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' ABSTRACT

Distributed systéms are becoming increasingly popular and

feasible due to falling cost of hardware brought about by

. L]

LSI and VLSI technology, and advances in computer
interconnection networks. The priii&y ifascn for this
populérity is the benefits of extensibility, reliability,
and performance promised by distributed systems that are
éiffiéult (if not imposible) to achieve by uniprocessors,
multiprocessors, or computer networks. But before these
benefits can be realised, certain problems peculiar to
distributed systems must be solved.

Partitioning refers to d: .ding up a program into a
number of tasks such thay constraints in the original
program are satisfied and parallelism between tasks is
maximized., Past approaches to the partitioning problem are
reviewed and their limitations outlined. A new approach is
suggested that can extract more parallelism out of the

k]
program than previous approaches.

The next step after the partitioning of a program is
nev heuristic algorithm is presented that takes precedence
relationships between tasks into account. The complexity of
the algorithm is seen to be linear in the number of tasks
and inter-task communication paths. Experimental results
indicate that this algorithm is fast and produces ga@d'

assignments. This algorithm is applied to calculate the

bounds on the number of processors needed to execute a set
v
= —— s = - &




of partially ordered tasks in the least time.

=

A salient feature of distributed systems is that the

1]

communication between tasks takes place to explicit message
passing on the communication network. To facilitate this
type of communication, the system pfaviaeé‘a set of
communication primitives. These primitives should satisty

certain requirements so that the benefits promised by these

bt

systems can be materialised with the greatest of ease. These

requirements age presented and argued to be essential.

vi
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Chapter 1
Introductien
Distributed systems are becoming increasingly popular

and feasible due to falling cost of hardware brought about
by LSI and VLSI (Véry Large Scale ntegration) teéhﬁ@l?gy,
and advances in-compuger interconnection networks, Another
reason for this popularity is trhe benefits (i.e. growth,
reliability, protection) promised by ﬁistfibute@qsyStéms

—

that are difficult (if not impossible) to achieve by

"

r

centraliged systems. ,

1.1 What 1s a Distributed Systaﬂ?i '

There is considerable confusion among researihers.iﬁ
Computer Science as to the meaning of the term distributed
System; or what are the characteristics of such sy%temsi
Thus it is essential for us to define it precisely 80 as not
to leave any room for ambiquity in the later discussion.

We subscribe to the definition suggested by Jensen
[JENS78]. He defines a distributed system as a

"...multiplicity of processors that are physically
and loglcally interconnected to form a slngle
system, in which overall exe:utlve cantral is

system elements Conceptually, a Eiﬂgle EXECUtlvE
manages all of the system's physical and logical
resources in an integrated fashion, but its kernel
logic (perhaps hardware as well a® software) and
data structures are replicated among a number of
processors and memories. These executive kernel
copies are individual entities that execute
concurrently, asynchronously, synergistically, and
without hierarchical mastef/slaye relationships, to
form a single organism.”



It should be emphasized at this point that distributed
processing can exist in three different dimensions -
architecture, operating system, and application programs
(ECKH78). A system not exhibiting distribution in all the
three dimensions cannot be classified as a "distributed
system”. An example wouid be the Cms system [SWAN77] that
exhibits distribution in architecture and application
programs but lacks a decentralized operating system, and
hence cannot‘be calied a "true” distributed system.

The user views a distributed system as a single
coherent entity and its "existence is totally transparent
"...[ENSL78]." So the user initiates an action and specifies
wvhat is to be done and ‘not how this action is to be
accomplished by the cooperation of individual system
elements. Thus all the details of the system structure and
operations are hidden from the user,

Another important characteristic of distributed systems
is that there is no centralized control; all the elements in
the system are highly autonomous in nature. There is no
master/slave relationship; ail the elements in the system

make decisions in line with the overall system objective.

1.2 Advantages of Distributed System
Certain advantages accrue naturally from distributed
systefls, First, distributed systems are more extensible

than centralized, myltiprocessor, and network computers.



Extensibility refers to the

"...degree to which system Euﬁctienélity;ané

performance can be changed without changing the

system design [JENS78]."
Distributed systems can be modified easily in the sense that
a hardware component can be replaced without affecting other
parts of the system, Moreover, performance and
functionality of the system can be extended in small steps
upto a fixed upper limit,

Next, they provide better system reliability. Since
the services and computations are not localized at one
place, the system can withstand mechanical, algorithmic and

subsystem failures. 1In addition, these systems are

fail-soft as the physical and; logical coupling is not strong

among system elements. *

Thirdly, distributed systems are capable of providing
greater performance. A major overhead in uniprocessor
systems is contextﬁsuit:héﬂg (because it requires saving
registers, memory, files, protection information, timing,
accounting etc.) when more than one job is competing for
processor cycles. In a distributed system, a job will
immediately activate an idle processor and hence provide a
smaller response time. This will result 'in processor
inefficiency (as the processors are not multiprogrammed) but
it is tolerable due to cheap processing power offered by the

-

system.
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1.3 Problems in Designing Distributed Systh!s

A major benefit can be derived from distributed sys\tims
if a number of processors work concurrently and
synergistically on a single job. This would necessitate
partitioning the job into tasks and aséigﬁiﬂg these tasks to
individual processors.

As noted by Jensen [JENS78]), job (program) partitioning
techniques are still very primitive in nature. Partitioning
can be either performed by the programmer or the compiler.
The programmer can partition the program on the basis of
computing capabilities of system elements, data accessing
patterns, logical relationships between program parts,
maximizing parallelism etc. But this approach is not
promising for it would be too much to expect from the
programmer. Many different a;pfgaches have been tried to
get the compiler to do the partitioning. As the current
sﬁate in Qartitianing now stands, it would be difficult to

further experience gained from an actual compiler
implementation. C

It is unlikely that an efficient algonithm would be
found for assigning tasks to procesgors asjlhis problem is
conjectured to be NP-complete. Consequently, efficient
heuristic algorithms need to be developed to perform task
assignment.

The tasks assigned to processors communicate via

messages. The first stage in design of any inter-task



communication mechanism would be to analyze the current and
future requirements of such communication. Only then can
various* forms of inter-task communication mechanism can be
designed. These are only some of the major problems

associated with designing distributed systems.

1.4 Plan of the Thesis

The next two chapters of this thesis present the
problem of program partitioning and assignment for
distributed systems, and the current approaches to the
solution of the problem. ’

Chapter 4 describe a new heuristic algorithm for the
program assignment problem.

Chapter 5:discusses analytical measures for bounding
the number of processors needed to execute a given set of
partialiy ordered tasks, and then a new approach is
suggested.

Chapter 6 presents issues involved in designing
inter~task communication mechanism.

Pinally, chapter 7 presents conclusions and suggests

further areas for research. <



Chapter 2
Program Partitioning Problem

The widespread use of distributed systems is hampered
by the lack of effective methodologies for designing
programs to be run on such systems. There are twc
approaches to programming an algorithm for such systems —
programming in a sequential or in a parallel programming
language (e.g. CSP [HOAR78], DP [HANS78]).

The first approach reguires pattitiéniﬁg of a program
into tasks and then assigning these tasks to processors in
the system, Partit(oning refers to the division of a
program into tasks such that inter-task communication cost
is minimized, parallelism between tasks is maximized, and
precedence constraints in original program are preserved. A
sequential program will not exhibit any parallelism. Thus
the system component performing partitioning must uncover
all the parallelism in the program within a reasonable time
limit and constraints.

Assignment is the process of allocating tasks to
available processors such that it meets certain objectives
and/or constraints (e.g. minimization of inter-processor
communication cost, minimization of completion time). It is
assumed that task execution and inter-task communication
cost is measured in units of time. If need arises, cost
measured in units of time can be feadily converted to
dollars. It is conjectured [ULLM73] that the problem of

optimal assignment of tasks is NP-complete. Thus the



objective would be to look for efficient heuristics which
produce results that are close to optimal. Partitioning can
be either performed by the compiler or software designer and
assignment will be a key :énp&nent of the operating system.

The problems encountered in the second approach are not
apparent. It is possible to sttrructure a program as a set of
concurrent processes, But this structuring of programs
totally ignores costs incurred owing to communication among
distributed computing environment. This suggests that a
communication oriented approach will give a different view
of the problem and may lead to a better understanding of the
distributed program design methodology.

In the following sections we review the work done in
the area of partitioning of programs as applicaple to
distributed systems. We also point out the weaknesses and
strengths of each of these approaches. Improvements are
also suggested to enhance their generality and improve |

performance,

2.1 Partitioning of programs

This section is devoted to a discussion of >
!1
partitioning techniques. The partitioning problem can be
formulated as follows : given a serially coded program,

recognize the set of tasks and their precedence relatiaﬁship

such that the program can be executed by a given distributed



system in compliance with certain objectives. These
objectives would be minimization of execution time when the
tasks do not use more than a given number of message
transfers or minimization of overall program execution time.
I't should be emphasized that we are not banking on the
programmer to specify the parallelism in the program, but
the job of detecting parallelism is.felegated to the
compiler and supervisory programs,

One of the firs? attempts at designing algorithms for

detecting parallelism was made by Fisher [FISH67). His

based on the conditions for parallel processing

\M\

algorithm i
developed by Bernstein [BERN66). These conditions can be
expressed as follows. Two tasks T1 and T2 can be executed

in parallel if the following conditions are satisfied.

I n 02 # ¢
12 n O = ¢
Ol n 02 = @&

i

vhere I1 and O! are the input- and output sets of the task
T!'. 1In particular, input set of a task refers to the set of
variables required to execute the task. '

The algorithm takes a FORTRAN program as its input and
divides it into tasks. These tasks could be single or a set
of statements. These tasks are, then, analyzed and
input/cutﬁut sets calculated. Once the input and output
sets of every task are known, it is straightforward to

generate [BERN66] essential ordering relations among tasks.



