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Abstract

Decision-making is an important operation for any autonosngystem. Robots in particular must
observe their environment and compute appropriate reggorir solitary robots and centralized
multiple-robot systems, decision-making is a relativéigightforward operation, since only a single
agent (either the solitary robot or the single central auldr) is solely responsible for the opera-
tion. The problem is much more complex in a decentralizetesysto the point where optimal
decision-making is intractable in the general case. Deakrgd multiple-robot systems (dec-MRS)
are robotic teams in which no robot is in authority over anyeos. The globally observed be-
haviour of dec-MRS emerges out of the individual robotsaldateractions with each other. This
makes system-level decision-making, an operation in waicéntire dec-MRS cooperatively makes
a decision, a difficult problem. Social insects have longnbesource of inspiration for dec-MRS
research, and their example is followed in this work. Homsgandlemnothoraxants must make
group decisions in order to choose a new nest site whenesrgréiocate their colonies. Like the
simple robots that compose typical dec-MRS, the inseclizeifiocal, peer-to-peer behaviours to
make good, cooperative decisions. This thesis examin@sdbeision-making strategies in detail
and proposes a three-phase framework for system-levedideainaking by dec-MRS. Two differ-
ent styles of decision are described, and experiments m ¢iotulation and with real robots were
carried out and presented here to demonstrate the framsvwdadision-making ability. Using only
local, anonymous communication and emergent behaviauprbposed collective decision-making
framework is able to make good decisions reliably, evenérpitesence of noisy individual sensing.
Social cues such as consensus and quorum testing enablebthe to predicate their behaviour
during the decision-making process on the global stateeif #ystem. Furthermore, because the
operations carried out by the individual robots are so samphd because their complexity to the
individual robots is independent of the population size dée-MRS, the proposed decision-making

framework will scale well to very large population sizes.
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2.1

2.2

2.3

3.1

3.2

Honeybees collectively decide on their new home aftey thave left their old nest

and formed a swarm on a tree branch or other structure, showtheoleft. The
individual bees search out candidate nest sites, and &bi/érem to other bees at
the swarm using the waggle-dance shown on the right. Beésidha found better
sites tend to perform more dances than those that favouepsies, so the best
site will attract the majority of the decision-makers. Omdeee determines that its
favoured site is sufficiently popular, it rouses the swarih laglps guide it to its new
home. The photo in 2.1(a) is copyright Thomas D. Seeley apdriced with his
permission, 2.1(b) after Figure 1in[31]. . . ... .. ... ... ....... 14
When an antfirst finds a candidate nest site, it leads attigto it one at a time using
tandem-runs, shown on the left. Each ant delays prior taregdts first tandem-run,

and the length of this delay decreases the better an antiypesdes site’s quality to

be. Therefore, better sites will have ants lead to them napiglly than poorer ones.
While at a candidate site, an ant measures the number of attterthat also are
visiting it. Once this exceeds a threshold called the quortstops tandem-running

and instead uses transports, shown on the right. Transpatthree times faster
than tandem-runs, so once quorum is satisfied, the colomkiguwill be relocated

to the new site. Because the best site is the most likely tefgafuorum first, the
colony will tend to choose the best one for its new home. Thagahin this Figure

are copyright Stephen C. Pratt and are reproduced here igifehmission. . . . . 16
This figure summarizes the nest site selection behavimuhoneybees (left) and
Temnothoraants (right). Although there are differences between tloegpproaches,
they are remarkably similar, both being organized intodldistinct phases. First,
individual insects search for candidate sites. Next, thhoa decentralized recruit-
ment process, the known sites are ranked. The insects camthi first site that
becomes sufficiently popular.€. satisfies quorum) and it is adopted as their new
home. . . . . 18

The contribution of this thesis is a general-purposéstetmaking framework
inspired by the nest-site selection behaviour of honeybedsSemnothoraants.
When a decision is required in a dec-MRS, its members begtohgucting a de-
centralized search for alternatives. The search is foltblmea period of deliberation

in which the best of these alternatives is identified. Thioagnsensus estimation
and quorum testing, the robots determine when sufficieritbeleition has occurred,
after which the final commitment phase promotes the unarsnagioption of the
alternative that was identified as best. This chapter dessthe mechanisms at the
coresof thesethreephases. . . . . .. ... . ... ... ... ........ 24
This figure illustrates how the positive feedback of direcruitment increases the
size of a population favouring some lone alternative. aiij all 100 of the robots

are idle, except for one that favours the alternative. E@ry= 10 seconds, the
robots that favour the alternative each send a randomlgteeléeammate a recruit-
message. ldle robots that receive these messages areaecanid join the ranks of
those that favour the alternative. Initially, the growthtloé recruited population is
exponential, but as the proportion of robots that are résdugrows, more and more

of the recruit-messages are sent to robots that alreadyeareited, and thus have

no effect. This causes the population growth to slow. Beedlus only stable state

for a robot is favouring the alternative, every robot evaliyus recruited. . . . . . 27



3.3 This figure illustrates the basic concept of direct rizarent when more than one
alternative is known. Individuals recruit teammates tdrtFeoured alternative at
a rated that depends on the alternative’s quality. Over,ttheerelative qualities of
the known alternatives becomes apparent via the numbebotsahat favour each
one. In this particular example, there are two alternativeand B. Robots are
represented by circles, and the letters in the circles @ethet alternative that they
favour. AlternativeA is half as good a$3, and so the robots that favour recruit
half as frequently a®-favouring robots. Initially (a) each alternative is faved by
a single robot. As recruitment progresses (b), Bheecruits more quickly tham.
After all of the robots have been recruited (&'’s superiority is clear, since more
robots favourittham. . . . . .. . . ...

3.4 In this figure, the growth of two competing populationsefruiters is plotted. Ini-
tially, one of the robots favours alternativie and another favours alternatige The
period of time between a robot's attempts to recruit rangoselected teammates,
denotedr. is inversely proportional to the quality of the alternatthat it favours.
In this case, robots that favodit recruit twice as often as those that favolrsince

B is twice as good ad. Once a robot is recruited to favour a particular solution, i

will never change its mind. This is calléhmutable recruitmentEventually, all of
the robots are recruited to favour one of the two alternafiged the better one can
be identified by the greater size of its recruited population. . . . . . . ... ..
3.5 Temnothoravants employ a slight variation on the basic immutable récremnt be-
haviour in their decision-making. Only the delay prior toiadividual’s very first
attempt to recruit a teammate is influenced by its percemtiche quality of its al-
ternative. Every subsequent attempt to recruit is precegiedquality-independent
delay, T, which here is 10 seconds. The better alternative stillrgtda able to
recruit more robots in the end. The advantagmnothorasstyle immutable recruit-
ment is that errors made by individual robots when measualtegnative quality
will have less of an impact on the overall recruitment bebaxi making it more
robustto NOISY SENSOIS. . . . . . . . . o
3.6 lterative recruitment differs from immutable recruém (Figures 3.4 and 3.5) in
that the robots can be recruited to more than one alternitiseghout the process.
This is the strategy used by the honeybees. When a robotristest, it favours the
alternative of its recruiter, and attempts to recruit ashbut eventually it will return
to the idle state, from which it might get recruited againefiéfore, the alternatives
compete against each other for the idle robots. Robots arelikely to be recruited
to the better alternatives, so the populations favourieddhser alternatives eventu-
ally are wiped out. Ultimately, only one alternative willna@in. However, because
robots favouring an alternative reenter the idle state atitefinon-zero rate, some
constant proportion of a system’s robots always will be mithie state, preventing
100% unanimity from being achieved. . . . . . . . .. .. ... ... . ...,
3.7 The main problem with the honeybee approach to iterageeuitment is that the
steady-state size of the population favouring the bestratve directly depends on
the alternative’s absolute quality as perceived by the tobihis is because the only
stable state in that approach is the idle state. Insteactaditing robots only from
the idle state, regular iterative recruitment allows raliotbe recruited directly from
favouring one alternative to favour another. This meansfévauring an alternative
is a stable state, since robots will continue to favour aradtive until they receive
a recruit-message from a teammate favouring a differeatradtive. Similarly to
honeybee iterative recruitment, all but the best alteveatiill be forgotten. Un-
like honeybee iterative recruitment, however, the stestde size of the population
favouring the remaining alternative will always be 100%twf tobots. . . . . . .
3.8 Another great advantage of iterative recruitment anenutable recruitmentis that a
better alternative found later on in the process can stthiolihe unanimous support
of adec-MRS if it is sufficiently good. In this figure, altetive A is found att = 0,
whereas alternativ® is found at timet = 100. Alternative B is twice as good
as alternatived, so robots that favour it to recruit twice as frequently assththat
favour A. The population favourind3 grows rapidly, eventually recruiting every
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3.9 This illustration depicts digital consensus estinmatidbhe robot on the left is com-
puting an estimate of apparent consensus for some altegnitithat it favours.
Upon encountering a teammate, it asks it if it also favakitsThe teammate does
not, and its response “No” is converted to the numericale/@lby the quantifying
function~(vote;). Some earlier collected opinions were “Yes”, and these \asre
signed a value of 1. In this example= 5, so only the five most recently received

quantified opinions are averaged to comp@te which in this case is 60%. The
previous three values fa¥, by the robot on the left were 60%, 40% and 60%. By
increasing number of opinions used to comp(itg the accuracy of each estimate

increases but requires more teammate opinions and thustimeréo compute. . . 40

3.10 The graphs in this figure illustrate how the parameteesd ) (the number of

teammate opinions used to compatgand the threshold to whiofi, is compared
to in order to test quorum) affect the probability of a robeliéving that quorum is
satisfied versus the actual value of apparent conse@susncreasing: makes the
curve more step-like, decreasing the likelihood of a rolvehpaturely committing.
Increasingy does not significantly change the shape of the curve, insteiftthg it
totheright. . . . . . . . e
3.11 The commitment phase begins once one of the robotsasttonsensus believes
that quorum has been satisfied. &3 increases, there by definition will be more
robots estimating apparent consensus, and so the chance affdhem making
an error by overestimating', and prematurely triggering commitment phase also
will increase. This graph plots the probability of at leaseaobot believing that
qguorum has been satisfied as a functio@gfand the population sizéy. Although
the behaviour of quorum testing does depend somewhat orofhdation size, the
decrease in reliability ad increasesis minimal. . . . ... ... ... ......
3.12 At the heart of analog consensus estimation are a pa&xmdnentially decaying
indices. These are called the kin and quorum indices, ddrétgandk(t), respec-
tively. Periodically, these are incremented by a constarttunt. £ (¢) is incremented
whenever any teammate is encountered, whergass incremented only when an
agreeing teammate is encountered. Both curves adopt acthetbshape, reaching
equilibria determined by the frequency with which they areremented. In this
figure, the quorum index is incremented only half as ofterhaskin index, and its
peak equilibrium is half that of the kin index. In generak tteak equilibrium value
of the quorum index will be equal to that of the kin index sdalyy the apparent

consensus, and so theirratiocomputes . . . . .. .. ... Lo 43

3.13 The ratio of the peak equilibrium values of the quorumh kin indices closely ap-
proximates the apparent consensus. This figure plots ttids vsing two different
values forr, which specifies the rate at which the indices decay. Inorgasin-
creases the accuracy of the estimate, but also will inctbaséme required to make
the estimate. . . . . . . . ..

3.14 This analog circuit permits even the smallest and s@stpf robots to estimate ap-
parent consensus and use it to test quorum. The upper andR@veircuits produce
sawtoothed waves denoted q(t) and k(t), the DC peak valuesich are propor-
tional to N, — 1 and N — 1, respectively. Quorum is tested by comparig) to
Qk(t) via the comparator on the right. Wheft) > Qk(t), the comparator switches
on, signaling that quorumis satisfied. . . ... ... ... ... ... ..... 45

3.15 This figure plots four robots’ estimates of apparenseosus computed with two
different values ofn in a system wher€, = 50%. Both graphs use the same

sequences of robot interactions; omydiffers. Whenn is small, C, can change

rapidly, but there is a substantial amount of noise in thesueaments. Increasing

n greatly increases the accuracy of the measurements, lyutatkelonger to reach

asteady-statevalue. . . .. . . .. ... 46
3.16 In this figure, the same sequence of robot interactisnseae used to generate

Figure 3.15 are used along with analog consensus estintatioomputeC,. 7 =
5T} in the upper graph, and it is increasetd in the lower graph. Low values

of  allow C, to vary rapidly, whereas increasing this parameter prosptere
accurate measurement. Note also that when5Tj, the robots tend to overestimate

apparent consensus, a phenomenon predicted by the datuieBi.13. . . . . . . a7



3.17 In Figures 3.15 and 3.16, it could be seen that incrgasior = increased the ac-

4.1

4.2

4.3

4.4

4.5

4.6

4.7

curacy of apparent consensus measurement, but also iedrdestime necessary
for a measurement to be made. This figure summarizes thadésrgdotting the
accuracy of robots’ estimates 6f, against the measurement time. Whear 7 is
low, measurement accuracy increases rapidly with inccbamasurement time, but
diminishing returns are encountered. Note the great diityileetween the perfor-
mance of digital and analog consensus estimation. . . .. .. ........

This figure illustrates the decomposition of a paintiagktinto a sequence of sim-
pler subtasks. In order to complete the overall mission &egysnust complete
each subtask in order. A group decision is required at eabtask transition to
ensure that all of the robots make the transition at the same btherwise robots
in adjacent tasks might interfere with each other, resgiitina failure of the overall
mission. At the same time, a transition must not occur unéldurrent subtask has
been completed. These two concerns are addressed by a atipanary decision.
A construction task can be decomposed into an initialmieparation subtask fol-
lowed by secondary construction. The purpose of site padjoaris to remove de-
bris from the construction site so that the more advancenhstzry construction can
proceed. These two subtasks are mutually exclusive, so iy gnaup decision is
required to coordinate the transition between them. . .

The image on the left of this figure depicts four robotsagagj in the blind bulldoz-
ing site preparation task. Their goal is to expand the irdtesaring in the debris-field
to permit more advanced construction to take place. Thdividual behaviours are
controlled by the simple state-machine given on the riglite Tobots clear debris
by plowing in straight lines in the wander state, and thenloanly reorient once the
debris has been pushed into the site’s wall or whenever anedenis encountered
[65,64,60]. . . . .. e
This figure depicts the environments of the unary decisiaking experiments. On
the left is a screen-shot from one of the simulated experisadBach of the black
discs is a robot. The image on the right is a photograph of ladeaMRS making
a unary decision about task-completion. These environsreststatic, but they are
good analogs of the blind bulldozing domain towards the entti@task. In both
cases, the environment is sufficiently large that the inldigl robots eventually will
conclude thatthetaskiscomplete. . . . . . . ... ... ... ... . ....

A robot’s cognitive behaviour during a cooperative yn@ecision is divided into
four states. The robots initially believe that the curremtup task is not yet com-
plete, and so they work on it. When a robot decides that thentiask is complete,
it enters the deliberating state, in which it gathers thenigpis of its teammates as
they are encountered. Based on their opinions, a delibgradbot estimates the
apparent consensus in favour of the current task being @impOnce it believes
that this has satisfied quorum it enters the committed stedghich it instructs other
robots to commit. Uncommitted robots that are told to conuiso and respond
with an acknowledgment. When a committed robot no longeeives acknowl-
edgments to its commit-messages, it concludes that als éé&mmates have either
committed or moved on to the nexttask, and it doessoaswell. . . . . .. ..
All of the communication in the simulated task-commietexperiments was local
and anonymous. The robots were circular, with their antedoeated at their cen-
ters. Robots could detect teammates when they were a sktahde {) away, and
their radio transmission ranges were set to twice theiusaplius twice the teammate
detection range. In practice, although it was possible forerthan one robot to re-
ceive a particular teammate’s transmission, 95% of the agesswere one-to-one,
and the remainder were mostly one-to-two. . .

Because the motion of the robots is mdependent of theiisibn state a smgle
series of 40 generic trials was run. In these, the robots geméric messages to
teammates as they were encountered to which the recipientklwespond with
similarly trackable messages. The lengths of the patheldwvhile in the wander
state also were logged. These generic logs were post-etés generate unary
decision trials with whatever parameterization was ddsifiéhis figure illustrates a
portion of a generic log on the left with a post-processedgioerof it on the right.
The first three columns of the two logs are: time of event, tmt that logged the
event, and the specific event. The remaining columns aret spegific data, such

48

56
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as the message received or transmitted, the length of agratie new decision state. 64



4.8 Asthe quorum threshold increases, the observed qudsormareases. This occurs
because the quorum test delays the beginning of the commiitpase of a deci-
sion until a sufficient proportion of the robots have detéc¢sk completion for the
quorum test to be likely to be positive. Increasingr r decreases the likelihood of
false-positive quorum test, resulting in a greater obgboueorum. Note that both
the analog and digital approaches to consensus estimatidoge similar results.

4.9 Thisfigure presents a theoretical prediction of thetimiahip between the observed
qguorum and the quorum threshold for a multiple-robot sysbéithe same size as
the one used in the simulated experiments. The analysistaggdduce this figure
assumes that the rate at which vote-messages can be gattieséghificant, but this
was not the case in the experimental trials. This differexgdains the discrepancy

65

between this Figure and the real data plotted in Figure 4.Bfeer values of). . 66

4.10 As the quorum threshold is increased, the likelihood adbot prematurely com-
mitting decreases, which means that commitment will terfabtdelayed until more
robots have entered the deliberating state. This resulis imcrease in the length

of the deliberation phase of a decision. A®r 7 is increased, the precision @,

increases, and so the value @fhas a greater impact on the robots’ deliberation

time. The time-cost of deliberation is independentodr - when( is zero (the
y-intercepts of these plots) because, regardless of thasme with whichC, is

estimated(’, > Q always will be true, and thus quorum always will be satisfied. 67

4.11 The role of the commitment phase is to induce all of thmt®to accept the pro-
posed alternative unanimously. Committed robots instencbuntered teammates
to commit, and they reset a timer every time an uncommitt@ahteate is met. Once
a committed robot’s timer reaches the commitment timeawgniers the finished
state, exiting the decision. As the commitment timeout ¢seased, the probability
of commitment reaching all of the robots increases. In ofdlemutual exclusivity
to be respected, all of the robots must be in either the adivapar committed states
before any committed robot can exit the decision. . . .

4.12 Increasing the length of the commitment timeout inseeahe reI|ab|I|ty of the com-
mitment phase of a decision, as illustrated by Figure 4.0fjttalso increases the
duration of the commitment phase. As shown here, this iseréalinear. Because
committed robots tell every teammate that they meet to cdrfginice they cannot
discern ateammate’s decision state through observatimlpnger the commitment
phase lasts, the more commit-messages will be sent. :

4.13 This figure shows one of the robots used in the physmpaémments "Each robot
possessed a circular bump sensor that permitted it to delstacles. At the rear
and top of the robot is an 802.11B radio, which it used to comigate with its

69

70

teammates when making a group decision. . . . . ... ... ... ... 71

4.14 This figure plots the observed quorum versus the quohuestold from the ex-
periments with real robots. The data plotted here are venjlagi to that shown in
Figure 4.8. As the quorum threshold is increased, the obdeguorum increases,
since the robots are less likely to overestim@teand prematurely commit until a
sufficient proportion of their teammates also have conaliddependently that the

blind bulldozing task is complete. . . . . .. ... ... ... ... ..., 72

4.15 This figure plots the predicted relationship betweenabserved quorum and the
quorum threshold for an 11-robot system, the same populatie as was used in
the physical experiments, for the same values tiat were employed. The actual
observed quorum measured from the physical experimentedday than the theory
predicts, particularly for lower values @J, because the theory does not take into
account the time required by the robots to obtairote-messages. During this time,
additional robots will tend to enter the deliberating staereasing the observed
quorum for a decision. If the rate at which robots were toethie deliberating state
was reduced, the data in Figure 4.14 would more closely retestiat plotted here.

4.16 The trend of the mean observed deliberation time of ¢aé nobots very closely
resembles that of the simulated trials, given in Figure 41h@reasing quorum in-
creases the deliberation time, since commitment is delayitl sufficient robots
are advocating in order to satisfy quorum. Given a partiogleorum, increasing the
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accuracy of the quorum test)increases the deliberation time, too, because it raises

the precision of consensus estimation, decreasing thecetedpremature commit-
ment. The regression lines have a common y-intercept be@gsorum of zero is
always satisfied, so the deliberation time in this case ispeddentof,. . . . . .
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This flowchart illustrates the best-of-N decision-nmgidiramework, which is orga-
nized into three phases. In the initial searching phasegtsodearch for candidate
solutions, calledlternatives Upon finding an alternative, a robot will enter the ad-
vocating state favouring it. The advocating robots iterdyi recruit each other at a
rate determined by their opinions of their favoured altéves’ qualities. Better al-
ternatives induce more frequent recruitment, and so owes,tthe proportion of the
system that favours the best alternative will tend to inseed&ventually, one of the
advocating robots will conclude that the proportion of @ammates that also favour
its alternative has reached the quorum, which triggersah@&gitment phase. In this
final phase all of the robots commit to the quorum-satisfyahigrnative. Once no
more uncommitted robots can be found they exit the processnsy unanimously
chosen the best of the alternatives thatwas found. . . . . . ... ... ....
This figure presents a screenshot from a simulated i@éte@cision-making ex-
periment in the site selection domain. The black squaredrcéimter of the environ-
ment is the robots’ initial home base, and the squares indiheecs are candidate
sites from which the robots must select a new base. The shzak lzircles are
the robots themselves, and the arcs represent the rangesirofision. One of the
robots in this scene favours the upper right site, and ishgealteammate that it has
recruited to it so that the recruit can inspect the site &wlft The rate at which the
site-favouring robots recruit is based on their opinionite quality, so the best site
will tend to attract recruits more rapidly than the othersking it the most likely
site to be selected by the decision'send. . . . . .. . ... ... .. .. ..
This figure presents a timeline of one of the simulated-bebl decisions. The
history of each robot is given by the sequence of symbolsgaibe corresponding
timeline. Solid and hollow symbols indicate events regagdhe better and poorer
sites, respectively (this particular trial compared omy sites). Once a robot found
a site, the robot began to recruit teammates to it. Note Heatdbots that favoured
the better site recruited more frequently. Over time, relloat favoured the poorer
site were recruited to favour the better one, and eventgalbyum was satisfied for
it. After this occurred, commitment flooded throughout tlee-dMRS, resulting in
the unanimous adoption of the better site. This timelines@néation was inspired
by asimilarfigurein[50]. . . .. .. .. ... ...
It is important that a collective decision is unanimolibese graphs plot the per-
centages of the simulated trials that ended unanimougigraéess the particular site
that was selected. In general, population size and thefgpewdel of recruitment
do not affect the ability to achieve unanimity. However, likelihood of unanim-
ity increases with the quorum threshold, because becausmategquorum makes
commitment to multiple sites less likely. . . . .. .. ... ... .......
This figure illustrates how a robot’s visual field of viemupacts its ability to test
quorum using the off-swarm method outlined in the text. Whikiting its favoured
site, a robot will compute the number of its teammates alsoettas the largest
number of other robots it was able to observe simultaneouislthis example, the
white robot would believe that only five other robots weresperd, since the other
two are outside of its field of view, indicated by the dashedisgrcle. In practice,
this means that larger quorums are less likely to be obsduyetthe advocating
robots, delaying the onset of commitment, or resulting agsation altogether.

As quorum is increased, the ability of the robots to makesct decisions (in which
best of the sites found by the scouts is selected at the deisind) increases with
quorum. Quorum specifies how much iterative recruitmentfficsent; once a quo-
rum of robots is found to support a particular site, the systencludes that suf-
ficient deliberation has transpired. Note that increasimgpgopulation size of a
system also increases its ability to make correct decis&inse larger systems are
less impacted by the occasional recruitment away from tisedie. The model of
iterative recruitment has little effect on the decisionking ability of a system, as
long as it is biased in some way to so that recruitment towtrd$est site is the
mostlikely. . . . . . . . e
The deliberation phase of the decision-making framkveompares sites by re-
cruiting additional robots to inspect them. Ultimatelycm@tment towards a site
that is not selected by a system represents a waste of timerardy, and so a
good decision-making algorithm should give most of its mttten to the site that
ultimately is selected. The plots in this figure illustratattthis is the case for the
proposed decision-making framework. As quorum is incréathe selected site is
seen to attract more recruitment, but recruitment to thelented site remains mini-
mal. Some of the system conﬁguranons are omitted from tpkm;eto avoid clutter,
but all of them follow the pattern of those shown. e e
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These figures plot the mean length of time that each syspent in the deliberation
phase. Regardless of the number of robots that compose mE&cer the kind

of iterative recruitment employed, deliberation time #eses with quorum. This
happens because higher values of quorum required additavats to be recruited
in order to be satisfied. In each system, the number of rohatsdentify candidate
sites is fixed, so increased deliberation is required iresgstwith larger population

This photograph depicts the environment in which thespay site selection ex-
periments were carried out. It was very similar to the enwinent of the unary
decision-making experiments (a hexagonal enclosure,r@etbrs per side), except
that two candidate sites were added to it on opposite sidbesel sites were the
alternatives for the robots’ best-of-N decision-making.. ... . . .. .. ... ..
These three images show how the candidate sites wétrtobthie decision-making
experiments. At 5.10(a) is a close-up of a site’'s overhagd.liThe quality of a site
is determined by its brightness. The attached circuit beardrols the current to
the lamp’s 8-LEDs, and their brightness as a result. Becdugsebots were unable
to localize themselves in their environment, coloured baaavere placed next to
each site. One of these is shown at 5.10(b). During an expetanhtrial, the room
was made completely dark, except for the sites’ overhedadsignd beacons. The
photo at 5.10(c) shows what a site looked like during a tfdle illuminated spot
on the ground in front of the beacon is the site itself. .

In order to find, measure and identify sites, the robaevoutfitted with upward-
pointing site sensors and forward-pointing beacon senskine sensory elements
in all of these were cadmium-sulfide photoresistors. 5J14f@ws the overhead
site sensor. Three photoresistors (the one in the rear thengeen in this image)
were arranged in a plane with a triangular shade separdtegm.t Their relative
responses to an overhead light allowed a robot to compuetibn to the point on
the ground directly under a site’s overhead light, where asuageement of its quality
should be made. At 5.11(a) can be seen a robot’s beacon sehgoe, a column of
three photoresistors, each covered by a different cologeé¢red, green and blue)
allowed the robot to determine which coloured beacon it waif). Each robot had
three of these to increase the beacon sensor’s field of view. .

