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Abstract

Decision-making is an important operation for any autonomous system. Robots in particular must

observe their environment and compute appropriate responses. For solitary robots and centralized

multiple-robot systems, decision-making is a relatively straightforward operation, since only a single

agent (either the solitary robot or the single central controller) is solely responsible for the opera-

tion. The problem is much more complex in a decentralized system, to the point where optimal

decision-making is intractable in the general case. Decentralized multiple-robot systems (dec-MRS)

are robotic teams in which no robot is in authority over any others. The globally observed be-

haviour of dec-MRS emerges out of the individual robots’ local interactions with each other. This

makes system-level decision-making, an operation in whichan entire dec-MRS cooperatively makes

a decision, a difficult problem. Social insects have long been a source of inspiration for dec-MRS

research, and their example is followed in this work. Honeybees andTemnothoraxants must make

group decisions in order to choose a new nest site whenever they relocate their colonies. Like the

simple robots that compose typical dec-MRS, the insects utilize local, peer-to-peer behaviours to

make good, cooperative decisions. This thesis examines their decision-making strategies in detail

and proposes a three-phase framework for system-level decision-making by dec-MRS. Two differ-

ent styles of decision are described, and experiments in both simulation and with real robots were

carried out and presented here to demonstrate the framework’s decision-making ability. Using only

local, anonymous communication and emergent behaviour, the proposed collective decision-making

framework is able to make good decisions reliably, even in the presence of noisy individual sensing.

Social cues such as consensus and quorum testing enables therobots to predicate their behaviour

during the decision-making process on the global state of their system. Furthermore, because the

operations carried out by the individual robots are so simple, and because their complexity to the

individual robots is independent of the population size of adec-MRS, the proposed decision-making

framework will scale well to very large population sizes.
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3.3 This figure illustrates the basic concept of direct recruitment when more than one
alternative is known. Individuals recruit teammates to their favoured alternative at
a rated that depends on the alternative’s quality. Over time, the relative qualities of
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3.9 This illustration depicts digital consensus estimation. The robot on the left is com-
puting an estimate of apparent consensus for some alternative X that it favours.
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sawtoothed waves denoted q(t) and k(t), the DC peak values ofwhich are propor-
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Qk(t) via the comparator on the right. Whenq(t) ≥ Qk(t), the comparator switches
on, signaling that quorum is satisfied. . . . . . . . . . . . . . . . . . .. . . . . . 45

3.15 This figure plots four robots’ estimates of apparent consensus computed with two
different values ofn in a system whereCa = 50%. Both graphs use the same
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curacy of apparent consensus measurement, but also increased the time necessary
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4.6 All of the communication in the simulated task-completion experiments was local
and anonymous. The robots were circular, with their antennae located at their cen-
ters. Robots could detect teammates when they were a short distance (d) away, and
their radio transmission ranges were set to twice their radius plus twice the teammate
detection range. In practice, although it was possible for more than one robot to re-
ceive a particular teammate’s transmission, 95% of the messages were one-to-one,
and the remainder were mostly one-to-two. . . . . . . . . . . . . . . .. . . . . . 62

4.7 Because the motion of the robots is independent of their decision state, a single
series of 40 generic trials was run. In these, the robots sentgeneric messages to
teammates as they were encountered to which the recipients would respond with
similarly trackable messages. The lengths of the paths traveled while in the wander
state also were logged. These generic logs were post-processed to generate unary
decision trials with whatever parameterization was desired. This figure illustrates a
portion of a generic log on the left with a post-processed version of it on the right.
The first three columns of the two logs are: time of event, the robot that logged the
event, and the specific event. The remaining columns are event specific data, such
as the message received or transmitted, the length of a path,or the new decision state. 64



4.8 As the quorum threshold increases, the observed quorum also increases. This occurs
because the quorum test delays the beginning of the commitment phase of a deci-
sion until a sufficient proportion of the robots have detected task completion for the
quorum test to be likely to be positive. Increasingn or τ decreases the likelihood of
false-positive quorum test, resulting in a greater observed quorum. Note that both
the analog and digital approaches to consensus estimation produce similar results. 65

4.9 This figure presents a theoretical prediction of the relationship between the observed
quorum and the quorum threshold for a multiple-robot systemof the same size as
the one used in the simulated experiments. The analysis usedto produce this figure
assumes that the rate at which vote-messages can be gatheredis insignificant, but this
was not the case in the experimental trials. This differenceexplains the discrepancy
between this Figure and the real data plotted in Figure 4.8 for lower values ofQ. . 66

4.10 As the quorum threshold is increased, the likelihood ofa robot prematurely com-
mitting decreases, which means that commitment will tend tobe delayed until more
robots have entered the deliberating state. This results inan increase in the length
of the deliberation phase of a decision. Asn or τ is increased, the precision iñCa
increases, and so the value ofQ has a greater impact on the robots’ deliberation
time. The time-cost of deliberation is independent ofn or τ whenQ is zero (the
y-intercepts of these plots) because, regardless of the precision with whichCa is
estimated,C̃a > Q always will be true, and thus quorum always will be satisfied.. 67

4.11 The role of the commitment phase is to induce all of the robots to accept the pro-
posed alternative unanimously. Committed robots instructencountered teammates
to commit, and they reset a timer every time an uncommitted teammate is met. Once
a committed robot’s timer reaches the commitment timeout, it enters the finished
state, exiting the decision. As the commitment timeout is increased, the probability
of commitment reaching all of the robots increases. In orderfor mutual exclusivity
to be respected, all of the robots must be in either the advocating or committed states
before any committed robot can exit the decision. . . . . . . . . .. . . . . . . . . 69

4.12 Increasing the length of the commitment timeout increases the reliability of the com-
mitment phase of a decision, as illustrated by Figure 4.11, but it also increases the
duration of the commitment phase. As shown here, this increase is linear. Because
committed robots tell every teammate that they meet to commit (since they cannot
discern a teammate’s decision state through observation),the longer the commitment
phase lasts, the more commit-messages will be sent. . . . . . . .. . . . . . . . . 70

4.13 This figure shows one of the robots used in the physical experiments. Each robot
possessed a circular bump sensor that permitted it to detectobstacles. At the rear
and top of the robot is an 802.11B radio, which it used to communicate with its
teammates when making a group decision. . . . . . . . . . . . . . . . . .. . . . 71

4.14 This figure plots the observed quorum versus the quorum threshold from the ex-
periments with real robots. The data plotted here are very similar to that shown in
Figure 4.8. As the quorum threshold is increased, the observed quorum increases,
since the robots are less likely to overestimateCa and prematurely commit until a
sufficient proportion of their teammates also have concluded independently that the
blind bulldozing task is complete. . . . . . . . . . . . . . . . . . . . . .. . . . . 72

4.15 This figure plots the predicted relationship between the observed quorum and the
quorum threshold for an 11-robot system, the same population size as was used in
the physical experiments, for the same values ofn that were employed. The actual
observed quorum measured from the physical experiments is greater than the theory
predicts, particularly for lower values ofQ, because the theory does not take into
account the time required by the robots to obtainn vote-messages. During this time,
additional robots will tend to enter the deliberating state, increasing the observed
quorum for a decision. If the rate at which robots were to enter the deliberating state
was reduced, the data in Figure 4.14 would more closely resemble that plotted here. 73

4.16 The trend of the mean observed deliberation time of the real robots very closely
resembles that of the simulated trials, given in Figure 4.10. Increasing quorum in-
creases the deliberation time, since commitment is delayeduntil sufficient robots
are advocating in order to satisfy quorum. Given a particular quorum, increasing the
accuracy of the quorum test (n) increases the deliberation time, too, because it raises
the precision of consensus estimation, decreasing the chance of premature commit-
ment. The regression lines have a common y-intercept because a quorum of zero is
always satisfied, so the deliberation time in this case is independent ofn. . . . . . 74



5.1 This flowchart illustrates the best-of-N decision-making framework, which is orga-
nized into three phases. In the initial searching phase, robots search for candidate
solutions, calledalternatives. Upon finding an alternative, a robot will enter the ad-
vocating state favouring it. The advocating robots iteratively recruit each other at a
rate determined by their opinions of their favoured alternatives’ qualities. Better al-
ternatives induce more frequent recruitment, and so over time, the proportion of the
system that favours the best alternative will tend to increase. Eventually, one of the
advocating robots will conclude that the proportion of its teammates that also favour
its alternative has reached the quorum, which triggers the commitment phase. In this
final phase all of the robots commit to the quorum-satisfyingalternative. Once no
more uncommitted robots can be found they exit the process, having unanimously
chosen the best of the alternatives that was found. . . . . . . . .. . . . . . . . . . 77

5.2 This figure presents a screenshot from a simulated best-of-N decision-making ex-
periment in the site selection domain. The black square in the center of the environ-
ment is the robots’ initial home base, and the squares in the corners are candidate
sites from which the robots must select a new base. The small black circles are
the robots themselves, and the arcs represent the ranges of their vision. One of the
robots in this scene favours the upper right site, and is leading a teammate that it has
recruited to it so that the recruit can inspect the site for itself. The rate at which the
site-favouring robots recruit is based on their opinion of site quality, so the best site
will tend to attract recruits more rapidly than the others, making it the most likely
site to be selected by the decision’s end. . . . . . . . . . . . . . . . .. . . . . . . 80

5.3 This figure presents a timeline of one of the simulated best-of-N decisions. The
history of each robot is given by the sequence of symbols along the corresponding
timeline. Solid and hollow symbols indicate events regarding the better and poorer
sites, respectively (this particular trial compared only two sites). Once a robot found
a site, the robot began to recruit teammates to it. Note that the robots that favoured
the better site recruited more frequently. Over time, robots that favoured the poorer
site were recruited to favour the better one, and eventuallyquorum was satisfied for
it. After this occurred, commitment flooded throughout the dec-MRS, resulting in
the unanimous adoption of the better site. This timeline presentation was inspired
by a similar figure in [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85

5.4 It is important that a collective decision is unanimous.These graphs plot the per-
centages of the simulated trials that ended unanimously, regardless the particular site
that was selected. In general, population size and the specific model of recruitment
do not affect the ability to achieve unanimity. However, thelikelihood of unanim-
ity increases with the quorum threshold, because because a greater quorum makes
commitment to multiple sites less likely. . . . . . . . . . . . . . . .. . . . . . . 86

5.5 This figure illustrates how a robot’s visual field of view impacts its ability to test
quorum using the off-swarm method outlined in the text. While visiting its favoured
site, a robot will compute the number of its teammates also there as the largest
number of other robots it was able to observe simultaneously. In this example, the
white robot would believe that only five other robots were present, since the other
two are outside of its field of view, indicated by the dashed semi-circle. In practice,
this means that larger quorums are less likely to be observedby the advocating
robots, delaying the onset of commitment, or resulting in stagnation altogether. . . 87

5.6 As quorum is increased, the ability of the robots to make correct decisions (in which
best of the sites found by the scouts is selected at the decision’s end) increases with
quorum. Quorum specifies how much iterative recruitment is sufficient; once a quo-
rum of robots is found to support a particular site, the system concludes that suf-
ficient deliberation has transpired. Note that increasing the population size of a
system also increases its ability to make correct decisions, since larger systems are
less impacted by the occasional recruitment away from the best site. The model of
iterative recruitment has little effect on the decision-making ability of a system, as
long as it is biased in some way to so that recruitment towardsthe best site is the
most likely. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 The deliberation phase of the decision-making framework compares sites by re-
cruiting additional robots to inspect them. Ultimately, recruitment towards a site
that is not selected by a system represents a waste of time andenergy, and so a
good decision-making algorithm should give most of its attention to the site that
ultimately is selected. The plots in this figure illustrate that this is the case for the
proposed decision-making framework. As quorum is increased, the selected site is
seen to attract more recruitment, but recruitment to the unselected site remains mini-
mal. Some of the system configurations are omitted from theseplots to avoid clutter,
but all of them follow the pattern of those shown. . . . . . . . . . .. . . . . . . . 90



5.8 These figures plot the mean length of time that each systemspent in the deliberation
phase. Regardless of the number of robots that compose a dec-MRS or the kind
of iterative recruitment employed, deliberation time increases with quorum. This
happens because higher values of quorum required additional robots to be recruited
in order to be satisfied. In each system, the number of robots that identify candidate
sites is fixed, so increased deliberation is required in systems with larger population
sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9 This photograph depicts the environment in which the physical site selection ex-
periments were carried out. It was very similar to the environment of the unary
decision-making experiments (a hexagonal enclosure, 2.75meters per side), except
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alternatives for the robots’ best-of-N decision-making. .. . . . . . . . . . . . . . 93

5.10 These three images show how the candidate sites were built for the decision-making
experiments. At 5.10(a) is a close-up of a site’s overhead light. The quality of a site
is determined by its brightness. The attached circuit boardcontrols the current to
the lamp’s 8-LEDs, and their brightness as a result. Becausethe robots were unable
to localize themselves in their environment, coloured beacons were placed next to
each site. One of these is shown at 5.10(b). During an experimental trial, the room
was made completely dark, except for the sites’ overhead lights and beacons. The
photo at 5.10(c) shows what a site looked like during a trial.The illuminated spot
on the ground in front of the beacon is the site itself. . . . . . .. . . . . . . . . . 94

5.11 In order to find, measure and identify sites, the robots were outfitted with upward-
pointing site sensors and forward-pointing beacon sensors. The sensory elements
in all of these were cadmium-sulfide photoresistors. 5.11(a) shows the overhead
site sensor. Three photoresistors (the one in the rear cannot be seen in this image)
were arranged in a plane with a triangular shade separating them. Their relative
responses to an overhead light allowed a robot to compute direction to the point on
the ground directly under a site’s overhead light, where a measurement of its quality
should be made. At 5.11(a) can be seen a robot’s beacon sensors. Here, a column of
three photoresistors, each covered by a different colouredgel (red, green and blue)
allowed the robot to determine which coloured beacon it was facing. Each robot had
three of these to increase the beacon sensor’s field of view. .. . . . . . . . . . . . 96

5.12 Unlike the simulated site selection experiments, the real robots’ perception of site
quality was noisy. This figure plots each of the eleven robots’ opinions of site qual-
ity. The median, minimum, first and third quartiles, and maximum readings of each
site’s quality are plotted. All of the robots agreed that theblue site was better than
the red site, although most had noisy enough perception of site quality that a sin-
gle robot’s opinion would be unreliable. The horizontal dotted lines indicate the
perceived site qualities above or below which the robots’ inter-recruitment delays
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5.13 Restraintive recruitment was used by the robots in the physical experiments. In this
approach, the advocate robots delay for a certain period of time between attempting
to recruit teammates to favour their site; the better a robotbelieves its site to be,
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line in this figure shows the relationship between a robot’s perception of site quality
and the amount of time that it delays between attempting to recruit. Additionally,
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5.15 This timeline illustrates a best-of-N decision in which all eleven of the robots acted
as scouts. Overall, recruitment is more frequent by the better-site favouring robots,
so the proportion of the robots that favour that site tends toincrease. Eventually,
robot-7 determines that quorum for the better site has been satisfied (note that it
initially favours the poorer site, and that it’s opinion of the better site actually is
quite low) and it commits, inducing the rest of the dec-MRS tofollow suit. Once all
of the robots have committed to the same site, responses to commit-messages cease,
and the robots all exit the decision unanimously favouring of the better site. . . . . 103
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found. In general, the ability of a dec-MRS to make correct decisions increases with
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dividual robots gather each other’s vote-messages, the also iteratively recruit each
other, changing the apparent consensus for each alternative. Because a robot’s esti-
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ent consensus for the best alternative (the one most likely to induce commitment
first) tends to increase over time,̃Ca will tend to underestimateCa, and thus the
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5.18 A good decision-making algorithm will minimize the amount of time and energy
spent considering alternatives that are unlikely to be selected in the end, because
this represents a waste of time and energy. This figure illustrates that, regardless of
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more time in the deliberation phase of the framework, where the best-of-N is de-
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apparent consensus in favour of the known sites will tend to be at the beginning of
deliberation, so less recruitment (and therefore a shorterdeliberation phase) would
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5.20 This final timeline demonstrates what happens if two sites satisfy quorum. The
robots committed to each instruct every robot that they meetto commit to their
favoured site, but they switch sites when they receive a commit-message referring
to the other one. Normally, the site that induced commitmentfirst would be selected
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upper hand. Robot-11 prematurely decides that unanimity has been achieved and
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interact with each other and the environment, and a global (macroscopic) behaviour
emerges. The system-level decision-making framework of this thesis uses consensus
estimation and quorum testing to complete the loop, enabling the robots to predicate
their behaviours directly upon their collective state. . . .. . . . . . . . . . . . . . 114

A.1 The curves in this figure plot the probability of at least one of a system’sN robots
believing that quorum has been satisfied. Each curve corresponds to a different value
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value ofQ is the apparent consensus (horizontal axis) that corresponds to a 50%
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A.2 The values of observed quorum read off of Figure A.1 are inthe units of apparent
consensus. These are converted to true consensus with Equation A.2, which are then
plotted against the value ofQ corresponding to the curve in Figure A.1 from which
they were read. Because a robot will always believe that quorum is satisfied when
Q = 0, the observed quorum for this particular quorum threshold will be 1

N . . . . 123
A.3 These graphs plot the predicted relationship between observed quorum and the quo-

rum threshold for two different population sizes for different values ofn. As n is
increased, the probability of a robot overestimatingCa decreases, which results in
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Ca Apparent consensus: the proportion of a robot’s teammates that favour the same

alternative as it when its own opinion is not included.Ca = Na−1
N−1 .

C̃a Apparent consensus as estimated by an individual robot.
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Introduction

In the last twenty years, there has been a steady increase in the effort to build intelligent systems

composed of many robots that cooperate with each other in order to achieve shared goals. The

development of thesemultiple-robot systems(MRS) presents a significant challenge. Not only must

the individual robots be mechanically, electrically, and computationally reliable, but their social

interactions must be robust so as to bring about reliable collective behaviours, too. Despite these

challenges, MRS are attractive for many reasons. A single robot cannot be in two places at once, nor

can it be both large and small at the same time, but a MRS can [3]. Furthermore, a multiple-robot

solution will tend to be more reliable, since several of the individual robots could fail and yet the

MRS would continue to function.

Not all MRS are the same. Although two different systems could be compared along several

different axes [24, 25], their organizational structure isparticularly important. At one end of the

spectrum are centralized MRS, in which a single centralizedagent (a specialized robot, human

operator, etc.) is in command of every other member of the system. The other end of the spectrum is

occupied by decentralized MRS (dec-MRS). In a dec-MRS, noneof the robots are in control of any

of their teammates. Dec-MRS are particularly interesting,and it is these systems that are the focus

of this thesis.

Robots by their very nature are decision-making machines. Supplied with a goal and the physical

means to achieve it, the operation of a robot consists of an endless loop of sensing its environment,

computing an appropriate response, and then carrying it out. For a solitary robot, deciding what

to do is relatively simple to understand, since solitary robots have no teammates with which they

must coordinate their actions. Similarly, decision-making by a centralized MRS is straightforward,

because the centralized agent needs only to collect information from the robots that it controls, make

a decision, and then dictate its decision back to them. Decision-making by a dec-MRS, however,

is much less obvious [63]. Because their collective behaviours are bottom-up, emerging out of the

myriad of individual robot-to-robot interactions, there is no central point from which a collective

decision could emerge.

If dec-MRS are to be deployed as autonomous intelligent entities, rather than systems that con-

tinually must be monitored and have decisions made for them by external agents, then system-

level decision-making is a problem that must be solved. It isimportant to distinguishsystem-level
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decision-making as a special operation. Many dec-MRS have been described in which decisions are

made, but these tend to be local decisions made by individualrobots that only affect them or their

nearby teammates, rather than decisions that are made collectively by the entire population. The

ability to make system-level decisions provides the illusion of centralized control, allowing a dec-

MRS to be viewed and thus programmed as a cohesive intelligent entity, asuperorganism. Optimal

decision-making in a decentralized system in a realistic environment is intractable [7, 63], unless

free, instantaneous communication is available1. Therefore, real-world collective decision-making

in a dec-MRS demands a heuristic approach, especially when adec-MRS contains many robots as

it is assumed in this work.

When the survival of an organism depends on its ability to make good decisions, evolution will

find a way for those decisions to be made, or the organism will be out-competed and become extinct.

Social insects such as ants and bees are excellent natural analogs for large dec-MRS, and their

examples have been followed many times with success by roboticists [8]. A particularly important

system-level decision that a colony of social insects mighthave to make is to select a new site for

its nest. A poor choice would penalize a colony long after thedecision had been made, and so there

is a strong evolutionary pressure to develop efficient collective decision-making behaviours. Both

honeybees (Apis mellifera) and certainTemnothoraxants (T. albipennisandT. curvispinosus) often

must make precisely this decision [78, 50, 71]. Because the complexity of the individual insects

is similar to that of small mobile robots, and because their colonies are organized as decentralized

systems, their approach to collective decision-making is particularly attractive for application to

dec-MRS.

This thesis describes the adaptation of these social insects’ decision-making strategy for modern

dec-MRS. The result is a three-phase decision-making framework: search, deliberate, and commit.

The nature of the approach developed by this work is intentionally general, permitting a wide va-

riety of collective decisions to be made. Furthermore, likethe behaviours of the social insects that

inspired it, the decision-making framework relies only on local interaction and simple, short-range

broadcast communication. This means that almost any dec-MRS could take advantage of this work.

Two social behaviours central to the framework are developed in detail, and these could be applied

to many problems beyond the focus of this thesis. These behaviours are iterative recruitment and

consensus estimation/quorum testing. The first one enablesa decentralized system to compare a

list of alternatives and identify the best one. Especially important is that the precision and accuracy

of the comparison accomplished by iterative recruitmentincreasesas the population of a dec-MRS

increases in size. The second collective behaviour, consensus estimation and quorum testing, allows

the individual robots to predicate their own behaviours on the collective state of their system, provid-

ing a powerful social cue. The cost to the individual robots of these behaviours is independent of the

population size of their system, so scaling a dec-MRS that employs them up to large population sizes

1Even if this impossibility somehow was overcome, optimal decision-making still would be PSPACE-hard.
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will be economical. Experiments were conducted in simulation and with physical robots (designed

and built especially for this work) to demonstrate the performance of the proposed decision-making

framework in practice.

The main contribution of this thesis, to be reiterated in greater detail in Chapter 6 is as follows.

It is shown that a MRS can make collective decisions without any sort of centralized control, using

only local and anonymous communication. The layout of this document is as follows. In Chapter 1,

some of the research related to the focus of this thesis is described. Next, in Chapter 2, the nest site

selection behaviours of honeybees andTemnothoraxants are presented. The three-phase decision-

making framework inspired by the insects’ behaviours is presented in Chapter 3. Decisions can

take many forms. Chapters 4 and 5 describe implementations of the framework to tackle two types

of group decision. In Chapter 4, decisions to accept or reject a single proposed alternative to the

status quoare described, and the results from experiments using both simulations and real robots

are presented. Not all decisions can be represented by the accept-or-reject model, called aunary

decisionin this work. A more general-purpose approach is thebest-of-Ndecision [79], in which the

single best of N candidate alternatives must be selected. Best-of-N decision-making is described in

Chapter 5 along with a series of robotic experiments. The thesis closes with Chapter, 6 in which the

significance of this work is discussed, and the next researchsteps are outlined.
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Chapter 1

Related Work

The focus of this thesis is system-level decision-making indecentralized multiple-robot systems,

referred to in this thesis asdec-MRS. Although there has been relatively little work studying this

problem in dec-MRS with large populations of relatively simple robots, this area is related to several

others. In this chapter, several of these fields are discussed, including their relation to the goals

of this thesis. Natural decentralized systems are very relevant to large dec-MRS research, so their

discussion is given an entire chapter of its own, immediately following this one.

1.1 Decentralized Multiple-Robot Systems

The origins of multiple-robot systems research can be traced to the pioneering efforts of Grey Walter

in the late 1940s [89, 39], but interest in this area has increased in recent years [26, 14]. The pub-

lished studies describe systems too varied and numerous to be summarized here, but there has been

relatively little work investigating system-level cognitive operations in large decentralized multiple-

robot systems (dec-MRS) and, in particular, collective decision-making.

A dec-MRS is characterized by the complete absence of specialized agents that make plans and

decisions on behalf of the rest of the system’s members [14, 24, 26, 25]1. Dec-MRS that contained

relatively large numbers of robots were somewhat common in the early MRS literature. These sys-

tems were able to complete collective tasks such as sorting [19, 52, 38], foraging [84], cooperative

load transport [47], construction [86, 91], and the stick pulling experiment [42]. The manner in

which collective sorting was implemented is particularly illustrative of the general approach to de-

centralized control of a MRS common to many of these systems.Initially, the robots’ environment

would contain many objects of two or more colours, randomly scattered about. The robots collec-

tively sorted these into piles based on object colour through a series of stochastic pick and place

operations. As a robot wandered about, it would find different objects. If a robot encountered an

isolated object, or one near to a number of objects of a different colour, the robot would be more

1Note that there is some disagreement in the literature as to whether the term “distributed” or “decentralized” should be
used to describe the systems intended by the termdecentralizedin this work. Readers should keep the meaning intended by
the use of this term in this thesis in mind when reading related literature.
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likely to pick it up. While carrying an object, a robot would be more likely to put it down when

it encountered a cluster of like-coloured objects already on the ground. In this way, the environ-

ment itself directed the robots’ sorting operation. As the robots worked, the manner in which they

modified the environment through their actions further stimulated their behaviour. Thisstimulation

by the progress that had been achievedis known asstigmergy[6], and is still a common feature of

dec-MRS control.

It is important to point out that explicit cooperation was unnecessary for this sorting behaviour

to work. A solitary robot could have sorted the objects just as well as a MRS, except that it would

take longer to do so. The only time that two robots ever had to deal with each other was to avoid

interference and collisions. Some tasks, such as cooperative transport [47] and the stick pulling

experiment [42] did require the collective efforts of multiple robots in order to be completed, but

the individual robots still were ignorant of each other’s existence. Instead, successemergedout of

their interactions. The problem with stigmergy, the most common form of emergent behaviour in

dec-MRS is that it critically depends on the dynamics of the interaction between the robots and their

environment [6]. A stigmergic dec-MRS and its environment together can be thought of as an elab-

orate Rube Goldberg machine. Changing one small aspect of the system, perhaps the interaction of

a robotic bulldozer’s plow and the fill that must be moved, could have a significant (and potentially

disastrous) effect on the likelihood of successfully achieving the overall goal [64]. The dec-MRS

operations at the heart of the decision-making framework proposed by this thesis also are emergent,

taking advantage of the bottom-up nature of dec-MRS. However, instead of modifying the environ-

ment, the robots directly modify the states of their teammates, reducing or eliminating the impact of

the robots’ environment on their decision-making behaviour.

Recently, more sophisticated dec-MRS have begun to appear,composed of very large numbers

of robots, on the order of 100 or more [51, 46]. However, the majority of the research conducted

with them concentrates on either strategies to allow an external operator to centrally control a dec-

MRS (e.g.teleoperation), or the development of local behaviours to realize desired global emergent

behaviours. For example, [51] discusses swarm teleoperation and mentions several emergent be-

haviours that could be controlled with the proposed interface. In some cases, although the specific

dec-MRS might contain many robots, the proposed algorithmsutilize only a few of them at any

given moment. The environment mapping operation in [46] uses “a small number (1-5) of robots

working completely autonomously, often out of contact withthe base station”. In a sense, this does

not describe a very large robotic team, but rather a very small one with many spare robots standing

by. Nonetheless, these systems do not command themselves. The decision-making upon which this

thesis focuses would permit a dec-MRS containing many robots to collectively monitor and respond

to itself and its environment.
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1.1.1 Collective Decision-Making In Dec-MRS

There have been several different approaches to the collective decision-making problem that have

been described for dec-MRS. However, it appears that only one of these actually is practical for

systems composed of many simple individuals.

Competitive team sports is a domain in which multi-agent systems must make system-level

decisions relatively often. RoboCup [75] is an international competition in which MRS developed

by research institutions from all over the world are pitted against each other in a robotic version

of soccer. The competition is divided into several different leagues, each emphasizing different

technical challenges. The Middle-Sized League (MSL) is themost relevant to dec-MRS research,

since teams in the MSL often are organized as decentralized systems, and the individual robots

are not permitted to take advantage of hardware beyond the robots themselves, nor do they have

complete knowledge of the state of the game. Soccer also is a particularly interesting domain, since

it is not episodic (i.e. the two opposing teams do not take turns as they would in a gamelike chess),

and so decision-making speed and accuracy must be balanced appropriately.

The most obvious kind of system-level decision that a robotic soccer team would need to make

is cooperative play selection. Given the current state of the game and the skills of the opponent,

the robots must decide on the most effective play to run. Because each robot might have a different

opinion of a game’s state, these decisions must be coordinated so that all of the robots will agree

about the correct play and each robot’s role in it. Koket al. have described several play selection

strategies intended for dec-MRS soccer teams in the MSL [45,88]. One particular approach pre-

sented in [88] is called ananytime algorithm, since it begins with a feasible play that is continually

refined. Thus at any time, the decision-making process couldbe terminated and a runnable play still

would be produced. Soccer teams typically are composed of a small number of relatively sophisti-

cated players. Therefore their decision-making strategies are not generally applicable to dec-MRS

containing a large number of simple robots.

Free market strategies and, in particular, auctions [33] also have been suggested to guide the

decision-making of dec-MRS. The task allocation problem [34] is an area identified as well-suited to

the auction strategy. The general idea of auction-based task allocation works as follows. Individual

robots identify tasks, and put these up for auction. Other robots then can submit bids based on their

cost of executing them. The auctioneer rewards the robot that submitted the lowest bid with the

task. Robots can bid on and win multiple different tasks, in turn auctioning off the most expensive

ones in the hopes that another robot might be able to completethem even more economically. Over

time, tasks will be allocated to robots so that the total costof completing all of the tasks will be

minimized.

A conflict arises when a dec-MRS composed of many robots uses auctions to allocate tasks

amongst its members. If an auction is to be worthwhile, it must attract a sufficiently large audience

of potential bidders that the auctioneer is likely to “sell”its task. This in turn suggests that the auc-
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tioneer should increase the range of its transmissions. However, since many auctions are supposed

to be run in parallel, long-range communication would increase the likelihood of different auction-

eers (and their bidders) interfering with each other. It seems as though auctioneers should heed the

advice of [36] and reduce the ranges of their transmissions as much as possible, leading to many

short-range auctions, or each robot should take its turn andconduct its auction(s) with long-range

communication. The former would lead to many ineffective auctions, whereas the latter implicitly

requires a centralized controller to implement the necessary time-division multiplexing of the shared

communication channel.

In [53], another collective decision-making system was described. A simple, emergent decision-

making strategy was presented to enable a dec-MRS to form small groups of robots that would depart

in convoys from a rendezvous point. The proposed mechanism at the heart of the robots’ behaviour

waschorusing, inspired by the natural abilities of frogs, fireflies, and crickets to synchronize their

emission of signals. By monitoring the strength of the collective chorus, a kind of social cue, the

individual robots were able to estimate the total number of their teammates that had assembled. In

this way, a subset of a dec-MRS was able to make a kind of collective decision to depart together.

However, the collective departure was brought about using asimple open-loop mechanism. As

individual robots in the assembling convoy came to believe that the group had become sufficiently

large, they would set internal countdown timers. Once a robot’s timer had reached zero, the robot

would emit a special signal, most easily understood as a message to those other robots assembled: “it

is time for us to depart”. The duration of the countdown is important, and is difficult to tune without

empirical data. Furthermore, although the departure of theconvoy was a collective behaviour, the

decision to depart was made by an individual: the first robot to believe that a sufficiently large

number of robots had gathered. As the desired population size of the convoy is increased, so to

would the probability of at least one robot overestimating the actual size of the assembled population,

which would result in a premature collective departure.

One of the few studies to date that has described a system-level decision-making strategy that

truly is well-suited to large-population dec-MRS is that ofWessnitzer and Melhuish, in [93]. In

that work, a large dec-MRS was tasked with pursuing and immobilizing two “prey” in a series of

simulated experiments. The robots, each of which possessedminimal sensing capability and short

communication ranges, used majority voting and a hormone-inspired approach to cooperatively de-

cide which prey to follow. Initially, the system would collectively decide to follow one of the prey

based on which of the two was the closest to the majority of thesystem’s robots. Once it had been

immobilized, and the robots agreed that this was the case, their focus would switch to the other prey.

Here,system-leveldecisions were made.We agreethat that prey-A should be pursued.We agreethat

the first prey has been immobilized, and thus the other one should be pursued. The decision-making

framework proposed by this thesis is similar in some ways to the approach presented in [93]. How-

ever, the strategy presented by this thesis is very loosely coupled to the specific decision at hand by
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design. It therefore will be applicable to a wider variety ofdecision-making scenarios. Furthermore,

the addition of a commitment phase synchronizes a dec-MRS’sindividual robots’ exits from a given

decision.