The tasksg thaf can be executed concurrently are easy to
determine from this essential ordering. A mgjef dravback of
this approach is its inability to detect intra-statement
parallelism. That is, it does not take advantage of the
parallelism in arithmetic statements, not to mention the
DO-loops or recurrence relations. Moreover, it does not
consider execution and inter-task communication time.
Recently, Allan and Oldehoeft [ALLA79) used this
technigue to translate high level language programs to data
flow programs. We suggest here that the original program
can be translated into a data flow program and then this
data flow program can be partitioned into a set of partially

ordered tasks. Since data flow graphs [DENN@0O] represent

L ]

operator dependencies and token flow naturally, the job of
estimating execution and communication time ié much
simplified. Furthermore, these data flow graphs exhibit
parallelism at a much more miaroscopic level which would not
be possible [ACKE82] by conventional method of calculating
input /output sets for every single statement. Thus the
partition of the program can be optimized with respect to
the communication and execution cost (henceforth, we will
use the term :cmmunicgtiaﬁ cost and communication time
interchangeably).

Ramamoorthy and Gonzalez [RAMA69) presented another
approach to detection of task parallelism. The FORTRAN
parallel task recognizer, developed by them, takes a FORTRAN

program as input and numbers each of the executable
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statements starting from the first executable statement. It
also identifies the program graph which is the sequence of
tasks executed in the original program. The program graph

T if

1s represented as a connectivity matrix C where Cij i
and only if there is an arc from node i (task i) to node j
(task j). Figure 2.1(a) gives an example of a FORTRAN
program, the corresponding program graph is shown in

Figure 2.1(b), and the connectivity matrix of the program in
Figure 2.1(c). The recognizer replaces each of the
maximally connected subgraphs by a single node and alters
the pragram\graph and ccnne¢tivity matrix accordingly.
Iterative constructs (like Do-loops) give rise to maximally
connected subgraphs and must be transformed to a single
node. After this transformation, the program graph will not

gsontain amy loops or strongly connected campcnentsigxfhg

program graph after removal of maximally connected
components is shown in Figure 2.1(d), —

The next step is to derive the final program graph and
connectivity matrix T. Each of the tasks in the reduced
program graph are examined for their inputs and outputs to
build up the matrix T. An elemgnt%Tij of T is 1 if and only
if task j uses one of the outputs of éask i, Using the
connectivity matrix T and the conditions developed by
Bernstein [BERN66]); it is easy to form precedence
partitions. The program graph of parallel processable
program and precedence partitions are shown in

FPigure 2.1(e). Each of the members of precedence partition
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READ 100, (Al(1),1=-1,10), B, C, D
READ 100, (A2(1),1=1,10), NS, NST, NSTU
DO 101 =1, 10
IF (A1(I)-A2(1)) 20, 20, 40
X1 = Al (I)*(B-C)
X2 = A2(I)+(B/C)
A3(D) = X1*x2
CONTINUE
CALL ALPHA(Al, A2. ABC, B4, BS)
PRINT 3057, X1, X2, (A3(I), I+=1,10)
CALL BETA Xi., X2, A3, B6!
IF (B4&-BS5) SO. 50. 60
READ 325, E. F, G. H
X3 = E*F - C-H)
X4 = B6H+G
X5 = X3-X¢
XE& = (B4=BS. *XS
PRINT 4, X3, X4, X5
&)

(b)

Figure 2.1 (a) A FORTRAN program and
(b) its program graph
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Figure 2.1 (c) connectivity matrix of the

(d) the reduced program graph
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(e)

Precedence partitions {1,2}, {3}, {9,10,11}, {12}, {13}, {14,15},

{16}, {17.,18}

C/

Figure 2.1 (e) Program graph of paraiiel processabie program




14

2
(2]
o
=
o

e executed in parallel after the tasks in the

previous partition P have been completed.

i-1
The FORTRAN parallel task recognizer only serves to

identify the tasks that can be executed in parallel. It

makes no effort to reduce the total execution time by
considering task execution time, inter-task communication
time and loop optimizations. However, it spawned research
efforts in this area. One of them was the design of a
compiler for DYNAMO.

- DYNAMO is a well known simulation language that is
characterized by simplicity of the syntax, data structure
and relative independence in the order of execution of
Statements. These features prompted Huen et al [HUEN77] to

design a compiler that produces code for the TECHNEC, a

unidirectional ring network of 12 LSI-11 nodes. Message
communication is the bottleneck for parallel computations on
TECHNEC. Since every processor has only 12K words of RAM,
the compiler is implemented as a pipeline. Each stage of
the pipeline refers to a different part of the compiler
ﬁa;@ly scanner, macro exPAnsicn, symbol table routines,
parser, seguencing magsig, code generator and partitioning
, module. T;Efécde for eézh stage of the pipeline resides at
a different processor. All the stages of the pipeline
execute 1n parallel and communicate with each other by
passing messages.

An important part of the compiler is the partitioning

module which produces tasks that are to be executed in
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parallel. The main objective of :he partitioning module is
to produce partitions that wil. reside on different
computers and run concurrently in order that program runs in
minimum time. The input tc the module consists of storage
and execution time requirement of each of the statements
along with a list of variables used in the program. The
module uses this information to derive a precedence graph
and subsequently partiticns. The part.:ioning problem is
posed as Mixed Integer Linear Programming form and then

standard mathematical ogramming technigues are applied.

pr
The main drawback of the design is that the partitioning
algorithm used is highly dependent on the features of
DYNAMO, ‘
El-Dessouki et al. [ELDE79] described techniques ta
implement a partitioning compiler for an ALGOL-like
language. The algorithms described by them fall into two

categories :
1. partitioning, and
2, assignment.
Since a discussion of assignment technigques is not the
intent of this chapter, we will point out the salient
features of the partitioning algorithm.

Tesler and Enea [TESL68] have suggested the concept of
a single assignment Janguage which, in simple terms means
that a variable may appear on the left hand side only once
in a program. The programs written in a single assignment

notation have the property [ACKE82) that the parallelism
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inherent g??he program can be detected in a straightforward
manner. The partitioning module of [(ELDE79) transforms the
program into a single assignment program and treats each
statement as a single task. The next step is to define a
dependency relation among tasks using Bernstein's [BERNG66]
conditions. The algorithm also computes communication cost,
storage requirements and e;ecutign cost of each of the
tasks.

The partitioning module can handle references to arrays
and simple variables, but no sﬁggestian is offered as to
support vaéther types of data structures viz linked list,
tree, stack etc. The research is still continuing in this
area and only an implementation can give an indication of \
the practicality of an approach.

The previous two paragraphs discussed technigues to
ltranslaté a high-level language program to a form suitable
for execution on a distributed system by transforming it to
a single assignment language program. One may, then, wonder
— why not write the program in single assignment language
itself? The answer to this question can be found in a
recent proposal by Christopher et al [CHRI81]. They have
designed a single assignment language — SALAD - for
distributed applications. Since programs written in SALAD
are already in single assignment lanqguage form, the
partitioning techniques suggested in [ELDE79) can be used

here also,
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Kuck and coworkers [KUCK79] have been working on the
design of a compiler for high speed multiprocessors. Their
model of a multiprocessor consists of processor clusters
(containing/p processors each) interconnected via alignment
‘network to the global memory. A salient feature of the
structure is the control of a processor by a set of status
bits that can be manipulated by other processors in the
system. Since the status bit of a processor can be
manipulated by other processors, they are not completely
independent. Nevertheless, these processors may be
executing different instructions in the program and hence,
the system can be classified as an MIMD (Multiple
Instruction Multiple Data Stream) [FLYN66] type computer.
The techniques they discuss for transforming an iterative
construct intc a maximal parallel form are applicable to our
model. Specificalif, their algorithms fall in three
categories : ‘
1. partition,
2. algorithm change, and
3. loop freezing.
These algorithms are derived from corresponding algorithms
for array processors. Thus these will not be described here
(the interested reader may refer to [KUCK?9]). A noteworthy
feature of the proposal is the prominence accorded to other
parts of the system (v/z interconnection network,
synchronization mechanisms, data transmission) in the

overall context of the partitioning process. These other
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issues will probably play as important a role in the

partitioning process as the partitioning algorithm itself.

Thus future research work in this area should consider

—3
c

issues like the type of interconnection network, inter-task
-communication, synchronization mechanisms etc.

It has been found [(KUCK76) that a major portion of
parallelism in ordinary high-level language programs is in
arithmetic and iterative statements. It is imperative that
efficient algorithms and representations of programs will be
developed to extract parallelism in arithmetic statements
and iterative constructs. A scheme developed by Wang and
Liu [WANG79] is in the same spirit. They have inveséigaégd
the problems involved in parallel execution of arithmetic
expressions in high-level language programs. An arithmetic
expression, represented as a tree, can be compiled into a
Parallel Execution String (PES) [WANG79). PES is defined as
a path from a leaf to the root of the tree. Thus each PES
will be a sequence of constants, variables and operators.

An arithmetic expression is shown in Figure 2.2(a) and its
corresponding tree in Figure 2.2(b). The Parallel Execution
Strings generated are shown in Fiqgure 2.2(c). For a
detailed description of the algorithm and notation, the
reader may refer to [WANG79]. A salient feature of the PES
istthat tvo operators on two different paths (PES) can be
executed concurrently before their merging point, Referring
to Figure 2.2(b), @perat@;s marked by "z" can be executed

concurrently because they are on different PES and below

ol
[
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- (A+G+B*C) / (D* (E+1) *F) +H

(a)

«

A G B C E 1
(b)
A+G+ #1-/4¢#2+H
B*C+ #1 -/ 42+ H
E+1*D+F /' $#2 +H .
. (&)

Figure 2.2 (a) The arithmetic expression,
(b) its parse tree, and
(¢) the corresponding PES.
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their merging point (the root).