Unlike the simulated site selection experiments, &z robots’ percept|0n of site
quality was noisy. This figure plots each of the eleven rdlogimions of site qual-
ity. The median, minimum, first and third quartiles, and naxin readings of each
site’s quality are plotted. All of the robots agreed that hee site was better than
the red site, although most had noisy enough perceptiorntefsiality that a sin-
gle robot’s opinion would be unreliable. The horizontaltddtlines indicate the
perceived site qualities above or below which the robot®rinecruitment delays
would saturate (see Figure 5.13). . . . . . . . ... e
Restraintive recruitment was used by the robots in llysipal experiments. In this
approach, the advocate robots delay for a certain peridcheftietween attempting
to recruit teammates to favour their site; the better a rddedieves its site to be,
the less time it will delay, and thus the more frequently il weécruit. The solid
line in this figure shows the relationship between a robaigeption of site quality
and the amount of time that it delays between attemptingdauie Additionally,
to reveal any biases in the experimental environment jt$e#ls were run with
unbiased recruitment, given by the dotted line. If one ofdites was easier to find,
then this would be revealed by these unbiased trials. . . . . . ... ... ..
This timeline depicts a best-of-N decision using eteraal robots, the first four
of which acted as scouts. Solid and hollow symbols refer ¢obibtter and poorer
sites, respectively. Two of the scouts find the better sitd taro find the poorer
site. Even though robot-4 makes a poor evaluation of thebsitie’s quality, this
error eventually is overcome by other robots recruited édabtter site, and the final
decision is unanimous in favour of it. This illustrates tledf-gorrecting nature of
the proposed decision-making framework. When a robot'gliime indicates that
it recruits a teammate, the recruited teammate can be fbehity an upside down
triangle of the same colour in its timeline at the same timer éxample, robot-3
recruits robot-10 to the better site at 200 seconds, and+tbfinds the site soon
after. . .
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5.15 This timeline illustrates a best-of-N decision in whadl eleven of the robots acted
as scouts. Overall, recruitment is more frequent by theebstte favouring robots,
so the proportion of the robots that favour that site tendstoease. Eventually,
robot-7 determines that quorum for the better site has batsfied (note that it
initially favours the poorer site, and that it's opinion diet better site actually is
quite low) and it commits, inducing the rest of the dec-MR&low suit. Once all
of the robots have committed to the same site, responsestmitanessages cease,
and the robots all exit the decision unanimously favourifidne better site. -

5.16 This figure plots the proportion of the best-of-N demisi that chose the best site
found. In general, the ability of a dec-MRS to make correcisiens increases with
quorum. When quorum is low, the results of the initial sedoetsites can adversely
affect performance when too many scouts are involved. Ragiiorum overcomes
this problem, but reveals another mode of failure. Too fesuse allows stochastic
effects to influence the outcome of a decision, reducingyperdnce. The horizontal
dotted line indicates how accurately an unbiased dec-MRS atste to make the
decisions. Even when quorum was as low as 33%, biased#eratiruitment made

good decisions much more likely than randomchance. . ... ... ... .. 104

5.17 This figure illustrates the relationship between theeoled quorum and the quorum
threshold Q) from the best-of-N decision-making trials. Notice that thbserved
quorum here is greater than it was in the unary decisionaifEig.14). As the in-
dividual robots gather each other’s vote-messages, thetalatively recruit each
other, changing the apparent consensus for each altegn8t@cause a robot’s esti-
mate of apparent consensus is based on the average valyedufring the period
over which then most recent vote-messages were received, and becausegtre ap
ent consensus for the best alternative (the one most likeigduce commitment

first) tends to increase over timé’, will tend to underestimaté’,, and thus the

observed quorum will tend to be greater than expected. . . . . ... ... .. 106

5.18 A good decision-making algorithm will minimize the ammb of time and energy
spent considering alternatives that are unlikely to becsedein the end, because
this represents a waste of time and energy. This figurerititest that, regardless of
the size of the searching population, considerably moenatin (in the form of the
number of robots recruited) is paid to the site ultimatelgsted by a decision than

the unselected site, and that this increases with quorum. . . . 107

5.19 Increasing quorum demands greater accuracy from aldapso the robots spend
more time in the deliberation phase of the framework, whieskiest-of-N is de-
termined. The more robots participate in the initial seémh;ites, the greater the
apparent consensus in favour of the known sites will tencetattthe beginning of
deliberation, so less recruitment (and therefore a shddliperation phase) would

be required to satisfy a givenquorum. . . . . . .. ... . 108

5.20 This final timeline demonstrates what happens if twessgtatisfy quorum. The
robots committed to each instruct every robot that they netommit to their
favoured site, but they switch sites when they receive a citvimmassage referring
to the other one. Normally, the site that induced commitrfiesttwould be selected
in the end. In this trial, the two were committed to so rapitiigt neither gains the
upper hand. Robot-11 prematurely decides that unanimiyblean achieved and
exits the decision early. It is only due to luck that the refstooteammates end up
committed to the same site as it. Attrition in the commitmemse is best avoided
altogether by making quorum higher and ensuring that it iasaeed with sufficient

samples to make the measurements accurate. . . . . ... ... . ... .. 109

6.1 In many dec-MRS, the micro-macro link is unidirection@he individual robots
interact with each other and the environment, and a globat{ascopic) behaviour
emerges. The system-level decision-making frameworkisthigesis uses consensus
estimation and quorum testing to complete the loop, engluhe robots to predlcate

their behaviours directly upon their collective state. . .. ... . . .. 114

A.1 The curves in this figure plot the probability of at leasemf a system’sV robots
believing that quorum has been satisfied. Each curve camnelsto a different value
of the quorum thresholdy. The likely value of the observed quorum for a given
value of Q) is the apparent consensus (horizontal axis) that corresptmna 50%
likelihood of believing that quorum is satisfied. These ealare indicated by the

intersections of the dashed lines in this figure. . . . . ... ............. 122



A.2 The values of observed quorum read off of Figure A.1 arthéunits of apparent
consensus. These are converted to true consensus withidgda?, which are then
plotted against the value 6] corresponding to the curve in Figure A.1 from which
they were read. Because a robot will always believe thatuquas satisfied when
Q@ = 0, the observed quorum for this particular quorum thresholicoe % ... 123

A.3 These graphs plot the predicted relationship betwesemvkd quorum and the quo-
rum threshold for two different population sizes for diffat values ofr. Asn is
increased, the probability of a robot overestimatingdecreases, which results in
an increase in the observed quorum. Increasing the numbebofs in a system
decreases the observed quorum, both because apparenmsamissless of an over-
estimate of true consensus Asincreases, and also because the probability of at
least one of the robots making an error in its estimate of egpaonsensus will
tendtoincrease. . . . . . . .. 241
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q(t)

The number of individuals that compose a multiple-roboteys

The number of robots that favour a particular alternativedmmon.

The number of robots that favour some particular altereativ

The number of robots that do not favour any alternative.

Apparent consensus: the proportion of a robot’'s teammhagggavour the same
alternative as it when its own opinion is not includég, = %

Apparent consensus as estimated by an individual robot.

True consensus: the proportion of the robots in a systenfabatir some
alternative in commonC;, = fe.

Quorum threshold [0, 1]: the number to which a robot compares its estimate

of apparent consensus to determine whether or not its fadalternative has
satisfied quorum.

The number of teammate opinions used to compute an estirhapparent
consensus using the digital approach.

The time constant that sets the rate of decay of an expofiguliraying
variable,e.g.e~*/7. Used in the analog approach to apparent consensus estimati
The expected time between an individual robot's encount#lsits teammates.
The expected time between an individual robot’s encountéhsteammates that favou
the same alternative as it.

The commitment timeout: the period of time that a committaubt will

remain in the committed state without receiving an ackndgtaent to a
commit-message before exiting a decision.

Recruiter lifetime: the length of time that a robot remaimshie recruited

state before returning to the idle state. Used only in hoaeydtyle iterative
recruitment.

The inter-recruitment period; the period of time betweeal®t’s attempts to
recruit the teammates that it encountérs. is 7. for some particular alternativie
T,., andT,, expressed as rates rather than periods of time.

The quorum index: an exponentially decaying variable thai¢remented by a
constant amount), every time that a teammate that favours the same alteenativ
in a decision as it is encountered.

The kin index: an exponentially decaying variable that g@mented by a constant
amountA, every time that a teammate is encountered.

The constant by which the quorum and kin indices are incréatgemnhen an
appropriate teammate is encountered.

The expected number of teammates that a robot will recruinduts lifetime.

Used only in honeybee-style iterative recruitment.
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vote; Thei*™ most recently received vote-message received by a patimbot.
~v(vote) | A function that quantifies a vote-message to either 1 or 0.

r The radius of a robot.

d Distance

t Time




| ntroduction

In the last twenty years, there has been a steady increake &ffort to build intelligent systems
composed of many robots that cooperate with each other ierdodachieve shared goals. The
development of thesmultiple-robot system@RS) presents a significant challenge. Not only must
the individual robots be mechanically, electrically, armnputationally reliable, but their social
interactions must be robust so as to bring about reliablleaddle behaviours, too. Despite these
challenges, MRS are attractive for many reasons. A sindfletrcannot be in two places at once, nor
can it be both large and small at the same time, but a MRS carF[8thermore, a multiple-robot
solution will tend to be more reliable, since several of théividual robots could fail and yet the
MRS would continue to function.

Not all MRS are the same. Although two different systems ddad compared along several
different axes [24, 25], their organizational structurgésticularly important. At one end of the
spectrum are centralized MRS, in which a single centralizgent (a specialized robot, human
operator, etc.) is in command of every other member of theesysThe other end of the spectrum is
occupied by decentralized MRS (dec-MRS). In a dec-MRS, roditiee robots are in control of any
of their teammates. Dec-MRS are particularly interestanry it is these systems that are the focus
of this thesis.

Robots by their very nature are decision-making machinggplted with a goal and the physical
means to achieve it, the operation of a robot consists of diess loop of sensing its environment,
computing an appropriate response, and then carrying it Bot a solitary robot, deciding what
to do is relatively simple to understand, since solitaryatsthave no teammates with which they
must coordinate their actions. Similarly, decision-maliy a centralized MRS is straightforward,
because the centralized agent needs only to collect intiwmfrom the robots that it controls, make
a decision, and then dictate its decision back to them. ecimaking by a dec-MRS, however,
is much less obvious [63]. Because their collective behagiare bottom-up, emerging out of the
myriad of individual robot-to-robot interactions, theserio central point from which a collective
decision could emerge.

If dec-MRS are to be deployed as autonomous intelligentiestirather than systems that con-
tinually must be monitored and have decisions made for thgraxternal agents, then system-

level decision-making is a problem that must be solved. iinijgortant to distinguisisystem-level



decision-making as a special operation. Many dec-MRS hega Hescribed in which decisions are
made, but these tend to be local decisions made by individbaits that only affect them or their
nearby teammates, rather than decisions that are madetaalg by the entire population. The
ability to make system-level decisions provides the ibmnsof centralized control, allowing a dec-
MRS to be viewed and thus programmed as a cohesive intdliggity, asuperorganismOptimal
decision-making in a decentralized system in a realistidrenment is intractable [7, 63], unless
free, instantaneous communication is avail&blEherefore, real-world collective decision-making
in a dec-MRS demands a heuristic approach, especially witkeie-81RS contains many robots as
it is assumed in this work.

When the survival of an organism depends on its ability to emgdod decisions, evolution will
find a way for those decisions to be made, or the organism @itidi-competed and become extinct.
Social insects such as ants and bees are excellent natalaljarfor large dec-MRS, and their
examples have been followed many times with success byioidist[8]. A particularly important
system-level decision that a colony of social insects migivie to make is to select a new site for
its nest. A poor choice would penalize a colony long afterdéeision had been made, and so there
is a strong evolutionary pressure to develop efficient ctille decision-making behaviours. Both
honeybeesApis melliferg and certainfemnothoravants {T. albipennisandT. curvispinosusoften
must make precisely this decision [78, 50, 71]. Because ¢imeptexity of the individual insects
is similar to that of small mobile robots, and because theliories are organized as decentralized
systems, their approach to collective decision-makingaigiqularly attractive for application to
dec-MRS.

This thesis describes the adaptation of these social sigktision-making strategy for modern
dec-MRS. The result is a three-phase decision-making frame search, deliberate, and commit.
The nature of the approach developed by this work is inteatlp general, permitting a wide va-
riety of collective decisions to be made. Furthermore, the behaviours of the social insects that
inspired it, the decision-making framework relies only ondl interaction and simple, short-range
broadcast communication. This means that almost any de§-8tRid take advantage of this work.
Two social behaviours central to the framework are develapeletail, and these could be applied
to many problems beyond the focus of this thesis. These lmivavare iterative recruitment and
consensus estimation/quorum testing. The first one enabllezentralized system to compare a
list of alternatives and identify the best one. Especiatiportant is that the precision and accuracy
of the comparison accomplished by iterative recruitnieciteasesas the population of a dec-MRS
increases in size. The second collective behaviour, caosarstimation and quorum testing, allows
the individual robots to predicate their own behaviourstandollective state of their system, provid-
ing a powerful social cue. The cost to the individual robdthese behaviours is independent of the

population size of their system, so scaling a dec-MRS thaleys them up to large population sizes

1Even if this impossibility somehow was overcome, optimatisien-making still would be PSPACE-hard.



will be economical. Experiments were conducted in simatatind with physical robots (designed
and built especially for this work) to demonstrate the perfance of the proposed decision-making
framework in practice.

The main contribution of this thesis, to be reiterated iratgedetail in Chapter 6 is as follows.
It is shown that a MRS can make collective decisions withoytsort of centralized control, using
only local and anonymous communication. The layout of teisLoinent is as follows. In Chapter 1,
some of the research related to the focus of this thesis tgitbed. Next, in Chapter 2, the nest site
selection behaviours of honeybees dmrannothoravants are presented. The three-phase decision-
making framework inspired by the insects’ behaviours isspnéed in Chapter 3. Decisions can
take many forms. Chapters 4 and 5 describe implementatfahs dramework to tackle two types
of group decision. In Chapter 4, decisions to accept or tgesingle proposed alternative to the
status quaare described, and the results from experiments using lmthiations and real robots
are presented. Not all decisions can be represented by teptaar-reject model, called anary
decisionin this work. A more general-purpose approach istibst-of-Ndecision [79], in which the
single best of N candidate alternatives must be selectest-d&deN decision-making is described in
Chapter 5 along with a series of robotic experiments. Theistdoses with Chapter, 6 in which the

significance of this work is discussed, and the next resesiegds are outlined.



Chapter 1

Related Work

The focus of this thesis is system-level decision-makingénentralized multiple-robot systems,
referred to in this thesis adec-MRS Although there has been relatively little work studyingsth
problem in dec-MRS with large populations of relatively pimrobots, this area is related to several
others. In this chapter, several of these fields are disdugseluding their relation to the goals
of this thesis. Natural decentralized systems are veryaateo large dec-MRS research, so their

discussion is given an entire chapter of its own, immedydta#lowing this one.

1.1 Decentralized Multiple-Robot Systems

The origins of multiple-robot systems research can be trtthe pioneering efforts of Grey Walter
in the late 1940s [89, 39], but interest in this area has as®d in recent years [26, 14]. The pub-
lished studies describe systems too varied and numerowssorbmarized here, but there has been
relatively little work investigating system-level cogmé operations in large decentralized multiple-
robot systems (dec-MRS) and, in particular, collectiveslen-making.

A dec-MRS is characterized by the complete absence of djzedagents that make plans and
decisions on behalf of the rest of the system’s members B42@&, 25}. Dec-MRS that contained
relatively large numbers of robots were somewhat commohearetairly MRS literature. These sys-
tems were able to complete collective tasks such as so®gbp, 38], foraging [84], cooperative
load transport [47], construction [86, 91], and the sticklipg experiment [42]. The manner in
which collective sorting was implemented is particulaystrative of the general approach to de-
centralized control of a MRS common to many of these systéniigally, the robots’ environment
would contain many objects of two or more colours, randorbttered about. The robots collec-
tively sorted these into piles based on object colour thnoaigeries of stochastic pick and place
operations. As a robot wandered about, it would find differdjects. If a robot encountered an

isolated object, or one near to a number of objects of a diffecolour, the robot would be more

INote that there is some disagreement in the literature ahéther the term “distributed” or “decentralized” should be
used to describe the systems intended by the ti¥oentralizedn this work. Readers should keep the meaning intended by
the use of this term in this thesis in mind when reading rdléterature.



likely to pick it up. While carrying an object, a robot woula Imnore likely to put it down when
it encountered a cluster of like-coloured objects alreadyhe ground. In this way, the environ-
ment itself directed the robots’ sorting operation. As thlats worked, the manner in which they
modified the environment through their actions further stated their behaviour. Th&imulation
by the progress that had been achieve#nown asstigmergy[6], and is still a common feature of
dec-MRS control.

It is important to point out that explicit cooperation waseoessary for this sorting behaviour
to work. A solitary robot could have sorted the objects jistvell as a MRS, except that it would
take longer to do so. The only time that two robots ever hacetd @ith each other was to avoid
interference and collisions. Some tasks, such as coopetasinsport [47] and the stick pulling
experiment [42] did require the collective efforts of mplé robots in order to be completed, but
the individual robots still were ignorant of each other'sstance. Instead, successergedout of
their interactions. The problem with stigmergy, the moshown form of emergent behaviour in
dec-MRS is that it critically depends on the dynamics of titeriaction between the robots and their
environment [6]. A stigmergic dec-MRS and its environmeggther can be thought of as an elab-
orate Rube Goldberg machine. Changing one small aspect sf/gtem, perhaps the interaction of
a robotic bulldozer’s plow and the fill that must be moved,lddwave a significant (and potentially
disastrous) effect on the likelihood of successfully acimig the overall goal [64]. The dec-MRS
operations at the heart of the decision-making framewaskpsed by this thesis also are emergent,
taking advantage of the bottom-up nature of dec-MRS. Howévwgtead of modifying the environ-
ment, the robots directly modify the states of their teanamateducing or eliminating the impact of
the robots’ environment on their decision-making behawiou

Recently, more sophisticated dec-MRS have begun to apg@wagposed of very large numbers
of robots, on the order of 100 or more [51, 46]. However, théonitg of the research conducted
with them concentrates on either strategies to allow arreat®perator to centrally control a dec-
MRS (e.g.teleoperation), or the development of local behavioure#dize desired global emergent
behaviours. For example, [51] discusses swarm teleoperatid mentions several emergent be-
haviours that could be controlled with the proposed ints¥fdn some cases, although the specific
dec-MRS might contain many robots, the proposed algorithtitige only a few of them at any
given moment. The environment mapping operation in [465Usesmall number (1-5) of robots
working completely autonomously, often out of contact wite base station”. In a sense, this does
not describe a very large robotic team, but rather a verylsmmalwith many spare robots standing
by. Nonetheless, these systems do not command themsehesletision-making upon which this
thesis focuses would permit a dec-MRS containing many sotoatollectively monitor and respond

to itself and its environment.



1.1.1 Collective Decision-Making In Dec-MRS

There have been several different approaches to the dedletgcision-making problem that have
been described for dec-MRS. However, it appears that ontdyafrthese actually is practical for
systems composed of many simple individuals.

Competitive team sports is a domain in which multi-agenteays must make system-level
decisions relatively often. RoboCup [75] is an internagilocompetition in which MRS developed
by research institutions from all over the world are pittggiast each other in a robotic version
of soccer. The competition is divided into several différiEagues, each emphasizing different
technical challenges. The Middle-Sized League (MSL) isrtiost relevant to dec-MRS research,
since teams in the MSL often are organized as decentralizgdras, and the individual robots
are not permitted to take advantage of hardware beyond thetgahemselves, nor do they have
complete knowledge of the state of the game. Soccer alsoagtiaydarly interesting domain, since
it is not episodici¢e. the two opposing teams do not take turns as they would in a ¢jkenehess),
and so decision-making speed and accuracy must be balamgexpaately.

The most obvious kind of system-level decision that a rabsticcer team would need to make
is cooperative play selection. Given the current state efghme and the skills of the opponent,
the robots must decide on the most effective play to run. Beeaach robot might have a different
opinion of a game’s state, these decisions must be cooedirsat that all of the robots will agree
about the correct play and each robot’s role in it. Kalal. have described several play selection
strategies intended for dec-MRS soccer teams in the MSLJ8p, One particular approach pre-
sented in [88] is called aanytime algorithmsince it begins with a feasible play that is continually
refined. Thus at any time, the decision-making process dmitdrminated and a runnable play still
would be produced. Soccer teams typically are composed il aumber of relatively sophisti-
cated players. Therefore their decision-making strategie not generally applicable to dec-MRS
containing a large number of simple robots.

Free market strategies and, in particular, auctions [33} Abhve been suggested to guide the
decision-making of dec-MRS. The task allocation proble#j [ an area identified as well-suited to
the auction strategy. The general idea of auction-bas&dtixation works as follows. Individual
robots identify tasks, and put these up for auction. Otheot®then can submit bids based on their
cost of executing them. The auctioneer rewards the robotstifamitted the lowest bid with the
task. Robots can bid on and win multiple different taskspim tauctioning off the most expensive
ones in the hopes that another robot might be able to comiplete even more economically. Over
time, tasks will be allocated to robots so that the total aistompleting all of the tasks will be
minimized.

A conflict arises when a dec-MRS composed of many robots usetgoas to allocate tasks
amongst its members. If an auction is to be worthwhile, it natisact a sufficiently large audience

of potential bidders that the auctioneer is likely to “séi$’task. This in turn suggests that the auc-



tioneer should increase the range of its transmissions.eiexysince many auctions are supposed
to be run in parallel, long-range communication would imsethe likelihood of different auction-
eers (and their bidders) interfering with each other. Ihggas though auctioneers should heed the
advice of [36] and reduce the ranges of their transmissisnaach as possible, leading to many
short-range auctions, or each robot should take its turncanduct its auction(s) with long-range
communication. The former would lead to many ineffectivetans, whereas the latter implicitly
requires a centralized controller to implement the necgdsae-division multiplexing of the shared
communication channel.

In [53], another collective decision-making system wasdbsd. A simple, emergent decision-
making strategy was presented to enable a dec-MRS to forthgmaps of robots that would depart
in convoys from a rendezvous point. The proposed mechartitine sieart of the robots’ behaviour
waschorusing inspired by the natural abilities of frogs, fireflies, anatkets to synchronize their
emission of signals. By monitoring the strength of the aiiie chorus, a kind of social cue, the
individual robots were able to estimate the total numbehefrtteammates that had assembled. In
this way, a subset of a dec-MRS was able to make a kind of ¢ivedecision to depart together.
However, the collective departure was brought about usisgrgple open-loop mechanism. As
individual robots in the assembling convoy came to beliéet the group had become sufficiently
large, they would set internal countdown timers. Once atslioner had reached zero, the robot
would emit a special signal, most easily understood as aageds those other robots assembled: “it
is time for us to depart”. The duration of the countdown isamant, and is difficult to tune without
empirical data. Furthermore, although the departure ottmoy was a collective behaviour, the
decision to depart was made by an individual: the first robdbelieve that a sufficiently large
number of robots had gathered. As the desired populati@nafizhe convoy is increased, so to
would the probability of at least one robot overestimathmgactual size of the assembled population,
which would result in a premature collective departure.

One of the few studies to date that has described a systahelevision-making strategy that
truly is well-suited to large-population dec-MRS is thatWéssnitzer and Melhuish, in [93]. In
that work, a large dec-MRS was tasked with pursuing and imlmaty two “prey” in a series of
simulated experiments. The robots, each of which possesgehal sensing capability and short
communication ranges, used majority voting and a hormaspiied approach to cooperatively de-
cide which prey to follow. Initially, the system would cattévely decide to follow one of the prey
based on which of the two was the closest to the majority obttstem’s robots. Once it had been
immobilized, and the robots agreed that this was the casie fidtus would switch to the other prey.
Here,system-levalecisions were mad#&Ve agredghat that prey-A should be pursuédle agreehat
the first prey has been immobilized, and thus the other oneldlbe pursued. The decision-making
framework proposed by this thesis is similar in some wayseécapproach presented in [93]. How-

ever, the strategy presented by this thesis is very looselpled to the specific decision at hand by



design. It therefore will be applicable to a wider varietydetision-making scenarios. Furthermore,
the addition of a commitment phase synchronizes a dec-MR@&&dual robots’ exits from a given

decision.

1.1.2 Gossip

In a dec-MRS, there is no central agent to coordinate irtkotr communication. In many ways,
the robots’ interactions constrained similarly to nodes isensor or ad-hoc network. In such a
system, the data throughput is maximized when each nod&ot communicates with the minimum
range possible [36]. Unlike the nodes of a typical sensovoe, however, the individual robots
of a dec-MRS continuously move about. To minimize the liketd of different peer-to-peer robot
conversations interfering with each other, it is advocartethis work that robot communication
ranges be made as short as possible, and that the robots mmoweia order to find teammates
with which to communicate. For systems composed of very Israbbts, physical movement is
less expensive than communication or computation [13]hsdtrategy, in addition to reducing
interference, will also be energy-efficient for swarms afioaor micro-robots.

Stochastic peer-to-peer communication, known more conyramgossip [10] is intended to
operate in a network environment very similar to that désctiabove. Gossip algorithms for de-
centralized averaging [10], message routing, spannirganenputation [44], and resource location
[43] have been presented, amongst others. One advantagedthaMRS has over a sensor network
is that the individual members of the dec-MRS are mobile,rwhe the nodes in a sensor network
typically are stationary [1]. While the continual makingdaloreaking of network connections due
to the constant movement of the robots might be a weaknessdreensor networks perspective,
it can be viewed as an advantage in the context of this rdsedfr@n individual robot randomly
wanders about and communicates sufficiently infrequenttly the robots that it encounters, the
communication partners that it has will be completely randand uniformly distributed over all
of its teammates. This means that the necessary condittonsiform gossipwill be satisfied. It
has been shown that information can be spread to afides of a system with a given reliability in
O(log(n)) time steps [43], where the length of each time step is the bistereen a robot’s com-
municative encounters with teammates. These conditiopky &p the proposed decision-making
framework of this thesis during the period of iterative tégnent known as thdeliberation phase
(see Section 3.3).

In the latercommitment phasef a collective decision (Section 3.5), the robots commaitgic
with every teammate that they encounter as they wander abotihe communication partners of
each robot will be less uniformly distributed, and the résglpattern will resemble something in
between that of uniform gossip amgatial gossip43]. In both cases, attrition of knowledge is
involved, since the individual robots described in thissiedéorget what they previously knew when

they are given new information. At the time of writing, ditvn in gossip algorithms does not appear



to have attracted significant attention.

1.2 Markov Decision Processes

A Markov decision process is a mathematical framework tHatva an agent to reason about its
actions in some environment. They are common in the field tiffcal intelligence, as they can
be combined with machine learning techniques to enable antdg learn plans of action, called
policies. Markov decision processes (MDP) come in man\ediffit varieties, only three of which
are discussed here, briefly. They are not generally usefuldoision-making in dec-MRS that are
composed of may simple agents. However, they are includédsmwork, as a thesis on decision-
making would be lacking were it to omit mentioning them a#tier.

The simplest of these processes, denoted MDP, describegla giecision-making agent in a
completely observable environment. It is represented hyp&et (S, A, 7, R, 3). The world is
modeled as a finite set of statesS, a finite set of actiongeA that the agent could take, and a
transition functionZ : S x A — [](S) that provides a probability distribution ovérfor each
action in each state. That is, if an agent takes actionstates, 7 specifies the probability of the
agent ending up in each of the possible states S. R : S x A — R is a reward function giving
the expected immediate reward to the agent for taking actionstates. Finally,0 > 8 > 1lisa
discount factor that reduces the immediate value of the neb¥oa future action$[49]. Numerous
methods have been developed over the years to derive opiotieles for an agent when an MDP
applies. An optimal policy for a finite horizon MDP can be falin polynomial time [56].

The main weakness of the basic MDP is that it assumes thavthplete state of the environment
is available to the agent. That is, the agent knows prectbelycurrent state € S of the world.
This, however, is an unrealistic assumption. In realityggent only can know about the likelihood of
being in a particular state. Thpartially observableMDP, or POMDP, incorporates this uncertainty
about the state of the world. As Monahan put it, if an MDP medefrog hopping from one lily
pad to the next on a pond on a clear day, then a POMDP does the inaimggy weather [55].
A POMDP also is represented by a tuple, but it contains aatditielementsi{S, A, 7, R, Z, O).

S, A,7,andR are the same in a POMDP as they are in a MBRs a finite set of observations
that the agent could make, adtl: S x A — [[(Z) is an observation functiorO(s’, a, z) is the
probability of the agent making the observationpon entering state after to taking actiom [49].
Like a regular MDP, the solution to a POMDP is a policy for joge agent. However, the addition
of the uncertainty regarding the state of the world consibigrcomplicates policy derivation. The
complexity of a finite horizon POMDP is PSPACE-hard, meariraj the optimal policy cannot be
found in polynomial time with a deterministic algorithm [7]

There have been several extensions to the MDP and POMDP viraik& to model problems

2This is somewhat like inflation in a financial system. Getiragd $500 today is more valuable than getting paid $500 in
the future, and3 provides this discount on future rewards to the agent soekpaécted rewards can be compared on a level
playing field.



in which multiple agents must be considered. The one mosicate to decision-making in a
decentralized MRS is the decentralized POMDP, or DEC-PONMPPHere, each world statec S
includes the state of each individual agent. The transjimbabilities for the world now take the
form P(s'|al,...a™), wherea® is the action taken by agent The reward functiorR now also
depends on every agent’s action, and each agergiven its own observation€’ (Bernsteiret al.
use the symbdD to indicate the observations that Littman denafd The observation probabilities
O also become much more complex, taking the f@!, ... 0™ |al, ..., 0™), since each agent's
individual observations depend on the actions taken bydtarery other agent. Clearly, this is
a much more complicated problem than either the MDP or the BBMt has been shown to be
NEXP-complete for all but the trivial single agent case (@this just a POMDP), which means that
it provablycannot be solved in polynomial time. In the special case iicivthe union of all of
the agents’ observations completely specifies the stateeofvorld, a DEC-MDP is produced€.
the world is collectively observable), and these are NEXPRyalete for systems composed three or
more agents [7].

The general DEC-(PO)MDP does not assume that the agent®oanunicate with each other.
Its complexity arises from the fact that every agent musteeabout every other agent in its system,
combined with all of the related uncertainty. It has beemshihat the addition of free instantaneous
communication reduces a DEC-POMDP to a POMDP [73]. Howas@mmunication in the real
world is not free, nor is it instantaneous. The inherentictability of the DEC-POMDP has forced
researchers to seek out heuristic solutions [16]. This éad 1o a wealth of additional frameworks
to capture the assumptions made by such studies. Pynadhbliaarbe have developed a new model
called the COMmunicative Multiagent Team Decision ProhlenCOM-MTDP so that all of these
frameworks can be compared equitably [74].