1.1.2 Gossip

In a dec-MRS, there is no central agent to coordinate inter-robot communication. In many ways,

the robots’ interactions constrained similarly to nodes ina sensor or ad-hoc network. In such a

system, the data throughput is maximized when each node or robot communicates with the minimum

range possible [36]. Unlike the nodes of a typical sensor network, however, the individual robots

of a dec-MRS continuously move about. To minimize the likelihood of different peer-to-peer robot

conversations interfering with each other, it is advocatedin this work that robot communication

ranges be made as short as possible, and that the robots move about in order to find teammates

with which to communicate. For systems composed of very small robots, physical movement is

less expensive than communication or computation [13], so this strategy, in addition to reducing

interference, will also be energy-efficient for swarms of nano- or micro-robots.

Stochastic peer-to-peer communication, known more commonly as gossip [10] is intended to

operate in a network environment very similar to that described above. Gossip algorithms for de-

centralized averaging [10], message routing, spanning tree computation [44], and resource location

[43] have been presented, amongst others. One advantage that a dec-MRS has over a sensor network

is that the individual members of the dec-MRS are mobile, whereas the nodes in a sensor network

typically are stationary [1]. While the continual making and breaking of network connections due

to the constant movement of the robots might be a weakness from a sensor networks perspective,

it can be viewed as an advantage in the context of this research. If an individual robot randomly

wanders about and communicates sufficiently infrequently with the robots that it encounters, the

communication partners that it has will be completely random and uniformly distributed over all

of its teammates. This means that the necessary conditions for uniform gossipwill be satisfied. It

has been shown that information can be spread to alln nodes of a system with a given reliability in

O(log(n)) time steps [43], where the length of each time step is the timebetween a robot’s com-

municative encounters with teammates. These conditions apply in the proposed decision-making

framework of this thesis during the period of iterative recruitment known as thedeliberation phase

(see Section 3.3).

In the latercommitment phaseof a collective decision (Section 3.5), the robots communicate

with every teammate that they encounter as they wander about, so the communication partners of

each robot will be less uniformly distributed, and the resulting pattern will resemble something in

between that of uniform gossip andspatial gossip[43]. In both cases, attrition of knowledge is

involved, since the individual robots described in this thesis forget what they previously knew when

they are given new information. At the time of writing, attrition in gossip algorithms does not appear
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to have attracted significant attention.

1.2 Markov Decision Processes

A Markov decision process is a mathematical framework that allows an agent to reason about its

actions in some environment. They are common in the field of artificial intelligence, as they can

be combined with machine learning techniques to enable an agent to learn plans of action, called

policies. Markov decision processes (MDP) come in many different varieties, only three of which

are discussed here, briefly. They are not generally useful for decision-making in dec-MRS that are

composed of may simple agents. However, they are included inthis work, as a thesis on decision-

making would be lacking were it to omit mentioning them altogether.

The simplest of these processes, denoted MDP, describes a single decision-making agent in a

completely observable environment. It is represented by a tuple: 〈S,A, T ,R, β〉. The world is

modeled as a finite set of statessǫS, a finite set of actionsaǫA that the agent could take, and a

transition functionT : S × A →
∏

(S) that provides a probability distribution overS for each

action in each state. That is, if an agent takes actiona in states, T specifies the probability of the

agent ending up in each of the possible statess′ ∈ S. R : S × A → R is a reward function giving

the expected immediate reward to the agent for taking actiona in states. Finally, 0 ≥ β ≥ 1 is a

discount factor that reduces the immediate value of the reward for future actions2 [49]. Numerous

methods have been developed over the years to derive optimalpolicies for an agent when an MDP

applies. An optimal policy for a finite horizon MDP can be found in polynomial time [56].

The main weakness of the basic MDP is that it assumes that the complete state of the environment

is available to the agent. That is, the agent knows preciselythe current states ∈ S of the world.

This, however, is an unrealistic assumption. In reality, anagent only can know about the likelihood of

being in a particular state. Thepartially observableMDP, or POMDP, incorporates this uncertainty

about the state of the world. As Monahan put it, if an MDP models a frog hopping from one lily

pad to the next on a pond on a clear day, then a POMDP does the same in foggy weather [55].

A POMDP also is represented by a tuple, but it contains additional elements:〈S,A, T ,R,Z,O〉.

S,A, T , andR are the same in a POMDP as they are in a MDP.Z is a finite set of observations

that the agent could make, andO : S × A →
∏

(Z) is an observation function.O(s′, a, z) is the

probability of the agent making the observationz upon entering states′ after to taking actiona [49].

Like a regular MDP, the solution to a POMDP is a policy for justone agent. However, the addition

of the uncertainty regarding the state of the world considerably complicates policy derivation. The

complexity of a finite horizon POMDP is PSPACE-hard, meaningthat the optimal policy cannot be

found in polynomial time with a deterministic algorithm [7].

There have been several extensions to the MDP and POMDP frameworks to model problems

2This is somewhat like inflation in a financial system. Gettingpaid $500 today is more valuable than getting paid $500 in
the future, andβ provides this discount on future rewards to the agent so thatexpected rewards can be compared on a level
playing field.
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in which multiple agents must be considered. The one most applicable to decision-making in a

decentralized MRS is the decentralized POMDP, or DEC-POMDP[7]. Here, each world states ∈ S

includes the state of each individual agent. The transitionprobabilities for the world now take the

form P (s′|a1, . . . am), whereai is the action taken by agenti. The reward functionR now also

depends on every agent’s action, and each agenti is given its own observations,Ωi (Bernsteinet al.

use the symbolΩ to indicate the observations that Littman denotedZ). The observation probabilities

O also become much more complex, taking the formO(o1, . . . , om|a1, . . . , om), since each agent’s

individual observations depend on the actions taken by it and every other agent. Clearly, this is

a much more complicated problem than either the MDP or the POMDP. It has been shown to be

NEXP-complete for all but the trivial single agent case (which is just a POMDP), which means that

it provablycannot be solved in polynomial time. In the special case in which the union of all of

the agents’ observations completely specifies the state of the world, a DEC-MDP is produced (i.e.

the world is collectively observable), and these are NEXP-complete for systems composed three or

more agents [7].

The general DEC-(PO)MDP does not assume that the agents can communicate with each other.

Its complexity arises from the fact that every agent must reason about every other agent in its system,

combined with all of the related uncertainty. It has been shown that the addition of free instantaneous

communication reduces a DEC-POMDP to a POMDP [73]. However,communication in the real

world is not free, nor is it instantaneous. The inherent intractability of the DEC-POMDP has forced

researchers to seek out heuristic solutions [16]. This has lead to a wealth of additional frameworks

to capture the assumptions made by such studies. Pynadath and Tambe have developed a new model

called the COMmunicative Multiagent Team Decision Problem, or COM-MTDP so that all of these

frameworks can be compared equitably [74].

Clearly, a relatively sophisticated agent is required to develop policies using the DEC-POMDP

framework or its derivatives, and the problem only becomes more difficult as the number of agents

increases and their environment and potential actions become more fine-grained. Furthermore, even

if such agents were practical in a dec-MRS, it is not at all clear how the collective decision-making

problem could be modeled as a Markov decision process. Without some model of a collective

decision as a set of states with potential transitions between them (i.e. what areS and T in a

generic collective decision?), results from the MDP literature are unlikely to be of much use. It is

for these reasons that these frameworks are not practical for the collective decision-making by the

simple, resource constrained, real-world agents that are the robots of the large-population dec-MRS

for which this work is intended.

1.3 Ant Colony Optimization

Many eusocial insects [9] such as ants use emergent recruitment behaviours to collectively compare

different alternatives that are known to their colonies. Recruitment is central to the decision-making
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framework proposed by this thesis, but this work does not describe the first algorithm for an artificial

system to take advantage of it.

Dorigoet al. have developed a novel optimization algorithm called Ant Colony Optimization, or

ACO, that applies ant-inspired pheromone trail following to solve otherwise intractable optimization

problems [21, 20]. ACO mimics the ability of ants that lay down chemical trails (such asLasius

niger) to find the most efficient paths between their nests and food sources. When a real trail laying

ant finds a food source, it lays down a trail of a volatile chemical called pheromone as it travels

back to its nest. The amount of pheromone that it deposits increases with its opinion of the food

source. When other ants encounter this trail, they will be recruited to follow it with a probability

that increases with the concentration of pheromone in it. These ants make their own evaluations

of the food source, and reinforce the trail with their own pheromone as they head back to the nest.

This increases the likelihood of the trail recruiting even more ants. Because each ant will tend to

cut corners, the trail also will be refined over time as thoughit was a string between the nest and the

food source being pulled taught. Eventually, the trail willconverge to follow the lowest cost path

between these two points.

ACO adapts this emergent social behaviour by representing complex optimization problems spa-

tially in a simulated environment such that candidate solutions to them will take the form of paths

through the solution space.Artificial ants search for solutions by wandering about, and then lay

down anartificial pheromone trailto identify them. Other artificial ants are more likely to to fol-

low paths in the solution space that are marked by stronger pheromone trails, and the corner-cutting

behaviour of the individuals refines the identified solution(s) to be locally maximal. Over time, the

behaviour of the entire artificial colony will tend to converge to a single solution to the problem [21],

which then can be identified by an external user.

Because the real ants have evolved their behaviour to find theshortest paths in their environment,

ACO is particularly well suited to problems such as the traveling salesman problem, often encoun-

tered in networking domains. ACO, however, is not an autonomous behaviour when considered at

the system level. The artificial ants do not recognize the purpose of their behaviour, instead contin-

ually applying their local rules at the micro level3. A complex problem must be set up for ACO by

some external operator, the process initiated, and the solution later identified after the system has

converged. Thus, it is primarily an engineering design tool[21], somewhat similar to simulated an-

nealing [15], an optimization strategy that applies the principles of thermodynamics to obtain good

solutions to combinatorial problems.

3The individual ants could be thought of as specialized particles that are released into an engineered environment, in
which their collective behaviour is ascribed special meaning. In this way, they are no different than the molecules of oil and
air in a bubble-level, the collective behaviour of which permit an external observer to know when the device is horizontal.
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1.4 Quorum and Quorum Testing

A quorum is defined asthe number of members of any society or assembly that must be present if the

business done is to be legal or binding[2]. In other words, a quorum is a threshold of participants

below which action by a group or collective would be inappropriate. Quorums are common in the

formal rules of order used by governments and other deliberative assemblies, such as Robert’s Rules

of Order [41], but they also are common in the natural world. Some species of ant and bee employ

quorums when they decide on the location of a new nest site. Bydelaying their commitment to a

particular site until a quorum of insects agree that it should be chosen, a system is able to make

decisions much more accurately than an individual insect would be able to [31]. Even bacteria,

some of the simplest organisms of all have been found to employ quorums so that their collective

behaviour can be socially coordinated [90, 54]. This suggests that quorum is an effective, yet low

cost social mechanism.

Social insects and other simple, socially interactive species have been the inspiration for nu-

merous works in computing science and engineering. The manner in which they test quorum has

been adapted for used in artificial systems, too. In [67], a mobile agent on a mobile ad-hoc network

hopped from host to host, testing quorum to determine whether or not a sufficient proportion of the

hosts agreed about some proposed action (e.g. revoking the key of a malfunctioning host). Only

once the agent believed that quorum had been satisfied would the action be taken. The manner in

which the mobile agent tested quorum is somewhat similar to the digital quorum test presented in

Section 3.4.2, except that in this work, many robots test quorum simultaneously.

1.5 Summary

In this chapter, several areas of research related to decision-making in dec-MRS have been discussed.

Much of the existing decision-making work has focused on smaller systems composed of relatively

sophisticated individuals, whereas studies of large-population dec-MRS have tended to focus on

emergent behaviours and their remote control by an externaland centralized operator. One field of

great importance to dec-MRS that has been neglected in this chapter, however, is that of biology.

The next chapter is devoted to this area and, in particular, the behaviours evolved by some naturally

occurring decentralized systems (which obviously lack remote teleoperators to make system-level

decisions on their behalf) to make system-level decisions.
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Chapter 2

Cooperative Decision-Making by
Social Insects

Cooperative decision-making is common in animal societies, both in human civilization and in the

natural world [17]. In this chapter, the decision-making behaviour of honeybees (Apis mellifera)

and the antsTemnothorax albipennis1 andTemnothorax curvispinosusis examined in detail. It is

their ability to make unanimous group decisions through only local interaction and communication,

despite the decentralized nature of their colonies, that isthe inspiration for the decision-making

algorithm at the core of this thesis.

2.1 The Nest Relocation Behaviours of Honeybees and Temnotho-
rax Ants

The decision-making algorithm proposed by this thesis for multiple-robot systems was inspired by

the cooperative nest relocation behaviours of honeybees and Temnothoraxants. In this section,

a description of the manner in which each species selects a new home is given in detail. Both

appear to have evolved the same approach to decision-makingindependently, adapting pre-existing

behaviours to a common framework.

2.1.1 Nest Relocation in Honeybees

Honeybees are a well-studied social insect due to their long-standing economic importance. Because

the bees put so much of their effort into the production of honeycombs and the storage of food, the

construction of a nest represents a substantial investment[31]. A colony that is successful will tend

to increase the size of its population, and eventually it will outgrow the cavity (e.g. an old hollow

tree trunk) in which it had built its nest [78]. If it is to continue to prosper and grow, a new nest site

must be found.
1Close inspection of the literature will identify two other species of ant:Leptothorax tuberointerruptusandLeptothorax

albipennis. These names are in fact former misclassification ofTemnothorax albipennisused prior to its current name.
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Figure 2.1: Honeybees collectively decide on their new homeafter they have left their old nest and
formed a swarm on a tree branch or other structure, shown on the left. The individual bees search out
candidate nest sites, and advertise them to other bees at theswarm using the waggle-dance shown
on the right. Bees that have found better sites tend to perform more dances than those that favour
poorer sites, so the best site will attract the majority of the decision-makers. Once a bee determines
that its favoured site is sufficiently popular, it rouses theswarm and helps guide it to its new home.
The photo in 2.1(a) is copyright Thomas D. Seeley and reproduced with his permission, 2.1(b) after
Figure 1 in [31].

The relocation process begins with the division of a colony.The queen and half of the workers

form a swarm and leave the nest, lighting upon a nearby tree branch or some other structure (see

Figure 2.1(a)). The remaining workers and a newly reared queen are left at the old hive to continue

on there [80]. The majority of the bees in the swarm cluster around the queen and become dormant,

so as to protect her and conserve their energy reserves (theygorge themselves on honey before

leaving their old home). Some of the swarm’s members (about 5% by population) remain active and

make the decision about where the swarm should build its new nest [31]2. Several of these bees act

as scouts and search the countryside for potential nest sites, often covering an area as large as 150

square kilometers [31].

The bees are able to determine the absolute quality of a potential site based on a variety of

features [79]. Once a scout has found a site and measured its quality, it returns to the swarm. There,

it advertises its site to other bees using the waggle-dance (Figure 2.1(b)), an elegant behaviour that

communicates the location its site [78]. The number of individual dances that a bee will perform

to advertise its site depends on its own opinion of the site’squality. Better sites will tend to illicit

more dancing from the scouts that find them [11]. Each dance that a bee performs is a set of waggle-

dances. Other bees that observe a scout’s dances might fly to the specified site to evaluate it for

themselves. In practice, multiple sites will tend to be found and advertised at the swarm. The

probability of a bee flying to visit a site advertised by a dance that it has observed is fixed, and the

bees observe dances at random, so the probability of a dance-observing bee flying to visit a particular

2It is not clear how this division of labour is accomplished. Perhaps, as it is the case with harvester ants [35], the
older individuals take on the relatively dangerous scouting role, since these insects would be the most knowledgeable of the
surrounding environment and are close enough to the ends of their lives that the swarm could afford to risk them.
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site is directly proportional to the relative number of dances performed that advertise it [87]. For

example if twice as many dances are performed for site A as forsite B, then a dance-observing bee

will be twice as likely to visit site A relative to site B. Beesthat observe a dance and fly to its site

are said to be recruited to that site.

After performing a series of dances, a scout will leave the swarm to visit its site, and then return

to the swarm to dance again. Each time a scout returns to the swarm, it decreases the number of

dances that it performs linearly, by approximately 15 dances each time. Eventually, a bee will cease

dancing altogether, and joins the dance-observing bees on the swarm. Its previous experience as

a dancer appears not to bias which dances it might choose to observe or follow [77]. Because the

number of dances that a bee performs is determined by its opinion of its site’s absolute quality, bees

that favour better sites will tend to perform more dances before they stop dancing altogether, and thus

will tend to induce more of their teammates to inspect their sites than bees favouring poorer sites. In

this way, the bees’ independent evaluations of absolute site quality, without any direct comparisons

of sites, swell the populations of bees favouring the bettersites more rapidly than those favouring

poorer ones. If the bees favouring a particular site are unable to recruit any of their teammates before

they stop dancing, then that site will be forgotten by the swarm, thus eliminating it from the list of

candidates for their new home [81, 31].

Eventually, the positive feedback of the bees’ dancing and dance-following behaviour, if allowed

to continue long enough, would tend to eliminate all but one of the candidate sites from the swarm’s

collective memory (this demonstrated in greater detail in the next chapter), leading to complete con-

sensus in favour of one site. However, it has been demonstrated that consensus is neither necessary

nor sufficient for a swarm to complete its decision. Swarms can lift off while dances for several

different sites still are being performed [11, 78, 82]. Instead, it is the detection of a quorum at one

of the candidate sites that triggers the bees to commit to it [80, 82]. Because each site-favouring bee

regularly visits the site that it favours, each site known toa swarm will have some number of bees

visiting it at any given moment. The size of this visiting population is an indicator of its popularity,

and in turn, the colony’s net opinion of its quality. Bees areable to infer the size of the visiting

population during their visits to a site, which they then compare to a threshold called the quorum.

Once a quorum of bees is observed at a candidate site, the frequency ofbuzz-runningon the

swarm increases. In this behaviour, the bees that have observed quorum burrow through the swarm

cluster, buzzing their wings vigourously. It is believed that this stirs up the swarm, causing the

inactive majority of the bees to warm their flight muscles in preparation for lift-off. An audible

signal calledpipingalso increases during this process. Buzz-running and piping appear to broadcast

to the dormant members of the the swarm that a collective decision has been made. The swarm then

lifts off and is guided to the new site by the scouts, who appear to herd the swarm by flying through

it in the direction of its new home [11].
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(a) (b)

Figure 2.2: When an ant first finds a candidate nest site, it leads other ants to it one at a time using
tandem-runs, shown on the left. Each ant delays prior to leading its first tandem-run, and the length
of this delay decreases the better an ant perceives its site’s quality to be. Therefore, better sites will
have ants lead to them more rapidly than poorer ones. While ata candidate site, an ant measures
the number of other ants that also are visiting it. Once this exceeds a threshold called the quorum,
it stops tandem-running and instead uses transports, shownon the right. Transports are three times
faster than tandem-runs, so once quorum is satisfied, the colony quickly will be relocated to the new
site. Because the best site is the most likely to satisfy quorum first, the colony will tend to choose
the best one for its new home. The photos in this Figure are copyright Stephen C. Pratt and are
reproduced here with his permission.

2.1.2 Nest Relocation in Temnothorax Ants

Certain ants of the genusTemnothoraxalso encounter the collective house-hunting problem [50].

These ants live in relatively small colonies containing only a few hundred workers3 [30], and build

their nests in natural rock fissures, the fragility of which likely necessitates frequent emigrations to

new nest sites [70].

The selection of a new nest begins with individual scouts leaving the nest to search for candidate

sites [50]. Like the bees, the individual ants are able to measure the absolute quality of sites that

they find [70]. Because the ants’ search covers a relatively small area (about 1 m2 [31]), and because

potential nest sites for them are fairly common, it is not unusual for an ant to find more than one

site. The ants are able to make direct comparisons and identify the single best one of those that they

happen to find [31]. Following the evaluation of a candidate site, a scout returns to the current nest

to recruit other ants to inspect the site for themselves. Recruitment inTemnothoraxants is carried

out using two distinct methods: tandem-runs and transports. In a tandem-run (see Figure 2.2(a)), an

ant leads its recruit from the nest to its candidate site in a follow-the-leader fashion. When an ant

transports a teammate, on the other hand, it picks up its recruit and carries it to the site [50]. The

advantage of a transport is that it is fast - about three timesfaster than a tandem-run [70]. However,

a tandem runteachesthe recruited ant the route between the nest and a candidate site, as the recruit

is able to observe landmarks along the way [32].

Initially, an ant will use tandem-runs to recruit other antsto inspect its favoured site. As is the

case with honeybees, the greater the number of ants recruited to a site, the more ants will tend to

be visiting it at any given moment. When it visits a candidatesite, an ant measures the size of the

3In addition to workers, colonies contain a fertile queen andbrood items (eggs and larval ants).
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visiting population via the rate at which it encounters other ants as it wanders about there [69]. Once

an ant has determined that the size of the population visiting its favoured site has reached a quorum, it

changes its recruiting behaviour. Instead of using tandem-runs, it adopts the much faster transports,

which rapidly increases the number of ants at its candidate site [70]. This induces additional ants to

observe quorum, and they switch from tandem-runs to transports as well. The quorum used by the

ants appears to be adaptive, since larger colonies tend to employ greater quorums than smaller ones

[69].

The ants’ recruiting behaviour is affected by their individual opinions of their favoured sites’

qualities. Upon returning from a candidate site for the firsttime, an ant will delay for site-quality

dependent period of time before leading a tandem-run. The better an ant perceives its site to be, the

shorter this delay will be. This delay provides better siteswith a head-start in the recruitment process

relative to poorer ones. Ants brought by tandem-run to a siteassess its quality for themselves, and

delay their own first recruitments accordingly [31]. Subsequent tandem-runs are not preceded by a

quality-dependent delay, and thus occur at a rate independent of site quality [70]. Individual ants do

not drop out of the recruitment process, and so the collective behaviour of their recruiting resembles

a race between the different sites to determine which will satisfy quorum first. Ultimately, the better

a site is perceived to be by the individual ants, the more rapidly it will tend to increase the size of its

recruited population, and thus the more likely it will be to be the first to satisfy quorum and induce

the ants that favour it to switch from tandem-runs to transports.

Ants are that are brought to a site by a transport do not themselves return to the original nest

to lead tandem-runs or transports. However, ants are observed leading tandem-runs in the opposite

direction (reverse tandem-runs), from the site back to the original nest. This reallocates the idle ants

were they are needed most: back at the original nest site so that they can help transport additional

ants from there to the new nest site [70].

The tandem-running (forwards) can be thought of a probationary phase of a decision, in which

the ants have made individual decisions about the candidatesites, but are waiting for a sufficient

population of ants to agree with them before they commit. Theobservation of quorum signals

to an ant that a sufficiently large agreeing population has been recruited, and so it can commit

confidently to its chosen site as the colony’s new home and switch to the more rapid transports in

order to quickly wrap-up the decision-making process before another site satisfies quorum, too. The

tandem-runs serve the additional purpose of educating a sufficient number of ants about the location

of a candidate site so that, once quorum has been met, there will be enough ants able to participate

in the transportation phase so that the relocation can be completed rapidly. In the event that multiple

sites satisfy quorum, the reverse tandem-runs allow the quorum-satisfying sites to compete with

each other via attrition to be the single new nest site ultimately chosen by a colony.
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Figure 2.3: This figure summarizes the nest site selection behaviours of honeybees (left) andTem-
nothoraxants (right). Although there are differences between the two approaches, they are remark-
ably similar, both being organized into three distinct phases. First, individual insects search for
candidate sites. Next, through a decentralized recruitment process, the known sites are ranked. The
insects commit to the first site that becomes sufficiently popular (i.e. satisfies quorum) and it is
adopted as their new home.
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2.2 A Comparison and Contrasting of the Ants’ and Bees’ Be-
haviours

Both honeybees andTemnothoraxants demonstrate the ability to make consensus-based [17] col-

lective decisions when they need to select a new site for a nest. The general structures of their

decision-making strategies are remarkably similar (see Figure 2.3). Both are organized into three

phases, beginning with a search byindividuals for candidate nest sites in the surrounding envi-

ronment. This search is followed by a period of recruitment,during which the individual insects’

opinions of absolute site quality drives positive feedback, increasing the popularity of better sites

more rapidly than that of poorer ones. The bees’ positive feedback is driven by the tendency of

idle bees at the swarm to observe and follow other bees’ dances to candidate sites, and the dancing

bees’ ability to modulate how much they dance with their opinions of their favoured sites. The ants

implement their positive feedback through the amount of time that they delay before leading their

teammates one-by-one to the sites that they favour. Eventually, sufficient recruitment will take place

so that one of the sites becomes so popular that the insects that favour it alter their behaviour. Both

species appear to come to this conclusion based on the density of insects at a particular favoured site,

and each individual that favours a site independently measures its favoured site’s popularity. The

ants switch from slow tandem-runs to the more rapid transports, whereas the bees begin to buzz-run

at the swarm. The impact of both of these behaviours is to rapidly bring the collective decision to an

end, unanimously selecting one of the alternatives that wasfound during the initial search.

This process of individual search, competitive recruitment and quorum-triggered commitment

is a robust form of collective decision-making that requires only local communication. There are

subtle differences between the ants’ and bees’ behaviours,however. The remainder of this section

examines these differences, and discusses how they might guide the development of a collective

decision-making algorithm for dec-MRS.

2.2.1 Initiating a Collective Decision

Although the bees and the ants both use their emergent decision-making behaviour to choose a new

site for their nest, the manner in which they initiate their decisions differs. Honeybee decisions

begin when the queen departs with half of the colony to form a swarm, and it is from the perch of

the swarm that the decision is made. Although the process of forming the swarm and departing the

nest might be an emergent one and thus decentralized at its root, honeybee decisions can be thought

of as centrally begun. All of the bees know that a decision is necessary, and the formation of the

swarm synchronizes its start. Aunary decision, described in detail in Chapter 4, would allow a

decentralized system to make such a decision, although the mechanism employed by the honeybees

is not clear.

Temnothoraxants, on the other hand, are known to be opportunistic and will move from a current

nest to a better site whenever one is found [23]. Their nests do not require a significant investment of
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energy for their construction, which take advantage of naturally occurring structures that can be used

almost as-is [27, 28]. Therefore, unlike the bees, which must abandontheir elaborate honeycombs

when they emigrate, the ants only incur the cost of a move itself when they relocate. A single ant

could initiate a decision to move to a new site if it happens tofind a sufficiently good one while

exploring the area around the nest. However, for a decision to be made, the nest mates that it would

lead to the site that it found also would have to agree that thesite was good enough to justify a

colony-wide move. Eventually, an ant will give up on a candidate site if it detects a lack of progress

in its recruiting, so a colony will not constantly be on the move if one of its members4 keeps finding

new nest sites in the surrounding environment.

2.2.2 Quorum

Quorum is central to the decision-making of both the ants andthe bees. It is the mechanism by which

an emergent site-ranking behaviour is linked to a mass-migration behaviour, the resulting synthesis

being a collective decision. The use of a quorum makes a decision analogous to an election in

which the candidates are the potential nest sites. Individual insects “vote” for a site that they favour

by visiting it, and they also act as the pollsters by measuring the size of the population visiting a

favoured site while they are there. The alternative of measuring the popularity of a site by polling

individuals at the swarm or old nest, although more accurate(discussed in the next chapter), is

more complicated, since it would require the individual decision-makers to explicitly communicate

to each other the precise site that they favour. The spatial nature of site selection simplifies the

quorum-testing problem by sorting the voters by their favoured site, so the insects need only visit

their site to count and be counted.

Experimental evidence suggests that the ants tally votes via the rate at which they encounter

other ants while visiting a site [69]. The ants use a quorum that is correlated to the population size

of their colony, which makes large colonies less likely to make rash decisions by employing too low

a quorum, and small colonies less likely to stagnate due to too high of a quorum [22]. They also vary

the value of quorum depending on the urgency of the decision at hand. For example, when a colony

moves to a new site simply because it has found a better one, a large quorum will be employed, since

the ants have the luxury of making a careful decision. On the other hand, when the ants’ nest has

become damaged, a lower quorum is used so that a new nest site will be selected rapidly and thus

provide the colony with shelter as soon as possible.

The bees also require a quorum to be satisfied before they takeflight and head to the selected site,

and it appears that they evaluate it at the candidate sites similarly to the ants, although the precise

mechanism used to measure the popularity of a favoured site is unknown as of yet [82]. Unlike the

ants, the bees relocate to a site as a cohesive group. Individual bees begin to buzz-run throughout

their swarm once they have observed quorum at a favoured site, stirring up the mostly dormant bees

4There is considerable variation in the calibration of the ants in a given colony [72].
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causing them to warm up their flight muscles in preparation for lift -off. A single bee appears to be

unable to stir up its swarm on its own, and so lift-off requires several bees to observe quorum. A

dormant swarm of bees has a sort of inertia (i.e. a swarm at rest tends to remain at rest), so a quorum

of bees that have observed quorum (i.e. a meta-quorum) is required to rouse it. Whether this is

an evolved advantage or a fortunate coincidence, it will tend to increase the reliability of the bees’

decision-making.

2.2.3 Split Decisions, and Recovery From Them

A split decision occurs when a colony commits to more than onecandidate site. Split decisions can

be dangerous. At the very least, they will delay the completion of a group decision. At the worst,

however, they could cleave a system into two or more pieces, each relocating to a different site.

Ultimately, only the group that contained the queen would survive5. Furthermore, the portion of

the swarm that included the queen would be greatly weakened by its reduction in overall numerical

strength. Therefore, split decisions generally should be avoided, and both the ants and the bees have

evolved behaviours to recover from them.

When honeybees decide on a new nest site, they already have left their old nest and are exposed

to predators and the elements. When more than one site satisfies quorum, the honeybees favouring

the different quorum-satisfying sites cooperatively induce the swarm to take flight, but when they

attempt to herd the now airborne swarm, they find that they allare attempting to pull it in a different

direction, each bee pulling towards the site the it believeshas satisfied quorum. Evidently, a swarm

is able to detect this mode of failure, and it reforms on a nearby tree or other structure to restart

the recruitment process again. During this repeat of the collective deliberation, the bees seem to

remember the sites that they had favoured immediately priorto the failed lift-off, as the bees very

quickly begin to visit and dance in favour of them with no new search for candidate sites being

necessary. This behaviour was described in [80].

The ants solve the problem of split decisions in a different manner. Unlike the bees, the ants

do not relocate to a new nest as a cohesive team. Instead, as individual ants independently detect

quorum at a favoured site, they each make the decision to switch from tandem-runs to transports.

Therefore, their transition from Phase 2 to Phase 3 (Figure 2.3(b)) is gradual, made one ant at a

time. In the event that more than one candidate site is believed to satisfy quorum, ants will begin

transporting their teammates to each one. It is here that thereverse tandem-runs appear make sense

[70]. These bring ants from sites that have satisfied quorum back to the site of the original nest, so

that they might help transport additional ants to the site from which they were led. Ultimately, if a

tie is to be broken, it will be broken in the manner of attrition: whichever site can deploy the most

ants to transport ants from the other sites to it will “win” inthe end. Of course, because the ants

5In a honeybee colony, as is the case in most social insect societies, the queen is the only fertile individual. All of the
workers are sterile sisters, and males are only produced during mating season. Therefore, if a colony were to split into two or
more groups, only one of them would be able to reproduce, while the others would tend to slowly die off and not be replaced.
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migrate over such short distances, it seems likely that stragglers eventually will find their colony’s

new home, even if they are not brought there by a teammate. Theants’ apparently rash decision-

making allows them to capitalize on several sites, and then sort out the resulting mess later on via

transporter attrition. Their adaptive quorum [29] would allow them to choose between methodical

monolithic decisions or rapid decisions with clean-up as circumstances dictated.

2.3 Summary

The survival of both honeybees andTemnothoraxants is tied directly to their abilities to select good

sites for their colonies’ nests. A colony that cannot find a suitable site, or one that cannot choose

a good site over a poor one will be at a competitive disadvantage and will be less likely to pass its

genes on to the next generation. Thus, despite the subtle differences in their respective strategies, the

behaviours of both species should be held up as examples of robust group decision-making using

only local interaction. Their general strategy of search, recruitment-driven solution ranking, and

quorum-based commitment is a powerful framework that enables collectives of simple individuals

to make intelligent decisions without any form of centralized control.

It is interesting to note that the ants and bees have adapted behaviours that serve other roles

in day-to-day colony life to their decision-making behaviour. Tandem-running is common inTem-

nothoraxants to lead nest mates to profitable sources of food, whereashoneybees employ their

waggle-dance to this end [31]. When viewed side-by-side, their respective decision-making al-

gorithms are remarkably similar; different implementations of the same three-phase framework:

search, deliberate, commit. That both implementations appear to have evolved independently of

each other is a further endorsement of the framework’s utility. In the next chapter, these insects’

decision-making behaviour is adapted for use by dec-MRS, and the behaviours responsible for the

different decision-making phases are described in greaterdetail.
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Chapter 3

Collective Decision-Making from
Social Insect Behaviour

The nest relocation strategy of honeybees andTemnothoraxants described in the last chapter is

an elegant collective decision-making behaviour. In this chapter, a general-purpose, three-phase

decision-making framework for use by dec-MRS based on the insects’ behaviour is presented, and

the internal details of the key mechanisms are analyzed.

