, which is
difficult to distinguish by inspection.

18

(a) (b)

3.9 4 4.1 4.2 4.3 4.4

x 10
4

3.9

4

4.1

4.2

4.3

4.4
x 10

4

Average Response (LSB)

A
ct

ua
l R

es
po

ns
e

(L
S

B
)

Pixel 1
Pixel 2
Pixel 3
Ideal

3.9 4 4.1 4.2 4.3 4.4

x 10
4

3.9

4

4.1

4.2

4.3

4.4
x 10

4

Average Response (LSB)

A
ct

ua
l R

es
po

ns
e

(L
S

B
)

Pixel 1
Pixel 2
Pixel 3
Ideal

Figure 2.1: Three-parameter (a) PR and (b) IPR FPN correction of three pixels. The
actual (corrected) responses of both methods approximate the average (ideal) response of
all 10 800 pixels very well in a dynamic range of 5.3 to 33 000 cd/m2.

Individual responses of corrected pixels determine imaging performance. For over-
all analysis, Root Mean Square (RMS) residual error is a suitable parameter for evalua-
tion [5]. After FPN correction, each pixel has a different residual error. The residual error
for a specific pixel varies with luminance. In general, FPN correction may be represented
by a function C(yij). Given that ȳi is the average response of all pixels, the residual error
ε′ij for pixel j at luminance level i is:

ε′ij = ȳi − C(yij). (2.30)

Given a total pixel number of N , and that calibration and correction were done at M
different luminances, the RMS residual error σε′ is defined as follows:

σ2
ε′ =

∑M
i=1

∑N
j=1(ȳi − C(yij))

2

DOF
, (2.31)

where the denominator is the Degrees of Freedom (DOF) [40]. For the PR and IPR meth-
ods, one can show:

DOF = MN −M − PN , (2.32)

where P is number of parameters per pixel. For any luminance level i, the RMS residual
error σε′i is defined similarly:

σ2
ε′i

=
M
∑N

j=1(ȳi − C(yij))
2

DOF
. (2.33)

Fig. 2.2 compares the RMS residual error after one, two, and three-parameter IPR FPN
correction, as well as Otim et al.’s FPN correction [21]. Three-parameter IPR correction

19

4 4.1 4.2 4.3

x 10
4

0

20

40

60

80

100

120

Average Response (LSB)

R
M

S
 R

es
id

ua
l E

rr
or

 (
LS

B
)

4 4.1 4.2 4.3

x 10
4

0

1.2

2.4

3.6

4.8

6

7.2

R
M

S
 R

es
id

ua
l E

rr
or

 (
m

V
)

One parameter
Two parameter
Three parameter
Otim et al.

Figure 2.2: RMS residual error of various FPN correction methods, including one from
Otim et al.’s FPN correction [21]. Three-parameter IPR correction provides the best per-
formance among these corrections, considering all luminance levels.

offers better and more stable performance than one or two-parameter IPR correction.
Although RMS residual error after Otim et al.’s correction equals zero at two luminance
levels, the performance is less stable, and worse at all other luminance levels, than the
proposed three-parameter IPR correction. Further analysis showed that four-parameter
correction offered no further improvement.

The result of response linearization is demonstrated in Fig. 2.3. As expected, the
interpolated curve approximates a straight line because scene luminance is plotted on a
logarithmic scale. Fig. 2.4 compares images captured by our digital camera prototype
before and after three-parameter IPR FPN correction. Simple tone mapping is applied to
all images before display.

In summary, offline performance has been tested in Matlab. Quantitative and qualita-
tive analysis proved the good performance of the proposed methods.

2.7.2 C++ Experiments
The testing with C++ focuses on real-time performance. The three-parameter IPR correc-
tion and simple tone mapping were programmed in C++. For simple tone mapping, an
LUT is employed for computational efficiency. When the proposed methods were exe-
cuted in C++, the system frame rate reaches 50 Hz, which makes the video fluid. Fig. 2.5
exhibits two series of frames before and after IPR correction. The IPR correction reduced
the FPN in each frame effectively. The image quality was improved significantly.

Real-time performance of the proposed method was proved with a C++ implementa-
tion. The method is ideal for real-time processing because only arithmetic operations are
needed for correction. The restriction between complexity and performance for existing

20

(a) (b)

10
0

10
1

10
2

10
3

10
4

10
5

3.9

4

4.1

4.2

4.3

4.4
x 10

4

Scene Luminance (cd/m2)

D
ig

ita
l R

es
po

ns
e

(L
S

B
)

Actual data
Inverse spline

10
0

10
1

10
2

10
3

10
4

10
5

3.9

4

4.1

4.2

4.3

4.4
x 10

4

Scene Luminance (cd/m2)

D
ig

ita
l R

es
po

ns
e

(L
S

B
)

Actual data
Inverse spline

Figure 2.3: Response linearization based on (a) linear interpolation and (b) piecewise
cubic Hermite spline interpolation using the calibration data. The difference between
them is not obvious because of the log-scale X axis.

FPN correction methods has been overcome.

2.8 Conclusion
This chapter introduced a new FPN correction and response linearization method for
nonlinear-response CMOS pixels. Most existing methods for nonlinear FPN correction
try to simplify the nonlinear model to a linear model or approximate it through a piecewise
linear function. They have to trade off complexity with performance. Also, little work
has been done on response linearization. Moreover, because a concrete expression for the
response model was previously necessary, another problem of existing FPN correction
and response linearization methods is they are tied to the given model.

The new FPN correction has two important advantages compared to existing methods.
The first one is high generality. Although tests were only done with a standard logarith-
mic CMOS APS array, the proposed method did not require a specific response model.
Another advantage is low computational complexity during correction, which only needs
arithmetic operations. This ensures that it can correct in real time while keeping high per-
formance. At the same time, a new response linearization algorithm has been developed.
Similar to the new FPN correction, response linearization is general for different response
models but retains simplicity. By incorporating the sRGB display standard [39] into the
framework, we developed a simple tone mapping.

Experiments were done using a digital camera prototype having a logarithmic CMOS
image sensor. The RMS residual error after the new FPN correction showed superior
performance over a wide dynamic range. Real-time implementation demonstrated system
performance at a frame rate sufficient for fluid video. It proved that the new algorithm

21

(a) (b)

(c) (d)

Figure 2.4: Original image (left) and image after three-parameter IPR FPN correction
(right) for four scenes. The proposed correction reduces FPN effectively, which improves
the image quality. Simple tone mapping makes it difficult to render high-DR scenes for a
standard display. In (c), the headlight of the car is overexposed. In (d), the dark part of
the scene is underexposed. Nevertheless, FPN is corrected.

provides high image quality in real time. Through experiments, the new FPN correction
has overcome the existing limitation between performance and complexity. The proposed
method is ideal for real-time and high-performance digital FPN correction.

The only issue with the efficiency of the new method is that it has been developed
based on floating-point operations in a PC. Compared to fixed-point operation, floating-
point operation has higher precision but lower computational efficiency. Such higher
computation complexity would make it difficult to realize the method at high speed with
low-power consumption. A fixed-point design will be introduced in Chapter 4, after tone
mapping is improved in Chapter 3.

22

(a)

(b)

Figure 2.5: Video of a scene (a) before and (b) after three-parameter IPR FPN correc-
tion. These examples demonstrate the suitability of the method for real-time processing.
Although the frame interval is 20 ms, every tenth frame is shown to highlight dynamics.

23

Chapter 3

Noiseless Tone Mapping

High-DR image sensors are capable of capturing high-DR scenes in one exposure. For
research purposes, captured signals, including images and videos, may be recorded on a
metric scale for computer analysis. In most cases, images and videos are simply displayed
for human analysis. Tone mapping is a necessary process in the latter case for mapping
scene stimulus to display brightness [10]. High-DR tone mapping is challenging because
the DR of standard display equipment is just above two decades [11]. This may be much
lower than real-world DR for common scenes. Reproducing high-DR scenes with high
fidelity has therefore attracted an increasing amount of attention. Both hardware and
software-based methods are widely investigated.

Hardware-based methods are a direct solution. If the DR of display equipment is about
the same as possible world DR, the high-DR scene can be displayed easily. Brightside
Technologies (formerly Sunnybrook Technologies) developed projector-based and LED-
based high-DR displays [9]. They report a projector-based display that is able to give a
DR of 65000:1. The performance of LED-based high-DR displays is even better. They
are able to display high-DR images and videos linearly. Other high-DR display systems
are being developed using different ideas [22, 23]. However, multiple reasons such as
price and power consumption still make it difficult for high-DR displays to replace stan-
dard displays in the near future. Compared to hardware-based methods, software-based
methods will continue to be important.

The human eye is a subjective organ rather than an objective one. It is sensitive to
relative brightness not absolute luminance. Tone-mapping algorithms are based on this
feature. Many different tone mapping techniques have been reported in the literature.
Existing techniques mainly include two categories: local operators and global operators.
Local operators are developed based on the human eye’s response to local contrast. Tones
at different pixel locations are mapped through different local functions. In most ap-
proaches, high-DR images are decomposed, DR is compressed, and components are re-
combined. Durand and Dorsey [41] modified bilateral filtering [42] to form fast bilateral
filtering. It decomposes the image into base and detail layers. DR compression is only ap-
plied to the base layer. Other approaches [43, 44] use similar ideas. Gradient domain DR
compression [24] is another popular approach. The concept of this approach is relatively
simple, and it is able to preserve local contrasts while bringing few visible artifacts. Re-

24

cently, a new approach that combines global and local operators has been developed [45].
It does not need scale decomposition, layer separation, or image segmentation. Experi-
ments showed the algorithm has good off-line performance but it is time consuming. High
computation complexity makes local operators infeasible or very expensive for real-time
processing.

Unlike local tone-mapping techniques, global operators map each pixel’s response
through a global function. Research on global operators [46, 47, 48] is older than local
operators. Among global tone-mapping techniques, the most impressive approach is the
algorithm that Larson developed [10] based on histogram equalization and the Human
Visual System (HVS). Much research has been done to modify the approach. Instead of
local operators, we return to global operators for efficiency.

Most tone-mapping works focus on still images. Few of them try to process video
and fewer still try to process it in real time. For video tone mapping, image tone map-
ping operated on each frame is not ideal. Coria and Nasiopoulos [49] processed video
using temporal correlation. Image sequences are divided into groups. In each group,
a block-matching motion estimation is applied to frames. Lee and Kim [50] combined
gradient-domain tone mapping and motion information to develop a new approach to
video processing. Hoefflinger reported [8] that Durand and Dorsey modeled the tempo-
ral adaptation process of the human eye as an exponential decay function [51]. This is
a simple adaptation model but produces reasonable results [29]. For real-time tone map-
ping, the frame rate should be high enough to make delay tolerable and video fluid. This
problem comes back to a trade off between complexity and performance.

As mentioned previously, nonlinear image sensors are able to capture high-DR scenes
in one exposure. High-DR scenes cannot be displayed appropriately without a tone-
mapping algorithm. Although tone mapping is not a new topic, real-time tone mapping
for nonlinear high-DR image sensors is relatively unexplored [11]. In this chapter, we pro-
pose a new method developed from histogram equalization. The inspiration comes from
camera and display noise. Existing tone mapping methods assume that images and videos
are pure without noise. Unfortunately, this assumption does not hold for high-DR images
captured by nonlinear image sensors. Not only does the proposed method compress the
DR, it also prevents noise exceeding the tolerance of standard displays. In addition, a
human-eye adaptation model is incorporated to handle abrupt DR changes across video
frames.

3.1 Histogram Equalization
The DR of standard display equipment only spans two decades, which may be much
smaller than the DR of real-world scenes. Simple tone mapping for a high-DR scene may
cause underexposure of the dark part, overexposure of the bright part, or a combination
thereof, no matter how the white point is set. In this chapter, we use a LogLuv-encoded
TIFF image from Larson [52] to introduce our method. Scene luminance can be calcu-
lated from LogLuv-encoded TIFF images [53]. Fig. 3.1 presents the image, a bathroom
illuminated by a lamp, after simple tone mapping.

