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Abstract
Most of the recent results in\computationql geometry rely
on the ‘attribute of convexity to provide greatér efficiency.
Given an arbitrary non-convex polj@on, one approach is to
decompose the polygon into convex pieces, then to handle each
piece separately. On the other hand, the monotonic property
of a polygon 1is qlsovfrequently used for further improvements.
| In this thesis; seve?al fundameﬁ;al problems in
computational géometry whose solutions are based on thesé two
properties, convexity and monotoniciéy, éte studied. The
problems can be listed as follows: 4

1. polygon intersection repoftihg;

2. polygon intersection detection;

3. findirig the minimum distance between two polygons

} in the L, and L, métriés.
The major -results of the thesis are sumarized below. -

1. 0(n) optimal algorithms to detect the intersection
and to find the minimum distance between a convex
n-gon (a polygon with n vertices) and a éimple'

A R
‘non-convex n;gonﬂ

2. O(log n) optimal algbrithms to find the minimum
distance between tﬁg.separable convéx n-gons.

3. 0(n) optimal algorithms to find the minimum vertex
distance between two separable convex_n—gonsf- B

4. 'An O(mlog n) algorithm to report the intersectiqh

-

—~—~ . .
5. An O(mlog n) algorithm to fiig/;he/mfﬁfhum vertex

// LS

of a.convex n-gon and a simple non-convex m-gon., —

/ .

/’



distance between a convex n-gon and a simple
non-convex m~ggn, which are nohfintersecting.

An O(nlog nl) algorithm to find the minilmum
distance between two separable simplé non-convex

polygons.
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Chapter 1

Introdution

1.1 The Nature of COmputational Geometry

Geometqy is an important branch of mathematics, which 1s
used in almost all areas of modern science and technology
The . increasing reliance on the computer for solving various
sc1ent1f1c and technologlcal problems forces computer
sc1entlsts seriously . to consider the relationship of pure
traditional geometry (or non-algorithmic formulation) and
;lgorithmic computational geometry. For example, a pure
mathematician may never worry about the number of operations
required to find the minimum distance between two planar
polygons. whlch contain thousands of vertices. But in the view
of computer sc1entlsts, it is the number of operatlons that 1s
an’lmportant factor for high speed\computatlon. is a result,
the task of translating the classical results into algorithmic

'fA;ms is an 1mportant one for algorlthm designers.

The pioneer in this f1eld is Shamos, whode work

E

constitutes the basiS'of computational geometry and prOVideS'a

unlfled approach to solving many geometric problems such as
‘1ntersect10n problems, inclusion problems, closest point
problems, convex hull problems, etc. [Shamos 1975, Shamos and
Hoey 1976]. Many computer scientists have glven much |
attention not only to the fundamenta}/problems of

e

computational geometry itself, but also to its .applications.

-

Many areas.involve fundamental computational geometry

\



problems In ¢ =»phics, @ r instance, eesential operaticis
such as win” wing, .lipping positicnina, et;.-reqnire the
‘solurion >f hidden _ine or hidden face elimination problems,
which invecl /e computation of the inters stion”of two or more
objects [Freeman and Shapira 1975]. In-patternAr‘cognitioﬁ;
emphasis is put en finding the convex hull f a set of point.,
‘the"nearest neighbors of a point, end the diemvter ~f an
object [Toussaint 1980] In robot moving pronlems. ic'is
necessary to find the mlnlmum dlstance of twor objects and the
‘diameter of an object IShwartz 1981]. ,“

All the above applications are more or lﬁss;related to
the following three fundameneai-computationalggeometry
problems:

(a) Polygon intersection Peporting:

Given two polygons P and O, report their common

intersections, i.e., report R P)nR Q), " where R P)
and,R(O} represent the regions of polygons P and
0. : :

(b) Polygon intersection detecLlon.

' Given two polygons P and Q, determlne wh?ther they"“
intersect each other, 1.e;,nls R(P)nR(O) ¢ .

(c) Minimum distance between tu}o polygons:

Given two polygons, find the minimum disténde;
between them and rebort a pair. of peipes whfeh are
separated by this distance. - |

‘*The minimum distance may be in the L, or L2 metrlcs. Refer
to pp. 45 -



1.2 Complexity Analysis

1.2.1 . The Model of Computation
The model of computation used in this thesis is a random
access»maéhine‘(RAM) with real number arithmetic ability. We
assume that in planar objects, each of the following
operations can be done in constant time: finding the
intersection of two line segments; computing the intersection
angle of "two line segments, fiﬁding the shortest distance
between a point and a line segment, ttansformingvone
coordinéte representation of a poin; to another, and

determining on which side of a,line a point lies.

1.2.2 Representation of a Polygon

' In this thesis, only simple planar polygoné are,studiéd.
[Shamgs 1975]. A simple polygon is a polygon whose edges do
not intersect themselve The vertices'of a simple poiygon
can be represen;ed by order=4d pairs, in either Cartesian
c&ordinates <x,y> or Folar coordinates <r,6>. B(p),.aﬂf r(p)
will denote.the polar ang... and the radius of a vertex p with
reépect'to a specified origin. A polygon P of n vertices is/.v
called an n-gon, and is represéntéd by a sequence of vertices
pg,p,,...,pn . Any pair of two consecutive verﬁices (P, 1P o)
where the indices are modulo n;bforms an edge of the-polyéon.
A direztion“upon each edge is imposed such that the infenior

‘of the polygon R(P) always lies to the righthand side of <the

edge. In other words, the edgeé around the houndary of P are

s
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listed in clockwise order. In order to avoid confusion, P is
used to denote the.vertex chain, and B(P) to denote the
éequence of edges that forms the boundary of the polygon.
From now on, tracing along the boundary of a polygon means
tracing the boundary in clockwise order. For convenience.
sake, P is also used to denote a convex polygon, while @

denotes a non-convex simple polygon.

1.3 Outline of the: Thesis
| Efficient algorithms have been developed for some
fbroblems. The well known results for two simple n-gons can be
summarized as folléws.
(a) Intersection reporting problem:
two non—convex:n—gons 0((n+kfiog n):
[Bentley 1979]
two convex N-gons otn)
[Shamos 1975]
(b) Intérsection detection problem:
two non-convex n-gons  0O(nlog n)
[Shamos andAHoey 19761
two convex n-gons .~ O(log n)
| \[Chazeile 19801
(c) Minimum Eucl idean distance probieh:
two convex n¥gons O(log’n’

[Schwartz 1981]

©

iwhere K is the number of intersection points
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In Chaptef 2, an O(mlog n) aléorithm for reporting the
common intersection of a convek n-aon and a non-convex M-gon
is briefly outlined (intersection reporting problem). The
algorithm is simpler than the general algorithm [Bentley 1979]
for two non-convex polygons. . An O(n+m) optimal algorithm for

determining whether a convex n-gon and - a non-convex m—gon

intersect each other is also presented (intersection detection

)

problem).

In Chapter 3, several optimal.algorithms for fihding the
minimum distance’® between two separable convex n—gOhs, between
two separablg simple ﬁon—convex_n—gons, and for determining
the minimuﬁ disfance bet;een a convex n—gon‘éhd‘a non-convex
m-gon, wﬁich do not intersect, are presented. Then the
minimum veftex distance progiém between two planar n-gons is
discussed. An optimal O(n) algorithm for finding the minimum
vertex distance between two separable convex Nn-gons and a
simple O(mlog n) q}gorighm for finding the minimum vertex
distance between a convex n-gon and a non-intersecting
non-convex m-gon.are presented. Finally, the miniﬁum distance
of two n-gons in the L, metric is studied.

In Chapter 4, the discussion is concluded and some open

‘problems for further work proposed.

*in the L, (Euclidean) metric, unless specified otherwise.



Chapter 2
Intersection Reporting and Detection for Planar Polygons
In“reéent years planar geometric problems have attracted

considerable agtention. These problems arise in a number of
applications including pattern recognition, hidden line
elimination, etc. [AK1 1979, Avis 1981, Bentley 1979, Chazelle
1980, Dobkin 1976,.Fisher L?BO, Gindy 1981, Kirkpartrick 1952,‘
Lee 1979, Muller 1977, Preparata 1977, Schachter 1978, Shamos
1975, 1976,{Tpussaint 19806, Snyder 1980]. 1In particular, the
problems‘of'detecting and finding the intersection 5f two
planar polygons have been investiééted by?dihpmber of
researchers [Chazelle and Dobkin 1980, Shamos and Hoey 1976].
As stated in Chapter 2 these groblems have been solved for thé
case of tyd.convék polygons aﬁd detection of an intersection
for two nén-éohvex’ﬁSfyaaiiA-Eﬁ—Eﬁé;Eéée;bfﬁLJO convex
P?lyg9bfi/EEE_EQDV§XitY property is used. In the case of two
honfcohvex polygons the planar line sweep methodvis applied. .
AnotHer solution for non-convex polygons is by decomposftion
“into a set of convex parts, solving each part as a convex
polygon. 1In this section, the case of a convex polygon and a
non-convex polygqn is considered; the,solutibn iS’based.on the -
monotonic and conve% property. Formally, the above planar h

polygon:problems can be represented as follows,

(a). Polygon intersect ion reporting problem:

e

g e ,
Given a/convex n-gon P and a non-convex m-gon @,
1 - report ‘their common intersections (i.e., report

R(P)nR(Q) ).



(b) PolyYon intersection detection problem:
Given a convex n-gon P and a non-convex m-gon @,
\ determine whether or not an intersectlon OCCUrs
(i.e., R(PYaR(Q)=g 7).
Here, two algorithms are presented (one of which 1is
\ ‘-

optimal). In Section 2.1, an O(mlog n) algorithm is briefly

\
I

futllnedlfor reportlng the common intersection:.of a convex

.-gon ana a non—convex m-gon (1ntersectlon reportlng problem)

;n Seétion 2.2, an O(n+m) optimal algorithm fqrwdetermlnlng
whether a convex n-gon and:a non-convex m—gbh intersect 1is
presentea (intersection detection problem). Discussion of
' these results . and conclusions are given in Section 2.3.
2.1 The Intersection Reportinngroblem

For the problem of reporting the intersection of a cphvex
. n-gon and a non-convex m‘gon,_the planar sweeping algorithm,
which is designed for two non—coﬁvex‘polygons, may be applied.
That algorithm takes O(mlog n) time [Bentley and Ottmann .