Clearly, a relatively sophisticated agent is required teett®p policies using the DEC-POMDP
framework or its derivatives, and the problem only becomesendifficult as the number of agents
increases and their environment and potential actionsrhecoore fine-grained. Furthermore, even
if such agents were practical in a dec-MRS, it is not at alhickeow the collective decision-making
problem could be modeled as a Markov decision process. Wittome model of a collective
decision as a set of states with potential transitions betwteem (.e. what areS and7 in a
generic collective decision?), results from the MDP litera are unlikely to be of much use. Itis
for these reasons that these frameworks are not practictidacollective decision-making by the
simple, resource constrained, real-world agents thahareabots of the large-population dec-MRS

for which this work is intended.

1.3 Ant Colony Optimization

Many eusocial insects [9] such as ants use emergent reemiitnehaviours to collectively compare

different alternatives that are known to their coloniesciRément is central to the decision-making
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framework proposed by this thesis, but this work does natrifessthe first algorithm for an artificial
system to take advantage of it.

Dorigoet al. have developed a novel optimization algorithm called Anb@g Optimization, or
ACO, that applies ant-inspired pheromone trail followingblve otherwise intractable optimization
problems [21, 20]. ACO mimics the ability of ants that lay doahemical trails (such dsasius
niger) to find the most efficient paths between their nests and foatkss. When a real trail laying
ant finds a food source, it lays down a trail of a volatile cheahcalled pheromone as it travels
back to its nest. The amount of pheromone that it deposite@ses with its opinion of the food
source. When other ants encounter this trail, they will lmeuiéed to follow it with a probability
that increases with the concentration of pheromone in ites€hants make their own evaluations
of the food source, and reinforce the trail with their own q@meone as they head back to the nest.
This increases the likelihood of the trail recruiting evearmants. Because each ant will tend to
cut corners, the trail also will be refined over time as thoiglas a string between the nest and the
food source being pulled taught. Eventually, the trail widhverge to follow the lowest cost path
between these two points.

ACO adapts this emergent social behaviour by representimgptex optimization problems spa-
tially in a simulated environment such that candidate sostto them will take the form of paths
through the solution spacértificial ants search for solutions by wandering about, and then lay
down anatrtificial pheromone traitto identify them. Other artificial ants are more likely to ta-f
low paths in the solution space that are marked by strongenopfone trails, and the corner-cutting
behaviour of the individuals refines the identified solu@ro be locally maximal. Over time, the
behaviour of the entire artificial colony will tend to congerto a single solution to the problem [21],
which then can be identified by an external user.

Because the real ants have evolved their behaviour to finshitieest paths in their environment,
ACO is particularly well suited to problems such as the tliagesalesman problem, often encoun-
tered in networking domains. ACO, however, is not an autamgsrbehaviour when considered at
the system level. The artificial ants do not recognize th@qse of their behaviour, instead contin-
ually applying their local rules at the micro levelA complex problem must be set up for ACO by
some external operator, the process initiated, and theéisollater identified after the system has
converged. Thus, it is primarily an engineering design [ad], somewhat similar to simulated an-
nealing [15], an optimization strategy that applies thagples of thermodynamics to obtain good

solutions to combinatorial problems.

3The individual ants could be thought of as specialized gegithat are released into an engineered environment, in
which their collective behaviour is ascribed special megnin this way, they are no different than the molecules b&oil
air in a bubble-level, the collective behaviour of whichméran external observer to know when the device is horizonta
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1.4 Quorum and Quorum Testing

A quorum is defined athe number of members of any society or assembly that must&enp if the
business done is to be legal or bindifgj. In other words, a quorum is a threshold of participants
below which action by a group or collective would be inappiaie. Quorums are common in the
formal rules of order used by governments and other delitverassemblies, such as Robert’'s Rules
of Order [41], but they also are common in the natural worldm® species of ant and bee employ
guorums when they decide on the location of a new nest siteddByying their commitment to a
particular site until a quorum of insects agree that it sidaé chosen, a system is able to make
decisions much more accurately than an individual inseatlévbe able to [31]. Even bacteria,
some of the simplest organisms of all have been found to gmplorums so that their collective
behaviour can be socially coordinated [90, 54]. This sutpgiaat quorum is an effective, yet low
cost social mechanism.

Social insects and other simple, socially interactive ggsehave been the inspiration for nu-
merous works in computing science and engineering. The erdnrwhich they test quorum has
been adapted for used in artificial systems, too. In [67], Aila@gent on a mobile ad-hoc network
hopped from host to host, testing quorum to determine whetheot a sufficient proportion of the
hosts agreed about some proposed actiog. fevoking the key of a malfunctioning host). Only
once the agent believed that quorum had been satisfied woeildction be taken. The manner in
which the mobile agent tested quorum is somewhat similaneadigital quorum test presented in

Section 3.4.2, except that in this work, many robots testgmasimultaneously.

1.5 Summary

In this chapter, several areas of research related to daaisaking in dec-MRS have been discussed.
Much of the existing decision-making work has focused onlengystems composed of relatively
sophisticated individuals, whereas studies of large-fadjmn dec-MRS have tended to focus on
emergent behaviours and their remote control by an extenmthtentralized operator. One field of
great importance to dec-MRS that has been neglected in ltlaister, however, is that of biology.
The next chapter is devoted to this area and, in particllahéehaviours evolved by some naturally
occurring decentralized systems (which obviously lackanteleoperators to make system-level

decisions on their behalf) to make system-level decisions.
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Chapter 2

Cooper ative Decision-M aking by
Social Insects

Cooperative decision-making is common in animal socigbegh in human civilization and in the
natural world [17]. In this chapter, the decision-makindg&@é&our of honeybeesApis melliferg
and the ant§emnothorax albipennisand Temnothorax curvispinosus examined in detail. It is
their ability to make unanimous group decisions througly émdal interaction and communication,
despite the decentralized nature of their colonies, th#tasinspiration for the decision-making

algorithm at the core of this thesis.

2.1 TheNest Relocation Behaviour sof Honeybeesand Temnotho-
rax Ants

The decision-making algorithm proposed by this thesis faltiple-robot systems was inspired by
the cooperative nest relocation behaviours of honeybegsfamnothoraxants. In this section,
a description of the manner in which each species selectsvahnme is given in detail. Both
appear to have evolved the same approach to decision-miakiegendently, adapting pre-existing

behaviours to a common framework.

2.1.1 Nest Relocation in Honeybees

Honeybees are a well-studied social insect due to their&tagding economic importance. Because
the bees put so much of their effort into the production ofdymombs and the storage of food, the
construction of a nest represents a substantial investf@&ntA colony that is successful will tend
to increase the size of its population, and eventually it aukgrow the cavity €.g. an old hollow
tree trunk) in which it had built its nest [78]. If it is to cdntie to prosper and grow, a new nest site

must be found.

1Close inspection of the literature will identify two othgreziies of anti_eptothorax tuberointerruptuand Leptothorax
albipennis These names are in fact former misclassificatiofiezhnothorax albipennigsed prior to its current name.
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Waggle Dance

(b)

Figure 2.1: Honeybees collectively decide on their new hafter they have left their old nest and
formed a swarm on a tree branch or other structure, shownedefth The individual bees search out
candidate nest sites, and advertise them to other bees sivttren using the waggle-dance shown
on the right. Bees that have found better sites tend to parfoore dances than those that favour
poorer sites, so the best site will attract the majority efdlecision-makers. Once a bee determines
that its favoured site is sufficiently popular, it rouses shaarm and helps guide it to its new home.
The photo in 2.1(a) is copyright Thomas D. Seeley and regredwith his permission, 2.1(b) after
Figure 1 in [31].

The relocation process begins with the division of a coldrtye queen and half of the workers
form a swarm and leave the nest, lighting upon a nearby traecbror some other structure (see
Figure 2.1(a)). The remaining workers and a newly reare@igaee left at the old hive to continue
on there [80]. The majority of the bees in the swarm clusteuad the queen and become dormant,
SO as to protect her and conserve their energy reserves dtirgg themselves on honey before
leaving their old home). Some of the swarm’s members (abéubp population) remain active and
make the decision about where the swarm should build its msn[B1F. Several of these bees act
as scouts and search the countryside for potential nest siten covering an area as large as 150
square kilometers [31].

The bees are able to determine the absolute quality of a ftsite based on a variety of
features [79]. Once a scout has found a site and measureaghiiygit returns to the swarm. There,
it advertises its site to other bees using the waggle-ddfigere 2.1(b)), an elegant behaviour that
communicates the location its site [78]. The number of iithlial dances that a bee will perform
to advertise its site depends on its own opinion of the s@aality. Better sites will tend to illicit
more dancing from the scouts that find them [11]. Each darateathee performs is a set of waggle-
dances. Other bees that observe a scout's dances might fig pecified site to evaluate it for
themselves. In practice, multiple sites will tend to be fdwmnd advertised at the swarm. The
probability of a bee flying to visit a site advertised by a datitat it has observed is fixed, and the

bees observe dances at random, so the probability of a ddrsmving bee flying to visit a particular

2|t is not clear how this division of labour is accomplishedertfaps, as it is the case with harvester ants [35], the
older individuals take on the relatively dangerous scautile, since these insects would be the most knowledgeaivie o
surrounding environment and are close enough to the entigiofives that the swarm could afford to risk them.
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site is directly proportional to the relative number of dasiperformed that advertise it [87]. For
example if twice as many dances are performed for site A asitoB, then a dance-observing bee
will be twice as likely to visit site A relative to site B. Be#isat observe a dance and fly to its site
are said to be recruited to that site.

After performing a series of dances, a scout will leave tharawto visit its site, and then return
to the swarm to dance again. Each time a scout returns to theysvit decreases the number of
dances that it performs linearly, by approximately 15 dareaeh time. Eventually, a bee will cease
dancing altogether, and joins the dance-observing beebeawarm. Its previous experience as
a dancer appears not to bias which dances it might choosestanabor follow [77]. Because the
number of dances that a bee performs is determined by itsompiri its site’s absolute quality, bees
that favour better sites will tend to perform more dancesisthey stop dancing altogether, and thus
will tend to induce more of their teammates to inspect thiedsghan bees favouring poorer sites. In
this way, the bees’ independent evaluations of absolwgegsiality, without any direct comparisons
of sites, swell the populations of bees favouring the beites more rapidly than those favouring
poorer ones. If the bees favouring a particular site arelertalvecruit any of their teammates before
they stop dancing, then that site will be forgotten by thersaydahus eliminating it from the list of
candidates for their new home [81, 31].

Eventually, the positive feedback of the bees’ dancing aratd-following behaviour, if allowed
to continue long enough, would tend to eliminate all but ohe candidate sites from the swarm'’s
collective memory (this demonstrated in greater detathértext chapter), leading to complete con-
sensus in favour of one site. However, it has been demoedttiagt consensus is neither necessary
nor sufficient for a swarm to complete its decision. Swarnslgaoff while dances for several
different sites still are being performed [11, 78, 82]. &, it is the detection of a quorum at one
of the candidate sites that triggers the bees to commit 8Dit§2]. Because each site-favouring bee
regularly visits the site that it favours, each site knowsa tswarm will have some number of bees
visiting it at any given moment. The size of this visiting pibgtion is an indicator of its popularity,
and in turn, the colony’s net opinion of its quality. Bees alde to infer the size of the visiting
population during their visits to a site, which they then qame to a threshold called the quorum.

Once a quorum of bees is observed at a candidate site, theefreg ofbuzz-runningon the
swarm increases. In this behaviour, the bees that havevausguorum burrow through the swarm
cluster, buzzing their wings vigourously. It is believeaitithis stirs up the swarm, causing the
inactive majority of the bees to warm their flight muscles mepgaration for lift-off. An audible
signal callecpipingalso increases during this process. Buzz-running andgagpear to broadcast
to the dormant members of the the swarm that a collectivesitgchas been made. The swarm then
lifts off and is guided to the new site by the scouts, who appebherd the swarm by flying through

it in the direction of its new home [11].
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(a) (b)

Figure 2.2: When an ant first finds a candidate nest site,dslether ants to it one at a time using
tandem-runs, shown on the left. Each ant delays prior tahgats first tandem-run, and the length
of this delay decreases the better an ant perceives its gitelity to be. Therefore, better sites will
have ants lead to them more rapidly than poorer ones. Whiecandidate site, an ant measures
the number of other ants that also are visiting it. Once thigeds a threshold called the quorum,
it stops tandem-running and instead uses transports, sbowe right. Transports are three times
faster than tandem-runs, so once quorum is satisfied, tbeyxqglickly will be relocated to the new
site. Because the best site is the most likely to satisfy @udirst, the colony will tend to choose
the best one for its new home. The photos in this Figure argrigig Stephen C. Pratt and are
reproduced here with his permission.

2.1.2 Nest Relocation in Temnothorax Ants

Certain ants of the gendemnothoraxalso encounter the collective house-hunting problem [50].
These ants live in relatively small colonies containingycafew hundred worke?q30], and build
their nests in natural rock fissures, the fragility of whidtely necessitates frequent emigrations to
new nest sites [70].

The selection of a new nest begins with individual scoutgiteathe nest to search for candidate
sites [50]. Like the bees, the individual ants are able tosmeathe absolute quality of sites that
they find [70]. Because the ants’ search covers a relativefisarea (about 1 #[31]), and because
potential nest sites for them are fairly common, it is notsural for an ant to find more than one
site. The ants are able to make direct comparisons and figémi single best one of those that they
happen to find [31]. Following the evaluation of a candidéi & scout returns to the current nest
to recruit other ants to inspect the site for themselves.riRiacent inTemnothorayants is carried
out using two distinct methods: tandem-runs and transplorestandem-run (see Figure 2.2(a)), an
ant leads its recruit from the nest to its candidate site ialla-the-leader fashion. When an ant
transports a teammate, on the other hand, it picks up itsiteannd carries it to the site [50]. The
advantage of a transport is that it is fast - about three tii@ster than a tandem-run [70]. However,
a tandem ruieacheghe recruited ant the route between the nest and a canditiatassthe recruit
is able to observe landmarks along the way [32].

Initially, an ant will use tandem-runs to recruit other atatsnspect its favoured site. As is the
case with honeybees, the greater the number of ants rettoit site, the more ants will tend to

be visiting it at any given moment. When it visits a candidste, an ant measures the size of the

3In addition to workers, colonies contain a fertile queen larmbd items (eggs and larval ants).
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visiting population via the rate at which it encounters othrgs as it wanders about there [69]. Once
an ant has determined that the size of the population Wisitifavoured site has reached a quorum, it
changes its recruiting behaviour. Instead of using tandams; it adopts the much faster transports,
which rapidly increases the number of ants at its candidet¢&0]. This induces additional ants to
observe quorum, and they switch from tandem-runs to tratspe well. The quorum used by the
ants appears to be adaptive, since larger colonies tendpegreater quorums than smaller ones
[69].

The ants’ recruiting behaviour is affected by their indivéd opinions of their favoured sites’
qualities. Upon returning from a candidate site for the firse, an ant will delay for site-quality
dependent period of time before leading a tandem-run. Ttier@n ant perceives its site to be, the
shorter this delay will be. This delay provides better sitéh a head-start in the recruitment process
relative to poorer ones. Ants brought by tandem-run to aasigess its quality for themselves, and
delay their own first recruitments accordingly [31]. Suhsent tandem-runs are not preceded by a
quality-dependent delay, and thus occur at a rate indepéndlsite quality [70]. Individual ants do
not drop out of the recruitment process, and so the collet@haviour of their recruiting resembles
a race between the different sites to determine which wilégequorum first. Ultimately, the better
a site is perceived to be by the individual ants, the moradigjitiwill tend to increase the size of its
recruited population, and thus the more likely it will be ®the first to satisfy quorum and induce
the ants that favour it to switch from tandem-runs to tramnspo

Ants are that are brought to a site by a transport do not thieesseeturn to the original nest
to lead tandem-runs or transports. However, ants are abgézading tandem-runs in the opposite
direction (reverse tandem-runs), from the site back to tiggral nest. This reallocates the idle ants
were they are needed most: back at the original nest siteasd¢httly can help transport additional
ants from there to the new nest site [70].

The tandem-running (forwards) can be thought of a probatipphase of a decision, in which
the ants have made individual decisions about the candsitat® but are waiting for a sufficient
population of ants to agree with them before they commit. ®hservation of quorum signals
to an ant that a sufficiently large agreeing population hanlyrecruited, and so it can commit
confidently to its chosen site as the colony’s new home anttbwd the more rapid transports in
order to quickly wrap-up the decision-making process lefaother site satisfies quorum, too. The
tandem-runs serve the additional purpose of educatindiaisat number of ants about the location
of a candidate site so that, once quorum has been met, thibleveinough ants able to participate
in the transportation phase so that the relocation can beleded rapidly. In the event that multiple
sites satisfy quorum, the reverse tandem-runs allow theugusatisfying sites to compete with

each other via attrition to be the single new nest site uliétyachosen by a colony.
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Figure 2.3: This figure summarizes the nest site selectibayeurs of honeybees (left) adgm-
nothoraxants (right). Although there are differences between ttedpproaches, they are remark-
ably similar, both being organized into three distinct @sasFirst, individual insects search for
candidate sites. Next, through a decentralized recruitpratess, the known sites are ranked. The
insects commit to the first site that becomes sufficientlyybap(.e. satisfies quorum) and it is
adopted as their new home.
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2.2 A Comparison and Contrasting of the Ants and Bees' Be-
haviours

Both honeybees antemnothoraxants demonstrate the ability to make consesimased [17] col-
lective decisions when they need to select a new site for & rnigse general structures of their
decision-making strategies are remarkably similar (sgeri2.3). Both are organized into three
phases, beginning with a search imglividualsfor candidate nest sites in the surrounding envi-
ronment. This search is followed by a period of recruitmenting which the individual insects’
opinions of absolute site quality drives positive feedhackreasing the popularity of better sites
more rapidly than that of poorer ones. The bees’ positiveldaek is driven by the tendency of
idle bees at the swarm to observe and follow other bees’ danoeandidate sites, and the dancing
bees’ ability to modulate how much they dance with their apis of their favoured sites. The ants
implement their positive feedback through the amount oétiimat they delay before leading their
teammates one-by-one to the sites that they favour. Evigntsiaficient recruitment will take place
so that one of the sites becomes so popular that the insett&tour it alter their behaviour. Both
species appear to come to this conclusion based on theylefisisects at a particular favoured site,
and each individual that favours a site independently nreasts favoured site’s popularity. The
ants switch from slow tandem-runs to the more rapid trarispahereas the bees begin to buzz-run
at the swarm. The impact of both of these behaviours is tallapring the collective decision to an
end, unanimously selecting one of the alternatives thatfewa®d during the initial search.

This process of individual search, competitive recruittraamd quorum-triggered commitment
is a robust form of collective decision-making that regsiiomly local communication. There are
subtle differences between the ants’ and bees’ behavibavggver. The remainder of this section
examines these differences, and discusses how they mighd the development of a collective

decision-making algorithm for dec-MRS.

2.2.1 Initiating a Collective Decision

Although the bees and the ants both use their emergentalegisaking behaviour to choose a new
site for their nest, the manner in which they initiate thescidions differs. Honeybee decisions
begin when the queen departs with half of the colony to formars, and it is from the perch of
the swarm that the decision is made. Although the processrofifig the swarm and departing the
nest might be an emergent one and thus decentralized abttdwaneybee decisions can be thought
of as centrally begun. All of the bees know that a decisioneisessary, and the formation of the
swarm synchronizes its start. #nary decision, described in detail in Chapter 4, would allow a
decentralized system to make such a decision, althoughicanism employed by the honeybees
is not clear.

Temnothoraants, on the other hand, are known to be opportunistic anidneile from a current

nest to a better site whenever one is found [23]. Their nestotirequire a significant investment of
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energy for their construction, which take advantage ofraéiuoccurring structures that can be used
almost ads [27, 28]. Therefore, unlike the bees, which must abarttieir elaborate honeycombs
when they emigrate, the ants only incur the cost of a mov# itdeen they relocate. A single ant
could initiate a decision to move to a new site if it happenértd a sufficiently good one while
exploring the area around the nest. However, for a decisiteimade, the nest mates that it would
lead to the site that it found also would have to agree thasiigewas good enough to justify a
colony-wide move. Eventually, an ant will give up on a cardédsite if it detects a lack of progress
in its recruiting, so a colony will not constantly be on thevadf one of its membefskeeps finding

new nest sites in the surrounding environment.

2.2.2 Quorum

Quorum s central to the decision-making of both the antghatees. It is the mechanism by which
an emergent site-ranking behaviour is linked to a massati@r behaviour, the resulting synthesis
being a collective decision. The use of a quorum makes aidac@alogous to an election in
which the candidates are the potential nest sites. Indifighsects “vote” for a site that they favour
by visiting it, and they also act as the pollsters by meagypitie size of the population visiting a
favoured site while they are there. The alternative of meéaguhe popularity of a site by polling
individuals at the swarm or old nest, although more accuf@iteussed in the next chapter), is
more complicated, since it would require the individualidiem-makers to explicitly communicate
to each other the precise site that they favour. The spadialre of site selection simplifies the
guorum-testing problem by sorting the voters by their faredusite, so the insects need only visit
their site to count and be counted.

Experimental evidence suggests that the ants tally voteshe rate at which they encounter
other ants while visiting a site [69]. The ants use a quorwathithcorrelated to the population size
of their colony, which makes large colonies less likely tdameash decisions by employing too low
a quorum, and small colonies less likely to stagnate duentbigh of a quorum [22]. They also vary
the value of quorum depending on the urgency of the decigibarad. For example, when a colony
moves to a new site simply because it has found a better oagy@duorum will be employed, since
the ants have the luxury of making a careful decision. On therchand, when the ants’ nest has
become damaged, a lower quorum is used so that a new nesiilsite welected rapidly and thus
provide the colony with shelter as soon as possible.

The bees also require a quorum to be satisfied before thefligtiteand head to the selected site,
and it appears that they evaluate it at the candidate sit@kagly to the ants, although the precise
mechanism used to measure the popularity of a favouredssitekinown as of yet [82]. Unlike the
ants, the bees relocate to a site as a cohesive group. lndhbeées begin to buzz-run throughout

their swarm once they have observed quorum at a favouredsiténg up the mostly dormant bees

4There is considerable variation in the calibration of thesama given colony [72].

20



causing them to warm up their flight muscles in preparationificoff. A single bee appears to be
unable to stir up its swarm on its own, and so lift-off reqeiseveral bees to observe quorum. A
dormant swarm of bees has a sort of ineritie. @ swarm at rest tends to remain at rest), so a quorum
of bees that have observed quoruime.(a meta-quoruris required to rouse it. Whether this is
an evolved advantage or a fortunate coincidence, it willltenincrease the reliability of the bees’

decision-making.

2.2.3 Split Decisions, and Recovery From Them

A split decision occurs when a colony commits to more thancamalidate site. Split decisions can
be dangerous. At the very least, they will delay the compietif a group decision. At the worst,
however, they could cleave a system into two or more piecsh eelocating to a different site.
Ultimately, only the group that contained the queen wouldvisa®. Furthermore, the portion of
the swarm that included the queen would be greatly weakeyéd keduction in overall numerical
strength. Therefore, split decisions generally shouldMogdad, and both the ants and the bees have
evolved behaviours to recover from them.

When honeybees decide on a new nest site, they already Hitreele old nest and are exposed
to predators and the elements. When more than one siteestigforum, the honeybees favouring
the different quorum-satisfying sites cooperatively ioelthe swarm to take flight, but when they
attempt to herd the now airborne swarm, they find that thegralattempting to pull it in a different
direction, each bee pulling towards the site the it belidassatisfied quorum. Evidently, a swarm
is able to detect this mode of failure, and it reforms on a lmgéree or other structure to restart
the recruitment process again. During this repeat of thiectte deliberation, the bees seem to
remember the sites that they had favoured immediately poitie failed lift-off, as the bees very
quickly begin to visit and dance in favour of them with no nesarch for candidate sites being
necessary. This behaviour was described in [80].

The ants solve the problem of split decisions in a differeanmer. Unlike the bees, the ants
do not relocate to a new nest as a cohesive team. Insteadjigisliral ants independently detect
guorum at a favoured site, they each make the decision telsfibm tandem-runs to transports.
Therefore, their transition from Phase 2 to Phase 3 (FiguBé} is gradual, made one ant at a
time. In the event that more than one candidate site is leliéw satisfy quorum, ants will begin
transporting their teammates to each one. It is here thattrese tandem-runs appear make sense
[70]. These bring ants from sites that have satisfied quorack to the site of the original nest, so
that they might help transport additional ants to the sibenfivhich they were led. Ultimately, if a
tie is to be broken, it will be broken in the manner of attritiavhichever site can deploy the most

ants to transport ants from the other sites to it will “win”time end. Of course, because the ants

5In a honeybee colony, as is the case in most social inseatisgithe queen is the only fertile individual. All of the
workers are sterile sisters, and males are only producedgiomating season. Therefore, if a colony were to split into or
more groups, only one of them would be able to reproduce gvthé others would tend to slowly die off and not be replaced.
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migrate over such short distances, it seems likely thaggteas eventually will find their colony’s
new home, even if they are not brought there by a teammate afitsé apparently rash decision
making allows them to capitalize on several sites, and tbenosit the resulting mess later on via
transporter attrition. Their adaptive quorum [29] woultbad them to choose between methodical

monolithic decisions or rapid decisions with clean-up aswistances dictated.

2.3 Summary

The survival of both honeybees af@mnothoraxants is tied directly to their abilities to select good
sites for their colonies’ nests. A colony that cannot find dadle site, or one that cannot choose
a good site over a poor one will be at a competitive disadggméand will be less likely to pass its
genes on to the next generation. Thus, despite the sulféeatites in their respective strategies, the
behaviours of both species should be held up as examplebas$trgroup decision-making using
only local interaction. Their general strategy of searétruitment-driven solution ranking, and
guorum-based commitment is a powerful framework that ezgabbllectives of simple individuals
to make intelligent decisions without any form of centratizontrol.

It is interesting to note that the ants and bees have adaptealviours that serve other roles
in day-to-day colony life to their decision-making behawioTandem-running is common ifem-
nothoraxants to lead nest mates to profitable sources of food, whér@asybees employ their
waggle-dance to this end [31]. When viewed side-by-sideir ttespective decision-making al-
gorithms are remarkably similar; different implementatoof the same three-phase framework:
search, deliberate, commit. That both implementationgap have evolved independently of
each other is a further endorsement of the framework’syitilin the next chapter, these insects’
decision-making behaviour is adapted for use by dec-MR& tlam behaviours responsible for the

different decision-making phases are described in greatail.
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Chapter 3

Collective Decison-M aking from
Social I nsect Behaviour

The nest relocation strategy of honeybees @achnothoraxants described in the last chapter is
an elegant collective decisiemaking behaviour. In this chapter, a general-purposeetphase
decision-making framework for use by dec-MRS based on thectis’ behaviour is presented, and

the internal details of the key mechanisms are analyzed.

3.1 A General Purpose Decision-M aking Framework

This section outlines the decision-making framework upbicivthe rest of this thesis focuses. The
framework is organized into three basic phasesirchingdeliberation andcommitmentFigure 3.1
illustrates how these are assembled to create a coopealatieatralized decision-making behaviour.

The process begins with the recognition of the need for agdeeision, which is followed by a
search for alternatives. During this searching phasenttieidual robots identify potential solutions
to the problem that necessitated a cooperative decisi@rcBiag is discussed in Section 3.2.

In the next phase of a decision, the robots deliberate oeealternatives that were identified
by the initial search. The deliberation phase of a decisggspositive feedback to compare the
different alternatives based on their quality as percebsethe individual robots. The fundamental
operation at the core of this decentralized comparisonlisdtaecruitment. Robots recruit each
other amongst the different alternatives, and the best enerbhes apparent as the one favoured by
the largest number of robots. This process is detailed itic3e8. 3.

During the deliberation phase, as the robots recruit eadodr ahey also estimate the popularity
of the solutions that they favour. Using only local, anongm@ommunication, they are able to
compute the consensus in favour of the alternatives, asdgftiompared to a threshold called the
guorum Once the consensus in favour of one of the solutions redhlsthreshold, quorum is said
to be satisfied, which initiates the final phase of a decidimtentralized consensus estimation and

guorum testing are described in Section 3.4.
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Figure 3.1: The contribution of this thesis is a gengradpose decision-making framework inspired
by the nest-site selection behaviour of honeybeeganthothoraxants. When a decision is required
in a dec-MRS, its members begin by conducting a decentrh$iearch for alternatives. The search
is followed by a period of deliberation in which the best aédbk alternatives is identified. Through
consensus estimation and quorum testing, the robots deemmen sufficient deliberation has oc-
curred, after which the final commitment phase promotes tlamimous adoption of the alternative
that was identified as best. This chapter describes the mithsat the cores of these three phases.