25

(a) (b)

Figure 3.1: Bathroom image, taken from Larson [52], demonstrating (a) underexposure
of parts and (b) overexposure of parts. Simple tone mapping cannot show details in dark
and bright parts of the bathroom simultaneously.

Tone-mapping methods compress the DR of high-DR scenes to fit within the display
DR, while retaining the subjective feeling of the original. Histogram equalization is a
commonly used method in image processing, which redistributes pixel intensity to get a
more uniform distribution. Because nearly all captured scenes do not have a uniform his-
togram, histogram equalization shrinks the sparsely-populated portions of the histogram
to enable DR compression. In addition, the DR of pixels in densely-populated portions of
the histogram is expanded.

Fig. 3.2(a) shows the histogram of the original bathroom image. For histogram equal-
ization, the global tone-mapping function is:

Y = (Ymax − Ymin)Px(X), (3.1)
Px(X) = P (x < X). (3.2)

Here, X is the input value (scene luminance) and Px(X) is the Cumulative Distribu-
tion Function (CDF) of the input value. Correspondingly, Y is the output value (display
intensity). Ymax and Ymin define the range of Y . According to probability theory, the
Probability Density Function (PDF) is related to the CDF as follows:

px(X) = P ′x(X). (3.3)

26

(a) (b)

10
−1

10
1

10
3

10
5

0

1000

2000

3000

4000

5000

6000

Scene Luminance (cd/m2)

N
um

be
r

of
 P

ix
el

s

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

Display Intensity (LSB)

N
um

be
r

of
 P

ix
el

s

Figure 3.2: Histogram of the bathroom image. (a) The original histogram is not uniform.
(b) After histogram equalization, pixel intensities are distributed more uniformly. Gaps
in the new histogram occur because equalization is done on discrete data.

With images, the PDF may be approximated with a histogram:

px(X) ≈ h(X)

N∆x
, (3.4)

where h(X) is the histogram of X , N is the number of pixels in the image, and ∆x is the
step size for the histogram bin.

Intuitively, tone mapping should operate on luminance x because tone mapping exists
to transform scene luminance to display intensity. On contrast, the human eye perceives
brightness more on a logarithmic scale [3]. This inspires us to use lnx as a measure of
brightness, as with Larson et al. [10]. Since ex is monotonic, (3.2) may be rewritten as
follows:

Px(X) = P (elnx < elnX) (3.5)
= P (lnx < lnX) (3.6)
= Plnx(lnX). (3.7)

So tone mapping operating on luminance or brightness will bring the same results. In
the proposed method, we take brightness as the input. With the high-DR image sensors
descried in Chapter 2, this is convenient because the initial output is in the form lnX .

Finally, histogram equalization can be divided into two steps. The first step is build-
ing a tone-mapping function based on the histogram of the brightness image. The next
step is transforming brightness using the mapping function. Histogram equalization re-
moves empty portions in the histogram to achieve effective DR compression. The DR is
expanded in highly-populated regions of the histogram. Fig. 3.2(b) shows the bathroom
histogram after histogram equalization, which results in a more uniform distribution while
also mapping scene luminance to display intensity.

27

(a) (b)Histogram equalization of pure image

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

100

200

300

Scene Luminance (cd/m2)

D
is

pl
ay

 In
te

ns
ity

 (
LS

B
)

0 50 100 150 200 250
0

5

10

Display Intensity (LSB)

R
M

S
 N

oi
se

 (
LS

B
)

Equalization
Threshold

Figure 3.3: (a) Bathroom image after histogram equalization. (b) The mapping func-
tion (top) and displayed RMS noise (bottom) due to the camera, which is zero for this
simulation.

3.2 Noise Ceilings
Our goal is to develop a tone-mapping algorithm for high-DR image sensors, which is
able to process captured video in real time. Video is composed of a sequence of frames.
A tone mapping algorithm for single frames may be applied in sequence to video data.

Fig. 3.3(a) shows the bathroom image after histogram equalization, as well as the
corresponding mapping function and the RMS noise versus display intensity. Because
camera noise was not included in the simulated image, RMS noise is zero at all display
intensities after tone mapping. The computational complexity of histogram equalization
is low, which makes it possible to process captured video in real time.

Unfortunately, images and videos captured by high-DR image sensors may be noisy.
We simulated noise based on a human eye model [15], where RMS noise is a function of
brightness. The bathroom image is mixed with this simulated noise. Fig. 3.4(a) shows the
noisy bathroom image after histogram equalization. The noise is visible.

After histogram equalization, not only is the DR of highly populated intensities ex-
panded, the noise in the corresponding pixels is magnified too. The worst case is the
magnified noise exceeds the tolerance of the display format, becoming visible. Naive his-
togram equalization may corrupt the quality of images and videos, and therefore should
be modified. We have said that histogram equalization includes building a tone-mapping

28

(a) (b)

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

100

200

300

Scene Luminance (cd/m2)

D
is

pl
ay

 In
te

ns
ity

 (
LS

B
)

0 50 100 150 200 250
0

5

10

15

20

Display Intensity (LSB)

R
M

S
 N

oi
se

 (
LS

B
)

Equalization
Threshold

Figure 3.4: (a) Bathroom image with simulated camera noise after histogram equalization.
(b) The mapping function (top) and displayed RMS noise (bottom). Camera noise is
visible on the wall below the mirror.

function based on the histogram of the input image and applying the mapping function to
produce the output image. So we should modify the mapping function to prevent noise
magnification beyond a visibility threshold.

Chapter 2 described high-DR image sensors, which are modelled here as follows:

`j = lnxj + εcj , (3.8)

where j indexes pixels, `j is the measured brightness, xj is the scene luminance, and εcj
is the camera noise, which follows a zero-mean Gaussian distribution. Although RMS
noise may depend on index as well as brightness, we assume dependence on brightness
only. For the image sensors of Chapter 2, median RMS noise versus brightness, denoted
σc(lnx), can be computed from the calibration data. Therefore, σc(lnx) is utilized as the
RMS noise for all pixels in the image sensor.

A global tone mapping operator T maps measured brightness `j to display intensity
Wj as follows:

Wj = round(T (`j)) (3.9)
= T (`j) + εdj . (3.10)

In (3.10), rounding is modelled by the addition of display noise εdj . For sRGB dis-
plays [39], there are 256 gray levels. Display noise can be modeled with a uniform distri-

29

bution from −0.5 to 0.5 LSB, so the RMS display noise in each pixel is:

σd =
1√
12

. (3.11)

This display noise is independent of gray level.
Through (3.8), the signal captured by a camera is mixed with camera noise εcj . There-

fore, a “tone-mapping noise” εtj is introduced after tone mapping, which originates from
the camera noise εcj . So (3.9) can be written as:

Wj = T (lnxj) + εtj + εdj . (3.12)

Meanwhile, we use a first-order Taylor series to approximate the tone mapping noise εtj
in terms of the camera noise εcj . Therefore, we can get:

Wj ≈ T (lnxj) + T ′(lnxj)ε
c
j + εdj . (3.13)

Assuming that camera and display noise are uncorrelated, the total RMS noise that is
displayed, versus brightness, is as follows:

σW (lnx) =
√
σ2

t + σ2
d (3.14)

≈
√

(T ′(lnx)σc(lnx))2 + σ2
d (3.15)

Therefore, under any brightness, if the RMS noise of tone mapping σt is smaller than or
equal to the display RMS noise σd, i.e.,

σt ≤ σd, (3.16)

then the camera noise after tone mapping will be barely visible.
Under typical brightness lnx, using (3.11) and (3.14)–(3.16), we have:

T ′(lnx)σc(lnx) ≤ 1√
12

. (3.17)

In sRGB format, the display intensity ranges from 0 to 255. Through equation (3.1):

T (lnx) = (255− 0)Plnx(lnx), (3.18)

where Plnx(lnx) is the CDF of the pixel responses (proportion of captured brightnesses
less than or equal to lnx). Therefore, T ′(lnx) equals:

T ′(lnx) = 255 plnx(lnx). (3.19)

Through (3.4), the PDF is approximated by the histogram function h(lnx). By combining
(3.4) and (3.19), we obtain:

T ′(lnx) ≈ 255
h(lnx)

N∆lnx
. (3.20)

30

0 1 2 3
0

2

4

6

8

10

Iteration Number

W
or

st
−

C
as

e
R

M
S

 N
oi

se
 (

LS
B

)

Noiseless
Threshold

Figure 3.5: RMS noise of noiseless tone mapping versus number of iterations. Ideally,
the RMS noise should be below the visibility threshold but it is close enough, even with
zero interations.

However, when we count the histogram, the response is mixed with noise. Instead of
counting h(lnx), we can only count h(`) to approximate h(lnx):

T ′(lnx) ≈ T ′(`) ≈ 255
h(`)

N∆`
. (3.21)

Finally, putting (3.21) into (3.17), we get:

h(`) ≤ N∆`

255
√

12σc(`)
. (3.22)

This equation specifies a ceiling for each bin in the histogram. The ceiling prevents
camera noise from exceeding the visibility threshold after tone mapping. When the pixel
count in a bin of the histogram exceeds the ceiling, truncation of the count is a simple and
reliable approach [10].

After truncation, the total number of pixels N in the histogram decreases because
truncation removes pixels. Total number changes lead to ceiling changes. Therefore,
the ideal condition cannot be reached after truncation. For still images, iteration can be
employed until some condition is satisfied. Fig. 3.5 shows the tone-mapping worst-case
RMS noise σt of all pixels in the bathroom image after the proposed tone mapping with
iteration.

Through Fig. 3.5, the performance does not improve much with iteration. However,
employing iteration will seriously affect efficiency. Therefore, iteration is omitted in our
approach. Fig. 3.6(a) shows the bathroom image after noiseless tone mapping with zero
iterations. The mapping function and RMS noise are plotted in Fig. 3.6(b). Comparing
to the mapping function in Fig. 3.4(b), the slopes of the curve are changed because the

31

(a) (b)

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

100

200

300

Scene Luminance (cd/m2)

D
is

pl
ay

 In
te

ns
ity

 (
LS

B
)

0 50 100 150 200 250
0

5

10

15

20

Display Intensity (LSB)

R
M

S
 N

oi
se

 (
LS

B
)

Noiseless
Threshold

Figure 3.6: (a) Bathroom image with simulated camera noise after noiseless tone map-
ping. (b) The mapping function (top) and displayed RMS noise (bottom). Camera noise
is invisible on the wall below the mirror.

histogram is changed by truncation. In Fig. 3.6(b), the RMS noise drops significantly but
still exceeds the visibility threshold by a small amount. Yet, it is difficult for the human
eye to detect the camera noise in Fig. 3.6(a). Fig. 3.7 depicts the process of the proposed
tone mapping with noise ceilings.

3.3 Temporal Adaptation
Video is composed of a sequence of frames. The simplest method is to operate the tone
mapping on each frame independently. Yet, this single-frame approach brings an unex-
pected effect when it encounters an abrupt DR change. The intuitive solution is to employ
a multi-frame solution. Using a LPF, abrupt changes are eliminated.