1979]. Here, é different algorithm to solve the above proBlm@

—

is presented. Although this algorithm takes the same Eime'

7
‘ ' e
order as the planar sweeping algorithm, it is somewhat
. -
simpler. The main idi& of the improved method is to follow °

the boundaryiB(O) sequebtially and find the intersection
point(s) of B(Q) with B(P). In order to efficiently find the

intersection poimts; rays for P are drawn from any point

OeR(P). Each ray originates from o0 and passes through a



A

vertex of P, thereby partitioning the plane into n ordered:"
sectors [Shamas 1975]. The sectors can then be ordered by
their polar angles with respect to o and a binary search can
be applied to the sectorsbfo determine which sector contains
the endpoints of each edge of B{@). Thus it can be éetermined
whethe; or not an endpoint is in R(P) and also thg eiistence»
of an intersection of goUndary B(P) with a given edge e; in
B(Q). If an intersectidn»éxists, then the edge‘€; of B(P)

N

. - S o : .
which intersects ey can be found-in O(log n) time.

Definition 1: Let § be an ordered set of objects, and w Se a

mapping from S to another ordgred domain. S is monotonically
increasing (decreasing) with ;espect to w iff for any x,yeS,
x<y implies w(x)<w(y (w(x)>wly)). Let xeS, S;(x)={y | yeS .
and y>x} and S_(x)={y | yeS and ygx}.‘ S is unihodal with
respect -to w iff for Some'x”eS, S.(x") and S.(x") are a

non-empty, and S,(x") is monotonically increasing (decreasing)

and S-.(x") is monotonically deéreasing (increasing) with

respect to w. ' ,//(

Example: Assume the points in bounda%y B(P) are ordered such
that x<y if y is traced before x along P. ~Let P be a convex.
n-gon and 0<R(P) be the origin., P is monotonically decreasing

with respect to a mapping 6, where 8(x) is the polar angle of

x relative to o. Given a infinite Iine e, lét d, be a mapping —
. N /‘/

-

which maps xeB(P) to its shortest distance* from e. /Iheﬁ/B(P)

-

» . . . 3 // .
‘The distance is negative if x is on the other side of e.

—

_

e

—



is unimodal with respect to de

It is easy to see'that the intersection point(s) between
the boundary‘B P) kf a convex n-gon P and a line seément y can

be found in Of log n) time by maklng use of the unlmodal

4_‘

property between B(P) and the extended line y and - applylng a

blnary search on the vertices of P.

Aigorithm 1 \
\

The entire algorithm is described infoémally.as follows.
Let P=(pPo,Piy..rrPr))s ©=(ge,q:y...,0n,,) be two polygons which
" can be represented by two linked lists. The\goundqry of O,.
B(Q), is traced sequentially and the intersection(s), ifvany,
of an edge.of B(Q) with B(P) is recorded. For each edge
e-=(q£,q{ﬂ), one of the following four cases must occur.
a. If edge e =(q,,q, ) is totally inside R(P),

|

(i.e., e, is one of the edge? bounding the -
| R

intersection region), then continue with

€in (Q4+{ VQ.(,f],) . I T

b. If g, R(P)® and gLAR(Pl7’then e, intersects

an edge.of/B(Pi) say ﬁf=(p7,pr,). Let K be

— ‘ha*t intersection point. Now create a new

o
o n. petween p, and p, , and Bet up a
h pote sointer in the linked list .from k to
>
q.
c.. f ¢ - .né ,,.,£R(~), then set up a special
*This can be dG=aterm ~:z: - f the rays far P are drawn and

it has been decided T se¢~ ~r th- endpoints of e; lie.
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pointer'from g, to the new node, say k’ which
has been inserted betweenvpj and pr,.

d. 1I1f both q,.q £R(P) and e; does not intersect

1t
B(P), then proceed directly to e, . However,
if e, intersects B(P) at two points, say K,
k’, then those two nodes are inserted into
B(P), as in the case of (b) and (c‘?//Again a

special pointer is set up from k to k’. .

T

—

In qrde;g;o/réﬁggt R(P)nR(®), the boundary B(P) is traced
'unE;l/a/hodé K with a special poiﬁter'is reached. Then follow
this pointer and switch to B(Q). B(O) 1s traced until a‘
special pointer is reached, following that special pointer and
switching to B(P) again. 1In this manner, by switching between
B(P) and B(O), their edges can be tréced, The area surrounded
by the vertex chain loop forms one of the intersection regions
to be reported. The above érocédure'is continued until all of
the vertices of P have been‘examiné&. In order to avoid
reporting a region more than énce, ail-spécial pointers are
removed after each has been traced.b

| As the algorithm references all m édges in B(Q), n edéés
in B(P), and determines whéther each po;nt of Q is in R(P),
the time complexity of the aigorithm is O(mlog»n +n).

It is conjectured that thelintérsection reporting problem
will take ét least O(mlog n) time and that the algorithm
preéentéd here is asymptofically optimal. The following

theorem illustrates a lower bound for a similar problem.

.
Pl

Y
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Theorem 1: Given a convex n-gon and a non-convex non-simple
'm-gon, the time'qpmplexity for the intersection reporting
pnoblém is at least Q}mlog n. !

Proof: Given a line and.a QEEEE!/aSSQme the ohlonpération ls
deciding on which sﬁéé of the line the point lies. It is
well known that deciding whether a point lies inside or
outside of a convex n-gon P ié at least O(log n). 1t can
be shown by information fheory that Fhe same problem with
m points is at least of O(mlog n). The abo;e problem,
Cal;ed the m-points inclusion problem is reducible to the
intersection reporting problem in linear time by .
cohnecting m points together to form a non—cOnvexi
non-simple polygon @. A solution to the ‘intersection
reporting problem can eas§;§\aétefmine whether a point is
in a n-gon P, thereby solving the inclusion problem; Thus

the intersection reporting problem must be at least O(mlog

n). O

2.2 The'Inzgrsection Detection Problem
. } : .
The'iniersectionAdetection problems for two simple

Y . ’ N - -
and two convex n-gons have been studied, and

non-convex n—gsns
%ave=been solvéérih O(nloé n) [Shamos and Héey 19761 and O(log
n) [Chazelle and Dobkin 1980] time, respectively. The
kglgoriphms contained in [Shamos and Hoey 1976] or in Section
%.1 soive the intersection detection problem for a convex

n-gon and a non-convex m-gon-in O(mlog n) time. However, the

time complexity can be furthervimproved since both these

Y
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methods include some redundancy. In order to design a more
efficient algorithm for this problem, it is necessary to
preprocess B((Q), so that both B(P) and B(Q) can be scanned

sequentially, thus solving this problem in linear time.

Definition 2: Given a bolygon Q and a point o0, a particular
point g on B(Q) is visible from o, if the line segment (0,q)
does not intersect another point of {. A visible chain V(Q,0)

is a séquence’of vertices (or edges) of @ which are all

A\

visible from oO.

The following lemma shows that each edge of @ need not be
compared against every edge of P in order to determine whether

or not the two polygons intersect.
\ S

\\

.Lemma 1: Given two polygons P, O,‘a point o, OeR(P) and'.lg/_/ /

‘visible chain V(Q,0), then R(P)aR(Q)Z8 iff RIP)aV(Q,0)#8 on /

/
/

). o s /

/

OeR ()

Proofl: a) 'if part"is obvious.

) "only iprart’. ‘Assume R(b) intersects R(O),Iand A

O¥R(Q). Then B(Q)nR(P)#4. For a convex polygon, thefe

must exist at least one point xeB(Q)aR(P) sﬁéﬁiggéf X is

I

visible from 0. Therefore, x<V(Q,0) implies R(P)aV(Q,0)%o

e

PRSI

-By the above lemma .:ecking whether V!O,o)nR(P)=¢ is

sufficient to answer-the intersection detection problem. The -

N e



. following procedure describes how to construct V(Q,o0), with

two deques*® , S and T. (Fig..f)

AR NSRS /
- \ ./
\
\ qQ \\ / g
-~ 9
S T X N .~ b /N
c\ S - \‘Q.., qc"l
R F F R N\ /
N /
\. y
5
/ N\
/ /
AN
/
Fig i - \o
Fig 2

Vertiees«are storea in two deques S and T, whe;e the

’ concatenation'of these_iwo deques represents the portion of S \
the visible chain.alreédy formed. Initially S and T are
empty, and the ‘vertices,‘q‘,,q,,...,q,,H are pushed into S (or
T) at F, as long as the polar qngles'of tﬂese vertices with
respect to O are monotonically decreasing (or increasing).
Assume g; is the first vertex that backs up, (i.e., |
8(q; )>(<)8(qg;.)) - There ‘are two cases to be considered.
Case 1: The edge (qu,qt) is tot?lly or partlally 1nv151blel

from o (Fig. 2). The followxng vertices G, +Q¢re- Qs

are then removed until vertex . q., where—k>i, emerges from

—_—

either end of the edge chain<(Ge.,Q:,...,g. ) and becomes

visible from o. If g, emerges from the end associated
A deque is a list of elements where 1nsertlon and deletion
can be done at both ends.
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;-
with g, , as shown in Fig. 2, a new vertex q’., . the
intersection of the ray from o to g, with (qk,,qk) is
pushed ‘intd S (or T) at F with g,. If gx emerges from the
end assoc1ated with go, the vettices Qx4 and q« are
pushed into S (or T) et R. 4
Case 2: The edge (g, ,q;) is totally visible from o. Vertices
| qH',q£;...,qK4, with k>i, are pushed into T (or S) at F es
long as Ea) their polar angles are monotonically

‘increasing (decreasing) (Fig. 3) and (b) they are visible

from o (Fig. 4).

“Fig 3

v

In any case, vertices Q;/,diz,.,.,qdﬁ are popped from S
\
(or T) at F untll vertex q; with j<i-71 is visible from 0.

These two_ subcases are considered separately

a. Wlth reference to Fig. 3, a new vertex qi*,,A
the intersection of the ray from o to g, , with

edge lqj,qj”),'is;pushed into S (oriT) ac. F.
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b. With reference to Fig. 4, a new vertex‘q;” ,

the intersection of (Qy 1 Qurs ) with (G; 0 Qe ), )
~~ 1s pushed fnto T (or S) at F.

Even though special cases are considered in the above
discussion, they have'illustrated theikey‘idea behind the
algorithn. The above two cases"are applicable to a'siniiar
environment in subsequent steps of the algorithm and are
applled repeatedly with the p0551b111ty of the roles of S and
T being 1nterchanged. The algorithm termlnates wvhen all
vertiees in @ have been examined It is easy to see that no

‘vertex or edge is examlned ‘more tnan twice and that at most m

new vertices are created. Thus the follow1ng lemma holds.

N

Lemma 2: The visible chain V(Q,0) can be constructed in 0(m)
time.; o o

-In order to check whether V(Q, o) intersects P, dran rays
for P from OeR(P) partltlonlng the plane into n sectors;
determlne the sector to which each vertex q<V(O o), belongs
and determlne whether geR(P) or, VI(Q, O)aR(P)= =g. By the
deflnltlon of a v151ble chaln and the convexity of a polygon
'V(O 0) and P are monotonlc w1th respect to :he mapping 8.
Thus vertices in V(O o) and P can be scanned sequentlally,
without backtracklng, to check wvhether V(Q,0)nR(P)=gd.  Note '
that the order of the vertlces in V(Q,0) must be reversed so

that the ‘vertices of V(Q,0) and P are in a clockwise order

with respect to o. This algorithm, which is similar to the

’
e
o . - ~

v ‘ . : .