The PES concept can be extended from an arithmetic
expression to the complete program [WANG79). The idea
presented is innovative in the sense that we are able to
extract more parallelism from arithmetic statements. But no
mention is made as to how to handle other type of statements
viz 1F-THEN-ELSE, iterative constructs, procedure calls.
More work is required in these areas before it can be
applied to real-world situations. In the passing we note
that eagh of the PES can be considered as a task to be
assigned to a processor.

The next step, after partitioning of the program, is to
assign these tasks to available processors. It is possible
that the numﬁer of processors are more than the number of
tasks. In that case the tasks will not wait for the
availability of the the processors and so in theory it is
possible to achieve the minimum finish time. But the
problem of optimal assignment of tasks on more than three
processors has been conjectured to be NP-complete. In the
next chapter, we discuss the possibilities in assigning
tasks to processors. Whenever there is a choice between
brevity and clarity in our presentation, we will look for
the latter. Wherever possible, concepts will be explained

by examples.



Chapter 3
The Tagk Assignment Problem
The previous chapter discussed the program partitioning
problem in an iﬁfarmglxséﬁner, Partitioning produces a set
of partially ordered tasks along w:ith their estimated
execution time. The partitioning procedure should provide,
,if possible, an estimate of inter-task Eaﬁmuniégticn time,
Thus, the program may be represented by a precedence graph
in which each vertex represents a task and precedence
relationships are designate& by directed edges. Each of the
vertices are assigned a weight qual to the execution time
of the task and weights assigned to edges represent

inter-task communication time. Moreover, it is also assumed

that loops are eliminated by the partitioning procedure
[RAMA69]. )

Given two or more processors, the problem is to decide
which processor should be executing a given task from the

set of tasks at any instant of time. This assignment must

not violate any of the precedence relationships or the
requirement that not more than one processor is assigned to
a task at a time. It is also assumed that once a processor

tarts executing a task, it must work uninterrupted on this

task until it is finished. The reason for this assumption
is the belief that task preemption is a burden on system
resources like memory, data channels, CPU cycles etc.
Henceforth, the discussion will be restricted to

non-preemptive task assignment,

21
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In a distributed system of homogeneous processing
elementg it may be possible to assign different tasks of a
program freely among different processors, But the
interconnection network may become an inherent bottleneck in

the system,

One may hope that throughput will increase in same
proportion as the number of processors. Thus, it is
expected that throughput will double by doubling the number
of processors to execute a program which has parallelism
greater than number of available processars. But experience
with distributed systems has shown that throughput follows ¢
the "actual” rather than "ideal" curve as shown in
Figure 3.1. Chu [CHUW78]) and Jenny [JENN77) give examples
of this phenomenon. This behaviour has been attributed tg
excessive interprocessor communication which depends on the
number of interconnected processors. Since the overhead of
interprocessor communication reduces the number of machine
cycles available for useful computation (as some processing
of messages is required), this job could be delegated to an
autonomous module. This approach is followed by Arnold and
coworkers [ARNOB2] in designing Modular Missile Borne
Computer (MMBC) for missile and space borne defence
applications.

In the systems where high costs are imposed for
interprocessor communication, processors are assigned tasks
in such a way as to minimize interprocessor communication.
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Figure 3.1 The saturation effect
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by high bandwidth data paths, as in the CRYSTAL system being
developed at University of Wisconsin-Madison [LANDS82], many

feasible assignments of computational tasks to processors
]

wvould exist. In these cases, interprocessor communication
would no longer be considered as a bottleneck and so minimum
completion time of the program should be the objective.

The different proposed approaches to the assignment
problem fall into one of the three ¢ategories
1. graph theoretic,
2. integer programming, or
3. heuristic methods.

These approaches are discussed in following sections.

—

3.7 Graph theoretic approach

’ Stone [STON77) and other researchers (then at the
Brown University) introduced a graph theoretic approach to
the task assignment problem. This work is mostly concerned
application where tasks may float from a powerful central
processor to a terminal oriented satellite processor. Note
that these two processors may execute concurrently on
different programs, but never on the same program. Or in
other words, execution of a program shifts dynamically from
one processor to another. That is, only one processor
vould be executing some part of a program at any instant of

time.
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In th¥s method, tasks are represented as vertices and
edges as inter-task references. Weights are attached to
edges representing communication cost. An inter-task

communication (ITC) cost of zero means no communication

el

takes place between two tasks and an cost of infinity

means that these two vertices must be assigned to the same
processor.
A unigue source vertex, corresponding to the processor

', and a unique sink vertex corresponding to the processor

" -

"

2, act as

ource and sink for the maximum network El.
algorithm employed. The execution costs of tasks are
represented by adding two edges to each of the task vertices
in the graph. The cost of running a;task on P1 is denoted
by the weight of the edge joining that task vertex to vertex
P2 and vice versa.

The objective of task assignment in this method is to
minimize total cost which is defined as the sum of

processing cost and inter-processor communication (IPC)

g
O
]
"
O
o
<

cost bviously, these costs are dependent on the
task-to-processor assignment.

Each cutset of this graph divides the vertices into two
disjoint subsets, with processor vertices P! and P2 in
different subsets. All the task vertices in the subset
containing P! are assigned to processor P1. Similarly, the
rest of the task vertices are assigned to processor P2. It
is not difficult to see that this graph is a commodity flow

network [HORO78). With this direct correspondence between



cutsets and task assignment, it is obvious that a minimum
veight cutset of the graph will yield minimum cost task
assignment.,

Consider, for example, the modified graph [STON77]
shown in Figure 3.2(b). As explained earlier, the cost of
running task A on processor P!, which is 5 units, is
indicated in the graph by an arc joining vertex A and P2
with a weight of 5 units. The minimum weight cutset
algorithm on the graph produces the cut-set indicated by the
double line. .This is the minimum cost assignment of givgﬁ
tasks among two processors,

In order to solve an n-processor problem, Stone
[STON77] suggests that it may bé reduced to several
two-processor flow problems

"...we show that a two-processor flow can give
information about the minimal cut in an n-processor
graph, but wve are unable to produce a complete
efficient algorithm.”
Stone conjectures that n’ two-processor flows need to be
solved to find a solution to the n-processor problem.
Nevertheless, it is conjectured [ULLM73) that for more than
two processors the problem is NP-complete.

An algorithm suggested by Wu and Liu [WUSBBO] produces
an approximate n-cut by applying the minimum weight cutset
algorithm in the order of n times., Let us assume that the
original graph is modified by adding n processor nodes, then
the n-cut is the subset of edges that partitions the

modified graph into n disjoint subsets eachfcantaining one
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Figire 7 . (a) Inter—task communication graph, and
(b) the minimum cémmunication cost cut.




and only one processor node. Computational results
presented for small problems (7 tasks and five processors)
indicate that the solution generated is close to optimal,
but the results cannot be extrapolated to larger problems.
Moreover, it is possible that precedence relationships exist
between tasks, But no mechanism is available to indicate
these precedence relationships between tasks,

Lo and Liu [LOVIB1] suggested a group of efficient
heuristics to find the n-cut of the task graph. The three
algorithms they suggested can be classified as iterative,

lump, and greedy, respectively. Their simulation results

with 20 tasks and 5 processors indicate that the latest
finish time produced by heuristics is within 10% of the

solution produced by an optimal algorithm in 94% of the

cases. The heuristics produced good results but, as before,
incorporating precedence constraints in the model limits its

usefulness.

There have been attempts [RAOG79] to include memory
size constraints but the solution is NP-complete. Thus it
can be inferred that graph theoretic considerations may not
give the most efficient solution to the task assignment

problem,



3.2 Integer programming

The integer programming approach, as applied to the
task assignment problem, is bas:cal.ly derived from
optimization technigques. In this approach, the task
assignment problem is formulated as an optimization problem
and the technique of mathematical programming is then
applied to solve it.

Let the cost of communication between tasks Ti and Tk
be denoted by Cik. Also, let Eij represent the cost of
running task i on processor j. This accounts for the fact
that a task may have different execution costs on different
processors (i.e. the system is heterogeneous). In order to
represent the assignment of tasks to processors, define an

element Xij such that it is 1 if task Ti is

ssigned to

processor Pj; otherwise it is 0. The constraint that any

task is assigned to only one processor can be represented
as :

n
Z Xij = 1 ¥ i
j=1

Other constraints like limited memory, load balancing, etc
can be incorporated into the model depending on the

application environment,.



The assignment problem can be formulated [PRIC81] as a

0-1 quadratic programming problem as follows :

m n m * m m n m
COSt(X).Z ZEijtxij*z ZCik Z Z Z Cik#XijeXkj

=y j-] 1=1 k=j+1 =1 3:1 ke=1+1

vhere m and n are number of tasks and processors,
respectively. The first summation term represents the
execution cost for eéch task on its assigned processor. The
second term is the total communication cost among tasks.

The third term accounts for the fact that two tasks which
communicate with each other during programy execution incur
no inter-procegsor communication cost if assigned to the
same processor. Thus these terms are subtracted from the
total cost.

?rice [PRIC81] used an iterative alg@githm wvhich starts
with an initial assignment and repeatedly reassigns tasks to
processors until further improvement is not possible. This
rea331gnment is performed by transforming the assignment
matrix i (i.e. set/reset an element Xij of the matrix X).
The basic idea is to calculate the "penalty” matrix P, where
Pij is defined as the cost of executing taék i on processor
J for all values of i and j and then select the most
-profitable reassignment. The complexity of this algorithm
1s O(n#m®). Our implementation of this algorithm expended

more than 40 CPU-seconds to find a solution for 40 tasks and
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7 processors. Moreover, the final assignment is dependent
on the initial assignment of tasks. Experimental results
indicate that this algorithm is time consuming and does not

produce good results. Furthermore, the assumption that the
tasks float from one processor to another is not realistic.
Recently Ma et. al. [MAPRB2] applied 0-1 programming
technique to solve the task assié%ment problem. This
technique can be thought of as branch-and-bound (BB) method

defined by Kohler and Steiglitz [KOHL76). The task

-7
kn

assignment problem is represented as a decision tree. There
are m levels (one for each task) in the tree and each
internal node has n branches (corresponding to the number of
processors). Each of these branches are labeled by
processor names from P! to Pn. A branching decision at each

internal node is equivalent to assigning the task at that

level to the processor attached to that branch. These
branching cisions are subject to the constraints discussed
earlier, us, a path from the root to the last node is a

complete assignment.
An example [MAPR82) of a three level decision tree with

three processors and a feasible path (indicated by double

=

lines) is shown in Figure 3.3. At level one the branch
traveled corresponds to processor 3 and so task 1 is
assigned to processor 3, Similarly tasks 2, and 3 are
assigned to processors 1, and 2 respectively,

The algorithm generates an optimal solution if the

objective is to\minimize the inter-processor communication
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cost. Moreover, it can incorporate various engineering
requirements viZz small memory size, processor size
constraint, task redundancy. The algorithm is
computationally inefficient and hence cannot be applied to
time critical applications. But it can be used in cases
where ;nly one program runs on the system (i.e. the program
is permanently tied to the system) and so a near-optimal
assignment is a must.