3.1 A General Purpose Decision-Making Framework

This section outlines the decision-making framework upon which the rest of this thesis focuses. The

framework is organized into three basic phases:searching, deliberation, andcommitment. Figure 3.1

illustrates how these are assembled to create a cooperativedecentralized decision-making behaviour.

The process begins with the recognition of the need for a group decision, which is followed by a

search for alternatives. During this searching phase, the individual robots identify potential solutions

to the problem that necessitated a cooperative decision. Searching is discussed in Section 3.2.

In the next phase of a decision, the robots deliberate over the alternatives that were identified

by the initial search. The deliberation phase of a decision uses positive feedback to compare the

different alternatives based on their quality as perceivedby the individual robots. The fundamental

operation at the core of this decentralized comparison is called recruitment. Robots recruit each

other amongst the different alternatives, and the best one becomes apparent as the one favoured by

the largest number of robots. This process is detailed in Section 3.3.

During the deliberation phase, as the robots recruit each other, they also estimate the popularity

of the solutions that they favour. Using only local, anonymous communication, they are able to

compute the consensus in favour of the alternatives, and this is compared to a threshold called the

quorum. Once the consensus in favour of one of the solutions reachesthis threshold, quorum is said

to be satisfied, which initiates the final phase of a decision.Decentralized consensus estimation and

quorum testing are described in Section 3.4.
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Figure 3.1: The contribution of this thesis is a general-purpose decision-making framework inspired
by the nest-site selection behaviour of honeybees andTemnothoraxants. When a decision is required
in a dec-MRS, its members begin by conducting a decentralized search for alternatives. The search
is followed by a period of deliberation in which the best of these alternatives is identified. Through
consensus estimation and quorum testing, the robots determine when sufficient deliberation has oc-
curred, after which the final commitment phase promotes the unanimous adoption of the alternative
that was identified as best. This chapter describes the mechanisms at the cores of these three phases.

Once alternatives have been found, and the best of these has been identified, it is time to com-

plete the decision unanimously. In a decentralized system,global communication is impractical,

and so a strategy that uses local communication to spread themessage that a particular alternative

should be adopted by every robot is required. This is accomplished in the final phase of a decision:

commitment. The commitment phase is described in Section 3.5.

3.2 Searching for Alternatives

An autonomous group decision must be preceded by the recognition of the need for a decision.

This recognition could occur in many ways, but in this thesis, it is assumed that the robots all agree

initially that a decision is required1. The first stage in a decision is to identify candidate solutions

to the problem necessitating a group decision. These solutions are referred to as thealternatives.

The nature of the alternatives sought by the robots depends on the specific decision being made. For

example, in the collective relocation problem [57], the problem that the ants and bees tackle, the

alternatives are candidate sites in the surrounding environment.

On the other hand, if some intractable optimization problemwas the focus of a decision, such as

1In the final chapter of this work, decentralized initiation of group decisions is discussed.
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the traveling salesman problem, each robot could propose a route using some heuristic method. A

variety of routes would be generated if each robot randomly seeded a common heuristic, or perhaps

each robot’s unique history would result in different routes being proposed. In this way, the group

decision could be viewed as a kind of Ant Colony Optimization[21], except that the proposed

decision-making framework is better-suited to real robots than the ACO algorithm.

In certain domains, the alternatives might be knowna priori. Consider a dec-MRS designed

for building security. Such a system might be programmed to carry out a fixed set of operations:

patrol, follow intruder, respond to alarm, etc. Group decisions made by this system would allow it

to dynamically decide which operation best-suited the circumstances at hand.

The deliberation and commitment phases do not depend on the nature of the problem being

solved, only the ability of the individual robots to understand it. Therefore, to keep the discussion in

this chapter as generally applicable as possible, the term “alternative” will be used unless a specific

kind of decision is implied.

3.2.1 The Transition from Searching to Deliberation

The searching phase is followed by the deliberation phase, in which the alternatives that have been

found are compared and the best one is identified. However, itis very important to keep in mind that,

unless steps are taken to prevent it, the individual robots of a dec-MRS will enter the deliberation

phase asynchronously. Each searching robot will begin the process of recruitment once it has found

an alternative and evaluated its quality. Those alternatives that are identified earlier will get a head

start in the process.

In practice, this head start can be beneficial. The real worldis not episodic, and a dynamic

environment cannot be “paused” while the robots search for alternatives. Therefore, the value of

a solution oftenshould take into account the time that was required to identify it. The optimal

alternative is of little value if it takes too long to find. In some situations, however, circumstances

will permit a longer searching phase, and in such cases the robots should continue to search for for

alternatives until some predetermined time. Delaying the onset of deliberation until an agreed time

would prevent quickly identified but poor alternatives fromacquiring an unwarranted lead in the

deliberation phase.

The implementation of this delay could be as simple as “do notbegin to deliberate until three

o’clock”. An alternative found after this time would still be considered by the collective deliberation,

but it would have to be sufficiently high in quality so as to overcome its late introduction into the

process if it is to be selected in the end.

3.3 Deliberation and Recruitment

Recruitment is a common social behaviour in natural decentralized systems, including social insect

colonies. Therefore, it should come as no surprise that it isused in their decision-making, and in
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turn in the biologically inspired decision-making framework proposed by this thesis. Recruitment

enables a decentralized system to compare several alternatives using simple peer-to-peer operations

to identify the best one. It does this by amplifying [12] the differences in alternative qualitiesau-

tocatalytically, meaning that it employs a kind of positive feedback. At its root is the emission of

a signal by recruiting individuals, and the tendency of those that receive the signal to participate in

its emission as well, thus amplifying it2. The individuals that emit the recruitment signal are called

recruiters, and they modulate the strengths of their emissions based ontheir own opinion of the

particular alternative at the focus of each individual’s recruitment. The probability of an individual

being recruited to a particular alternative increases as the combined strength of the recruitment sig-

nal emitted by those that favour it increases relative to thestrengths of those emitted by individuals

favouring other alternatives. The alternative that tends to be held in the highest opinion will tend to

attract additional recruits more rapidly than the other ones.

3.3.1 Indirect Recruitment

The laying of pheromone trails by ants (such asLasius niger[5, 4]) between their nest and a source of

food is a particularly well-known recruitment mechanism. Here, the recruiters are foragers that have

visited some food source and believe that it is sufficiently high in quality that other ants should be

recruited to help exploit it. The recruitment signal is a trail of volatile chemical, called pheromone,

laid down by the recruiting ants as they travel between the food source and the nest. The recruiters

are able to modulate the strength of the recruitment signal by depositing drops of pheromone more

or less frequently as they travel between the nest and the food source. The recruiting strength of

a trail is an increasing function of the number of recruitingants that continually reinforce it and

their opinions of the quality of the food source at its end (since this determines how frequently each

recruiter deposits pheromone along the trail). As the number of recruiters increases, so does the

likelihood of their collectively laid pheromone trail recruiting additional ants, which in turn further

increases the strength of the trail via their own pheromone deposits. Because the quality of the food

source to which the trail leads also contributes positivelyto the trail’s ability to recruit, the number

of ants visiting better food sources will tend to increase more rapidly than the populations visiting

poorer ones. Over time, the best food source will attract themajority of the ants. The positive

feedback of the recruitment process allows a decentralizedsystem of simple individuals to identify

and exploit the best alternative that collectively is knownto them.

Pseudo-pheromone trails have been employed with success byartificial decentralized systems

in virtual environments. The best example of their use is AntColony Optimization [21], which has

been used to find shortest paths through telecommunication networks. Chemical trails, however,

are poorly-suited to artificial systems operating in real-world environments for the simple reason

that current robots are unable to manufacture the necessarychemicals themselves. Furthermore, the

2The nature of the recruitment signal and the channel over which it is transmitted must be such that the emissions of
multiple individuals will constructively interfere.

26



 0

 20

 40

 60

 80

 100

 0  25  50  75  100  125  150  175  200

R
ec

ru
ite

d 
P

op
ul

at
io

n 
S

iz
e

Time

Recruited Population Size Versus Time
With Only One Alternative

Tr = 10 seconds

Figure 3.2: This figure illustrates how the positive feedback of direct recruitment increases the size
of a population favouring some lone alternative. Initially, all 100 of the robots are idle, except for
one that favours the alternative. EveryTr = 10 seconds, the robots that favour the alternative each
send a randomly selected teammate a recruit-message. Idle robots that receive these messages are
recruited, and join the ranks of those that favour the alternative. Initially, the growth of the recruited
population is exponential, but as the proportion of robots that are recruited grows, more and more
of the recruit-messages are sent to robots that already are recruited, and thus have no effect. This
causes the population growth to slow. Because the only stable state for a robot is favouring the
alternative, every robot eventually is recruited.

specific chemicals used to lay down trails must be tailored tothe specific environment of operation.

Finally, trail-following is limited to the comparison of alternatives that are distributed spatially.

3.3.2 Direct Recruitment

There is a much better way to implement autocatalytic recruitment in a a real dec-MRS, though, and

the ants and bees described in the last chapter provide it. Instead of indirectly recruiting teammates

by the strength of some intermediate signal, the robots could recruit each other directly, by explicitly

sending an encountered teammate some message equivalent to“I have recruited you to this specific

alternative.” The bees’ waggle dances and the ants’ tandem-runs perform precisely this function.

Here, the probability of a recruitment signal successfullyrecruiting those that receive it would be

constant. In other words, the amplitude of each recruitmentsignal would be fixed. In order to

vary the rate of recruitment with an alternative’s perceived quality, the recruiters simply vary the

frequency with which they attempt to recruit their teammates. More frequently attempting to recruit

teammates would increase the expected rate at which teammates were successfully recruited. In

other words, the robotsthemselvesare the pheromone trail.

Let us assume that each robot in a dec-MRS will ascribe the same quality to some alternative

once it has been recruited to favour it3, and that only one robot favours the alternative initially.

3To be clear on the terminology used in this work, some robots are recruitable, and these robots can berecruited. Once
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Figure 3.3: This figure illustrates the basic concept of direct recruitment when more than one alter-
native is known. Individuals recruit teammates to their favoured alternative at a rated that depends on
the alternative’s quality. Over time, the relative qualities of the known alternatives becomes apparent
via the number of robots that favour each one. In this particular example, there are two alternatives,
A andB. Robots are represented by circles, and the letters in the circles denote the alternative
that they favour. AlternativeA is half as good asB, and so the robots that favourA recruit half
as frequently asB-favouring robots. Initially (a) each alternative is favoured by a single robot. As
recruitment progresses (b), theB recruits more quickly thanA. After all of the robots have been
recruited (c),B’s superiority is clear, since more robots favour it thanA.

Each recruiter varies the rate at which it attempts to recruit teammates via the parameterTr, the

inter-recruitment period.Tr is a positive, non-zero, decreasing function of a favoured alternative’s

quality as it is perceived by the robot that favours it. Consider a dec-MRS in which a single robot

favours an alternative at timet = 0 and all other robots favour no alternative at all. At timet =

Tr, the alternative-favouring robot will attempt to recruit one of its teammates, selected at random

(assume that every attempt to recruit a teammate will be successful). Because all of its teammates

are recruitable, the attempt will succeed and the population favouring the alternative will double to

two robots. At timet = 2Tr, both robots will select teammates at random and send them recruit-

messages. If we assume that the dec-MRS contains many robots, the two robots will be unlikely

to randomly select the same teammate or each other, so the recruited population likely will double

again to four robots. This exponential growth will continue, but its rate will slow as more and more

of the robots are recruited, since there will be fewer robotsleft to recruit, and so more and more

of the recruit-messages will be sent to teammates that already have been recruited to favour the

alternative. A simulation of this sort of bounded population growth is illustrated for a 100-robot

system by Figure 3.2, in whichTr = 10 seconds.

When multiple alternatives are known, their differing qualities as perceived by the individual

robots will cause their respective recruiters to compute different values forTr. The better an alterna-

they have been recruited, they willfavour the alternative to which they were recruited. A short-hand for this is to say that a
robot isrecruited to favour the alternative.

28



tive is, the more frequently those robots that favour it willsend recruit-messages, and thus the more

rapidly will robots be recruited to it. Figure 3.3 depicts this principle graphically. In this example,

there are two known alternatives:A andB. B is twice as good asA, and so the robots that favourB

recruit twice as often as those that favourA (TrB
= 1

2TrA
). As a result, the size of theB-favouring

population,NB, will tend to grow at twice the rate of theA-favouring population,NA. By the third

step,B’s superiority toA is clearly evident via the greater number of robots recruited to favour it.

Figure 3.3 presents a rather naive illustration of a collective comparison through direct recruit-

ment, since only those robots that had not already been recruited were sent recruit-messages. The

size of the unrecruited population is denotedNo. In the remainder of this section, several direct

recruitment strategies are presented under two general classifications:immutableand iterative re-

cruitment. They differ in how the robots that favour an alternative (i.e. those not inNo) behave

when they receive recruit-messages. This simple difference results in markedly different collective

behaviours.

Immutable Recruitment

The simplest implementation of direct recruitment isimmutable recruitment. Under this model, the

only recruitable robots are those that do not already favouran alternative. Once a robot has been

recruited to favour some alternative, it will continue to favour that alternative indefinitely. This

means that the populations that favour the known alternatives never decrease; they either increase or

remain constant.

In basic immutable recruitment, each alternative-favouring robot’s attempts to recruit a team-

mate are separated by an interval of time called theinter-recruitment period, denotedTr. Tr is

a decreasing function of a robot’s opinion of its favoured alternative’s quality. The better a robot

believes its favoured alternative to be, the lower a value for Tr it will compute, leading to more fre-

quent attempts to recruit by robots that favour better alternatives. A simulation of basic immutable

recruitment in which a pair of alternatives of different quality initially are known, each favoured by

a single robot, and in whichTr = 10

alternative quality, is plotted in Figure 3.4.

Eventually, every robot is recruited to favour one of the twoalternatives, and the number of

robots recruited to alternativeB is greater, indicating that it is the better one. Mathematically, the

behaviour of basic immutable recruitment can be represented Equations 3.1-3.3.

Ṅo = −βANoNA − βBNoNB (3.1)

ṄA = βANoNA (3.2)

ṄB = βBNoNB (3.3)

Here,βA andβB are positive constants inversely proportional toTrA
andTrB

, respectively.

Similarly, NA andNB are the total number of robots that favour alternativesA andB. It is clear
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Recruited Population Size Versus Time,
Basic Immutable Recruitment

Alternative A (quality = 0.5)
Alternative B (quality = 1.0)

Figure 3.4: In this figure, the growth of two competing populations of recruiters is plotted. Ini-
tially, one of the robots favours alternativeA, and another favours alternativeB. The period of time
between a robot’s attempts to recruit randomly selected teammates, denotedTr is inversely propor-
tional to the quality of the alternative that it favours. In this case, robots that favourB recruit twice
as often as those that favourA, sinceB is twice as good asA. Once a robot is recruited to favour
a particular solution, it will never change its mind. This iscalled immutable recruitment. Eventu-
ally, all of the robots are recruited to favour one of the two alternatives, and the better one can be
identified by the greater size of its recruited population.

from inspection that all of the robots eventually will be recruited to one alternative or the other, so

the set of system states corresponding toNo = 0 are equilibria. The only non-zero eigenvalue of

this system’s Jacobian whenNo = 0 is equal to−βANA−βBNB. Because none of the eigenvalues

have positive real parts, a system employing basic immutable recruitment is stable once all of the

robots have been recruited to favour an alternative, regardless of the distribution of robots amongst

the alternatives.

In the simulation used to generate this Figure 3.4, it was assumed that each robot was able to

measure the quality of its favoured alternative precisely.However, if a single robot happened to

make an error and overestimate the quality of its favoured alternative, it would recruit teammates

more frequently than it should, biasing the outcome of the collective comparison in favour of its

alternative. The earlier that such an error were to occur, the more it would bias the outcome of the

collective comparison towards the alternative favoured bythe erroneous robot.Temnothoraxants

modify basic immutable recruitment in a manner that addresses this problem. Only an ant’sfirst

attempt to recruit a teammate is preceded by a delay that is a function of its favoured alternative’s

quality [70]. Every attempt of a robot to recruit after its first attempt is preceded by a different delay,

one that is independent of the quality ascribed by the robot to its favoured alternative. This quality-

independent delay, denotedTro
, is common to all robots. With this simple modification, if anerror is

made, it will only impact a single attempt to recruit. The error would only be amplified if the robots
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Temnothorax-Style Immutable Recruitment

Alternative A (quality = 0.5)
Alternative B (quality = 1.0)

Figure 3.5: Temnothoraxants employ a slight variation on the basic immutable recruitment be-
haviour in their decision-making. Only the delay prior to anindividual’s very first attempt to recruit
a teammate is influenced by its perception of the quality of its alternative. Every subsequent attempt
to recruit is preceded by a quality-independent delay,Tro

, which here is 10 seconds. The better
alternative still clearly is able to recruit more robots in the end. The advantageTemnothorax-style
immutable recruitment is that errors made by individual robots when measuring alternative quality
will have less of an impact on the overall recruitment behaviour, making it more robust to noisy
sensors.

that it recruited also made similarly erroneous evaluations of the alternative’s quality. Despite this

reduction in alternative-dependent positive feedback, Figure 3.5 illustrates that the better alternative

still tends to recruit the more robots than the poorer one by the comparison’s end. This system

also can be modeled as a set of rate equations, given by Equations 3.4-3.8. Here,βo is a constant

inversely proportional toTro
. The population of robots that favour each alternative is subdivided

into those that have recently been recruited and are delaying prior to their first attempt to recruit, and

those recruiting regularly everyTro
seconds. These two groups are denoted by the superscriptsW

andR (e.g.NW
A andNR

A ), respectively.

Ṅo = −βoNoN
R
A − βoNoN

R
B (3.4)

˙NW
A = βoNoN

R
A − βANW

A (3.5)

˙NW
B = βoNoN

R
B − βBNW

B (3.6)

ṄR
A = βANW

A (3.7)

ṄR
B = βBNW

B (3.8)

As was the case for basic immutable recruitment, it is clear from an inspection of Equations

3.4-3.8 that all of the robots eventually will be recruited to favour one of the two known alternatives.

The non-zero eigenvalues of the Jacobian of this system are−βo(N
R
A + NR

B ), −βA, and−βB.
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Therefore, regardless of how the robots eventually are distributed amongst the known alternatives,

the system will be stable once all of the robots have been recruited.

The attraction of immutable recruitment is its simplicity.Its fundamental drawback, though, is

that it is immutable: robots cannot be re-recruited. Alternatives that are found early enjoy substantial

head-starts in immutable recruitment and, even in theTemnothorax-inspired variant, it still tends to

be sensitive to individual errors. Furthermore, if many alternatives are found, the final sizes of the

populations recruited to each one might all be too small to trigger commitment, leading to stagnation

in the deliberation phase of a group decision.

Iterative Recruitment

The second variation on direct recruitment is callediterative recruitment. Iterative recruitment is

identical to immutable recruitment, except that the individual robots can be recruited more than

once. Iterative recruitment was inspired by the recruitingbehaviour of honeybees, so a strategy

patterned after their behaviour will be presented first. Recall that the honeybees, like the ants, are

recruited from an idle state. Unlike the ants, however, the recruited bees eventually return to the

idle state. It could be said that the recruiters are “born” out of the idle population, and then “die”

by returning to it some time later. It is during their lifetimes as recruiters that they attempt to recruit

other individuals. The number of times that a recruiter willrandomly select a teammate and send

it a recruit-message over its lifetime is equal to the product of its lifetime and the frequency with

which it sends recruit messages. Therefore, robots that favour better alternatives will tend to send

more recruit-messages than those that favour poorer ones.

This behaviour can be formalized as follows. Only robots that do not favour an alternative are

recruitable, and once recruited, robots attempt to recruittheir teammates everyTr seconds, which is

inversely proportional to alternative quality as before. After a robot has favoured an alternative for

Tl seconds, it returns to the idle state, from which it might be recruited again. Mathematically, this

is represented by Equations 3.9-3.11, in whichβl ∝ 1
Tl

is the rate at which alternative-favouring

robots rejoin the unrecruited population. A simulation of honeybee-style iterative recruitment using

the same relationship between alternative quality andTr as was used in the examples of immutable

recruitment, withTl = 50 seconds is plotted in Figure 3.6.

Ṅo = βlNA + βlNB − βANoNA − βBNoNB (3.9)

ṄA = βANoNA − βlNA (3.10)

ṄB = βBNoNB − βlNB (3.11)

Not only does the better alternative attract the greatest recruited population, but the popula-

tion favouring the lesser alternative is completely eliminated. A steady-state population of robots

favouring the remaining alternative also reached that is less than 100% of the robots, which can be
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explained as follows. Over the course of a recruiter’s lifetime, it will will attempt to recruitTl/Tr

times. Each of a recruiter’s recruit-messages will be sent to a robot that does not favour an alterna-

tive with a probability equal toNo

N−1 . Therefore, the expected number of robots that a recruiter will

recruit in its lifetime,Er is given by Equation 3.12.

Er =
Tl

Tr
·

No

N − 1
(3.12)

A population of robots favouring a particular alternative will grow in number if Er > 1, and

will decrease ifEr < 1. WhenEr is unity, the population will remain constant at a dynamic

equilibrium. Each alternative-favouring population is coupled to every other one throughNo, the

number of recruitable robots, since the different alternative-favouring populations compete with

each other to recruit these individuals. Equation 3.13 is obtained by rearranging Equation 3.12 and

solving forNo.

No =
EiTr(N − 1)

Tl
(3.13)

By settingEr = 1, No is the minimum number of idle robots that must be available toan

alternative-favouring population to allow it to at least maintain its size. If some of these idle robots

are recruited, thenEr will drop below unity and the population will decrease in size. This is precisely

how the population of robots that favours the best alternative drives the others to extinction. They

are able to swell their numbers even after sizes of the populations favouring lesser solutions have

plateaued. When they recruit additional robots,No decreases and soEr for the poorer alternative-

favouring populations will reduce to less than unity, in turn decreasing those populations and even-

tually eliminating them altogether.

Given sufficient time, iterative recruitment is characterized by its ability to completely discard all

but one alternative, and the remaining one will tend to be thebest of those that was found. There exist

a pair of subtle problems with the honeybee-inspired approach. First,No will always be greater than

zero, so at equilibrium, there will always be some idle robots. The size of this unrecruited population

depends directly on the remaining alternative’s absolute quality, so if the best known alternative is

relatively poor, the steady-state population favouring it(equal toN −No) will be relatively small. If

this happened to be too small to satisfy quorum, stagnation would follow4. This means thatTl and

the mapping of alternative quality toTr must be tuned to specific decisions, including the expected

qualities of the alternatives.

Second, honeybee iterative recruitment is poor at comparing multiple alternatives of equal qual-

ity. Consider the situation in which two alternatives are equally good. The idle population at equi-

librium for both alternatives will be the same (since both use the same value ofTr), so neither one

will be able to push the other to extinction by recruiting a few additional robots and reducing the

4It might seem odd that both recruitment mechanisms used by natural systems permit stagnation. Both the ants and
the bees employ low quorums, have tuned their behaviours to their specific environments, and they have evolved additional
behaviours to break deadlocks.
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Alternative A (quality = 0.5)
Alternative B (quality = 1.0)

Figure 3.6: Iterative recruitment differs from immutable recruitment (Figures 3.4 and 3.5) in that the
robots can be recruited to more than one alternative throughout the process. This is the strategy used
by the honeybees. When a robot is recruited, it favours the alternative of its recruiter, and attempts to
recruit others, but eventually it will return to the idle state, from which it might get recruited again.
Therefore, the alternatives compete against each other forthe idle robots. Robots are more likely to
be recruited to the better alternatives, so the populationsfavouring the lesser alternatives eventually
are wiped out. Ultimately, only one alternative will remain. However, because robots favouring an
alternative reenter the idle state at a finite, non-zero rate, some constant proportion of a system’s
robots always will be in the idle state, preventing 100% unanimity from being achieved.

other’sEr to less than unity. Only through stochasticity might one of the populations extinguish

the other, and this will become increasingly unlikely as theoverall population size of the dec-MRS

increases. Identical alternatives might seem improbable,but keep in mind that two alternatives

will be perceivedby the robots to be equally good if they differ only in some manner undetectable

by them. When two alternatives are equally good,βA = βB = β in Equations 3.9-3.11, and at

steady-state,No = βl

β . The only non-zero eigenvalue of the honeybee Jacobian at this equilibrium

is −β(Na + NB). Since it is less than zero, the system is stable, so neither alternative will be able

to extinguish the other through any means other than random chance.

The problem of a steady-state recruited population less than 100% of the robots is easily be

overcome by eliminating the tendency of recruited robots toreturn to the idle state (i.e. makeTl

infinite), and enabling robots to recruit alternative-favouring teammates directly. However, the tie-

breaking problem remains. This recruitment strategy, calledbasic iterative recruitmentis described

by Equations 3.14-3.16.

Ṅo = −βANoNA − βBNoNB (3.14)

ṄA = βANA(No + NB) − βBNANB (3.15)

ṄB = βBNB(No + NB) − βANBNA (3.16)
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Figure 3.7: The main problem with the honeybee approach to iterative recruitment is that the steady-
state size of the population favouring the best alternativedirectly depends on the alternative’s ab-
solute quality as perceived by the robots. This is because the only stable state in that approach is
the idle state. Instead of recruiting robots only from the idle state, regular iterative recruitment al-
lows robots to be recruited directly from favouring one alternative to favour another. This means
that favouring an alternative is a stable state, since robots will continue to favour a alternative until
they receive a recruit-message from a teammate favouring a different alternative. Similarly to hon-
eybee iterative recruitment, all but the best alternative will be forgotten. Unlike honeybee iterative
recruitment, however, the steady-state size of the population favouring the remaining alternative will
always be 100% of the robots.

Clearly, the number of unrecruited robots eventually will decrease to zero, sincėNo is always

negative when at least one alternative is known, but the onlypotentially non-zero eigenvalue when

No = 0 is (NB − NA)(βA − βB), which is zero whenβA = βB. Again, unanimity will only be

achieved through random perturbations in the recruitment process.

The tie-breaking problem can be solved by tying the valueβi not only to an alternative’s quality,

but it’s popularity, too. That is,βi in the basic iterative recruitment strategy is replaced byβiγNi

here, whereγ is some positive constant. This new strategy, referred to inthis work simply asiterative

recruitmentis described by Equations 3.17-3.19.

Ṅo = −βAγNoN2
A − βBγNoN2

B (3.17)

ṄA = βAγN2
A(No + NB) − βBγNAN2

B (3.18)

ṄB = βBγN2
B(No + NB) − βAγN2

ANB (3.19)

A simulation of iterative recruitment is shown in Figure 3.7. βA = βB = β, NA = NB,No =

0 is the equilibrium point in this system when two equal alternatives are being compared. The

eigenvalues of the Jacobian of this system at this tie are− 1
2βγN2, 0, and1

2βγN2. Because one

of the eigenvalues is positive, the equilibrium unstable. Randomness in the rate at which the robots
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Figure 3.8: Another great advantage of iterative recruitment over immutable recruitment is that a
better alternative found later on in the process can still obtain the unanimous support of a dec-MRS
if it is sufficiently good. In this figure, alternativeA is found att = 0, whereas alternativeB is found
at timet = 100. AlternativeB is twice as good as alternativeA, so robots that favour it to recruit
twice as frequently as those that favourA. The population favouringB grows rapidly, eventually
recruiting every robot in the system.

actually encounter each other will push the system off of theequilibrium, at which point the rate

of recruitment for the more popular alternative will increase and that of the less popular one will

decrease, thereby pushing the system away from the equilibrium point and towards the unanimous

adoption of a single alternative.

Although the robots do not actually know how many of their teammates agree with them and thus

cannot implement the system described by Equations 3.17-3.19 directly, a simple behaviour-based

strategy permits it to be implemented in a more emergent manner as follows. Robots respond to

recruit-messages, telling the recruiter whether or not therecipient of the message already favoured

the specified alternativea priori. When a robot is informed that attempted to recruit a teammate that

already agreed with it, it will becomefrustrated. Instead of scheduling its next attempt to recruit a

teammateTr seconds into the future, a frustrated robot will attempt to recruit the very robot that it

encounters. It will remain frustrated until it successfully recruits a teammate, at which point it will

cease to be frustrated and instead attempt to recruit teammates at a rate governed byTr.

If it assumed that theTr is greater than the expected inter-robot encounter period,T0, then be-

coming frustrated increases up the rate at which a robot attempts to recruit teammates. The average

rate of recruitment by the population of robots that favoursa particular alternative increases with the

proportion of them that are frustrated. This in turn increases with the popularity of their favoured

alternative, since robots that favour more popular alternatives are more likely to encounter agreeing

teammates and become frustrated than robots that favour less popular alternatives.

Not only does iterative recruitment lead to the unanimous favouring of a single alternative, but
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a sufficiently good alternative discovered after deliberation already has begun might still emerge as

the one identified as best by the robots. This property is illustrated by Figure 3.8. The later that

an alternative is found, the better it would have to be to overcome the head-start enjoyed by those

alternatives that were found earlier.

3.4 Quorum Testing and Consensus Estimation

In a collective decision, the quorum is the minimum support that an alternative must attract in or-

der for it to induce commitment and complete the decision. Quorum is said to besatisfiedby an

alternative once the consensus in favour of it meets or exceeds quorum.Quorum testingis the pro-

cess of measuring consensus and comparing it to the quorum. Thus, at its core, quorum testing is a

parameter estimation and thresholding operation.

During the deliberation phase of a collective decision, thenumber of robots that favour each

alternative will evolve. Better alternatives tend to increase their recruiting corps whereas poorer

alternatives tend to lose support. It is quorum testing thatends the deliberation phase, signaling that

the best alternative has been identified. The satisfaction of quorum triggers the commitment phase,

in which the quorum-satisfying alternative is unanimouslyadopted by the entire dec-MRS. The

ideal quorum test would be instantaneous and accurate. Speed and accuracy are competing interests,

however, and so a real-world quorum test must strike an appropriate balance between them. Recall

also that the individual robots will know of at most a single alternative: the one that they favour.

Therefore, an individual robot can test quorum only for the alternative that it favours. As a result,

the total number of alternatives being collectively compared does not increase the computational

complexity of consensus estimation and quorum testing for the individual robots. It also reduces

the likelihood of a robot making an error and concluding thata less popular alternative has satisfied

quorum, since fewer robots test quorum for the less popular alternatives, simply because fewer

robots favour them.

3.4.1 Off-Swarm Consensus Estimation

In certain domains, the nature of the decision being made by adec-MRS can be exploited to simplify

quorum testing. When alternatives are spatially distributed, as they are in the collective relocation

problem, quorum could be tested for an alternative by comparing the number of robots that visit its

location to a threshold.

For this strategy to succeed, the robots that favour an alternative would have to visit its site

regularly to assess the visiting population. Each robot that favoured a particular alternative therefore

would spend some proportion of its time at its favoured alternative’s location. As an alternative

became more popular, the size of the average visiting population would increase. Quorum in this

case would be an absolute number of robots bounded by the population size of the dec-MRS.
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Because only some of each robot’s time is spent visiting its alternative, the average visiting

population size is unlikely to exceed a fraction of the totalnumber of robots in a system, even if

every robot favoured the same alternative. Therefore, quorum would have to be relatively small in

order to have a realistic chance of one of the robots observing a quorum of its teammates when

it visited the site of its alternative. A low quorum would increase the probability of a robot that

favoured a poorer alternative observing quorum first. This might occur if all of the robots that

favoured a particular poor alternative happened to visit its location at the same time.

The advantage of thisoff-swarmapproach is that consensus estimation and quorum testing do

not require explicit communication, since only passive observation of teammates is required. Fur-

thermore, the synonym problem is avoided. Alternatives arerepresented by locations in a shared

environment, so two robots that visit the same alternative’s location know that they both favour the

same alternative, regardless of the label given to the alternative by them. To paraphrase Shakespeare,

a particular alternative by any other name should smell justas sweet[83].

3.4.2 Consensus Estimation by Explicit Opinion Sampling On-Swarm

Off-swarm consensus estimation exploits a specific decision-making domain and environment. It

assumes that the candidate alternatives have unambiguous mappings to distinct geographic locations.

The advantage of the off-swarm approach is that the communicative capabilities of the individual

robots in a dec-MRS could be very limited, yet they still could take advantage of it. However,

the articulative aspects of inter-robot communication canbe considered a solved problem in many

ways. The problem that confronts a robot is nothow to transmit a message, butwhat a message

should contain. In this section, a scalable approach to consensus estimation is presented that takes

advantage of explicit inter-robot communication, and two different implementations are provided.

Consider a dec-MRS that is composed ofN robots,Na of which favour some particular alterna-

tive in common, and the remainingN − Na favour different alternatives (or none at all). If one of

theNa robots randomly selects a teammate and asks it whether or notit also favours the same alter-

native, the probability of the queried robot responding affirmatively would beNa−1
N−1 , sinceNa−1 of

the querying robot’sN −1 teammates also favour its alternative. This fraction is called theapparent

consensus, denotedCa. It is the consensus apparent to a robot when it does not include its own

opinion. Without knowing the number of teammates in its dec-MRS, a robot cannot include its own

opinion, since it would be unable to compute an appropriate weight so that it equitably could be

included in is measurement of consensus (i.e. it would tend to over- or under-value its own opinion).