Humans do not see each frame in a video independently. Our eyes take a period
of time to adapt to the current DR if the DR changes. As reported by Hoefflinger [8],
Durand and Dorsey modeled the temporal adaptation process of the human eye with an
exponential decay function:

xp(t) = xp(t− T) + (xs(t)− xp(t− T))(1− e
−T
τ), (3.23)

where xs(t) is scene luminance at time t and xp is perceived luminance. T is a time
period between measurements of perceived luminance, and τ is a time constant. For

32

Low-pass filter

(LPF)

Enforcement

of ceilings

New histogram

of frame

Normalized

response
Mapping function

Histogram

of frame

Display

Figure 3.7: Flow chart of noiseless tone mapping. The highlighted block is added for
noiseless tone mapping with temporal adaptation. Ceilings are calculated once before-
hand. The mapping function is built from the new histogram.

a digital imaging system whose interval T between consecutive frames is constant, the
exponential decay function in the discrete time domain becomes:

xp[n] = (1− α)xs[n] + αxp[n− 1], (3.24)

where

α = e
−T
τ . (3.25)

Goodnight et al. [29] used this model on the logarithm of luminance (brightness), as a
scale factor for each frame. This approach gave acceptable results.

Fig. 3.8 shows the process of temporal adaptation operated in luminance and bright-
ness respectively, where both the scene and perceived luminance are 102 cd/m2 at the be-
ginning, where the scene luminance changes to 103 cd/m2 abruptly, and where τ equals
0.4. This time constant is the worst-case one possible [25].

The above model coincides with our initial intuition. It shows perceived luminance
may be approximated by passing scene luminance through a first-order LPF. Although
there are differences when the LPF is operated on luminance or brightness, as shown in
Fig. 3.8, both approaches are acceptable. In our method, the operator applied to brightness
instead of luminance. Also, it is infeasible to apply a LPF to the response of each pixel.
As display intensity is computed using a histogram of the current frame, we apply the
LPF to the histogram:

hp(`)[n] = (1− α)hs(`)[n] + αhp(`)[n− 1], (3.26)

33

−0.2 0 0.2 0.4 0.6 0.8 1

10
2

10
3

10
4

Time (s)

Lu
m

in
an

ce
 (

cd
/m

2)

Actual
Perceived 1
Perceived 2

Figure 3.8: The process of temporal adaptation during luminance change. The Perceived
1 curve applied a LPF to luminance while a LPF is applied to brightness for the Perceived
2 curve. Both perceived luminances model temporal adaptation but the latter is easier to
compute.

where α is calculated based on a time constant of the human eye and the frame period.
hs(`) represents the histogram of the current frame or scene. Because of the LPF, the filter
output hp(`)[n] may have a fractional part, which is meaningless. Therefore, we round it
(not shown) to get the modified or perceived histogram hp(`). The modified histogram
hp(`) is compared to the ceilings. A mapping function for the current frame in the video
is derived from the modified histogram after truncation. Fig 3.7 presents the completed
process of noiseless tone mapping, which employs both noise ceilings and a LPF.

3.4 Results
Unlike the evalution of FPN correction in Chapter 2, the evaluation of tone mapping is
more subjective. The noiseless tone mapping is programmed in Matlab and C. Notwith-
standing temporal adaptation, it suffices to test noiseless tone mapping offline with still
images. On the other hand, noiseless tone mapping with temporal adaptation needs to
be tested in real time with videos. Matlab was first used to process the captured images
offline. Afterward, the complete noiseless tone mapping was programmed in C and em-
bedded in a visual C++ framework. C++ tests focused on real-time performance. All
the tests were done with the prototype imaging system introduced in Chapter 1, which
employs a logarithmic CMOS APS image sensor. Section 3.4.1 discusses the Matlab
experiments. The C++ experiments are discussed in Section 3.4.2.

34

3.4.1 Matlab Experiments
Before the experiments, FPN calibration was done for the image sensor. Through the
calibration method introduced in Chapter 2, the correction coefficients were computed.
Then the RMS residual noise of each pixel in the image sensor was computed. The
median RMS noise was used in the noiseless tone mapping.

Images captured by the prototype imaging system were FPN corrected and tone mapped
in Matlab. Matlab tests focused on offline performance for still images. Therefore, tem-
poral adaptation is ignored. Fig 3.9 compares four images captured by our logarithmic
image sensor after simple tone mapping, histogram equalization, and noiseless tone map-
ping, respectively. Two of the examples involve low-DR scenes while the other two in-
volve high-DR scenes. Compared to simple tone mapping, histogram equalization pro-
vides a wider subjective DR. However, magnified noise degrades the quality of images
while the bright parts may be overexposed. Noiseless tone mapping performs better in
both low-DR and high-DR images. For low-DR images (mug and apple), the DR of the
standard display is utilized more fully. In the high-DR image of a car, the headlight that
was overexposed with simple tone mapping become visible. In the last example, a separa-
tor stands in the middle. At left, a bulb shines while a “10” printed on cardboard is on the
right. The cardboard is underexposed with simple tone mapping. It becomes visible with
noiseless tone mapping while the ring of the bulb can still be seen clearly. Performance
in the dark part is worse because camera noise is relatively worse in dim lighting.

Good offline performance was demonstrated in Matlab experiments. Noiseless tone
mapping is suitable for both low-DR and high-DR scenes. Real-time experiments are
discussed below.

3.4.2 C++ Experiments
FPN correction and noiseless tone mapping were programmed in C to achieve high-speed
processing. After implementation in a pre-existing Visual C++ framework, the frame
rate of the digital camera was 45 Hz. Fig. 3.10 presents a sequence of frames rendered
by simple tone mapping, histogram equalization, and noiseless tone mapping with and
without temporal adaptation. Except for the fourth operation which was computed in
real time, the first three are all frame-based operations and were computed offline using
logged data. As shown in Fig. 3.10, bulb switching introduces an abrupt DR change. The
cardboard in (a) is underexposed after the bulb turned on. In (b), magnified noise degrades
the quality of frames. The DR changes suddenly in (a), (b), and (c). In (d), a period is
taken to adapt to the new DR, which is more natural considering human adaptation .

C++ experiments showed the proposed methods are suitable for real-time processing.
Subjective DR is displayed while the visibility of camera noise is restricted. A LPF is
employed on frame histograms to approximate temporal adaptation of the human eye.
A low computational complexity makes real-time implementation feasible. This enables
high frame rate and fluid video.

35

(a) (b) (c) (d)

10
0

10
1

10
2

10
3

0

100

200

300

Scene Luminance (cd/m2)

P
ix

el
 C

ou
nt

10
0

10
1

10
2

10
3

0

100

200

300

Scene Luminance (cd/m2)

P
ix

el
 C

ou
nt

10
0

10
1

10
2

10
3

10
4

10
5

0

100

200

300

Scene Luminance (cd/m2)

P
ix

el
 C

ou
nt

10
0

10
1

10
2

10
3

10
4

10
5

0

100

200

300

Scene Luminance (cd/m2)

P
ix

el
 C

ou
nt

Figure 3.9: Low-DR (top two) and high-DR (bottom two) images after (a) simple tone
mapping, (b) histogram equalization, and (c) noiseless tone mapping, respectively. Scene
histograms, based on the original images, are given in (d).

36

(a)

(b)

(c)

(d)

Figure 3.10: Video of scene changed from low DR to high DR. At left, a bulb is turned on
while a printed “10” is on the right shielded by a separator. From (a) to (d) respectively,
we use simple tone mapping, histogram equalization, noiseless tone mapping without
temporal adaptation, and noiseless tone mapping with temporal adaptation. Although the
frame rate is 45 Hz, every ninth frame over a 1 s period is shown for brevity.

37

3.5 Conclusion
High-DR tone mapping has attracted wide interest. Both hardware-based and software-
based methods have been proposed. Hardware-based methods try to expand the available
DR of display devices. On the other hand, software-based methods compress the DR
of high-DR images and videos to make them suitable for standard displays. Although
high-DR display equipment is able to display high-DR scenes linearly, multiple reasons,
including price and power consumption, prevent high-DR display equipment from replac-
ing standard displays in the near future. Software-based methods are still mainstream.

Existing tone-mapping algorithms are divided into two categories: global operators
and local operators. Local operators suffer from high computational complexities, which
make them difficult to realize for real-time processing. Therefore, we return to global
operators for efficiency. The tone mapping proposed in this chapter, which is developed
from histogram equalization, targets videos captured by high-DR image sensors in real
time. Existing tone-mapping methods assume that visual signals are free of noise. Unfor-
tunately, this assumption is invalid for captured videos, especially with nonlinear image
sensors. Previous tone mapping methods may therefore magnify noise to exceed the vis-
ibility threshold of displays, which is undesirable. Noiseless tone mapping solves this
problem through adoption of noise ceilings. The noise is prevented from exceeding the
visibility threshold of the sRGB display format.

Video is composed of a sequence of frames. Operating tone mapping on each frame
independently is the simplest approach for video. Yet, the single-frame operator may
produce unnatural effects when there is a sudden DR change. The temporal adaptation
process of the human eye is modeled by an exponential decay function. A first-order LPF
is adopted across frames to approximate the temporal adaptation.

Experiments were done with a prototype digital camera employing a logarithmic
CMOS APS image sensor. The proposed method was programmed in Matlab and C++.
The experiments in Matlab demonstrated good offline performance without considering
temporal adaptation. C++ experiments showed the proposed method is also suitable for
real-time processing because of its low-computational complexity. Although experiments
were done with a standard logarithmic image sensor, the pixel response model does not
affect the method. The proposed method can be applied for different nonlinear pixel
designs. Currently, noiseless tone mapping was developed based on floating-point opera-
tions. The corresponding fixed-point design will be introduced in the next chapter.

38

Chapter 4

Fixed-Point Design

Digital imaging is widely used in research, medical, and commercial domains. Nonlin-
ear image sensors are able to overcome the limit of low DR but suffer from high FPN,
which degrades the quality of signals seriously. Moreover, displaying high DR scenes on
standard DR displays is a difficult problem because of the lower DR. The previous two
chapters introduced DSP solutions to these problems for nonlinear image sensors. This
includes FPN correction and noiseless tone mapping. FPN correction reduces the FPN
significantly to improve the SNDR of image sensors. Noiseless tone mapping maps scene
luminance to display brightness while keeping perceptual DR and limiting noise visibil-
ity. Test results proved that the proposed methods are feasible and have good imaging
performance based on floating-point operations.

For a digital camera, many parameters besides imaging performance need to be con-
sidered, such as compactness and power consumption. Previously, floating-point designs
were programmed in Matlab and C++, which are high-level programming languages.
Programming was realtively easy and precision was high. Not only that, wordlength lim-
itations were negligible. Unfortunately, floating-point operations may be undesirable for
a real-time system. High computational complexity makes it difficult to achieve a high
frame rate. Unlike floating-point operations, fixed-point operations enable lower power
consumption and higher compactness. With proper design, the precision loss can be min-
imized given the limitation of wordlength.

Fixed-point design for either FPN correction or tone mapping has not been widely
investigated. Schneider proposed a fixed-point design for her FPN correction method [8].
A piecewise linear function is used for approximating a nonlinear model, which makes
the corresponding fixed-point design straightforward. However, existing FPN correction
methods [5, 21] suffer a trade-off between performance and complexity. On the other
hand, tone mapping research focuses on offline processing instead of real-time processing.
For offline usage, fixed-point design is unnecessary. Wang et al. designed a tone-mapping
processor for a global tone-mapping algorithm called photographic [31]. Although the
processor can achieve high frame rate and high resolution, it was not designed to limit the
visibility of noise, which is important with nonlinear image sensors.

In this chapter, we provide fixed-point designs for the methods proposed in the two
previous chapters. Compared with double-precision floating-point operations, fixed-point

39

operations bring inevitable errors. Yet, the error can be minimized through proper design.
For FPN correction, we model the fixed-point errors. With a model of error, we program a
method to compute the residual FPN, after fixed-point FPN correction, versus coefficient
wordlength. Afterward, the optimal design is determined considering both the demands
of performance and wordlength. For noiseless tone mapping, LUTs are implemented
in the fixed-point design. Instead of staying constant, the LUT that stores the mapping
function is updated each frame using only fixed-point operations. A fixed-point LPF is
also adopted to approximate temporal adaptation.