-
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algorithm for merging two ordered sets, can be described

bellow.

Algorithm 2: Intersection detect ion problem for a convex
n-gon and a non-convex m-gon.

Input:uz\non-convex polygon O=}QnyQ1r--'va4) and

a convex polygon P=(DoyRiy -« vPuy e .
Output: Yes, if they intersect. 'No, otherwise. -
. . . ,
"\ Method :
1 choose a ‘point OeR(P) as the origin ; ‘
2 if 0eRI(Q)
then return 'yes'
else do
3 find and reverse the order of
V(O,o)=( Vo, ViygenorVer )
4 englnd Jj s.t. 8([)(4._”""4.,t )<8(ve)<B8(P; et n )
comment the index value of p is modulo n. 4
5 j<0. ;
6 while J<k-1
do : . -
7 - if 8(v,)>6(p; ) g
" ‘ then do _
" if p; is on the lefthand side of (v, ,v, )
then return 'yes'
else j«(j+1)mod n; *
end >
5 K'Y
8 o ‘Blse do
‘ if v, is on the righthand side of (pkl,p})
then return 'yes'
else i«i+1; {
end >
S end

10 refurn 'no' ; » .
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Theorem 2: The intersection detection problem for a convex'

n-gon P and a non-convex m-gon @ can be solved in O(n+tm) time.

Proof: Steps 2 and 3 can be done O(m) time. Step 4 takes
O(log n) time by a binary search oh 8(p; ). Since V(Q,0)
and P are monotonic with respect to the polaflanéle 8,
steps 6 to 9 will be repeated no more than m+n times.

Thus, the total time is O(m+n). O

Theorem 3: The intersection detection problem of a convex
n—gon P and a non-convex n-gon @ requires at least 0(n)
operations in the worst case.

Proof: Consider the case of two n-gons P=(po,p,,...,pn4),
0=(q°,q,,,..,qmﬂ),vwith their vertices perturbed slightly
from a unit circle and laid one éfte: another

“

alternatively as shown in Fig. 5. To be precise, G(pb,)f

8(qg,. )<8(p;) for 0<i<n, and P(p£)=1+ei, P(qé)=1+ej, ¥here
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16“.I'|€d-|<<1' and i=0,1,...,n-1, j=1,2,...,n-1. The lower
bound can be derived frbm the.number of comparisons
necessary to decfde whether a vertex is on the righthand
or lefthand side of an edge. Obviously, to answer the
intersection detection\problem, every vertex in P and @
must be also checked, and its corresponding edge in
polygon @ or P, (i.e., vertex p,., against edge (G, +Q¢)
and vertex @,, against edge (pp,,p£)). Therefore, the

~algorithm requires no less than (2n-3) comparisons. [

2.3 The Intersection‘Detection Problem for two Nested Polygons
An optlmal algorlthm for>the intersection detectlon
. problem of convex and non-convex polygons has been presented
However, if R(P)nR(Q)#8, thls»algorlthm will not indicate
. whether or not one polygon is totally contained in the ether.
In order to solve this problem,~the previously presented
algonithm must be modified. Instead of constructing the
visisic chain V(Q,0), £ind the fArthest chain F(Q,0) from a
point o, where F(Q,0) is‘defined as the set of points, F({ 0)
= {x | xe@, x is the farthest point from o at a certain
orientation}. - A chain can be represented as-a set of K
vertices. Farthest chains can be constructed in linear time
in the same way that visible chains are constructed. In order
to check whether R(P)sR(O)'or R(Q)<R(P), it is necessary to-
determlne whether V(Q,0) and F(Q,0) are both inside or out51de

of P. Obviously, this can be done 1in optlmal linear time.



Theorem 4: Given a convex n-gon and a non-convex m-gon,

detecting whether R(P}<R(Q) or R(Q)<R(P) takes Oo(n) time.

19



Chapter 3
Minimum Distance Problem
If there is no intersection -between a convex n—gon P and
a non-convex m-gon b, or between two convex (respectively, two
non-convex simﬁle) n—gons, then finding the minimum distance
between them may be interesting. By modifying the algorithm
given in Section'3.2, the minimum distance between P and @ can
be determined in O(mlog n) time. The minimum distance between
a2 convex N—gon and.a non-convex m-gon can be solved 1in Q(n+h)
.time by a monotonic property'as.shown in Section 2.2.
(details are given in Section 3.1.1). -In Section 3.1.2, an N
O(log n) algorithm finding the minimum distance of two
"separabie convex n-gons is presented. An O(nlog n) algorithm
for finding the minimum distance of two separable simple

non convex polygons is.also presented.

s

\N

f

If the endpoints of minimum distance must be the. vertices
.0of given polygons, chen rhe problem‘becomes/more complicated.
\_In Section 3.2.1, an optimal algorithm finding the minimum
vertex distance between two separable convex N-gons 1s: |
presented. .In Section 3.2.2, the minimum vertex dlstance
berween non-intersecting a convex n-gon and a non—convex m-gon
9

is considered. Finally, in Section 3.3, these problems are

_extended to the L, metric. .
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3.1 The Minimum Distance between the Boundaries of two

Polygons
.
&
Def inition 3: Let d(x,y) be the Euclidean distance between two
pofhts x and y. Let P and ¢ be two polygons The minimum
distance between P and O is deflned as d(P,Q)=Min{d{x,y) |
4 xeB(P), yeB(Q)}.. The minimum distance between point x and @
\ ' is defined as d(pr:=Min{d(x,y) | yveB(Q)}. 1If there exist two

points_p, g, such that peP, geQ, and d(p,q)=d(P,Q), then p, g

/e

are called a pair of closest points for P and §.

/
;/4' Two polygons are called Sepaﬂable, if there exists a stralght

‘line ] with the pboperty that every vertex of P, lies on one

side of ] and every p01nt of P, lies on the other.

3.1.1 Minimum Distance between.a Convex n—gon and a Non-convex
m-gon | | |
It will be showﬁ that.the minimum dlstance between P and

¢ is the same as thefminimum dlstance,between V(O,b) and P,.’

where o;R(P). |

Lemma 3: Let p and q be a bair of closest points for P and_ow,
'1F P\is convex then § is always visible from any point in
“R(P). |

PrOﬂf By contradiction. Assume g is not visible from’ &

a point keR(P) There must exist a point @ eO betwgen K .

g
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and g. As shown in Fig. 6, a liné'parallel to the line
éegment (p,q) and ;ntersecting ;ith the line segment EF
drawn such that it passes through g’ and intersects with
the line segmeht (p,k) at p’. Obviously, dig,p)>d(q’,p’).
Since p,keR(P), by the convexity of P, p'eR(P), dl(qgq’,p")>

d(q’,P), contradicting d(pP,p)=d(p,q). O

It is easily shown that thére always exists a pair of
closest points between P and ¢ such that one of. them is a
vertex of P or @. GivenJLemma 3; one can conclude that .
d(P,9)=d(P,V(Q,0))= Min({d(p,V(Q,0))| peP} v 1d(q,P) |

geV(Q,0)}). There exist situations, indicated in Fig. 7, for
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~which finding the mipimﬂﬁ/éigtance between V(Q,0) and P may
take O(mlog n) éime. This can occur because 1f one scans
//’Vféjgjrsequéngially, as fn Section 2.2, to find d(qg,P) for
some g may take O(log n) time using a binary.search on the
sectors of P In order ﬁ: :chieve the iineat time bound, one
must establlsh some kind of monotonlc property for the visible
chain V of Q from 9.' Let ,er x and y be ordered in such a

way that x>y if/x is traced before y along V. Thus if

V=iVe,Vipir. V), then ve>v,>.o002Vey o Vertices of P are

rdered similarly. One wants to construct a visible ‘chain V
of @, which ié monotonically decreasing with respect to the:
mapping w, , where w, maps a point xeV to Etg closest point.in
B(P): (1.,e., if x,yéV and x>y,‘then “r(X)ﬁ wp(y), where uP'
(x) ,w, (y)eB(P).) Thus wp(ve)<...ep(vi). ‘MofoéQe;, if there
is.a vertex peB(P) such that wr(v{)gpﬁwp(vLJ), then v >w, (p)2

e

1% Hence, if one can construct a visible chain V such that

12Ul
it has the above monotonic property with respect to the
mapping w,, V can be scanned sequentially and d(V,P) can-be

o

found in linear time. Note that the direction of V must be

reversed.:

~

The extreme vertices of P, are .those VerticesAin P, which
intersect a bounding rectangle of any fixed orientation.such
that no'mdre than éne vertex of P is contained .in each edge of

the rectangle. Without loss the generality, if the vertices
of P are représented as Cartesian coordinates, the set of
vertices in P with the maximum or mlnlmum X or y coordinates

T

- are taken as the-extreme vertices of P. The following lemma
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\
\

shows that V(Q,S) = n V(Q.x), the set of points in Q which are
- . XeS . _
visible from all points in S, is monotonically decrea=ing with

respect to mapping Wp s where S is the set of extreme vcrtices

of P.

A

.Lemma 4: V(Q,S) is monotonically decreasing with respect to w,

if S is a set of extreme verticés of P.

!
)

Proof: 1In order to prove-that V(Q,S) is monotonically

N

A . -
. decreasing with respect to w,, one must show that for~

|

\any two points \

\
A
\
\
3

&,er(O,S);‘if x>y then wP(x)in(y). IF is sufficieﬁt
to prove that (a) edges (k,wk(x)) and (y,wp(y)) do not
\ intersect, and (b) for any xeV(Q,S), (x, P(X)) né er
in;éksectg with V(Q,S). 1 o

|
é. A'ssume (x,w?(x)) and (y,wr(y)) intersect (F@g.

~

\ ; (x))<d(y,w,(y)), contradicting that (x,wP(kf5'
and (y,w,(y)) are pairs of closest points.

b. Without loss of generality, assume C, and C:
are two adjacent éxtfeme pointé for P (Fig.
9). Since x is visible from c, and ¢,, V{(@,S)
can never lie inside triangle 4,C.C:X. It 'is
easily shown that (x'“P(X>) always lies inside
triangle 4,c.C,x and therefore never

intersects V(Q,S).. O

8), then either d(x,u,(y))<d(x,u,(x)) or d(y,u,



9

Fi

g
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’

Similarly, P has the same monotonic property with respect

: . . . } .
o mapping w,. It is conjectured that S consists of no more
’ - . - ¥ _ .