Once alternatives have been found, and the best of theseebaddentified, it is time to com-
plete the decision unanimously. In a decentralized systgoial communication is impractical,
and so a strategy that uses local communication to spreatiéssage that a particular alternative
should be adopted by every robot is required. This is accisimgd in the final phase of a decision:

commitment. The commitment phase is described in Sectin 3.

3.2 Searchingfor Alternatives

An autonomous group decision must be preceded by the re@yoif the need for a decision.
This recognition could occur in many ways, but in this thgisis assumed that the robots all agree
initially that a decision is requiréd The first stage in a decision is to identify candidate sohsi

to the problem necessitating a group decision. These eakitire referred to as tladternatives
The nature of the alternatives sought by the robots depanttsesspecific decision being made. For
example, in the collective relocation problem [57], thelgeon that the ants and bees tackle, the
alternatives are candidate sites in the surrounding emviemt.

On the other hand, if some intractable optimization probleams the focus of a decision, such as

1In the final chapter of this work, decentralized initiatiohgeoup decisions is discussed.
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the traveling salesman problem, each robot could proposeata using some heuristic method. A
variety of routes would be generated if each robot randoedyled a common heuristic, or perhaps
each robot’s unique history would result in different raubeing proposed. In this way, the group
decision could be viewed as a kind of Ant Colony Optimizat[@d], except that the proposed
decisionmaking framework is better-suited to real robots than t&®Aalgorithm.

In certain domains, the alternatives might be knaavpriori. Consider a dec-MRS designed
for building security. Such a system might be programmedatoycout a fixed set of operations:
patrol, follow intruder, respond to alarm, etc. Group diecis made by this system would allow it
to dynamically decide which operation best-suited theucirstances at hand.

The deliberation and commitment phases do not depend onattoeenof the problem being
solved, only the ability of the individual robots to undersd it. Therefore, to keep the discussion in
this chapter as generally applicable as possible, the talterhative” will be used unless a specific

kind of decision is implied.

3.2.1 The Transition from Searching to Deliberation

The searching phase is followed by the deliberation phasshich the alternatives that have been
found are compared and the best one is identified. Howevexédry important to keep in mind that,
unless steps are taken to prevent it, the individual robbgsdec-MRS will enter the deliberation
phase asynchronously. Each searching robot will beginithegss of recruitment once it has found
an alternative and evaluated its quality. Those alteraatifiat are identified earlier will get a head
start in the process.

In practice, this head start can be beneficial. The real wisrlibt episodic, and a dynamic
environment cannot be “paused” while the robots searchlferratives. Therefore, the value of
a solution oftenshouldtake into account the time that was required to identify iheToptimal
alternative is of little value if it takes too long to find. loermme situations, however, circumstances
will permit a longer searching phase, and in such cases titsahould continue to search for for
alternatives until some predetermined time. Delaying theeb of deliberation until an agreed time
would prevent quickly identified but poor alternatives framquiring an unwarranted lead in the
deliberation phase.

The implementation of this delay could be as simple as “dobegfiin to deliberate until three
o’clock”. An alternative found after this time would stilelconsidered by the collective deliberation,
but it would have to be sufficiently high in quality so as to ma@me its late introduction into the

process ifitis to be selected in the end.

3.3 Dsdiberation and Recruitment

Recruitment is a common social behaviour in natural deaépéd systems, including social insect

colonies. Therefore, it should come as no surprise thatusél in their decision-making, and in
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turn in the biologically inspired decisiemaking framework proposed by this thesis. Recruitment
enables a decentralized system to compare several aft@siasing simple peer-to-peer operations
to identify the best one. It does this by amplifying [12] th&etences in alternative qualitiesu-
tocatalytically, meaning that it employs a kind of positive feedback. At d@stris the emission of

a signal by recruiting individuals, and the tendency of ghth&t receive the signal to participate in
its emission as well, thus amplifyingitThe individuals that emit the recruitment signal are chlle
recruiters and they modulate the strengths of their emissions basdtednown opinion of the
particular alternative at the focus of each individualsrugtment. The probability of an individual
being recruited to a particular alternative increases asdmbined strength of the recruitment sig-
nal emitted by those that favour it increases relative tosthengths of those emitted by individuals
favouring other alternatives. The alternative that teidse held in the highest opinion will tend to

attract additional recruits more rapidly than the othersone

3.3.1 Indirect Recruitment

The laying of pheromone trails by ants (suchLasius nigei5, 4]) between their nest and a source of
food is a particularly well-known recruitment mechanisnerél the recruiters are foragers that have
visited some food source and believe that it is sufficienifjhtin quality that other ants should be
recruited to help exploit it. The recruitment signal is altoé volatile chemical, called pheromone,
laid down by the recruiting ants as they travel between tlod fource and the nest. The recruiters
are able to modulate the strength of the recruitment signdepositing drops of pheromone more
or less frequently as they travel between the nest and thiedoorce. The recruiting strength of
a trail is an increasing function of the number of recruitargs that continually reinforce it and
their opinions of the quality of the food source at its end¢sithis determines how frequently each
recruiter deposits pheromone along the trail). As the nurobeecruiters increases, so does the
likelihood of their collectively laid pheromone trail regting additional ants, which in turn further
increases the strength of the trail via their own pherom@podits. Because the quality of the food
source to which the trail leads also contributes positivelthe trail's ability to recruit, the number
of ants visiting better food sources will tend to increaseaamapidly than the populations visiting
poorer ones. Over time, the best food source will attractntiagority of the ants. The positive
feedback of the recruitment process allows a decentraigsm of simple individuals to identify
and exploit the best alternative that collectively is kndaithem.

Pseudo-pheromone trails have been employed with succesgifigial decentralized systems
in virtual environments. The best example of their use is @olony Optimization [21], which has
been used to find shortest paths through telecommunicaéitwonks. Chemical trails, however,
are poorly-suited to artificial systems operating in reaka environments for the simple reason

that current robots are unable to manufacture the neceslsaryicals themselves. Furthermore, the

2The nature of the recruitment signal and the channel ovectwitiis transmitted must be such that the emissions of
multiple individuals will constructively interfere.
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Figure 3.2: This figure illustrates how the positive feedbafcdirect recruitment increases the size

of a population favouring some lone alternative. Initiayf 100 of the robots are idle, except for
one that favours the alternative. Eveéfly = 10 seconds, the robots that favour the alternative each
send a randomly selected teammate a reengéissage. ldle robots that receive these messages are
recruited, and join the ranks of those that favour the &dtidva. Initially, the growth of the recruited
population is exponential, but as the proportion of robbég aire recruited grows, more and more

of the recruit-messages are sent to robots that alreadyareited, and thus have no effect. This
causes the population growth to slow. Because the onlyeststhte for a robot is favouring the
alternative, every robot eventually is recruited.

specific chemicals used to lay down trails must be tailorafieécspecific environment of operation.

Finally, trail-following is limited to the comparison oftaknatives that are distributed spatially.

3.3.2 Direct Recruitment

There is a much better way to implement autocatalytic rémrenmt in a a real dec-MRS, though, and
the ants and bees described in the last chapter providestedd of indirectly recruiting teammates
by the strength of some intermediate signal, the robotsda@alruit each other directly, by explicitly
sending an encountered teammate some message equivéldmve recruited you to this specific
alternative.” The bees’ waggle dances and the ants’ tandesperform precisely this function.
Here, the probability of a recruitment signal successftélgruiting those that receive it would be
constant. In other words, the amplitude of each recruitrs@gmal would be fixed. In order to
vary the rate of recruitment with an alternative’s percdigeiality, the recruiters simply vary the
frequency with which they attempt to recruit their teamrmatdore frequently attempting to recruit
teammates would increase the expected rate at which te@smatre successfully recruited. In
other words, the robothemselveare the pheromone trail.

Let us assume that each robot in a dec-MRS will ascribe the sarality to some alternative

once it has been recruited to favout,iand that only one robot favours the alternative initially.

3To be clear on the terminology used in this work, some robatsegruitable and these robots can becruited Once
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Figure 3.3: This figure illustrates the basic concept ofairecruitment when more than one alter
native is known. Individuals recruit teammates to theioianed alternative at a rated that depends on
the alternative’s quality. Over time, the relative quaktof the known alternatives becomes apparent
via the number of robots that favour each one. In this pdeicexample, there are two alternatives,
A and B. Robots are represented by circles, and the letters in tokegidenote the alternative
that they favour. Alternativel is half as good a3, and so the robots that favour recruit half

as frequently a®3-favouring robots. Initially (a) each alternative is faved by a single robot. As
recruitment progresses (b), tiigrecruits more quickly thanl. After all of the robots have been
recruited (c),B’s superiority is clear, since more robots favour it thén

Each recruiter varies the rate at which it attempts to ré¢eaimmates via the parametgr, the
inter-recruitment periodT’. is a positive, non-zero, decreasing function of a favouttraative’s
quality as it is perceived by the robot that favours it. Cdesia dec-MRS in which a single robot
favours an alternative at time= 0 and all other robots favour no alternative at all. At time-
T., the alternative-favouring robot will attempt to recruiteoof its teammates, selected at random
(assume that every attempt to recruit a teammate will beesiséal). Because all of its teammates
are recruitable, the attempt will succeed and the populdtieouring the alternative will double to
two robots. At timet = 27T,., both robots will select teammates at random and send themitre
messages. If we assume that the dec-MRS contains many yéhetsvo robots will be unlikely
to randomly select the same teammate or each other, so thateegoopulation likely will double
again to four robots. This exponential growth will continbat its rate will slow as more and more
of the robots are recruited, since there will be fewer roleftsto recruit, and so more and more
of the recruit-messages will be sent to teammates thatdylrbave been recruited to favour the
alternative. A simulation of this sort of bounded populatgrowth is illustrated for a 100-robot
system by Figure 3.2, in which. = 10 seconds.

When multiple alternatives are known, their differing qtieé as perceived by the individual

robots will cause their respective recruiters to compufedint values fofl,.. The better an alterna-

they have been recruited, they witlvour the alternative to which they were recruited. A short-hamdtfis is to say that a
robot isrecruited to favour the alternative
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tive is, the more frequently those robots that favour it sihd recruimessages, and thus the more
rapidly will robots be recruited to it. Figure 3.3 depictsstprinciple graphically. In this example,
there are two known alternatived:andB. B is twice as good ad, and so the robots that favoir
recruit twice as often as those that favou(T,., = %TM). As a result, the size of thB-favouring
population,N g, will tend to grow at twice the rate of thé-favouring population)N4. By the third
step,B’s superiority toA is clearly evident via the greater number of robots recduitefavour it.
Figure 3.3 presents a rather naive illustration of a calleatomparison through direct recruit-
ment, since only those robots that had not already beenitednere sent recruit-messages. The
size of the unrecruited population is denot¥g. In the remainder of this section, several direct
recruitment strategies are presented under two genesdifitations:immutableanditerative re-
cruitment. They differ in how the robots that favour an altgive {.e. those not inN,) behave
when they receive recruit-messages. This simple differeasults in markedly different collective

behaviours.

Immutable Recruitment

The simplest implementation of direct recruitmennmsnutable recruitmentUnder this model, the
only recruitable robots are those that do not already faaoualternative. Once a robot has been
recruited to favour some alternative, it will continue todar that alternative indefinitely. This
means that the populations that favour the known alterestiever decrease; they either increase or
remain constant.

In basic immutable recruitment, each alternative-favayirobot’s attempts to recruit a team-
mate are separated by an interval of time calledither-recruitment perioddenotedr’.. T is
a decreasing function of a robot’s opinion of its favoure@ralative’s quality. The better a robot
believes its favoured alternative to be, the lower a valug¥at will compute, leading to more fre-
guent attempts to recruit by robots that favour better adtives. A simulation of basic immutable
recruitment in which a pair of alternatives of different ttyainitially are known, each favoured by

a single robot, and in which, =

10 . -
altermnative quahty's plotted in Figure 3.4.

Eventually, every robot is recruited to favour one of the tlernatives, and the number of
robots recruited to alternativB is greater, indicating that it is the better one. Mathenaditicthe

behaviour of basic immutable recruitment can be repreddig@ations 3.1-3.3.

N, = —BaN,Na—BpN,Ng (3.1
Nio = BaN,Na (3.2)
Np = ppN,Np (3.3)

Here, 84 and Sp are positive constants inversely proportionallto, andT;.,, respectively.

Similarly, N4 and Np are the total number of robots that favour alternatideand B. It is clear
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Recruited Population Size Versus Time,
Basic Immutable Recruitment
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Figure 3.4: In this figure, the growth of two competing popiolas of recruiters is plotted. Ini
tially, one of the robots favours alternativie and another favours alternatiy& The period of time
between a robot’s attempts to recruit randomly selectatneaes, denoted. is inversely propor-
tional to the quality of the alternative that it favours. Iistcase, robots that favoit recruit twice

as often as those that favodr sinceB is twice as good agl. Once a robot is recruited to favour
a particular solution, it will never change its mind. Thiccaledimmutable recruitmentEventu-
ally, all of the robots are recruited to favour one of the tltermatives, and the better one can be
identified by the greater size of its recruited population.

from inspection that all of the robots eventually will be mgited to one alternative or the other, so
the set of system states correspondingvio= 0 are equilibria. The only non-zero eigenvalue of
this system’s Jacobian whéY), = 0 is equal to— 34 N4 — B Np. Because none of the eigenvalues
have positive real parts, a system employing basic immetedruitment is stable once all of the
robots have been recruited to favour an alternative, régssaf the distribution of robots amongst
the alternatives.

In the simulation used to generate this Figure 3.4, it wagraes that each robot was able to
measure the quality of its favoured alternative precisélpwever, if a single robot happened to
make an error and overestimate the quality of its favourtstradtive, it would recruit teammates
more frequently than it should, biasing the outcome of thi&ective comparison in favour of its
alternative. The earlier that such an error were to occerpibre it would bias the outcome of the
collective comparison towards the alternative favouredhgyerroneous robofTemnothoraxants
modify basic immutable recruitment in a manner that adeé®#sis problem. Only an antfgrst
attempt to recruit a teammate is preceded by a delay thatusdaién of its favoured alternative’s
quality [70]. Every attempt of a robot to recruit after itsfinttempt is preceded by a different delay,
one that is independent of the quality ascribed by the rabis favoured alternative. This quality-
independent delay, denot&d , is common to all robots. With this simple modification, ifemor is

made, it will only impact a single attempt to recruit. Theognvould only be amplified if the robots
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Recruited Population Size Versus Time,
Temnothorax-Style Immutable Recruitment
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Figure 3.5: Temnothoraxants employ a slight variation on the basic immutable récrent be-
haviour in their decision-making. Only the delay prior toiadividual’s very first attempt to recruit
ateammate is influenced by its perception of the qualitysadliternative. Every subsequent attempt
to recruit is preceded by a quality-independent defay, which here is 10 seconds. The better
alternative still clearly is able to recruit more robotslire tend. The advantagemnothorasstyle
immutable recruitment is that errors made by individualotshwhen measuring alternative quality
will have less of an impact on the overall recruitment bebaxi making it more robust to noisy
Sensors.

that it recruited also made similarly erroneous evaluatioithe alternative’s quality. Despite this
reduction in alternative-dependent positive feedbaakuyfé 3.5 illustrates that the better alternative
still tends to recruit the more robots than the poorer onehgydomparison’s end. This system
also can be modeled as a set of rate equations, given by Bos&i4-3.8. Herej3, is a constant
inversely proportional td@;.,. The population of robots that favour each alternative tsdstided
into those that have recently been recruited and are dgjgyiar to their first attempt to recruit, and
those recruiting regularly evefl., seconds. These two groups are denoted by the supersdfipts

andR (e.g. NY andN1T), respectively.

N, = —BoNoNF —B.N,N§ (34)
NY = B,N,NE—BuNY (3.5)
NY = BN,NE-BsNY (3.6)
NE = BuNY (3.7)
NE = BeNY (3.8)

As was the case for basic immutable recruitment, it is clemmfan inspection of Equations
3.4-3.8 that all of the robots eventually will be recruiteddvour one of the two known alternatives.

The non-zero eigenvalues of the Jacobian of this system-g¢N%F + NE), —34, and — 5.
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Therefore, regardless of how the robots eventually areilolised amongst the known alternatives,
the system will be stable once all of the robots have beewitedr

The attraction of immutable recruitment is its simplicitis fundamental drawback, though, is
that it isimmutable: robots cannot bemecruited. Alternatives that are found early enjoy sutish
head-starts in immutable recruitment and, even inTéranothoranspired variant, it still tends to
be sensitive to individual errors. Furthermore, if mangmadatives are found, the final sizes of the
populations recruited to each one might all be too smaliggér commitment, leading to stagnation

in the deliberation phase of a group decision.

Iter ative Recruitment

The second variation on direct recruitment is calledative recruitment Iterative recruitment is
identical to immutable recruitment, except that the indiidl robots can be recruited more than
once. lterative recruitment was inspired by the recruitiefpaviour of honeybees, so a strategy
patterned after their behaviour will be presented first. dRebat the honeybees, like the ants, are
recruited from an idle state. Unlike the ants, however, teuited bees eventually return to the
idle state. It could be said that the recruiters are “borrt’afithe idle population, and then “die”
by returning to it some time later. It is during their lifeti® as recruiters that they attempt to recruit
other individuals. The number of times that a recruiter valhdomly select a teammate and send
it a recruit-message over its lifetime is equal to the praodddts lifetime and the frequency with
which it sends recruit messages. Therefore, robots thaufawetter alternatives will tend to send
more recruit-messages than those that favour poorer ones.

This behaviour can be formalized as follows. Only robot¢ ttmnot favour an alternative are
recruitable, and once recruited, robots attempt to retirait teammates evefd, seconds, which is
inversely proportional to alternative quality as befordteAa robot has favoured an alternative for
T, seconds, it returns to the idle state, from which it mightéeruited again. Mathematically, this
is represented by Equations 3.9-3.11, in whitghx Til is the rate at which alternative-favouring
robots rejoin the unrecruited population. A simulation ohkybee-style iterative recruitment using
the same relationship between alternative quality’ Bnds was used in the examples of immutable

recruitment, withl; = 50 seconds is plotted in Figure 3.6.

N, = BiNa+BiNg—BaN,Na— BsN,Ng (3.9)
Nao = BaN,Ni— N4 (3.10)
Ng = BpN,Ng—BiNg (3.11)

Not only does the better alternative attract the greatesuited population, but the popula-
tion favouring the lesser alternative is completely eliated. A steady-state population of robots

favouring the remaining alternative also reached thatds tean 100% of the robots, which can be
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explained as follows. Over the course of a recruiter’sitifiet, it will will attempt to recruit?; /7,
times. Each of a recruiter’s recruitessages will be sent to a robot that does not favour amalter
tive with a probability equal tq\%. Therefore, the expected number of robots that a recruiter w

recruit in its lifetime,E,. is given by Equation 3.12.

i _N,
7. N-—-1
A population of robots favouring a particular alternativél \grow in number if £. > 1, and

E, =

(3.12)

will decrease ifE, < 1. WhenE, is unity, the population will remain constant at a dynamic
equilibrium. Each alternative-favouring population isupted to every other one throug,, the
number of recruitable robots, since the different altéweafiavouring populations compete with
each other to recruit these individuals. Equation 3.13 taiokd by rearranging Equation 3.12 and

solving for IV,,.

E,T.(N —-1)
T,
By setting £, = 1, N, is the minimum number of idle robots that must be availablano

N, = (3.13)

alternative-favouring population to allow it to at leastintain its size. If some of these idle robots
are recruited, the®,. will drop below unity and the population will decrease inesiZ his is precisely
how the population of robots that favours the best altevaaldrives the others to extinction. They
are able to swell their numbers even after sizes of the ptipokfavouring lesser solutions have
plateaued. When they recruit additional robd¥s, decreases and 96, for the poorer alternative-
favouring populations will reduce to less than unity, imtdiecreasing those populations and even-
tually eliminating them altogether.

Given sufficient time, iterative recruitmentis characed by its ability to completely discard alll
but one alternative, and the remaining one will tend to bd#st of those that was found. There exist
a pair of subtle problems with the honeybee-inspired apgroairst, NV, will always be greater than
zero, so at equilibrium, there will always be some idle reb@he size of this unrecruited population
depends directly on the remaining alternative’s absolutdity, so if the best known alternative is
relatively poor, the steady-state population favourigéual toN — N,) will be relatively small. If
this happened to be too small to satisfy quorum, stagnatmrioifollow*. This means thal; and
the mapping of alternative quality f§. must be tuned to specific decisions, including the expected
qualities of the alternatives.

Second, honeybee iterative recruitment is poor at comganitiple alternatives of equal qual-
ity. Consider the situation in which two alternatives arealty good. The idle population at equi-
librium for both alternatives will be the same (since botk tise same value df,.), so neither one

will be able to push the other to extinction by recruiting & fadditional robots and reducing the

41t might seem odd that both recruitment mechanisms used hyatssystems permit stagnation. Both the ants and
the bees employ low quorums, have tuned their behavioutseto gpecific environments, and they have evolved additiona
behaviours to break deadlocks.
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Recruited Population Size Versus Time,
Honeybee-Style Iterative Recruitment
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Figure 3.6: Iterative recruitment differs from immutabéeruitment (Figures 3.4 and 3.5) in that the
robots can be recruited to more than one alternative throuighe process. This is the strategy used
by the honeybees. When a robot is recruited, it favours teeredtive of its recruiter, and attempts to
recruit others, but eventually it will return to the idle t&tafrom which it might get recruited again.
Therefore, the alternatives compete against each othérdadle robots. Robots are more likely to
be recruited to the better alternatives, so the populafentiring the lesser alternatives eventually
are wiped out. Ultimately, only one alternative will remaliowever, because robots favouring an
alternative reenter the idle state at a finite, non-zerq sime constant proportion of a system’s
robots always will be in the idle state, preventing 100% uméy from being achieved.

other’s F,. to less than unity. Only through stochasticity might onelef populations extinguish
the other, and this will become increasingly unlikely asdkierall population size of the dec-MRS
increases. lIdentical alternatives might seem improbdhle keep in mind that two alternatives
will be perceivedby the robots to be equally good if they differ only in some mamnundetectable
by them. When two alternatives are equally godd, = 8 = 3 in Equations 3.9-3.11, and at
steady-statelN, = %. The only non-zero eigenvalue of the honeybee Jacobiansagdfuilibrium

is —B(N, + Ng). Since itis less than zero, the system is stable, so neilteenative will be able
to extinguish the other through any means other than randamoe.

The problem of a steady-state recruited population less tha% of the robots is easily be
overcome by eliminating the tendency of recruited roboteetarn to the idle state.6. makeT;
infinite), and enabling robots to recruit alternative-fakiag teammates directly. However, the tie-
breaking problem remains. This recruitment strategyeddlsic iterative recruitmeris described

by Equations 3.14-3.16.

N, = —BaNoN4 — 35NoNpg (3.14)
Nia = PBaNa(N,+ Ng)— BsNaNp (3.15)
Np = BsNp(N,+ Ng)— aNpNa (3.16)
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Recruited Population Size Versus Time,
Iterative Recruitment
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Figure 3.7: The main problem with the honeybee approacktatitze recruitment is that the steady
state size of the population favouring the best alternativectly depends on the alternative’s ab-
solute quality as perceived by the robots. This is becawsenlty stable state in that approach is
the idle state. Instead of recruiting robots only from thle state, regular iterative recruitment al-
lows robots to be recruited directly from favouring one iadtgive to favour another. This means
that favouring an alternative is a stable state, since soldt continue to favour a alternative until
they receive a recruit-message from a teammate favourinifeaett alternative. Similarly to hon-
eybee iterative recruitment, all but the best alternatiitebe forgotten. Unlike honeybee iterative
recruitment, however, the steady-state size of the papul&tvouring the remaining alternative will
always be 100% of the robots.

Clearly, the number of unrecruited robots eventually wilttkase to zero, sindg, is always
negative when at least one alternative is known, but the paotgntially non-zero eigenvalue when
N, =0is (Ng — N4)(Ba — BgB), which is zero wherB, = 5. Again, unanimity will only be
achieved through random perturbations in the recruitmesdgss.

The tie-breaking problem can be solved by tying the valueot only to an alternative’s quality,
but it's popularity, too. That isg; in the basic iterative recruitment strategy is replace@dpyN;
here, where is some positive constant. This new strategy, referredtfiisnwork simply asterative

recruitmentis described by Equations 3.17-3.19.

N, = —BayNoN% — BpyNoN} (3.17)
Ni = BayN3(N,+ Np)— ByNaN3 (3.18)
Np = BpYNE(N,+ Ng)— BayNiNg (3.19)

A simulation of iterative recruitment is shown in Figure 354 = 6 = 8, No = Ng,N, =
0 is the equilibrium point in this system when two equal al&gives are being compared. The
eigenvalues of the Jacobian of this system at this tieua}ﬁyN?, 0, and%ﬁyNz. Because one

of the eigenvalues is positive, the equilibrium unstablan@®mness in the rate at which the robots
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Figure 3.8: Another great advantage of iterative recruithueer immutable recruitment is that a
better alternative found later on in the process can stthiolthe unanimous support of a dBtRS

if it is sufficiently good. In this figure, alternativé is found att = 0, whereas alternativB is found

at timet = 100. Alternative B is twice as good as alternativg so robots that favour it to recruit
twice as frequently as those that favadir The population favourind3 grows rapidly, eventually
recruiting every robot in the system.

actually encounter each other will push the system off ofateilibrium, at which point the rate
of recruitment for the more popular alternative will incsezand that of the less popular one will
decrease, thereby pushing the system away from the eduiitilpoint and towards the unanimous
adoption of a single alternative.

Although the robots do not actually know how many of theinte@ates agree with them and thus
cannot implement the system described by Equations 31 eéBrectly, a simple behaviour-based
strategy permits it to be implemented in a more emergent sraas follows. Robots respond to
recruit-messages, telling the recruiter whether or notée@ient of the message already favoured
the specified alternativeepriori. When a robot is informed that attempted to recruit a teararthat
already agreed with it, it will becomfeustrated Instead of scheduling its next attempt to recruit a
teammatel;. seconds into the future, a frustrated robot will attemptetruit the very robot that it
encounters. It will remain frustrated until it successfutbcruits a teammate, at which point it will
cease to be frustrated and instead attempt to recruit tetesraba rate governed by.

If it assumed that thé&. is greater than the expected inter-robot encounter pefigdhen be-
coming frustrated increases up the rate at which a robahatieto recruit teammates. The average
rate of recruitment by the population of robots that favaupsrticular alternative increases with the
proportion of them that are frustrated. This in turn incessawith the popularity of their favoured
alternative, since robots that favour more popular altares.are more likely to encounter agreeing
teammates and become frustrated than robots that favaupdgsilar alternatives.

Not only does iterative recruitment lead to the unanimousdang of a single alternative, but
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a sufficiently good alternative discovered after deliberatlready has begun might still emerge as
the one identified as best by the robots. This property istiliied by Figure 3.8. The later that
an alternative is found, the better it would have to be to coere the headtart enjoyed by those

alternatives that were found earlier.

3.4 Quorum Testing and Consensus Estimation

In a collective decision, the quorum is the minimum supploat an alternative must attract in or-
der for it to induce commitment and complete the decisionorQmn is said to besatisfiedby an
alternative once the consensus in favour of it meets or elscggorum.Quorum testings the pro-
cess of measuring consensus and comparing it to the quorons, @t its core, quorum testing is a
parameter estimation and thresholding operation.

During the deliberation phase of a collective decision, ihenber of robots that favour each
alternative will evolve. Better alternatives tend to irase their recruiting corps whereas poorer
alternatives tend to lose support. It is quorum testingehals the deliberation phase, signaling that
the best alternative has been identified. The satisfactignarum triggers the commitment phase,
in which the quorum-satisfying alternative is unanimoustiopted by the entire dec-MRS. The
ideal quorum test would be instantaneous and accurated$peleaccuracy are competing interests,
however, and so a real-world quorum test must strike an gpiate balance between them. Recall
also that the individual robots will know of at most a singleemative: the one that they favour.
Therefore, an individual robot can test quorum only for theraative that it favours. As a result,
the total number of alternatives being collectively congodoes not increase the computational
complexity of consensus estimation and quorum testingHeriidividual robots. It also reduces
the likelihood of a robot making an error and concluding tnlss popular alternative has satisfied
guorum, since fewer robots test quorum for the less poputernatives, simply because fewer

robots favour them.

3.4.1 Off-Swarm Consensus Estimation

In certain domains, the nature of the decision being madedegaVRS can be exploited to simplify
qguorum testing. When alternatives are spatially distebdugs they are in the collective relocation
problem, quorum could be tested for an alternative by comgahe number of robots that visit its
location to a threshold.