4.1 FPN Correction
In Chapter 2, the method of FPN calibration and correction was introduced. IPR correc-
tion maps original responses to corrected responses through a polynomial function that
is built during calibration. Three-parameter correction was tested in Matlab. The results
showed that three-parameter correction were enough for the digital camera prototype un-
der test. Without loss of generality, we present a fixed-point design for three-parameter
correction. In this case, the polynomial function for the jth pixel is:

ŷj = (âj2yj + âj1)yj + âj0, (4.1)

where yj is the original response, ŷj is the corrected response, and âj∗ are the three pa-
rameters. Because they come from an ADC, the original responses are integers. The
wordlength is decided by the specification of the ADC. We do not consider the quanti-
zation error in the original response, as it exists equally for both fixed-point and floating-
point operation. There is no need for fixed-point calibration because calibration is done
offline once. Therefore, calibration is still performed based on floating-point operation.

After calibration, the original coefficients for FPN correction all have fractional parts.
Correction coefficients have different magnitude distributions as shown in Fig. 4.1. For
fixed-point operation, the simplest method is to scale and round the original coefficients,
which are then stored as integers. Coefficient scaling can be done by right or left shifting
of the “decimal” point, in binary, of the original coefficients. Rounding eliminates the
fractional parts.

Unlike floating-point addition, fixed-point addition of scaled numbers requires atten-
tion to scale factor and wordlength. “Decimal” point shifting and length adaptation are
necessary to ensure numbers match before addition. With left shifting, fractional parts are
simply truncated.

Both rounding with coefficient scaling and truncation before fixed-point addition in-
troduce round-off error. Yet, there are differences between these two types of round-off
error. The error caused by coefficient scaling and rounding is fixed for a specific pixel.
Therefore, we call it static round-off error. Similarly, shifting in coefficient scaling is
called static shifting. On the contrary, error caused by truncating before fixed-point addi-
tion changes with the original response even for a specific pixel. So it is called dynamic
round-off error. Correspondingly, shifting before addition is called dynamic shifting. We

40

−30 −20 −10 0 10 20
0

20

40

60

80

100

Base 2 Logarithm of Coefficient

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(%
)

âj2

âj1

âj0

Figure 4.1: After FPN calibration, the magnitude distribution of each coefficient across
pixels indicates a need for different scale factors. Using the same scale factor for each
coefficient may result in saturation, depending on wordlength.

analyze the static and dynamic errors separately in the following subsections. Fig. 4.2
exhibits the whole process of fixed-point design for three-parameter FPN correction.

4.1.1 Static Round-Off Error
Because scaling is done with binary shifting, the scaling factor is always a power of two.
For any pixel j, the kth static round-off error 4Ajk depends on the original coefficient
âjk and scaling factor 2sk . After scaling and rounding, we obtain fixed-point coefficients:

Ajk = round(2sk âjk). (4.2)

The rounding operation may introduce error. Static round-off error is:

4Ajk = Ajk − 2sk âjk. (4.3)

Therefore, scaling and rounding may be represented by the arithmetic process in Fig. 4.3(a).
The static round-off error4Ajk has a limited domain, owing to the binary representation:

−1

2
≤ 4Ajk ≤

1

2
. (4.4)

For any pixel j,4Ajk is a constant given sk.
Like Ajk, 4Ajk is in effect scaled. Unscaling is required for a proper analysis. For

static round-off error 4Ajk, there is a corresponding unscaled error 4âjk. Fig. 4.3(b)
gives this model of rounding and scaling. The relationship between error 4Ajk and un-
scaled error4âjk is:

4Ajk = 2sk4âjk. (4.5)

41

 yj

âj1

z˗2

âj0

Aj2

 Aj1

Aj0

Static

shift

Dynamic

shift

Static

shift

Dynamic

shift

Static

shift
Dynamic

shift

 âj2

 ŷj

Figure 4.2: In this fixed-point design, static and dynamic shifting will introduce round-off
errors. The total fixed-point error is the output-referred sum of round-off errors. We need
to minimize it based on performance demands and wordlength limits.

(a) (b)

 âjk

2s
k

 ∆Ajk

 Ajk

 ∆âjk

 Ajk

 âjk

2s
k

Figure 4.3: Coefficient scaling and rounding may be modeled in two ways: (a) original
coefficient is scaled and static round-off error is added; or (b) original coefficient is added
to unscaled static round-off error and the sum is then scaled.

Consequently, the domain of unscaled static round-off error is:

− 1

2sk+1
≤ 4âjk ≤

1

2sk+1
. (4.6)

For any pixel j, we can calculate the total static round-off error4ysj after fixed-point
FPN correction as follows:

4ysj = ((âj2 +4âj2)yj + (âj1 +4âj1))yj + (âj0 +4âj0)− ŷj (4.7)
= 4âj2y2

j +4âj1yj +4âj0. (4.8)

For a specific pixel j,4ysj is a constant given sk.
From (4.6) and (4.8), we understand that increasing the scaling factor reduces the total

static round-off error. However, increasing the scaling factor means less left shifting or
more right shifting of “decimal” points before rounding. This increases the wordlengths
needed to store coefficients without saturation. Moreover, there is residual error even with
floating-point FPN correction. Total static round-off error need not be smaller than one
LSB.

After coefficient scaling, the scaled coefficients are stored in RAM with fixed wordlength.
Scaled coefficients below or above the minimum or maximum integer values, respectively,

42

2˗(s
2
˗s

1
)

 ∆yj2

 Aj2yj

Figure 4.4: The model for first-level dynamic shifting can be represented as follows: the
result of multiplication is scaled and then added to round-off error, which is introduced
by a truncation operation.

are saturated. For example RAM words may be 16-bit signed integers, which ranges from
−32 768 to 32 767. Even though coefficient scaling may be optimized for round-off error,
fixed-point performance is also limited by wordlength.

4.1.2 Dynamic Round-Off Error
In Fig. 4.2, the static shifts are done once offline after FPN calibration. FPN correction
may be done using a pipeline structure. Three-parameter correction is completed with a
four-delay pipeline. During each delay period, a multiplication or addition operation is
completed. The first delay serves to compute Aj2yj . Then the result is added to Aj1. As
mentioned previously, fixed-point addition requires numbers to have both the same scale
factor and wordlength. Aj2 and Aj1 are scaled by different factors 2s2 and 2s1 , respec-
tively. With no loss of generality, assume s2 is greater than s1 because the magnitude
of âj2 is much smaller than âj1. Before the addition, we can shift the “decimal” point
of Aj2yj left s2 − s1 bits and truncate the fractional part, or shift the “decimal” point
of Aj1 right s2 − s1 bits. In theory, the left shifting approach introduces round-off error
while the right shifting approach does not. However, left shifting is employed because it
reduces wordlength, which lowers computational complexity. Reducing wordlength after
multiplication is important because wordlength grows with multiplication, assuming no
saturation.

Truncation after left shifting during FPN correction introduces dynamic round-off
errors. After the first dynamic shift, the error is:

4yj2 =
⌊
2−(s2−s1)Aj2yj

⌋
− 2−(s2−s1)Aj2yj , (4.9)

where −1 ≤ 4yj2 ≤ 0. The error varies with scene stimulus even for a fixed pixel.
Because Aj2yj is an integer, 4yj2 = 0 when s1 ≥ s2 (no left shift or no fractional part).
Fig. 4.4 shows the error model for the first dynamic shift in Fig. 4.2. Similar models
apply for the other dynamic shifts. The purpose of the final dynamic shift, which does not
occur after multiplication, is to make the final result ŷj have the same scale as the original
response yj .

Ignoring round-off errors, the following relation holds according to Fig. 4.2 and the
preceding discussion:

ŷj = 2−s0(2s0−s1(2s1−s2Aj2yj + Aj1)yj + Aj0). (4.10)

43

Therefore, the total dynamic round-off error4yd
j for any pixel is:

4yd
j = 2−s0(2s0−s1(2s1−s2Aj2yj +4yj2 + Aj1)yj +4yj1 + Aj0) +4yj0 − ŷj (4.11)

= 2−s0(2−(s1−s0)4yj2yj +4yj1) +4yj0. (4.12)

For any pixel, the fixed-point error4yfixed
j is the sum of the static round-off error4ys

j

and the dynamic round-off error4yd
j , i.e.,

4yfixed
j = 4ys

j +4yd
j . (4.13)

Let the residual error of the floating-point implementation be εfloating
j , which is mainly due

to camera noise and distortion. Then the residual error of the fixed-point implementation
εfixed
j will be:

εfixed
j = εfloating

j +4yfixed
j . (4.14)

If εfixed
j � εfloating

j then image quality will be affected by the fixed-point design. On
the other hand, trying to make εfixed

j equal εfloating
j may lead to an inefficient fixed-point

design. Ideally, εfixed
j ≈ εfloating

j .

4.2 Noiseless Tone Mapping
In Chapter 2, we introduced a LUT to realize simple tone mapping. The LUT is an ideal
alternative to avoid complex computation and keep accuracy. Fixed-point noiseless tone
mapping also adopts the LUT approach. With simple tone mapping, the LUT stores the
mapping results for all possible inputs. Because the mapping function is fixed, the LUT
can be built once beforehand and stays constant during processing. Yet, the mapping
function of noiseless tone mapping changes from frame to frame. Therefore, the LUT
that stores the mapping function is updated in each frame. The algorithm of noiseless
tone mapping was introduced in Chapter 3. The problem here is how to build and update
the mapping function with fixed-point operations. Chapter 3 developed noiseless tone
mapping in two steps. First, noise ceilings were introduced. Afterwards, it described
temporal adaptation. In this section, we follow the same sequence to develop a fixed-point
design, firstly, for tone mapping with noise ceilings only and, secondly, with temporal
adaptation also.

4.2.1 Noise Ceilings
Noiseless tone mapping without temporal adaptation works as follows. First, a histogram
computation counts the number of pixels in predefined bins of intensity values. Noise
ceilings, which are functions of image sensor and sRGB display noise, are computed
once beforehand. In some bins of the histogram, the pixel count, which exceeds the
corresponding noise ceiling, is truncated. This leads to a new histogram. All of the real-
time steps readily compute with fixed-point operations when pixel intensities are integer

44

values, which they are after fixed-point FPN correction. Therefore, the only problem left
is how to build a mapping function from the new histogram. The mapping function is
built from a CDF, which is approximated from the new histogram, as follows:

W (`) = round

(
255

∑`
`min

hnew(`)

Nnew

)
. (4.15)

Therefore, division is needed in this step. With fixed-point operation, division should be
avoided because it is difficult to implement and suffers from low precision. This encour-
ages us to consider an alternative to avoid division.

The total pixel countNnew is accumulated from the new histogram after bin truncation.
It varies from frame to frame because the new histogram is different in each frame. For
the total pixel number Nnew, the range depends on the original histogram and the noise
ceilings. The maximum value occurs when each bin count equals its noise ceiling. In
contrast, the minimum value is difficult to determine. Therefore, we simply take 1 as the
minimum value, which will be less than the true minimum value. Assuming the histogram
has L bins, there are L ceilings corresponding to each bin. The range of Nnew is:

1 < Nnew ≤
L∑
`=1

Nceil(`). (4.16)

Now, (4.15) is able to be rewritten as follows:

W (`) = round

(
a ·
∑̀
`min

hnew(`)

)
, (4.17)

a =
255

Nnew

. (4.18)

Therefore, parameter a is a function of Nnew. As described previously, the ceilings are
constant for a specific image sensor. Therefore, we can compute a for all possible Nnew

beforehand. The range of a is:

255∑L
`=1Nceil(`)

≤ a ≤ 255. (4.19)

In the next step, all possible a are scaled by a factor 2sa and rounded, which is similar to
the scaling in FPN correction:

A = round(2saa) (4.20)

Therefore, the unscaled round-off error is:

4a =
A− 2saa

2sa
, (4.21)

where the range is:

− 1

2sa+1
≤ 4a ≤ 1

2sa+1
. (4.22)

45

The error is determined by the scaling factor. The scaling factor choice is made based on
precision requirments. Finally, all the parameters A are stored in a LUT using a fixed-
point format.