Note that apparent consensus is strictly less thantrue consensus, Na

N , denotedCt. However, this

difference becomes insignificant asN increases.

The response of a queried robot is called avote-message, and a vote-message is either “yes” or

“no”, indicating whether or not the queried robot favours the same alternative as the querying robot5.

5It does not matter if the asking robot asks “Do you favour alternativeX?”, to which the queried robot would respond
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Over time, robots favouring an alternative will receive a sequence of vote-messages as they query

the teammates that they encounter. Letvotei denote theith vote-message received by a particular

robot, and the functionγ(votei) quantify this vote according to Equation 3.20.

γ(votei) =

{

1 : votei = “yes”
0 : otherwise

(3.20)

If a robot receives receivesn vote-messages, obtained from randomly selected teammates, it can

estimateCa for its favoured alternative from them using Equation 3.21.Just like when people’s

opinions are gathered for a survey of public opinion, it is important that the vote-messages that each

robot uses to estimateCa are collected from randomly selected teammates. Since it isassumed that

the individual robots are unable to identify the specific teammates that they encounter, it falls the

the stochastic nature of their interactions to generate a random sample of teammate opinions. The

termwell-stirred [62] is used to characterize such interaction. In a well-stirred system, the identity

of the robot encountered by an individual is equally likely to be any of its teammates, and each

encounter is a statistically independent event. In a densely populated dec-MRS, the independence

of each encounter might not be a valid assumption, but the well-stirred assumption could be made to

hold by counting only everyith encounter with a teammate, or only those separated by a sufficiently

long period of time. In this way, additional opportunity would be given for the system to stir itself

between the querying of teammates.

C̃a =
1

n

n
∑

i=1

γ(votei) (3.21)

The symbolC̃a indicates that the quantity on the left side of Equation 3.21is an estimate of

Ca, not the precise apparent consensus itself. Throughout this discussion and derivation, it must

be kept in mind that the individuals do not have global knowledge of dec-MRS state. Furthermore,

each robot computes̃Ca only for the alternatives that it favours. Therefore, a specific value of C̃a

corresponds only to the alternative favoured by the robot that computed it.

Digital Consensus Estimation

A simple way to implement consensus estimation would be to provide each robot with ann-element

queue, into which quantized teammate opinions would be inserted. With every insertion of a new

teammate opinion, the(n + 1)th opinion would be discarded, and̃Ca at any given moment would

be the mean value of the opinions in the queue. This concept isreferred to in this work asdigital

consensus estimation, and is illustrated by Figure 3.9.

How n should be selected? The greatern is made, the more opinions will be included in the

computation ofC̃a, and thus the more accurate the estimate will tend to be. However, asn is

increased,C̃a depends more upon older opinions, and thus tracks changes inapparent consensus

“yes” or “no”, or if the asking robot asks “What alternative do you favour?”, and then interprets the queried robot’s response
as a “yes” or a “no”.
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γ

Figure 3.9: This illustration depicts digital consensus estimation. The robot on the left is computing
an estimate of apparent consensus for some alternativeX that it favours. Upon encountering a
teammate, it asks it if it also favoursX . The teammate does not, and its response “No” is converted
to the numerical value 0 by the quantifying functionγ(votei). Some earlier collected opinions were
“Yes”, and these were assigned a value of 1. In this example,n = 5, so only the five most recently
received quantified opinions are averaged to computeC̃a, which in this case is 60%. The previous
three values forC̃a by the robot on the left were 60%, 40% and 60%. By increasing number of
opinions used to computẽCa, the accuracy of each estimate increases but requires more teammate
opinions and thus more time to compute.

more slowly. Keep in mind that each estimate of apparent consensus is compared to a threshold,

and that a behavioural change will occur only if̃Ca is greater than or equal to the threshold. A

compromise must be found between the speed and accuracy of quorum testing.

Because vote-messages are assigned a value of either 1 or 0, each one is a Bernoulli random

variable in whichP (votei = 1) is equal toCa. Let the threshold to which a robot comparesC̃a be

denoted byQ, whereQ ∈ [0, 1]. A robot concludes that quorum has been satisfied onceC̃a ≥ Q,

which will occur when at least⌈nQ⌉ of then most recently received vote-messages are affirmative.

The probability of receivingi affirmative votes in a sequence ofn follows the binomial distribution.

Thus the overall probability of a particular set ofn vote-messages suggesting that quorum has been

satisfied is the sum of the binomial distribution over the range i ∈ [⌈nQ⌉, n], which is given by

Equation 3.22

P (C̃a ≥ Q) =

n
∑

i=⌈nQ⌉

(

n

i

)

(Ca)i(1 − Ca)n−i (3.22)

A false positivequorum test is said to occur wheñCa ≥ Q andCa < quorum. That is, when

a robot erroneously believes that the apparent consensus satisfies quorum when in fact it does not.

Equation 3.23 provides this mathematically.

P (C̃a ≥ Q ∧ Ca < quorum) =
∑

Ca∈[0,quorum)

P (C̃a ≥ Q) (3.23)

Figure 3.10 plots Equation 3.22 for different values ofn andQ. Equation 3.23 can be interpreted

graphically as the area under one of these curves to the left of Ca = quorum. Note from Figure
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Figure 3.10: The graphs in this figure illustrate how the parametersn andQ (the number of teammate
opinions used to computẽCa and the threshold to which̃Ca is compared to in order to test quorum)
affect the probability of a robot believing that quorum is satisfied versus the actual value of apparent
consensus,Ca. Increasingn makes the curve more step-like, decreasing the likelihood of a robot
prematurely committing. IncreasingQ does not significantly change the shape of the curve, instead
shifting it to the right.

3.10(a) that this area decreases asn is increased, as the curve approaches the shape of a step at

Ca = Q. However, the area to the left ofCa = quorum will never be nonzero, and a very large

value ofn would be necessary to reduce it substantially. This would slow down consensus estimation

significantly.

Changing the value ofQ while keepingn constant does not significantly alter the shape of the

curves, instead shifting them to the right asQ is increased. This is shown by Figure 3.10(b). Quorum

andQ, however, need not be the same. Since the goal is to prevent a robot from making false positive

errors, the desired quorum should be specified, and then the parametersn andQ selected strike an

acceptable balance between the desire for speed and the likelihood of a false positive test occurring.

For example,n = 15, Q = 80% appears to be a good choice of parameters to test a quorum of 50%.

The commitment phase of a decision begins once one of the robots believes that quorum has

been satisfied. The probability of commitment occurring is equal to one minus the probability of

none of theNa robots testing quorum believing that quorum has been satisfied:

P (commitment) = 1 − (1 − P (C̃a ≥ Q))Na

= 1 −

[

n
∑

i=⌈nQ⌉

(

n
i

)

(Ca)i(1 − Ca)n−i

](⌊Ca(N−1)⌋+1)
(3.24)

The concern is that, whereas the probability of a particularrobot concluding that quorum is

satisfied is independent of the number of robots that composea dec-MRS, the probability of at least

one of the robots in a system committing is not, indicated by the exponent in the second line of

Equation 3.24. Although the probability of at least one robot prematurely believing that quorum

has been satisfied does increase withN , the behaviour of a given configuration is quite stable and
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Figure 3.11: The commitment phase begins once one of the robots estimating consensus believes
that quorum has been satisfied. AsCa increases, there by definition will be more robots estimating
apparent consensus, and so the chance of one of them making anerror by overestimatingCa and
prematurely triggering commitment phase also will increase. This graph plots the probability of at
least one robot believing that quorum has been satisfied as a function ofCa and the population size,
N . Although the behaviour of quorum testing does depend somewhat on the population size, the
decrease in reliability asN increases is minimal.

predictable, as illustrated by Figure 3.24. In particular,the data plotted in this figure shows that the

configurationn = 25, Q = 80% is a good test for a quorum of 50% when the population is 15

robots or less, and remains a good test for a quorum of 40% for populations up to at least 50 robots.

Analog Consensus Estimation

A robot also could estimate the apparent consensus amongst its teammates using an analog imple-

mentation. At first, an analog solution to a computational problem might seem quaint or out of date,

conjuring images of Grey Walter’s tortoises [89]. However,a single-purpose analog circuit often is

more compact and more efficient than its digital equivalent.A concise analog implementation of

a quorum test would be very useful in micro- or nano-scale robots. Just as bacteria test quorum to

select their individual behaviors [54, 90], so could the members of a microscopic dec-MRS. In a

system of such simple robots, unable to make accurate observations of their environment on their

own, the pooling of individual opinions and quorum testing could be of critical importance. The

contributions of this section build upon those of [62].

The analog quorum test uses a pair of exponentially decayingvariables to estimate apparent con-

sensus. These are called thequorum indexand thekin index, denoted byq(t) andk(t), respectively.

When such a variable is incremented by a constant amount at a regular interval, a sawtoothed wave

is formed, illustrated by Figure 3.12. The peak value of thiswave will increase over time, reaching

an equilibrium value that is determined by the time constantof exponential decay (τ ), The amount
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Figure 3.12: At the heart of analog consensus estimation area pair of exponentially decaying indices.
These are called the kin and quorum indices, denotedq(t) andk(t), respectively. Periodically, these
are incremented by a constant amount.k(t) is incremented whenever any teammate is encountered,
whereasq(t) is incremented only when an agreeing teammate is encountered. Both curves adopt a
sawtoothed shape, reaching equilibria determined by the frequency with which they are incremented.
In this figure, the quorum index is incremented only half as often as the kin index, and its peak
equilibrium is half that of the kin index. In general, the peak equilibrium value of the quorum index
will be equal to that of the kin index scaled by the apparent consensus, and so their ratio computes
C̃a.

by which the variable is incremented, and the period of time between the regular increments. The

quorum index is incremented every time that an agreeing teammate is encountered, whereas the kin

index is incremented with every teammate encounter. Both indices are incremented by the same

amount,∆. It will now be shown thatq(t)k(t) ≈ Ca.

Assume that, in a well-stirred dec-MRS, a robot will encounter one of its teammates every

T0 seconds. BecauseCa of a robot’s teammates agree with it, the time between encounters with

agreeing teammatesTa = T0/Ca. Therefore,q(t0 + Ta) = q(t0)e
−Ta/τ immediately before∆ is

added to the index. At equilibrium,q(t0) = q(t0 + Ta) + ∆, andq(t0) will be the peak equilibrium

value of the quorum index, denoted byqequ. This quantity can be expressed as a function of apparent

consensus as shown by Equation 3.25.

qequ(Ca) = ∆

1−e
−Ta

τ

= ∆

1−e
−T0

τCa

≈ ∆ τCa

T0

(3.25)

The final approximation in Equation 3.25 is obtained with thefollowing limit: lim
f(x)→0

ef(x) =

1 + f(x). Therefore, when−T0

τCa
is small,e

−T0

τCa is well-approximated by1 − T0

τCa
. Substituting this
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Figure 3.13: The ratio of the peak equilibrium values of the quorum and kin indices closely approx-
imates the apparent consensus. This figure plots this ratio,using two different values forτ , which
specifies the rate at which the indices decay. Increasingτ increases the accuracy of the estimate, but
also will increase the time required to make the estimate.

into the second line of Equation 3.25 yields the third.

The kin index,k(t) also reaches a peak equilibrium value,kequ, but this is independent of the

apparent consensus. By following the same steps as in the case of the quorum index, the result of

Equation 3.26 is obtained.

kequ = ∆

1−e
−T0

τ

≈ ∆ τ
T0

(3.26)

It should now be clear that the ratio the two exponentially decaying indices estimates the apparent

consensus, illustrated by Equation 3.27.

qpequ (Ca)

kpequ
≈

∆ τCa
T0

∆ τ
T0

≈ Ca

= C̃a

(3.27)

All that remains is to choose the time constantτ , which determines the rate at which the kin

and quorum indices decay. As was the case when digital consensus estimation was examined, there

is a trade-off between the accuracy of the individual robots’ estimates,C̃a, and the time required

to compute them. It is the value ofτ relative toT0 that determines what kind of balance is struck

between these competing concerns.

Recall that the linear approximation of the peak equilibrium values ofkpequ
andqpequ

assumed

that the exponent to which the base of the natural logarithm was raised was small. This is achieved

whenτ ≫ T0. The greaterτ is, the better the approximation will hold. Because of this,increasing
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Figure 3.14: This analog circuit permits even the smallest and simplest of robots to estimate apparent
consensus and use it to test quorum. The upper and lower RC-circuits produce sawtoothed waves
denoted q(t) and k(t), the DC peak values of which are proportional toNa−1 andN−1, respectively.
Quorum is tested by comparingq(t) to Qk(t) via the comparator on the right. Whenq(t) ≥ Qk(t),
the comparator switches on, signaling that quorum is satisfied.

τ improves the accuracy of consensus estimation. The more slowly the kin and quorum indices

decay, however, the longer it will take for them to reach their equilibrium values, increasing the time

required to computẽCa. Refer to Figure 3.13. The curve corresponding to the highervalue ofτ

approximates the actual value ofCa better that the one using a lowerτ . Furthermore, note that the

errors in consensus estimation are greater whenCa is lower, and thatC̃a > Ca.

Figure 3.14 presents a simple implementation of an analog quorum test, illustrating how easily

this powerful concept could be integrated into even the simplest of robots. In this derivation, it

was assumed that the robots of a well-stirred dec-MRS will encounter their teammates at some

regular intervalT0. It is important to note thatT0 is not an exact value, but a random variable with

a distribution. T0 should be chosen to be as low as possible, so that a robot wouldbe unlikely

experience two teammate encounters separated by less thanT0. Another option would be to add a

timer to the circuit of 3.14 that prevented the kin and quorumindices from being incremented more

frequently thanT0, ignoring any encounters that occurred before this encounter-timer elapsed.

The time-dependence of analog consensus estimation can introduce errors inC̃a not present

when it is estimated digitally. For example, if a robot were to get lost and stop encountering its

teammates altogether, the kin index would decrease (measured absolutely) more rapidly than the

quorum index, since the former always is greater than the latter and exponential decay is propor-

tional to instantaneous magnitude. This in turn would increase the ratioq(t)/k(t), resulting in an

overestimate ofCa. Eventually, a robot would believe that 100% consensus existed. If this hypothet-
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Figure 3.15: This figure plots four robots’ estimates of apparent consensus computed with two
different values ofn in a system whereCa = 50%. Both graphs use the same sequences of robot
interactions; onlyn differs. Whenn is small,C̃a can change rapidly, but there is a substantial amount
of noise in the measurements. Increasingn greatly increases the accuracy of the measurements, but
they take longer to reach a steady-state value.

ically lost robot were to rejoin its teammates, and the first one that it encountered was an agreeing

teammate, the robot again would believe thatCa = 100%, since both indices would have decayed

to near zero while it was lost and both would have∆ added to them by this encounter, producing a

unity ratio once again. To eliminate these two sources of error, robots should only consider an analog

estimate of apparent consensus valid only immediately after a teammate has been encountered and

only if k(t) has reached equilibrium. This is a significant contrast to digital consensus estimation,

the accuracy of which is independent of the time that elapsesbetween each reception of a teammate

opinion.

3.4.3 Real-World Performance of Anonymous Digital and Analog Consensus
Estimation

Thus far the digital and analog strategies to estimate apparent consensus have been described, and

predictions have been made regarding their performance. Inthis section, simulated results are pre-

sented that verify these claims.

In order to collect data, the TeamBots simulator [85] was used to implement a 15-robot MRS in

which the robots randomly wandered about a circular environment, reorienting to random headings

when an obstacle (either a teammate or the outer wall) was encountered. Eight of the robots agreed

with each other, and the remaining seven robots agreed with nobody. This configuration meant that

Ca was 50% for the first eight robots and 0% for the remaining ones. The same generic log of

robot interactions was used to generate the data for each of the following plots6, so each data point

6The details of this technique are presented in greater detail in Chapter 4
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Figure 3.16: In this figure, the same sequence of robot interactions as were used to generate Figure
3.15 are used along with analog consensus estimation to computeC̃a. τ = 5T0 in the upper graph,
and it is increased to25T0 in the lower graph. Low values ofτ allow C̃a to vary rapidly, whereas
increasing this parameter promotes more accurate measurement. Note also that whenτ = 5T0, the
robots tend to overestimate apparent consensus, a phenomenon predicted by the data in Figure 3.13.

corresponds to a fixed series of robot interactions, reinterpreted given the different parameterizations

of apparent consensus estimation.

Time in the following figures is measured in terms ofT0, whereT0 units of time can be thought

of as the time between a robot’s to random teammate encounters. As was discussed in the last

section,T0 in practice is not a constant, but a random variable. After the simulations were run, the

distribution of inter-robot-encounter times was computed, and its first quartile(10.55 seconds) was

used as the value forT0.

Figure 3.15 plots four of the eight agreeing robots’ digitalestimates of apparent consensus over

time for two different values ofn. In the upper graph of this figure,n = 5. The estimates are able

to rise very rapidly, but they also are very inaccurate, often over- or underestimatingCa. Whenn is

increased to 25, the robots’ opinions are much slower to risefrom the initial estimateC̃a = 0% to

mirror the actual apparent consensus, but their steady-state estimates are much less noisy.

Figure 3.16 plots the very same robots’ opinions ofCa as in Figure 3.15, but in these graphs,

the robots used the analog consensus estimation strategy. In the upper graphτ = 5T0, whereas it is

increased toτ = 25T0 in the lower one. Increasingτ in the analog strategy has the same effect here

as increasingn did whenC̃a was computed digitally. Asτ increases, the time required to measure

the apparent consensus increases, but the error in measurements decreases. Notice thatCa tends to

be overestimated whenτ is low. This behaviour was predicted by theτ = 5T0 curve in Figure 3.13.

Figure 3.17 summarizes the relationship between speed and accuracy for both consensus esti-

mation strategies. Measurement accuracy is plotted versusmeasurement time for several different

47



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120

A
cc

ur
ac

y 
(%

)

Measurement Time (multiples of T0)

Accuracy of C
~

a Versus Measurement Time

n, τ increasing →

Digital Consensus Estimation
Analog Consensus Estimation

Figure 3.17: In Figures 3.15 and 3.16, it could be seen that increasingn or τ increased the accuracy
of apparent consensus measurement, but also increased the time necessary for a measurement to be
made. This figure summarizes these results, plotting the accuracy of robots’ estimates ofCa against
the measurement time. Whenn or τ is low, measurement accuracy increases rapidly with increased
measurement time, but diminishing returns are encountered. Note the great similarity between the
performance of digital and analog consensus estimation.

parameterizations, withCa = 50%. These two quantities for a given configuration were calculated

as follows (Refer to Figure 3.15 or 3.16). The time required to make a measurement of appar-

ent consensus was measured as the mean time required for a robot’s C̃a to reach 50%, which is a

measurement of the mean rise-time of the estimates ofCa. The accuracy of a configuration was cal-

culated as100% minus the mean relative deviation of a robot’sC̃a from Ca = 50% in the time after

C̃a reached 50%. The estimates of apparent consensus during theinitial rise-time are not included

in the calculation of measurement accuracy. The data plotted were computed from 40 simulated

trials, each lasting long enough for approximately 200 robot interactions. The relationship between

measurement accuracy and measurement time is remarkably similar for the digital and analog strate-

gies. In both cases, whenτ or n is small, the slope of the two accuracy-versus-speed curve is steep,

meaning that a small increasen or τ would deliver a substantial increase in measurement accuracy

for a small decrease in speed. Asn or τ is increased, though, diminishing returns are encountered,

and the time-cost of making more accurate measurements increases rapidly. The two approaches to

computingC̃a are so similar in their observed performance that they can beconsidered identical for

the purposes of quorum testing.

3.4.4 Compound Quorum Testing

Premature commitment due to a false-positive quorum test isa general problem encountered in

decentralized consensus estimation and quorum testing. This is because each robot computesC̃a

with some finite error. The commitment phase is initiated by the first robot that believes that quorum
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is satisfied for its favoured alternative, and so it is likelythat commitment will be initiated by the

first robot to experience a false-positive quorum test.

Although premature commitment cannot be eliminated entirely, the problem could be reduced

somewhat with the addition of a second quorum test. Once a robot believed that its favoured al-

ternative had satisfied quorum, it would begin to measure theproportion of its teammates that also

believed that its favoured alternative had satisfied quorum. These robots would continue to estimate

apparent consensus, and if this were to fall belowQ, they would reset the second quorum test. In

other words, apparent consensus would be measured for two populations, and two quorums tested.

The second quorum would be tested only as long as the first was believed to be satisfied. Clearly,

the addition of this meta-quorum would increase the reliability of the overall quorum test. Whether

or not its inclusion is worth the extra complexity (albeit minor) would depend on the nature of the

decision at hand.

This concept ofcompound quorum testingis demonstrated by the structure of honeybee decision-

making. Because the bees relocate their colony over long distances, it is not practical to move the

individuals one at a time as do the ants. Instead, the swarm, the majority of which remains somewhat

dormant during the decision-making process, must be rousedby the bees once they believe that

quorum has been satisfied. This task is too great for a single bee to accomplish, and so the swarm

relocates only once a sufficient number of bees have observedquorum so that their combined effort

is sufficiently great to induce the swarm to lift off. Once it lifts off, the airborne swarm is guided

by the committed bees to its new home. In their case, the second quorum is implemented via the

dormant swarm’s inertia and resistance to lift-off, but thenet effect is the same.

3.4.5 Population Size and the Resolution of Apparent Consensus

It is important to briefly touch upon the relationship between the number of robots that compose

a MRS and the resolution range of apparent consensus (or trueconsensus, for that matter). To

illustrate this relationship, consider the extreme example of a system that contains just two robots.

If the two robots favoured different alternatives, then both would observe an apparent consensus of

0%. However, if one of them were to change its opinion to matchthat of its teammate (perhaps

because one robot recruited the other), both would observe an apparent consensus of 100%. In this

small system, only these two values of apparent consensus are possible. On the other hand, in a 100-

robot MRS, as the population of robots that favoured a particular alternative increased or decreased

by one robot, those remaining in the population would observe a change in apparent consensus of

± 1
99 × 100%.

Both hypothetical systems, the 2-robot MRS and the 100-robot MRS experienced the same

change - one robot changed its opinion - yet to the individualrobots in these systems, the mag-

nitude of the change in the social cue observable by them was significantly different. This in turn

limits the number of different quorum thresholds that couldbe employed in practice. In the two
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robot-system, anyQ > 0 would be equivalent toQ = 100%. In general, the apparent consensus in a

MRS can only be one ofN discrete values, and it will vary over the range[ 0
N−1 , N−1

N−1 ] in increments

of 1
N−1 .

In this thesis, consensus estimation drives a thresholdingoperation: the quorum test. However, in

other applications, a robot might vary its actions continuously with its estimate of apparent consen-

sus, and so the smoothness of its response would depend on thesmoothness of apparent consensus7.

All other factors being equal, as the number of robots that compose a MRS increases, the better the

system will be able to take advantage of consensus estimation and direct recruitment. This is not a

serious problem, of course, since a system composed of only afew robots likely would be better off

employing a more traditional centralized or hierarchical control structure to coordinate the actions

of its individual members.

3.5 Commitment

The final phase of the proposed decision-making strategy is the commitment phase. The initial

searching phase of a decision identifies the individual alternatives over which the robots will delib-

erate. Once these have been found, the robots use recruitment to compare them and identify the best

one. However, both of these processes are completely decentralized. None of the robots are aware

of how many alternatives might have been found, nor their relative qualities. Through consensus

estimation, though, an individual is able to estimate the popularity of the particular alternative that it

favours. Once a robot believes that the popularity of its favoured solution has reached the threshold

of quorum, it concludes that its alternative has become sufficiently popular that the group decision

should be completed, with its alternative adopted by the entire system. It is the task of the final phase

of the decision-making framework, commitment, to accomplish this goal.

3.5.1 Individual Commitment

The simplest approach to commitment is to have the individual robots adopt their favoured alterna-

tive only once they independently determined that their favoured alternative had satisfied quorum.

That is, decisions would not involve a commitment phaseper se; robots simply would exit a deci-

sion once they had independently determined that quorum hadbeen satisfied. Unanimous decisions

would only be possible under this approach if robots that hadexited the decision-making process

continued to both encounter and respond to the vote-queriesof their still-deliberating teammates.

Individual commitment is somewhat similar to the strategy employed in [92].

This commitment strategy does not guarantee that all of the robots will exit a group decision.

Some of robots might stagnate in the deliberation phase. Forexample, lone robots favouring unique

alternatives might not be recruited before all of their teammates detected quorum and exited the

7WhenCa is estimated using the digital approach, the resolution ofC̃a will be determined bymin(n, N − 1), sinceC̃a

will vary from 0% to 100% in increments of1
n

. It would depend on the system and application at hand whether n or N was
the limiting factor.
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decision. Even though the lone robots would still receive vote-messages from their teammates,Ca

for them would be zero, and so quorum would never be satisfied.

In some ways,Temnothoraxcommitment behaviour is a kind of individual commitment, al-

though it involves a kind of stigmergy that makes it more robust. An ant will commit to its favoured

site once it detects a quorum of teammates while visiting it.Once the ant has committed, it appears

to treat its favoured site as the colony’s new home [70], quickly transporting teammates that it en-

counters to it. Other ants commit to their favoured sites only once they too have determined that

quorum has been satisfied. However, because the population of a site that has induced commitment

will begin to rise quickly following commitment (due to the ants transported there by committed

ants), other ants that favour a site that has induced commitment will become more likely to commit

to it as well, triggering a kind of chain reaction of commitment. Note that this stigmergic feed-

back in the ants’ commitment behaviour only exists because the process of relocating a colony to a

particular site (which follows commitment) directly interacts with the manner in which quorum is

tested.

Nonetheless, commitment to multiple sites is possible, andindividual commitment does not

specifically address this particular fault. When two or morealternatives induce commitment, a

dec-MRS will fragment amongst them. In order to increase thelikelihood of bringing about the

unanimous adoption of a single alternative by the end of a collective decision, some additional

mechanism is required.

Individual commitment can augmented slightly to bring about a more social behaviour. In [53],

the robots assembling into convoys estimated number of robots that had gathered using a biolog-

ically inspired feedback mechanism called chorusing. Onceone of the robots determined that a

sufficiently large group had gathered (analogous in this discussion to a robot having detected the

satisfaction of quorum), it would set a timer. As soon as the timer elapsed, the robot would broad-

cast to its teammates that it was time to collectively depart, and the assembled robots would depart

with the reception of the first such message. Because the chorusing mechanism is somewhat noisy,

the complete formation of a convoy tends to lag the chorusingsignal reaching its preset threshold.

By calibrating the timer to account for this lag, a more reliable collective departure would become

more likely. However, this is an open-loop mechanism which is very domain specific. In the next

section, feedback from the collective state is used to guidethe commitment process.

3.5.2 Gossip-Based Commitment

A better approach to the commitment phase explicitly would take into account the goal of decision

unanimity. A robot that believes that quorum has been satisfied for its favoured alternative should not

selfishly exit the decision-making process on its own. Rather, it has a responsibility to its teammates

to ensure that all of them commit to its favoured alternative, too. This is particularly important when

a decision with some geographic component is being made, since robots will tend to move away
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from the location at which the decision was made as they exit the decision, likely putting them out

of range of their teammates still in the decision-making process. A collective decision also could be

made to adopt some new behaviour that should not begin until all work on the current task has halted.

This concept of mutually exclusive behaviours is discussedin greater detail in the next chapter.

If the individual robots possessed global broadcast communication capabilities, unanimous com-

mitment would be a trivial problem. Once a robot entered the committed state, it simply would

broadcast the instruction to do so to its teammates, and unanimity would be assured. However,

single-hop global broadcast is impractical at best in a dec-MRS [62].

Gossiping [10, 43] is an elegant stochastic communication technique that allows robots with very

short range communication capabilities to share information system-wide. When a robot wishes

to broadcast some message system-wide via gossiping, the robot sends the message to randomly

selected teammates. In a well-stirred dec-MRS, a robot can achieve this simply by transmitting the

information to the teammates that it encounters as it wanders about. The robots that receive the

information adopt the same behaviour, and the information will flood throughout the entire system.

Clearly, if the robots continue to gossip long enough, all ofthem eventually will receive the

information disseminated by the initiating robot. How should the process be terminated, then?

Demers et al. identified a simple approach (although they usethe termrumour spreadinginstead

of gossiping). As each member of the system transmits the information to a randomly selected

teammate, it identifies whether or not the teammate already knew what was sent. If the transmission

increased the size of the informed population, then the sender is unaffected. On the other hand, if the

recipient already knows the information, the sender exits the gossiping behaviour with probability
1
k . The parameterk controls the thoroughness of the collective behaviour. Ask is increased, the

probability of all of the robots receiving the information by the time the last knowledgeable one

exits increases. In another variation,k is a counter, and each robot counts the number of times

that it sends a redundant message. Again, increasingk increases the probability of all of the robots

becoming informed [18]. Because gossip is a stochastic process, it is possible that some robots

might never receive the information before the process terminates. Although increasingk increases

the probability of the information reaching every member ofa dec-MRS, the probability of collective

success will never be 100%. This is a general property of decentralized, stochastic algorithms.

By organizing commitment as a gossip-style algorithm, unanimity becomes much more likely.

The “information” that is shared in the case of a group decision is the belief that a particular alterna-

tive has satisfied quorum. Once a robot believes that its favoured alternative has satisfied quorum, it

begins gossiping this belief, and the rest of its system rapidly (O(ln(N)) [43]) quickly will commit

to it as well. The basic concept is easily modified to accommodate multiple alternatives inducing

commitment. Simply put, a robot will commit to whatever alternative was specified in its most

recently received commit-message.

Note the difference between the commitment and deliberation phases of a decision. During de-
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liberation, the quality of an alternative directly influences the likelihood of a robot being recruited to

it. Once an alternative has induced commitment, its qualityno longer plays any role. The purpose of

commitment is not to select the best alternative, its purpose is to promote unanimous commitment

to the single alternative that was identified as the best one by the preceding deliberation. The com-

mitment phase thus can be thought of as a war of attrition between robots committed to different

alternatives. The likelihood of a robot receiving a commit-message referring to a particular alterna-

tive is directly proportional to the proportion of its teammates that are committed to it. Therefore, the

alternative to which the most robots have committed will tend to be the one selected unanimously

by the commitment phase’s end. Because the number of robots committed to a given alternative

will rapidly increase via positive feedback following the initial commitment to it, the first alternative

that is believed to satisfy quorum and thus induce commitment will be the one most likely to be

unanimously adopted by the decision’s end.

Instead of using a counter to terminate the process, a simpler approach employing a timer is

adequate. Here, when a robot receives a commit-message specifying an alternative to which it is not

committed (e.g.a commit-message that is not redundant), it commits to the alternative and responds

with an acknowledgment. If a robot receives a commit-message specifying an alternative to which it

already is committed, it does not respond at all. Committed robots reset an internal timer whenever

they receive an acknowledgment, or whenever the alternative to which they are committed changes.

As more and more of the robots commit to the same alternative,the probability of an individual

robot receiving an acknowledgment will decrease, and so therobots’ commitment timers will be

less likely to be reset. A committed robot will exit the groupdecision once its timer reaches a preset

limit, called thecommitment timeout. This time limit is somewhat analogous to the counterk in the

work of Demers et al. in [18]. Increasing the commitment timeout increases the probability of the

commitment phase achieving unanimity by increasing the amount of time a committed robot will

remain in the committed state without receiving an acknowledgment. Note the similarity between

this timer-based approach and analog consensus estimation. Instead of a dedicated timer, a the quo-

rum and kin indices could be reused, with the quorum index (now a sort of committed index) being

incremented with the reception of every acknowledgment. Individual committed robots would exit

a decision once the estimate of consensus fellbelowsome preset threshold. Similarly, if a count of

received acknowledgments to commit-messages would be preferable, the digital consensus estima-

tion hardware could be reused. Again, a committed robot would exit a decision once it believed that

the proportion of its teammates that had not committed to itsalternative dropped below some preset

threshold.

3.6 Summary

In this chapter, a decentralized collective decision-making framework was described, inspired by

behaviours of ants and honeybees. This three-phase approach, composed of searching, deliberation
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and commitment, utilizes several decentralized behaviours, all within reach of very simple robots.

These are just the sort of robots that are expected to composelarge-population dec-MRS, and so the

framework should be widely applicable to decision-making problems that such systems might en-

counter. Only the initial searching phase of a decision is significantly coupled to a specific decision.

In the later deliberation and commitment phases, decentralized computation is carried out in-

dependent of the environment in which the MRS operates, as the robots modify each others’ states

directly, rather than through an intermediate environmental channel. The deliberation phase singles

out the best of the alternatives that the individual robots were able to find during their initial search

using the positive feedback of recruitment. Because each robot favours only one alternative at a

time, the computational complexity of this distributed comparison operation to the individual robots

is constant, regardless of the number of alternatives knowncollectively.