Goal programming [IGNI76] can be applied to the
assignment problem to produce an approximate solution,
Recently, Ignizio et al [IGNIB2] suggested an augmented goal
programming approach to solve large scale design problems in
distributed computing and supersystem design.

The augmented goal programming algorithm can be
logically divided into two phases. The first phase of the
algorithm calculates the initial assignment of tasks to
processors by means of a fuzzy clustering algorithm
[MCCO72]). The fuzzy clustering algorithm gfaups tasks in a
cluster if these tasks are "similar™. One similarity
measure is high inter-task communication cost; thus two
tasks with high inter-task communication cost will be
assigned to the same cluster. The second phase accepts the
output of the first phase as its input and tries to improve
the assignment via an exchange search algorithm. Details
can be found in [IGNIB2].

Even though it is possible to incorporate constraints

in the integer 0-1 programming method, it is still deficient
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in some areas. Firstly, it is difficult to incorporate
precedence relationships among tasks in the model. Since
most of the application programs give rise to precedence
relationship among tasks, this approach cannot be used.
Secondly, the amount of CPU-time and memory required is
prohibitively large. Thus it can be inferred that this
technique will find limited usefulness unless methods are
developed to overcome previous two shortcomings [CHUY80].

Ld

3.3 Heuristic methods

At this point it should be emphasized that finding an
optimal solution is strictly an academic issue since the
task assignmgnﬁvmcael itself is an approximation of
real-world situations. Incorporating extra constraints or
:ggéitians in the model will only make the task of finding
an optimal solution more difficult. 1In this situation, it
would be advantageous to design algorithms that are
efficient and produce good assignments. The following ~
paragraphs discuss some heuristic algorithms for solving the
task assignment problem.

Gylys and Edwards [GYLY76) proposed two algorithms for
task assignment with the objective of minimizing IPC cost.
The objective of minimization of IPC cost is inspired by
several facts about the interconnection structure : it is
unreliable, insecure and a potential bottleneck in the

system.



The first algorithm forms task clusters with minimum
inter-cluster communication cost. To form such clusters, a
task pair with maximum inter-task communication cost — among
all eligible pairs - is selected and checked if it satisfies
certain constraints (e.g. memory loading, processor time).
If these constraints are satisfied, the pair is fused into a
single task and removed from the list of eligible pairs;
otherwise it is removed from the list of eligible pairs and
the process repeated. The algorithm stops when all the
eligible pairs are exhausted. It is quite possible that the
number of clusters jidentified are more than the number of

processors available,

[V ]

The second algorithm removes this deficiency. Briefly,
the algorithm assigns an initial centroid for each of the
clusters (equal in number to the number of processors). It
then calculates the "distance"™ [GYLY76) of each task to the
centroid of all the clusters, assigns the task Ta to cluster
Ce such that Ta is nearest to Ce for all such pairs, and
adjusts the centroid of cluster Ce. These steps are
repeated until no task clustergﬁchangg or the number of -
iterations exceed a predetermined limit.

Some of the disadgéggages of this algorithm are ; long
search times are reqﬂfied before it tan find an eligible
task; no censideragien is given to precedence relationships
among tasks; and no attempt is made to balance loads among

the processors.
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Efe [EFEK82) has suggested an improved algorithm, based
on Gylys and Edwvards's work, that takes load balancing into
account. Efe's algorithm can be divided intc two phases.
The first phase identifies all the task clusters to minimize
IPC cost (and is similar to the second algorithm suggested
by Gylys and Edwards [GYLY76)). The second phase of the
algorithm checks the output of the first phase for any
violation of the load balancing constraint, In that case,
some of the tasks from overloaded processors are shifted to
underloaded processors by a task reassignment algaéichm
(TRA). The TRA will stop only when a balanced load
distribution is achieved. This algorithm, like the previous
one, fails to take precedence relationships into account.

Arora and Rana [ARORB0] suggested two heuristic
algorithms for task assignment. Their distributed program
model represents tasks and inter-task communication as nodes
and edges of a graph, respectively. This graph is augmented
with n nodes - corresponding td each processor — and edges
between each processor-task node pair (as in Stone's
algorithm [STON77]). Thus the task assignment prébleﬁ is
equivalept to finding an n-cutset of the augmented graph
such that\each subset contains one and only one processor
node.

The first algorithm selects ;; arbitrary task node and -
_coalesces that node with that processor or task node which
has the edge having maximum cost among all edges incident
upon the selected task node. The algorithm terminates when

.
[ J



all the task nodes are fused into processor nodes.

The second algorithm starts with an initial assignment
and repeatedly reassigns tasks to achieve a better =~
assignment. The algorithm terminates when no fgassignment
takes place in an iteration. As is true with most of the
other algorithms, it is difficult to incorporate precedence
relationships into this model.

Some attempts to design heuristic algorithms for
assigning a set of partially ordered tasks — but with no ITC
cost — have been reported in literature [KOHL75], [ADAM74].
Kohler {KOHL75]) has shown experimentally that critical  path
scheduling is near optimal in most of the cases. The
critical path length for task Ti is defined as the length of
a longest path from Ti to the terminal node. The basic idea
behind critical path scheduling is as follows : task Ti is
executed before task Tj if the critical path of Ti exceeds
that of Tj. Adam et. al. [ADAM74] discuss a family of
schedules called List Schedules and show that highest level
first discipline produces the best results.

As mentioned earlier, these algorithms ignore
communication cost and this oversimplification precludes
them from use in distributed systems where inter-task
communication cost cannot be neg%ecteéi

The foregoing discussion provides the motivation for
heuristic algorithms that take into account precedence
relationships among tasks and produce a good assignment for

time-critical applications. It should be pointed out that
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distributed systems are being designed that contain a large
(~100) number of processors [LAND82]. In the near future,
it is possible that for most of the applications the number
of available processors is greater than the number of tasks.
Thus attention should be paid to the design of assignment
algorithms that work for an unlimited number of processors.

In the next chapter, we discuss two algorithms for the
assignment of tasks. To the best of our knowledge, this is
the first attempt to design an heuristic algorithm that
incorporates precedence relationships also. Examples are
given to clarify some of the concepts presented.

»



Chapter ¢
A Newvw Algorithm
The discussion in the previous chapter motivates the
design of a heuristic algorithm to assign the set of
partially ordered tasks on a homogeneous distributed

Rrocessing system. By "homogeneous distributed processing

communicating with each other via a fully interconnected
network. Moreover, the interconnection network is assumed
to be constructed from high bandwidth fibre-optic links.
This is a pragmatic view rather than a simplifying
assumption.

Since processors are connected by high bandwidth links,
the interconnection network may not be a bottleneck in the
system. Thus we can shift our goal'fram mihimizing
inter-processor communication cost to minimizing completion
time where completion time is the finish time of the last
task in the program. Here we assume that the execution and
communication cost is measured in terms of units of time.

Thé programs to be executed on the system are assumed
to have already been partitioned into Esjﬁsg Each of these
tasks contain a set of instructions whish’;re to be executed
sequentially on a processor and directed arcs between the
tasks specify the execution order. Thus a task can send
results to more than one successor tasks which could be
executed on many (different) available processors. Some

earlier approaches assume that execution of a program shifts

39
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from one processor to another [STON77], [PRIC81] or only one

t any given instant of

processor 1s executing the program
time. It goes without saying that this assumption is not
realistic. Thus our approach is a radical departure from
earlier approaches to this problem in the sense that it
approximates real-world situation,

The basic strategy of the algorithm is as follows. Let
us assume that we have a partial assignment of tasks and we
have selected a task v to be next assigned to one of the
processors. Among a range of alternatives, we select the
Z;st alternative such the completion time of v is the

minimum possible.

4.1 Program model

We can represent the program by a directed acyclic
graph (DAG) G = (V,E) with a finite set of vertices V and
edges E such that each edge e has a head h(e) € V and a tail
t(e) € V. We regard the edge e as leading from h(e) to
t(e), or that edge e leaves h(e) and enters t(e). Theréjis
a unique source vertex S such that no edge enters s and a
sink vertex k such that no edge leaves k. As before,

"vertices represent tasks and edges denote inter-task
communication. o
With each vertex v € V we associate a non-negative

quantity vtx_cost(v) which is the estimated execution time

of vertex v. Also, we associate a quantity edge cost(e) for



41

each edge e € E to account for inter-task communication

time.

4.2 The algorithm

Our minimum finish time algorithm can be logically
divided into two phases. The first phase calculates the

&
cost (in units of time) of the longest path from each and

every verte; to the sink vertex. In short, this phase
assigns priorities to all the vertices in the graph. The
second phase uses the information gathered in the first
phase to assign the tasks to processors. We now describe

the firat phase.