“than 3 points. Unfortunately it is not known whether there

—exists an easy method to find them. The algorithm is

described as follows.

Algorithm 3: Finding the minimum dfstance between a

___convex n- gon and a non-convex m- gon

e

Input: A convex n- gon P and a nan-convex m- gon Q.

o

Output: The minimum distance and their closest points pair.’

Method :

1 find four extreme vertices of convex n-gon P,
and let S={C1,Cz,c3’c4}

2 x+Q; -
for i«1 to 4 do x«V(x,c,) end- L
VI(Q,S)«x;
comment let VI(Q, S)—(vo,v.,... (VA R 5

3 ‘-flnd J. such that pgﬂ’d"_ P(V )_pimw(nl

comment . the index value of p is modulo n. _
j«1; D«d(yo,(pfi,pj)); ) . X ,

4 while i<k-T do

5 if w,(vy)<p; .
then D+Mln(d( (pT,;pa)),D); 1
I*l+1 . *
6 else D<Min(d(p, ,(v,v,)),D); S
' J«(J+1)mod n; . . : : \

\,

|

Theorem 5: Algorithm 3 gives an optimal solution for finding

end.

. . . » |
the minimum distance between a convex n-gon and a non-convex .

| o
. .

!

‘m-gon in O(m+n) time.
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Proof: If con51der the case shown in Theorem 1, and assume the

ba51c operatlons are computlng the mlnlmum distance
‘between a point and a line segment oOr between two points,

then O(m*n) operations are necessary. 0

3.1.2 M1n1mum Dlstance between two Sepaxable Convex n-gons’
Con51der the prleem of flndlng the minimum dlstance
between two separable convex n-gons P, and P, with n,,n.
vertices, respectively. The best known algorithm [Schwaftz'
-1981] takes 0O(log?n) by performing doUbie bihary search on
vertlces of P, and P,. Infroauced here is an algorithm
performlng a single binary search on the chains of P, and P..
‘Lemma 3 shows that if p, and p, are the pair ef ¢losest po5nts
of P, and P,, respectively, then p, is vi;ible from any poin£
inh R(®,) and similarly p, is visible from any point of R(P )
"Therefore,_the problem of flpd{ng,the mlnlmum‘dlstance between
P. and'P;'can be re&ucea'to ;he problem dfffigding the minimum
distance between tﬁo‘visible chains VvV, and V, of P, and P,,
respectively. In order to design an efficient_algorithﬁ to
‘find this minimum dietance.between P, and P, in O(log n, + log
U tlme, the follow1ng problems must be solved:
t. V, and V, ‘must be found in O(log n. +log n» ) time (Lemma
5); _ . ‘ | _
2. it must be'shown that V. aﬁa V. have the unimodal property
| with reapegt to the mapping A, and A,,_fespeetively; given
,that.gy(x} is the minimum distaece Between V. and x (Lemma

.6);
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3. the decreasing or increasing directions of the Winimum

distance between V, and V, must be found in constant time

(Lemma 7);

V2

\J'

d(py V1)

d(pj+1.V4) —

b

I

In order to solve the third problem, one must .determine

in constant?time for any given edge (ﬁy,pjn) in V, whether or

i
!

not d(pb,v )>d(Q“|,V ). The two extended edges, e;¢V. and
e}evz are used to determine the increasing- or decreasing
d%rectlon of V, or V,. I1f V, and V, are visible chains from a
single origin, there”are situations, as shomn in‘Fig.10, for
which the'decreasing'(incneasiﬁg) direction of V,e(Vz)kcengbt
be decldea'ln constant time. Howe;er, if V,=V(P,,S.) and
V,=V(P;,S1), where S, and S, are sets of extreme p01nts for P1
and P,, then it can be shown’by Lemma 7, ‘that the third

problem is solvable in .constant tlme.

-
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Lemma 5: V, and V, [can be found in O(log.n) time. |

Proof: Consider fin¥ing V(P,,0) ﬁthOEPz. Since B(P,) .is
pnimodal with fespect to 8, the vertex with the max imum
‘polar angle and the vertex with the minimum polar angle
can be found in Oflog~n) time. Thus V(P,,0) and
V,=V(P‘,S) can.be.found in O(log n) time. Similarly, this

holds for V..

Lemma 6: V, (V,) is unimodal with respect to A, (a.,), where
a, (x)=d(x,V,), 0 (x)=d(x,V:). '

Proof: This lemma is proven by showing that for X, >Xx;>X_ ,

(S5



o
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\ ‘
where X, X, Xz Vo, 1f a2(x,, )<r.(x ) then A;(X;)<A;(X(H)
and 1f 44 (x,, )<as(x;) then 2. (x)<as(x.). Again these
two cases are. soO similar that only the former case 1is
con51dered. The proof is by contradiction. Assume that
4, (X )<8,(x;) and Az(x¢33A2(xlﬂ). Let y, =w,(x,) be the
closest p01nt of V, from X, Now, from the definition of

v, and Lemma 4, y _y —Y¢; (Fig. 11), and because of the

convexity of P,, if Az(xtg)<Az(x6), then the angles y,8, >

. . . A
90° and the angle a<90°, Moroever, Az(xl)zAz(x4ﬂ) implies
that angle B<90° and «+f<180°, contradicting the fact that
P, 'is convex. [

Lemma 7: Given a pair of edges, (p,.,p:.) and (q;,qﬁ,) inV,

and V. respectively, one can determine the result of either of

the folloWngtho comparisons in constant time(‘(1) b.(p;) vs

pap,, ) (2) a.(g;) vs A‘(Q)")

' Proof:’Letgthe two edges (p,; Py ) énd (qj,qjﬂ) be extended and
 let k be their intersection. Witheyt loss of generality,

assume that p., is between p, and k. Now, from the

!

definition of V, and V,, referring to Fig. 12, the region
" of P, can not be below the extended line (q 'qd“)f

implying that (g -,q],) must point to the left. If a

pe;pendicular is drawn from p,,, to the extended line

jqj,qﬁ,)fintersecting at p’, there are th cases to
~"consider. | |

a. q is on the righthéna side of p},(note that p’
can bé onvthe_righthand or lefthand side of k

(Fig. 12)). Then because of the convexity of P,,

e,
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clearly A;(D1)>A1(Dh,).

b. g 1is on the lef~hand side of p’. Let x be the
closest point at V, from Qe - If
d(qr,,x)>d(qj,x), then clearly
A,(qw,)=d(qr,,x)>d(qa,x)3A,(qf); On the other
hand, if d(qzﬂ,x)ﬁd(q?,x), a line parallel to

L@ (q?,,x) can be drawn through g; intersecting
(x,pq ) at y. Then from the convexity of P,,

yeR(P,) and A,(qr,)id(qgﬂfx)>d(q),y)3A‘(q§). This

will hold even if the intersection angle «>30°. (]

Gi§en Lemma 7, oﬁe can reduce in constant time at least
one of the chains‘V1 or V, by half. This process caﬁ be
repeated until only two edges, one for each'V,, remain. Thus,
by‘a binary search, the minimum distance between P, and P, can

be fouﬁd in O(log n,+log n,) time. The algofithm (called

\



Algorithm 4) is omitted. The following theorem proves the
optimality of this alc - ithm.
Theorem 6: Given th separable convex n-gons P.,, P., there
exists an asympotically optimal algorithm which can find the
minimum distance befween them in 0(10@ n) time. |
Proof: It remains to be shown that the‘minihuh distance
problem requires at least Iog n comparisons. Consider a
finite set of positive numbers X={x°:x,,.{.,xn;}. I1f the
‘values of the nnmbers are unimodal, (i.e., there exists an
integer j, 0<j<n, such that x,, >x, for all 0<1_j and _
x;4<x¢ for all j<i<n) then a lowef bound can be found
using reducing this to a problem, which requires at least
log n comparisons by information theory. Furthermore, one
can easily show that this problem is. reduc1ble to the

minimum distance problem in constant time. Thus the

minimum distance probiem is at least O(log n) time. [

Corollary: the ]ine separating two convex n-gons can be found

in O(log n) time.

3.1.3 Minimum Distance between two Nested Polygone

Two optimal algorithms to find the minimum distance
between two convex nN- gons or between 'a convex nN-gon and a
non-convex m-gon have be presented In the case of one

~polygon entirely containing the second, if one disregards the
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'/Lagf that theéé two polygons do‘iniersect each othér, then thé
time\compiexity of,finding the minimum distance between their
‘boundaries is linear with respect to the number of vertices 1in
the polygons. The time complexitf'of finding the minimum
distance betweeh‘two convex n-gons will increase from (O(log
n,+log n.) to O(n‘+nz).since the minimum distances between two
convex n-gons are multimodel with respect to the mapping,
which maps each vertex of one polygon to its closest point in
the other polygon. Since they are monotonic wifh respect to
the polar angle with an origin inside the polygon, the
0(n,+qz),algorithm, finding the minimum distance by ‘
sequentiélly checking thé two boundaries without backtracking,
is not difficult to design. For finding the minimum distance
between a convex n-gon P and a non-convex /M-gon @, where
R(QJ)<R(P), the time complexity will remain unchanged. fhis is

#
easy to show by constructing a convex hull fofTO, and using
the same‘method for the case of one convex polygén including
the second convex polygon. The endpoint of the minimum

distance in @ must be a vertex of its convex hull.

Theorem 7: Given two convex n-gons P,, P. such that
R(P,)<R(P,) or (R(P,)eR(P,)) the minimum distance between them

can be found in O(n,+n,) time.

Theorem 8: Given a convex n-gon P and a non-convex m-gon @
such that R(Q)<R(P), the minimum distance between them can be

Found in O(n+m) time.



3.2 The Minimum Vertex Distance between two Polygons
In this section, the studies are restricted to the
minimum vertex distance between two separable planar convex

polygons.

Definition 4: Let P,e(Po,P1,.-esPyy ) and Pze(qo,q,,...;qn;),
and let d(P,,P,) be the min imum vertex\distance between thé |
two vertex sets. of P, and P,, i.e d(P,,P,)=min{d(p,q)|peP, and"
qeP,}. Two vertices peP, and q<Pz are called closest vertices
of P, and P, if dl p ql=d(P, P, |

The minimum vertex dlstance problem is to find the
minimum vertex distance and its closest vertices between two
sets of vertices. If P, and P, are considered,as two
érbitrary sets of vertices, rather than as sequences of
vertices from two conQex polygons, then by cp€&$;ng the
Voronoi diagrams, one can find the minimﬁmggertex distance
between P, and P, in O(nlog n) timé. In this section, an 0(n)

time optimal algorithm to solve the minimum vertex distarice

. problem for two separable convex n-gons is presented.