Concurrent with their recruiting activities, the robots also estimate the popularity of the par-

ticular alternatives that they favour. Once again, this operation is computationally simple, and its

complexity to the individual robots is constant. Two different approaches to consensus estimation

were described: one digital, and one analog. Although the digital approach is likely to be the more

widely-used of these, the simple fact that a small analog implementation is practical demonstrates

that consensus estimation, an operation likely to be valuable in many other dec-MRS problems,

could be taken advantage of by systems composed of the most elementary robots.

Decentralized deliberation continues until one of the robots determines that its favoured alter-

native has become sufficiently popular to end deliberation so that its alternative might be selected

unanimously. This decision is made by an individual robot through a quorum test, in which it com-

pares its estimate of its favoured alternative’s popularity to a threshold. Consensus estimation and

quorum testing can be tuned to emphasize speed or accuracy, or to strike a balance between the two.

Finally, in the commitment phase, the entire dec-MRS coalesces around a single alternative,

the one that satisfied quorum. Using a gossip-style approach, the knowledge that one particular

alternative is to be adopted will flood the system, causing itto be chosen unanimously. In this

way, a decentralized system composed of simple, locally communicative individuals can behave as

a cohesive whole, anartificial superorganism, and make intelligent decisions as though they were a

single intelligent entity.
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Chapter 4

Unary Collective Decision-Making:
The Cooperative Task Transition
Problem

The focus of this thesis is collective decision-making in decentralized multiple-robot systems. In

the general case, a collective decision can be viewed as a best-of-N operation in which the best of

N a priori unknown alternatives is selected unanimously. In this chapter, a simpler operation, called

the unary decision, is made by modifying the deliberation phase of the decision-making framework

by eliminating recruitment. Unary decision-making is applied in this chapter to a problem that has

limited the development of more advanced dec-MRS: cohesively stepping through a sequence of

subtasks. The unary decision-making strategy is describedin detail, and experiments with simulated

and physical robots demonstrate its performance in the context of a collective construction task.

4.1 Introduction

In general, most decisions can be represented as best-of-N decisions in which the decision-makers

must identify and evaluate a set of candidate alternatives from which one unanimously is selected.

A subset of these decisions are those in which the candidate alternatives are knowna priori, and of

these, the situation in which only one alternative exists arises with surprising frequency. In this case,

the question facing the decision-makers is whether or not the alternative should be adopted in place

of thestatus quo.

Complex missions often are decomposed into a series of simpler subtasks. The overall mission

is achieved by completing each of the subtasks in order. At each transition from one subtask to

the next, a decision is required: “is the current subtask done?”. Either it is, and the focus of the

team should shift to the next subtask, or it is not, and thestatus quoof working on the current

subtask should be retained. Because the decision is to accept or reject a single proposed alternative,

these decisions are referred to asunary decisionsin this thesis. The focus of this chapter is the

application of unary group decision-making to the synchronization of dec-MRS subtask transitions
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Clean Surface Sand Apply PaintApply Primer Let Dry

Paint Surface

Figure 4.1: This figure illustrates the decomposition of a painting task into a sequence of simpler
subtasks. In order to complete the overall mission a system must complete each subtask in order. A
group decision is required at each subtask transition to ensure that all of the robots make the tran-
sition at the same time, otherwise robots in adjacent tasks might interfere with each other, resulting
in a failure of the overall mission. At the same time, a transition must not occur until the current
subtask has been completed. These two concerns are addressed by a cooperative unary decision.

in a complex mission, but the reader should keep in mind the generic nature of the unary collective

decision-making problem.

Refer to the surface-painting task depicted in Figure 4.1 asan example of a dec-MRS task that

requires unary decision-making. This mission can be decomposed into five subtasks: clean the

surface, sand it, apply primer, allow the primer to dry, and apply the paint. These subtasks are

mutually exclusive; each one must be completed and then all work on it halted before any work can

commence on the next one [62]1. Thus there is a need to synchronize the transition from one subtask

to the next so that all of the robots make the transition at thesame time. Consider the transition from

the sanding subtask to priming. If the robots did not all makethe transition at the same time, the

overall painting mission would fail because the two mutually exclusive subtasks would have robots

working on them simultaneously, leading to interference (e.g. the dust from sanding would prevent

the primer from being applied correctly). When this occurs,it is said thatmutual exclusivityis

violated.

On its own, synchronization is not a difficult problem, as a single global broadcast operation

could achieve it. However, it also is important to ensure that each subtask truly is complete before

the transition to the next one is initiated. Consider the transition from the Let Dry subtask to the

Apply Paint subtask. Clearly, if the robots were to begin theApply Paint subtask prematurely, even

if they did this in a synchronized manner, the primer would not have been given sufficient time to

dry. Mutual exclusivity would not have been violated, but the paint would be applied to a wet surface

and thus would not adhere properly, once again resulting in overall mission failure.

If we assume that a mission and its decomposition into subtasks are knowna priori by the robots,

a unary decision could govern each subtask transition. For asolitary robot, the problem is as simple

as accurately determining when each subtask has been completed. Since no other robots would be

1It could be argued that the individual subtasks in this example could be designed so that some of them could be carried
out in parallel. However, for the purpose of this discussion, assume that this is not the case, and that any two robots working
on different subtasks simultaneously would destructivelyinterfere with each other, resulting in overall mission failure.

56



present, the interference problem is non-existent. Multiple robots would be able to complete each

subtask more rapidly than a single robot, so the ability to deploy a MRS to complete a sequence of

subtasks is desirable. The solution for a centralized MRS isnot much more complicated than that

of its solitary counterpart. The central controller would make the decision to begin the next subtask

based on data collected by the other robots and transmitted to it, and its decision then would be

dictated to the entire MRS.

Not only would a MRS be able to complete each subtask faster than a solitary robot, it also

would be able to measure the state of each subtask more rapidly. This is because many indepen-

dent measurements could be made in simultaneously. Furthermore, these measurements would be

made with many different sensors, since each robot would report measurements taken with its own

sensors, so individual sensor calibration would be less of aconcern. This would tend to render the

deliberations of the MRS more precise.

The synchronization of subtask transition demanded by mutual exclusivity is provided in a unary

decision by the commitment phase, just as it is in the generaldecision-making framework. The

question ofwhenthe subtask transition occurs is governed by the deliberation phase, but recruitment

is absent. In the case of a best-of-N decision, the robots aredecidingwhichalternative to adopt, and

it is assumed that thestatus quomust be replaced by one of them. The question posed by a unary

decision is: “Should thestatus quobe replaced by the proposed alternative?” Deliberators in a

unary decision have made the individual decision that the proposed alternative should be adopted

and are waiting until a sufficient proportion of their teammates independently have come to the same

conclusion. Once a deliberator believes that the size of thedeliberating population has satisfied

quorum, it concludes that there is sufficient consensus in favour of the proposed alternative, so it

commits to it. This initiates the commitment phase’s gossip-style broadcast operation, which leads

to the proposed alternative’s unanimous adoption.

Quorum in a unary decision serves a subtly different purposethan it does in a best-of-N decision.

In a best-of-N decision, quorum testing delays commitment until iterative recruitment has identified

one of the candidate alternatives as better than the others.Its role in a unary decision is to prevent

commitment until a sufficient proportion of the robots independently have decided that the proposed

alternative should replace thestatus quo. If the robots of a dec-MRS had perfect sensing, a quorum

of zero would be satisfactory, since a single robot’s decision that the alternative should be adopted

would be sufficiently reliable to justify commitment. Of course, perfect sensing does not exist in

the real world. As such, quorum should be set so that, once it is satisfied, it will be unlikely that

a collective mistake will have been made. Given a quorum, thenumber of independent decisions

necessary to satisfy it increases with population size (since quorum is expressed as a relative, rather

than absolute population size). In this way, a unary decision allows a dec-MRS to leverage its

redundancy, rather than fall victim to it.

In this chapter, the decision-making framework of this thesis is applied to the decentralized
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Construction

Secondary ConstructionSite Preparation

Figure 4.2: A construction task can be decomposed into an initial site preparation subtask followed
by secondary construction. The purpose of site preparationis to remove debris from the construction
site so that the more advanced secondary construction can proceed. These two subtasks are mutually
exclusive, so a unary group decision is required to coordinate the transition between them.

unary decision-making problem for task-transition. In the next section, acollective construction

task is presented to provide context for this application, and the details of the unary decision-making

behaviour are explained. Experiments that were conducted in simulation are then presented, fol-

lowed by a series of experiments using real robots. The chapter then closes with some conclusions

on the performance of decentralized unary decision-making.

4.2 Collective Construction and Decision-Making Behaviour

In this section, the blind bulldozing collective construction behaviour is introduced. The goal of the

robots is to decide unanimously that the construction task has been completed, thus allowing some

subsequent group task to commence without interference dueto robots continuing to work on blind

bulldozing. Next, the details of the individuals’ behaviours that produce a unary group decision are

described. In the next section, a series of simulated experiments are described, followed by a section

detailing similar experiments with real robots.

4.2.1 Collective Construction

Collective construction is a good example of a task that can be decomposed into a sequence of

mutually exclusive subtasks. For example, building materials have to be located, brought to the

construction site and then assembled [60]. If assembly wereto begin before foraging for materials

had halted, the foragers might retrieve materials to the stockpile from those that had already been as-

sembled into the desired structure. Were assembly to begin prematurely, the quantity of construction

material gathered might be insufficient to complete the assembly process.

Often, advanced construction must be preceded by preparatory work. For example, before a

structure can be erected, the site upon which it is to be builtmust be cleared of debris. This clearing

process is calledsite preparation, and it has been identified as a critical task for MRS missions

to other planets [40, 66]. The more advanced construction that follows site preparation is referred
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Figure 4.3: The image on the left of this figure depicts four robots engaged in the blind bulldozing
site preparation task. Their goal is to expand the initial clearing in the debris-field to permit more
advanced construction to take place. Their individual behaviours are controlled by the simple state-
machine given on the right. The robots clear debris by plowing in straight lines in the wander
state, and then randomly reorient once the debris has been pushed into the site’s wall or whenever a
teammate is encountered [65, 64, 60].

to assecondary construction. Site preparation is a somewhat coarse task, involving earth moving

equipment, whereas secondary construction will tend to be more delicate in nature. The two should

not be carried out simultaneously, as any secondary construction begun before site preparation has

halted risks being bulldozed [62]. A collective decision tohalt site preparation and begin secondary

construction clearly is required here, and it is this specific unary group decision that is the focus of

the experiments in this chapter.

Earlier work proposed a biologically inspired site preparation algorithm calledblind bulldozing

[64, 60]. Blind bulldozing clears a construction site out ofa field of debris through the uniformly

distributed plowings of a team of autonomous bulldozers. The task is complete once the site has

reached a predetermined size, chosen to be sufficiently large to accommodate whatever secondary

construction is intended to follow. Figure 4.3 depicts a scene from a blind bulldozing experiment

along with the simple state-machine that guides the individual robots’ behaviours.

The actual bulldozing is done in the wander state, in which the robots travel in straight lines.

The force exerted on a robot’s plow increases with the amountof debris that it has plowed up. Once

this force exceeds a preset threshold, the robot enters the reorient state, in which it rotates on the

spot to a new random heading, and then re-enters the wander state. Robots in the wander state also

enter the reorient state whenever they encounter a teammate. The random reorientations distribute

the robots’ plowing uniformly about the construction site’s perimeter, so the site grows evenly and

adopts a circular shape as though it was being “inflated” by the robots [28]. It also makes the robots’

encounters with each other well-stirred [62]. In [64] it wasconjectured that the individual robots

could infer the completion of the site preparation task by measuring the distance that they traveled

between reorientations. If a robot travels a certain distance in a straight line before it reorients, it
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(a) (b)

Figure 4.4: This figure depicts the environments of the unarydecision-making experiments. On
the left is a screen-shot from one of the simulated experiments. Each of the black discs is a robot.
The image on the right is a photograph of a real dec-MRS makinga unary decision about task-
completion. These environments are static, but they are good analogs of the blind bulldozing domain
towards the end of the task. In both cases, the environment issufficiently large that the individual
robots eventually will conclude that the task is complete.

knows that the diameter of the clearing is at least that great. Experiments since have demonstrated

that this is a viable strategy to detect task completion [37]. However, because the robots’ paths are

random, each will tend to detect task completion at a different time. Furthermore, odometry errors

will introduce uncertainty into each robot’s individual decision-making. A group decision therefore

should be employed to coordinate the transition from blind bulldozing to secondary construction.

Environment

Blind bulldozing would be employed when a construction siteis covered in debris that must be

cleared to prepare for secondary construction. It works by expanding an initial clearing in the debris.

The rate at which the clearing grows will slow over time as thesite expands and its walls become

reinforced with plowed debris. Towards the very end of the task, the growth of the clearing will have

sufficiently slowed that the environment can be approximated by a somewhat circular enclosed arena

that is fixed in size. The experimental environments for the simulated and physical experiments are

shown in Figure 4.4. The robots provide an indication of the relative scales of the environments.

The robots are programmed to conclude independently that the site is large enough once they travel

a sufficiently long path while in the wander state (straight-line motion). Because the motion of the

individual robots is random, each will traverse such a path and conclude that the site preparation task

has been completed at a different time. Without a group decision, each robot would begin secondary

construction at a different time and mutual exclusivity would be violated.
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Figure 4.5: A robot’s cognitive behaviour during a cooperative unary decision is divided into four
states. The robots initially believe that the current grouptask is not yet complete, and so they work
on it. When a robot decides that the current task is complete,it enters the deliberating state, in
which it gathers the opinions of its teammates as they are encountered. Based on their opinions,
a deliberating robot estimates the apparent consensus in favour of the current task being complete.
Once it believes that this has satisfied quorum it enters the committed state, in which it instructs
other robots to commit. Uncommitted robots that are told to commit do so and respond with an
acknowledgment. When a committed robot no longer receives acknowledgments to its commit-
messages, it concludes that all of its teammates have eithercommitted or moved on to the next task,
and it does so as well.

4.2.2 Individual Behaviours for a Unary Group Decision

In this section, the decision-making behaviour of the robots is described. This behaviour is the same

in both the simulated and physical experiments. Refer to Figure 4.5 for the following discussion.

Each robot begins a decision in the working state, in this case participating in the blind bulldozing

task.

A robot will decide that site preparation is complete once ittravels a sufficiently long path while

in the wander state of the blind bulldozing behaviour, at which point it will enter the deliberating

state. Robots in the deliberating state request the opinions of the teammates that they encounter

regarding the state of the site preparation task (the robotscontinue to move about as though they

were still blind bulldozing while they are making a group decision). Robots that receive these

queries respond with either a “yes” or “no” vote-message, indicating that they either do or do not

believe that the subtask is complete. Based on these responses, the deliberating robots estimate the

apparent consensus, the proportion of their teammates thatagree that site preparation is complete,

and compare their estimates to the quorum threshold,Q.

Once a deliberator believes that quorum has been, met it commits. The committed robots con-

tinue to wander about, but now when they encounter a teammate, they instruct it to commit as well.

If a robot has not yet committed (i.e. it is in either the working or deliberating states) and receives a

commit-message, it immediately enters the committed stateand responds with an acknowledgment.

This acknowledgment informs the sender of the commit-message that it just encountered an uncom-

mitted robot. Robots already committed ignore the commit-messages. Eventually, all of the robots

will commit, and so the acknowledgments will cease. Committed robots conclude that every other

robot has either committed or begun the next task once the time since they last received an acknowl-

edgment reaches the preset commitment timeout,Tc. These robots leave the collective decision by
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Figure 4.6: All of the communication in the simulated task-completion experiments was local and
anonymous. The robots were circular, with their antennae located at their centers. Robots could
detect teammates when they were a short distance (d) away, and their radio transmission ranges
were set to twice their radius plus twice the teammate detection range. In practice, although it
was possible for more than one robot to receive a particular teammate’s transmission, 95% of the
messages were one-to-one, and the remainder were mostly one-to-two.

entering the finished state. At this point, they would begin the next subtask in the mission.

4.3 Simulated Experiments

In this section, a series of simulated experiments examining the performance of unary decision-

making are presented and their results examined.

4.3.1 Environment

The simulated environment was implemented using the TeamBots open-source multiple-robot sim-

ulator [85]. At the time of writing, this package was no longer supported. However, it still was

available online for download and its interface strikes a good balance between simulation fidelity

and ease of development. A scene from a simulated trial can beseen in Figure 4.4(a). The experi-

mental environment was a circular arena, 12 meters in diameter.

4.3.2 Robots

The 15 individual robots in the simulated experiments were differential-drive platforms, 0.5 meters

in diameter. Each robot was able to communicate with its teammates via omnidirectional local

broadcast communication. The range of each robot’s radio was short enough that two robots’ hulls

had to be within2d = 0.1 meters of each other in order for them to communicate. In the wander

state, the robots moved in straight lines at a constant velocity, and they would enter the reorient state

when an obstacle came withind = 0.05 meters of them on the forward-facing side. Because wheel

62



slippage was not included in the simulations, the length of apath was calculated by multiplying the

time between reorientations by the robot’s velocity. Referto Figure 4.6 for a graphical depiction of

these ranges. All of the communication was anonymous; the robots were unaware of the identities

of the teammates that they encountered.

When apparent consensus was introduced earlier in this thesis, analog and digital approaches

for its estimation were presented. Both of these were investigated in the simulated unary decision-

making experiments. The analog approach utilizes a pair of variables called the quorum and kin

indices that decay exponentially with time, and the precision of analog consensus estimation is de-

termined by the time constantτ , which sets the rate at which these indices decay. The greater τ

is made, the more slowly they decay and the more preciselyCa is estimated. The digital approach

computesC̃a as the proportion of then most recent vote-messages received in response to a delibera-

tor’s queries that are affirmative. There is a fundamental trade-off between the speed and accuracy of

consensus estimation [62], and so these two methods should produce similar results when calibrated

equivalently.

4.3.3 Experimental Trials

Because the physical behaviours (and thus the communicative histories) of the robots in this partic-

ular domain do not depend on their decision states — they always move according to the blind bull-

dozing algorithm in Figure 4.3(b) — it was possible to run a series of generic simulated trials and

then reparameterize them offline to generate any desired configuration of unary decision-making.

These generic trials were produced as follows. Whenever a robot encountered a teammate, it would

broadcast a SEND-message. This message would include its ID, as well as a rolling 8-bit integer,

which would make the message uniquely identifiable. The recipient(s) of such messages would

respond with a RESP-message, which included the responder’s ID, another rolling 8-bit number,

followed by the ID and 8-bit number that were in the original send message. RESP-messages were

not responded to. For example, robot-1 might encounter a teammate and thus it would send the

message “SEND.1.47”. Suppose that robot-8 received this message. It would respond with the mes-

sage “RESP.8.117.1.47”2. Robot-8’s response clearly can be identified as the response to robot-1’s

SEND-message by the inclusion of “.1.47”. The times at whichmessages were sent and received

were logged along with the messages themselves. Additionally, robots logged the distances that they

had traveled in a straight line whenever they entered the reorient state. 40 generic trials were run,

each lasting 50 000 simulated time steps at a resolution of 50milliseconds per time step.

In order to reparameterize a generic trial to generate a specific unary decision-making trial, the

parameters had be specified. These included the length of thepath that a working robot would

have to travel in the wander state in order to enter the deliberating state, the quorum threshold,

(Q), eithern or τ (depending on whether digital or analog consensus estimation was to be used),

2This example assumes that these were the 47th and 117th messages of the initial sender and the responder, respectively.
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Figure 4.7: Because the motion of the robots is independent of their decision state, a single series
of 40 generic trials was run. In these, the robots sent generic messages to teammates as they were
encountered to which the recipients would respond with similarly trackable messages. The lengths
of the paths traveled while in the wander state also were logged. These generic logs were post-
processed to generate unary decision trials with whatever parameterization was desired. This figure
illustrates a portion of a generic log on the left with a post-processed version of it on the right. The
first three columns of the two logs are: time of event, the robot that logged the event, and the specific
event. The remaining columns are event specific data, such asthe message received or transmitted,
the length of a path, or the new decision state.

and the commitment timeout. With this information, and by assuming that each robot began in the

working state, a simple script could be written that would read through a generic trial’s log, step

the individual robots through the different states of a decision and modify each line of the generic

log accordingly. Before a robot had logged a sufficiently long path, all of its SEND-messages were

deleted, along with any RESP-messages sent in response to them. Once a sufficiently long path has

been traversed, the script would update that robot’s state to deliberating, at which point all of its

SEND-messages were converted to QUERY. A response to a QUERYwas changed (tracked via the

rolling integers and ID tags) to NO if the recipient was in theworking state, YES if the recipient

was in the deliberating or committed states, or eliminated altogether if the recipient had entered

the finished state3. Via n or τ , a deliberating robot’s estimate ofCa would be recomputed with

the reception of each vote-message. Once this reachedQ, the robot’s state would be changed to

committed. Committed robots’ SEND-messages were changed to commit-messages, and the RESP-

messages of any uncommitted robots that received these werechanged to acknowledgments, in

addition to updating those recipients’ states to committed. Committed robots measured the amount

of time since they last received an acknowledgment (or sincethey entered the committed state prior

to the reception of any acknowledgments), and changed theirstate to finished once this had reached

the commitment timeout,Tc. The left half of Figure 4.7 illustrates a portion of a generic log (on the

left) along with a post-processed version of the same section (on the right).

3Finished robots did not respond to messages from teammates,since in the general case, beginning the next subtask might
move them out of communication range of their teammates.
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Figure 4.8: As the quorum threshold increases, the observedquorum also increases. This occurs
because the quorum test delays the beginning of the commitment phase of a decision until a suf-
ficient proportion of the robots have detected task completion for the quorum test to be likely to
be positive. Increasingn or τ decreases the likelihood of false-positive quorum test, resulting in a
greater observed quorum. Note that both the analog and digital approaches to consensus estimation
produce similar results.

All of the reparameterized trials used a minimum path lengthof 11 meters. Estimates of apparent

consensus were computed digitally usingn equal to 5, 10, 15, 20 and 25 teammate opinions, and

using the analog approach withτ equal to 100, 200, 300 and 400 seconds. The values 20%, 40%,

60% and 80% were used for the quorum threshold for each of these nine configurations.

4.3.4 Results and Discussion

The results of the unary decision-making experiments conducted in simulation are discussed here in

two parts. First, quorum testing performance is examined, followed by an analysis of the commit-

ment phase of the decision-making process.

Quorum Testing and Consensus Estimation

The individual robots cannot precisely measure the apparent consensus present amongst their team-

mates, and sõCa is noisy. Therefore, the actual consensus present in a system at the time of commit-

ment will vary somewhat. To distinguish this from some desired quorum, or the precise value of the

quorum threshold, the termobserved quorumis used here to denote it. Note that observed quorum is

measured in terms of true consensus,Ct, which is equal toNa

N , whereasC̃a is an estimate ofNa−1
N−1 ,

so some discrepancy should be expected between the two giventhe relatively small population size

of the simulated MRS used in these experiments.

Earlier in this thesis, when consensus estimation and quorum testing were introduced, it was

suggested thatQ be chosen so that it was somewhat higher than the desired quorum. For example,

whenn = 15, a value ofQ = 80% was suggested to test a quorum of 50%. However, the selection

of Q based on the quorum andn (or τ ) is heuristic, requiring a subjective judgment on the part of the
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Figure 4.9: This figure presents a theoretical prediction ofthe relationship between the observed
quorum and the quorum threshold for a multiple-robot system of the same size as the one used in
the simulated experiments. The analysis used to produce this figure assumes that the rate at which
vote-messages can be gathered is insignificant, but this wasnot the case in the experimental trials.
This difference explains the discrepancy between this Figure and the real data plotted in Figure 4.8
for lower values ofQ.

system designer. For this reason, results are presented with respect toQ, rather than some specific

quorum that might have been intended by the combination ofQ andn (or τ ).

Figure 4.8 plots the mean observed quorum versusQ for each value ofn andτ . IncreasingQ

increases the observed quorum, demonstrating that the quorum for a decision can be seta priori

using both analog and digital consensus estimation. Figure4.9 plots a theoretical prediction of the

relationship between observed quorum and the quorum threshold, which appears very similar to the

experimental results. There is one notable discrepancy between the theory and the reality, though.

Figure 4.9 suggests that the observed quorum versusQ curves should meet whereQ = 0 and

diverge asQ increases, but the curves produced from the experimental data do not have a common

y-intercept.

This difference occurs because the predicted curves do not take into account the time required by

the robots to gather the vote-messages, only the increased precision inC̃a due to the greater number

of vote-messages used in its calculation. As the number of vote-messages required to compute

C̃a increases, so does the time required to compute it. During this period of time, consensus will

tend to increase as additional robots enter the deliberating state. This accounts for the curves each

having a different y-intercept. The amount by which the deliberating population size will tend

to increase during the period of time necessary to receiven vote-messages depends heavily on

the specific decision, the domain in which it is made, and the robots themselves, hence its not

being accounted for in the theoretical prediction. As consensus increases, so does the number of

robots simultaneously estimating the apparent consensus,and so the likelihood of at least one of
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Figure 4.10: As the quorum threshold is increased, the likelihood of a robot prematurely committing
decreases, which means that commitment will tend to be delayed until more robots have entered the
deliberating state. This results in an increase in the length of the deliberation phase of a decision. As
n or τ is increased, the precision iñCa increases, and so the value ofQ has a greater impact on the
robots’ deliberation time. The time-cost of deliberation is independent ofn or τ whenQ is zero (the
y-intercepts of these plots) because, regardless of the precision with whichCa is estimated,C̃a > Q
always will be true, and thus quorum always will be satisfied.

them concluding that quorum has been satisfied increases, too. This explains why the experimental

curves bear a closer resemblance to the theoretical predictions asQ increases. If the rate at which

the working robots were to enter the deliberating state was substantially reduced, so that the time

required by a robot to collect teammate opinions became insignificant, a much closer resemblance

between Figures 4.8 and 4.9 would be obtained. A detailed description of the derivation of Figure

4.9 is provided in Appendix A.

As the quorum threshold is increased, in turn increasing theobserved quorum, the onset of the

commitment phase of a decision is delayed until a greater population of robots have entered the

deliberating state. This will tend to increase the reliability of a decision, since it will be predicated

on a larger number of independent conclusions that the current task has been completed. Increasing

n or τ increases the precision of the robots’ estimates of apparent consensus, reducing the likelihood

of false positive quorum tests, and therefore reducing the likelihood of premature commitment.

Because the commitment phase is delayed until the deliberating population has become suffi-

ciently large, the system will spend a greater period of timein the deliberation phase waiting until

quorum is satisfied. Figure 4.10 plots the mean deliberationtime of the robots versus the quorum

threshold. The deliberation time is computed as the period of time from the beginning of a trial

to the beginning of the commitment phase. Increasing the quorum threshold increases the robots’

deliberation time because this increases the threshold to which C̃a is compared to test quorum. In-

creasing the precision of̃Ca, accomplished by increasingn or τ , decreases the likelihood of a robot

overestimatingCa, which in turn decreases the probability of prematurely committing. This is why

the slopes of the regression lines in Figure 4.10 increase with n andτ . Independent of the time
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required to gather the additional votes necessary to compute C̃a, increasingn or τ for a given quo-

rum threshold will increase the consensus likely to be present at the time of commitment. Each of

the robots will be less likely to compute a false positive quorum test, sinceC̃a will more closely

resembleCa.

The lines all meet atQ = 0 (the y-intercept), since this quorum always would be satisfied as

soon as a robot entered the deliberating state, independentof the precision with which apparent

consensus is estimated. A robot usingQ = 0 will enter the committed state as soon as it detects task

completion. The deliberation time corresponding toQ = 0 in these figures is not zero as might be

expected, because the manner in which the deliberation timewas defined includes the short period

of time at the beginning of each trial before any of the robotsdetected task completion. The average

time at which the first robot entered the deliberating state was123 ± 84 seconds, and it is here that

the y-intercepts occur.

Commitment Following Quorum Satisfaction

The role of the quorum test in a unary decision is to ensure that a desired minimum degree of

consensus (the quorum) exists in favour of the proposed alternative to thestatus quobefore it unan-

imously is adopted. Once one of the robots believes that apparent consensus has satisfied quorum,

it enters the committed state, initiating the commitment phase of the decision. The sole purpose of

this final phase is to ensure that the members of a dec-MRS making a decision unanimously adopt

the proposed alternative. In general, single-hop global broadcast communication is either unavail-

able or impractical in a dec-MRS. Furthermore, since the individual robots move about relative to

each other (stirring their system), and because they are unaware of each other’s identities, explicit

message-routing is impractical. The commitment phase thusis organized as a gossip-style process

[10], an approach borrowed from sensor networks research [1], and well-suited to dec-MRS.

Robots enter the committed state either because they believe that quorum has been satisfied,

or because they receive a commit-message from one of their committed teammates (Figure 4.5).

When an uncommitted robot receives a commit-message, it responds with an acknowledgment.

Robots start a timer once they enter the committed state, andthis is reset whenever they receive an

acknowledgment to a commit-message. If a committed robot’stimer reaches a preset limit, called

the commitment timeout, denoted byTc, it enters the finished state and exits the decision-making

process. Once all of the robots have committed, acknowledgments to commit-messages cease, since

only uncommitted robots send them. Thus the robots’ internal timers no longer will be reset, and

they will all exit the decision as each of their timers reachTc, unanimously adopting the proposed

alternative to thestatus quo.

Because gossiping, and therefore the commitment phase, is astochastic process, the probability

of failure (e.g. some robots not receiving a commit-messagebefore all of the committed robots exit

the decision) will always be non-zero. In situations in which mutual exclusivity is not a concern, the
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Figure 4.11: The role of the commitment phase is to induce allof the robots to accept the proposed
alternative unanimously. Committed robots instruct encountered teammates to commit, and they re-
set a timer every time an uncommitted teammate is met. Once a committed robot’s timer reaches the
commitment timeout, it enters the finished state, exiting the decision. As the commitment timeout
is increased, the probability of commitment reaching all ofthe robots increases. In order for mutual
exclusivity to be respected, all of the robots must be in either the advocating or committed states
before any committed robot can exit the decision.

commitment phase can be said to fail whenever one or more of the robots are left in pre-committed

states after all of the committed robots have entered the finished state, as this would cleave a dec-

MRS into two: one group having adopted the proposed change tothestatus quo, and the other having

not. If we assume that robots halt their work on the current task as soon as they enter the deliberating

state, mutual exclusivity will be satisfied only if all of therobots are in the deliberating or committed

states before any robot enters the finished state. It would depend on the specific mission at hand how

important mutual exclusivity was to its success.

The probability of the commitment phase achieving unanimity, or satisfying the more strict

criterion of mutual exclusivity is improved by increasing the commitment timeout,Tc. Several

different commitment timeouts were implemented by reparameterizing the generic simulations, and

the percentages of these trials that achieved unanimity or satisfied mutual exclusivity are plotted in

Figure 4.11. Both curves increase rapidly at first, but diminishing returns are encountered. 100%

of the trials ended unanimously and satisfied mutual exclusivity when the commitment timeout was

180 seconds or greater. The median period of time between an individual robot’s encounters with

teammates in the simulations was 21.75 seconds, with first and third quartiles equal to 10.55 and

39.90 seconds, respectively. Thus a 180 second commitment timeout corresponded to approximately

4 to 17 teammate encounters per robot.

The time required to complete the commitment phase is very linear with respect to the commit-

ment timeout, illustrated by Figure 4.12. This means that the number of messages sent by the robots
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teammate that they meet to commit (since they cannot discerna teammate’s decision state through
observation), the longer the commitment phase lasts, the more commit-messages will be sent.

during the commitment phase also increases linearly with commitment timeout, since committed

robots send commit-messages to every one of their teammatesthat they encounter. The longer that

a robot remains in the committed state, the more commit-messages it will send.

4.4 Physical Experiments

Experiments with real robots also were conducted to examineunary decision-making for task-

completion. As was the case for the simulated trials, the physical experiments were carried out

in a domain that mimicked that of blind bulldozing as the taskreached its completion.

4.4.1 Environment

Figure 4.4(b) depicts a photograph of the experimental environment in which the physical experi-

ments were conducted. It consisted of a hexagonal arena withsides 2.75 meters in length. Although

not circular, it was sufficiently round to approximate a blind bulldozing environment near the com-

pletion of the task. Just like in the simulated experiments,the environment itself was static and no

actual collective construction was carried out by the robots.

4.4.2 Robots

The robots used in the physical experiments were custom-built differential-drive platforms. Refer

to Figure 4.13 for a picture of one. The robots’ hulls were circular, 0.26 meters in diameter. Each

of the robots utilized an omnidirectional bump sensor to detect encounters with teammates and
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Figure 4.13: This figure shows one of the robots used in the physical experiments. Each robot
possessed a circular bump sensor that permitted it to detectobstacles. At the rear and top of the
robot is an 802.11B radio, which it used to communicate with its teammates when making a group
decision.

the site’s walls, and they communicated with each other using 801.11B wireless Ethernet. The

physical environment was too small relative to the transmission range of 802.11B for inter-robot

communication to be local, so local communication in a well-stirred MRS was simulated as follows.