For this strategy to succeed, the robots that favour annaltee would have to visit its site
regularly to assess the visiting population. Each robdtftheured a particular alternative therefore
would spend some proportion of its time at its favoured ahléve’s location. As an alternative
became more popular, the size of the average visiting ptpaolaould increase. Quorum in this

case would be an absolute number of robots bounded by thégiimmsize of the dec-MRS.
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Because only some of each robot’s time is spent visiting Iterraative, the average visiting
population size is unlikely to exceed a fraction of the tatamber of robots in a system, even if
every robot favoured the same alternative. Therefore,.quavould have to be relatively small in
order to have a realistic chance of one of the robots obsgiguorum of its teammates when
it visited the site of its alternative. A low quorum would ease the probability of a robot that
favoured a poorer alternative observing quorum first. Thightoccur if all of the robots that
favoured a particular poor alternative happened to visibitation at the same time.

The advantage of thisff-swarmapproach is that consensus estimation and quorum testing do
not require explicit communication, since only passiveesation of teammates is required. Fur
thermore, the synonym problem is avoided. Alternativesrapeesented by locations in a shared
environment, so two robots that visit the same alternaileEation know that they both favour the
same alternative, regardless of the label given to themltime by them. To paraphrase Shakespeare,

a particular alternative by any other name should smell pssweef83].

3.4.2 Consensus Estimation by Explicit Opinion Sampling On-Swarm

Off-swarm consensus estimation exploits a specific dagisiaking domain and environment. It
assumes that the candidate alternatives have unambiguguémgs to distinct geographic locations.
The advantage of the off-swarm approach is that the comrativéccapabilities of the individual
robots in a dec-MRS could be very limited, yet they still abtihike advantage of it. However,
the articulative aspects of inter-robot communication lbarconsidered a solved problem in many
ways. The problem that confronts a robot is hotvto transmit a message, bwhata message
should contain. In this section, a scalable approach toetmus estimation is presented that takes
advantage of explicit inter-robot communication, and tfedent implementations are provided.

Consider a dec-MRS that is composed\ofobots, NV, of which favour some particular alterna-
tive in common, and the remaining — N, favour different alternatives (or none at all). If one of
the N, robots randomly selects a teammate and asks it whether d@raied favours the same alter-
native, the probability of the queried robot respondingefétively would be%, sinceN, — 1 of
the querying robot’'sV — 1 teammates also favour its alternative. This fraction iedgheapparent
consensusdenotedC,. It is the consensus apparent to a robot when it does notdadts own
opinion. Without knowing the number of teammates in its 8RS, a robot cannot include its own
opinion, since it would be unable to compute an appropriaight so that it equitably could be
included in is measurement of consenstes {t would tend to over- or under-value its own opinion).
Note that apparent consensus is strictly less tnam consensus%, denotedC;. However, this
difference becomes insignificant Asincreases.

The response of a queried robot is calletbée-message, and a vote-message is either “yes” or

“no”, indicating whether or not the queried robot favours game alternative as the querying rébot

51t does not matter if the asking robot asks “Do you favourrakiéive X ?”, to which the queried robot would respond
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Over time, robots favouring an alternative will receive gusnce of votanessages as they query
the teammates that they encounter. Lefte; denote theé!” vote-message received by a particular
robot, and the function(vote;) quantify this vote according to Equation 3.20.

(3.20)

y(vote;) _{ 12 wote; ="yes

0 : otherwise
If a robot receives receivesvote-messages, obtained from randomly selected teamnitatas
estimateC,, for its favoured alternative from them using Equation 3.20ust like when people’s
opinions are gathered for a survey of public opinion, it ipartant that the vote-messages that each
robot uses to estimaté, are collected from randomly selected teammates. Sincagssmed that
the individual robots are unable to identify the specificiezates that they encounter, it falls the
the stochastic nature of their interactions to generat@adorm sample of teammate opinions. The
termwell-stirred [62] is used to characterize such interaction. In a wethesti system, the identity
of the robot encountered by an individual is equally likedyhte any of its teammates, and each
encounter is a statistically independent event. In a dgnsgulated dec-MRS, the independence
of each encounter might not be a valid assumption, but thiestiled assumption could be made to
hold by counting only every" encounter with a teammate, or only those separated by aisnffic
long period of time. In this way, additional opportunity wdibe given for the system to stir itself

between the querying of teammates.

Co =

S|

i ~(vote;) (3.21)
i=1

The symbolC, indicates that the quantity on the left side of Equation 324n estimate of
C,, not the precise apparent consensus itself. Throughautitecussion and derivation, it must
be kept in mind that the individuals do not have global knalgke of dec-MRS state. Furthermore,
each robot computeS, only for the alternatives that it favours. Therefore, a #ievalue of C,,

corresponds only to the alternative favoured by the rokatt¢bmputed it.

Digital Consensus Estimation

A simple way to implement consensus estimation would bedwige each robot with an-element
gueue, into which quantized teammate opinions would beatede With every insertion of a new
teammate opinion, then 4+ 1)* opinion would be discarded, ar@, at any given moment would
be the mean value of the opinions in the queue. This conceptdasred to in this work adigital
consensus estimatipand is illustrated by Figure 3.9.

How n should be selected? The greateis made, the more opinions will be included in the
computation ofC,, and thus the more accurate the estimate will tend to be. kewasn is

increased(, depends more upon older opinions, and thus tracks changesparent consensus

“yes” or “no”, or if the asking robot asks “What alternative gou favour?”, and then interprets the queried robot'seasp
as a‘“yes” or a “no”.
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Figure 3.9: This illustration depicts digital consensugestion. The robot on the left is computing
an estimate of apparent consensus for some alternatitieat it favours. Upon encountering a
teammate, it asks it if it also favouss. The teammate does not, and its response “No” is converted
to the numerical value 0 by the quantifying functigfvote;). Some earlier collected opinions were
“Yes”, and these were assigned a value of 1. In this exampte,5, so only the five most recently
received quantified opinions are averaged to compytevhich in this case is 60%. The previous
three values foC, by the robot on the left were 60%, 40% and 60%. By increasimgber of
opinions used to computé,, the accuracy of each estimate increases but requires eererate
opinions and thus more time to compute.

more slowly. Keep in mind that each estimate of apparentemmiss is compared to a threshold,
and that a behavioural change will occur onlydif is greater than or equal to the threshold. A
compromise must be found between the speed and accuracgmfrmuesting.

Because votenessages are assigned a value of either 1 or 0, each one imeuBierandom
variable in whichP (vote; = 1) is equal toC,,. Let the threshold to which a robot compa@sbe
denoted byQ, where@ € [0, 1]. A robot concludes that quorum has been satisfied ohee Q,
which will occur when at leastn@] of then most recently received vote-messages are affirmative.
The probability of receiving affirmative votes in a sequencermfollows the binomial distribution.
Thus the overall probability of a particular setrof/ote-messages suggesting that quorum has been
satisfied is the sum of the binomial distribution over thegeah € [[nQ], n], which is given by
Equation 3.22

n

P(C.>Q) = (’Z)(Cﬁ(l—ca)”—i (3.22)
i=[nQ]

A false positivequorum test is said to occur when, > @ andC, < quorum. That is, when
a robot erroneously believes that the apparent consenssfiesaquorum when in fact it does not.

Equation 3.23 provides this mathematically.

P(C, > QA C, < quorum) = > PC.z2Q) (3.23)

C,€[0,quorum)
Figure 3.10 plots Equation 3.22 for different valuesi@nd(@. Equation 3.23 can be interpreted

graphically as the area under one of these curves to thefl&ft, o= quorum. Note from Figure
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Figure 3.10: The graphs in this figure illustrate how the paters: and@ (the number of teammate
opinions used to computé, and the threshold to whiofi, is compared to in order to test quorum)
affect the probability of a robot believing that quorum issféed versus the actual value of apparent
consensusy,. Increasing: makes the curve more stdige, decreasing the likelihood of a robot
prematurely committing. Increasirig does not significantly change the shape of the curve, instead
shifting it to the right.

3.10(a) that this area decreasesnais increased, as the curve approaches the shape of a step at
C, = Q. However, the area to the left 6f, = quorum will never be nonzero, and a very large
value ofn would be necessary to reduce it substantially. This wowld slown consensus estimation
significantly.

Changing the value af) while keepingn constant does not significantly alter the shape of the
curves, instead shifting them to the right@ss increased. This is shown by Figure 3.10(b). Quorum
and@, however, need not be the same. Since the goal is to prevenbafrom making false positive
errors, the desired quorum should be specified, and therettaengters:. and() selected strike an
acceptable balance between the desire for speed and tliedie of a false positive test occurring.
For examplen = 15, Q = 80% appears to be a good choice of parameters to test a quorurof 50

The commitment phase of a decision begins once one of thagtletieves that quorum has
been satisfied. The probability of commitment occurringgsia to one minus the probability of

none of thelV, robots testing quorum believing that quorum has been satisfi

P(commitment) = 1—(1—P(C, > Q))Ne
([Ca(N=1)]+1)
"o B} (3.24)
= 1| S e -
i=[nQ]

The concern is that, whereas the probability of a partictd@ot concluding that quorum is
satisfied is independent of the number of robots that compoee-MRS, the probability of at least
one of the robots in a system committing is not, indicatedHsy éxponent in the second line of
Equation 3.24. Although the probability of at least one tom@maturely believing that quorum

has been satisfied does increase wNththe behaviour of a given configuration is quite stable and
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Figure 3.11: The commitment phase begins once one of thes@stimating consensus believes
that quorum has been satisfied. &g increases, there by definition will be more robots estingatin
apparent consensus, and so the chance of one of them makergoary overestimating’, and
prematurely triggering commitment phase also will inceeashis graph plots the probability of at
least one robot believing that quorum has been satisfiedwasctidn ofC, and the population size,
N. Although the behaviour of quorum testing does depend sdraeon the population size, the
decrease in reliability a& increases is minimal.

predictable, as illustrated by Figure 3.24. In particulae, data plotted in this figure shows that the
configurationn = 25, Q = 80% is a good test for a quorum of 50% when the population is 15

robots or less, and remains a good test for a quorum of 40%ofaulptions up to at least 50 robots.

Analog Consensus Estimation

A robot also could estimate the apparent consensus amasgsammates using an analog imple
mentation. At first, an analog solution to a computationabfem might seem quaint or out of date,
conjuring images of Grey Walter’s tortoises [89]. Howewesingle-purpose analog circuit often is
more compact and more efficient than its digital equivaleatoncise analog implementation of
a quorum test would be very useful in micro- or nano-scal®t®bJust as bacteria test quorum to
select their individual behaviors [54, 90], so could the rhens of a microscopic dec-MRS. In a
system of such simple robots, unable to make accurate ais®rs of their environment on their
own, the pooling of individual opinions and quorum testirmyld be of critical importance. The
contributions of this section build upon those of [62].

The analog quorum test uses a pair of exponentially decayirigbles to estimate apparent con-
sensus. These are called theorum indexand thekin index denoted by;(¢) andk(t), respectively.
When such a variable is incremented by a constant amounegiar interval, a sawtoothed wave
is formed, illustrated by Figure 3.12. The peak value of tése will increase over time, reaching

an equilibrium value that is determined by the time constémeixponential decayr, The amount
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Figure 3.12: At the heart of analog consensus estimatioa jpaér of exponentially decaying indices.
These are called the kin and quorum indices, dengtedandk(t), respectively. Periodically, these
are incremented by a constant amoukt,) is incremented whenever any teammate is encountered,
whereasy(t) is incremented only when an agreeing teammate is encoantBogh curves adopt a
sawtoothed shape, reaching equilibria determined by #gwpiEncy with which they are incremented.

In this figure, the quorum index is incremented only half agmfas the kin index, and its peak
equilibrium is half that of the kin index. In general, the peguilibrium value of the quorum index
will be equal to that of the kin index scaled by the apparenseasus, and so their ratio computes
C,.

by which the variable is incremented, and the period of tiraevieen the regular increments. The
guorum index is incremented every time that an agreeingr#mis encountered, whereas the kin
index is incremented with every teammate encounter. Badlt@s are incremented by the same
amountA. It will now be shown tha% ~ Ca.

Assume that, in a webtirred dec-MRS, a robot will encounter one of its teammateery
T, seconds. Becausg, of a robot’s teammates agree with it, the time between erteosivith
agreeing teammatés, = T, /C,,. Thereforeg(to + T,) = q(to)e~T+/™ immediately before\ is
added to the index. At equilibriumg(to) = q(to + Ta) + A, andg(to) will be the peak equilibrium
value of the quorum index, denoted fy,,,. This quantity can be expressed as a function of apparent

consensus as shown by Equation 3.25.

Gequ (Oa ) = A—Ta

= A& (3.25)

1—e7™Ca

& A%
The final approximation in Equation 3.25 is obtained with fibkowing limit: f(lil)m Oef(I) =
1 + f(x). Therefore, wherr 22 is small,e 75 is well-approximated by — £&-. Substituting this
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Figure 3.13: The ratio of the peak equilibrium values of therim and kin indices closely approx
imates the apparent consensus. This figure plots this tating two different values for, which
specifies the rate at which the indices decay. Increasingreases the accuracy of the estimate, but
also will increase the time required to make the estimate.

into the second line of Equation 3.25 yields the third.
The kin index,k(t) also reaches a peak equilibrium valéeg,,,, but this is independent of the
apparent consensus. By following the same steps as in teeofdlse quorum index, the result of

Equation 3.26 is obtained.

(3.26)
~ ATLO
It should now be clear that the ratio the two exponentiallyedéng indices estimates the apparent

consensus, illustrated by Equation 3.27.

C,
Gpega(Ca) _ AZE
kPequ ATLO
(3.27)
~ C,
= Ca

All that remains is to choose the time constantvhich determines the rate at which the kin
and quorum indices decay. As was the case when digital censestimation was examined, there
is a trade-off between the accuracy of the individual robegsmates,C,, and the time required
to compute them. It is the value ofrelative to7, that determines what kind of balance is struck
between these competing concerns.

Recall that the linear approximation of the peak equilibrialues oft,_ , andg,,, assumed

equ

that the exponent to which the base of the natural logaritlas raised was small. This is achieved

whent > Ty. The greater is, the better the approximation will hold. Because of thisreasing
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Figure 3.14: This analog circuit permits even the smalledtsimplest of robots to estimate apparent
consensus and use it to test quorum. The upper and lowasifRdits produce sawtoothed waves
denoted q(t) and k(t), the DC peak values of which are prigroatto NV, — 1 and N — 1, respectively.
Quorum is tested by comparingt) to Qk(t) via the comparator on the right. Whe(t) > Qk(t),

the comparator switches on, signaling that quorum is sadisfi

T improves the accuracy of consensus estimation. The mowdystbe kin and quorum indices
decay, however, the longer it will take for them to reachrtequilibrium values, increasing the time
required to comput€’,. Refer to Figure 3.13. The curve corresponding to the highkre of r
approximates the actual value ©f, better that the one using a lower Furthermore, note that the
errors in consensus estimation are greater wtieis lower, and thaC, > C,.

Figure 3.14 presents a simple implementation of an analoguqui test, illustrating how easily
this powerful concept could be integrated into even the Esipof robots. In this derivation, it
was assumed that the robots of a well-stirred dec-MRS witloenter their teammates at some
regular intervall. It is important to note thdlfy is notan exact value, but a random variable with
a distribution. T, should be chosen to be as low as possible, so that a robot eeuldlikely
experience two teammate encounters separated by lesggh@mother option would be to add a
timer to the circuit of 3.14 that prevented the kin and quomdices from being incremented more
frequently tharil, ignoring any encounters that occurred before this en@uttimher elapsed.

The time-dependence of analog consensus estimation qaaluge errors irC, not present
when it is estimated digitally. For example, if a robot weveget lost and stop encountering its
teammates altogether, the kin index would decrease (medsiosolutely) more rapidly than the
qguorum index, since the former always is greater than therland exponential decay is propor-
tional to instantaneous magnitude. This in turn would iaseethe ratig/(¢)/k(¢), resulting in an

overestimate of’,. Eventually, a robot would believe that 100% consensuseaxkidf this hypothet-
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Figure 3.15: This figure plots four robots’ estimates of appaconsensus computed with two
different values of: in a system wher€', = 50%. Both graphs use the same sequences of robot
interactions; only: differs. When is small,C, can change rapidly, but there is a substantial amount
of noise in the measurements. Increasingreatly increases the accuracy of the measurements, but
they take longer to reach a steashate value.

ically lost robot were to rejoin its teammates, and the firs that it encountered was an agreeing
teammate, the robot again would believe that= 100%, since both indices would have decayed
to near zero while it was lost and both would haveadded to them by this encounter, producing a
unity ratio once again. To eliminate these two sources ofgmbots should only consider an analog
estimate of apparent consensus valid only immediately afteammate has been encountered and
only if k(t) has reached equilibrium. This is a significant contrast gitali consensus estimation,
the accuracy of which is independent of the time that elabseseen each reception of a teammate

opinion.

3.4.3 Real-World Performance of Anonymous Digital and Analog Consensus
Estimation

Thus far the digital and analog strategies to estimate appaonsensus have been described, and
predictions have been made regarding their performandidrsection, simulated results are pre-
sented that verify these claims.

In order to collect data, the TeamBots simulator [85] waslusémplement a 15-robot MRS in
which the robots randomly wandered about a circular enwiremt, reorienting to random headings
when an obstacle (either a teammate or the outer wall) wasuatered. Eight of the robots agreed
with each other, and the remaining seven robots agreed wiibdy. This configuration meant that
C, was 50% for the first eight robots and 0% for the remaining oriédse same generic log of

robot interactions was used to generate the data for eatte dblowing plot$, so each data point

6The details of this technique are presented in greaterl de@hapter 4
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Figure 3.16: In this figure, the same sequence of robot ictieres as were used to generate Figure
3.15 are used along with analog consensus estimation towterip. = = 57} in the upper graph,
and it is increased t@57, in the lower graph. Low values of allow C, to vary rapidly, whereas
increasing this parameter promotes more accurate measntelote also that when = 57y, the
robots tend to overestimate apparent consensus, a pheonipesdicted by the data in Figure 3.13.

corresponds to a fixed series of robot interactions, rginééed given the different parameterizations
of apparent consensus estimation.

Time in the following figures is measured in termsi@f whereT} units of time can be thought
of as the time between a robot’s to random teammate enceunfes was discussed in the last
section,Tj in practice is not a constant, but a random variable. Aftersimulations were run, the
distribution of intefrobot-encounter times was computed, and its first qugte55 seconds) was
used as the value fdr,.

Figure 3.15 plots four of the eight agreeing robots’ digistimates of apparent consensus over
time for two different values of. In the upper graph of this figure, = 5. The estimates are able
to rise very rapidly, but they also are very inaccurate,rofteer- or underestimating,. Whenn is
increased to 25, the robots’ opinions are much slower tofrése the initial estimate’, = 0% to
mirror the actual apparent consensus, but their steady-ettimates are much less noisy.

Figure 3.16 plots the very same robots’ opinionggfas in Figure 3.15, but in these graphs,
the robots used the analog consensus estimation stratetiye Upper graph = 575, whereas it is
increased to- = 25T in the lower one. Increasingin the analog strategy has the same effect here
as increasing did whenC, was computed digitally. As increases, the time required to measure
the apparent consensus increases, but the error in meanisedecreases. Notice th@E} tends to
be overestimated whenis low. This behaviour was predicted by the= 57, curve in Figure 3.13.

Figure 3.17 summarizes the relationship between speedannlazy for both consensus esti-

mation strategies. Measurement accuracy is plotted vensasurement time for several different
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Figure 3.17: In Figures 3.15 and 3.16, it could be seen tla¢asing: or T increased the accuracy
of apparent consensus measurement, but also increaséu¢heecessary for a measurement to be
made. This figure summarizes these results, plotting theracg of robots’ estimates @f, against
the measurement time. Wheror 7 is low, measurement accuracy increases rapidly with irseea
measurement time, but diminishing returns are encountdfetk the great similarity between the
performance of digital and analog consensus estimation.

parameterizations, with', = 50%. These two quantities for a given configuration were catedla
as follows (Refer to Figure 3.15 or 3.16). The time requiredrnake a measurement of appar
ent consensus was measured as the mean time required foots Gbto reach 50%, which is a
measurement of the mean rise-time of the estimatés, 0ofThe accuracy of a configuration was cal-
culated ag00% minus the mean relative deviation of a robdat's from C, = 50% in the time after
C, reached 50%. The estimates of apparent consensus duriimgtthlerise-time are not included
in the calculation of measurement accuracy. The data pletere computed from 40 simulated
trials, each lasting long enough for approximately 200 taeractions. The relationship between
measurement accuracy and measurement time is remarkadiilgrdior the digital and analog strate-
gies. In both cases, whemnor n is small, the slope of the two accuracy-versus-speed carsteep,
meaning that a small increaseor 7 would deliver a substantial increase in measurement acgura
for a small decrease in speed. A®r 7 is increased, though, diminishing returns are encountered
and the time-cost of making more accurate measurementsises rapidly. The two approaches to
computingC, are so similar in their observed performance that they carohsidered identical for

the purposes of quorum testing.

3.4.4 Compound Quorum Testing

Premature commitment due to a false-positive quorum teatgsneral problem encountered in
decentralized consensus estimation and quorum testinig. iSbecause each robot compuéés

with some finite error. The commitment phase is initiatedHgyfirst robot that believes that quorum
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is satisfied for its favoured alternative, and so it is likéiat commitment will be initiated by the
first robot to experience a falgmsitive quorum test.

Although premature commitment cannot be eliminated dgtitke problem could be reduced
somewhat with the addition of a second quorum test. Once at tddieved that its favoured al-
ternative had satisfied quorum, it would begin to measur@thportion of its teammates that also
believed that its favoured alternative had satisfied quortimese robots would continue to estimate
apparent consensus, and if this were to fall be@@wthey would reset the second quorum test. In
other words, apparent consensus would be measured for faudgtimns, and two quorums tested.
The second quorum would be tested only as long as the first el@véd to be satisfied. Clearly,
the addition of this meta-quorum would increase the rdiigtof the overall quorum test. Whether
or not its inclusion is worth the extra complexity (albeitmar) would depend on the nature of the
decision at hand.

This concept oEompound quorum testirigdemonstrated by the structure of honeybee decision-
making. Because the bees relocate their colony over lortgriss, it is not practical to move the
individuals one at a time as do the ants. Instead, the swhemajority of which remains somewhat
dormant during the decision-making process, must be robgdatie bees once they believe that
guorum has been satisfied. This task is too great for a sirege¢daccomplish, and so the swarm
relocates only once a sufficient number of bees have obsgn@dim so that their combined effort
is sufficiently great to induce the swarm to lift off. Onceiftd off, the airborne swarm is guided
by the committed bees to its new home. In their case, the gegoorum is implemented via the

dormant swarm’s inertia and resistance to lift-off, but tlet effect is the same.

3.4.5 Population Size and the Resolution of Apparent Consensus

It is important to briefly touch upon the relationship betwelee number of robots that compose
a MRS and the resolution range of apparent consensus (octomsensus, for that matter). To
illustrate this relationship, consider the extreme examfla system that contains just two robots.
If the two robots favoured different alternatives, thentbawbuld observe an apparent consensus of
0%. However, if one of them were to change its opinion to maltett of its teammate (perhaps
because one robot recruited the other), both would obserepparent consensus of 100%. In this
small system, only these two values of apparent consensymasible. On the other hand, in a 100-
robot MRS, as the population of robots that favoured a pagiclternative increased or decreased
by one robot, those remaining in the population would ols@rehange in apparent consensus of
+a5 % 100%.

Both hypothetical systems, the 2-robot MRS and the 100ir&iRS experienced the same
change - one robot changed its opinion - yet to the individabbts in these systems, the mag-
nitude of the change in the social cue observable by them iga#fisantly different. This in turn

limits the number of different quorum thresholds that cooédemployed in practice. In the two
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robotsystem, any) > 0 would be equivalentt® = 100%. In general, the apparent consensus in a

N—-1

MRS can only be one oF discrete values, and it will vary over the rarlge—, &=;] in increments

1
N-1°

In this thesis, consensus estimation drives a threshothegation: the quorum test. However, in

of

other applications, a robot might vary its actions contumlyp with its estimate of apparent consen-
sus, and so the smoothness of its response would depend smdo¢hness of apparent conserdsus
All other factors being equal, as the number of robots thatmmmse a MRS increases, the better the
system will be able to take advantage of consensus estimatio direct recruitment. This is not a
serious problem, of course, since a system composed of daly eobots likely would be better off
employing a more traditional centralized or hierarchiaaitrol structure to coordinate the actions

of its individual members.

3.5 Commitment

The final phase of the proposed decision-making strateggeiscommitment phase. The initial
searching phase of a decision identifies the individualadtiédves over which the robots will delib-
erate. Once these have been found, the robots use recrtuttm@mpare them and identify the best
one. However, both of these processes are completely detieed. None of the robots are aware
of how many alternatives might have been found, nor theatirad qualities. Through consensus
estimation, though, an individual is able to estimate thayparity of the particular alternative that it
favours. Once a robot believes that the popularity of itefaed solution has reached the threshold
of quorum, it concludes that its alternative has becomecseiffily popular that the group decision
should be completed, with its alternative adopted by thieeegystem. Itis the task of the final phase

of the decision-making framework, commitment, to accosipthis goal.

3.5.1 Individual Commitment

The simplest approach to commitment is to have the indiichizots adopt their favoured alterna-
tive only once they independently determined that theiotaed alternative had satisfied quorum.
That is, decisions would not involve a commitment phpsese robots simply would exit a deci-
sion once they had independently determined that quorunbéend satisfied. Unanimous decisions
would only be possible under this approach if robots thatédmatkd the decision-making process
continued to both encounter and respond to the vote-quefideir still-deliberating teammates.
Individual commitment is somewhat similar to the strategypéoyed in [92].

This commitment strategy does not guarantee that all ofdbets will exit a group decision.
Some of robots might stagnate in the deliberation phaseeXample, lone robots favouring unique

alternatives might not be recruited before all of their tezates detected quorum and exited the

"WhenC, is estimated using the digital approach, the resolutiofi'pfvill be determined bynin(n, N — 1), sinceC,
will vary from 0% to 100% in increments 07% It would depend on the system and application at hand whetloe NV was
the limiting factor.
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decision. Even though the lone robots would still receivievnessages from their teammatés,
for them would be zero, and so quorum would never be satisfied.

In some ways,Temnothoraxcommitment behaviour is a kind of individual commitment, al
though it involves a kind of stigmergy that makes it more tbidn ant will commit to its favoured
site once it detects a quorum of teammates while visitin@itce the ant has committed, it appears
to treat its favoured site as the colony’s new home [70], kjyitransporting teammates that it en-
counters to it. Other ants commit to their favoured sitey amice they too have determined that
guorum has been satisfied. However, because the populdiiosite that has induced commitment
will begin to rise quickly following commitment (due to theta transported there by committed
ants), other ants that favour a site that has induced conemitmill become more likely to commit
to it as well, triggering a kind of chain reaction of commitmhe Note that this stigmergic feed-
back in the ants’ commitment behaviour only exists becausgtocess of relocating a colony to a
particular site (which follows commitment) directly ingamts with the manner in which quorum is
tested.

Nonetheless, commitment to multiple sites is possible, iadé/idual commitment does not
specifically address this particular fault. When two or malternatives induce commitment, a
dec-MRS will fragment amongst them. In order to increaselitedihood of bringing about the
unanimous adoption of a single alternative by the end of &ecible decision, some additional
mechanism is required.

Individual commitment can augmented slightly to bring atmmore social behaviour. In [53],
the robots assembling into convoys estimated number oftsahat had gathered using a biolog-
ically inspired feedback mechanism called chorusing. Quree of the robots determined that a
sufficiently large group had gathered (analogous in thisudision to a robot having detected the
satisfaction of quorum), it would set a timer. As soon as imet elapsed, the robot would broad-
cast to its teammates that it was time to collectively deart the assembled robots would depart
with the reception of the first such message. Because th@singrmechanism is somewhat noisy,
the complete formation of a convoy tends to lag the chorusiggal reaching its preset threshold.
By calibrating the timer to account for this lag, a more felgacollective departure would become
more likely. However, this is an open-loop mechanism whgkidry domain specific. In the next

section, feedback from the collective state is used to giliedeommitment process.

3.5.2 Gossip-Based Commitment

A better approach to the commitment phase explicitly woaldatinto account the goal of decision
unanimity. A robot that believes that quorum has been sadifir its favoured alternative should not
selfishly exit the decision-making process on its own. Rathkas a responsibility to its teammates
to ensure that all of them commiit to its favoured alternative. This is particularly important when

a decision with some geographic component is being madeg sobots will tend to move away

51



from the location at which the decision was made as they bgitiecision, likely putting them out
of range of their teammates still in the decisioraking process. A collective decision also could be
made to adopt some new behaviour that should not begin lintibek on the current task has halted.
This concept of mutually exclusive behaviours is discussepteater detail in the next chapter.