To build a mapping function, the A corresponding to Nnew is read out from the LUT.
Afterwards, the cumulative histogram

∑`
`min

hnew(`) multiplies with A to get gray inten-
sity W :

W (`) = round

(
2−saA(Nnew)

∑̀
`min

hnew(`)

)
(4.23)

Finally, these gray intensities are stored in a LUT that defines a function to tone map each
pixel. The error brought by the round operator in (4.23) is the display noise εd introduced
in Chapter 3. Therefore, it exists with both the floating-point and fixed-point operations,
and has already been considered. Using an LUT for multiplication simplifies the fixed-
point design for noiseless tone mapping because the fixed-point division is avoided while
precision can be kept.

4.2.2 Temporal Adaptation
In noiseless tone mapping, a first-order LPF is used to approximate temporal adaptation
of the human eye. Chapter 3 described the complete process. The same scaling method
used in previous sections can be used here. Additionally, the LPF needs to be realized
with fixed-point operations.

From Chapter 3, the first-order LPF is defined by:

hp(`)[n] = round(βhs(`)[n] + αhp(`)[n− 1]), (4.24)

where β = 1 − α. The two coefficients α and β, which are calculated based on time
constants, both range from 0 to 1. First, they are scaled and rounded:

α′ = round(2shα) (4.25)
β′ = round(2shβ). (4.26)

Therefore, the unscaled round-off error for α is:

4α =
α′ − 2shα

2sh
, (4.27)

and the range is:

− 1

2sh+1
≤ 4α ≤ 1

2sh+1
. (4.28)

The case of β is similar.
During the processing, a left shift of the “decimal” point scales the result back to the

original magnitude:

hp(`)[n] = round(2−sh(β′hs(`)[n] + α′hp(`)[n− 1])). (4.29)

The round operation removes the fractional part. As with (4.23), the error caused by the
round operation is ignored; it exists with both the floating-point and fixed-point designs.
The design of the fixed-point LPF is presented in Fig. 4.5.

46

z˗1

hp(l)[n]
2-s

hβ'

α'

hs(l)[n]
round

Figure 4.5: Fixed-point first-order low-pass filter, which is used for noiseless tone map-
ping with temporal adaptation. Filter coefficients are first scaled and then stored in fixed-
point format. Finally, the result is scaled back.

4.3 Results
Tests of the fixed-point design are done using the prototype digital camera described in
Chapter 1. The fixed-point design of FPN correction and noiseless tone mapping was
programmed in both Matlab and C. The performance of the fixed-point implementation
was evaluated by comparing its results to those of the floating-point implementation. In
Matlab, we wrote a program to compute the RMS residual error after fixed-point correc-
tion versus wordlength of scaled coefficients. Using different wordlengths for parameters
in the CDF computation and in the LPF, the performance of noiseless tone mapping was
also computed. Such analysis helped to understand the trade off between performance
and wordlength to determine the optimal design. Afterwards, the optimal design was pro-
grammed in C for a real-time test. In this manner, the feasibility and good performance
of the fixed-point design in real time was demonstrated.

4.3.1 Matlab Experiments
For the performance evaluation of FPN correction in all pixels of the image sensor, the
RMS residual error is a suitable criterion. Uniform images are captured underM different
luminances and are used for FPN calibration. The number of pixels is N . After FPN
correction, the residual error for pixel j under luminance level i is:

ε̂ij = ȳi − ŷij , (4.30)

where ȳi is the ideal response and ŷij is the corrected response. The RMS residual error
σfixed
ε of the fixed-point correction is:

σfixed
ε =

√∑M
i=1

∑N
j=1(εfixed

ij)2

DOF
, (4.31)

where the DOF for three-parameter correction is [5]:

DOF = MN −M − 3N . (4.32)

In Section 4.1, we showed that fixed-point error depends on scaling factors, coeffi-
cient values, and original responses. On the other hand, scaling factors and the range

47

of original coefficients determine the wordlength of scaled coefficients. Therefore, the
performance of fixed-point correction varies with wordlength. The total wordlength for
scaled coefficients of one pixel is preferred to be an integer number of bytes to improve
storage efficiency. For multi-parameter correction, different wordlengths for each coeffi-
cient will impact correction performance. The optimal wordlength distribution can mini-
mize the RMS residual error for a specific total wordlength. Fig. 4.6 shows the minimum
RMS residual error versus total wordlength and the corresponding optimal wordlength
distribution, as determined by the computer program we wrote.

In Fig. 4.6(a), the RMS residual error decreases as wordlength increases. This means
better correction performance. When the total wordlength reaches 52 bits, the fixed-point
correction has equal performance to floating-point correction. Yet, besides correction per-
formance, storage efficiency is another important factor. Although a difference still exists,
the performance with 48 bits already approximated floating-point performance very well.
In addition, 48 bits is a wordlength that occupies exactly six bytes. For wordlength dis-
tribution, the program decides the optimal configuration based on RMS residual error
minimization. The optimal distribution versus total wordlength is plotted in Fig. 4.6(b).
Therefore, a 48-bit wordlength and its corresponding wordlength distribution are the op-
timal FPN correction design for our logarithmic CMOS image sensor.

Testing of the fixed-point noiseless tone mapping is different. This is because the
mapping of uniform images is meaningless. Instead, four captured images are mapped,
which include two low-DR images and two high-DR images. However, the evaluation
method is similar. The performance is evaluated through a comparison between the fixed-
point and floating-point designs. For noiseless tone mapping without temporal adaptation,
the performance only depends on the wordlength of parameterA in the CDF computation.
Multiple images were mapped by the fixed-point design adopting different wordlengths.
The RMS difference between images mapped by floating-point and fixed-point designs
was computed. The RMS difference versus wordlength and mapped images are shown
in Fig. 4.7. As shown, RMS differences are lower than or close to 1 LSB with a 15-bit
wordlength. Considering storage efficiency and C data types, a 16-bit wordlength is an
optimal choice and offers a little extra precision.

For temporal adaptation, the fixed-point LPF was employed. Two 200-frame se-
quences, which record motion and an abrupt DR change, were mapped. The fixed-point
tone mapping design adopts a 16-bit multiplication-parameter LUT and stores two LPF
coefficients in 8 bits each. Figs. 4.8(a) and (b) show selected frames in these sequences.
Afterwards, each frame in the sequence was compared. The RMS difference of each se-
quence in entirety, versus wordlength of LPF coefficients, is shown in Fig. 4.8(c) and (d).
As shown, RMS differences are lower than 1 LSB with the 8-bit wordlength. Since there
are only two coefficients in the LPF, wordlength in terms of an integer number of bytes is
not critical. This means storage efficiency is not as important a factor here as with the FPN
correction coefficients and tone mapping LUTs. However, considering readily-available
data types in C, an 8-bit wordlength is ideal.

Matlab tests help us to determine the optimal fixed-point design, including FPN cor-
rection and noiseless tone mapping, for our prototype image sensor. The optimal designs

48

(a)

32 36 40 44 48 52 56 60 64
0

50

100

150

200

Total Wordlength (Bit)

R
M

S
 R

es
id

ua
l E

rr
or

 (
LS

B
)

32 36 40 44 48 52 56 60 64
0

3

6

9

12

R
M

S
 R

es
id

ua
l E

rr
or

 (
m

V
)

Floating Point
Fixed Point

(b)

32 36 40 44 48 52 56 60 64
8

12

16

20

24

28

32

Total Wordlength (Bit)

W
or

dl
en

gt
h

fo
r

C
oe

ffi
ci

en
t (

B
it)

âj2

âj1

âj0

Figure 4.6: (a) RMS residual error is represented in two ways: digital response (left Y
axis) and voltage (right Y axis). (b) Optimal wordlength distribution for coefficients,
which is decided by minimizing RMS residual error for each total wordlength.

49

(a) (b) (c)

12 13 14 15 16 17 18
0

2

4

6

8

10

Wordlength (Bit)

R
M

S
 D

iff
er

en
ce

 (
LS

B
)

12 13 14 15 16 17 18
0

2

4

6

8

10

Wordlength (Bit)

R
M

S
 D

iff
er

en
ce

 (
LS

B
)

12 13 14 15 16 17 18
0

2

4

6

8

10

Wordlength (Bit)

R
M

S
 D

iff
er

en
ce

 (
LS

B
)

12 13 14 15 16 17 18
0

2

4

6

8

10

Wordlength (Bit)

R
M

S
 D

iff
er

en
ce

 (
LS

B
)

Figure 4.7: Images after (a) tone mapping by floating-point operation and (b) tone map-
ping by fixed-point operation (optimal design). (c) RMS difference versus parameter
wordlength. Visual differences are quantified on the right. The RMS difference reduces
with wordlength increase. Differences are difficult to see when the images are mapped by
the optimal fixed-point design.

50

(a)

(b)

(c) (d)

4 5 6 7 8 9 10
0

2

4

6

8

10

Wordlength (Bit)

R
M

S
 D

iff
er

en
ce

 (
LS

B
)

4 5 6 7 8 9 10
0

2

4

6

8

10

Wordlength (Bit)

R
M

S
 D

iff
er

en
ce

 (
LS

B
)

Figure 4.8: Frames in two sequences show (a) motion and (b) an abrupt DR change
(when the bulb is turned on). The top frames use floating-point noiseless tone mapping
(with temporal adaptation) while the bottom frames use the fixed-point design. RMS
differences of sequences (a) and (b) are shown in (c) and (d) under different wordlengths
for LPF coefficients. Although there are 200 frames over a 4 s period, every tenth frame
is shown over a 1 s period.

51

(a)

(b)

Figure 4.9: Corresponding frames of a video after (a) floating-point operation in Matlab
and (b) fixed-point operation in C (real time). There is an abrupt DR change happening
when the bulb is turned on. The difference between (a) and (b) is difficult to detect by
eye. Although the frame interval is 20 ms, every tenth frame is shown over a 1 s period.

were programmed in C and implemented in a Visual C++ framework to test the perfor-
mance in real time.

4.3.2 C++ Experiments
In the C++ experiments, both FPN correction and noiseless tone mapping were pro-
grammed in C based on the optimal fixed-point design, which was decided in Section 4.3.1.
Fig. 4.9 exhibits the frames in a video, which were processed using floating-point and
fixed-point operations separately. The fixed-point design was computed in real time while
the floating-point design was computed offline using logged data. Through comparison of
the frames in Fig. 4.9, differences are not obvious to detect by eye. The result proves the
optimal fixed-point design works in real time with good performance, which only brings
minor error that is essentially imperceptible.

After implementing the fixed-point design, the prototype digital camera works at
50 fps instead of 45 fps. Although the floating-point performance of the desktop PC pre-
vented more obvious improvement in frame rate, the value of fixed-point design cannot be
underrated. The low computational complexity makes the design simpler for an FPGA,
which is a good platform to achieve an embedded system. In addition, it implies power
consumption is reduced, which is especially important for portable devices.

52

4.4 Conclusion
FPN correction and noiseless tone mapping for logarithmic CMOS image sensors were
introduced in Chapter 2 and Chapter 3. Both of them were based on floating-point opera-
tions. In this chapter, the corresponding fixed-point design was provided. The simplicity
and minor precision loss make it a better choice for real-time processing.

For FPN correction, the fixed-point design brings inevitable fixed-point error. The
fixed-point error is caused by static and dynamic round-off errors. Both error types were
modeled and analyzed. Static round-off error results from a rounding after static shifting
during coefficient scaling. Truncation after dynamic shifting leads to dynamic round-off
error. The error model for each error type was derived. Although we did not estimate
RMS fixed-point error through the error model directly, the theoretical analysis was still
valuable. It helped us program code to achieve an optimal fixed-point design for FPN
correction.