3.2.1 Minimum Vertex Distance between two Separable Convex
n-gons
Definition 5: A vertex chain <x,y> of P, is defined.as an
ordered set of points (X,pl;pu',.i,,pa,y) where
(p{,pﬁ,,...,pa) is an ordered subsequence of P'=(p;,.;,,pw,),
and x and y are points on the edges (p, ,p,) and (py,pﬁ,),_’

respectively. An edge chain (x,y)-of P, is set of edges
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represented by the vertex chain <(x,y>, i.e.,

{(x,p;) p(-,pé-,,.,..., J'y)}' A visible edge cham (x,y) of
p, from g 'is defined as the part of the boundary of P, that is
visible from q, i.e., {slseB(P,) and line segment. (g,s) does

not.contain any other points in B(P,)}.

. - \

Fig 14
Fig 13 - -

‘ Con51der a convex polygon P, and a point QeB(P ). In
Fig.' 13, one can see that the minimum distance (not the vertex

‘distance) between g and P, is the same as the minimum distancey;,
/ |

between g and the visible edge chaln (X,y) of P, from g

{

Moreover, as p traces along thlS edge chaln (x,y), d(g,p) will

»

decrease gradually until some point in} L(x ,y) is reached, from .

there on d(gq, p) beglns to 1ncrease/(1 e , dlq, p) is unlﬂodal
w1th respect to pel(x,y)). Because/of ehls unlmodal property
and the monotonic property betyeen two visible chains, - tpe
minimum distance between two oonvex polygons P, and P, can be-

found in less than O(n) time. However, this unimodal property
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is no'longer valid if the vertex distance between g and the
convex polygon P,, d(q,P,), is to be considered. For example,
in Fig. 14, d(g,p) is multimodal if p is taken at each'of the
véPticeS‘of P, in sequence. Because of this, no algorithm can
solve this minimum vertex dlstance problem between two convex
polygons in less than O(n) time. 1In the following, an O
algor1thm for solving this minimum vertex distance problem for
two separable convex polygons is presented

First, partltlon the vertex set of polygon P, into vertex
cﬁeins, P,, and P"’ and polygon P2 into P,, and P,,. Now if
the, minimum vertex distances d{(P,,,P.),d(P.,,P,) and
d(P,,,P,.) can be foupd4in O(n) time, then theyminimum vertex v
distance problem can be solved in O(n) time.

The polygon'P1 is partitioned as follows: A vertex q, eP.
is chosen such that if p’eB(P‘) has the property that p’ is
the closest point of B(P,) from g , i.e. dlq,,p’)=d(qy,P:)
(note;that p) may not be. a vertex of P,), then g, .Qy are on

N
one side of the line (g,,p’). 1In fact all the vertices of P,

are on the same side of (g +P’). Then there is iﬁ/ﬁfiEE/Dne/////////

other pair of points sey qﬂeP, and p"eB(P,)L/haV1ng the same
/

property that d(qp,p")-d(qP,P ) 'where all the vertices of Pz

v

[ — " .
are on the other 51fe/9j/%qp,p ) (Fig. 15). ,

B
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The polygon P, is partitioned by these two points p’>and p'.
The set of vertices lyihg between p’ and p" which face Pziare
called P, =(p’,p") ana the remaining set of vertices of P, are
called Py,=(p",p’). Note that p’ and p“ may not be in P;1 or
P,, if p’ énd p" are not vertices of P,. Pglygon P, is
partitioned byvqﬁ_and q" similarly, i.e. P,,=(q’,q") and
P,.,=(q@",q’) as shown in Fig. 15.

The line segments‘repreSenting the shortest distanéés
from’a set of vertices to P, never intersect, by lemma 4.
After the shortest distancé line segment from éhAarbitrary
vertex in P; to B(P,)'is found in O(log n) time, the remaining
shortest distance'l%ne segments from vertices'of‘Pz to B(P1)
can be found in O(n) by examining the vertices in P,
sequentially and scanning theAboﬁAdary of P, accordingly.

Sincg/tésting whether or not all the vertices of P, are on one

’///////gide of any shortest distance line can be done.in constant

.time, p’ and p" can be found in no more than O(n) time. The

o

same is true for the points g’ and q(/ig,B%PE7.
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Lemma 8: The minimum vertex-distance problem between P, and

P, can be found in O(n) time. ‘ |

Proof: For each edge in the'edge,Chein represented by P,
say (p,, .,p, 1, a perpendicula} bisector D, c¢an be
eonstructed in constant t ime (Fig; 16).. These
perpendicular bisectors for the edges in P, partition
the plane into a number of regions. Because of the
eonvexity of P,,, it.is easgly shown that for any
pointﬁg lying within the region bounded by 7
D,..D; (P, 0,) and (p, ,Pen), d(x,P.) musp/be/é'éifal to

d(x,p, ). Note that some of these/p01nts, say y may

— £

not be bounded wlthlq/two perpendlcular bisectors, in

7

// whlch case g(yf’p.) must be equal to the distance
’7/ i ~ . . R N
between y and one of  the end points of p,. For the

tirst vertex qo of P,, finding the region to which g
belongs may take O(log n) time. Fi%ding the.regions
which contaln the other vertlces.ﬁs done by proce551ng
each vertex sequentlally and scanning the regions in
order. Since there are at most n verticesland two
scennings'of the regions (forward and backward), the
minimum vertex distance and the closest vertices
between P,, and P, can be found in O(n) time. [

Similarly, the mihimum distance problem'between P;, anF

P, can7te solved. The following two lemmas describe how_the

shortest vertex distance between P,, and P,, is found in O(n)'

-~

time.
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Lemma 9: Let p, and pd be E_WO ér*bitr'any vertices. in P,. and

geP., where the angle <qu. p{ is greater than 90°, then the

line segment (q,p;) is the rﬁinimum vertex distance Iine

‘between q and the vertex chain <p;.p;>. '

Proé%: Consider sohe vertex p in the vertex chain <pi,p?>, as
shown in Fig. 17. Because of thé convexity of P,,. p
must be on the other side of line (p;,pt) with respect
to-q. There are two cases to consider: |
1, Line segment (g,p) intersects line segment (pa,

pf); then d(q,ﬁ)>d(q,p3), since angle <q3)pt is
greater than. 90°.

2. Line segment (g,p) does not intersect line segmeht
r(pj,pf); then sinde QeP,;, énd p €P,,, q and p
must be on tpe opposite:sides of line- (qy,p’ ).
This implies that fhe angle <qgjp must be greater
than or equal to 90° because cf the convexity
" p,, and ‘the properties of the line segment
(q, ,p’)‘. Thus d(q,p)>d(q,p7). Therefcgre, d(q,pj)
"is indeed‘the‘sﬁbrtest Qertex distance between g

-

and vertex chain <p,,gf>. O

. p{case 1)
Fig \7

s it e .




Lemma 10: The minimum vertex distance betWee\en Pu.dand
P,. can be found in O(n) time. |
Proof: ,
Tﬁisriemma is proven by constructio;. Given

‘ Sy :
P,2=(p",p£,...,gj,p’)'and Pzzz(q“,q{,...,qa,q’).
First consider, the quadrangle q;q,p.p, as Fhown'in
Fig. 18. One of the interior angles must be >90°,

jWithout‘losé of éeherality,~assﬁme that ahgle <q£pipé
is greater than or eéual to 90°. From Lemma'9; it can
b? concluded t?at d(q‘,p;) is the shortest verteXx
~distance from 5¢ to P,;'Let-tgés bé the initial value

for d(P,,,P..). Now remove vertex q{ from P,., “the
-new quadrangle qu0fpd and.p{, where g, is the vertex¢
“in P., adjacent to q; is then considered. Again one
of these four.ingsrior angles must be%%arger than S0°.
The minimum vertex distahce from one of these vertices
to its opposite vertex chain can now be determined.
This new minimum distance is.compared with the old
d(R,z,Pz), d(P,,,P;) and updated, aft;r which one of
these vertices is removed. This process is repeated
where the shortest vertex distance d(P,,,P;) 1is

1

updated at each step until only two vertices remain.
}

Since the removed vertices are those vertices whose
shor;esﬁ distances to ;heir opposite vertex chalins
have alreédf-been considered, the final answer for
d(P,,,P;2) is ghe ﬁinimum distance between P, and

P,,. As far as the time complexity is concerned, tMe

P



( : 40

interior angle which is > 90° can be identified and
the corresponding vertex can be removed in constant

time. Since there are at most O(n) vertices in P.;

!
and P,,, the minimum vertex distance between P,, and

P,, is found in O(n) time. [

The algorithm (Algorithm 5) is easy to design. It is not

given here. Thus the following theorem holds.

3 ?

Theorem 9: The minimum vertex distance problem between two

convex separated polygons can be solved -in 0(n) time.
) - . \ [

Theorem 10: The minimum vertex distance ‘problem for two

. separable convex n—gohs requires at Jeast (n-1).comparisons.
k) - .

Proof : Consider the case of two convex n-gons, P,=(p.,.

c v Ph-i
) and P.=(Qo,-..

.,Qp,) as shown in Fig. 19. The two
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chains (p.,...,pgq) ana (q,,..:,qn4) are parallel to
each other and also to the x- axis. (i.e. all the p 's
have the same y- coordinate whlle all the q.;'s have
another y-value) Part of the x-axis 1s_d1v1ded into
2n-3 equal segments. The x-coordinate of g, must l{e
within éhe first segment, g; in the (2i-1)st.segment J
and g,-t in the (2n-3)rd segment. similarly for the
p.'s, the x-coordinate of the p, must lie within the
((2n-1)-2j)th segment. que can see that

diq; P )= d(qc,pmu) and thus the minimum ve;tex

distance between P. and P, must be . e .

P

e

mfn{d(qb,pnﬁﬂjlelﬂﬁfv;n—fff*’ﬁiegrly, in order to.find
_the minimum vertex distance between P, and pP., (n-1)
) cgwpa{isons are requ1red in the worst case. 'D
Wit£ ;Re above lemma, the proposed O(n) algorlthm for
sblviné the minimu@ vertex distance is asymptotlcally optimal.
The nearest neighbor problem for a convex polygon -has
been solved by pee and Preparata [Lee and Preparata,1977] in
O(n). By using Lemma 10, a simpler aléorithm for solving the
above problem with O(n) time complexity can be designed.