If the individual robots possessed global broadcast conication capabilities, unanimous com-
mitment would be a trivial problem. Once a robot entered thmmitted state, it simply would
broadcast the instruction to do so to its teammates, andimitgrwould be assured. However,
single-hop global broadcast is impractical at best in aM&S [62].

Gossiping [10, 43] is an elegant stochastic communicagionriique that allows robots with very
short range communication capabilities to share inforomasiystem-wide. When a robot wishes
to broadcast some message system-wide via gossiping, ltlo¢ sends the message to randomly
selected teammates. In a well-stirred dec-MRS, a robot chigee this simply by transmitting the
information to the teammates that it encounters as it wandbout. The robots that receive the
information adopt the same behaviour, and the informatitirflaod throughout the entire system.

Clearly, if the robots continue to gossip long enough, alth&m eventually will receive the
information disseminated by the initiating robot. How shibthe process be terminated, then?
Demers et al. identified a simple approach (although theytheséermrumour spreadingnstead
of gossiping). As each member of the system transmits tharrdtion to a randomly selected
teammate, it identifies whether or not the teammate alreadwkvhat was sent. If the transmission
increased the size of the informed population, then theexdadinaffected. On the other hand, if the
recipient already knows the information, the sender ekigsgossiping behaviour with probability
%. The parametek controls the thoroughness of the collective behaviour.kAs increased, the
probability of all of the robots receiving the informatioy kthe time the last knowledgeable one
exits increases. In another variatidnjs a counter, and each robot counts the number of times
that it sends a redundant message. Again, increasingreases the probability of all of the robots
becoming informed [18]. Because gossip is a stochasticggmat is possible that some robots
might never receive the information before the processitates. Although increasingjincreases
the probability of the information reaching every membeas dec-MRS, the probability of collective
success will never be 100%. This is a general property ofrtesdéezed, stochastic algorithms.

By organizing commitment as a gossip-style algorithm, iméy becomes much more likely.
The “information” that is shared in the case of a group deciss the belief that a particular alterna-
tive has satisfied quorum. Once a robot believes that itaf@gbalternative has satisfied quorum, it
begins gossiping this belief, and the rest of its systendiggO (In(N)) [43]) quickly will commit
to it as well. The basic concept is easily modified to accomet@dnultiple alternatives inducing
commitment. Simply put, a robot will commit to whatever aftative was specified in its most
recently received commit-message.

Note the difference between the commitment and delibergiiases of a decision. During de-
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liberation, the quality of an alternative directly influerstthe likelihood of a robot being recruited to
it. Once an alternative has induced commitment, its quabtijonger plays any role. The purpose of
commitment is not to select the best alternative, its pugp®$0 promote unanimous commitment
to the single alternative that was identified as the best gribépreceding deliberation. The cem
mitment phase thus can be thought of as a war of attrition é@twobots committed to different
alternatives. The likelihood of a robot receiving a commitssage referring to a particular alterna-
tive is directly proportional to the proportion of its tearateas that are committed to it. Therefore, the
alternative to which the most robots have committed wilbtém be the one selected unanimously
by the commitment phase’s end. Because the number of robotmited to a given alternative
will rapidly increase via positive feedback following thgtial commitment to it, the first alternative
that is believed to satisfy quorum and thus induce commitmélhbe the one most likely to be
unanimously adopted by the decision’s end.

Instead of using a counter to terminate the process, a simplgroach employing a timer is
adequate. Here, when a robot receives a commit-messagfysmean alternative to which it is not
committed €.g.a commit-message that is not redundant), it commits to teerltive and responds
with an acknowledgment. If a robot receives a commit-messagcifying an alternative to which it
already is committed, it does not respond at all. Committdxbts reset an internal timer whenever
they receive an acknowledgment, or whenever the altemtdiwhich they are committed changes.
As more and more of the robots commit to the same alternatieeprobability of an individual
robot receiving an acknowledgment will decrease, and sadhets’ commitment timers will be
less likely to be reset. A committed robot will exit the gradgcision once its timer reaches a preset
limit, called thecommitment timeouf his time limit is somewhat analogous to the courkt@r the
work of Demers et al. in [18]. Increasing the commitment tmieincreases the probability of the
commitment phase achieving unanimity by increasing thewarnof time a committed robot will
remain in the committed state without receiving an ackndgteent. Note the similarity between
this timer-based approach and analog consensus estimitst@ad of a dedicated timer, a the quo-
rum and kin indices could be reused, with the quorum indew(asort of committed index) being
incremented with the reception of every acknowledgmerdividual committed robots would exit
a decision once the estimate of consensusdfgibwsome preset threshold. Similarly, if a count of
received acknowledgments to commit-messages would berpi#é, the digital consensus estima-
tion hardware could be reused. Again, a committed robot évexit a decision once it believed that
the proportion of its teammates that had not committed taliegnative dropped below some preset
threshold.

3.6 Summary

In this chapter, a decentralized collective decision-mgkramework was described, inspired by

behaviours of ants and honeybees. This three-phase appomcposed of searching, deliberation
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and commitment, utilizes several decentralized behasijall within reach of very simple robots.

These are just the sort of robots that are expected to contgrgggpopulation dec-MRS, and so the
framework should be widely applicable to decision-makingipfems that such systems might en-
counter. Only the initial searching phase of a decisiongaificantly coupled to a specific decision.

In the later deliberation and commitment phases, decé&dthtomputation is carried out in-
dependent of the environment in which the MRS operates,eaasotiots modify each others’ states
directly, rather than through an intermediate environm@lesttannel. The deliberation phase singles
out the best of the alternatives that the individual robagsenable to find during their initial search
using the positive feedback of recruitment. Because edgbt favours only one alternative at a
time, the computational complexity of this distributed qmmson operation to the individual robots
is constant, regardless of the number of alternatives krcoNactively.

Concurrent with their recruiting activities, the robotsalestimate the popularity of the par-
ticular alternatives that they favour. Once again, thisrapen is computationally simple, and its
complexity to the individual robots is constant. Two diffat approaches to consensus estimation
were described: one digital, and one analog. Although th#adiapproach is likely to be the more
widely-used of these, the simple fact that a small analogémpntation is practical demonstrates
that consensus estimation, an operation likely to be véumbmany other dec-MRS problems,
could be taken advantage of by systems composed of the neostetary robots.

Decentralized deliberation continues until one of the telatetermines that its favoured alter-
native has become sufficiently popular to end deliberatthat its alternative might be selected
unanimously. This decision is made by an individual robodtigh a quorum test, in which it com-
pares its estimate of its favoured alternative’s populddta threshold. Consensus estimation and
guorum testing can be tuned to emphasize speed or accurasystdke a balance between the two.

Finally, in the commitment phase, the entire dec-MRS caalesround a single alternative,
the one that satisfied quorum. Using a gossip-style apprahehknowledge that one particular
alternative is to be adopted will flood the system, causirtg ibe chosen unanimously. In this
way, a decentralized system composed of simple, locallynconicative individuals can behave as
a cohesive whole, aartificial superorganismand make intelligent decisions as though they were a

single intelligent entity.
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Chapter 4

Unary Collective Decision-M aking:
The Cooperative Task Transition
Problem

The focus of this thesis is collective decisioraking in decentralized multiple-robot systems. In
the general case, a collective decision can be viewed ast@bBisoperation in which the best of

N a priori unknown alternatives is selected unanimously. In this tdrap simpler operation, called

the unary decision, is made by modifying the deliberatioagghof the decision-making framework
by eliminating recruitment. Unary decision-making is apglin this chapter to a problem that has
limited the development of more advanced dec-MRS: cohlgsstepping through a sequence of
subtasks. The unary decision-making strategy is deschibaetail, and experiments with simulated

and physical robots demonstrate its performance in theegoof a collective construction task.

4.1 Introduction

In general, most decisions can be represented as best-etibi@hs in which the decision-makers
must identify and evaluate a set of candidate alternatias fvhich one unanimously is selected.
A subset of these decisions are those in which the candittateatives are knowa priori, and of
these, the situation in which only one alternative existearwith surprising frequency. In this case,
the question facing the decision-makers is whether or ralternative should be adopted in place
of thestatus quo

Complex missions often are decomposed into a series of sirapbtasks. The overall mission
is achieved by completing each of the subtasks in order. &l é@nsition from one subtask to
the next, a decision is required: “is the current subtaske@®bnEither it is, and the focus of the
team should shift to the next subtask, or it is not, anddfadus quoof working on the current
subtask should be retained. Because the decision is totamcegject a single proposed alternative,
these decisions are referred towsary decisionsn this thesis. The focus of this chapter is the

application of unary group decision-making to the synciration of dec-MRS subtask transitions
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Figure 4.1: This figure illustrates the decomposition of mfiag task into a sequence of simpler
subtasks. In order to complete the overall mission a systest oomplete each subtask in order. A
group decision is required at each subtask transition tarerthat all of the robots make the tran

sition at the same time, otherwise robots in adjacent tasggetrimterfere with each other, resulting

in a failure of the overall mission. At the same time, a traasimust not occur until the current

subtask has been completed. These two concerns are adibogsseooperative unary decision.
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in a complex mission, but the reader should keep in mind tineige nature of the unary collective
decision-making problem.

Refer to the surface-painting task depicted in Figure 4.dresxample of a dec-MRS task that
requires unary decision-making. This mission can be decseg into five subtasks: clean the
surface, sand it, apply primer, allow the primer to dry, apgla the paint. These subtasks are
mutually exclusiveeach one must be completed and then all work on it halted®efoy work can
commence on the next one [62]Thus there is a need to synchronize the transition from obask
to the next so that all of the robots make the transition as#ime time. Consider the transition from
the sanding subtask to priming. If the robots did not all médestransition at the same time, the
overall painting mission would fail because the two mutpaltclusive subtasks would have robots
working on them simultaneously, leading to interferencg.(the dust from sanding would prevent
the primer from being applied correctly). When this occltrss said thatmutual exclusivityis
violated

On its own, synchronization is not a difficult problem, as mg# global broadcast operation
could achieve it. However, it also is important to ensure gzh subtask truly is complete before
the transition to the next one is initiated. Consider thagition from the Let Dry subtask to the
Apply Paint subtask. Clearly, if the robots were to beginAlpgly Paint subtask prematurely, even
if they did this in a synchronized manner, the primer would lmmve been given sufficient time to
dry. Mutual exclusivity would not have been violated, b graint would be applied to a wet surface
and thus would not adhere properly, once again resultingénadl mission failure.

If we assume that a mission and its decomposition into skt knowra priori by the robots,

a unary decision could govern each subtask transition. Bolitary robot, the problem is as simple

as accurately determining when each subtask has been dethp&nce no other robots would be

11t could be argued that the individual subtasks in this eXerapuld be designed so that some of them could be carried
out in parallel. However, for the purpose of this discussassume that this is not the case, and that any two robotsngork
on different subtasks simultaneously would destructiwetgrfere with each other, resulting in overall missioriuee.
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present, the interference problem is reistent. Multiple robots would be able to complete each
subtask more rapidly than a single robot, so the ability fpalea MRS to complete a sequence of
subtasks is desirable. The solution for a centralized MR®fanuch more complicated than that
of its solitary counterpart. The central controller wouldke the decision to begin the next subtask
based on data collected by the other robots and transmdtéd dnd its decision then would be
dictated to the entire MRS.

Not only would a MRS be able to complete each subtask fastar ¢hsolitary robot, it also
would be able to measure the state of each subtask moreyapidis is because many indepen-
dent measurements could be made in simultaneously. Fortiter these measurements would be
made with many different sensors, since each robot wouldrt@peasurements taken with its own
sensors, so individual sensor calibration would be lessanfrecern. This would tend to render the
deliberations of the MRS more precise.

The synchronization of subtask transition demanded by atetclusivity is provided in a unary
decision by the commitment phase, just as it is in the gergseaision-making framework. The
guestion ofwhenthe subtask transition occurs is governed by the delitmrathase, but recruitment
is absent. In the case of a best-of-N decision, the robotdeiglingwhichalternative to adopt, and
it is assumed that thetatus quamust be replaced by one of them. The question posed by a unary
decision is: “Should thetatus quabe replaced by the proposed alternative?” Deliberators in a
unary decision have made the individual decision that tl@sed alternative should be adopted
and are waiting until a sufficient proportion of their teantessindependently have come to the same
conclusion. Once a deliberator believes that the size ofitiberating population has satisfied
qguorum, it concludes that there is sufficient consensusviauiaof the proposed alternative, so it
commits to it. This initiates the commitment phase’s gossje broadcast operation, which leads
to the proposed alternative’s unanimous adoption.

Quorum in a unary decision serves a subtly different purfieseit does in a best-of-N decision.
In a best-of-N decision, quorum testing delays commitmaitit ilerative recruitment has identified
one of the candidate alternatives as better than the othenmale in a unary decision is to prevent
commitment until a sufficient proportion of the robots indagently have decided that the proposed
alternative should replace tiséatus quoIf the robots of a dec-MRS had perfect sensing, a quorum
of zero would be satisfactory, since a single robot’s denishat the alternative should be adopted
would be sufficiently reliable to justify commitment. Of ase, perfect sensing does not exist in
the real world. As such, quorum should be set so that, oneesitisfied, it will be unlikely that
a collective mistake will have been made. Given a quorumntireber of independent decisions
necessary to satisfy it increases with population sizeésiruorum is expressed as a relative, rather
than absolute population size). In this way, a unary degisitows a dec-MRS to leverage its
redundancy, rather than fall victim to it.

In this chapter, the decision-making framework of this thes applied to the decentralized
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Figure 4.2: A construction task can be decomposed into &alisite preparation subtask followed
by secondary construction. The purpose of site preparatioremove debris from the construction
site so that the more advanced secondary construction oaaqut. These two subtasks are mutually
exclusive, so a unary group decision is required to cootditiee transition between them.

unary decisiormaking problem for task-transition. In the next sectiorgodlective construction

task is presented to provide context for this application, the details of the unary decision-making
behaviour are explained. Experiments that were conduataihulation are then presented, fol-
lowed by a series of experiments using real robots. The ehdmn closes with some conclusions

on the performance of decentralized unary decision-making

4.2 Collective Construction and Decision-M aking Behaviour

In this section, the blind bulldozing collective constinotbehaviour is introduced. The goal of the
robots is to decide unanimously that the construction taskideen completed, thus allowing some
subsequent group task to commence without interferencéodadots continuing to work on blind
bulldozing. Next, the details of the individuals’ behavisthat produce a unary group decision are
described. In the next section, a series of simulated exats are described, followed by a section

detailing similar experiments with real robots.

421 CollectiveConstruction

Collective construction is a good example of a task that camldcomposed into a sequence of
mutually exclusive subtasks. For example, building materhave to be located, brought to the
construction site and then assembled [60]. If assembly teebegin before foraging for materials
had halted, the foragers might retrieve materials to thekgilite from those that had already been as-
sembled into the desired structure. Were assembly to beginaiurely, the quantity of construction
material gathered might be insufficient to complete therabbgprocess.

Often, advanced construction must be preceded by prepanatok. For example, before a
structure can be erected, the site upon which it is to be ikt be cleared of debris. This clearing
process is calledite preparation and it has been identified as a critical task for MRS missions

to other planets [40, 66]. The more advanced constructianftilows site preparation is referred
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Figure 4.3: The image on the left of this figure depicts folrats engaged in the blind bulldozing
site preparation task. Their goal is to expand the initiahdhg in the debrifield to permit more
advanced construction to take place. Their individual bighas are controlled by the simple state-
machine given on the right. The robots clear debris by plgwinstraight lines in the wander
state, and then randomly reorient once the debris has bestreginto the site’s wall or whenever a
teammate is encountered [65, 64, 60].

to assecondary constructionSite preparation is a somewhat coarse task, involvindgneadving
equipment, whereas secondary construction will tend to e melicate in nature. The two should
not be carried out simultaneously, as any secondary cattistnuoegun before site preparation has
halted risks being bulldozed [62]. A collective decisiorhtdt site preparation and begin secondary
construction clearly is required here, and it is this specifiary group decision that is the focus of
the experiments in this chapter.

Earlier work proposed a biologically inspired site preparaalgorithm calledblind bulldozing
[64, 60]. Blind bulldozing clears a construction site outadfield of debris through the uniformly
distributed plowings of a team of autonomous bulldozerse sk is complete once the site has
reached a predetermined size, chosen to be sufficientlg targccommodate whatever secondary
construction is intended to follow. Figure 4.3 depicts angcom a blind bulldozing experiment
along with the simple state-machine that guides the ind&idobots’ behaviours.

The actual bulldozing is done in the wander state, in whiehrtibots travel in straight lines.
The force exerted on a robot’s plow increases with the amoiuiebris that it has plowed up. Once
this force exceeds a preset threshold, the robot entergthent state, in which it rotates on the
spot to a new random heading, and then re-enters the warmder Rbbots in the wander state also
enter the reorient state whenever they encounter a teamifiagerandom reorientations distribute
the robots’ plowing uniformly about the construction stperimeter, so the site grows evenly and
adopts a circular shape as though it was being “inflated” bydlots [28]. It also makes the robots’
encounters with each other well-stirred [62]. In [64] it wamjectured that the individual robots
could infer the completion of the site preparation task byasuging the distance that they traveled

between reorientations. If a robot travels a certain deg#dn a straight line before it reorients, it
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Figure 4.4: This figure depicts the environments of the umkagisionmaking experiments. On
the left is a screen-shot from one of the simulated experisadfach of the black discs is a robot.
The image on the right is a photograph of a real dec-MRS ma&ingary decision about task-
completion. These environments are static, but they ard goalogs of the blind bulldozing domain
towards the end of the task. In both cases, the environmeanffisiently large that the individual
robots eventually will conclude that the task is complete.

knows that the diameter of the clearing is at least that giegberiments since have demonstrated
that this is a viable strategy to detect task completion.[Bi§wever, because the robots’ paths are
random, each will tend to detect task completion at a diffetiene. Furthermore, odometry errors
will introduce uncertainty into each robot’s individualdsion-making. A group decision therefore

should be employed to coordinate the transition from blinlidozing to secondary construction.

Environment

Blind bulldozing would be employed when a construction steovered in debris that must be
cleared to prepare for secondary construction. It worksdmarding an initial clearing in the debris.
The rate at which the clearing grows will slow over time asghe expands and its walls become
reinforced with plowed debris. Towards the very end of tis& téhe growth of the clearing will have
sufficiently slowed that the environment can be approxichbiea somewhat circular enclosed arena
that is fixed in size. The experimental environments for theukated and physical experiments are
shown in Figure 4.4. The robots provide an indication of #lative scales of the environments.
The robots are programmed to conclude independently teatith is large enough once they travel
a sufficiently long path while in the wander state (straitiit-motion). Because the motion of the
individual robots is random, each will traverse such a pathanclude that the site preparation task
has been completed at a different time. Without a group @etisach robot would begin secondary

construction at a different time and mutual exclusivity \eble violated.
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Figure 4.5: A robot’s cognitive behaviour during a coopiestinary decision is divided into four
states. The robots initially believe that the current grtagk is not yet complete, and so they work
on it. When a robot decides that the current task is compie@nters the deliberating state, in
which it gathers the opinions of its teammates as they arewsttered. Based on their opinions,
a deliberating robot estimates the apparent consensuganrfaf the current task being complete.
Once it believes that this has satisfied quorum it enters ¢hendtted state, in which it instructs
other robots to commit. Uncommitted robots that are tolddmmit do so and respond with an
acknowledgment. When a committed robot no longer receiekaavledgments to its commit
messages, it concludes that all of its teammates have eihemitted or moved on to the next task,
and it does so as well.

4.2.2 Individual Behavioursfor a Unary Group Decision

In this section, the decision-making behaviour of the reli®tescribed. This behaviour is the same
in both the simulated and physical experiments. Refer tar€ig.5 for the following discussion.
Each robot begins a decision in the working state, in thig gasticipating in the blind bulldozing
task.

A robot will decide that site preparation is complete ondgaitels a sufficiently long path while
in the wander state of the blind bulldozing behaviour, atolitpoint it will enter the deliberating
state. Robots in the deliberating state request the omnibrthe teammates that they encounter
regarding the state of the site preparation task (the ratmtinue to move about as though they
were still blind bulldozing while they are making a group @é&m). Robots that receive these
gueries respond with either a “yes” or “no” vote-messagdiciating that they either do or do not
believe that the subtask is complete. Based on these respdhe deliberating robots estimate the
apparent consensus, the proportion of their teammateaginaé that site preparation is complete,
and compare their estimates to the quorum threstigld,

Once a deliberator believes that quorum has been, met it asmithe committed robots con-
tinue to wander about, but now when they encounter a teamthateinstruct it to commit as well.

If a robot has not yet committed (i.e. it is in either the waiior deliberating states) and receives a
commit-message, it immediately enters the committed staderesponds with an acknowledgment.
This acknowledgment informs the sender of the commit-ngestzat it just encountered an uncom-
mitted robot. Robots already committed ignore the comn@ssages. Eventually, all of the robots
will commit, and so the acknowledgments will cease. Coneditbbots conclude that every other
robot has either committed or begun the next task once theedinte they last received an acknowl-

edgment reaches the preset commitment timefutThese robots leave the collective decision by
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Figure 4.6: All of the communication in the simulated taskmpletion experiments was local and
anonymous. The robots were circular, with their antennaatéx at their centers. Robots could
detect teammates when they were a short distaicaway, and their radio transmission ranges
were set to twice their radius plus twice the teammate detecange. In practice, although it
was possible for more than one robot to receive a particalntnate’s transmission, 95% of the
messages were one-to-one, and the remainder were mosttp-twe.

entering the finished state. At this point, they would bebrnext subtask in the mission.

4.3 Simulated Experiments

In this section, a series of simulated experiments examittie performance of unary decision-

making are presented and their results examined.

4.3.1 Environment

The simulated environment was implemented using the Teasnigen-source multiple-robot sim-
ulator [85]. At the time of writing, this package was no longepported. However, it still was
available online for download and its interface strikes adjbalance between simulation fidelity
and ease of development. A scene from a simulated trial caed® in Figure 4.4(a). The experi-

mental environment was a circular arena, 12 meters in dexnet

4.3.2 Robots

The 15 individual robots in the simulated experiments wéffergntial-drive platforms, 0.5 meters
in diameter. Each robot was able to communicate with its teatas via omnidirectional local
broadcast communication. The range of each robot’s rad#oshart enough that two robots’ hulls
had to be withird = 0.1 meters of each other in order for them to communicate. In theder
state, the robots moved in straight lines at a constant igland they would enter the reorient state

when an obstacle came withih= 0.05 meters of them on the forward-facing side. Because wheel
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slippage was not included in the simulations, the lengthpdith was calculated by multiplying the
time between reorientations by the robot’s velocity. RébdeFigure 4.6 for a graphical depiction of
these ranges. All of the communication was anonymous; thetsavere unaware of the identities
of the teammates that they encountered.

When apparent consensus was introduced earlier in thisstteslog and digital approaches
for its estimation were presented. Both of these were ilya&#&d in the simulated unary decision
making experiments. The analog approach utilizes a paiadables called the quorum and kin
indices that decay exponentially with time, and the precisif analog consensus estimation is de-
termined by the time constamt which sets the rate at which these indices decay. The greate
is made, the more slowly they decay and the more precisglig estimated. The digital approach
compute’, as the proportion of the most recent vote-messages received in response to a deliber
tor's queries that are affirmative. There is a fundameradiroff between the speed and accuracy of
consensus estimation [62], and so these two methods shamddge similar results when calibrated

equivalently.

4.3.3 Experimental Trials

Because the physical behaviours (and thus the commurgdastories) of the robots in this partic-
ular domain do not depend on their decision states — theyyalweve according to the blind bull-
dozing algorithm in Figure 4.3(b) — it was possible to run deseof generic simulated trials and
then reparameterize them offline to generate any desirefigooation of unary decision-making.
These generic trials were produced as follows. Whenevenet encountered a teammate, it would
broadcast a SEND-message. This message would include,itsslidell as a rolling 8-bit integer,
which would make the message uniquely identifiable. Thepiewt(s) of such messages would
respond with a RESP-message, which included the respanideranother rolling 8-bit number,
followed by the ID and 8-bit number that were in the originehd message. RESP-messages were
not responded to. For example, robot-1 might encounterrarteste and thus it would send the
message “SEND.1.47". Suppose that robot-8 received thisage. It would respond with the mes-
sage “RESP.8.117.1.4%7"Robot-8's response clearly can be identified as the respon®bot-1's
SEND-message by the inclusion of “.1.47". The times at whitkssages were sent and received
were logged along with the messages themselves. Addijponaots logged the distances that they
had traveled in a straight line whenever they entered theemtostate. 40 generic trials were run,
each lasting 50 000 simulated time steps at a resolution afiBi8econds per time step.

In order to reparameterize a generic trial to generate afgpenary decision-making trial, the
parameters had be specified. These included the length gfatmethat a working robot would
have to travel in the wander state in order to enter the dalilvg state, the quorum threshold,

(Q), eithern or 7 (depending on whether digital or analog consensus esbmatas to be used),

2This example assumes that these were tieattl 11 messages of the initial sender and the responder, resgigctiv
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Figure 4.7: Because the motion of the robots is independehed decision state, a single series
of 40 generic trials was run. In these, the robots sent genegssages to teammates as they were
encountered to which the recipients would respond withlanyitrackable messages. The lengths
of the paths traveled while in the wander state also wereddgdrhese generic logs were post
processed to generate unary decision trials with whates@mnpeterization was desired. This figure
illustrates a portion of a generic log on the left with a ppsteessed version of it on the right. The
first three columns of the two logs are: time of event, the tdlat logged the event, and the specific
event. The remaining columns are event specific data, suttfeasessage received or transmitted,
the length of a path, or the new decision state.

and the commitment timeout. With this information, and bguasing that each robot began in the
working state, a simple script could be written that wouldd¢hrough a generic trial’s log, step
the individual robots through the different states of a sieci and modify each line of the generic
log accordingly. Before a robot had logged a sufficientlydgath, all of its SEND-messages were
deleted, along with any RESP-messages sent in responsento @nce a sufficiently long path has
been traversed, the script would update that robot's statkeliberating, at which point all of its
SEND-messages were converted to QUERY. A response to a QURhanged (tracked via the
rolling integers and ID tags) to NO if the recipient was in therking state, YES if the recipient
was in the deliberating or committed states, or eliminatéoather if the recipient had entered
the finished stafe Via n or 7, a deliberating robot’s estimate 6f, would be recomputed with
the reception of each vote-message. Once this rea@hehle robot’s state would be changed to
committed. Committed robots’ SEND-messages were chamgsahtmit-messages, and the RESP-
messages of any uncommitted robots that received these charged to acknowledgments, in
addition to updating those recipients’ states to commit@oimmitted robots measured the amount
of time since they last received an acknowledgment (or dimeg entered the committed state prior
to the reception of any acknowledgments), and changeddts@ to finished once this had reached
the commitment timeouf.. The left half of Figure 4.7 illustrates a portion of a gendog (on the

left) along with a post-processed version of the same sefio the right).

3Finished robots did not respond to messages from teamnsites,in the general case, beginning the next subtask might
move them out of communication range of their teammates.
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Figure 4.8: As the quorum threshold increases, the obsequedim also increases. This occurs
because the quorum test delays the beginning of the commiitp&ase of a decision until a suf
ficient proportion of the robots have detected task comgeftor the quorum test to be likely to
be positive. Increasing or 7 decreases the likelihood of false-positive quorum tesyjltimg in a
greater observed quorum. Note that both the analog andbégiproaches to consensus estimation
produce similar results.

All of the reparameterized trials used a minimum path ledttl meters. Estimates of apparent
consensus were computed digitally usingqual to 5, 10, 15, 20 and 25 teammate opinions, and
using the analog approach withequal to 100, 200, 300 and 400 seconds. The values 20%, 40%,

60% and 80% were used for the quorum threshold for each of thiee configurations.

4.3.4 Resultsand Discussion

The results of the unary decision-making experiments cotediin simulation are discussed here in
two parts. First, quorum testing performance is examingithed by an analysis of the commit-

ment phase of the decision-making process.

Quorum Testing and Consensus Estimation

The individual robots cannot precisely measure the appaogrsensus present amongst their team-
mates, and s, is noisy. Therefore, the actual consensus present in ansystine time of commit-
ment will vary somewhat. To distinguish this from some desiquorum, or the precise value of the
qguorum threshold, the terobserved quorurns used here to denote it. Note that observed quorum is
measured in terms of true consensiig,which is equal toye, whereag’,, is an estimate ofie=!,
so some discrepancy should be expected between the twotheealatively small population size
of the simulated MRS used in these experiments.