4.2.1 Phase 1

1 2 K

A path p = el e, ..., e" is a sequence of edges such
that t(e*) = h(e**!) for 0 < i < beginning with the vertex
h(e') and ending in t(e™). The cost of such a path is

defined as

k
j; [vt;icast(h(el)) + edgeﬁ:cst(ei)] + vtx_:a:t(ti;;y).
i=1

We associate a quantity cost(v) with each vertex v € V such
that it is the maximum cost path among all the paths from v

to the sink vertex k.



42

We can use a modified breadth first search (BFS)
algorithm [HORO78] on the graph G' to calculate cost(Vv) for
each v € V. The reverse G' of a graph G is the graph formed
by replacing each edge e with an edge e' such that
hee') = t(e) and t(e') = h(e). The graph G is represented
by an adjacency list [HORO76]. The queue Q contains
unvisited vertices of the graph and the procedure addq(q)
adds a vertex v to the end of the Q.

Initially, all the vertices are marked as unvisited and
cost(v) is set to zero (by setting visited(v) to false #nd
cost(v) to 0 for all v € V). The sink vertex k of G will be
the root vertex of G'. Initially, only k is in the queue Q.
A vertex u is deleted from the head of the gqueue and cost(w)
calculated for all the verticesg w adjécent to u, If these
vertices have not been visited Eefare, then they are added
to the queue. After calculating cost(w) for all th
vertices, visited(u) is set to false (indicating this vertex
as visited). In the next iteration, a vertex is again
deleted and the same operations are performed. The
procedure stops vhen Q becomes empty.

The main advantage of the BFS is that it facilitates a
quick look at the graph and identifies costly paths. the

algorithm is expressed in an ALGOL-like language as follows:

procedure mbfs;
begin

for all v € V do cost(v):=0; visited(v):=false od;

¥d
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Q:=g;
addq(k);
while Q isnt empty do
delete a vertex u from the head of Q;
cost(u):=cost(u) + vtx cost(u);
for all w adjacent to u do
let ¢ € E be the edge from u to w;
if cost(w) < cost(u) + edge cost(e) then
cost(w):=cost(u) + edge cost(e);
1f not visited(w) then addg(w) fi;

visited(w):=true;

Since each vertex is added to the queue only ance;ané:whEﬂ a
node u is deleted only the edges leaving node u are
considered, the complexity of the algorithm is O(m + |E|)
where |E| is cardinality of the set E and m is the number of
vertices in the graph. Figure 4.1 illustrates the result of
this algorithm. The "cost" array could also be céleulatgd

by a recursive algorithm.



cost (1)=54
cost (2)=45
cost (3)=34
cost (4)=39
cost(5)=26
cost (6)=19
cost (7)=17
cost (8)=04

(b) N

Figure 4.1 (a) DAG and associsfed vertex costs
rocedure "mbfs"

(b) output of the

10
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4.2.2 Phase 2

The second phase of the algorithm is intuitively quite
simple. Assume that we have assigned vertex v to a
processor and successors of v need to be assigned. There
exists a vertex w such that

cost(w)+edge_cost(e(v,w)) > cost(u)+edge cost(e(v,u))
for all successors u € V of v and w#u. Since w lies in the
critical path, we should at least try to reduce the edge
(communication) cost from v to w by assigning v and v to the

same processor. Each of the successor vertices of v with

[a.]

o different processors and the

[nd

indegree of one are assigned
ones with indegree greater than one are assigned later.

Vertices with indegree greater than one are ready for
assignment when all their predecessor vertices are assigned.
In that case the algorithm makes one of two chgices : either
assigns this vertex v (say) to the processor which is also
assigned one of v's predecessors or to a new processor 8o
that- the completion time of v is minimized.

The queue Q is the list of vertices ready to be

assigned to a processor. The following procedure assign

generates an assignment of tasks such that the finish time

is minimal. We use an adjacency list [HORO76] to represent



pr_no:=1;
/*Assigns source vertex to processor 1%/
inset(s):=pr_no;
update vtx_finish(s), pr_finish(pr_no);
for all v € V do count(v):=indegree of v od;
while Q isnt empty do
delete a node u;
if indegree of u > 1 then
D:=[v|v is u's immediate predecessor];
ti:=max[pr_finish(inset(t))],
t €D _
and let this vertex be w;

t2:=max[vtx_finish(t)+edge cost from t to u);
t €D

if £1 > t2 then
pr_no:=pr_no+1;
inset(u):=pr_no;
update vtx_finish(u),pr_finish(pr_no);
else
inset(u):=inset(w);
update vtx_finish(u),pr_finish(inset(u));
£i;
£i;
B:=(v|v € A and indegree of v is 1];
there exists v :

cost(w)+edge_cost(e,) > cost(v)+edge _cost(e,),



47

u,v € B, ﬁ(e.)-u,t(g.)!H,h(e;)iu,t(g,)!v;
/%Assign w to the same processor as us/
inset(w):=inset(u);
for i from 1! to |B| do

pr_no:=pr no + 1;

inset(v):=pr_no; /*Assign v to a new processors/

update vtx_finish(v),pr_finish(inset(v));
od;
for all v € A do

count(v):=count(v) - 1;

if count(v) = 0 then addq(v) f£i;
od; X

od;
end assign;

Some explanation is in order. To tell which processor
vertex v belongs to we use inset(v). Arrays "pr_finish" and
"vtx_finish" refer to the time a processor would finish
executing tasks assigned to it and a task would finish
executing on a processor, respectively. The processors are
identified by "pr_no".

Briefly, the second phase of the algorithm works as
follows. A vertex u is deleted from the queue Q and its
indegree checked. 1If the indegree is greater than one, then
all of u's predecessors have been assigned and the method
described earlier is used. Otherwise the indegree is 0 or
t. In that case the procedure checks for all the successors

of u and identifies a vertex w as part of the critical path,
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Since w lies in the critical path, it is assigned to the
same processor as u. The rest of the successors of u are
assigned to different processofs. The procedure returns
vhen all the vertices have been assigned to processors. The
final value of pr_no will indicate the number St processors
used by the tasks, 4

Since each vertex is:added to the queue only once and
all the edges are considered atmost twice, the time
complexity of this phase is O(m + |E|). Thus the overall
complexity of the algorithm is O(m + |E|). Output of
procedure assign for the graph of Figure 4.1 is given in
Figure 4.2, h

It should be evident by now that our algorithm and the
method of critical path scheduling [KOHL75) resemble one
another. But we arque that this resemblance is only
superficial. Recall that a task communicating with another
task residing on a different processor incurs communication
cost. This communication cost is zero if these tasks reside
on the same processor. As discussed in [KOHL75] the
critical path length (cost) keeps on changing depending on
the current state of task assignment. This should be
evident when a task with an indegree of more than one is
assigned.

So far we have discussed assigning tasks on an
unlimited number of processors. But it is quite probable
that the number of available processors is less than the

number of processors calculated by the algorithm. In that



Total number of processors used = 3

Figure 4.2 Assignment of tasks produced by procedure "assign”




case we have to modify our algorithm, We briefly discuss
s

the modification required in the next section.

4.3 Modified algorithm

The model of the program is same as before. This
algorithm can be divided into two phases. The first phase
is the same as the first phase of the previous algorithm.
That is, it calculates the cost of the critical path from 7
each vertex v € V to the sink vertex k € V,

The second phase of the algorithm assigns tasks to a
given number of processors. To start with, all the tasks
are arranged in non-increasing order of cost(v) for all
v € V. 1Initially all the tasKs that do not have any
predecessor tasks are executable. These tasks are assigned
to available processors. If the number of tasks is greater
than number of available processors, then a contention for
processors is said to take place. Whenever contention
occurs, selection of tasks to be assigned immediately is
made on the basis of "cost"™ values with higher "cost” valued
task being assigned immediately. The selected task is then
checked for its number of predecessors (i.e., the indegree
of the vertex in the graph model). The appropriate method
is applied (as discussed before) depending on the indegree
of the vertex.

The assignment of tasks in Figure 4.1, for example, on

two processors is shown in FPigure 4.3. Notice that when

&
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task "1" completes execution on P1, tasks "2" and "3" are
ready for assignment. Since task "2" has a higher priority,
it 1s assigned to processor P1 and task "3" to P2. The task
"3" cannot start execution before time unit 12 due to

communication delay.

finish execution by time unit 42 which, rather surprisingly,
is same as the completion time of the assignment with
unlimited number of processors (three processors to be

precise). This suggests that it may be possible to achieve

modified algorithm. But it requires some knowledge of the

approximate number of processors required to run this set of

)
tasks in minimum time. Otherwvise, if a small nlmber of

processors are specified, some of the task may remain idle
due to lack of availability of processors.’

This discussion motivates the calfulation of a lower
bound on the minimum number of processors needed to execute
a given set of tasks in minimum time. This is an important
aspect of task assignment and could prove to be beneficial
in conjunction with our modified algorithm.

In the next chapter, we present a technique -~ baged on
the algorithms developed in this chapter — to calculate a

lower and upper bound on the number of processors needed to

execute a set of partially ordered tasks in minimum time.



Chapter 5
Bounding the Performance of Multiprocessors

The object of this chapter is to develop a lower and
upper bound on the number of identical processors needed to
execute a set of partially ordered tasks (taking
communication delay into account) in the least time.
ﬁﬁgcrithmé have been developed by several authors [(CHENGS8],
[FERN73]), [FERN75], [kRAS?E] and [RAMA72)] for finding these
bounde with the assumption of no communication delay. These
results may not be directly applicable to our model. 1In
fact, we show by counterexamples — wherever possible — that
methods proposed earlier when applied to our model may not
give sharp lower bounds on number of processors.

The later part of the chapter introduces a new
technique to derive bounds on the minimum and maximum number
of processors. Computational requirements for calculating

these bounds are also discussed.