3.2.7 Minimum Vertex Distance between a Convex Nn-gon and a

0 -~

;o Non~convex m—gon
Consider the following problem:

,i_giyen a convex nN-gon P and a non- convex m-gon @ which do

not 1ntersect. Find the minimum ver*tex d/stance between them

~ L
lsuch that theuclosest vertices are v151ble.
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In the above problem, the closest veﬂtex.iﬁ O need not be
visible from the extﬁe&e points in P; therefore, the problem -
is different from that in Section 3.1.1. The above problem is
;lso different from that in section 3.2.1, where the closest
vertices may not be visible from each other. )In order to
solve this probiem based on the concept of visibility, the
definition of a visible chain must be sligﬁtiy modified. ~If
an area is boundéd by»Dn,,D{ and (pi Do)y (pb,pzn ), then it
i;ycalled region i, where D, D/ Pyl are‘three consecdtiveA
5;rtices iﬁ P, and D, D, are perpendicular bisectors (refer
~to Fig. 16). The minimum vertex distance from an érbitrary )
vertc. g;e O to convex n-gon P is d(q’,p4 if éz lies inside
the region i (p0551blly, the minimum vertex distance is
d(q?;pdd) (resp. d(q,,ptn)) if qa lies on D (D, );
respectively.) If @, is the part of the polygon @, whlch is
in region i, V(O;,p() is rhe visible chain of @ from p{lwhlch

is in region j. Define V(O,P);L}V(Od,pd), i.e., V(Q,P) is the
concatenation of allmthe\chain;CC(Oi,pi).‘ It can be proven
that this chain V(Q,P) has the monotonic propérty with respect
to mapping w, mapping each vertex of VIQ,P) to its‘closest() '
'vertgx of P. .1t can be shown that if p_. and q; are two}
_cloéest verticés, chen both p, aﬁd a; must be in the same
regior, and qJ is visible from the vertex p; - One'can nor
ronclude that the’ closesthvertex in O is 1ncluded in V(@Q,P)
since all visible points of O from | are also included in

Vig,p,). A procedure constructlng V(O P) in O(mlog n) t1me 1s

similar to that in Section 3.2:. Finding the region for which



43

an arbitrary vertex QJ lies is O(logun) if a binary search on-
the n regions of P 1s used. |
Start at the vertex Qo of:O, and find .the corresponding

'regions\of two consecutive vertices, say h and ] . Connect
Qo, q1, draw a ray from | to g:, and decide the visibility of
line segment (g.,q:) from p, acéording to the angl- of line
(qo,q1), line (g:,q:) and ray (Q,,q1)Q The region on which
the vertex qs, an.arbitrary vertex g, of @, lies is
determined. Then the visibility of line segment (qg,,, g,/
from p. is found. Only two cases can occur, which are similar
to these in Section 3.2. For each g, of Q, it takes 0O(log n)
time to find its corresponding region. Since no vertex or
edge of. () is considered more’ than twice, only m vertices are

created; thus the-following lemma holds.

'Lemma 11: A visible chain V(O,ﬁ) can be constructed in O(hlog
n) time. | |

The proof of monotonic property between V(Q,P) and P is
- similar to'Lemma 4 in Section 3.1.1, Let d(qi,P), dq,, ,P) be’
~two consecutlve minimum vertex distances, then the line
segments (qi,pj) and (qﬁ,,ps) do not intersect each other
except that-p;“: P - This property holdsﬁfor the case: of

d(pi,V(O,P)), dip V(Q,P)). The rest of the proof is

147
- omitted.
Therefore, one can design a procedure to check the

~ sminimum vertex distance between V(Q,P) and P, in O(n+m) time.
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Theorem 11: The minimum vertex distance between a convex n-gon

and a non-convex m—goh can be found in time O(mlog n).

The lower bound for finding the minimum vertex distance
between a non-intersecting convex n-gon and a.non-convex mM-gon

remains an unsolved problem.

3.2.3 Minimum Vertex Distance for two Nested Polygoﬁs

Consiaer two convex polygons as two vertex éets, i.e., -
the minimum vertex distance may -Cross ﬁhe boundary of the
polygons. .fn this case, 1if two convéx polYgoﬁs intersect'eéch
other, it is not known whether the minimum vertex distance can
be found in O(n) time. If a ¢on§éx.n—gon'entirely contains
another convex N-gon énd the closest vertices are visible,

then solving the minimum vertex distance problem can be based

on following theorem.




Let P,, P, be two vertex chains such that

RS .‘7: , .
“@Q’“)CR(P,). The minimum vertex distance between P, and P,

\

can be found in Otn) time. .
Proof: Assume d(p,,P.)=d(p,,q.)
and d(p,,P,)=d(p,,q,). Therefore, d(p,,q.)>d(p,,q.) and .
d(p,,q.)<d(p,,q.). But d(p,,q.) can not inter’sect ‘
d(p,,q.) as shown in Fig. 20. P, is monotonicvwith".
respect to the mapping w; which.maps each vertex of P,
into its closest vertex in P,. Therefore, the minimum
vertex distance between P, aﬁd P, can be fouhd {n O(n)

time.[d

3.3 The Minimum Distance bethen two Polygons in the L1“Met:i§
In the.prévious sections, the minimuh'disgance between
» v
two separable convex polygons, or between a non-intersecdting
convegipolygon and a non-convex polygon waS consiaered in the
Eucl idean (i;e., the L,) metric: The minimum distance in
~metric s is defined as follows:
Let tﬁe two pdints{p énd g in the BEuclidean plane with
'Cbordinates (Xp,Yp) and (Xq,Yq), respectivély, and a real
number S, where 1<S<-o be given. “ ’ | |
The J'stance between b and g in the Ls metric is definea as
¥osio 7\:'|Xp—Xq|S+|Yp-YqP 5 and qg(p;q)=Max(|Xp—Xq|,|Yp-Yq|),
~v2, the “imum distance problem of ﬁwo separable
convex pol, is 1iscussed only in the L, metric since there

does not appear _.¢ be any practical significance in the

general s-metric. The problems are presented as follows:

. \l"?‘

beif
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Given two separated convex n-gons P, and P, in the
Euclidean plane, let ¢,, C, be the two closest points with
minimum distance d(P!,Pz). Also let R(P,), R(P,) denote the
interior of polygon P, and P,, respect}vely, and V, and V, the
correspondiné sets of vertices. The minimum distance of P,
and P, in the L, metric 1is
4P, P.)=min{d(x,y) | xeP., yeP, and d(x.y)aR(P,)aR(P;)=6}.
The minimum vertex distance of P, and P, in the L, metric is
mmy)wmwxy)|mw,wwﬁ ?

It will be shown that the minimum dlsta6ce of two convex
polygon5~canAbe found in 0O(log n) time, and the mlglmum vertex
‘distance.in O(n) time. | |

The ‘definition of visibility will be slightly modified so

that it is consistant with the L, metric.

Definition 6: A point péP, is L, visible from geP, if there
éxists a pair of connected line segments ((g,s),(s,p)) Sdeh
that (g,s) is“parallel to the x axis and (S,p) is parallel to
the y axis or viee versa, and ((qg,s),(s,p))nR(P,)=0 %gcept at
the point p. |
3.3.1 FindingAthe Minimum Vertex Distance between Two

Separable Convex n-gons i.a the L, Metric

Given two separable convex ‘-n-gons, the Cartesian
coordinates of the extreme vertices can be found in O(log n)
by draw1ng lines parallel to the X or y axis, which pass these

i

extreme vertices. The llnes, say Y,,Y.; X, Xz, partltlon the
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boundaries of the polygons into at most 10 part chains since
the boundary of a convex polygon is unimodal with respect to

its Cartesian cobrdinates. The cases are shown in Fig. 21.

_/&f} o

@

Finding tgg/%inimUm vertex distance of any two part
chains betweeg two polygons takes time linear with respect to
the number of total vertlceskln these two pa;t chalns Let y’
_be the intersection point of parallel lines Y’s (X’s) and thé

boundary of polygons) possibly y’eV|(V,).&;Let S.=XX,y> denbter
.a vertex pért chain, where y is outside the . ' n <x,y’> and

is the closest vertex to the point y’. Thz different cases

are shown in Fig. 22.

d i+, j+h)

33
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LLéQma 12: The vertex'part chains S|,Sz,on\S,,SJ, which are

be;ween lines Y, and Y., are monotonic with respect to the

mapping w which maps each vertex of S, (S,).into the closest

vertex of S,, or m&8ps each vertex of S, into the closest . |

‘vertex of S;(S.).

Proof: “

Y. Let d(i,j)=d(i,S.) and d{i+1,j+h)=d(i+1,5,)
be two consecutive minimum vertex distances, where i, i+
¢S, and J,Jj+h €S,. * Assume that they intersect in kK, where
intersection means the endpoints of two distance swap as l
shown in Fig{ 22. Since d(i,j) is the minimum vertex
distance, then fk,j+h)>(k,j)}A This ié contradicting. to
the assumpfion.that d(i+1,j+h) is the minimum vertex
distahce. Thereforé, d(i+1,j+h)) and d(i,j) do not
intersect each other. |

2. The coordfnapes of vertices in S§,, S., S, afe

& monotonically decreasing (inc;easing) with respect to the
' y‘coordihates'éaé to the convexity of the polygon. Thus,
checking the minimum vertex distance along the vertex part
chains need never backtrack; i.e.;‘aLl mappings can be
found in the time linear to the tota}-number of " the
vertices in the two chains due to the caﬁvéxity of S”s. [
'Lemma 13: Given that S.,S..S. and S.,5.,5, are not inside the
same 1ine pair k|}X, or Y..Y,, the minimum distance of any
pair between the vertex:cha%nszs‘}ss,s‘ and S.,S.,S. can be

found in,timeilineén with respect to the number of total
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: vert ices iﬁ‘the pair of chains. /3
Proof: Omitted,lsince it is enough to find
the minimum distance only from K to S’s, wheroﬁk is the
intersection point of X’s ind Y’5. And the minimum
distance from kK to §’s can be found in linear time. Fig.
! 22 illustrates this case. ‘
Lemmas 12 and 13 exhaust all possible cases with two

boundaries. In each case, the minimum vertex distance along

the vertex part chain is .checked without backtracking. As a

—

result, an algorlthm to compute the minimum vertex distances.
with time linear to the total number of/bertlces in two
polygons can be designed. Finally, the followlng two theorems

»

hold.

Theorem 12: The minimum vertex distance  in the L, metric

¢

=

between two separable ni-gons can be found in O(n) time.

Theorem 14: Finding the mirimum vertex distance in the L.

metric between two separable n-gons takes at least 0(n) time.

3.3.2 Finding the Minimum Distanoe betwoen two Separable
e  Convex n-gons in. the L, Metric » o
Consider the minimum d¥stance between two boundaries of
' > .
n-gons in- the L,lmetrac.' The method for solving this’problem
is‘similar to that given in Section 3.2. Therefore, -the

proofs which are obvious are omitted. One can prove that if

C (resp Cc.) is the closest point of P, (resp. P,), then ¢C;
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(resp. Cc;/) is always visible from the extreme points in P

(resp. P.). Hence, finding the minimum distance between two

convex n-gons is reduced to flndlng the minimum distance
between two visible chains. Let V.=V(P,, Szr (resp V.) be a
‘visible chain, where S: (resp.' S,) is a set of extreme pointé'
in the x and y.axes. The visable\chain can be found in 0(iog
n) by using a biqary search on P,,P, (i.e., determine the
endpoinﬁs of visible chains).