For fixed-point noiseless tone mapping, LUT usage is an ideal method for its sim-
plicity and minor precision loss. Two constant LUTs, which store noise ceilings and
multiplication parameters respectively, are required. The histogram and mapping func-
tion are stored in two LUTs also. These are updated frame by frame. A fixed-point LPF
is introduced to approximate temporal adaptation of the human eye. Abrupt DR changes
are avoided.

In the tests, a prototype digital camera employing a logarithmic CMOS image sensor
was utilized. The performance of the fixed-point design varies with specified wordlength.
The codes programmed in Matlab compute RMS residual error for fixed-point FPN cor-
rection and RMS difference for fixed-point noiseless tone mapping, under different spec-
ified wordlengths. Then, we determine the optimal fixed-point design by considering
performance and wordlength. Therefore, Matlab tests help us to determine the optimal
designs. Correspondingly, the optimal fixed-point designs were programmed in C++ for
real-time tests. Fluid and good-quality videos demonstrated good performance of the
optimal fixed-point designs and, therefore, the proposed methods.

After implementation of the fixed-point design in a Visual C++ framework, the frame
rate of the system increased from 45 to 50 Hz, an 11% increase despite the high floating-
point performance of a desktop computer. More importantly, the fixed-point design en-
ables a lower power consumption, which is especially important for mobile applications.

53

Chapter 5

Conclusion

Low DR is an important weakness for modern digital cameras compared with human
eyes [1]. The DR of CMOS image sensors can be widened through different methods [2].
Linear image sensors cannot achieve high DR directly but they benefit from technologies
like frequency-based sensors [54, 55], time-to-saturation sensors [56, 57], and multiple
exposure sensors [58, 59, 60]. Multiple exposure sensors are most popular among them.
An algorithm is needed to integrate multiple images under different exposures but cap-
tured from the same scene to get the final high-DR image [61]. However, the mechanism
is complex and it may have trouble to capture dynamic scenes or to record videos. On the
other hand, logarithmic CMOS image sensors are able to capture high-DR scenes in one
exposure [3, 18, 2]. High-DR imaging can be utilized in research, medical, and commer-
cial domains. Because of its built-in advantage in DR, employing logarithmic response
instead of linear response is a promising alternative to overcome the limitation of low DR.

Logarithmic image sensors have a great advantage in DR, but they suffer from low
SNDR. This weakness makes it difficult for them to compete with linear image sensors
which are good at achieving high image quality. The low SNDR results from serious
FPN and low SNR. Through digital pixel sensor (DPS) [16] and vertical integration [1]
technology, the SNR of logarithmic image sensors is improved while achieving a wider
DR that even exceeds the human eye. However, high FPN prevents logarithmic image
sensors owning high SNDR even with high SNR. Using the new FPN correction algorithm
proposed in Chapter 2, the SNDR of logarithmic image sensors approximates the SNR
very well in the whole DR. The test result certifies good off-line performance. In addition,
real-time correction ensures a high frame rate for video applications.

Visual signals, such as images and videos are often intended for human consumption.
Tone mapping is a process that converts the digital responses from scene stimulus to
display intensity [10]. Logarithmic image sensors can capture high-DR scenes with high
quality. However, tone mapping for high-DR scenes is still difficult since the standard
display equipment offers only low DR. Linear tone mapping does not work well for high-
DR scenes. They cannot make both the dark part and bright part visible. The proposed
method of noiseless tone mapping compresses DR effectively and efficiently to make the
high-DR scenes fit the standard display range, while also considering the noise tolerance
of the sRGB display format.

54

Because of their low computation complexity, the proposed FPN correction and noise-
less tone mapping both have the potential for real-time processing. For real-time process-
ing, frame rate is a key parameter. Fixed-point operations replace floating-point opera-
tions for higher efficiency and lower consumption. Although fixed-point operations intro-
duce inevitable errors, the precision loss is minimized through the design methodology of
Chapter 4.

This thesis developed the DSP required to improve the performance of nonlinear im-
age sensors so that they can be used in digital video cameras. This includes FPN correc-
tion, noiseless tone mapping, and corresponding fixed-point design. Tests of the proposed
methods were done using a custom digital camera employing a logarithmic CMOS image
sensor. The results proved the performance of the presented methods. The contributions
of FPN correction, noiseless tone mapping, and fixed-point design are presented in Sec-
tion 5.1. Future work is discussed in Section 5.2.

5.1 Contributions
High FPN is an important factor that degrades the signal quality captured by logarithmic
image sensors. Existing correction methods [5, 21] cannot achieve both good image qual-
ity and real-time performance. A novel method proposed in the thesis breaks through this
limitation. Moreover, its generality makes it applicable to other nonlinear image sensors.
Tone mapping is difficult for high-DR scenes because of a limitation in the DR of standard
display equipment. Moreover, tone mapping also confronts new challenges with logarith-
mic image sensors because previous assumptions regarding images and videos are no
longer valid. The key novelty of the proposed tone mapping method is it prevents camera
noise from exceeding the tolerance of the standard display format after processing. The
novel FPN correction and tone mapping both have a low computation complexity. The
corresponding fixed-point design ensures the proposed methods are achievable in an em-
bedded system for real-time processing. The work proposed in the thesis has been used in
a poster presentation [62] and a technical report [63]. Additionally, two PhD theses [1, 16]
employed the proposed FPN correction method in their tests.

We categorize the contributions of this thesis into three parts following the same struc-
ture of the whole thesis. In Section 5.1.1, we review the contribution of the novel FPN
correction method, which overcomes the limitation between performance and complex-
ity. Additionally, high generality makes it work for different image sensor designs. Sec-
tion 5.1.2 reviews the contribution of noiseless tone mapping. This method is designed for
logarithmic image sensors because it considers camera noise in the captured images and
videos and restricts noise magnification. Finally, the contribution of fixed-point design is
reviewed in Section 5.1.3. Not only did it provide a fixed-point design for a specific log-
arithmic CMOS image sensor, but it also offered a method to get an optimum fixed-point
design for different image sensors.

55

5.1.1 Fixed Pattern Noise Correction
Both analog and digital methods have been investigated to correct FPN in logarithmic
CMOS image sensors. The main advantage of analog methods is high speed. Because
responses are corrected inside pixels, corrected responses can be output with little de-
lay [18, 64]. Unfortunately, the logarithmic pixel circuit is complicated and analog meth-
ods do not work well. Correction performance is far from good. On the other hand,
digital methods have became popular because of their accuracy and flexibility. Most pre-
vious methods either approximate the nonlinear FPN model with a single linear model
or with a piecewise linear model [6, 7, 21]. A method that corrects logarithmic FPN
directly has high computation complexity [5]. Generally, the limitation between perfor-
mance and complexity is difficult to overcome for existing methods. In addition, because
the correction methods were developed based on a specific response model, they are tied
to logarithmic pixels instead of being a general method for nonlinear pixels.

The response of any nonlinear high-DR image sensor may be mapped to a logarithmic
scale. The scene stimulus, such as visible-band luminance, needs to be rendered from the
logarithmic scale for linear analysis. This step is called response linearization. Different
from FPN correction, response linearization is a relatively unexplored problem of partic-
ular relevance to nonlinear image sensors. An existing method [8] was developed from
a specific response model. The problems of this method are similar to the ones of FPN
correction. Accuracy may be low and generality is weak.

The novel method presented in this thesis, which covers FPN correction and response
linearization, breaks through the existing limitations using Taylor series, inverse polyno-
mial regression, and spline interpolation. The FPN correction is inspired by the relation
between average response and individual response. Although the response of a high-
DR pixel is a nonlinear function, the relation between average response and individual
response is close to linear instead of highly nonlinear. Therefore, a truncated Taylor se-
ries may be used to build a function that either maps the average response to individual
response or vice versa. This calibration step is done once offline. In contrast, FPN cor-
rection must be done repeatedly in real time. Inverse mapping moves heavy computation
from correction to calibration. FPN correction calculates a polynomial for each pixel,
which only needs arithmetic operations. Moreover, the polynomial calculation can be
done with a pipeline structure. This property is very suitable for achieving the correc-
tion in an FPGA. Previously, the response model was built through circuit analysis. In
contrast, the proposed FPN correction built the polynomial function through a numerical
method instead of an analytic method. Circuit analysis is not needed because a concrete
response model is unnecessary. This makes the correction method general for different
response models.

For response linearization, the situation is similar. The previous method does not
work because there is no analytic model. Another numerical method, namely spline in-
terpolation, is employed with the same calibration data used for FPN correction. The
complicated nonlinear model is replaced by a piecewise polynomial function, which is
built through spline interpolation. Computation complexity is low because only poly-
nomial calculation is needed. It is also a general method because no analytic model is

56

required.
The tests were done in Matlab and C++ using a prototype digital camera with a log-

arithmic CMOS image sensor. Matlab tests focused on qualitative offline performance.
The performance was proved by quantitative analysis and qualitative of images. C++ is
suitable for real-time tests, which provided high frame rate to make the video fluid. In
general, the proposed FPN correction and response linearization is a novel method that
owns both high performance and low complexity. Both the off-line and real-time per-
formances are good. In addition, the method is general for different nonlinear response
models, although tests were done only with the logarithmic image sensor. Both generality
and simplicity are obtained with the numerical methods.

5.1.2 Noiseless Tone Mapping
Tone mapping for high-DR scenes has been widely investigated in the literature. It can be
categorized into global operators and local operators depending on the mapping functions.
Compared to global operators, local operators require more sophisticated computations.
Some local operators process high-DR images on different layers [43, 25, 65] while other
methods process gradient fields [24] or radiance maps [45] instead. Although some meth-
ods reported good performance, high computation complexity restrict them only to off-
line processing. The performance of global operators are good enough in most cases. In
addition, a relatively low complexity makes the global operators preferred when real-time
processing is necessary.

Most tone mapping methods are focused on high-DR images while few of them are
designed for high-DR videos specifically. Previous methods are built based on an assump-
tion that high-DR images and videos are free of camera noise. This assumption is valid
for synthetic images and videos obtained through computer graphic techniques. Unfor-
tunately, it is invalid for captured images and videos. All cameras have a limited SNDR,
which indicates that captured signals are still noisy even after FPN correction. Neglect-
ing this camera noise may result in display noise after tone mapping, which degrades the
quality of displayed images or videos.

The noiseless tone mapping presented in the thesis originates from histogram equal-
ization. Camera noise after FPN correction is determined from the calibration data. Noise
changes after tone mapping are modeled. Ceilings are enforced to prevent noise after tone
mapping from exceeding the tolerance of the display format. DR is compressed or ex-
panded but noise is kept below a tolerance to guarantee quality. For video tone mapping,
a luminance adaptation model for the human eye is considered [51]. A low-pass filter is
applied to frame histograms to avoid sudden DR changes.

Theoretically, iteration should be employed because the ideal map cannot be reached
in one step. However, it is abandoned in the proposed method for efficiency. A low com-
putation complexity derives from non-iterative operation, fixed ceilings, and the global
operator. This makes our method suitable for real-time processing with a nonlinear high-
DR image sensor. Similar with FPN correction, tests were done in Matlab and C++ with
a prototype imaging system. Only high frame-rate processing in C++ is suitable to test

57

the luminance adaptation model in real time. The noiseless tone mapping works well in
Matlab and C++.