5.1 Barlier Approaches
\ 9

Chen and Epley [CHEN68) defined a vé%y simple lower
bound on the minimum number of processors. 1If 2t is the
sam of all the task execution timgg and tep is the length of
the critical path then their bound can be expressed as :
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Note that the right hand side represents average processing
activity per unit tiné to complete this set. of computations
in a time equal to the time of critical path of the graph.
This lower bound does not contain a term reflecting partial
ordering among tasks. Thus it will only provide a rough
approximation to the true value. Moreover, it is difficult
to incorporate communication time in this formula. A major
advantage of this proposal is the the ease of calculating n.
If m is the total number of vertices in the graph, then the
time complexity of calculation of n is o(m). '

Kraska [KRAS72) presented another lower bound for the
number of processors. The earliest completion time of a
task T, is defined as the least time in which this task can
be completed. Similarly, the Jatest completion time of a
task T, is the maximum time until which completion of this
gLsk can be postponed without increasing tep + If 1 is\ﬁhe
maximum number of levels in the graph, then Kraska's bound

can be expressed as

- P
n = max L
1<i<l | D,

wvhere D, is the largest of the latest completion times of
the tasks at level i and P, is the sum of the task times
upto and including the tasks at level i.

Hu's [HUTC61] bound is defined for a graph with equal

task times. This lower bound can be expressed as
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1
n = max 1 E 'Ll l
15i51 1 =1

where ]le is the cardinality of the precedence partition
L. Basically, Hu's bound divides the total number of
vertices executed by the time elapsed until a particular
level i!érea;hed and takes the maximum over all the levels.
The total number of vertices is counted by ESJtl IL; | and
the level number corresponds to time elapsed since unit task
times are assumed. Notice that Chen and Epley's bound is
included in th® Hu's bound for i=l. Moreover, Hu's bound
contains effect of task distribution on the time axis.
Ramamoorthy [RAMA72] calculates the bound as follows.
The task Ti are partitioned into earl iest precedence
part itfons Ei such that tasks in Ei can be executed at the
earliest time corresponding to level i. Another set of

partitions called Jatest partitions Lj are formed

such that the tasks in Lj must be completed by the end of
level j. Thus, the tasks that are common to partitions Ek
and Lk have to be executed at time instant k and are

identified as "essential tasks”. Thus the maximum of

essential vertices over all the levels is the lower bound on

processors, or

n = max [ |Len E_| ]
15k=<1 -



vhere 1 is the total number of levels. The bounds developed
by Hu and Ramamoorthy are only valid for equal task
execution times. Obviously, they are also applicable to
graphs with uneqgual task times if tasks requiring T > 1
units of time are first expanded into T unit-time tasks.
raph.

Fernandez and Bussell [FERN73] presented a new

But this modification complicates the

O

formulation which gives sharper lower and upper bounds. Let
Fe be the execution profile of all the tasks according to

the earliest completion times and F1 corresponding to latest

o

completion times. For any interval [©,,8,], |Fe n Fl| is

ier or later
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than this interval, or it is the total processing activity
required within this interval. Note that repeated elements
are not deleted from the set intersection. The lower bound

on the minimum number of processors can now be expressed as

&

n = max E1 | Fe “FLIJ
[Si ,B;] e,-6,

3
vhere maximum is taken over all possible time intervals
[6.,,6,]. Figure 5.1 shows a graph where task execution
times are given adjacent to the vertices. The critical path

length for this graph is 10 time units. It is clear that at

. least two processors are needed to complete this set of

partially ordered tasks in 10 time units.
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Yang [YANG76] proposed two new algorithms, based on
Fernandez and Bussell's idea, for calculating the bcuqés on
the number of processors. These algorithms use arithmetic
operations, as opposed to slower intersection and union
operations required by Fernandez and Bussell's method, to
calculate the number of levels [YANG76) and precedence
partitions (earliest and latest) of the graph. The time
complexity SE the resulting algorithm is O(V?), where V is
the maximum number of levels in the graph.

In [FERN73] it is proved that this lower bound is
sharper than the bounds of Chen and Epley, Hu, Kraska, and
Ramamoorthy et., al. Moreover, this method takes a very
balanced view of the graph since all the integer intervals
are considered. Thus this method could be extended to suit
our model. There are certain problems that need to be
resolved before these ideas could be applied here, A
critical path in our model will contain both task execution
and inter-task communication cost. Recall that two tasks
will incur inter-task communication cost if they are
assigned to different processors but the cost of such
communication is zero if!these tasks reside on the same
processor., Consider two tasks A and B which afe-lecated in
the critical path and A is a predecessor of B; if A and B
are assigned to the same processor then the critical path
cost is reduced exactly by the communication cost from task
A to B. So the critical path will be dependent on the task

assignment, Thus it is inappropriate to define a critical
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path in our model of the program.

Secondly, all the methods discussed so far :alcu%ate
the lower bound on processors assuming all the tasks must be
completedﬁwithin the critical path length. As the previous
discussion indicates, critical path length cannot be a basis
for a new lower bound in our model. 1In addition, earliest
and latest completion times also cannot be uniquely defined
for there is no clear-cut way of accounting for
communication costs, Thus we have two choices : either make
some simplifications in our model or present another
formulation.

One obvious simplification is to ignore the
communication cost altogether and then find a lower bound on
the minimum number of processors using one of the methods
discussed earlier. But there are some pitfalls in this
simplification. The number of processors required to
execute the set of tasks given in Figure 5.1 is two if
communication costs are ignored. Assume that communication

is 3 units, then the finish

cost between any pair of task
time on two processors considering inter-task communication
time is 13 units as shown in Figure 5.2. But these same set
of tasks can be assigned to a processor and the finish time
in that case would be 11 units. Thus high communication

)
cost effectively reduces the parallelism in the graph and so
neglecting communication cost can give too high a value of

lower bound on the minimum number of processors.
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5.2 A New Approach

In the last chapter we presented an algorithm that
assigns a set of tasks on an unlimited number of processors.
The basic property of this algorithm is that it exploits the
parallelism inherent among tasks to minimize the fini}h
time. We can use this algorithm to determine the lower
bound.

Our approach is simple, We use the algorithm on the

nd call it

graph G and plot the activity of all the tasks
normal actlivity plot N. We also apply the same algorithm on
the graph G and plot the activity of all the tasks and call
it delayed activity plot D. Thus, the lower bound can be
expressed as

N = max 17 IH n Dl aipé,j E tmiﬂ
6,-6, | '
where tmin is the finish time of the sink vertex. Note

The normal and delayed activity plot of the graph of
Figure 5.1 is shown in Figure 5.2. Notice that in Ehe
normal activity plot, task 4 cannot commence execution
before time unit 9 because of the communication delay from
task 3 to 4. It is clear that one processor should be
sufficient to finish in minimum time.

The proposed lower bound calculation requires

processing of O(tmy ) intervals as there are t. . *(t..) / 2
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intervals. Moreover, the intersection operation required is
slow in comparison to arithmetic operations. Fernandez et
al. [FERN75] suggest ways to improve computational
requirements for special cases (e.g. trees, independent
tasks).

Observe that normal and delayed activity plot will
indicate the maximum number of tasks simultaneously
executable in any interval. Thus we can take the maximum
over [0,t,.n ] interval of th; normal activity plot and call
it Nmax . Similarly Dpyax Wwill be the maximum number of
tasks active in any interval between [0,tmin ] in the delayed
activity plot. Since we have the choice to schedule the
tasks according to their normal or delayed activity plot,
the upper bound on the minimum number of processors would be
the smaller of Np,, and Dmax , or

n = min [Ny, Dmax]
It is straightforward to show that this upper bound can be

calculated in a time complexity O(t.;. ).




Chapter 6
Facilitating Inter-task Communication in Distributed

Systems

[1)]

The result of the assignment algorithm is the set of
tasks and processors that are assigned to these tasks.
After the assignment is complete, the system executive
t;ansfers the tasks and their data (if available) to
appropriate processors, Some tasks will have data values
available to them before they are transferred to a

equire values

Ly |

processor. But some other tasks will
computed by their predecessor tasks. As soon as the data
values become available to a task, it can be executed on the
processor assigned to it. Since distributed systems do not

s),

a1

have a common shared virtual memory (as in multiprocesso
some sort of communication mechanism is reguired to enable a
task to send values to other task(s). This type of

messages (containing data values) from the source (sender) _
to the/destination (receiver) task.

In multiprocessors, this communication is accomplished
by a common shared memory. The tasks read and write a set
of variables in the common memory. The situation may arise
vhere a set of tasks are attempting to read or write a
memory location at the same time. This condition is
referred to as memory contention and is believed ‘to be a

major problem as well as a bottleneck in multiprocessor

systems. This entails use of synchronization primitives to

63
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ensure correct order of read or write operations on memory

locations.

wvhere communication takes place by the passing of messages
between tasks. The task A intending to send a value to task
B residing at processor Pj cannot directly write into the

ead,

(. d

memory attached to Pj so that task B can read it. 1Ins
task A would send a message (containing values to be
transferred) to task B. To facilitate this type of
communication, the system executive would provide a set of
standard communication primitives that could be used by
tasks in lieu of expecting tasks to p&éf@fﬁ all the
necessary processing involved in message Efansféri

The part of the distributed system (hardware, software
or a combination of both) that adds these communication
primitives is of no immediate concern to us, We are
interested in requirements that inter-task Eemmﬁnicatien
primitives must satisfy. That is, there are éertaiﬁ design
goals that should be followed when designing the
communication primitives.

In the following sections we discuss these design
goals. 1Ideas presented are not restricted to any particular

system structure or communication architecture but we strive

to make it as general ag possible,

R
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6.1 The System Structure

Before we move on to inter-task communication
mechanisms, it will be helpful to elaborate on the system
structure.

A pchessing unit in this structure has the
capabilities of a conventional micro-processor, but its
functions and architecture are substantially different. It
can perform local computation, initiate actions for fetching
information from other nodes of the system, disseminate
information, perform basic operating system functions and
error detection and recovery. For the sake of exposition,
the processors in the system are numbered from 0 to n-1
where n 1is the total number of processors in the system.

The primary memory of the system is distributed among
the processing units. Each processing unit has direct
access to the segment of memory located within it. Tﬁe data
from a non-local memory can be Accesses by requesting the
processor attached to that memory moéuleg This request

takes the form of a message transmitted across the the

interconnection network.