The unimodei»property of minimﬁm distance between two =
viéible chains also holds due to the convexity of visible
éhains V1,V;. Therefofe, a solution to thg remaining problem
is shown by following lemma. | :

o

Lemma 14: leen a pair of edges, (e; -(p4,pLﬁ,e-—(qd,qu)) in

Vi, and Va, Pespectzvely, the result of either of the Followrng

~
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two compamsons can be’ deter'mmed in constant time, (1) A, (pt- )
vs b2 {py) (2) A.(qj) vs ~A.(qi,,) where e; P, e P,
Proof: The ﬁroof method Is the same as lemma 7. _ .
By the symmetry of the two edges Here only e, .is |
cohsidered.> Let H(e;) represent the half space formed by
the infinite extended edge e,.
1. If H(e )ne FD . as'shown in Fig. 23, then by Fhe
. convexity of P, and P., in the case of eJ above the «
ray t, where t is perpendicular ;o e, originating at
P¢y . then ra(py) > Az(p{Jj; In the case of éd belowyfﬂ
. the ray h, where h is perpendicular.to &y originating
at bi' then A, (psy) > A.(p4),ﬁby the convexity of P..

(note that e, can not lie between raye't and h because

of visibility) ' L

4

<

130 =cCep)

—

—* 3(%n)

J(Pu)= )
/{. + K ’ V), -
g 17 dRI=b(e;)
Fi9. 14

2. If Hle )ne;=0 and H(e )ne; =¢, then origipating at the

endp01nts of edges Py Py and qi'qd“’ draw a set of
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rays parallel to either the x or thedy axis. These
will be called extended rays. 'The. extended rays and

.- the extended edges intersect each other. Let
(k,cte; I=max{(k,j(p, ), (k,J(p,))} and P
(k,ble, )=min{(k,jlp, ), (k,f(pﬂf))}, and j(p, ), j(p{”)
be the intersection points of extended edge e%band
extended ray e, such that’ j(p, /, Jpg ! ate the closer
palr toK, similarly for c(e ) and b(e ), and let K be
the. intersection point" of the two extended edges, B be

7

the intersection angle, as shown in Fig. 24, If
z .

~

b(eb)cej or eJC(k,b(e{), then by the convexity of P,

7 .
d(ph',vz)>d(pz,vz). If ejc(c(éi),b(e()), then due to

')‘\

'the convexity of P, and Pi, d(qj,v1)>d(q%,,v').
(refet to Fig. 24) If g, is outside (k,b(e;)) and e;

is outside (k, b(e )), " then either d(q] WV )>d(qﬁ,,v.)
or d(p“l,V1)>d(p{,V2). Note that either e;,, or e;
must be one of the above cases, and at least one of

these two comparisons can be decided. O

In any case, one can determine the shortér distance.’
Therefore, 2n algorithm to find the min;mum distance in O(]og
& :

n) time can be designed. Finally, the -following theorem !

‘holdsf

Theorem 15: Given two separable convex n-gons P, P., there

exists an optimal algorithm which can find the minimum

LY
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distance between them in O(log n) time.

~

3.3.3 Finding the Minimum Distance. between a Convex n—-gon and

v

a- Non-convex m-gon in the L, Metric

' Ih order to achieve the optimal linear time bound, the

boundary of @ is preprocessed such that the preprocessed B(Q’)
and B(P) have the monotonic property. The preproce551ng for @

is similar to that in Section 4.1, and the steps are described

as follows:

1. Find the extreme vertices of P in x,y coordinates, say

(X1, ) (xz,yr), (xb,y1), (x;,yz2). At the extreme
vert1ces, draw lines parallellng elther X or y axis.

These lines partltlon the/plane into at most 12

-~

regions, for each region, a551gn a pa1r of deques, as

shown in Fig. 25.

1 8 |
(Xi,X) ) . yz

N

4 AN 2

(X“n)<{ | E*CXMXJ

//
NS 10 :
Y,

50 ‘ ("&Y- 3

| 4
A, X,

Fig. 25

2. Start from q°,~q,;'find the regions they locate;
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connéct these two vertices, and then find the
, ~ intersection points with ‘the four lines mentioned

above. If these two vertices lie in different

S
) ‘regions, push the line segments into their
correspon?ing:deques.

3. For an arﬁitrary vertex q;, find the region 1t
locates, connect Kq&4,q£),:and find the points
intersecting the four lines. For each line segment
decide its visibility from its corresponding chain of”

A
AN H‘ : o : .
C ‘ H' Hl “' “‘ o
L) . .
% 2 ) 9
’ o
1 : - AR L
Gacsile g L7 -’( \‘
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-

Refer tb Fig. 26a. I1f g becomes visible, then -
push g", or q; into its deques and delete the part
of tﬁé chain which previously belongs to ﬁhe

visible chain but now becomes invisible due to the
new lineisegment qkf}q£). Otherwise, delete g, or
q", - | |

Refer to Fig. 26b. I1f q becomes invisible, i.e.,

_BiO;, then delete it. Otherwise, push it into the

dedueé which are assigned to this region. 1If the
two endpoints in the deques belong to the lines H,
and L,, respectively, then block the deques

assigned to the region 5, because no vertices in

region 5 will be closer than that in region 11 to

_the chain of P.

~

P
; Bac

e

created,

Refer to Fig. 26c. If g becomés visible from K,
then gush‘it into the deques, and delste the

in#isiblé part. — N
h” vertex of B(Q) haé at mostv4 ne& vgrtices

and each vertex is checked no more thn twice.
7

Hence the preprocessing takes,only O(m) time. Because .the

" .preprocessed B(Q’) and B(P) are monotonic with respect to

either t

monotoni

he x or the y coordinates, therefore. they are also
: ' . o N
c with respect to the mapping v, which maps each

vertex of B(Q’) into its closest point in B(P), and vice

versa.

The following two lemmés'hold,

Lemma 15:- The pnepr‘ocessed B(Q’) can be constructed 'in
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O(m) t/me B(Q") and B(P) are monotonic with respect to
the mapplng W, whlch maps each vertex of B(Q’ ) into its
closest point in B(P)

Lemma 16: The minimum distance between a convex n-gon and
a non-convex m-gon in the L.,.metric can be found in 0O(n)

time.

The vertex distance between them can also be found in
0(n) time because th: minimum vertex distances between
them have the same property. Finally, the following -

theorem holds.

\
Theorem 16: The mlnrmum vertex3 distance betweén a convex
n-gon and a non-convex n-gon in the L, metrlc can be found
in O(n) time. o L

e

If a convex n-gon entirely contains another convex

" n-gon, the minimum vertex .distance jn the L, metric can be

found in O(n) time. The method is as follows: find the

extreme vertices; draw the lines paraliel to the x and y

\

_axes; partition two polygons into at most 12 part chains.

Since these part chains have the mgnbtonig property with

.respect to ;he'x and y axes, it is easy to design an

algorithm with time linear with respect to the number of
vertices in the two polygons. .

For the minimum vertex distance between a convex

polygon and an included non-convex. polygon in the metric
_ v \ ,
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L,, such that the closest vertices must be visible each
other, whether or not a linear time algorithm can be

ST

designed is unsolved.

3.3.4 Minimum Dlstance between two. Separable ‘Non-convex S1mple
n- gons i

There currently exists no spﬁ*quadratic algorithm for
solving the minimum distance proplem between two separable
" non-convex simple polygons. In this section, an 0O(nlog m?
algor1thmrto solve,dijs problem is ‘presented, «where m is the
number of cusp vertices [Preparata 1977] in the polygons.® The
algorithm is bssed on the followingvfacts: the minimum
distances from the vertices in orne non-convex polygon to.
another separable non—convex.polygon are moltimodal; The

«vertex must be a cusp vertex and has 90° degree visible angle’

" If the boun'ary of two non-convex polygons has been

preprocessed fthen these two preprocessed boundaries have

o
M,\u

pseudo- monotonlc pPOpePty with respect to a mapping w', whigh
‘maps each vertex of one boundary to its closest p01nt in a
'oertaln part of another boundary (Pseudo monotonic means that
the mapprng w maps a vertex 1in preprocessed boundary of @,
(or O;) t% the local closest p01nt in preprocessed boundary of
Q- (or O.) instead of mapping a vertex of @, (or @. ) to the
élobal closest point in preprocessed bouodary'of @ (or O.)
without loss of the minirum distence oetween twé Q's, Qﬁere
local closest point is a closest point from.a_yerteg to a
certain part of boundary bounded by two conseéotive“olosest

P - Vel

“ &

i
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points or its 90° degree visible angle while global closest
point is a closest point from:a vertex to whole boundary);

Lemma 18 will show that if each verte?/f? mapped to 1its local

closest point, the minimum distance betwéen two pcelygons can

“ —

not be missed; Since the en@points,of the minimum distance
‘between the two polvgons must be on the preprocessed
boundarles, then check the preprocessed boundaries is
adequate;. By u51ng this pseudo- monotonlc property, one can

. apply apd1v1de—conquer method on the two preprocessed
. o

boundaries to find the minimum-distance between them. )

In the following, a preproce ~in¢ procedure 1is first

»described,,then two lemmas.are prcved, finally the algorithm
is briefly discussed. - 53,

1

Tue preproce551ng procedure 1s as: follows' ’ ' . .
: R 2T
N .' O

1}. Find the convex hull of O,,Oz; and drav a separatlng llne
L between the two convex hulls. '
¥2. For each vetex of @1 (respectively, Q.) drav a llne

perpendlcular to L and 1ntersect1ng L at a point/ If the

? s

perpendlcular llne _does not 1ntersect O, at ancther point,

fr.

. the vertex of Q1 is called penpendlcular vrs?

The perpendlcular v151ble chaln of O, (QQJ from L can be

;"""

easlgy dec1ded (Refer\to ng " 27a).

e e

/,Construct ‘a vertex chaln based on the perpendlcular

v 'y".‘.

va51ble cha:n such that each. vertex in the new chaln 1s

.cusp vertex[Preparata 19771 (Refer to Flg 27b)

4, Construct a new cusp vertex cha1n after step 2 5uch that

[T
v kS

. -

ad /ﬁ
4

A
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each cusp vertex has 90° degree visible'angle by scanning

twice of the cusp chain.

e e - -

B R TTRPT e

. Lemma 17: The minimum distance between two sepanable;simBVe

non-convex polygons - is equal ‘to the minimum distance between
two preprecessed L. ~dapies which can be constructed in 0(n)
t ime - L | -

! o © . .