When a robot in either the advocating or committed states encountered an obstacle (they were

unable to discern their teammates from the walls), a teammate’s IP-address was randomly selected

from a list that was supplied to each robot at the beginning ofthe trial4. A query- or commit-

message would then be sent to that address via TCP. The recipient of the message would then send

its response to the message back to the initial sender’s IP-address. In this way, the robots often

would exchange messages when they were not physically near to each other, but the net behaviour

of their communication was equivalent to local one-to-one communication in a well-stirred MRS.

The only difference was that the communication was randomized through IP-address selection rather

than random robot motion. Although the physical robots had identity information available to them

about their conversation partners, it in no way contributedto their decision-making behaviour.

In order to determine the lengths of their paths, the robots measured the time between reorienta-

tions. As was the case in the simulated trials, a robot would enter the deliberating state once the time

between two consecutive reorientations exceeded a preset threshold. In all of the physical trials, the

robots traveled at a constant speed of 0.2 meters per second.This meant that wheel slippage would

introduce noise into the determination of task completion by the individuals, a realistic addition to

the trials. The robots were programmed to enter the deliberating state once they had remained in

the wandering state of the blind bulldozing behaviour for more than 20 seconds, corresponding to a

path approximately 4 meters in length.

4Each robots knew its own IP-address, and so they would never send messages to themselves.
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Figure 4.14: This figure plots the observed quorum versus thequorum threshold from the experi-
ments with real robots. The data plotted here are very similar to that shown in Figure 4.8. As the
quorum threshold is increased, the observed quorum increases, since the robots are less likely to
overestimateCa and prematurely commit until a sufficient proportion of their teammates also have
concluded independently that the blind bulldozing task is complete.

4.4.3 Experimental Trials

Based on the analysis of Chapter 3, and the results of the simulated experiments, it is appropriate

to conclude that the analog and digital approaches to consensus estimation generally are equivalent.

For this reason, only digital consensus estimation was implemented in the physical experiments. The

reader is encouraged to view these results as a test of anonymous consensus estimation in general:

analog and digital. A series of experimental trials was run with 11 robots, varying the quorum

threshold over two values ofn: 5 and 15.

These trials were selected to illustrate the effects of different quorums and varying the precision

of consensus estimation on the collective decision-makingprocess in a physical implementation.

The commitment timeout was held constant at 60 seconds for all of the trials.

4.4.4 Results and Discussion

The observed performance of the real robots agrees with the simulated results presented earlier and

reinforces the conclusions that were drawn from them. Figure 4.14 plots the observed quorum versus

the quorum threshold for the physical trials, and Figure 4.15 plots a prediction for this data given the

population size of the MRS employed. The latter figure was produced in the same manner as Figure

4.9, the details of which are given in Appendix A. Once again,the observed quorum increases with

the quorum threshold. In the physical experiments, the robots tended to enter the deliberating state

more rapidly than they did in the simulations, and this accounts for the curves’ greater deviation from

the theoretical predictions whenQ was low when compared with the simulated results. The same
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Figure 4.15: This figure plots the predicted relationship between the observed quorum and the quo-
rum threshold for an 11-robot system, the same population size as was used in the physical experi-
ments, for the same values ofn that were employed. The actual observed quorum measured from the
physical experiments is greater than the theory predicts, particularly for lower values ofQ, because
the theory does not take into account the time required by therobots to obtainn vote-messages.
During this time, additional robots will tend to enter the deliberating state, increasing the observed
quorum for a decision. If the rate at which robots were to enter the deliberating state was reduced,
the data in Figure 4.14 would more closely resemble that plotted here.

explanation as was given in the discussion of the simulated results applies here, too. If the rate at

which the individual robots detected task completion was decreased (i.e. increase the required time

between reorientations that would cause a robot to concludethat the task was complete) relative to

the rate at which they collected teammate opinions, a closerresemblance between these two figures

would be observed.

Figure 4.16 plots the mean deliberation time versus the quorum threshold,Q, and the relationship

shown is very similar to that predicted by the simulations (Figure 4.10). When the robots used 15

vote-messages to estimate the apparent consensus, they deliberated for longer than those that used

only 5, since they were less likely to commit prematurely dueto the greater precision with which

they were able to estimateCa. The regression lines meet when quorum is zero. In the physical trials,

it took 31.0± 10.4 seconds for the first robot to conclude that the bulldozing task was complete and

enter the advocating state. The y-intercepts of the regression lines in Figure 4.16 are 33.8 and 33.5

seconds, which agree with the length of this initial period in which all of the robots still were in the

working state.

4.5 Summary

In this chapter, the concept of a unary decision was introduced. In a unary decision, the decision

made is whether or not to adopt some new belief in place of thestatus quo. Despite its simplicity,
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Figure 4.16: The trend of the mean observed deliberation time of the real robots very closely resem-
bles that of the simulated trials, given in Figure 4.10. Increasing quorum increases the deliberation
time, since commitment is delayed until sufficient robots are advocating in order to satisfy quorum.
Given a particular quorum, increasing the accuracy of the quorum test (n) increases the deliberation
time, too, because it raises the precision of consensus estimation, decreasing the chance of premature
commitment. The regression lines have a common y-interceptbecause a quorum of zero is always
satisfied, so the deliberation time in this case is independent of n.

a unary decision is very useful cognitive operation. Many problems in robotics request a robot

to carry out some action when a prespecified condition is satisfied. A unary decision, then, asks

whether or not that condition has been met. In other words, unary decision-making represents a kind

of collective if-then operation. Another fundamental problem encountered in dec-MRS is system

cohesion; ensuring that all of the robots share common beliefs. Without cohesion, the robots that

compose a dec-MRS become more likely to interfere with each other, since they might each base

their choice of action on very different beliefs. Unary decisions enable dec-MRS to synchronize

their adoption of new beliefs, and these are adopted based ona synthesis of the robots’ independent

conclusions.

The experimental results presented in this chapter demonstrate that the biologically inspired de-

centralized decision-making framework of this thesis can be adapted to unary decision-making by

dec-MRS. A particularly useful application of unary decision-making is the collective task transition

problem, which also was introduced. Analog and digital implementations of anonymous consensus

estimation were studied, and they were found to function equivalently. The commitment phase of

the decision-making framework, which amplifies an individual robot’s detection of quorum and pro-

motes unanimity in a collective decision also was analyzed experimentally, and the results illustrate

the tradeoff between the success of the commitment phase andthe time required to achieve it as a

function of its parameterization. It was shown that both unanimity and mutual exclusivity can be

satisfied by the commitment phase.
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Simple robots can indeed measure the consensus present amongst their teammates, and use this

to determine whether or not a proposed alternative to thestatus quoshould be adopted. Traditionally,

each robot in a dec-MRS bases its decisions on its own perception of the world. By basing these

decisions on the satisfaction of a quorum, the robots can leverage their redundancy rather than be

victimized by it, an inclusion that is computationally within reach of even the most simple mobile

robots. Even without the unifying commitment phase, quorumtesting on its own is sure to have

many applications in decentralized intelligent systems.

The commitment phase of a decision is triggered once one of the robots believes that quorum

has been satisfied. This phase amplifies the belief that quorum is satisfied by inducing the remainder

of the system’s robots to commit as well, and thus a unanimousdecision is made. It is through

coupling of the two behaviours — consensus estimation and commitment — by the quorum test

whereby intelligent cooperative decision-making emerges.

In a unary group decision, the decision makers passively measure consensus, its value set by

the number of robots that independently have reached the same conclusion. In the next chapter, the

decision-making framework is extended to solve the best-of-N decision-making problem by adding

iterative recruitment to the robots’ deliberation. This addition enables them not only to estimate

consensus, but also to influence it through their active recruitment of their teammates to the various

known alternatives in a decision.
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Chapter 5

Collective Best-of-N
Decision-Making: The Site Selection
Problem

In this chapter, collective best-of-N decisions are demonstrated utilizing the proposed decision-

making framework in a site selection environment. The approach used here extends the simple unary

decision-making framework presented in the last chapter byintroducing positive feedback into the

deliberation phase via iterative recruitment. This addition enables several different alternatives to be

compared by the robots so that the best one can be identified and selected. Experiments are presented

that were carried out in both simulation and with real robots. Their results demonstrate that best-of-

N decision-making is practical in a dec-MRS using the proposed framework of this thesis, and that

accurate decisions can be made, even in the presence of noisysensing on the parts of the individuals.

5.1 Introduction

In the previous chapter, it was shown that a dec-MRS could make an intelligent group decision

based on the collected opinions of its robots through their local one-to-one interactions. The robots

accomplished this feat by estimating the consensus presentamongst their teammates in favour of

some proposed alternative to thestatus quo, adopting it only once the consensus reached a preset

quorum. These unary decisions were decisions of a yes/no nature. That is, the robots decided

whether or not a single proposed alternative should replacethestatus quo, not what the alternative

should be.

Unary decisions have many applications, such as collectively making a decision about the state of

a group task (e.g.whether or not the task has been completed), but not all decisions can be captured

by that model. A much more general approach to decision-making is the best-of-N framework, in

which one of several proposed alternatives must be selectedunanimously by a group. Rather than

“whether or not”, best-of-N decisions ask “which one”, and it is these decisions that constitute the

focus of this chapter.
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Figure 5.1: This flowchart illustrates the best-of-N decision-making framework, which is organized
into three phases. In the initial searching phase, robots search for candidate solutions, calledalter-
natives. Upon finding an alternative, a robot will enter the advocating state favouring it. The advo-
cating robots iteratively recruit each other at a rate determined by their opinions of their favoured
alternatives’ qualities. Better alternatives induce morefrequent recruitment, and so over time, the
proportion of the system that favours the best alternative will tend to increase. Eventually, one of the
advocating robots will conclude that the proportion of its teammates that also favour its alternative
has reached the quorum, which triggers the commitment phase. In this final phase all of the robots
commit to the quorum-satisfying alternative. Once no more uncommitted robots can be found they
exit the process, having unanimously chosen the best of the alternatives that was found.

In some circumstances, the candidate alternatives in a best-of-N decision are knowna priori. For

example, consider a swarm of robots encountering a fork in a road along which they are traveling.

The decision facing this system would be to choose the appropriate path from the two presented

to it. In this best-of-N decision, the two alternatives would be known at the outset, but it would

remain to identify the best one. However, there are many situations in which the available solutions

to a problem will not be knowna priori, and so the solutions must be found as part of the decision-

making process. In such cases, the alternatives must be discovered, researched, and then one chosen.

It is this sort of best-of-N decision-making that is addressed in this chapter.

Best-of-N decision-making requires a somewhat different approach than to unary decision-

making. In a unary decision, each robot makes an individual decision about whether or not the
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proposed alternative should replace thestatus quo. An individual that has decided that the status

quo should be replaced collects the opinions of its teammates to determine how many of them also

have arrived at the same conclusion. Once a robot believes that the proportion of its teammates that

agree with it has reached a preset quorum, the commitment phase is triggered and the decision is

completed. In other words, unary decision-makers make independent decisions and then wait for a

prespecified proportion of their teammates to do the same. The individual deliberators in a unary

decision do not influence other robots’ opinions; they observe them. In a best-of-N scenario, this

sort of behaviour would lead to poor decisions and often stagnation. For example, if each individ-

ual decided to favour a different alternative, each of them would observe an apparent consensus of

zero. A non-zero quorum would never be satisfied if this were to occur, and so the decision would

stagnate. Furthermore, an obvious but poor alternative might be discovered by a disproportionately

large number of robots and get selected, even though better alternatives had been found, albeit by

fewer robots.

Instead, the various alternatives should be compared somehow. Unfortunately, this would be an

expensive operation if each and every alternative was considered by every robot. It also would be

wasteful, since much time and energy would be spent by every robot communicating/considering

alternatives that ultimately would not be selected. The iterative recruitment behaviour of honeybees

andTemnothoraxants described earlier in this thesis, however, enables a set of candidate alternatives

to be compared by a decentralized systemat the system level. Refer to Figure 5.1 for the follow-

ing discussion. After the initial searching phase, severaldifferent alternatives will be known to a

dec-MRS, and each robot will favour at most one of them. Some of the robots might not find an

alternative, or perhaps they did not participate in the search. These robots are represented by the idle

state included in the searching phase.

The deliberation phase, which consisted of a single behavioural state (deliberating) in the unary

decision-making algorithm (Figure 4.5), is expanded in a best-of-N decision to contain two states:

advocating and researching. It is iterative recruitment (Section 3.3) during the deliberation phase

that collectively compares the known alternatives, identifying the best one. An advocating robot is

said to favour an alternative, and recruits other robots to its favoured alternative as they randomly

are encountered. Once recruited, a robot enters the researching state to evaluate the quality of the

alternative to which it was recruited. After it has ascribeda quality to the alternative, a researching

robot then enters the advocating state favouring the alternative, and will recruit additional robots to

this alternative. The rate at which the advocating robots attempt to recruit their teammates is tied

to their opinions of their favoured alternatives. The higher in quality an advocating robot believes

its alternative to be, the more frequently it will attempt torecruit others. Therefore, the better

alternatives will tend to increase in popularity while the poorer ones will be forgotten altogether.

Simultaneously, advocating robots also estimate apparentconsensus and compare their estimates

to the quorum threshold in order to test quorum. Unlike the deliberators in a unary decision, advo-
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cating robots in a best-of-N decision cannot assume that the other advocating robots all favour the

same alternative. Each advocating robot estimates apparent consensus only for the particular alter-

native that it favours. If it is recruited to favour a different alternative, it will computeC̃a only for

the newly favoured one. Once one of the robots believes that the apparent consensus for its favoured

alternative has reached the preset quorum threshold,Q, that robot will commit to its alternative, and

enter the committed phase of the decision.

Committed robots instruct every teammate that they encounter to commit as well, just like in

a unary decision, eventually exiting the decision when theyno longer receive acknowledgments to

their commit-messages. Very rapidly, the entire dec-MRS will be induced to commit to the same

alternative, thus unanimously selecting one of the alternatives found during the initial search. As a

direct consequence of the positive feedback in the deliberation phase, the best alternative will be the

one most likely to induce a robot to commit first, and so the commitment phase tend to will bring

about the unanimous adoption of the best alternative. In this way, the best of the N alternatives found

by a dec-MRS will be selected by the system as a whole.

However, because there are multiple alternatives in a best-of-N decision, and because each

robot’s estimate of apparent consensus will contain some error, it will be possible for more than one

of the alternatives to induce commitment. A committed robotin a best-of-N decision will change

the alternative to which it is committed if it receives a commit-message specifying a different alter-

native. When more than one alternative induces commitment,a period of attrition will follow, and

the alternative with the greatest number of committed robots will tend to be selected in the end. That

particular alternative is most likely to be the one that induced commitment first, which again will

tend to be the best one.

5.1.1 The Site Selection Problem

Best-of-N decision-making can be applied to many differentproblems, but to demonstrate its per-

formance in this work, the site selection domain is used. In this problem, introduced in [57] as

“collective relocation”, a dec-MRS has decided that its current home base has become inadequate

(perhaps with a unary decision), and so a new one must be found. The robots do not know of any

sites for a new basea priori, but several are located in the surrounding environment. These must

be discovered by the robots during the initial search, whichpopulates a menu of alternatives from

which exactly one will be selected. Figure 5.2 illustrates asimulated site selection environment.

The deliberation phase identifies the best alternative in the decentralized menu of alternatives

via its iterative recruitment. A recruited robot must travel to the site communicated by its recruiter

in order to determine the site’s quality for itself. Site quality could be a function of several different

cues depending on the specific problem at hand. For example, in a robotic mission to the planet

Mars, a dec-MRS might have to set up infrastructure for a later human mission. One task in such

a mission might be to erect a solar array to generate electricity [40]. In this case, the robots would
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Figure 5.2: This figure presents a screenshot from a simulated best-of-N decision-making experi-
ment in the site selection domain. The black square in the center of the environment is the robots’
initial home base, and the squares in the corners are candidate sites from which the robots must
select a new base. The small black circles are the robots themselves, and the arcs represent the
ranges of their vision. One of the robots in this scene favours the upper right site, and is leading a
teammate that it has recruited to it so that the recruit can inspect the site for itself. The rate at which
the site-favouring robots recruit is based on their opinionof site quality, so the best site will tend
to attract recruits more rapidly than the others, making it the most likely site to be selected by the
decision’s end.

need to find a site in their environment that would receive themost sunlight, while also being stable

enough to support the array. In a security application, a system might have to choose locations at

which to place surveillance cameras or other such equipmentin order to maximize the equipment’s

effectiveness. Regardless of the specific scenario, a researching robot would have to evaluate the

candidate site to which they were recruited and determine for itself the site’s quality.

Being a domain with spatially distributed alternatives (the sites), both on-swarm (Section 3.4.2)

and off-swarm (Section 3.4.1) quorum testing could be employed. When quorum is tested on-

swarm, the robots estimate apparent consensus by explicitly requesting vote-messages from their

their teammates as they are encountered. When quorum is tested off-swarm, robots estimate the

number of robots that also are present during a visit to a favoured site. Both of these strategies were

investigated in the experiments presented in this chapter

Independent of the manner in which quorum is tested, once a robot believes its favoured alterna-

tive has satisfied quorum, it will commit to the alternative,beginning the commitment phase of the
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collective decision. As the committed robots exit the decision by entering the finished state, they

relocate to the site to which they most recently were committed, adopting it as their new base. At

the end of a successful site selection decision, the robots all will have relocated to the best site that

was found during the initial search.

5.2 Simulated Experiments

Analytical investigation of this decision-making behaviour is difficult, and therefore an empirical

approach is employed. In this section, a series of simulatedexperiments are presented. These exper-

iments investigate the effects of population size, quorum,and the mechanism of iterative recruitment

on best-of-N decision-making behaviour in the site selection domain. Additionally,off-swarmquo-

rum testing is demonstrated in the simulations (refer to Section 3.4.1 for a discussion of off-swarm

quorum testing). This is an approach to quorum testing that closely resembles the reported behaviour

of the honeybees and ants that inspired this work.

5.2.1 Environment

As described earlier, the site selection environment contains several sites, and these are the alter-

natives for the robots’ best-of-N decisions. A screenshot from one of the simulated trials is given

in Figure 5.2. Like the earlier simulations, these were implemented using the TeamBots [85] MRS

simulator.

The simulated environment was a square enclosed region measuring 24 meters per side. In its

center was the robots’ initial home base, where recruitmentand commitment actions took place.

Equidistant from the base were either two or four candidate sites, depending on the trial. Each of

these sites had a different quality that the robots were ableto determine by visiting it. Site quality

measurement was error free in the simulations, meaning thatevery robot that visited a given site

would ascribe to it the same quality.

5.2.2 Robots

The robots in the simulated experiments were the same as those in the unary decision-making trials,

except that they were able to see further to allow them to search for sites and test quorum. Each

robot’s vision had a range of four meters and a 180 degree fieldof view with its center aligned with

the robot’s front. The areas visible to each robot are represented by the semicircular arcs in Figure

5.2. All of the inter-robot communication was local and one-to-one.

Four of the robots began each trial in the searching state, while the rest of their teammates

remained in the idle state, wandering about the initial base. The searching robots, also referred to

asscouts, would search the environment for sites by following randomwalks, moving in a straight

line for a random period of time followed by a reorientation to a random heading. The robots were

confined by the boundaries of their environment. When a candidate site was found by a scout,
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it would head towards it and ascertain its quality. Next, a robot would enter the advocating state

favouring that site, and spend a short period of time wandering about it in order to test quorum.

Finally, the robot would return to the initial base to recruit one of its teammates. Clearly, the size of

the menu of alternatives over which the robots would deliberate depended on the number of robots

that participated in the initial search. Each dec-MRS deployed the same number of scouts (four)

so that the observed decision-making ability of each MRS would not be affected by the ability of a

given system to conduct a more or less thorough search. The smallest system contained only four

robots, so a searching population of this size was used in every one of the simulated trials.

Advocating robots periodically return to their favoured sites to wander about and test quorum

before heading back to the base to recruit again. Once an advocator believes that its site has satisfied

quorum, it enters the committed state (still favouring its site), returns to the base and instructs the

rest of its teammates to commit to its site as well. The details of quorum testing, recruitment and

commitment in the simulated experiments are provided in thenext three sections.

Off-Swarm Quorum Testing

Much of this thesis focuses on quorum testing that is carriedouton-swarm(Section 3.4.2), in which

the advocators actively query the robots that they encounter to ascertain what proportion of their

teammates agrees with them. This is because on-swarm quorumtesting is practical in a wider variety

of domains. However, in the simulated best-of-N decision-making experiments,off-swarmquorum

testing (Section 3.4.1) was investigated. When a robot tests quorum for its alternative off-swarm, it

does so at some unique, well-defined location that all of the robots agree corresponds to the specific

alternative favoured by that robot. This means that off-swarm quorum testing only is practical in

certain spatial domains like site selection, since each alternativeis a unique, well-defined location.

During site selection, the advocating robots spend some proportion of their time visiting the sites

that they favour. These periodic visits occur immediately after an advocator has led a recruited robot

to its site (discussed in the next section), or after it has been unable to find a teammate to recruit at

the initial base. While at its favoured site, the robot counts the number of other robots that also are

there. The robots all are identical in appearance, so to avoid counting teammates more than once in

a quorum test, the advocators compute their tallies of teammates as the greatest number of robots

that they observe simultaneously during a particular visitto a site. A robot that is testing quorum

assumes that the other robots that are visiting the site are there because they also favour it. The size

of the population visiting a site is correlated to the site’spopularity within a dec-MRS, since all of

the robots that favour particular a site will visit it periodically. An off-swarm quorum test concludes

that quorum has been satisfied when the estimate of a site’s visiting population is greater than or

equal to the quorum threshold. Note that, because off-swarmquorum testing is based on an absolute

count of robots rather than a proportion, the quorum in this case is not a real number∈ [0, 1], but
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instead an integer∈ [0, N − 1]1, whereN is the population size of the dec-MRS.

Iterative Recruitment

It is the process of iterative recruitment that modifies the proportion of the robots in a dec-MRS that

favours the various known sites, promoting better sites over poorer ones. This in turn increases the

likelihood of a robot that favours the best known site believing that quorum is satisfied, and therefore

committing to it before a robot that favours a poorer site does. Therefore, the best site found will be

the one most likely to be selected by the entire dec-MRS. Robots in the idle state can be recruited, as

can robots in the advocating state. After an advocator has returned to the base but before it attempts

to recruit one of the robots there, it will delay for a certainperiod of time and wander about there. It

is during this delay prior to recruiting that advocating robots are themselves recruitable.

When a robot recruits a teammate, it leads its recruit to its favoured site in a follow-the-leader

fashion (refer to Figure 5.2 for an example). This mimics thetandem-running of theTemnothorax

recruitment behaviour, which allows a recruit to learn the location of the site to which it is being

led [32]. In the context of a general best-of-N decision, this behaviour is analogous to an advocator

explainingits favoured alternative to its recruit so that the recruit can evaluate the alternative for

itself. Once an advocator has begun to recruit a teammate, the advocator no longer will be recruitable

until it next returns to the initial base. This prevents a robot from abandoning a recruitment already

in progress if another advocator attempts to recruit it. In the simulations, four versions of iterative

recruitment were investigated, referred to in this thesis as restraintive, discriminative, hybrid, and

unbiasedrecruitment. They implement the positive feedback of the iterative recruitment process in

different ways, modifying the behaviours of both the advocating robots and those recruited by them.

Restraintive recruitment is a more descriptive name for theiterative recruitment strategy as it was

described earlier in this thesis in Section 3.3.2. Under this model, it is the amount of time that an

advocator delays prior to recruiting a teammate that is modulated to promote better sites over poorer

ones. Theworsean advocator believes its favoured site to be, the longer it will delay. As a result,

recruitment towards the better sites will tend to be more frequent, and those robots advocating for

poorer sites will be more likely to be recruited (to better sites) since they spend a greater proportion

of their time delaying in a recruitable state at the initial base. When a robot is recruited under this

model, it immediately forgets any previously favoured alternative and adopts whatever site it was

led to by its recruiter as its new favoured alternative. Because the recruitment tends to shift robots

that favour poorer sites to better ones, the poorer alternatives are the most likely to be forgotten by a

dec-MRS2, increasing the apparent consensus in favour of the better ones.

Contrasted with the restraintive approach is discriminative recruitment. Here, an advocator’s be-

haviour upon returning to the initial base is independent ofthe quality that it ascribes to its favoured

1The robots do not include themselves in their counts, so the largest quorum that could be satisfied isN − 1.
2The memory of a dec-MRS can be thought of as the union of its members’ memories. Once the last robot favouring a

particular site forgets it, the MRS as a whole forgets it.
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alternative. They delay for a constant period of time beforeattempting to recruit a teammate, and

so discriminative advocators are equally likely to recruitteammates independent of the quality of

the site that they favour. They also are equally likely to be recruited, since they all spend an equal

proportion of their time in a recruitable state. Preferencefor better alternatives is expressed instead

by the recruits themselves. Rather than automatically forgetting about some previously favoured

alternative, a recruited robot waits until it has evaluatedthe site to which it was led. If a recruit

believes that the site to which it has been led to is worse thanone that it previously favoured, the

proposed alternative will be rejected and the recruit will continue to favour the site which it had

favoured prior to the attempted recruitment. On the other hand, if the proposed alternative is at least

as good as the one previously favoured by the recruit, it willbe adopted and the old one forgotten.

In short, a discriminative robot cannot be recruited to a site that it believes is inferior to one that it

already favours. It is important to note discriminative recruitment relies on the individual robots to

make direct comparisons of alternatives in order to identify the best one.

Hybrid recruitment is a combination of the restraintive anddiscriminative models. A hybrid

advocator behaves according to the restraintive model by delaying for a period of time determined

by the quality of its favoured site prior to recruiting a teammate, and recruited hybrid robots will

refuse to favour a proposed alternative if it is inferior to one favoured prior to being recruited.

Finally, decisions might arise in which the candidate alternatives differ in some manner un-

detectable to the robots, or perhaps several equally good alternatives are discovered. In order to

simulate this scenario, the unbiased model of recruitment is used. Unbiased recruits always accept

whatever site they are led to as though they were following the restraintive model, and unbiased

recruiters delay for a constant period of time prior to recruiting, independent of their favoured alter-

native’s quality. Therefore, no preference is expressed for any of the sites by the individual robots.

The question regarding unbiased recruitment is whether or not the decision-making process will

terminate at all, or if stagnation will ensue.

Commitment

Once a robot believes that its favoured alternative has satisfied quorum, it commits to its alternative,

beginning the commitment phase of the decision-making process. At the time of commitment, the

robots likely will be spread across the environment. Some might be at the initial base, whereas

others might be visiting other candidate sites. However, uncommitted robots periodically return to

the base in order to recruit more teammates.

Committed robots therefore return to the initial base and instruct every robot that they encounter

there to commit to the site favoured by the committed robots.In the simulated experiments, com-

mitted robots transmit the location of the site to teammatesrelative to the initial base’s location.

When an uncommitted robot receives a commit-message, it responds with an acknowledgment and

then goes to the specified site. Every time a committed robot receives an acknowledgment it resets
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Figure 5.3: This figure presents a timeline of one of the simulated best-of-N decisions. The history
of each robot is given by the sequence of symbols along the corresponding timeline. Solid and
hollow symbols indicate events regarding the better and poorer sites, respectively (this particular
trial compared only two sites). Once a robot found a site, therobot began to recruit teammates to it.
Note that the robots that favoured the better site recruitedmore frequently. Over time, robots that
favoured the poorer site were recruited to favour the betterone, and eventually quorum was satisfied
for it. After this occurred, commitment flooded throughout the dec-MRS, resulting in the unanimous
adoption of the better site. This timeline presentation wasinspired by a similar figure in [50].

a timer. Once a committed robot’s timer reaches the preset limit (the commitment timeout,Tc), it

leaves the initial base and heads to the site that triggered commitment, and exits the decision-making

process.

5.2.3 Experimental Trials

A series of simulated experimental trials was carried out toinvestigate the different recruitment

strategies. The effect of quorum and dec-MRS population size also were examined by these ex-

periments. Regardless of the population size of the dec-MRS, the number of robots that acted as

scouts always was four. Robots that did not act as scouts remained in the idle state at the initial base,

waiting to be recruited into the process.

Dec-MRS composed of 4, 8 and 12 robots were run in a two-site environment, and quorum was

varied from zero to 75% of total system population. These trials all employed restraintive recruit-

ment and were repeated 100 times. Restraintive, discriminative, hybrid and unbiased recruitment

were implemented with an 8-robot system in a four-site environment, with each trial repeated 50

times. Quorum for this second set of experiments also was varied from zero to 75% of total system

population.
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Figure 5.4: It is important that a collective decision is unanimous. These graphs plot the percentages
of the simulated trials that ended unanimously, regardlessthe particular site that was selected. In
general, population size and the specific model of recruitment do not affect the ability to achieve
unanimity. However, the likelihood of unanimity increaseswith the quorum threshold, because
because a greater quorum makes commitment to multiple sitesless likely.

5.2.4 Results

The general behaviour of the trials followed that outlined by Figure 5.1. Following an initial period

of searching, the scouts found sites and entered the advocating state and began to recruit the idle

robots and each other. As the iterative recruitment proceeded, robots favouring poorer sites were

recruited to favour better ones, and the population favouring the best site found tended to increase

over time. Eventually, one of the advocators would observe aquorum of robots while visiting its

favoured site, which would induce it to commit. The remainder of the robots would be instructed to

commit soon afterwards as the quorum-observing robot instructed them to do so. Often, once one

robot had committed to its site, other advocators testing quorum at the same site would see a sudden

influx of teammates that had received a commit-message. The other robots that were testing quorum

at the site often would commit, because they also would observe quorum. They too would return to

the initial base to tell robots there to commit. Thus a singlecommitment would induce other robots

to observe quorum, too, leading to a chain-reaction of robots observing quorum and committing in

addition to the normal commit-message flooding behaviour observed during the commitment phase.

A timeline graphically depicting the history of a typical simulated best-of-N decision is given in

Figure 5.3.

Decision Unanimity and Stagnation

As was the case for unary decision-making, best-of-N decisions can be characterized by their accu-

racy, efficiency and the time required to make them. Figure 5.4 plots the percentage of the decisions

that achieved unanimity as a function of quorum. At the end ofa unanimous decision, all of the

robots had relocated to the same site. A decision might not achieve unanimity for several reasons.
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Figure 5.5: This figure illustrates how a robot’s visual fieldof view impacts its ability to test quo-
rum using the off-swarm method outlined in the text. While visiting its favoured site, a robot will
compute the number of its teammates also there as the largestnumber of other robots it was able to
observe simultaneously. In this example, the white robot would believe that only five other robots
were present, since the other two are outside of its field of view, indicated by the dashed semi-circle.
In practice, this means that larger quorums are less likely to be observed by the advocating robots,
delaying the onset of commitment, or resulting in stagnation altogether.

If too low a value was used for the quorum threshold, commitment might occur before all of the

scouts had found a site, and thus some of them would not returnto the initial base in time to receive

a commit-message before their committed teammates all relocated to the selected site. Also, when

quorum was less than 50%, it was possible for multiple sites to satisfy quorum and induce commit-

ment, which increases the likelihood of a split decision. Increasing quorum addresses both of these

modes of failure.

Furthermore, there was a finite probability that none of the robots would commit before the end

of a trial, even though a sufficient number of the robots favoured one of the sites. This is a problem

specific to off-swarm quorum testing. For quorum to be satisfied, an advocating robot must observe

a minimum number of robots while visiting its site. Even if 100% of the robots advocate for the same

site, they are unlikely to present there at the same time, so an advocating robot might never have the

opportunity to observe a quorum during any of its visits to its site. Even if a sufficient number of

robots does assemble simultaneously at a particular site, the difficulty in accurately counting them

all increases with the size of the visiting population (i.e. it is easy to count all of the robots at a site

when there are only three, but harder to do so when there are ten, and so on), because it is harder to

fit a large number of individuals into the fixed visual field of view of a robot. For example, to observe

a 75% quorum, a member of the 8-robot system would have to observe six robots simultaneously,

whereas a member of the 12-robot system would have to simultaneously observe nine robots to

do so. This problem is illustrated by Figure 5.5. Both of these problems increase the likelihood

of stagnation, and the latter worsens as the population sizeincreases. Stagnation due to the latter

phenomenon accounts for the dip in the 12-robot system’s ability to make decisions when quorum

was increased to 75% seen in Figure 5.4(a) [58].

87



100

80

60

40

20

0
100806040200

C
or

re
ct

 D
ec

is
io

ns
 (

%
)

Quorum Threshold (%)

Correct Decisions Versus
Quorum: Effect of Population

Restraintive recruitment
used in all trials.

4 robots
8 robots

12 robots

(a)

100

80

60

40

20

0
100806040200

C
or

re
ct

 D
ec

is
io

ns
 (

%
)

Quorum Threshold (%)

Correct Decisions Versus
Quorum: Effect of Recruitment

Population = 8 robots

Restraintive
Discriminative

Hybrid
Unbiased

(b)

Figure 5.6: As quorum is increased, the ability of the robotsto make correct decisions (in which best
of the sites found by the scouts is selected at the decision’send) increases with quorum. Quorum
specifies how much iterative recruitment is sufficient; oncea quorum of robots is found to support a
particular site, the system concludes that sufficient deliberation has transpired. Note that increasing
the population size of a system also increases its ability tomake correct decisions, since larger
systems are less impacted by the occasional recruitment away from the best site. The model of
iterative recruitment has little effect on the decision-making ability of a system, as long as it is
biased in some way to so that recruitment towards the best site is the most likely.