6.2 Design Principles

Distributed systems can vary in size, capabilities,
range of services offered, size of the processors,
communication subsystems, and the like. But if the system

wvere to execute a set of tasks correctly, they must be able
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to communicate with each other regardless of the other
characteristics of the system described above. That is, the
system structure must be able to support the inter-task
communication mechanism irrespective of other
characteristics of the systgm.

The inter-task communication mechanism will take the
form of a set of primitives like "send”, “"receive", "reply”,
"get", "put” etc. The/;asks make use of these primitives to
communicate with each other. Consider the case where task A
has to send a message (containing some value) to task B; it
will use the primitive "send" which contains the value and
the address of the task (and other information e.g. checksum
bits, header, trailer etc., which are of no céﬁsern to us).
This immediately confronts us with the problem of deciding
about the "address of the task". What should the address of
the task contain : the address of the processor where tagk B
resides or the address of the task itself or some
hierarchical address (discussed later in the chapter). This
may become an issue of some importance in the design of
inter-task communication mechanisms.

Similarly® another design issue could be the
scaleability of the distributed system itself : is the
communication mechanism general enough to withstand
expansion of the system?

These and other design issues are discussed in
following paragraphs. Since we are neither designing a

distributed system nor do we have any particular system in
«



mind, a general framework will be presented. The design
ije:tive presented are general enough to be applicable to
any configuration or structure of the distributed system.
The current designs do consider some of the objectives but a
unified view of the inter-task communication problem is

still lacking in the literature.

6.2.1 Independence from task assignment

6.2.1.1 Processor addressing

simplest form, inter-task communication can be

it

=
o
[

carried out by processor to processor message transfers.

\mﬂ‘

When task A S a message to task B residing on processor

B
7]

en

Pj, task A désignates the recipient as processor Pj. It is
‘implicit in this type of communication that processor Pj
knows that this particular message is intended for task B.
The processor Pj keeps a table ofsall the tasks running or
waiting for processor time on it. Whenever a message
arrives for Pj, it searches it's table to look for the task

this message is intended for. Since a task never needs to

find out the address of a sender, it would not make any

difference Yhether the processors share a common address
“space or not.
Processor addressing has several advantages. Since the

number of processors is usually less than the number of

the message length is p@ssible (compared to the task
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addressing scheme discussed later in this section). This
could be attractive in light of the fact that until now
communication network has been the slowest (in bytes
transferred pefninstfuetian) part of the system. Moreover,
routing of messages can be optimized with respect to total
routing path length as the destination address is known
beforehand.

Processor addressing is not without drawbacks. The
task size (and consequently the number of tasks) and
assignment of these tasks to processors would depend on the
number of processors in the syséemg It is highly desirable
that a software system should be able to execute an!a range
of hardware 5rganizatiaﬁs with different degrees of
distribution without extensive recompilation or
reassignment. Consider a program that has been partitioned
into tasks A, B, and C. Tasks A and B are assigned to a
processor and C to a different processor. Since A and B
reside on the same processor, they may be éammuni:atihg via
processor's 1géa1 memory (as™»in centralizeg systems). Or
they may be communicating using processor addressing. In

case B is moved to another processor, it will amount to

ocessor addresses in the mes

Lo 1

changing p ages from task A to
B. The situation could be much worse if A and B share data
also. Thus migration of tasks to different processors could
involve changing the contents (destination address) of
messages. *

[
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6.2.1.2 Task addressing

To alleviate this problem, a uniform communication
mechanism is reé@ired. Thss amounts to saying that no
distinction should be made in inter-task communication
betveen two tasks residing on the same processor or
different processors. This could be achieved if the sending
task addresses messages directly to the task receiving it.
The network interface unit (NIU) at the receiving processor
(where the receiving task resides) is responsible for
accepting the message,

The task addressing mechanism can be implemented in two
different ways — destination and source task addressing
(FRANB1]. The destination task addressingéappr@ach assumes
that the messages are addressed to the receiver by the
receiving task's mame, whereas in the source task addressing
approach the messages include the name of the source task
(which implies the receiving task). An advantage [FRANB1]
of destination addressing is that it facilitates
compile-time checking Earsany violation of legal message

exchanges since all the destination tasks are known. The

source addressing mechanism advocates modular software since
a task never needs to know the name of the destination task.

A major advantage [STOU79] of the task addressing
approach is that tasks can be dynamically relocated.
Carrying on with the previous example, no changes need to be
made to tasks A and B even if they are moved to different

processors. Another implication of task addressing is that
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a program can be partitioned into an appropriate number of
tasks 80 as to extract maximum parallelism and, then, these
tasks can be assigned to available processors without
bothering about relocation. Moreover, multi-destination

Since multi-destination messages are possible, reliability

can be increased by executing identical tasks on different

processors through parallel redundancy.

Notice that task A sending a message to task B is not

-

Thus either task cannot accidentally or maliciously
overwrite a location in other task (assuming that there is
no system-wide addressing scheme). This gives rise to some

form of security in the system as the physical identity of a

problems. Since message passing is accomplished by naming
eiving task, it is implicit that there should be a

system wide task-naming scheme. This may not be a serious

-

problem if the system is localized in a physical or
geographical location (say a building or a room). In that
case this requirement can be enforced quite easily. But it
also implies that every NIU be allowed to examine the
messages whether or not they are intended for this
particular processor. Also since a task can reside at any
processor site, it is implicit that a particular message be
transmitted to all the processors in the system. This will

13
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be a big burden on the communicat subsystem except,

[y}
ot
[ 4l
»
m

perhaps, for certain kind of interconnection structure

a star or a ring.

A simple solution would be to Use a hierarchical
addressing scheme. The n processors are divided into

logical, clusters of c pr@ceéscfs each and there are n/c
clusters. The processors in a cluster are in physical
proximity and so communication between these processors is
cheaper than inter-cluster communication. Each of these
clusters is assignéd an address. The task address would now
consist of two parts — the cluster address and the address
of the task. Let us assume that task A (resi iding in cluster
x) feels the need to send a message to task B (residing in

cluster z), then the first thing NIU (of the processor where

task A resides) does is to find out the Shéftﬁst (or

\m\
‘I'I
La |
4]

cheapest) path to cluster z. The processor, in clu
that receives this message communicates it to all the

processors in the cluster. Since task B is at one of the

processors in cluster z, this message will eventually be
accepted. Even though this modification involves some
processing overhead at the sender and the receiver
processors, it obviates excessive use of communication

subsystem. Basically, this can be considered as a two part

ﬂ

addressing scheme. It can be extended to three, four, ...

part addressing schemes if some gain in systea throughput is



realized.

ssing depends

\I‘M

A choice between task and processor addr

m—u

on some complex tradeoffs between effic cy on one hand and

eliability, security, decentralization, etc. on the other
hand. It is difficult to be definitive about either of the
two choices. It all depends on the system objectives and

kind of applications the system is iﬁtEﬁdéd for. But if we

take a synergistic view of other advantages of the

then the choice lies in the task addressing approach.
In conclusion, a task addressing scheme is essential
for allowing flexibility, graceful expansion, security, and

fault tolerance of the system,

6.2.2 Extensibility

Except for spes%al purpose, dedicated distributed
systems designed with particular application in mind,
extensibility will be an important design criteria,
Extensibility refers to minimal changesin inter-task
communication mechanism even with the addition of more
processors or functionality.

To see how extensibility (in the sense of expansion)
comes into picture, consider the following situation,
_P”écgssgfs can be added to a distributed system if the
communication network is not saturated. The task addressing
apg}aach will ensure that no changes need to be made to

echanism because tasks are

ot
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addressed by names and not processor addresses. The
processor addressing approach will require informing all the
old processors about the addresses of new processors and
vice versa. This will involve updating routing tables in
all the processors. r

Once the communication network is satufated? additién
of more processors is not possible without restructuring the
system or using a higher bandwidth network. The second
alternative may not always be feasible because higher costs
would be involved. Or the currgnt technology may not permit
it.

We again have some leeway in the second alternative,
Itishculd be p@ssibfi to simplify the interconnection
network (say from a fully connected network to a partially
connected network). But some flexibility is lost in the
process., If restructuring of the network is deemed
impractical, then it would be necessary to use gateways to
connect the new processors to the old network. Basically it
diviaeé all the processors into two legicél

groups : processors connected by the old network, and the

[, ]

et of new processors. In that case, it would be
advantageous to use a hierarchical address instead of using
task addressing. But this demands a change in the
inter-task communication mechanism,.

Extensibility seldom demands reconfigurability of the
system elements — be it in the form of altering the

interconnection network, or changing the functionality of



the processors with respect to inter-task communication

ystem-wide

mechanism, or just changing the degree of
executive control. Whatever may be the case, the solution
will inevitably gravitate towards flexibility offered by
inter-task communication mechanism. It is essential that
the inter-task communication mechanism be flexible enough to
withstand all these changes. The preceding discussion

may be the ansver to

W

suggests that a source task addressin

these requirements. This type of addressing fosters

Ly

modularity in software and reconfiguration by virtue of not
requiring @he identity of the destination task. «=m

Thus the ihter-task communication mechanism should be
designed in such a way as to allow graceful expansion of the
system (in number of processors, and functionality) with

minimum of effort. »

6.2.3 Generality

Any inter-task communication mechanism should be able
to handle a wide range of data types v/z. characters,
integers, arrays and structured values. There are a number
of reasons for this requirement.

Consider an inter-task communication mechanism that can

only handle characters. If some structured value is to be

sent to some other task in the system, it would require

coding at the sender end, and decoding at the receiver end.
Presumably, coding and decoding structured values will be

time consuming and would, therefore, be totally
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unacceptable. In the process, we would have also assumed
that the processors are powerful enough to do all the
necessary encoding and decoding without degrading the system
performance. This is a tall order and may not hold for
systems made up of microprocessors,

n addition to the time consuming coding and decoding

Il

process, transmission of the extra code bits will also be
required, and thus becomes a burden on the communication
network. Since the communication network itself is a
bottleneck in the system, it is unwise to use it more than
necessary.