5.1.3 Fixed-Point Design
In the thesis, the proposed methods were developed at first based on floating-point oper-
ations. Floating-point operations are easy to program in high-level computer languages,
such as Matlab and C++. Moreover, double-precision floating-point operations provide
high precision and range so the wordlength limits may be ignored. However, the goal of
this thesis is to provide a real-time processing solution for nonlinear video cameras. The
frame rate is a key parameter that must be high enough to ensure fluid video. In this case,
fixed-point operations are preferred. Moreover, fixed-point operations offer high power
efficiency because of simplicity. Although fixed-point operations bring inevitable errors,
precision loss can be minimized and the wordlength can be optimized through careful
design. The optimum design considers both precision and wordlength demands.

Neither the fixed-point design of FPN correction nor tone mapping have been widely
investigated. For FPN correction, most previous methods still focus on improving the
off-line performance. Schneider reported a corresponding fixed-point design for her FPN
correction method [8]. The fixed-point design is straightforward because she employed
piecewise linear functions to approximate nonlinear functions. Similarly, existing tone
mapping methods are used for offline processing. Lack of strict time and power con-
straints has made offline fixed-point design unnecessary. Wang et al. designed a tone-
mapping processor for a global tone-mapping algorithm called photographic [31], but the
work did not model noise so it may not be suitable for nonlinear high-DR image sensors.

In this thesis, we focused on providing a method to determine an optimum fixed-point
design instead of just providing a fixed-point design for a specific image sensor. For
FPN correction, we modeled two types of errors: static and dynamic. This guided us to
appropriate coefficient scaling and fixed-point calculation. The code we programmed in
Matlab can compute the residual error versus wordlength, which enables us to determine
the optimum design. The method corresponds to our FPN correction, as applied to any
suitable image sensor. So the code can be used for any nonlinear image sensor that em-
ploys the proposed method to do FPN correction. In noiseless tone mapping, dynamic
LUTs are utilized to store the mapping function and histogram. The LUTs are updated
each frame through fixed-point operation. During noiseless tone mapping, some oper-
ations, such as histogram counting and histogram modification based on ceilings, were
already fixed point. However, we replaced division with fixed-point multiplication and
employed a fixed-point LPF.

The tests for fixed-point design were done in Matlab and C++. After implementing
fixed-point design in a pre-existing Visual C++ framework, the frame rate increased by
11%. The fixed-point design replaces the floating-point design for higher computational
efficiency, implying lower power consumption. Additionally, it also makes the design
feasible for an FPGA, which will be discussed in future work. The optimum design keeps
the precision while improving the storage efficiency. The real-time DSP required by

58

nonlinear image sensors benefits from both the low complexity algorithms and optimum
fixed-point design.

5.2 Future Work
In this thesis, a complete real-time DSP solution, including FPN correction, noiseless
tone mapping, and corresponding fixed-point design has been proposed. Nevertheless,
we could extend the thesis work in different ways. The performance of the proposed FPN
correction has been tested. However, the factor of temperature, which affects the FPN,
still needs to be investigated. In the thesis, all the tests have been done in a prototype
digital camera with APS technology and a board-level ADC. Performance of the method
for a DPS imaging system needs to be tested. Although noiseless tone mapping and cor-
responding fixed-point design has been provided, the optimum computation structure for
noiseless tone mapping needs to be considered before implementation in an FPGA. Fi-
nally, the potential application of this work to invisible-band imaging system is discussed.

5.2.1 Fixed Pattern Noise and Temperature
Digital cameras can be used in different environments where temperature may vary greatly.
The FPN in logarithmic CMOS image sensors depends on temperature [3]. In the thesis,
we did not consider temperature effects in the proposed FPN correction algorithm. How-
ever, temperature affects the performance of FPN correction.

Schneider considered the temperature influence and proposed a correction algorithm [8].
Her method was developed from the three-parameter logarithmic-response model [5] and
she modeled the parameters varying as a linear function of temperature with an offset
at 0◦C, through empirical observation. Although the performance of algorithm was re-
ported to be good over a typical temperature domain, the calibration in the method does
not have a clear statistical basis [66]. Moreover, the temperature measurement required
for correction brings difficulty and errors.

Joseph and Collins developed an FPN correction algorithm that includes temperature,
which was based on semiconductor physics [66]. Unlike Schneider’s method, this method
does not need temperature and luminance measurement for calibration and correction.
The maximum-likelihood estimation ensures the calibration has a clear statistical basis.
Good performance has been shown through experiments.

Unfortunately, both of these methods are model-specific. As mentioned previously,
the response model may keep changing with deeper research. Different nonlinear image
sensor designs are possible too. So the temperature-aware FPN correction methods need
to get rid of the specific model to own high generality, which is similar to the proposed
method in the thesis. Additionally, the correction should own both good correction per-
formance and low computation complexity. Although the correction method proposed by
Joseph and Collins [66] only needs arithmetic operators, it actually simplified the non-
linear model to a linear model. A method that can correct all variations of the nonlinear
model but still use only arithmetic operations needs to be investigated.

59

5.2.2 Experiments with Digital Pixel Sensors
In theory, the high generality ensures the proposed methods would work for different
nonlinear image sensor designs. However, tests were done only with a prototype dig-
ital camera system having a logarithmic APS array and commercial board-level ADC.
Success with the logarithmic CMOS APS was proved by the experiment results. With
the technology developing, DPS arrays are expected to replace APS arrays in future for
higher SNR [16]. The feasibility of FPN correction and noiseless tone mapping for DPS
arrays still need to be tested through similar experiments, although Mahmoodi [16] began
the process.

5.2.3 Noiseless Tone Mapping in an FPGA
In this thesis, noiseless tone mapping is achieved in C++ with a fixed-point design. For
higher resolution and higher frame rate, the noiseless tone mapping should be achieved in
high-speed hardware like an FPGA instead of a computer. Besides the fixed-point design,
design of the timing structure is another important factor that determines the algorithm
performance in an FPGA implementation. Different from FPN correction, implementing
the noiseless tone mapping in an FPGA is difficult because it needs the whole frame
information instead of pixel-wise operation. This means a pixel-level pipeline structure is
difficult for the noiseless tone mapping.

The noiseless tone mapping includes two steps. The first step is building a mapping
function while the second step is mapping the response to display intensity based on the
mapping function. Response mapping is a pixel-wise operation, which can be achieved
through a pipeline structure. There are two basic ideas for the timing structure of noiseless
tone mapping. The first idea is assumes that the DR will not change sharply from one
frame to the next in a fluid video sequence. This assumption becomes more valid after
considering the temporal adaptation process in tone mapping. So the previous mapping
function can be used for the current frame. In Wang’s work [31], a similar approximation
was employed. This approximation makes the mapping step in the noiseless tone mapping
achievable through a pixel-level pipeline structure, which can shorten the display latency.
Another idea does not employ this approximation, which maps the current frame using
the previous frame mapping function. Tone mapping for the previous frame and FPN
correction for the current frame can be done simultaneously. Latency will be longer with
this idea but still shorter than without pipelining. Both the optimum fixed-point design
and the timing structure design make the FPN correction and noiseless tone mapping
achievable in an FPGA to form a complete embedded system, which includes the image
sensor and the DSP.

5.2.4 Low-Dose X-Ray Imaging System
In this thesis, the proposed methods are developed for visible-band logarithmic CMOS
image sensors. Moreover, all the tests were done in the visible band. However, the

60

presented methods can be easily transferred to the invisible band, for example, in medical
X-ray imaging.

X-ray imaging for interventional use needs high SNDR, high DR, and fluid video
too [67, 68, 69]. Logarithmic CMOS pixels can provide high DR and high frame rate [2],
while pixel-level Delta-Sigma ADCs improve SNR [16]. The proposed FPN correction
method can reduce the FPN effectively in resultant X-ray image sensors to make SNDR
close to SNR, benefiting from high performance and high generality. Noiseless tone map-
ping is also useful for high-DR scene display. High-DR reproduction with high fidelity
brings benefits for patients and medical staff. Combination of these technologies may
produce an innovative X-ray imaging system with high SNDR, high DR, and fluid video
at lower dosage.

Unlike visible band imaging, X-ray imaging needs a large area [70] in the direct ap-
proach [71] and in some indirect approaches [72]. A huge pixel number brings a heavy
burden for post-DSP if the frame rate is high. An FPGA-based embedded system is a
good approach to overcome the difficulty of high computation. This potential application
in the invisible band benefits from the generality and significance of the proposed work,
which was demonstrated in the visible band. Future work will focus on modifying the
methods to ensure them they are more suitable for a low-dose X-ray imaging system.

61

References

[1] O. Skorka, Vertically-Integrated CMOS Technology for Third-Generation Image
Sensors. PhD thesis, University of Alberta, Edmonton, AB, Canada, 2011.

[2] A. Spivak, A. Belenky, A. Fish, and O. Yadid-Pecht, “Wide-Dynamic-Range CMOS
Image Sensors–Comparative Performance Analysis,” IEEE Transactions on Elec-
tron Devices, pp. 2446 –2461, Nov. 2009.

[3] D. Joseph, Modelling and calibration of logarithmic CMOS image sensors. PhD
thesis, University of Oxford, Oxford, United Kingdom, Sept. 2002.

[4] A. El Gamal and H. Eltoukhy, “CMOS Image Sensors,” IEEE Circuits and Devices
Magazine, vol. 21, pp. 6 – 20, May/June 2005.

[5] D. Joseph and S. Collins, “Modeling, Calibration, and Correction of Nonlinear
Illumination-Dependent Fixed Pattern Noise in Logarithmic CMOS Image Sensors,”
IEEE Transactions on Instrumentation and Measurement, vol. 51, pp. 996 – 1001,
Oct. 2002.

[6] V. Schneider, “Fixed-pattern correction of HDR image sensors,” in PhD Research
in Microelectronics and Electronics, pp. 99 – 102, 2005.

[7] G. Storm, R. Henderson, J. Hurwitz, D. Renshaw, K. Findlater, and M. Purcell, “Ex-
tended dynamic range from a combined linear-logarithmic CMOS image sensor,”
IEEE Journal of Solid-State Circuits, vol. 41, pp. 2095 – 2106, Sept. 2006.

[8] B. Hoefflinger, ed., High-Dynamic-Range (HDR) Vision. Stuttgart: Springer, 2006.

[9] P. Ledda, “High Dynamic Range Displays,” Presence, vol. 16, pp. 119 – 122, Jan.
2007.

[10] G. Larson, H. Rushmeier, and C. Piatko, “A Visibility Matching Tone Reproduction
Operator for High Dynamic Range Scenes,” IEEE Transactions on Visualization and
Computer Graphics, vol. 3, pp. 291 – 306, Oct. 1997.

[11] S. O. Otim, Simplified fixed pattern noise correction & image display for high dy-
namic range CMOS logarithmic imagers. PhD thesis, University of Oxford, Oxford,
United Kingdom, Oct. 2007.

62

[12] S. Kempainen, “CMOS Image Sensors: Eclipsing CCDs in Visual Information?,”
EDN Europe, pp. 101 – 102, Oct. 1997.

[13] M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,”
Microelectronics Journal, vol. 37, pp. 433 – 451, May 2006.

[14] H. S. P. Wong, “CMOS Image Sensors - Recent Advances and Device Scaling Con-
siderations,” in IEEE Electron Devices Meeting, pp. 201 –204, Dec. 1997.

[15] O. Skorka and D. Joseph, “Toward a digital camera to rival the human eye,” Journal
of Electronic Imaging, vol. 20, pp. 033009 1–18, Aug. 2011.

[16] A. Mahmoodi, Low-Area Low-Power Delta-Sigma Column and Pixel Sensors. PhD
thesis, University of Alberta, Edmonton, AB, Canada, Jan. 2011.

[17] Y. Chae, J. Cheon, S. Lim, D. Lee, M. Kwon, K. Yoo, W. Jung, D.-H. Lee, S. Ham,
and G. Han, “A 2.1Mpixel 120 frame/s CMOS Image Sensor with Column-Parallel
ADC Architecture,” in IEEE International Solid-State Circuits Conference (ISSCC),
pp. 394 – 395, 2010.