The manner in which iterative recruitment was implemented appears to have minimal impact on

the likelihood of achieving unanimity. All three of the biased models achieve similar performance

as indicated by Figure 5.4(b). The slightly lower performance of unbiased recruitment also is at-

tributable to stagnation, since it takes longer for the unbiased robots’ deliberation to satisfy quorum

for one of the sites.

Ability to Make Correct Decisions

Of course, it is important to make good decisions, not just unanimous ones. Figure 5.6 plots the

percentage of the unanimous decisions that also were correct. Because each robot was able to

determine the quality of its favoured site without any error, the correct decision was made by a

system when it unanimously chose the best site that it was able to find during the searching phase.

In both of these plots, the horizontal line indicates how often the robots’ decisions would have been

correct if they were made completely at random. Note that these baselines are not at 50% and

25% in the two- and four-site environments, since there is noguarantee that the robots will find

every site in a given trial. It is iterative recruitment thatpromotes correct decisions in the proposed

decision-making framework, and so the more iterative recruitment takes place, the more likely a

correct decision becomes. This is controlled by the value ofquorum. Increasing quorum increases

the certainty with which a particular site could be labeled as “best” by a robot, since that conclusion

would be based upon a greater consensus when higher quorums are employed. As a result increasing

quorum will tend to increase the ability of a system to make a correct decision, and this precisely is
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what is demonstrated by Figure 5.6.

Note that the decision-making ability of a dec-MRS increases as the system’s population size

increases, too. In a small system, one or two robots recruited from a good site to a poorer one is

much more likely to result in commitment to the poorer site than would be the case with a larger

population. Consider the effect on consensus in a four-robot system when a robot favouring one site

is recruited to favour another. The consensus in favour of the site that the robot originally favoured

will decrease by 25 percentage points, and the consensus in favour of its newly favoured site will

increase by the same amount. This is a significant change. On the other hand, consider the same

scenario in a 12-robot system. The change in consensus in this case would be only 8.3 percentage

points. The greater the number of robots that take part in a decision, the less of an impact each

individual’s actions and opinions will have.

Turning to the manner in which iterative recruitment is implemented and how this can impact

the ability of a dec-MRS to make a correct decision, examine Figure 5.6(b). Not surprisingly, un-

biased recruitment performs about as well as random chance.The three biased methods all see an

increase in the ability of a system to make the correct decision as quorum is increased. There ap-

pears to be no advantage to direct comparisons by the individual robots, evident in the performance

of discriminatory recruitment as compared to restraintiveand hybrid recruitment. There is a slight

interaction between the discriminative strategy and off-swarm quorum testing, since a discriminative

recruit might visit a site and reject it, yet still be included in another robot’s quorum test before it

leaves, but it is unlikely that by removing this phenomenon that any substantial improvement in its

performance would be realized.

Discriminative recruitment intuitively seems as though itshould be the best approach, since it

prevents recruitment from proceeding away from the best site. However, this characterization im-

plicitly assumes that the individual robots can be relied upon to compare two alternatives accurately.

Even when the robots possessed perfect sensing, which was the case in these simulations, discrimi-

native recruitment performs no better than either the hybrid or restraintive approaches. Note that, on

its own, the alternative quality dependent delay in hybrid recruitment (identical to that of restraintive

recruitment) was so effective at comparing the sites that the discriminative component of the hybrid

strategy largely was extraneous.

The Focus of Deliberation

When a best-of-N decision is made, two basic operations are employed: recruitment and commit-

ment. The switch from the former to the latter occurs when oneof the robots observes quorum. As

in unary decisions, the role of commitment is to promote unanimity, whereas iterative recruitment in

the deliberation phase promotes good decisions. At the end of a decision, all of the attention that the

unselected alternatives received can be considered a wasteof time and energy. A perfect decision-
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Figure 5.7: The deliberation phase of the decision-making framework compares sites by recruiting
additional robots to inspect them. Ultimately, recruitment towards a site that is not selected by a
system represents a waste of time and energy, and so a good decision-making algorithm should give
most of its attention to the site that ultimately is selected. The plots in this figure illustrate that this
is the case for the proposed decision-making framework. As quorum is increased, the selected site
is seen to attract more recruitment, but recruitment to the unselected site remains minimal. Some
of the system configurations are omitted from these plots to avoid clutter, but all of them follow the
pattern of those shown.

making algorithm would ignore alternatives that ultimately will not be selected3. In reality, though,

some attention must be paid to each alternative, but the lesspaid to unselected ones the better. The

number of robots recruited to a particular site is a good measurement of the collective attention that

the site attracted. Figure 5.7 plots the number of recruitments to the sites selected and unselected.

The same behaviour was observed in all of the systems regardless of population. As quorum is

increased, which is equivalent to demanding greater accuracy from a dec-MRS, significantly more

attention is given to the site that is selected in the end, whereas the increase in recruitment towards

the unselected site(s) is much less. This shows that iterative recruitment produces efficient delibera-

tion. As the population size is increased, the total recruitment increases, but still the unselected site

largely is ignored. Unbiased recruitment exhibits this behaviour, too, which might seem somewhat

surprising at first. However, even though the probability ofan individual robot recruiting is indepen-

dent of its favoured alternative’s quality, theprobability of being recruitedwill be biased towards

one of the sites, simply because more robots are likely to support one than the other(s) through ran-

dom chance4. For example, if two thirds of a robot’s teammates supportedsite-A and only one third

supported site-B, the robot would be twice as likely to be recruited by a supporter of site-A. This in

turn would increase the probability of other robots being recruited to site-A.

3This notion of a perfect decision-making algorithm can be compared to the imaginary nondeterministic function em-
ployed in complexity proofs.

4One might argue that an equilibrium exists when an equal number of robots favour each known site. However, this is an
unstable equilibrium, and a system soon would be pushed off of it by stochastic effects.
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Figure 5.8: These figures plot the mean length of time that each system spent in the deliberation
phase. Regardless of the number of robots that compose a dec-MRS or the kind of iterative recruit-
ment employed, deliberation time increases with quorum. This happens because higher values of
quorum required additional robots to be recruited in order to be satisfied. In each system, the number
of robots that identify candidate sites is fixed, so increased deliberation is required in systems with
larger population sizes.

Time Required for Deliberation

Finally, a decision-making algorithm can be judged by the time required by it to make a decision.

Figure 5.8 plots the mean deliberation time of the decisionsversus quorum. Deliberation time is

defined here just as it was in Chapter 4: it is the time measuredfrom the beginning of a decision-

making trial until a robot commits to an alternative. This means that the time required by the

searching phase is included in the deliberation time, but the commitment phase is not. Both of these

phases are relatively constant in length, and so the inclusion of the former and the exclusion of the

latter does not alter the trends displayed by the plots. Deliberation time increases with quorum, an

observation that should be expected. As Figure 5.7 demonstrated, increasing the quorum increased

the amount of recruitment in a decision. It is the additionaltime required by the extra recruitment

that accounts for the increased deliberation time with quorum seen in Figure 5.8 (note the similarity

between the shapes of Figures 5.8 and 5.7). Because there aremore robots to be recruited in a larger

dec-MRS, the deliberation time also should be expected to increase somewhat with population size,

which it does. Once again, there is little difference between the three biased implementations of

iterative recruitment.

5.2.5 Summary

The results of the simulated best-of-N decision-making experiments permit several conclusions to

be drawn. First, the proposed framework of this thesis indeed enables a dec-MRS to make accu-

rate best-of-N decisions. Increasing the quorum of a decision, which increases the duration of the

deliberation phase, both increases the likelihood of a correct decision being made, and the likeli-
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hood of that decision being unanimous. Perhaps the most surprising is that no improvement in the

decision-making performance of the robots was observed when direct comparisons were made of

alternative quality (i.e. discriminative iterative recruitment), even though the individual robots in

these experiments were in complete agreement about the sites’ qualities. The emergent comparison

of alternatives that is carried out by restraintive recruitment performed as well, if not better than the

discriminative approach.

In these simulations, the individual robots tested quorum off-swarm by counting the absolute

number of other robots that simultaneously visited a favoured site and compared this to the quorum.

In some ways, this simplifies quorum testing, since the robots need not communicate with each

other to do so. An advantage of off-swarm quorum testing, andin particular the specific manner in

which it was implemented here is that premature commitment is largely eliminated. This is because

a robot will not commit until it observes a quorum of robots atits favoured siteat a single instant. If

a robot can see five robots at the same time, it can be certain that there are at least five robots nearby.

Therefore, the observed quorum was guaranteed to be at leastas great as the quorum threshold in

these simulations. This is not necessarily the case with on-swarm quorum testing, as the unary

decision-making results illustrated.

However, when quorum is tested off-swarm, stagnation will become a problem as the population

size of a dec-MRS or quorum increases. This was illustrated by the decrease in the decision-making

ability of the 12-robot system when quorum was increased to 75% of system population5. Fur-

thermore, the simplification offered by off-swarm quorum testing is of no real benefit to a robotic

system. The robots already must be able to communicate with each other for the purpose of recruit-

ment. Typically, a robot is able to communicate or it is not. If it is, then any number of different

messages could be sent or received via its communication hardware with equal ease. This is very

different from the communication of social insects, in which different chemicals are used to send

different messages, requiring different glands to producethem and specialized receptors to detect

each one. It therefore is to the insects’ advantage to employa passive quorum test since it does

not require an expansion of their chemical vocabulary. The added complication of a quorum test

that requires explicit communication is insignificant for arobot already able to exchange messages.

Unless there is a very compelling reason not to do so, on-swarm quorum testing should be employed

by a dec-MRS for collective decision-making.

5This result might seem somewhat odd given that the ants and bees, upon whose behaviour the proposed decision-making
framework is based, employ off-swarm quorum testing, and that their populations range from a few tens to a several thousands
of individuals. However, the insects base their quorum tests upon the rate at which teammates are encountered when visiting
a particular site, rather than an absolute count. This population density based consensus estimation is susceptible tothe same
kinds of errors and thus false positive tests as analog consensus estimation, and the approach would have to be tuned tovery
specific kinds of decisions and the expected alternatives that would be available solutions. Correspondence with the primary
researchers of the insects’ behaviours suggests that the actual quorums thresholds employed are low, quite less than 50%, and
that they vary considerably from one insect to the next [68].
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Site Overhead Lamp

Site Beacon

Figure 5.9: This photograph depicts the environment in which the physical site selection experiments
were carried out. It was very similar to the environment of the unary decision-making experiments
(a hexagonal enclosure, 2.75 meters per side), except that two candidate sites were added to it on
opposite sides. These sites were the alternatives for the robots’ best-of-N decision-making.

5.3 Physical Experiments

A series of experiments with real robots were carried out to further investigate best-of-N decision-

making in the site selection domain. In particular, these experiments demonstrate that this approach

to decision-making is practical in a real environment, and that the proposed framework is able to

accommodate substantial noise in the individual robots’ abilities to measure the qualities of the

alternatives that they are able to find. The size of the scouting population also is varied in these

experiments to examine its impact on collective best-of-N decision-making behaviour.

5.3.1 Environment

The physical best-of-N decision-making experiments were carried out in the same arena as the unary

decisions. It consisted of a hexagonal enclosure measuring2.75 meters on each side. Two sites

were added to the environment to serve as alternatives over which the robots would deliberate. A

photograph of the experimental environment is given in Figure 5.9. Although this photograph was

taken in a well lit room, the experiments were conducted withall of the room’s lights turned off

except for those associated with the candidate sites, the details of which are provided next.

Sites

The goal of the robots in the site selection domain is to find and then collectively select the best

available site in their environment. The sites were represented by calibrated overhead lights. As

was the case in the simulated decisions, each site had associated with it a quality. In a real-world
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(a) Overhead Light (b) Coloured Beacon (c) Site in the Environment

Figure 5.10: These three images show how the candidate siteswere built for the decision-making
experiments. At 5.10(a) is a close-up of a site’s overhead light. The quality of a site is determined
by its brightness. The attached circuit board controls the current to the lamp’s 8-LEDs, and their
brightness as a result. Because the robots were unable to localize themselves in their environment,
coloured beacons were placed next to each site. One of these is shown at 5.10(b). During an
experimental trial, the room was made completely dark, except for the sites’ overhead lights and
beacons. The photo at 5.10(c) shows what a site looked like during a trial. The illuminated spot on
the ground in front of the beacon is the site itself.

application, this could be any attribute of a candidate location. For example, higher site quality might

be associated with the availability of ground-water if the robots’ mission was to identify potential

well sites, or perhaps chemical concentration would be valued if the robots were assigned to locate

a refinery leak. In the experiments, the quality of a site was represented by the brightness of a light

suspended above it. A robot visiting a brightly lit site would tend to perceive it as higher quality

than it would a dimly lit one. Although this is intended to serve as an abstract site quality here, this

behaviour might be useful if the robots’ mission was to identify the best place at which to deploy a

solar array [40].

Refer to Figure 5.10 for the following description of the sites’ construction. Each site’s over-

head light was provided by an array of eight white light emitting diodes (LEDs) connected to an

adjustable current source (Figure 5.10(a)). The light emitted by an LED is very linear with the cur-

rent that passes through it, permitting the brightness (andthus the perceived quality) of a site to be

set precisely. Each LED array was housed in an ABS plastic pipe cap with a piece of white tissue

paper fastened over its open end to serve as a diffuser. A cowlconstructed from card was slid over

the pipe cap, enabling the size of the spot projected on the ground to be controlled, which in turn

determined the physical size of a site (i.e. the diameter of the illuminated spot on the ground). Two

sites were placed on opposite sides of the experimental environment. The currents supplied to the

two were 17.5 milliamperes and 4.0 milliamperes. These are referred to as thebetter siteand the

poorer site, respectively.

Due to the non-linear response of the cadmium-sulfide photoresistors that were used in the

robots’ overhead light sensors, the two sites were much closer in quality from the robots’ points

of view than these two currents suggest. The sites’ currentswere adjusted along with their shades

so that the two sites were equally easy for the robots to find, and so that there was some overlap in

their qualities as perceived by the robots. Figure 5.12 presents the quality of the two sites according
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to the robots. Each robot recognized that the better site indeed was brighter than the poorer one, but

they were perceived to be sufficiently similar in quality that an individual robot’s direct comparison

of two was unlikely to be precise. The distributions presented in Figure 5.12 are based on the robots’

assessments of site quality during the experimental trialspresented later in this Chapter.

The robots possessed no means of localizing themselves within the environment (odometry

would have been too inaccurate, whereas a more rigourous approach would have exceeded the indi-

vidual robots’ computational capabilities), so the follow-the-leader behaviour used in the simulations

was impractical for the physical experiments. Instead, coloured beacons were placed on the ground

adjacent to each site. These beacons made the sites uniquelyidentifiable and provided a common

ontology for the robots to refer to them (i.e. a robot could recruit a teammate to its favoured site by

communicating the colour of the site’s beacon as part of its recruit-message). Each beacon was illu-

minated by a fluorescent work light covered with a coloured theatre gel, enclosed in a wedge-shaped

enclosure lined with black felt (Figure 5.10(b)). The enclosures minimized the light from the bea-

cons that reflected off of the ceiling, reducing the beacons’interference with the robots’ searching

behaviour and measurements of site quality. One of the beacons was blue and the other was red, and

these were placed on the floor of the arena adjacent to better and poorer sites, respectively. When it

is more convenient to do so, the sites are referred to by the colour of their beacon: theblue siteand

thered site. A completed site with a robot next to it in the darkened environment is shown in Figure

5.10(c)

5.3.2 Robots

The same robots were used for the physical best-of-N decision-making experiments as were used for

the unary decisions. In addition to the 360 degree bumper sensor that was used to detect obstacles

and teammates, the robots also possessed other sensors. On the top of each robot were three pho-

toresistors pointed straight up, arranged in an equilateral triangle with one of its vertices pointing

towards the robot’s rear (refer to Figure 5.11(a)). A triangular piece of plastic6 was placed at the

centroid of the photoresistor triangle, rotated 180 degrees relative to the resistors. The plastic trian-

gle selectively shaded the photoresistors like a sundial, so that when an overhead light was placed

near a robot, the relative azimuth to the light could be determined. The magnitude of each photore-

sistor’s response represented the length of a vector pointing from the center of the assembly towards

the photoresistor itself. By summing the three vectors, a gradient was computed. The angle of the

gradient provided the heading towards the overhead light, whereas its length allowed a robot to de-

cide whether or not it was sufficiently close to the brightestpoint under the overhead light to make

a reliable measurement of its brightness (the length of the gradient would be zero when directly

under an overhead light). A short circular rim surrounded the entire assembly to prevent lights from

being seen until they were at least 30 degrees above the sensor’s horizon, reducing the interference

6A small piece of a three-sided engineering scale painted black.
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Figure 5.11: In order to find, measure and identify sites, therobots were outfitted with upward-
pointing site sensors and forward-pointing beacon sensors. The sensory elements in all of these
were cadmium-sulfide photoresistors. 5.11(a) shows the overhead site sensor. Three photoresistors
(the one in the rear cannot be seen in this image) were arranged in a plane with a triangular shade
separating them. Their relative responses to an overhead light allowed a robot to compute direction
to the point on the ground directly under a site’s overhead light, where a measurement of its quality
should be made. At 5.11(a) can be seen a robot’s beacon sensors. Here, a column of three photore-
sistors, each covered by a different coloured gel (red, green and blue) allowed the robot to determine
which coloured beacon it was facing. Each robot had three of these to increase the beacon sensor’s
field of view.

from the coloured beacons. This sensor, referred to simply as theoverhead light sensor, allowed the

robots to find the candidate sites in the environment and center themselves under the sites’ lights.

This centering operation allowed them to measure a site’s quality at its brightest point.

Once a robot had found a site, its next task would be to determine the colour of its beacon.

Beacon sensors also were assembled from photoresistors7 (refer to Figure 5.11(b)). An array of

three photoresistors was arranged into a column, with each one covered by a different coloured

piece of theatre lighting gel (red, green or blue). Each element was connected to an 8-bit analog to

digital converter, so the array was able to see a single pseudo-RGB8 pixel. Each robot was equipped

with three of these arrays; one pointing forward and one eachpointing 30 degrees to either side.

Because of the wide tolerances typical of photoresistors, all of the robots’ beacon sensors were

calibrated to the actual site beacons. This ensured that, when any two robots observed the same

beacon, they would agree about its identity. The robots wereable to detect a beacon once they were

within approximately three meters of it.

Communication

Because the robots used in the physical best-of-N trials were the same as those used to demonstrate

unary decision-making, communication amongst them was carried out using 802.11B wireless Eth-

ernet. Again, the range of these radios was global in the experimental environment, so local peer-to-

7Photoresistors are known to be non-linear, have wide tolerances and slow responses. However, in the experimental
environment, they were sufficiently fast for the purposes ofthese experiments and are incredibly cost effective, an important
consideration when eleven robots must be equipped with them.

8The term “pseudo-RGB” is used because the passbands of the red, green and blue theatre gels used, combined with the
responses of the photoresistors did not match that specifiedfor true RGB.
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Figure 5.12: Unlike the simulated site selection experiments, the real robots’ perception of site
quality was noisy. This figure plots each of the eleven robots’ opinions of site quality. The median,
minimum, first and third quartiles, and maximum readings of each site’s quality are plotted. All of
the robots agreed that the blue site was better than the red site, although most had noisy enough
perception of site quality that a single robot’s opinion would be unreliable. The horizontal dotted
lines indicate the perceived site qualities above or below which the robots’ inter-recruitment delays
would saturate (see Figure 5.13).

peer communication had to be simulated. This was accomplished in the same way as it was for the

physical unary decision-making experiments. When a robot encountered an obstacle (being unable

to tell the difference between a teammate and the wall) on itsfront half and communication was ap-

propriate, it would randomly select a teammate’s IP-address from a list supplied to it at run-time and

send a peer-to-peer message to that teammate via TCP. The recipient would respond (if appropri-

ate) with a peer-to-peer message back to the sender’s IP-address. The resulting random peer-to-peer

communication [59, 61] mimicked that of a well-stirred dec-MRS. IP-addresses were only used to

address messages, and were not used for any other computation (i.e. received opinions were not

associated with the identities of their senders).

5.3.3 Robot Behaviours

As illustrated by Figure 5.1, the best-of-N decision-making framework employs several distinct

robot behaviours. In this section, the individual robot behaviours are described in detail, presented

in the order that they appear in a best-of-N decision.

Searching/Idle

Robots began a decision in either the searching or idle states. The searching robots, also referred

to asscouts, search the arena for candidate sites. The search behaviouris identical to the wan-

der/reorient behaviour of the robots in the task completionexperiments. The robots travel in straight
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Figure 5.13: Restraintive recruitment was used by the robots in the physical experiments. In this
approach, the advocate robots delay for a certain period of time between attempting to recruit team-
mates to favour their site; the better a robot believes its site to be, the less time it will delay, and
thus the more frequently it will recruit. The solid line in this figure shows the relationship between
a robot’s perception of site quality and the amount of time that it delays between attempting to re-
cruit. Additionally, to reveal any biases in the experimental environment itself, trials were run with
unbiased recruitment, given by the dotted line. If one of thesites was easier to find, then this would
be revealed by these unbiased trials.

lines, and reorient to random headings when they encounter an obstacle (a teammate or the environ-

ment’s walls). As they wander, the scouts continually measure the intensity of the light above them.

When this exceeds a preset threshold, a searching robot knows that it has found the edge of a site. It

then moves towards the center of the site (its brightest point) by following the overhead light gradi-

ent. Once the robot has moved to within a preset distance of the center of the site (determined by the

length of the gradient computed from the overhead light sensor intensities, not physical distance),

the site’s quality is recorded as the average of the three intensities reported by the overhead light

sensors’ elements. Finally, the robot rotates on the spot toidentify the site’s beacon. A site’s quality

and beacon having been found, a scout becomes an advocating robot, entering the deliberation phase

of the decision favouring the site that it found. As was explained earlier, in the general case of a

best-of-N decision, some scouts might not find an alternative, or perhaps some robots would not

be equipped to participate as scouts. These robots are represented by the idle state. Idle robots sit

motionless at the side of the arena until they are recruited into a decision.

Iterative Recruitment and Researching

Once a robot has entered the advocating state, the deliberation phase of a best-of-N decision begins.

The advocating robots iteratively recruit their teammatesto their favoured sites, modifying the ap-

parent consensus in favour of those sites that have been identified. In the simulated decisions, four
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variations of iterative recruitment were examined. Restraintive recruitment performed very well in

those experiments, and since it was the only biased model of recruitment that did not necessitate

direct comparisons of site quality by the individual robots), it was the only iterative recruitment

strategy implemented in the physical trials.

Robots that have found a site and entered the advocating state recruit their teammates to it at a

rate that is based on the site’s quality (i.e. the brightness of the overhead light). The better a robot

believes its site to be, the more frequently it will recruit teammates to it. The rate of recruitment by

a robot is controlled by the period of time between a robot’s attempts to recruit teammates, called

the inter-recruitment period,Tr. The relationship between the perceived quality of a site and the

inter-recruitment period in the physical experiments is given by Figure 5.13.Tr decreases linearly

from a maximum value as perceived site quality increases. Note that there are both maximum and

minimum perceived site qualities (215 and 85), and that the inter-recruitment period is constant for

site qualities above or below these values (60 and 600 seconds, respectively). Limiting the minimum

value ofTr prevented recruitment from proceeding too rapidly. Recallthat robots concluded that

they had found the center of a site once the magnitude of the overhead light gradient was sufficiently

close to zero. However, a robot might also observe a short gradient if it got lost and wandered into

complete darkness. The areas of the environment away from the sites registered as approximately

50 on the robots’ overhead sensors, so 85 was selected as a practical minimum site quality.

A recruit-message specifies only the colour of the beacon next to the site favoured by its sender.

A recruitable robot (e.g. a robot in the searching, idle, or advocating states) that receives a recruit-

message immediately enters the researching state in which it searches for a site near the specified

beacon. Note that, because advocators do not need to lead their recruits to their favoured sites,

recruiting is an atomic act for them. Therefore, an advocating robot cannot be interrupted mid-

recruitment, and thus they are always recruitable. The search behaviour of a researching robot

consists of a random walk similar to that described for the scouts, except that a researching robot

will periodically rotate on the spot, scanning for the target beacon. If the target beacon is observed,

the robot will reorient to face it and then resume straight-line motion. This scanning/reorienting

behaviour biases a researching robot’s search to the area nearby the target beacon, increasing its

likelihood of finding the associated site. If a researching robot happens to find a different site, it

will move away from it before resuming its search for the particular site specified by its recruiter.

Although recruiting is an atomic action, researching a siteonce recruited is not. Therefore, research-

ing robots could not be recruited. Instead, they would respond to recruit-messages as though they

were queries for their opinions. Once a researching robot found the site that it was looking for, it

would measure its quality and adopt it as its favoured site and forget about any other site that it might

previously have favoured. The robot, now in the advocating state favouring the new site, would iter-

atively recruit robots that it encountered everyTr seconds based on its own opinion of its favoured

site’s quality. If a researching robot was unable to find the specified site in a predetermined period
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of time (set to 180 seconds in all of the physical trials), it would give up and revert to whatever state

it had been in prior to being recruited. This time limit rarely was reached during the experimental

trials. If an advocating robot received a recruit-message instructing it to research a site that it already

favoured, the recruit-message would be responded to as though it was a query for its opinion and the

robot would not enter the researching state.

Quorum Testing

As the advocating robots iteratively recruit each other, they also estimate the popularity of the sites

that they favour and compare their estimates to the quorum threshold. The apparent consensus in

favour of a particular site was estimated using the digital approach described in Section 3.4.2, by

computing the proportion of then most recently received teammate opinions that were agreeing.

Teammate opinions were gathered via query-messages. A query-message in a best-of-N decision

is equivalent the question “Do you favour alternativeX?”, whereX is the particular alternative

favoured by the querying robot. The response to this query would be “yes” if the queried robot

favoured alternativeX , or “no” if it did not9. Each advocating robot only tests quorum for the

particular alternative that it favours, which means that the number of known candidate alternatives

in no way affects the complexity of quorum testing. It also decreases the likelihood of false positive

quorum tests for unpopular sites, since fewer robots test quorum for them.

When a robot was recruited successfully, it would forget about any previously favoured alterna-

tive. An essential part of this process was forgetting any previously received vote-messages, since

these would be relevant only to the previously favoured alternative. However, a robot would begin

to favour a new alternative and forget previous teammate opinions only after it had found the site

to which it was recruited and entered the advocating state favouring it. Although robots in the re-

searching state would not query the teammates that they encountered for their opinions, they would

respond to query-messages, and did so as if they had not been recruited. For example, suppose

that a robot favoured the red site, and then received a recruit-message for the blue site. The robot

would enter the researching state and begin to search for theblue site, but until it found the blue

site and entered the advocating state favouring it, the robot would continue to respond to queries as

though it still favoured the red site. This choice of behaviour for researching robots is somewhat

arbitrary. Alternatively, researching robots could have been programmed to ignore query-messages

altogether. Given that researching robots tended to find their target sites relatively quickly, the over-

all impact of this decision on the collective decisions likely was insignificant. Robots responded to

recruit-messages as though they were queries, too. This behaviour ensured that robots that recruited

more frequently would not be deprived of their teammates’ opinions for their quorum tests. Once an

advocating robot believed that the apparent consensus for its favoured site had reached the quorum

threshold, it would enter the committed state.

9Robots also would answer “no” if they favoured no alternative at all.
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Commitment

This is the final behavioural state through which the robots would pass before exiting a decision,

and it essentially is the same in a best-of-N decision as commitment in a unary decision. When

an advocator commits because it computed a positive quorum test, it continues to favour the alter-

native that it did as an advocator. Instead of querying encountered teammates for their opinions, a

committed robot instructs them to commit, and it includes inits commit-messages the identity of its

favoured site as the particular site to which the recipient of the message should commit. Unless the

recipient has entered the finished state and exited the decision, it always obeys, committing to what-

ever site was specified. These robots in turn tell the robots that they encounter to commit, too. If

the recipient of a commit-message was not already committedto the specified site, it would respond

with an acknowledgment, otherwise no response would be given. In this way, if more than one site

satisfied quorum and triggered commitment, a period of attrition would follow after which one of

the commitment-inducing sites would remain and thus be selected unanimously. The site with the

most committed robots at the beginning of this attrition would be the most likely to be chosen in the

end since it would have had a head start building up a corps of robots committed to it.

Once a committed robot has been in the committed state for longer than the commitment timeout

without receiving any acknowledgments to its commit-messages, it will conclude that all of its team-

mates have committed to the same site as it and will enter the finished state, exiting the collective

decision. If the commitment timeout is made sufficiently long, all of the robots will be very likely to

exit the decision at approximately the same time, each believing that every other robot had exited the

decision similarly committed. This behaviour was illustrated by the results of the simulated unary

decision-making experiments.

5.3.4 Experimental Trials

A series of experimental trials was conducted with an 11-robot system to examine decision-making

performance in the site selection domain. Apparent consensus was estimated usingn = 15 samples,

and the quorum threshold (Q) was set to 33%, 53%, and 80%. These configurations were repeated

with four and eleven (all) of the robots participating in theinitial search for candidate sites. When

only four robots scouted, the remaining seven would begin inthe idle state. The 11-scout,Q = 80%

configuration was repeated with the inter-recruitment period set to a constant 90 seconds (indicated

by the dashed line in Figure 5.13). This configuration implemented unbiased decision making, the

performance of which served as a control trial that revealedany bias in the experimental environ-

ment. An 11-scout,n = 5, Q = 20% system also was implemented. With so many robots testing

such a low quorum based upon such inaccurate estimates of apparent consensus, the purpose of these

trials was to induce commitment to both sites in order to observe the resulting attrition during the

commitment phase. The robots were lined up along the two walls of the arena that were the furthest

from the two sites at the beginning of each trial. The commitment timeout was 60 seconds in every
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Figure 5.14: This timeline depicts a best-of-N decision using eleven real robots, the first four of
which acted as scouts. Solid and hollow symbols refer to the better and poorer sites, respectively.
Two of the scouts find the better site and two find the poorer site. Even though robot-4 makes a poor
evaluation of the better site’s quality, this error eventually is overcome by other robots recruited to
the better site, and the final decision is unanimous in favourof it. This illustrates the self-correcting
nature of the proposed decision-making framework. When a robot’s timeline indicates that it recruits
a teammate, the recruited teammate can be identified by an upside down triangle of the same colour
in its timeline at the same time. For example, robot-3 recruits robot-10 to the better site at 200
seconds, and robot-10 finds the site soon after.

trial, and every one of the nine experimental configurationswas repeated between 20 and 26 times.

5.3.5 Results

The results of the physical experiments are presented in this section in the same order as they were

for the simulated trials. Figures 5.14 and 5.15 present timelines of two trials, illustrating typical

decision-making behaviour. In both of these, the quorum threshold was 80% and apparent consensus

was estimated usingn = 15 samples. In Figure 5.14, only four of the robots scouted for sites,

whereas all eleven did so in the trial shown in Figure 5.15.

Once a robot found a site, it began to recruit its teammates with a frequency determined by its

own opinion of its favoured site’s quality. As soon as one of the robots believed that quorum had been

met, it committed to its favoured site, and its teammates rapidly followed suit as commit-messages

flooded the system. After all of the robots had committed to the same site, the acknowledgments

to commit-messages ceased, and approximately 60 seconds later (the length of the commitment

timeout), the robots began to enter the finished state havingunanimously selected one of the sites.

When all of the robots scouted, the early stages of the deliberation phase appear somewhat chaotic,

but over time, the consensus in favour of the better site increases, and ultimately it is chosen. Note

also that more robots find the poorer site in Figure 5.15, yet the better site still is selected by the

system as a whole by the trial’s end. The individual robot andsystem-level behaviours illustrated by
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Figure 5.15: This timeline illustrates a best-of-N decision in which all eleven of the robots acted as
scouts. Overall, recruitment is more frequent by the better-site favouring robots, so the proportion
of the robots that favour that site tends to increase. Eventually, robot-7 determines that quorum for
the better site has been satisfied (note that it initially favours the poorer site, and that it’s opinion of
the better site actually is quite low) and it commits, inducing the rest of the dec-MRS to follow suit.
Once all of the robots have committed to the same site, responses to commit-messages cease, and
the robots all exit the decision unanimously favouring of the better site.

these timelines is typical of that observed in the physical trials.