Earlier in this thesis, when consensus estimation and quadesting were introduced, it was
suggested thap be chosen so that it was somewhat higher than the desiredmudior example,
whenn = 15, a value of@ = 80% was suggested to test a quorum of 50%. However, the selection

of Q based on the quorum andor 7) is heuristic, requiring a subjective judgment on the pathe

65



Prediction of Observed Quorum Versus Quorum
Threshold, Population Size = 15 Robots
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Figure 4.9: This figure presents a theoretical predictiothefrelationship between the observed
guorum and the quorum threshold for a multipddot system of the same size as the one used in
the simulated experiments. The analysis used to produsdighire assumes that the rate at which
vote-messages can be gathered is insignificant, but thisiatathe case in the experimental trials.
This difference explains the discrepancy between thisrgignd the real data plotted in Figure 4.8
for lower values of)).

system designer. For this reason, results are presentedesgipect ta), rather than some specific
guorum that might have been intended by the combinatid@p ahdn (or 7).

Figure 4.8 plots the mean observed quorum vetgder each value of: andr. Increasing?
increases the observed quorum, demonstrating that theuneufar a decision can be satpriori
using both analog and digital consensus estimation. Fig@@lots a theoretical prediction of the
relationship between observed quorum and the quorum tbiicssihich appears very similar to the
experimental results. There is one notable discrepaneydsst the theory and the reality, though.
Figure 4.9 suggests that the observed quorum veisusirves should meet whe®@ = 0 and
diverge ag increases, but the curves produced from the experimerteddanot have a common
y-intercept.

This difference occurs because the predicted curves dakeirito account the time required by
the robots to gather the vote-messages, only the increaseigipn inC,, due to the greater number
of vote-messages used in its calculation. As the number w-re@ssages required to compute
C. increases, so does the time required to compute it. Duriisgoéiriod of time, consensus will
tend to increase as additional robots enter the delibgratate. This accounts for the curves each
having a different y-intercept. The amount by which the loiating population size will tend
to increase during the period of time necessary to receiw®te-messages depends heavily on
the specific decision, the domain in which it is made, and timis themselves, hence its not
being accounted for in the theoretical prediction. As cosss increases, so does the number of

robots simultaneously estimating the apparent conseasusso the likelihood of at least one of
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Figure 4.10: As the quorum threshold is increased, theilikeld of a robot prematurely committing
decreases, which means that commitment will tend to be ddlagtil more robots have entered the
deliberating state. This results in an increase in the leafjthe deliberation phase of a decision. As
n or 7 is increased, the precision @, increases, and so the value@tas a greater impact on the
robots’ deliberation time. The timeost of deliberation is independentobr + whenq is zero (the
y-intercepts of these plots) because, regardless of thésfe with whichC, is estimated(, > Q
always will be true, and thus quorum always will be satisfied.

them concluding that quorum has been satisfied increagesThis explains why the experimental
curves bear a closer resemblance to the theoretical pi@BcisQ increases. If the rate at which
the working robots were to enter the deliberating state wastantially reduced, so that the time
required by a robot to collect teammate opinions becamgrifgiant, a much closer resemblance
between Figures 4.8 and 4.9 would be obtained. A detailecrigi¢ion of the derivation of Figure
4.9 is provided in Appendix A.

As the quorum threshold is increased, in turn increasingbserved quorum, the onset of the
commitment phase of a decision is delayed until a greateulptipn of robots have entered the
deliberating state. This will tend to increase the religpidf a decision, since it will be predicated
on a larger number of independent conclusions that the miutask has been completed. Increasing
n or 7 increases the precision of the robots’ estimates of appeosisensus, reducing the likelihood
of false positive quorum tests, and therefore reducingikedithood of premature commitment.

Because the commitment phase is delayed until the delibgrpopulation has become suffi-
ciently large, the system will spend a greater period of timihe deliberation phase waiting until
quorum is satisfied. Figure 4.10 plots the mean deliberdtine of the robots versus the quorum
threshold. The deliberation time is computed as the perfadme from the beginning of a trial
to the beginning of the commitment phase. Increasing thewmpdhreshold increases the robots’
deliberation time because this increases the thresholdnichw?’, is compared to test quorum. In-
creasing the precision @f,, accomplished by increasingor r, decreases the likelihood of a robot
overestimating”,,, which in turn decreases the probability of prematurely gotting. This is why

the slopes of the regression lines in Figure 4.10 increatdewand . Independent of the time
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required to gather the additional votes necessary to capytincreasing: or  for a given que
rum threshold will increase the consensus likely to be prieaethe time of commitment. Each of
the robots will be less likely to compute a false positive mumw test, since”,, will more closely
resemble’,.

The lines all meet af) = 0 (the y-intercept), since this quorum always would be satiséis
soon as a robot entered the deliberating state, indepenfiéimé precision with which apparent
consensus is estimated. A robot usipg= 0 will enter the committed state as soon as it detects task
completion. The deliberation time correspondingic= 0 in these figures is not zero as might be
expected, because the manner in which the deliberationwiasedefined includes the short period
of time at the beginning of each trial before any of the rologt®cted task completion. The average
time at which the first robot entered the deliberating stade M3 + 84 seconds, and it is here that

the y-intercepts occur.

Commitment Following Quorum Satisfaction

The role of the quorum test in a unary decision is to ensuredahdesired minimum degree of
consensus (the quorum) exists in favour of the proposedhalige to thestatus qudoefore it unan-
imously is adopted. Once one of the robots believes thatrappaonsensus has satisfied quorum,
it enters the committed state, initiating the commitmerdgghof the decision. The sole purpose of
this final phase is to ensure that the members of a dec-MRSgakéecision unanimously adopt
the proposed alternative. In general, single-hop globahdcast communication is either unavail-
able or impractical in a dec-MRS. Furthermore, since théviddal robots move about relative to
each other (stirring their system), and because they amareaof each other’s identities, explicit
message-routing is impractical. The commitment phaseithogyanized as a gossip-style process
[10], an approach borrowed from sensor networks reseafchnd well-suited to dec-MRS.

Robots enter the committed state either because they bah@t quorum has been satisfied,
or because they receive a commit-message from one of theiméted teammates (Figure 4.5).
When an uncommitted robot receives a commit-message, ponels with an acknowledgment.
Robots start a timer once they enter the committed statethéss reset whenever they receive an
acknowledgment to a commit-message. If a committed roliotsr reaches a preset limit, called
the commitment timeoutenoted byT,, it enters the finished state and exits the decision-making
process. Once all of the robots have committed, acknowledd¢sio commit-messages cease, since
only uncommitted robots send them. Thus the robots’ intemmeers no longer will be reset, and
they will all exit the decision as each of their timers red¢hunanimously adopting the proposed
alternative to thetatus quo

Because gossiping, and therefore the commitment phasetaslaastic process, the probability
of failure (e.g. some robots not receiving a commit-messagere all of the committed robots exit

the decision) will always be non-zero. In situations in vhicutual exclusivity is not a concern, the
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Performance of the Commitment Phase
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Figure 4.11: The role of the commitment phase is to inducefalie robots to accept the proposed
alternative unanimously. Committed robots instruct emtered teammates to commit, and they re
set a timer every time an uncommitted teammate is met. Onemanéted robot’s timer reaches the
commitment timeout, it enters the finished state, exitirgdhcision. As the commitment timeout
is increased, the probability of commitment reaching athefrobots increases. In order for mutual
exclusivity to be respected, all of the robots must be inegithe advocating or committed states
before any committed robot can exit the decision.

commitment phase can be said to fail whenever one or moreeabthots are left in pre-committed
states after all of the committed robots have entered thehiil state, as this would cleave a dec-
MRS into two: one group having adopted the proposed charntpe status qupand the other having
not. If we assume that robots halt their work on the curresk t& soon as they enter the deliberating
state, mutual exclusivity will be satisfied only if all of th@bots are in the deliberating or committed
states before any robot enters the finished state. It woyddrttbon the specific mission at hand how
important mutual exclusivity was to its success.

The probability of the commitment phase achieving unanjinot satisfying the more strict
criterion of mutual exclusivity is improved by increasirfgetcommitment timeout],.. Several
different commitment timeouts were implemented by repatanizing the generic simulations, and
the percentages of these trials that achieved unanimitgteafied mutual exclusivity are plotted in
Figure 4.11. Both curves increase rapidly at first, but dighiimg returns are encountered. 100%
of the trials ended unanimously and satisfied mutual exdtysivhen the commitment timeout was
180 seconds or greater. The median period of time betweendaridual robot’'s encounters with
teammates in the simulations was 21.75 seconds, with ficstlard quartiles equal to 10.55 and
39.90 seconds, respectively. Thus a 180 second commitimesdut corresponded to approximately
4 to 17 teammate encounters per robot.

The time required to complete the commitment phase is veeali with respect to the commit-

ment timeoult, illustrated by Figure 4.12. This means thantimber of messages sent by the robots
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Duration of Commitment Phase
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Figure 4.12: Increasing the length of the commitment timéocreases the reliability of the com
mitment phase of a decision, as illustrated by Figure 4.0l jtkalso increases the duration of the
commitment phase. As shown here, this increase is lineacalg® committed robots tell every
teammate that they meet to commit (since they cannot discegammate’s decision state through
observation), the longer the commitment phase lasts, thre pmmmit-messages will be sent.

during the commitment phase also increases linearly withmiament timeout, since committed
robots send commit-messages to every one of their teammhatiethey encounter. The longer that

a robot remains in the committed state, the more commit-agessit will send.

4.4 Physical Experiments

Experiments with real robots also were conducted to examiray decision-making for task-
completion. As was the case for the simulated trials, thesiglay experiments were carried out

in a domain that mimicked that of blind bulldozing as the teeskched its completion.

441 Environment

Figure 4.4(b) depicts a photograph of the experimentalrenment in which the physical experi-
ments were conducted. It consisted of a hexagonal arenasidits 2.75 meters in length. Although
not circular, it was sufficiently round to approximate a Hliulldozing environment near the com-
pletion of the task. Just like in the simulated experimethts,environment itself was static and no

actual collective construction was carried out by the rebot

4.4.2 Robots

The robots used in the physical experiments were custothéifierential-drive platforms. Refer
to Figure 4.13 for a picture of one. The robots’ hulls werewliar, 0.26 meters in diameter. Each

of the robots utilized an omnidirectional bump sensor teedeencounters with teammates and
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Figure 4.13: This figure shows one of the robots used in thesiphlyexperiments. Each robot
possessed a circular bump sensor that permitted it to defbstacles. At the rear and top of the
robot is an 802.11B radio, which it used to communicate wglidammates when making a group
decision.

the site’s walls, and they communicated with each othergu8itil.11B wireless Ethernet. The
physical environment was too small relative to the transioisrange of 802.11B for inteobot
communication to be local, so local communication in a vgélired MRS was simulated as follows.

When a robot in either the advocating or committed stateswamtered an obstacle (they were
unable to discern their teammates from the walls), a teamisd®-address was randomly selected
from a list that was supplied to each robot at the beginningheftria. A query- or commit-
message would then be sent to that address via TCP. Theartoidithe message would then send
its response to the message back to the initial sender’sidireas. In this way, the robots often
would exchange messages when they were not physically aeach other, but the net behaviour
of their communication was equivalent to local one-to-oammunication in a well-stirred MRS.
The only difference was that the communication was randedtizrough IP-address selection rather
than random robot motion. Although the physical robots lagahiity information available to them
about their conversation partners, it in no way contribuiteitheir decision-making behaviour.

In order to determine the lengths of their paths, the rob@asured the time between reorienta-
tions. As was the case in the simulated trials, a robot wontdrehe deliberating state once the time
between two consecutive reorientations exceeded a phesshbld. In all of the physical trials, the
robots traveled at a constant speed of 0.2 meters per sethizdneant that wheel slippage would
introduce noise into the determination of task completignte individuals, a realistic addition to
the trials. The robots were programmed to enter the delingratate once they had remained in
the wandering state of the blind bulldozing behaviour forenthan 20 seconds, corresponding to a

path approximately 4 meters in length.

4Each robots knew its own IP-address, and so they would newel messages to themselves.
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Observed Quorum Versus Quorum Threshold
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Figure 4.14: This figure plots the observed quorum versusjtioeum threshold from the experi
ments with real robots. The data plotted here are very sinoléghat shown in Figure 4.8. As the
guorum threshold is increased, the observed quorum ireseamce the robots are less likely to
overestimate&”, and prematurely commit until a sufficient proportion of theammates also have
concluded independently that the blind bulldozing tasloimplete.

4.4.3 Experimental Trials

Based on the analysis of Chapter 3, and the results of thdatieauexperiments, it is appropriate
to conclude that the analog and digital approaches to censesstimation generally are equivalent.
For this reason, only digital consensus estimation wasamphted in the physical experiments. The
reader is encouraged to view these results as a test of amusytonsensus estimation in general:
analog and digital. A series of experimental trials was ruth W1 robots, varying the quorum
threshold over two values of 5 and 15.

These trials were selected to illustrate the effects oédéfiit quorums and varying the precision
of consensus estimation on the collective decision-makiogess in a physical implementation.

The commitment timeout was held constant at 60 secondslfof thle trials.

444 Resultsand Discussion

The observed performance of the real robots agrees withrthdated results presented earlier and
reinforces the conclusions that were drawn from them. [eigut4 plots the observed quorum versus
the quorum threshold for the physical trials, and Figur&4lbts a prediction for this data given the

population size of the MRS employed. The latter figure waslpeced in the same manner as Figure
4.9, the details of which are given in Appendix A. Once agtia,observed quorum increases with
the quorum threshold. In the physical experiments, thetsootemded to enter the deliberating state
more rapidly than they did in the simulations, and this actetor the curves’ greater deviation from

the theoretical predictions whe&p was low when compared with the simulated results. The same
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Prediction of Observed Quorum Versus Quorum
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Figure 4.15: This figure plots the predicted relationshipmeen the observed quorum and the quo
rum threshold for an 11-robot system, the same populatimas was used in the physical experi-
ments, for the same valuesmwthat were employed. The actual observed quorum measunadtfie
physical experiments is greater than the theory predietsicqolarly for lower values of), because
the theory does not take into account the time required bydhets to obtaim vote-messages.
During this time, additional robots will tend to enter thdierating state, increasing the observed
qguorum for a decision. If the rate at which robots were to etiite deliberating state was reduced,
the data in Figure 4.14 would more closely resemble thatgadiere.

explanation as was given in the discussion of the simulagsdltis applies here, too. If the rate at
which the individual robots detected task completion wasekgsed (i.e. increase the required time
between reorientations that would cause a robot to con¢hatdhe task was complete) relative to
the rate at which they collected teammate opinions, a clkesemblance between these two figures
would be observed.

Figure 4.16 plots the mean deliberation time versus theuqudinresholdg), and the relationship
shown is very similar to that predicted by the simulationigjfiFe 4.10). When the robots used 15
vote-messages to estimate the apparent consensus, thmrateld for longer than those that used
only 5, since they were less likely to commit prematurely tuéhe greater precision with which
they were able to estimate,. The regression lines meet when quorum is zero. In the phltsials,
it took 31.0 + 10.4 seconds for the first robot to conclude that the bulldozisg t®as complete and
enter the advocating state. The y-intercepts of the reipresines in Figure 4.16 are 33.8 and 33.5
seconds, which agree with the length of this initial periogvhich all of the robots still were in the

working state.

45 Summary

In this chapter, the concept of a unary decision was intredudn a unary decision, the decision

made is whether or not to adopt some new belief in place o$thteis quo Despite its simplicity,
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Deliberation Time Versus Quorum Threshold
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Figure 4.16: The trend of the mean observed deliberatioa tifithe real robots very closely resem
bles that of the simulated trials, given in Figure 4.10. &aging quorum increases the deliberation
time, since commitment is delayed until sufficient robotsadvocating in order to satisfy quorum.
Given a particular quorum, increasing the accuracy of th@am test {) increases the deliberation
time, too, because it raises the precision of consensusasin, decreasing the chance of premature
commitment. The regression lines have a common y-intetoeqause a quorum of zero is always
satisfied, so the deliberation time in this case is indepetofe:.

a unary decision is very useful cognitive operation. Mangbtems in robotics request a robot
to carry out some action when a prespecified condition isfeadi. A unary decision, then, asks
whether or not that condition has been met. In other wordasputecision-making represents a kind
of collective if-then operation. Another fundamental desb encountered in dec-MRS is system
cohesion; ensuring that all of the robots share commonflel#ithout cohesion, the robots that
compose a dec-MRS become more likely to interfere with edlebrpsince they might each base
their choice of action on very different beliefs. Unary dgens enable dec-MRS to synchronize
their adoption of new beliefs, and these are adopted basadwnthesis of the robots’ independent
conclusions.

The experimental results presented in this chapter demateshat the biologically inspired de-
centralized decision-making framework of this thesis caratlapted to unary decision-making by
dec-MRS. A particularly useful application of unary degisimaking is the collective task transition
problem, which also was introduced. Analog and digital iempéntations of anonymous consensus
estimation were studied, and they were found to functiorivedgntly. The commitment phase of
the decision-making framework, which amplifies an indidttobot’s detection of quorum and pro-
motes unanimity in a collective decision also was analyzgegementally, and the results illustrate
the tradeoff between the success of the commitment phasthariine required to achieve it as a
function of its parameterization. It was shown that bothniméty and mutual exclusivity can be

satisfied by the commitment phase.
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Simple robots can indeed measure the consensus preserngstrtiair teammates, and use this
to determine whether or not a proposed alternative tstdeis qushould be adopted. Traditionally,
each robot in a deMRS bases its decisions on its own perception of the worlg b&sing these
decisions on the satisfaction of a quorum, the robots cagrdge their redundancy rather than be
victimized by it, an inclusion that is computationally wittreach of even the most simple mobile
robots. Even without the unifying commitment phase, quotasting on its own is sure to have
many applications in decentralized intelligent systems.

The commitment phase of a decision is triggered once oneeofdabots believes that quorum
has been satisfied. This phase amplifies the belief that quisrsatisfied by inducing the remainder
of the system’s robots to commit as well, and thus a unanindegssion is made. It is through
coupling of the two behaviours — consensus estimation amthtdtment — by the quorum test
whereby intelligent cooperative decision-making emerges

In a unary group decision, the decision makers passivelysureaconsensus, its value set by
the number of robots that independently have reached the santlusion. In the next chapter, the
decision-making framework is extended to solve the bedt-decision-making problem by adding
iterative recruitment to the robots’ deliberation. Thigl#idn enables them not only to estimate
consensus, but also to influence it through their activeurenent of their teammates to the various

known alternatives in a decision.
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Chapter 5

Collective Best-of-N
Decision-M aking: The Site Selection
Problem

In this chapter, collective besif-N decisions are demonstrated utilizing the proposezisitan-
making framework in a site selection environment. The apgihaised here extends the simple unary
decision-making framework presented in the last chaptentogducing positive feedback into the
deliberation phase via iterative recruitment. This addignables several different alternatives to be
compared by the robots so that the best one can be identifiesbdected. Experiments are presented
that were carried out in both simulation and with real rob®tseir results demonstrate that best-of-
N decision-making is practical in a dec-MRS using the pregdsamework of this thesis, and that

accurate decisions can be made, even in the presence oBeoising on the parts of the individuals.

5.1 Introduction

In the previous chapter, it was shown that a dec-MRS couldenzakintelligent group decision
based on the collected opinions of its robots through tloe@llone-to-one interactions. The robots
accomplished this feat by estimating the consensus preseomngst their teammates in favour of
some proposed alternative to thatus quoadopting it only once the consensus reached a preset
guorum. These unary decisions were decisions of a yes/noenafThat is, the robots decided
whether or not a single proposed alternative should reptaestatus quonot what the alternative
should be.

Unary decisions have many applications, such as colldgtimaking a decision about the state of
a group task€.g.whether or not the task has been completed), but not allidesisan be captured
by that model. A much more general approach to decision4mgakithe best-of-N framework, in
which one of several proposed alternatives must be selectadimously by a group. Rather than
“whether or not”, best-of-N decisions ask “which one”, ahtithese decisions that constitute the

focus of this chapter.
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Figure 5.1: This flowchart illustrates the bedtN decision-making framework, which is organized
into three phases. In the initial searching phase, robatxkdor candidate solutions, calletter-
natives Upon finding an alternative, a robot will enter the advaugstate favouring it. The advo-
cating robots iteratively recruit each other at a rate deiteed by their opinions of their favoured
alternatives’ qualities. Better alternatives induce nfoeguent recruitment, and so over time, the
proportion of the system that favours the best alternatilléemd to increase. Eventually, one of the
advocating robots will conclude that the proportion of @arhmates that also favour its alternative
has reached the quorum, which triggers the commitment phashis final phase all of the robots
commit to the quorum-satisfying alternative. Once no mareammitted robots can be found they
exit the process, having unanimously chosen the best oftématives that was found.

In some circumstances, the candidate alternatives in sob@$tlecision are knowa priori. For
example, consider a swarm of robots encountering a fork ad along which they are traveling.
The decision facing this system would be to choose the apiatepath from the two presented
to it. In this best-of-N decision, the two alternatives webble known at the outset, but it would
remain to identify the best one. However, there are mangtsitns in which the available solutions
to a problem will not be knowa priori, and so the solutions must be found as part of the decision-
making process. In such cases, the alternatives must levdisxl, researched, and then one chosen.
It is this sort of best-of-N decision-making that is addessi this chapter.

Best-of-N decision-making requires a somewhat differgygraach than to unary decision-

making. In a unary decision, each robot makes an individealsibn about whether or not the
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proposed alternative should replace gtatus quo An individual that has decided that the status
quo should be replaced collects the opinions of its teanertatdetermine how many of them also
have arrived at the same conclusion. Once a robot belieae it proportion of its teammates that
agree with it has reached a preset quorum, the commitmesepbkadriggered and the decision is
completed. In other words, unary decisiorakers make independent decisions and then wait for a
prespecified proportion of their teammates to do the same. ifAdividual deliberators in a unary
decision do not influence other robots’ opinions; they obsénem. In a best-of-N scenario, this
sort of behaviour would lead to poor decisions and oftenngtign. For example, if each individ-
ual decided to favour a different alternative, each of themalah observe an apparent consensus of
zero. A non-zero quorum would never be satisfied if this weredcur, and so the decision would
stagnate. Furthermore, an obvious but poor alternativéinig discovered by a disproportionately
large number of robots and get selected, even though bédttenatives had been found, albeit by
fewer robots.

Instead, the various alternatives should be compared smméinfortunately, this would be an
expensive operation if each and every alternative was dereil by every robot. It also would be
wasteful, since much time and energy would be spent by ewdrgtrcommunicating/considering
alternatives that ultimately would not be selected. Thettee recruitment behaviour of honeybees
andTemnothoraants described earlier in this thesis, however, enabletsd sendidate alternatives
to be compared by a decentralized systnthe system levelRefer to Figure 5.1 for the follow-
ing discussion. After the initial searching phase, seveiférent alternatives will be known to a
dec-MRS, and each robot will favour at most one of them. Sofrteeorobots might not find an
alternative, or perhaps they did not participate in thecearhese robots are represented by the idle
state included in the searching phase.

The deliberation phase, which consisted of a single behaaigtate (deliberating) in the unary
decision-making algorithm (Figure 4.5), is expanded in st4oé-N decision to contain two states:
advocating and researching. It is iterative recruitmeec{®n 3.3) during the deliberation phase
that collectively compares the known alternatives, idging the best one. An advocating robot is
said to favour an alternative, and recruits other robotsstéavoured alternative as they randomly
are encountered. Once recruited, a robot enters the rbsegstate to evaluate the quality of the
alternative to which it was recruited. After it has ascrilaegluality to the alternative, a researching
robot then enters the advocating state favouring the atis) and will recruit additional robots to
this alternative. The rate at which the advocating robdengit to recruit their teammates is tied
to their opinions of their favoured alternatives. The higimequality an advocating robot believes
its alternative to be, the more frequently it will attemptrerruit others. Therefore, the better
alternatives will tend to increase in popularity while thaoper ones will be forgotten altogether.

Simultaneously, advocating robots also estimate appaozisensus and compare their estimates

to the quorum threshold in order to test quorum. Unlike tHédeators in a unary decision, advo-

78



cating robots in a besif-N decision cannot assume that the other advocatingtsadbfavour the
same alternative. Each advocating robot estimates apparesensus only for the particular alter-
native that it favours. If it is recruited to favour a differtealternative, it will compute”, only for
the newly favoured one. Once one of the robots believestieapparent consensus for its favoured
alternative has reached the preset quorum thresfplthat robot will commit to its alternative, and
enter the committed phase of the decision.

Committed robots instruct every teammate that they enesdatcommit as well, just like in
a unary decision, eventually exiting the decision when the@yonger receive acknowledgments to
their commit-messages. Very rapidly, the entire dec-MRIBba induced to commit to the same
alternative, thus unanimously selecting one of the alteresfound during the initial search. As a
direct consequence of the positive feedback in the deliltoerphase, the best alternative will be the
one most likely to induce a robot to commit first, and so the mdment phase tend to will bring
about the unanimous adoption of the best alternative. $nthly, the best of the N alternatives found
by a dec-MRS will be selected by the system as a whole.

However, because there are multiple alternatives in a dfelst-decision, and because each
robot’s estimate of apparent consensus will contain sonoe, érwill be possible for more than one
of the alternatives to induce commitment. A committed rabat best-of-N decision will change
the alternative to which it is committed if it receives a coiimessage specifying a different alter-
native. When more than one alternative induces commitnagpériod of attrition will follow, and
the alternative with the greatest number of committed retdlt tend to be selected in the end. That
particular alternative is most likely to be the one that ioelll commitment first, which again will

tend to be the best one.

5.1.1 The Site Selection Problem

Best-of-N decision-making can be applied to many diffepmoblems, but to demonstrate its per-
formance in this work, the site selection domain is used.hlg problem, introduced in [57] as
“collective relocation”, a dec-MRS has decided that itsrent home base has become inadequate
(perhaps with a unary decision), and so a new one must be fothelrobots do not know of any
sites for a new basa priori, but several are located in the surrounding environmenées&tmust
be discovered by the robots during the initial search, wipighulates a menu of alternatives from
which exactly one will be selected. Figure 5.2 illustratessnaulated site selection environment.
The deliberation phase identifies the best alternative éndiécentralized menu of alternatives
via its iterative recruitment. A recruited robot must tristeethe site communicated by its recruiter
in order to determine the site’s quality for itself. Site tityacould be a function of several different
cues depending on the specific problem at hand. For exammpéerabotic mission to the planet
Mars, a dec-MRS might have to set up infrastructure for a latenan mission. One task in such

a mission might be to erect a solar array to generate elaggtf40]. In this case, the robots would
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Figure 5.2: This figure presents a screenshot from a sintulastof-N decision-making experi-
ment in the site selection domain. The black square in theeceif the environment is the robots’
initial home base, and the squares in the corners are cdadidas from which the robots must
select a new base. The small black circles are the robotsstiees, and the arcs represent the
ranges of their vision. One of the robots in this scene favthe upper right site, and is leading a
teammate that it has recruited to it so that the recruit capant the site for itself. The rate at which
the site-favouring robots recruit is based on their opirobsite quality, so the best site will tend
to attract recruits more rapidly than the others, makingétmost likely site to be selected by the
decision’s end.

need to find a site in their environment that would receiventiost sunlight, while also being stable
enough to support the array. In a security application, gesysnight have to choose locations at
which to place surveillance cameras or other such equipmeanmtier to maximize the equipment’s
effectiveness. Regardless of the specific scenario, aradseg robot would have to evaluate the
candidate site to which they were recruited and determinigdfelf the site’s quality.

Being a domain with spatially distributed alternativese(fites), both on-swarm (Section 3.4.2)
and off-swarm (Section 3.4.1) quorum testing could be eggalo When quorum is tested on-
swarm, the robots estimate apparent consensus by explieduesting vote-messages from their
their teammates as they are encountered. When quorum ésl teftswarm, robots estimate the
number of robots that also are present during a visit to afi@asite. Both of these strategies were
investigated in the experiments presented in this chapter

Independent of the manner in which quorum is tested, oncbkat believes its favoured alterna-

tive has satisfied quorum, it will commit to the alternatilieginning the commitment phase of the
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collective decision. As the committed robots exit the decidy entering the finished state, they
relocate to the site to which they most recently were coneajtadopting it as their new base. At
the end of a successful site selection decision, the roliatslishave relocated to the best site that

was found during the initial search.

5.2 Simulated Experiments

Analytical investigation of this decisiemaking behaviour is difficult, and therefore an empirical
approach is employed. In this section, a series of simulktpdriments are presented. These exper-
iments investigate the effects of population size, quoanm,the mechanism of iterative recruitment
on best-of-N decision-making behaviour in the site sedectiomain. Additionallypff-swarmquo-
rum testing is demonstrated in the simulations (refer tdi®&e®.4.1 for a discussion of off-swarm
guorum testing). This is an approach to quorum testing tbaety resembles the reported behaviour

of the honeybees and ants that inspired this work.