[18] S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and J. Bogaerts,
“A Logarithmic Response CMOS Image Sensor with On-Chip Calibration,” IEEE
Journal of Solid-State Circuits, vol. 35, pp. 1146 – 1152, Aug. 2000.

[19] E. Labonne, G. Sicard, and M. Renaudin, “An on-pixel FPN reduction method for
a high dynamic range CMOS imager,” in Proceedings of the 33rd European Solid-
State Circuits Conference, pp. 332 – 335, 2007.

[20] K. Hara, H. Kubo, M. Kimura, F. Murao, and S. Komori, “A linear-logarithmic
CMOS sensor with offset calibration using an injected charge signal,” in IEEE In-
ternational Solid-State Circuits Conference, vol. 1, pp. 354 – 603, 2005.

[21] S. Otim, B. Choubey, D. Joseph, and S. Collins, “Characterization and Simple Fixed
Pattern Noise Correction in Wide Dynamic Range Logarithmic Imagers,” IEEE
Transactions on Instrumentation and Measurement, vol. 56, pp. 1910 – 1916, Oct.
2007.

[22] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste,
A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans-
actions on Graphics, vol. 23, no. 3, pp. 760 – 768, 2004.

[23] J. Zhai and J. Llach, “Non-uniform backlighting computation for high dynamic
range displays,” in IEEE International Conference on Image Processing Proceed-
ings, pp. 4005 – 4008, 2009.

[24] R. Fattal, D. Lischinski, and M. Werman, “Gradient Domain High Dynamic Range
Compression,” ACM Transactions on Graphics, vol. 21, pp. 249 – 256, Jul. 2002.

63

[25] F. Durand and J. Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-
Range Images,” ACM Transactions on Graphics, vol. 21, pp. 257 – 266, Jul. 2002.

[26] S. Kuo, B. Lee, and W. Tian, Real-Time Digital Signal Processing: Implementations
and Applications. John Wiley, second ed., 2006.

[27] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani, “Computer vision system for
in-house video surveillance,” in IEEE Proceedings-Vision, Image and Signal Pro-
cessing, vol. 152, pp. 242 – 249, Apr. 2005.

[28] D. Ponsa, R. Benavente, F. Lumbreras, J. Martinez, and X. Roca, “Quality con-
trol of safety belts by machine vision inspection for real-time production,” Optical
Engineering, vol. 42, pp. 1114 – 1120, Apr. 2003.

[29] N. Goodnight, R. Wang, C. Woolley, and G. Humphreys, “Interactive Time-
Dependent Tone Mapping Using Programmable Graphics Hardware,” in Eurograph-
ics Symposium on Rendering. 14th Eurographics Workshop on Rendering, pp. 26 –
37, 2003.

[30] F. Hassan and J. E. Carletta, “A real-time FPGA-based architecture for
a Reinhard-like tone mapping operator,” in Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, pp. 65–71, 2007.

[31] T. H. Wang, W. S. Wong, F. C. Chen, and C. T. Chiu, “Design and Implementation
of A Real-Time Global Tone Mapping Processor for High Dynamic Range Video,”
in IEEE International Conference on Imaging Processing, vol. 6, 2007.

[32] T. H. Wang, W. M. Ke, D. C. Zwao, F. C. Chen, and C. T. Chiu, “Block-Based
Gradient Domain High Dynamic Range Compression Design for Real-Time Appli-
cations,” pp. 561 – 564, 2007.

[33] O. Skorka, “Hybrid Image Sensors with High Dynamic Range,” candidacy exam
report, University of Alberta, Edmonton, AB, Canada, 2007.

[34] Bitwise SYSTEMS, QuickUSB User Guide, Apr. 2007.

[35] S. Lim and A. El Gamal, “Gain Fixed Pattern Noise Correction via Optical Flow,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp. 779 –
786, Apr. 2004.

[36] R. C. Gonzalez and R. E. Woods, Digital Image Processing. United States of Amer-
ica: Pearson Education, third ed., 2008.

[37] S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scien-
tists. Boston: McGraw-Hill Higher Education, second ed., 2008.

[38] R. L. Burden and J. D. Faires, Numerical Analysis. Boston: Cengage Learning,
2011.

64

[39] M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, “Proposal for a standard
default color space for the Internet - sRGB,” 1996.

[40] R. Scheaffer, M. Mulekar, and J. McClave, Probability and Statistics for Engineers.
Florida: Cengage Learning, 2011.

[41] B. Weiss, “Fast Median and Bilateral Filtering,” ACM Transactions on Graphics,
pp. 519–526, 2006.

[42] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and Color Images,” in
International Conference on Computer Vision, pp. 839 – 846, 1998.

[43] D. J. Jobson, Z. Rahman, and G. A. Woodell, “A Multiscale Retinex for Bridg-
ing the Gap Between Color Images and the Human Observation of Scenes,” IEEE
Transactions on Image Processing, vol. 6, no. 7, pp. 965–976, 1997.

[44] S. Pattanaik, J. Ferwerda, M. Fairchild, and D. Greenberg, “A multiscale model
of adaptation and spatial vision for realistic image display,” in Computer Graphics
Proceedings, pp. 287 – 298, 1998.

[45] Q. Shan, J. Jia, and M. Brown, “Globally Optimized Linear Windowed Tone Map-
ping,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, pp. 663
– 675, Jul. 2010.

[46] J. Tumblin and H. Rushmeier, “Tone Reproduction for Realistic Images,” IEEE
Computer Graphics and Application, vol. 13, pp. 42 –48, Nov. 1993.

[47] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive Logarithmic Map-
ping for Displaying High Contrast Scenes,” in Computer Graphics Forum, vol. 22,
pp. 419 – 426, Sept. 2003.

[48] W. Li, S. Zhang, and M. He, “An Optimal Tone Mapping Algorithm for the Dis-
play of High Dynamic Range Images,” in International Conference on Information
Engineering and Computer Science, pp. 1–5, 2009.

[49] L. Coria and P. Nasiopoulos, “Using Temporal Correlation for Fast and High-
detailed Video Tone Mapping,” in IEEE International Conference on Imaging Sys-
tems and Techniques (IST), pp. 1–4, 2010.

[50] C. Lee and C.-S. Kim, “Gradient Domain Tone Mapping of High Dynamic Range
Videos,” in IEEE International Conference on Image Processing, pp. 461 – 464,
2007.

[51] F. Durand and J. Dorsey, “Interactive Tone Mapping,” in Proceedings of the Euro-
graphics Workshop Rendering Techniques, pp. 219 – 231, 2000.

[52] G. Ward, “Computer Graphics Renderings, Bathroom: Nighttime (mir) after simu-
lation.” http://www.anyhere.com/gward/pixformat/tiffluvrend.html, 1997.

65

[53] G. Larson, “LogLuv Encoding for Full Gamut, Hgh-Dynamic Range Images,” Jour-
nal of Graphics Tools, vol. 3, pp. 15 – 31, 1998.

[54] E. Culurciello, R. Etienne-Cummings, and K. Boahen, “A Biomorphic Digital Im-
age Sensor,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 281 – 294, Feb. 2003.

[55] X. Wang, W. Wong, and R. Hornsey, “A High Dynamic Range CMOS Image Sen-
sor with Inpixel Light-to-Frequency Conversion,” IEEE Transactions on Electron
Devices, vol. 53, Dec. 2006.

[56] D. Stoppa, M. Vatteroni, D. Covi, A. Baschirotto, A. Sartori, and A. Simoni, “A 120-
dB Dynamic Range CMOS Image Sensor With Programmable Power Responsivity,”
IEEE Journal of Solid-State Circuits, vol. 42, pp. 1555 – 1563, Jul. 2007.

[57] A. Bermak and Y.-F. Yung, “A DPS Array with Programmable Resolution and Re-
configurable Conversion Time,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, pp. 15 – 22, Jan. 2006.

[58] O. Yadid-Pecht and E. Fossum, “Wide Intrascene Dynamic Range CMOS APS Us-
ing Dual Sampling,” IEEE Transactions on Electron Devices, vol. 44, pp. 1721 –
1723, Oct. 1997.

[59] D. Yang, A. Gamal, B. Fowler, and H. Tian, “A 640 × 512 CMOS Image Sensor
with Ultrawide Dynamic Range Floating-Point Pixel-Level ADC,” IEEE Journal of
Solid-State Circuits, vol. 34, pp. 1821–1834, Dec. 1999.

[60] A. Belenky, A. Fish, A. Spivak, and O. Yadid-Pecht, “Global Shutter CMOS Image
Sensor with Wide Dynamic Range,” IEEE Transactions on Circuits and Systems-II:
Analog and Digital Signal Processing, vol. 54, pp. 1032 – 1036, Dec. 2007.

[61] P. Debevec and J. Malik, “Recovering High Dynamic Range Radiance Maps from
Photographs,” in Computer Graphics Proceedings, pp. 369 – 378, 1997.

[62] O. Skorka, J. Li, K. Ranaweera, and D. Joseph, “Canadian Vertically-Integrated
CMOS Image Sensors,” in TEXPO, CMC Annual Symposium, 2010.

[63] O. Skorka, J. Li, A. Harrison, M. Alexiuk, and D. Joseph, “Design of a low-dose
X-ray imaging system using vertically-integrated CMOS circuits,” tech. rep., Uni-
versity of Alberta and IMRIS, 2011.

[64] L.-W. Lai and Y.-C. King, “A Novel Logarithmic Response CMOS Image Sensor
With High Output Voltage Swing and In-pixel Fixed Pattern Noise Reduction,” in
IEEE Asia-Pacific Conference on ASIC Proceedings, pp. 105 – 108, 2002.

[65] J. Tumblin and G. Turk, “LCIS: A Boundary Hierarchy for Detail-Preserving Con-
trast Reduction,” in Computer Graphics Proceedings, pp. 83 – 90, 1999.

66

[66] D. Joseph and S. Collins, “Temperature Dependence of Fixed Pattern Noise in Log-
arithmic CMOS Image Sensors,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 58, pp. 2503 –2511, Aug. 2009.

[67] M. Izadi and K. Karim, “High Dynamic Range Pixel Architecture for Advanced Di-
agnostic Medical X-Ray Imaging Applications,” Journal of Vacuum Science &
Technology A (Vacuum, Surfaces, and Films), vol. 24, pp. 846 – 849, May 2006.

[68] S. Boyce, A. Chawla, and E. Samei, “Physical evaluation of a high frame rate, ex-
tended dynamic range flat panel detector for real-time cone beam computed tomog-
raphy applications,” in Proceedings of the SPIE, vol. 5745, pp. 591 –599, Apr. 2005.

[69] W.-C. Cheng and A. Badano, “A Gaze-contingent High-dynamic Range Display for
Medical Imaging Applications,” in Proceedings of the SPIE, vol. 7627, pp. 76270A
1–6, 2010.

[70] U. Rapp-Bernhardt, F. Roehl, R. Gibbs, H. Schmidl, U. Krause, and T. Bern-
hardt, “Flat-Panel X-ray Detector Based on Amorphous Silicon versus Asymmetric
Screen-Film System: Phantom Study of Dose Reduction and Depiction of Simulated
Findings,” Radiology, vol. 227, pp. 484 – 492, Mar. 2003.

[71] M. Yaffe and J. Rowlands, “X-ray detectors for digital radiography,” Physics in
Medicine and Biology, vol. 42, pp. 1 – 39, Jan. 1997.

[72] S. K. Heo, S. K. Park, S. H. Hwang, D. A. Im, J. Kosonen, T. W. Kim, S. Yun, and
H. K. Kim, “Development of a large-area CMOS-based detector for real-time x-ray
imaging,” in Proceedings of the SPIE, vol. 7622, pp. 76223T 1–10, 2010.

67