Ability to Make Correct Decisions

Every one of the physical decision-making experiments ended unanimously, including those that

experienced attrition during the commitment phase. However, not every experiment ended with a

correct decision. Whether or not the robots selected the better (blue) site by the end of a trial is

not a good indicator of decision-correctness, since it was possible in a given trial that none of the

scouts would find that site. Furthermore, because the robots’ perception of site quality was noisy,

their opinions of the two sites should be taken into account when labeling a particular decision as

correct or not. For example, if most of the robots that found the blue site undervalued it andvice

versa, then from the robots’ points of view, it could be argued thatchoosing the red site would

be the correct decision to make. However, the later in deliberation phase that a robot measured a

site’s quality, the less of an impact that robot’s opinion would have on the decision. Therefore, the

correctness of a decision is not black and white. Instead, the following heuristic was used to make

this classification:in a given trial, a decision was correct if and only if it unanimously selected the

alternative that received the single highest evaluation byany robot. Note, however, that using the

average evaluation of a site, or the best evaluation by a scout (since scouts make their evaluations of

site quality early in a trial) instead of the aforementionedmaximal rule does not significantly alter

the trends observed, so the following discussion of decision-making ability does not hinge upon this
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Figure 5.16: This figure plots the proportion of the best-of-N decisions that chose the best site
found. In general, the ability of a dec-MRS to make correct decisions increases with quorum. When
quorum is low, the results of the initial search for sites canadversely affect performance when too
many scouts are involved. Raising quorum overcomes this problem, but reveals another mode of
failure. Too few scouts allows stochastic effects to influence the outcome of a decision, reducing
performance. The horizontal dotted line indicates how accurately an unbiased dec-MRS was able to
make the decisions. Even when quorum was as low as 33%, biasediterative recruitment made good
decisions much more likely than random chance.

definition.

Figure 5.16 plots the percentage of the trials in which a correct decision was made. Both scout-

ing populations made the correct decision at least 60% of thetime, and this increases to at least

80% when the quorum threshold is increased to 50% or more. Thesize of the scouting population

deployed by a system appears to affect its decision-making ability, particularly when quorum is less

than 50%. When quorum is greater than 50%, the system with more scouts performs better, although

the difference between the performances of the two scoutingpopulations is somewhat less here than

it was whenQ = 33%.

When all of the robots participated in the initial search forsites, there was a chance that quorum

would be satisfied without any recruitment having to take place. For instance, if all eleven of the

scouts found a site, a quorum threshold of 33% would have beensatisfied for one of the sites since

at least six of the robots would have favoured the same site, leading to an apparent consensus of

50% ( 6−1
11−1 × 100%). Because the scouts were equally likely to find either site,the particular site

that would have satisfied quorum in this case would be determined by random chance. In prac-

tice, however, the scouts did not all find sites at the same time, so some of them would have had

an opportunity to recruit before one of them believed that quorum had been satisfied. Therefore,

iterative recruitment still influenced the outcome of the decisions, although its ability to do so was

much reduced. Eight of the twenty eleven-scout,Q = 33% trials made incorrect decisions, and in
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three of these no recruitment occurred at all. The remainingfive incorrect decisions involved only

one, two or three recruitments. Thus iterative recruitment, the process that compares the known

alternatives, was largely absent in this configuration. When the scouting population was reduced

to four, however, recruitmentalwayswas necessary to satisfy quorum. Even if all four scouts hap-

pened to find the same site (6.25% probability), the apparentconsensus would only have been 30%

( 4−1
11−1 × 100%). Because iterative recruitment had a greater opportunityto promote the better site in

the four-scout configuration when the quorum threshold was 33%, they performed better than their

eleven-scout counterpart [63].

The situation is reversed when quorum is increased, as the eleven-scout system performed as

well or better than the four-scout system when the quorum threshold≥ 50%. A greater quorum

was much less likely to be satisfied by the outcome of the searching phase alone, and so iterative

recruitment always played a role regardless of the size of the scouting population. When the four-

scout trials in which incorrect decisions were made are examined in greater detail, a second mode

of failure becomes evident. Recall that a dec-MRS knows onlywhat its individual members know.

If all of them were to forget about a particular site, that site would be forgotten by the dec-MRS as

a whole and thus would not be selected. The following exampleillustrates how deploying a small

number of scouts could negatively impact a dec-MRS’ decision-making ability. Consider a system

in which only four robots are scouts. The probability of three of them finding one site and only

one finding the other is 50%. In half of these cases, three robots would find the red site and one

would find the blue site, and it is likely that the quality assigned to the blue site by the latter robot

would be greater than any of the qualities assigned to the redsite. If the lone blue-site-favouring

robot was recruited successfully to favour the red site, theblue site would be forgotten by the dec-

MRS altogether, resulting in an incorrect decision according to the aforementioned definition. This

is because the site that was assigned the highest quality over the course of the decision (the blue

one) was forgotten when its lone advocator was recruited to the other site. This mode of failure

accounts for 60% of all of the four-scout trials in which an incorrect decision was made. Increasing

the scouting population decreases the likelihood of a site being found by just one or two robots,

making this kind of failure much less likely.

Furthermore, because the early stages of the four-scout system’s deliberation phases were based

on fewer evaluations of site quality (compare Figures 5.14 and 5.15), the noise in the individual

robots’ overhead site sensors would have resulted in noisier decision-making behaviour than that of

the eleven-scout system. The slight dip observed in the four-scout system’s ability to make correct

decisions likely can be attributed to this noise. With sufficient trials upon which to base the plotted

means, it is likely that the four-scout system would displaya leveling off in its ability to make correct

decisions as quorum is increased from 50% to 80%, if not a slight increase.
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Figure 5.17: This figure illustrates the relationship between the observed quorum and the quorum
threshold (Q) from the best-of-N decision-making trials. Notice that the observed quorum here
is greater than it was in the unary decisions (Figure 4.14). As the individual robots gather each
other’s vote-messages, the also iteratively recruit each other, changing the apparent consensus for
each alternative. Because a robot’s estimate of apparent consensus is based on the average value of
Ca during the period over which then most recent vote-messages were received, and because the
apparent consensus for the best alternative (the one most likely to induce commitment first) tends to
increase over time,̃Ca will tend to underestimateCa, and thus the observed quorum will tend to be
greater than expected.

Observed Quorum in a Best-of-N Decision

An alternative’s popularity reaching quorum signifies to a robot that favours it that the deliberation

phase’s iterative recruitment has identified its alternative as the one that should be selected by the

dec-MRS as a whole. As was illustrated in Chapter 3, if iterative recruitment is allowed to continue

for a sufficiently long period of time, all but one of the knownalternatives will be forgotten. In

practice, however, a system might not be able to afford that much time for deliberation. Therefore,

a quorum threshold less than 100% is used to terminate the collective comparison of alternatives

before complete consensus is achieved, when one of them has been identified asgood enough. In

Chapter 4, the notion of the observed quorum was introduced.The observed quorum is the consensus

(true consensus, not apparent consensus) in favour of the alternative that first induces commitment at

the time that the first commitment occurs. Figure 5.18 plots the observed quorum for the four-scout

best-of-N decision-making trials versus the quorum threshold10.

As was the case in the unary decision-making results, the observed quorum increases with the

quorum threshold, demonstrating that a desired consensus necessary for commitment can be set

a priori. However, if this figure is compared to Figure 4.8 or Figure 4.14, one will notice that

the observed quorum is significantly greater for the best-of-N decisions than it was for the unary

10The observed quorum of the eleven-scout trials is much noisier, particularly when the quorum threshold is low, so it was
omitted from this plot.
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Figure 5.18: A good decision-making algorithm will minimize the amount of time and energy spent
considering alternatives that are unlikely to be selected in the end, because this represents a waste of
time and energy. This figure illustrates that, regardless ofthe size of the searching population, con-
siderably more attention (in the form of the number of robotsrecruited) is paid to the site ultimately
selected by a decision than the unselected site, and that this increases with quorum.

decisions. It also is greater than the theoretical predictions of Appendix A suggest it should be, too.

To understand why this is so, one must look at the two decision-styles’ deliberation phases, as this

is the principle manner in which they differ. When a unary decision-maker enters the deliberating

state, it begins to collect its teammates’ opinions to computeC̃a, its estimate of apparent consensus.

As more of its teammates enter the deliberating state, the apparent consensus will increase, and so

will C̃a. Because the robots’ estimates of apparent consensus contain some error, it is likely that a

robot will believe that the apparent consensus has reached the quorum threshold before this actually

occurs. On the other hand, in a best-of-N decision, while theindividual robots estimate the apparent

consensus, they also are recruiting each other, actively modifying it. Robots that favour inferior

alternatives are likely to be recruited and thus have to start collecting teammate opinions all over

again for some new alternative, so it will be less likely for arobot that favours a poor alternative to

commit. Furthermore, while a robot that favours a good alternative is gathering vote-messages, the

popularity of its alternative will tend to increase, increasing the value of observed quorum should it

or an agreeing advocator commit to that site. Therefore, theobserved quorum for a given value of

the quorum threshold will tend to be greater than expected, but the degree to which it will exceed

the prediction likely depends on the domain and the particular decision being made.

The Focus of Deliberation

The focus of the deliberation phase tended to be the site thatultimately was selected by the robots.

Figure 5.18 plots the mean number of robots successfully recruited by advocating robots to the
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Figure 5.19: Increasing quorum demands greater accuracy from a decision, so the robots spend more
time in the deliberation phase of the framework, where the best-of-N is determined. The more robots
participate in the initial search for sites, the greater theapparent consensus in favour of the known
sites will tend to be at the beginning of deliberation, so less recruitment (and therefore a shorter
deliberation phase) would be required to satisfy a given quorum.

site that ultimately was selected, and to the site that was not selected. Regardless of the size of

the scouting population, significant recruitment occurredin favour of the selected site, while the

unselected site largely was ignored by the advocators. Thisshows that the proposed decision-making

algorithm is able to discard and thus not waste time or energyconsidering alternatives that ultimately

will not be chosen by the robots. Fewer robots needed to be recruited when eleven of the robots acted

as scouts, since those that were able to find a site on their own(half of which tended to find the site

that was selected in the end) did not need to be recruited intothe deliberation phase. Of course, as

the data plotted in Figure 5.16 demonstrates, the ability tomake correct decisions can suffer because

of this unbiased head start.

Time Required for Deliberation

The amount of time required to complete a decision also is affected by the quorum threshold and the

size of the scouting population. Figure 5.19 plots the mean deliberation time of the robots versus

the quorum threshold. As the simulations predicted earlierin this chapter, increasing the quorum

threshold increases the amount of time required by the robots to compare the known alternatives.

Decreasing improvements in decision-making accuracy (Figure 5.16) require an increasing amount

of time to realize, meaning that diminishing returns are encountered. This result illustrates why a

100% quorum might not be desirable in practice. Increasing the size of the scouting population

decreases the deliberation time by a constant amount, independent of quorum. Because fewer re-

cruitments are required by the eleven-scout system in orderto satisfy quorum (Figure 5.18), its
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Figure 5.20: This final timeline demonstrates what happens if two sites satisfy quorum. The robots
committed to each instruct every robot that they meet to commit to their favoured site, but they switch
sites when they receive a commit-message referring to the other one. Normally, the site that induced
commitment first would be selected in the end. In this trial, the two were committed to so rapidly
that neither gains the upper hand. Robot-11 prematurely decides that unanimity has been achieved
and exits the decision early. It is only due to luck that the rest of its teammates end up committed to
the same site as it. Attrition in the commitment phase is bestavoided altogether by making quorum
higher and ensuring that it is measured with sufficient samples to make the measurements accurate.

deliberation phase will tend to be shorter. Note the similarity between the shape of the two curves

in this Figure 5.19 and those plotting the number of robots recruited to the site ultimately selected

in Figure 5.18. It is the time required by the additional recruitment to the selected site that largely

determines the duration of the deliberation phase, since these by far are the most numerous.

Attrition During the Commitment Phase

All of the experimental trials ended unanimously. Furthermore, even when quorum was as low

as 33% only one of the two sites ever induced commitment as long as apparent consensus was

measured with sufficient precision. It is possible, howeverunlikely, for two different alternatives to

induce commitment in a decision. This might occur when two very similar alternatives are found

and quorum is less than 50%, or when the apparent consensus isestimated inaccurately. When this

occurs, it falls to the commitment phase to ensure that unanimity is achieved. Because a committed

robot will not exit the committed state until it believes that all of its teammates have committed

to the same alternative as it, a period of attrition will ensue, during which the robots committed

to the different alternatives send each other commit-messages. Recall that when a robot receives

a commit-message referring to an alternative to which it is not already committed, it commits to

that alternative and responds with an acknowledgment. The perceived quality of a site plays no role

in the commitment phase, since committed robots send every robot that they encounter a commit-
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message. In a war of attrition, it is the side with the greatest number of combatants that will emerge

victorious, and this also is the case when attrition occurs in the commitment phase. The alternative

that induces commitment first will have a head start, and during this time its committed corps will

swell in number. Therefore, the first site to induce commitment will tend to be the one that is selected

at the end of a decision. Of the 20n = 5, Q = 20% trials, commitment attrition was observed in just

eight of them. In every case, the site that induced commitment first was the one that was selected by

the robots in the end.

A timeline of the trial that experienced the longest period of attrition is depicted in Figure 5.20.

The squares appear on each robot’s timeline whenever it committed to an alternative, and most of

the robots can be seen to switch back and forth several times between the two sites. None of the

robots are supposed to enter the finished state until all of their teammates have committed to the

same site as them, but this particular timeline reveals a danger in commitment attrition. Robots will

conclude that all of their teammates have committed to the same site when they have been committed

to the same alternative for longer thanTc seconds without receiving any acknowledgments to their

commit-messages. However, it is possible for a particular committed robot to encounter only those

teammates that are similarly committed and thus decide thatit can exit the decision safely. Robot-

11 can be seen to do this so at approximately 150 seconds into the trial, at which point it enters

the finished state and exits the decision. It is only through luck that the site ultimately selected by

the other robots later on is the same as the one chosen by robot-11. This untidy behaviour occurs

because both sites induced commitment at almost the same time, giving neither one the opportunity

to gain the upper hand before the other induced commitment. In the other trials that experienced

attrition, the second site to induce commitment did so somewhat after the first, so it quickly was

forgotten. Increasing the length of the commitment timeoutwould make this sort of premature

exit from a best-of-N decision less likely, but commitment attrition should be avoided as a general

rule whenever possible by choosingn andQ such that commitment to multiple alternatives will be

unlikely. A reliable quorum test for a quorum≥ 50%, such asn = 25, Q = 80% would satisfy this

criterion well for dec-MRS with populations up to at least 100 robots.

5.4 Summary

This chapter extended the unary decision-making strategy presented in the Chapter 4 to accommo-

date best-of-N decisions. Unlike a unary decision, in whicha single proposed alternative is accepted

or rejected, a best-of-N decision identifies and selects thesingle best alternative from a decentralized

list. This list is created by the robots’ initial search. Thecandidate alternatives are compared via

iterative recruitment, and this process is terminated onceone of the alternatives is believed to have

obtained a quorum of support from the robots. The belief of a single robot that quorum has been

satisfied by the particular alternative that it favours is amplified by the final phase of a decision, com-

mitment, which induces the entire dec-MRS to adopt that alternative as the result of the collective
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decision.

Experiments using both simulated and physical robots to make best-of-N decisions were carried

out in a site selection domain. These demonstrated that the emergent, three-phase decision-making

framework can make good best-of-N decisions, even when the individual robots’ sensing is noisy.

In the simulated experiments, off-swarm quorum testing wasinvestigated. This operation more

closely resembles the manner in which honeybees andTemnothoraxants estimate consensus and

test quorum, which is based on the sizes of the populations visiting the favoured sites. Only certain

domains, such as site selection can take advantage of off-swarm quorum testing. The only real

benefit that it offers is that it eliminates the need for inter-robot communication to test quorum.

However, given that iterative recruitment still necessitates inter-robot communication, the off-swarm

strategy offers no real savings to a dec-MRS in practice. Furthermore, it is limited to small quorums,

the robots must know the absolute population size of their system, and it increases the likelihood of

decision stagnation. For all of these reasons, on-swarm consensus estimation and quorum testing is

much better suited to collective decision-making by a dec-MRS.

Somewhat surprisingly, best-of-N decisions exhibited a greater observed quorum than similarly

calibrated unary decisions. That is, for a given quorum test(i.e. n andQ), the consensus observed

at the time of commitment tended to be greater than expected in the best-of-N operation. This ob-

servation makes sense, however, when the impact of iterative recruitment and its interaction with

consensus estimation is considered more closely. Iterative recruitment, which compares the can-

didate alternatives during the deliberation phase of a decision increases the apparent consensus in

favour of the best known alternative by inducing robots thatfavour inferior alternatives to abandon

them for the best alternative. Therefore, robots that favour poorer alternatives are less likely to com-

mit to them, both because the apparent consensus in favour ofthem will tend to be both low and

decreasing, and because robots will tend to be recruited to favour better alternatives before they have

favoured an inferior alternative long enough to make an error. At the same time, the robots’ estimates

of consensus lag reality. When a robot commits to the best alternative (the most likely outcome), the

actual apparent consensus will tend to be somewhat greater than the robot’s estimate, since it likely

will have increased over the period of time that the robot collected the necessary vote-messages to

make its estimate.

Both the simulated and real robots improved their decision-making accuracy when either the

quorum threshold or the number of teammate opinions used to computeC̃a was increased. Increas-

ing either of these parameters increased the amount of iterative recruitment that would take place

in a decision, increasing the reliability of the process that identifies the best alternative. Of course,

accuracy and speed are competing interests, as was illustrated in Chapter 3. Therefore, it was no

surprise that the increased decision-making accuracy achieved by increasing quorum came at the

cost of additional deliberating time.

The variations on iterative recruitment investigated by the simulated best-of-N decisions demon-
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strated that direct comparisons of candidate alternativesby the individual robots are unnecessary,

as the emergent positive feedback of restraintive recruitment, in which no direct comparisons ever

are made, performed just as well as (if not better than) discriminative recruitment. Direct compar-

isons can be dangerous in a system composed of many simple individuals, since it introduces the

potential for individual stubbornness, which could lead tostagnation during collective deliberation.

Furthermore, real robots will have noisy sensors (illustrated by Figure 5.12), so the individual robots

should not be assumed able to directly compare two candidatealternatives. There is one exception

to this statement, however. Although it was not the case in the experiments described in this chap-

ter, scouts could directly compare candidate alternativesbeforethey are recruited for the first time.

This is because it is the duty of the scouts to populate the menu of candidate alternatives. In this

way, a scout could increase the likelihood of informing its teammates of a good alternative when it

enters the deliberating phase. The key point to make here is that the scout would be comparing two

alternatives thatit had found.

The size of the scouting population was observed to have a significant impact on the accuracy

and precision of collective decision-making. If too many robots scout for a decision that has only a

few alternatives, then the outcome of their searching behaviour alone might satisfy quorum without

any collective comparison every taking place. However, if too few scouts are deployed, then each

alternative found will be held in the collective memory of a dec-MRS only tenuously. In general, a

greater population of robots will be able to perform a bettercomparison of a given set of alternatives,

since the susceptibility of such a population to stochasticerrors will be less than that of a smaller

dec-MRS. However, the quorum for a decision should be made sufficiently large that collective

deliberation will be given a reasonable opportunity to identify the best alternative. For domains

in which multiple alternatives are likely to be found, a reliable test for a quorum of 50% would

suffice, but when only two alternatives are expected (e.g.deciding between two paths at a fork in a

road), a greater quorum is advised. Iterative recruitment eventually will bring about the unanimous

support of one of the candidate alternatives, so fear of stagnation should not prevent the use of a

large quorum when domain-specific knowledge is lacking.
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Chapter 6

Discussion and Conclusions

In this, the final chapter of this thesis, the contributions of this work are summarized, and directions

for future work are provided.

6.1 Contributions

This work has focused on the ability of dec-MRS to make cohesive, system-level decisions through a

sequence of emergent behaviours. It is the use of emergent behaviours to build up the three phases of

the decision-making framework that is particularly important, since it means that the entire process

depends only on the local interactions of the individual robots. This is the mode of operation of a

decentralized system like a dec-MRS, so the approach to decision-making presented in this work is

ideallysuited to such systems.

Much of the existing research with dec-MRS also takes advantage of emergence and peer-to-

peer interactions, but it treats the robots as a kind of end effector, things that are to be commanded,

rather than an intelligent collective that senses its environment and computes its own cohesive re-

sponse. That is, most work has viewed the micro-macro link [76] as a one-way street, in which local

behaviours combine to produce a globally observed emergentbehaviour with no direct link back

from the macro to the micro. In some cases, individual robotshave been programmed to respond

indirectly to their macroscopic behaviour by tuning their individual behaviours to the environment

that they collectively modify (stigmergy), but this is a brittle arrangement [6].

Perceptual cues were introduced in [48], and the idea was that individual robots, instead of

physically responding to certain stimuli, might instead react cognitively. For example, a robot might

respond to the Sun rising by switching to its daytime behaviours, switching back to its nighttime

mode of operation after the Sun had set. In contrast, the quorum test employed by the deliberating

robots to determine when sufficient deliberation had taken place is asocial cue. These robots did not

predicate their choice of behaviour on some varying aspect of their environment, but instead directly

upon the global state of their team. Macro was sensed by the micro, and the latter’s response brought

about a phase change in the former. This completes the feedback loop (see Figure 6.1), enabling a
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Micro Macro

Estimates of system state by the
individuals change their behaviours

Local interactions bring about 
emergent global behaviours

Figure 6.1: In many dec-MRS, the micro-macro link is unidirectional. The individual robots interact
with each other and the environment, and a global (macroscopic) behaviour emerges. The system-
level decision-making framework of this thesis uses consensus estimation and quorum testing to
complete the loop, enabling the robots to predicate their behaviours directly upon their collective
state.

dec-MRS to respond directly to itself, and thus predicate its collective behaviour on its state.

Completing this loop is significant. It means that dec-MRS can be viewed as intelligent entities

in and of themselves, rather than loose collections of coordinated individuals. In this way, a dec-

MRS mission could be designed as though it was any other robotic mission, and the dec-MRS could

be treated as though it was any other robot. The illusion of centralized control provided by closing

the micro-macro loop is a useful layer of abstraction for designers. When it makes sense to do so, a

cohesive dec-MRS could be treated as an intelligent and autonomousindividual, while still retaining

all of the robustness and scalability of a decentrally structured entity.

6.2 Issues for Future Study

Although this work has demonstrated that a dec-MRS can indeed make intelligent, system-level

decisions, there still are issues that remain to be investigated further.

6.2.1 Asynchronously Initiated Decisions

Two kinds of collective decisions have been discussed in this work. These are the unary decision

and the best-of-N decision. Robots became involved in a unary decision after they independently

had decided that some alternative to thestatus quoshould be adopted by their entire system. In a

best-of-N decision, the robots collectively compared a setof proposed alternatives and adopted the

best one, but it implicitly was assumed by the best-of-N decision framework that thestatus quowas

inadequate, and that it therefore must be replaced by the best alternative that could be found. This

belief was simultaneously adopted by all of the robots at thebehest of an external central controller:

the operator that began each decision-making trial.

A more general approach to decision-making would be a combination of these two approaches.

As individuals notice the need for a collective decision, they should seek out alternatives. Other

robots that do not believe that a decision is required, however, will not participate in the search. If

these robots are recruited by an advocator, they might stillconclude that thestatus quois sufficiently
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satisfactory that the alternative proposed by the advocator should be rejected, and thus they should

re-enter the idle state after researching it. Therefore, an advocator might attempt to recruit many

of its teammates, but if it is the only robot that believes that a decision is necessary, all of them

would reject it and no progress would be made by its actions. This ability of idle robots to reject

recruitment would prevent a dec-MRS from being subjected toa decision every time that one of its

robots believed that a decision was needed.

If an advocator detects such stagnation (e.g. the apparent consensus for its favoured alternative

was not increasing), it must conclude that its belief that a collective decision was required was

incorrect, and therefore it too should abandon its decisionand revert to the idle state. However, if

a robot believes that a collective decision is required (i.e. it is in either the searching or advocating

states), it should not reject recruitment and instead should be an active participant in the iterative

recruitment process. Commitment need not be modified, and isthe same here as before.

With this slightly modified framework, a dec-MRS could initiate either unary or best-of-N de-

cisions asynchronously, as circumstances demanded, as recognized by the individual robots. Note

that here, for quorum to be satisfied and thus commitment to occur, a sufficient proportion of the

robots must agree not only that one of the alternatives is sufficiently good, but also that thestatus

quois sufficiently bad that a collective decision is required toreplace it. If the individual robots of a

dec-MRS were able to recognize the need for different types of decisions, then this general frame-

work would enable a dec-MRS to autonomously interact with its environment as though it were a

superorganism, providing the illusion of central control.This synthesis has yet to be implemented,

and it is left here as a starting point for future study.

6.2.2 Recovery from Incomplete Commitment

A system that is based around stochastic processes will never enjoy 100% reliability. For example,

some of the individual best-of-N decisions described in Chapter 5 were incorrect. Even a deter-

ministic algorithm, however, once deployed in the real world would have some probability of error,

since the deterministic responses of such a system would still be in response to the stochastic nature

of the real world. One potential problem has not been addressed explicitly by the decision-making

framework proposed by this work, and that is what should be done in the event of an incomplete

commitment.

Just like any other gossip-style algorithm, commitment might fail to induce every robot to com-

mit to the same alternative. The probability of this occurring can be decreased by increasing the

length of the commitment timeout, but the probability of failure can never be reduced to zero. How

should a robot respond to an incomplete commitment? There isan implicit question of economy

here, since it must also be asked at what point should the lossof a few robots be a concern? When

this is a minor inconvenience, it might be best to leave recovery to the lost robots themselves. For

example, if a robot in a large a convoy traveling through a dangerous area gets lost, it probably is
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not worth risking the entire convoy to recover it. In other circumstances, the individual robots might

be much more valuable, and thus the system would have a vestedinterest in retaining them at all

costs. Given that robustness to individual failure is one ofthe most common arguments in favour of

dec-MRS, it is more likely that the former scenario will be encountered than the latter. Nonetheless,

autonomous recovery from this mode of failure would be a worthwhile problem to investigate.

6.3 Final Thoughts

A decentralized multiple-robot systemcanmake system-level decisions through local peer-to-peer

interactions. Furthermore, the individual participants in these decisions need not be complex, yet

they collectively are able to make good decisions, better than they would be able to individually. In

fact, a close examination of the decision-making frameworkproposed by this work reveals that the

simplest case is not one robot, but two, as social interaction with at least one other robot is required

in order for an individual to conclude that quorum has been satisfied. Implicit in this strategy is the

assumption by each robot that it is not alone, that it is a member of some greater community that

extends beyond the boundaries of each individual. In many ways, the key to making decisions in a

decentralized system appears to be the practice of restraint: not acting on one’s own conclusions,

but based on those of one’s teammates, thereby freeing the collective from the tyranny of over-eager,

error-prone individuals. It is difficult not to be reminded of our own brains, composed of a myriad

of individual nerve cells connected together, participating in their own peer-to-peer interactions to

make their own system-level decisions. We computewith our brains, notin them. In the same way,

this thesis has demonstrated that we can computewith a dec-MRS, not just within it.
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Appendix A

The Relationship between the
Observed Quorum and the Quorum
Threshold

When a robot measures the apparent consensus amongst its teammates for the alternative that it

favours, it cannot determine it precisely. Instead, an estimate is computed, denoted̃Ca. It is this

estimate that it compares toQ, the quorum threshold. Given the unavoidable noise inC̃a, robots

are likely to make errors when testing quorum. This appendixdescribes the approach used in this

thesis to predict the relationship between the quorum threshold and the observed quorum, the latter

being the actual consensus present in a MRS when the very firstrobot believes thatCa ≥ Q. Only
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Figure A.1: The curves in this figure plot the probability of at least one of a system’sN robots
believing that quorum has been satisfied. Each curve corresponds to a different value of the quorum
threshold,Q. The likely value of the observed quorum for a given value ofQ is the apparent con-
sensus (horizontal axis) that corresponds to a 50% likelihood of believing that quorum is satisfied.
These values are indicated by the intersections of the dashed lines in this figure.
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Figure A.2: The values of observed quorum read off of Figure A.1 are in the units of apparent
consensus. These are converted to true consensus with Equation A.2, which are then plotted against
the value ofQ corresponding to the curve in Figure A.1 from which they wereread. Because a robot
will always believe that quorum is satisfied whenQ = 0, the observed quorum for this particular
quorum threshold will be1N .

the digital approach to consensus estimation is used here, but given the results of Chapter 3, the

predictions derived here should be considered equally applicable to a similarly calibrated analog

quorum test.

Given the population size of a dec-MRS and the number of teammate opinions used by each

robot to computeC̃a, the probability of at least one robot computing̃Ca ≥ Q is given by Equation

A.11. Plotting Equation A.1 withn = 5 for several values ofQ yields Figure A.1. Note that the

curves in Figure A.1 take into account the number of robots that compose a dec-MRS, as does the

entire derivation in this Appendix.

P (C̃a ≥ Q) = 1 −





n
∑

i=⌈nQ⌉

(

n

i

)

(Ca)i(1 − Ca)n−i





(⌊Ca(N−1)⌋+1)

(A.1)

Each curve in Figure A.1 plots the probability of a robotC̃a ≥ Q given the value ofQ asCa is

varied from zero to 100%. By assuming that the most likely observed quorum for a given value ofQ

occurs whenP (C̃a ≥ Q) = 50%, the observed quorum for such a configuration can be read off of

the horizontal axis of Figure A.1 at the point where the corresponding curve reaches a height of 50%.

For example, the leftmost curve corresponds toQ = 20%. On that curve, whenP (C̃a ≥ Q) = 50%,

Ca = 8.3%.

The values read off of the horizontal axis of Figure A.1, however, are measured in the units

of apparent consensus. This is because the individual robots within a dec-MRS do not know the

1This is the same equation as Equation 3.24, reproduced here for convenience.
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Figure A.3: These graphs plot the predicted relationship between observed quorum and the quorum
threshold for two different population sizes for differentvalues ofn. As n is increased, the proba-
bility of a robot overestimatingCa decreases, which results in an increase in the observed quorum.
Increasing the number of robots in a system decreases the observed quorum, both because apparent
consensus is less of an overestimate of true consensus asN increases, and also because the proba-
bility of at least one of the robots making an error in its estimate of apparent consensus will tend to
increase.

population size of their system, and so they cannot measure true consensus. However, when the

observed quorum is reported, it is measured in the units of true consensus, since this is how it would

appear to an agent observing it from outside of the system, such as a designer. Apparent consensus

can be converted to true consensus by Equation A.2.

Ct =
(N − 1)Ca + 1

N
(A.2)

Returning to the leftmost curve of Figure A.1, for whichQ = 20%, the observed quorum equals
(50−1)×8.3%+1

50 = 10.1%. Therefore, when the robots of a 50-robot dec-MRS each compute C̃a

using the 15 most recently received teammate opinions, and test quorum by comparing̃Ca to Q =

20%, an observed quorum of10.1% should be expected. By repeating this process for different

values ofQ, the relationship between the observed quorum and the quorum threshold is built up,

point by point. Figure A.2 portrays the relationship computed from the curves of Figure A.1. The

intercept of this curve with the vertical axis is more easilyfound. BecauseC̃a ≥ 0, a robot will

always believe that quorum is satisfied whenQ = 0, independent ofn. Therefore, the observed

quorum will be 1
N , since the first robot to test quorum is guaranteed to conclude that it has been met

whenQ = 0.

Increasingn increases the precision with which each robot estimates apparent consensus. Robots

that use a larger value ofn will be less likely to believe that quorum is satisfied for a givenCa < Q.

Of course, because the intercept with the vertical axis is independent ofn, each curve corresponding

to a different value ofn will share a common intercept, and they will diverge asQ increases. This is

precisely the relationship that is shown in the graphs of Figure A.3.
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The population size of a system also impacts the relationship between observed quorum and the

quorum threshold, as is evident when Figures A.3(a) and A.3(b) are compared. Figure A.3(a) cor-

responds to a 15-robot system, whereas Figure A.3(b) corresponds to a 50-robot system. Increasing

N lowers the curves for two different reasons. First, asN increases, apparent consensus is less

of an overestimate of true consensus. This effect is most noticeable for low quorum thresholds.

In particular, the intercept of Figure A.3(a) with the vertical axis is 1
15 , whereas it is1

50 in Figure

A.3(b). Second, asN increases, more robots will simultaneously compute an estimate ofCa and

compare their estimates toQ, and so the likelihood of at least one of them overestimatingCa also

will increase. This also lowers the expected value of observed quorum for a given quorum threshold.

The prediction of the relationship between the observed quorum and the quorum threshold de-

rived in this appendix ignores one fact, and that is that it takes time for the robots to collect the

n teammate opinions that they use to computeC̃a. During the period of time in which the robots

gather vote-messages from each other,Ca will tend to evolve as the robots independently change

their opinions based on their observations of the world, or as they recruit each other in a best-of-N

decision. If, as was the case in the experimental domain of Chapter 4,Ca tends to increase with

time, then during the time required to collect the extra teammate opinions demanded by a greater

value ofn, Ca will increase, and the observed quorum will increase along with it. The more rapidly

Ca tends to change relative to the time required to collect teammate opinions, the more the experi-

mentally derived relationship between the observed quorumand the quorum threshold will tend to

deviate from the predictions presented here.
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