" Proof: (refer to Flg 28) Assume i is not perpendieular
:iﬁvislble.from L, and d(O,,O )-(l k) Clearly, (j.k) is 1ess
than (l k) since B>90°, contradzctlng the assumptlon. Both
step 1 2 and 3 take O(n) tlme. Step 4 takes O(m) since the
cusp chalns are monotonlc with respect to a mapping, which- .
maps each vertex ;; the boundarles to 1ts perpendlcular point
in [ and the procedure equals to trlanglate a monotone simple

t

polygon [Garey M. etc. 1978]. Therefore, the preprocessing

% y ) ) ' -

takes only O0(n).0”
? - g,

e, -~ : K ’ v . @
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Lemma 18: The preprocessed boundary of Q. (Qi) iswmonotonic

with respect to a mapping o', which maps each vertex in the
l\:

preprocessed boundary of . to irs local closest point in the
p+ orocessed boundary ¢’ @i ‘q'<gf
‘ . AR

Proof: Case 1. Refer to Fig. 29. If [ is bounded b§ twd
| RS

consecutive colosest pairs (k,m) and (k’,m’), then (k,Jj) L
(j,m) is shorter than (i,Jj).

Case 2. Refer to the Fig. 30: "1f j is bounded by two
neighbor vergéces which form 90° degree visible angle of i,‘, 

then (m’,k’) is shorter than (m’,k) or (j,k) is sbofter Ehan

t

(m,k).0
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Lemma 18 implies that .by using the pseudo-monotonic
property, a divide-conquer algorithm is'easy to design. The
details of the algorithm are not presented here. Finally,
following theorem holds.

o
Theorem 17: The minimum distance between two separable simple

non-convex ‘polygon can be found in O(nlog m) time.

£

AN



Chapter 4

»w

Conclusion~

By investigating three fundamen:zal polygon problems,' this
thesis provides some evidence to show that efficient |
aléorithmsﬂfor three problems can be derived .if one ‘takés
advantage of the monotonic and convex propertiee of polygons.
The monotonic property plays an 1mportant role in some

non-convex object problems - As a result this may be a simple
”m, e TRy

way to solve some non- convex’ polygon problems w1thout u51ng

VORONOI diagrams.> Monotonicity can be used to find the

A -

diameter of a convex polygon (hence, a non-convex polygon by
constructing its convex hull) or to f1nd the nearest nelghbors
of a-convex polygon, both 1in o(n) time, which are the same
time complexity as those of Lee and Praparata, [1977i and

Shamos, [1975].
_ 4
Extending the intersection problem to hlgher ‘dimensions

is very important to linear programming. -It is still a& open

problem.
N

Lower bounds have great theoretical 51gn1f1cance. The
oracle method [Knuth 1973] is applled on thHe proofs of several
rower bounds shown in this the51s ‘But other non- tr1v1al

,&bher~bounds remain unsolved. They may-require new )

o .

tethnlques e

’}‘ In the mﬁnr;ym distance problems, the v151b111ty property

r;‘

LpLays aﬁ essentla; role in the de51gn of algorlthms This is

not unexpected in v1ew ofdthe close relationship beween
' By )J' ~
cla551ca1 opt1¢al phyéch phenomena and geometrlc pr1nc1ples.

\’3
Y

62
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The minimum distance in the L, metric has practical

' R @ - 7 . . - .
meaning if one considers phenomena in an optical anisotropic

medium.

v

All results are summarized.in the table.

(

Note:

ro be optimal.

Nhjects Two Simple 4 Convex N-gon Two Coévex
 Non-Convex & A Yon-Convex N~—gons
Prohlems " N-gons M-gon '
Polivgon O((n%k)log nﬁ*.
Intersection (Rentley & O(mlog n)* n{n)
Reporiing Qttrmann) (Shamos)
Protclem 3
Polvgon O(nlog n) 0(n} 0(log n)
Intersection (Sbamos) (Ctiazelle &
. Detecting X 0(w) Dobkin)
Protlem (R{%)cR(P))
Gn)
(R(P, )R(P:))
O(log my
(houndary)
‘ Euclidean ,
. . 0(n)
(L) O(nlog m)* (R(M)<R(P) (R(P, )-R(P.) % Vertex
. ‘ or R(P,)QR(-“)'&
Metric A o(n) boundar:) '
R (vertex) . ‘
w - - O(n)
Minimum W (vertex)
Distance ¢(n) 0(log n) >
(boundary) (boundary)
“I"Problem (L) -
- 0(n) 0{n)
Metric (vertex} C(R(P)<R(P:) & vertex
: or R(?; )<R(P,) &
boundary)
0(n)
' N (vertex)
s
* Means the algorithm is not optimal or it has not been proveg




- 'of Computer Science, 1979. . 'J,ﬁ

64

References
1.

—~—

Aho A., Hopcroft J., Ullman J., The design and analysis of
ComputeP algoplthms Addison- Wesley Publlshlng Cogpény,
Reading, Massachussetts, 1974.

Akl S., Toussaint G., 'A fast convex hull algorithm,’
Information Processing Lettens Pp. 216—219 1979.

Appel A., 'Determlnlng the three dlmen51onal convex hull

of a polyhedron,‘ IBM dournal of Reseanch and Development

pp. 590-601, 1976.

. Avis D., Toussaint G., 'An optlmal algorithm for

determining the v1s1b111ty of & polygon from an edge, "
IEEE Transactlons on Computers, pPP. 910—1014 1981,

Bentley J. 'Multrdfmen51onal d1v1de and conquer,

Comnunicat ions of thé ACM, pb- 214-229, 1980.

A Bentley J., Ot tmann T., ‘Algorithmé for reporting and

counting geometric intersections,' IEEE Transactions on
Combutens,,pp;'643—647 1979
Bbyce J., Dobk}n D., 'Flndlng extremal polygons,' Journal

of the ACM, pp. 282-289, 1982.

. Brown K., 'Geometric tranSforms for fast geometric

algorithms,’ PhD Thesis, Carnegie-Mellon University, Dept.

\'k.—

3 [N

‘\ . .
Bykat, A., 'Convex hull of a finite set of points in two
dimensions,' Information Processing Letters pp. 296-298,

1978.

. Chazelle B., Dobkin D., 'Detection is easier than



1.

12.

13.
14.

© 15,

- 16.
17.

18.

19.

computation,{ ACM Symposidm on Theory of Computing, pp;

&

[E=ie

146-153, 1980. ‘ " ' \

Chazelle B.,-Dobkin D., 'Decomposing a polygon into its

“convex parts,' Procedings of the 11th ACM SIGACT

Sympos ium, Los Angeles,'California, pp. 38-48, 1986.
Chin F., Wang C., 'Optimal algoriﬁhms for'the intersection
and the minimum distance problems between planar

polygohsif to appear in IEEE Transact ions on Camputeﬂs,

1983.

Chin F., Wéng C., 'Minimum vertex distance between two

separable convex polygons,' to appear in'InfOPmati%n

Processing Letters, 1983 ' )

Dobkin D., Lipton  R., Reiss S., '"Excursions into

geometry, ' TechhiéalVRGDOPt_No.71, Dept. of Computer

_Science, Yale University, 1976.

Dobkin D.,.Kirkpatrick D., 'Fast detection of polyhedral

intersection,' To appear.
Edelsgrunher H., Maurer H., 'Polygonal ihte:section.

searching, ' Infonmatfon Phocessihg Lettens;f@p.74-79,

-

1982.

'Fisher M., 'Fast algorithms for two maximal distance

' problemsfﬁgth'applications.to Emagé analyﬁis,"PatfePn

’ -

Recognitiqh, PP. 35-40, 1975
Freeman H., Shapira R.,_}Detérmining the‘minimum—area
incasing féctaﬁgle for,an-arbitréry closed curve,'
Commun icat ions of the ACM, pp; 409-413, 1975.

Friedman J., Basket F., Shustek L., 'An algorithm for



&

20.

21.

22.

o

\ Y

fihding nearest Heiéhbors,' IEEE Transact ions on .
Computers, pp. 1001-1006, 1975. '
Garey M., Johson D., Preparata'F;, Tarjan R.,

'Trianglating a simple polygon,':Information Processihg

Letters, pp. 175-179, 1978.

Gindy H., Avis D., ' A linear algorithm for determining
the visibility polygon from a point,' dJournal of
Algorithms, pp. 186-197f 1981.

Grossman D.; 'Prodedural representétion of three

dimensional objects,' IBM Journal of Research and

- Development, pp. 582- 588 1976.

23.

24,

25,

- 26.

27.

28.

29.

Kirkpatrick-D 'Optlmal search 1n planar subd1v151ons,
SIAM dounnal on Computrng, 1982

Knuth D., ‘The art” of -computer prognammlng,’ Vol . 3
Addison-Wesley, 197%.

Lee D., 'Two dimensioal.Voronoi Diagrams in Lp metric,'

‘Journal of the ACM, pp 604~ 618 1980.

Lee D., Preparata F., 'An optlmal algorlthm for finding
the kernel of a'polygon,: Journal of the ACM , pp.

415-421, 1979.

66

Muller D., Preparata F., 'Flndlng the intersection of ﬁwo

convex polyhedra,' Technical réport, University of

3

Illinois, 1977.
P:ebarata F., 'Steps into computétional geometfy‘I and
11,' Technical report, University of Illinois, 1977.

Reif J., 'Complexity of the mover's }roblem and

geheralizations extended abstract,' Proceedings of the



30.

31,

32.

33.

"1975.

b7

20th Annual IEEE Symposium on Foundat ions of Computer

Science, pp. 421-427, 1979.

%ghachter B., 'Decomposition of polygons into convex
séts,'IEEE Tﬁansactions on Computers,, pp. 365-374, 1978.
Shamosly.,-'Geometfic cémpléxity,' Proceedings of the 77tﬁ

Annual ACM Symposium on Theory. of Computing, pp. 224-233, -

~

Shamos M., Hoey D., 'Geometric intersection problems, '
proc. 17th Annual Conf. . Foundat ions of Computer Science,
pp. 208-2157 1976.

Schwartz J., 'Finding the miﬁimum distanée bééween two

convex plygons,' Informat ion Processing Letters, pp.

<

168-170, 1981.

34.

35.

36.

37.

Snydér W., Tang E., 'Finding the extrema of a region,’
IEEE Transactions on Pattern Analysis and Machine

Intelligence, pp. 266-269, 1980.

Toussaint G., 'Pattern recongnitio# and-geometricaluf

complexity,' 5th Interhational Conference on Pattern
Recognition, pp. 1324-1347, 1980.

Vaishgavi V., ‘Kriegel H., Wood D., 'Space and time optimal
algorithms: for & &lass of ,rectangle intefsectien

problems,' Information Sciences 21, pp. 59-67, 1980.

‘Willard D., 'Polygo.. retrieval,’ SI/M, qournal of

Computing, pp. 149-165, 1982.

o