Further, if a new structured value is to be added to
the repertoire of already existing structured values, it
would require informing all the processors in the system (in
all 2#n programs — coding as well decoding — need to be
changed).

The solution would be to support a set aé orthogonal
data types from vhich other data types could be easily
constructed. As for the type of data structures that can
qualify as being general in nature, an illuminating example
vould be a tree structure. Recently, researchers have tried
to represent other data structures in tree-like structures
[ROSE7S9].

Thus for the reasons of efficiency, inter-task
communication should support a wide range of structured data

typesi
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6.2.4 Debugging Facilities
If experience with serial programs is any indication,
debugging distributed programs will be extremely difficult,
We say this not only because of the nature of distributed
programs, but the problems of timing, synchronization and
monitoring concurrent execution play an important part also.
In a serial program, it is easy to halt the execution of a
program at a definite time instant or instruction. The
state of the processor can be saved and restored easily. It
is sufficient to know the state of the processor to detect a
bug in the program. Whereas in a distributed system it is
not possible to stop [LAMP7B8] a set of tasks running on
different processors as accurate synchronization of
time-of-day clocks azxigsf processor is inconceivable. Thus
ié would be better if inter-task communication is monitored
- instead of stopping all the tasks and examining their
‘*histary [SCHIB1]. A good discussion of the problems of
debugging distributed systems can be found in [SCHIB81].
Since monitoring inter-task communication traffic is a major *
consideration for debugging tasks, it is essential that all
the information a user needs to know be available or easily
derivable from inter-task messages. A user i?ll be
interested in "sender” and “"receiver" task Hames, contents
of messages (including type and value of data), timing
information, and the like. The type (of data) information )
is needed because a bit-string can interpreted as integers,

reals, characters etc. It will be helpful to know what this



bit-string represents and thus type information is needed.

inter-task communication systems.

77



Chapter 7
Conclusions (

~ Several

I

ssues related to the design of distributed
systems have been discussed in this thesis. We pointed out
that distributed systems offer advantages that are not
attainable by other structures vjz uniprocessors,
multiprocessors, or networks. But before these benefits can
be realized, substantial research needs to be done in
resolving cerggiﬁi;§ues that are unigque to distributed
systems. Thége areas include :
. partitioning of programs into tasks,
2. assignment of these tasks to available processors, and
3. designing.int35=task communication mechanism.
It should be pointed out that the above ligt is by no means
exhaustive; it serves to identify just the basic problems in
distributed systems. The main theme of this thesis is
centered around the problems stated in the preceding list,
As observed by Enslow [ENSL78], and more recently by
Franta et al [FRAN81), program partitioning techniques are
still rudimentary in nature. Our study indicates that
partitioning a program merely on the basis of parallelism
among different statements will nét be fruitful. This tends
to neglect other types of parallelism existing in the
program — for example, within arithmetic expressions, within
iterative statements, and between procedures, A method is
needed that can extract parallelism at a much more

microscopic level. We suggested that a good candidate for

/

~d
o0
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tackling this problem is the data flow approach. The data
flow approach is simple, and yet powerful enough to express
the parallelism in programs.

There are two different ways to obtain the data flow
repregsentation of an algorithm : either use a data flow
language such as VAL or I1d, or use a conventional high-level
procedural language (e.g. ALGOLW, or ALGOL 68). Data flow
language fé\s{i}l in the state of development and
therefore their use is unpractical at this point of time.
Recentlj, ome progress has been made {ALLA79]) in
translating a\program written in a procedural lahguage into
a data flow language program. Our approach would be to
write the program in a procedural language, translate ?t
into a data flow representation, and then partition it into
tasks. We also presented arguments for following this
approach. )

The assignment of tasks is another major issue. The
problem of optimal assignment is NP-complete and thus we
favor designing efficient heuristics. To the best of our
knowledge, no attention Has been made to design heuristic
algorithms that take precedence relationships between tasks
into account while performing the assignment. We, then,
suggest a new heuristic algorithm that considers préceden:e
relationships between tasks. The complexity of the
algorithm is shown to be linear in the number of vertices

and edges (O(m + |E|)) where vertices represent tasks and

edges denote inter-task communication. An application of
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. this algorithm to find the bounds on the number of processor
is also suggested. >

of

i1
\m\

An important part of the succes ny,distributed
system would be the characteristics of the inter-task
communication mechanism(s)., Distributed systems are still
at the research stage aﬁd there is no clear-cut ffamewérk
for designing communication mechanism. In the last chapter,
we have.tried to present some of the issues involved in such
a design. These issues are by no means complete per se;
they are meant to be as widely agpl;cable as possible. Of
course, certain special purpose distributed systems would
impose different requirements of communication mechanisms.
But we do not concern ourselves with these special systems
and their requirements as we do not want to restrict our
horizon. 1In our opinion, these are the minimum set of
requirements that must be considered when designing a

distributed system communication mechanism.

Some further areas for investigation are now suggested.

-

7.1 Areas for future investigations

There are a number of problems in the distributed
systems area for which satisfactory answers are yet to be
found. ifme of these problems are common to centralized as
vell as distributed systems, but the solution found in the .
case of a centralized system cannot (generally) be extended

to distributed systems. A case in point would be
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synchronization methods. A centralized system can use
synchronization primitives like semaphores, conditional
critical regions, path expressions etc. But these
primitives are not applicable in distributed systems as the
communication network intrééu:es its own problems.

Moreover, there is no shared common memory among processors.

Thus distributed systems introMce a whole spectrum of

o

challenging problems that currently defy solution (for a
good discussion of problems involved in designing and
implementing distributed systems, the reader may refer to

[ECKH78]).

7.1.1 Inter~task communication facilities

A major factor in the performance of distributed
systems is that inter-task messages should be transmitted
efficiently. There are two types of delays in message
tré%smissicn : message processing and transmission delay
across the netvork. It should be possible to implement
message processtng in either hardware (exemplified by HXEP
(FRANB1]) or software. But experience with the HYDRA
cpergtipg systeﬁ:funning on C.mmp fSWAN77] indicates that
this functiop should be implemented in hardvare rather than
in softszgé; Since hardware cost are rapidly declining with
the advent of VLSI, it will not add substantially to the

total system cost. However, some part off message processing

still needs to !iiinplemEﬂted in software..
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We 1mmed1ate1y observe that several interesting

possibilities (in distributing the processing between

hardware and software) arise, It is not possible to suggest
a straightforvard answer to this problem. BUt we know that
hardware could be made reliable, by duplicating functional
units, and can operate faster if the technology permits,
vhereas software offers ease of modification. Thus solving

this problem depends on

w

ome complex tradeoffs between speed

and reliability on one hand, and ease of modification on the
other. It would be useful if some demarcation line could be
drawn between the areas inherently more suitable for

»
mentation of message processing in hardware and in

\r—'
\W\

mplem
goftware.

More baffling is the problem of coming up with an
orthogonal set of :éﬁmuni:aticﬂ primitives. By this we mean
a set of communication primitives that are functionally
complete and the capabilities offered by a ‘member of the set

is not a subset of any other member. Researchers designing

7777 7 )

HEDP (Honeywell Experimental Distributed Processor) [FRANB1]

decided on three primitives : send, receive, and walt. This

set of primitives is informally proven to be complete and )

the minimum possible for their application requirements,

But it‘is quite possible that the set may not be complete

A

for some other applications. Pipeline processing, for

example, is not possible with just these three primitives.

Research is required in resolving this issue.

.ﬁ:‘}
- ‘\‘
i



There is a lack of theoretical foundations for
communication mechanisms and protocols. Saltzer [SALT78)
pointed out that "semantics for requesting operations, and

,reporting results and failures are needed”. Theory is
iamblguity and uncertainity

important so as not to leave anj
in the solution of the problem. The solution can be
verified if we have the necessary theoretical model and
tools to realize this model, The reader is faéerred to the
paper by Saltzer [SALT78) for a gggd overview éf research

problems in distributed systems.

7.1.2 Partitioning of programs

Identifying parallelism in a program is only the first
. Step to make it suitable for execution on a distributed ”
system. More impgftant is the problem of dat. distribution
among tasks (or processors) in the system. Experiments
performed on Cm# indicate [DEMIB82] that location of the data

becomes a key issue if the speed of the tasks depends on the

location of the data the task accesses. This can be

attributed to the fact that acce to the local data is

[V
[¥y]

usually much faster than remote data access. The time for
remote data access in Cms, for example, is atleast 2.5 times

greater than local data access [DEMIB2). Thus algorithms
Y

processors) depending on the frequency of access by tasks.
Another interesting research problem is to determine

the type of interconnection structure(s) most suitable for a



particular application. Sometimes the structure of the

should be used. But the number of problems that can be

classified in this manner are limited. A problem may

o

exhibit different structures (e.g. tree, pipeline) as
execution progresses. The problem, then, becomes one
finding the most suitable structure for any given

application. This information would be useful in the

partitioning process. .

7.1.3 Assignment of tasks

We presented a heuristic algorithm for static

the

of

assignment of tasks to processors. In other words, tasks

cannot be moved to other processors if need arises, or

dynamic reassignmegt is not possible. A criteria is

for dynamic reassignment. But it is not evident what

criteria should be used for this kind of load balancing

[ECKH78]. These %riteria could include, e.g., initial

assignment, data accessing patterns”, structure of the

needed

problem, processor load, inter-task communication time, ease

of redirecting messages, e%c. The solution to the general

regisignment problem (we surmise) would be extremely hard:

our approach would be to solve the problem for speci-

problem structures and interconnection networks.

There is no dearth of problems in the distributed

. C

systems area as it is still in its infancy, Substantial

research needs to be done before all the benefits promised



by distributed systems can be realized.
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