5.2.1 Environment

As described earlier, the site selection environment éositseveral sites, and these are the alter-
natives for the robots’ best-of-N decisions. A screenstmnfone of the simulated trials is given
in Figure 5.2. Like the earlier simulations, these were enpnted using the TeamBots [85] MRS
simulator.

The simulated environment was a square enclosed regioruneg24 meters per side. In its
center was the robots’ initial home base, where recruitraedt commitment actions took place.
Equidistant from the base were either two or four candidi#s,sdepending on the trial. Each of
these sites had a different quality that the robots were tabdietermine by visiting it. Site quality
measurement was error free in the simulations, meaningetreaty robot that visited a given site

would ascribe to it the same quality.

5.2.2 Robots

The robots in the simulated experiments were the same as itntse unary decision-making trials,
except that they were able to see further to allow them tockefar sites and test quorum. Each
robot’s vision had a range of four meters and a 180 degreedfalabw with its center aligned with
the robot’s front. The areas visible to each robot are remtes! by the semicircular arcs in Figure
5.2. All of the inter-robot communication was local and doesne.

Four of the robots began each trial in the searching statde whre rest of their teammates
remained in the idle state, wandering about the initial bdse searching robots, also referred to
asscouts would search the environment for sites by following randeatks, moving in a straight
line for a random period of time followed by a reorientatioratrandom heading. The robots were

confined by the boundaries of their environment. When a chatelisite was found by a scout,
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it would head towards it and ascertain its quality. Next, lbotavould enter the advocating state
favouring that site, and spend a short period of time wandeabout it in order to test quorum.
Finally, the robot would return to the initial base to rete of its teammates. Clearly, the size of
the menu of alternatives over which the robots would detiteedepended on the number of robots
that participated in the initial search. Each ¢dBRS deployed the same number of scouts (four)
so that the observed decision-making ability of each MRSlwvaot be affected by the ability of a
given system to conduct a more or less thorough search. Takestnsystem contained only four
robots, so a searching population of this size was used iy eve of the simulated trials.
Advocating robots periodically return to their favouretksito wander about and test quorum
before heading back to the base to recruit again. Once artatbrdelieves that its site has satisfied
guorum, it enters the committed state (still favouring ite)s returns to the base and instructs the
rest of its teammates to commit to its site as well. The detsilquorum testing, recruitment and

commitment in the simulated experiments are provided imth three sections.

Off-Swarm Quorum Testing

Much of this thesis focuses on quorum testing that is camigdn-swarm(Section 3.4.2), in which
the advocators actively query the robots that they encouatascertain what proportion of their
teammates agrees with them. This is because on-swarm questing is practical in a wider variety
of domains. However, in the simulated best-of-N decisicakimg experimentoff-swarmquorum
testing (Section 3.4.1) was investigated. When a robad tasbrum for its alternative off-swarm, it
does so at some unique, well-defined location that all ofdbets agree corresponds to the specific
alternative favoured by that robot. This means that offrsavguorum testing only is practical in
certain spatial domains like site selection, since ead@mrativeis a unique, well-defined location.
During site selection, the advocating robots spend somagption of their time visiting the sites
that they favour. These periodic visits occur immediatéigraan advocator has led a recruited robot
to its site (discussed in the next section), or after it haheable to find a teammate to recruit at
the initial base. While at its favoured site, the robot ceithe number of other robots that also are
there. The robots all are identical in appearance, so talaminting teammates more than once in
a quorum test, the advocators compute their tallies of teaesras the greatest number of robots
that they observe simultaneously during a particular ¥@s# site. A robot that is testing quorum
assumes that the other robots that are visiting the sitdhare because they also favour it. The size
of the population visiting a site is correlated to the sifgpularity within a dec-MRS, since all of
the robots that favour particular a site will visit it periodlly. An off-swarm quorum test concludes
that quorum has been satisfied when the estimate of a sit{mgi population is greater than or
equal to the quorum threshold. Note that, because off-swaierum testing is based on an absolute

count of robots rather than a proportion, the quorum in taseds not a real number [0, 1], but
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instead an integet [0, N — 1]}, whereN is the population size of the dédRS.

I ter ative Recr uitment

Itis the process of iterative recruitment that modifies trapprtion of the robots in a dec-MRS that
favours the various known sites, promoting better sites pwerer ones. This in turn increases the
likelihood of a robot that favours the best known site betigithat quorum is satisfied, and therefore
committing to it before a robot that favours a poorer sitesd@dnerefore, the best site found will be
the one most likely to be selected by the entire dec-MRS. Badhdhe idle state can be recruited, as
can robots in the advocating state. After an advocator hased to the base but before it attempts
to recruit one of the robots there, it will delay for a certp@riod of time and wander about there. It
is during this delay prior to recruiting that advocatingethare themselves recruitable.

When a robot recruits a teammate, it leads its recruit tcaistred site in a follow-the-leader
fashion (refer to Figure 5.2 for an example). This mimicstdmedem-running of th&emnothorax
recruitment behaviour, which allows a recruit to learn theakion of the site to which it is being
led [32]. In the context of a general best-of-N decisions théhaviour is analogous to an advocator
explainingits favoured alternative to its recruit so that the recraib @valuate the alternative for
itself. Once an advocator has begun to recruit a teammatagdivocator no longer will be recruitable
until it next returns to the initial base. This prevents aatdioom abandoning a recruitment already
in progress if another advocator attempts to recruit it.hie gsimulations, four versions of iterative
recruitment were investigated, referred to in this thesigeatraintive discriminative hybrid, and
unbiasedecruitment. They implement the positive feedback of theattive recruitment process in
different ways, modifying the behaviours of both the advimgarobots and those recruited by them.

Restraintive recruitment is a more descriptive name foitdrative recruitment strategy as it was
described earlier in this thesis in Section 3.3.2. Undex thodel, it is the amount of time that an
advocator delays prior to recruiting a teammate that is rfateld to promote better sites over poorer
ones. Thevorsean advocator believes its favoured site to be, the longeillitelay. As a result,
recruitment towards the better sites will tend to be morgudeat, and those robots advocating for
poorer sites will be more likely to be recruited (to bett¢es) since they spend a greater proportion
of their time delaying in a recruitable state at the initiabb. When a robot is recruited under this
model, it immediately forgets any previously favoured mtdive and adopts whatever site it was
led to by its recruiter as its new favoured alternative. Bseathe recruitment tends to shift robots
that favour poorer sites to better ones, the poorer alteasatre the most likely to be forgotten by a
dec-MRS, increasing the apparent consensus in favour of the bettes. o

Contrasted with the restraintive approach is discrimirgatécruitment. Here, an advocator’s be-

haviour upon returning to the initial base is independetihefquality that it ascribes to its favoured

1The robots do not include themselves in their counts, scfyest quorum that could be satisfiedVis— 1.
2The memory of a dec-MRS can be thought of as the union of its meeshmemories. Once the last robot favouring a
particular site forgets it, the MRS as a whole forgets it.
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alternative. They delay for a constant period of time befitempting to recruit a teammate, and
so discriminative advocators are equally likely to recta#immates independent of the quality of
the site that they favour. They also are equally likely to éeruited, since they all spend an equal
proportion of their time in a recruitable state. Preferefocdetter alternatives is expressed instead
by the recruits themselves. Rather than automaticallyefitirgy about some previously favoured
alternative, a recruited robot waits until it has evaludtesl site to which it was led. If a recruit
believes that the site to which it has been led to is worse timenthat it previously favoured, the
proposed alternative will be rejected and the recruit walhiinue to favour the site which it had
favoured prior to the attempted recruitment. On the othadhd the proposed alternative is at least
as good as the one previously favoured by the recruit, ithglbdopted and the old one forgotten.
In short, a discriminative robot cannot be recruited to @ #iat it believes is inferior to one that it
already favours. It is important to note discriminativerteament relies on the individual robots to
make direct comparisons of alternatives in order to idgtiti€ best one.

Hybrid recruitment is a combination of the restraintive afigcriminative models. A hybrid
advocator behaves according to the restraintive model tayihg for a period of time determined
by the quality of its favoured site prior to recruiting a teaate, and recruited hybrid robots will
refuse to favour a proposed alternative if it is inferior teedavoured prior to being recruited.

Finally, decisions might arise in which the candidate ali¢ives differ in some manner un
detectable to the robots, or perhaps several equally gagerhatives are discovered. In order to
simulate this scenario, the unbiased model of recruitmenséed. Unbiased recruits always accept
whatever site they are led to as though they were followirgréstraintive model, and unbiased
recruiters delay for a constant period of time prior to réarg, independent of their favoured alter-
native’s quality. Therefore, no preference is expressediiiy of the sites by the individual robots.
The question regarding unbiased recruitment is whetheobthe decision-making process will

terminate at all, or if stagnation will ensue.

Commitment

Once a robot believes that its favoured alternative hasfeatiquorum, it commits to its alternative,
beginning the commitment phase of the decision-makinggs®cAt the time of commitment, the
robots likely will be spread across the environment. Somghtibe at the initial base, whereas
others might be visiting other candidate sites. Howeverpommitted robots periodically return to
the base in order to recruit more teammates.

Committed robots therefore return to the initial base asttirct every robot that they encounter
there to commit to the site favoured by the committed robbitghe simulated experiments, com-
mitted robots transmit the location of the site to teammagéetive to the initial base’s location.
When an uncommitted robot receives a commit-message pionels with an acknowledgment and

then goes to the specified site. Every time a committed radmgives an acknowledgment it resets
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Timeline of a Simulated Best-of-N Decision
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Figure 5.3: This figure presents a timeline of one of the sittad best-of-N decisions. The history
of each robot is given by the sequence of symbols along thegponding timeline. Solid and
hollow symbols indicate events regarding the better andgragites, respectively (this particular
trial compared only two sites). Once a robot found a siterdet began to recruit teammates to it.
Note that the robots that favoured the better site recruitece frequently. Over time, robots that
favoured the poorer site were recruited to favour the betier and eventually quorum was satisfied
forit. After this occurred, commitment flooded throughdg tlec-MRS, resulting in the unanimous
adoption of the better site. This timeline presentation iwagired by a similar figure in [50].

a timer. Once a committed robot’s timer reaches the prasit (ihe commitment timeoufl), it
leaves the initial base and heads to the site that triggem@dnitment, and exits the decision-making

process.

5.2.3 Experimental Trials

A series of simulated experimental trials was carried ountestigate the different recruitment
strategies. The effect of quorum and dec-MRS populatioa aigzo were examined by these ex-
periments. Regardless of the population size of the dec-MiRSnumber of robots that acted as
scouts always was four. Robots that did not act as scoutdmechi the idle state at the initial base,
waiting to be recruited into the process.

Dec-MRS composed of 4, 8 and 12 robots were run in a two-site@ment, and quorum was
varied from zero to 75% of total system population. Thesdgrall employed restraintive recruit-
ment and were repeated 100 times. Restraintive, discrim@aybrid and unbiased recruitment
were implemented with an 8-robot system in a four-site @mrirent, with each trial repeated 50
times. Quorum for this second set of experiments also wasd/énom zero to 75% of total system

population.
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Decision Unanimity Versus Decision Unanimity Versus
Quorum: Effect of Population Quorum: Effect of Recruitment
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Figure 5.4: Itis important that a collective decision is minaous. These graphs plot the percentages
of the simulated trials that ended unanimously, regardtesparticular site that was selected. In
general, population size and the specific model of recruitrde not affect the ability to achieve
unanimity. However, the likelihood of unanimity increaseih the quorum threshold, because
because a greater quorum makes commitment to multiplelsgsdikely.

5.24 Results

The general behaviour of the trials followed that outlingdHigure 5.1. Following an initial period
of searching, the scouts found sites and entered the advgadate and began to recruit the idle
robots and each other. As the iterative recruitment praegebots favouring poorer sites were
recruited to favour better ones, and the population favmutiie best site found tended to increase
over time. Eventually, one of the advocators would obserga@aum of robots while visiting its
favoured site, which would induce it to commit. The remamafehe robots would be instructed to
commit soon afterwards as the quorainserving robot instructed them to do so. Often, once one
robot had committed to its site, other advocators testirggum at the same site would see a sudden
influx of teammates that had received a commit-message. thiee mbots that were testing quorum
at the site often would commit, because they also would @ksorum. They too would return to
the initial base to tell robots there to commit. Thus a simglmymitment would induce other robots
to observe quorum, too, leading to a chain-reaction of mbbserving quorum and committing in
addition to the normal commit-message flooding behaviosepked during the commitment phase.
A timeline graphically depicting the history of a typicahsilated best-of-N decision is given in
Figure 5.3.

Decision Unanimity and Stagnation

As was the case for unary decision-making, best-of-N desscan be characterized by their accu-
racy, efficiency and the time required to make them. Figuteptts the percentage of the decisions
that achieved unanimity as a function of quorum. At the end ahanimous decision, all of the

robots had relocated to the same site. A decision might rigeae unanimity for several reasons.
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Figure 5.5: This figure illustrates how a robot’s visual fiefdview impacts its ability to test quo
rum using the off-swarm method outlined in the text. Whilsiting its favoured site, a robot will
compute the number of its teammates also there as the langedter of other robots it was able to
observe simultaneously. In this example, the white robaildibelieve that only five other robots
were present, since the other two are outside of its fieldefyindicated by the dashed semi-circle.
In practice, this means that larger quorums are less likebetobserved by the advocating robots,
delaying the onset of commitment, or resulting in stagmadibogether.

If too low a value was used for the quorum threshold, commitnmeight occur before all of the
scouts had found a site, and thus some of them would not refdhe initial base in time to receive
a commit-message before their committed teammates aflatdd to the selected site. Also, when
guorum was less than 50%, it was possible for multiple sdesatisfy quorum and induce commit-
ment, which increases the likelihood of a split decisiortréasing quorum addresses both of these
modes of failure.

Furthermore, there was a finite probability that none of timts would commit before the end
of a trial, even though a sufficient number of the robots fagdwne of the sites. This is a problem
specific to off-swarm quorum testing. For quorum to be satisfan advocating robot must observe
a minimum number of robots while visiting its site. Even ifi2@ of the robots advocate for the same
site, they are unlikely to present there at the same timen saleocating robot might never have the
opportunity to observe a quorum during any of its visits sosite. Even if a sufficient number of
robots does assemble simultaneously at a particular bigifficulty in accurately counting them
all increases with the size of the visiting populatiae.(it is easy to count all of the robots at a site
when there are only three, but harder to do so when theremrard so on), because it is harder to
fit a large number of individuals into the fixed visual field @éfw of a robot. For example, to observe
a 75% quorum, a member of the 8-robot system would have tawdse robots simultaneously,
whereas a member of the 12-robot system would have to sinadtesly observe nine robots to
do so. This problem is illustrated by Figure 5.5. Both of thgsoblems increase the likelihood
of stagnation, and the latter worsens as the populationisizeases. Stagnation due to the latter
phenomenon accounts for the dip in the 12-robot systemliyatsi make decisions when quorum

was increased to 75% seen in Figure 5.4(a) [58].
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Correct Decisions Versus Correct Decisions Versus
Quorum: Effect of Population Quorum: Effect of Recruitment
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Figure 5.6: As quorum is increased, the ability of the robotmake correct decisions (in which best
of the sites found by the scouts is selected at the decisam$ increases with quorum. Quorum
specifies how much iterative recruitment is sufficient; oacgiorum of robots is found to support a
particular site, the system concludes that sufficient éedition has transpired. Note that increasing
the population size of a system also increases its abilithée correct decisions, since larger
systems are less impacted by the occasional recruitment frai the best site. The model of
iterative recruitment has little effect on the decisimaking ability of a system, as long as it is
biased in some way to so that recruitment towards the besisdihie most likely.

The manner in which iterative recruitment was implemengguears to have minimal impact on
the likelihood of achieving unanimity. All three of the beabmodels achieve similar performance
as indicated by Figure 5.4(b). The slightly lower performaof unbiased recruitment also is at-
tributable to stagnation, since it takes longer for the asbd robots’ deliberation to satisfy quorum
for one of the sites.

Ability to Make Correct Decisions

Of course, it is important to make good decisions, not justnimous ones. Figure 5.6 plots the
percentage of the unanimous decisions that also were torBecause each robot was able to
determine the quality of its favoured site without any ertbe correct decision was made by a
system when it unanimously chose the best site that it wastalfind during the searching phase.
In both of these plots, the horizontal line indicates hovenfthe robots’ decisions would have been
correct if they were made completely at random. Note thateHegaselines are not at 50% and
25% in the two- and four-site environments, since there igumarantee that the robots will find
every site in a given trial. It is iterative recruitment tipgomotes correct decisions in the proposed
decision-making framework, and so the more iterative rigment takes place, the more likely a
correct decision becomes. This is controlled by the valuguoirum. Increasing quorum increases
the certainty with which a particular site could be labelsdtzest” by a robot, since that conclusion
would be based upon a greater consensus when higher quamigraployed. As a resultincreasing

quorum will tend to increase the ability of a system to makeraect decision, and this precisely is
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what is demonstrated by Figure 5.6.

Note that the decisiemaking ability of a dec-MRS increases as the system’s atjoul size
increases, too. In a small system, one or two robots recrfiiten a good site to a poorer one is
much more likely to result in commitment to the poorer sitertlwould be the case with a larger
population. Consider the effect on consensus in a fourireygiem when a robot favouring one site
is recruited to favour another. The consensus in favourestte that the robot originally favoured
will decrease by 25 percentage points, and the consensasadnrfof its newly favoured site will
increase by the same amount. This is a significant changeh®ather hand, consider the same
scenario in a 12-robot system. The change in consensussicabe would be only 8.3 percentage
points. The greater the number of robots that take part incisid®, the less of an impact each
individual’s actions and opinions will have.

Turning to the manner in which iterative recruitment is ieypented and how this can impact
the ability of a dec-MRS to make a correct decision, examigere 5.6(b). Not surprisingly, un-
biased recruitment performs about as well as random charteethree biased methods all see an
increase in the ability of a system to make the correct datias quorum is increased. There ap-
pears to be no advantage to direct comparisons by the ingividbots, evident in the performance
of discriminatory recruitment as compared to restrainéimd hybrid recruitment. There is a slight
interaction between the discriminative strategy and wfsn quorum testing, since a discriminative
recruit might visit a site and reject it, yet still be inclutlen another robot’s quorum test before it
leaves, but it is unlikely that by removing this phenomertaat any substantial improvementin its
performance would be realized.

Discriminative recruitment intuitively seems as thoughkhbuld be the best approach, since it
prevents recruitment from proceeding away from the best s$itowever, this characterization im-
plicitly assumes that the individual robots can be reliedrufm compare two alternatives accurately.
Even when the robots possessed perfect sensing, which waagk in these simulations, discrimi-
native recruitment performs no better than either the liparrestraintive approaches. Note that, on
its own, the alternative quality dependent delay in hybeittuitment (identical to that of restraintive
recruitment) was so effective at comparing the sites thatithcriminative component of the hybrid

strategy largely was extraneous.

The Focus of Deliberation

When a best-of-N decision is made, two basic operationsrapayed: recruitment and commit-
ment. The switch from the former to the latter occurs whenafrtbe robots observes quorum. As
in unary decisions, the role of commitment is to promote iméy, whereas iterative recruitmentin
the deliberation phase promotes good decisions. At the Bmdecision, all of the attention that the

unselected alternatives received can be considered a ofastee and energy. A perfect decision-
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Figure 5.7: The deliberation phase of the decision-makiagnéwork compares sites by recruiting
additional robots to inspect them. Ultimately, recruitmtawards a site that is not selected by a
system represents a waste of time and energy, and so a gdsidanaking algorithm should give
most of its attention to the site that ultimately is selecf€de plots in this figure illustrate that this
is the case for the proposed decision-making framework. Wsum is increased, the selected site
is seen to attract more recruitment, but recruitment to theelected site remains minimal. Some
of the system configurations are omitted from these plotsaddaciutter, but all of them follow the
pattern of those shown.

making algorithm would ignore alternatives that ultimgteill not be selectedl In reality, though,
some attention must be paid to each alternative, but thepligso unselected ones the better. The
number of robots recruited to a particular site is a good mresmsent of the collective attention that
the site attracted. Figure 5.7 plots the number of recruitsto the sites selected and unselected.
The same behaviour was observed in all of the systems regardf population. As quorum is
increased, which is equivalent to demanding greater acgdram a dec-MRS, significantly more
attention is given to the site that is selected in the endredsethe increase in recruitment towards
the unselected site(s) is much less. This shows that iteratruitment produces efficient delibera-
tion. As the population size is increased, the total reoreitt increases, but still the unselected site
largely is ignored. Unbiased recruitment exhibits thisdebur, too, which might seem somewhat
surprising at first. However, even though the probabilitgefndividual robot recruiting is indepen-
dent of its favoured alternative’s quality, tipeobability of being recruitedvill be biased towards
one of the sites, simply because more robots are likely tpatijpne than the other(s) through ran-
dom chancé For example, if two thirds of a robot’s teammates suppastdA and only one third
supported site-B, the robot would be twice as likely to beuited by a supporter of site-A. This in

turn would increase the probability of other robots beimguéed to site-A.

3This notion of a perfect decision-making algorithm can bmpared to the imaginary nondeterministic function em-
ployed in complexity proofs.

40ne might argue that an equilibrium exists when an equal rumbrobots favour each known site. However, this is an
unstable equilibrium, and a system soon would be pushed @fbg stochastic effects.
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Figure 5.8: These figures plot the mean length of time thah egstem spent in the deliberation
phase. Regardless of the number of robots that composeE&cor the kind of iterative recruit-
ment employed, deliberation time increases with quorumis Tihppens because higher values of
guorum required additional robots to be recruited in ordér satisfied. In each system, the number
of robots that identify candidate sites is fixed, so incrdafaiberation is required in systems with
larger population sizes.

Time Required for Deliberation

Finally, a decision-making algorithm can be judged by theetrequired by it to make a decision.
Figure 5.8 plots the mean deliberation time of the decisi@mrsus quorum. Deliberation time is
defined here just as it was in Chapter 4: it is the time meaduoad the beginning of a decision-
making trial until a robot commits to an alternative. Thisans that the time required by the
searching phase is included in the deliberation time, litttimmitment phase is not. Both of these
phases are relatively constant in length, and so the ireiusi the former and the exclusion of the
latter does not alter the trends displayed by the plots.hBe&dition time increases with quorum, an
observation that should be expected. As Figure 5.7 denaiadtrincreasing the quorum increased
the amount of recruitment in a decision. It is the additidirak required by the extra recruitment
that accounts for the increased deliberation time with gooseen in Figure 5.8 (note the similarity
between the shapes of Figures 5.8 and 5.7). Because tham@ee@obots to be recruited in a larger
dec-MRS, the deliberation time also should be expectedci@ase somewhat with population size,
which it does. Once again, there is little difference betwtee three biased implementations of

iterative recruitment.

525 Summary

The results of the simulated best-of-N decision-makingeeixpents permit several conclusions to
be drawn. First, the proposed framework of this thesis idda®ables a dec-MRS to make accu-
rate best-of-N decisions. Increasing the quorum of a datjsivhich increases the duration of the

deliberation phase, both increases the likelihood of aeobmiecision being made, and the likeli-
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hood of that decision being unanimous. Perhaps the mostisingpis that no improvement in the
decisionmaking performance of the robots was observed when digraperisons were made of
alternative qualityi(e. discriminative iterative recruitment), even though thdiwdual robots in
these experiments were in complete agreement about tseaiiglities. The emergent comparison
of alternatives that is carried out by restraintive reecngint performed as well, if not better than the
discriminative approach.

In these simulations, the individual robots tested quortirs\wwarm by counting the absolute
number of other robots that simultaneously visited a fagdwite and compared this to the quorum.
In some ways, this simplifies quorum testing, since the mineied not communicate with each
other to do so. An advantage of off-swarm quorum testing,iamrticular the specific manner in
which it was implemented here is that premature commitnselargely eliminated. This is because
a robot will not commit until it observes a quorum of robot#sifavoured sitat a single instantlf
a robot can see five robots at the same time, it can be certdithire are at least five robots nearby.
Therefore, the observed quorum was guaranteed to be ableaseat as the quorum threshold in
these simulations. This is not necessarily the case witbvearm quorum testing, as the unary
decision-making results illustrated.

However, when quorum is tested off-swarm, stagnation weiidme a problem as the population
size of a dec-MRS or quorum increases. This was illustrayetidodecrease in the decision-making
ability of the 12-robot system when quorum was increasedsfh Bf system population Fur-
thermore, the simplification offered by off-swarm quorurstiteg is of no real benefit to a robotic
system. The robots already must be able to communicate wa4th @ther for the purpose of recruit-
ment. Typically, a robot is able to communicate or it is ndtit Is, then any number of different
messages could be sent or received via its communicatiawaae with equal ease. This is very
different from the communication of social insects, in whtifferent chemicals are used to send
different messages, requiring different glands to prodheen and specialized receptors to detect
each one. It therefore is to the insects’ advantage to enmgplpgssive quorum test since it does
not require an expansion of their chemical vocabulary. Tdaed complication of a quorum test
that requires explicit communication is insignificant faioéot already able to exchange messages.
Unless there is a very compelling reason not to do so, onmwanrum testing should be employed

by a dec-MRS for collective decision-making.

5This result might seem somewhat odd given that the ants @] bpon whose behaviour the proposed decision-making
framework is based, employ off-swarm quorum testing, aatitteir populations range from a few tens to a several thmissa
of individuals. However, the insects base their quorunstepbn the rate at which teammates are encountered whengisit
a particular site, rather than an absolute count. This poiounl density based consensus estimation is susceptitiie tame
kinds of errors and thus false positive tests as analog nsnseestimation, and the approach would have to be tuneetyo
specific kinds of decisions and the expected alternativetswbuld be available solutions. Correspondence with tireqy
researchers of the insects’ behaviours suggests thattiled gaorums thresholds employed are low, quite less théf, 50d
that they vary considerably from one insect to the next [68].
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Site Overhead Lamp

;

Figure 5.9: This photograph depicts the environment in tvttie physical site selection experiments
were carried out. It was very similar to the environment & timary decisiommaking experiments
(a hexagonal enclosure, 2.75 meters per side), exceptibatandidate sites were added to it on
opposite sides. These sites were the alternatives for bwg'dest-of-N decision-making.

5.3 Physical Experiments

A series of experiments with real robots were carried outitthir investigate best-of-N decision-
making in the site selection domain. In particular, thegeeexments demonstrate that this approach
to decision-making is practical in a real environment, gmat the proposed framework is able to
accommodate substantial noise in the individual robotdliteds to measure the qualities of the
alternatives that they are able to find. The size of the seguibpulation also is varied in these

experiments to examine its impact on collective best-ofeNision-making behaviour.

5.3.1 Environment

The physical best-of-N decision-making experiments warded out in the same arena as the unary
decisions. It consisted of a hexagonal enclosure measg@rifigmeters on each side. Two sites
were added to the environment to serve as alternatives dviehwhe robots would deliberate. A
photograph of the experimental environment is given in Fegu9. Although this photograph was
taken in a well lit room, the experiments were conducted \ittof the room’s lights turned off

except for those associated with the candidate sites, tdslef which are provided next.
Sites
The goal of the robots in the site selection domain is to find #aen collectively select the best

available site in their environment. The sites were reprieskby calibrated overhead lights. As

was the case in the simulated decisions, each site had atsbueiith it a quality. In a real-world
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(a) Overhead Light (b) Coloured Beacon (c) Site in the Environment

Figure 5.10: These three images show how the candidatevggtesbuilt for the decisiommaking
experiments. At 5.10(a) is a close-up of a site’s overhagtt.liThe quality of a site is determined
by its brightness. The attached circuit board controls timeenit to the lamp’s 8-LEDs, and their
brightness as a result. Because the robots were unablediizbbthemselves in their environment,
coloured beacons were placed next to each site. One of thesfgown at 5.10(b). During an
experimental trial, the room was made completely dark, gixfm the sites’ overhead lights and
beacons. The photo at 5.10(c) shows what a site looked likegla trial. The illuminated spot on
the ground in front of the beacon is the site itself.

application, this could be any attribute of a candidatetiooa For example, higher site quality might
be associated with the availability of ground-water if tbbats’ mission was to identify potential
well sites, or perhaps chemical concentration would beedlfithe robots were assigned to locate
a refinery leak. In the experiments, the quality of a site vegsesented by the brightness of a light
suspended above it. A robot visiting a brightly lit site wodénd to perceive it as higher quality
than it would a dimly lit one. Although this is intended toeeias an abstract site quality here, this
behaviour might be useful if the robots’ mission was to iifgrihe best place at which to deploy a
solar array [40].

Refer to Figure 5.10 for the following description of theesitconstruction. Each site’s over-
head light was provided by an array of eight white light emgtdiodes (LEDS) connected to an
adjustable current source (Figure 5.10(a)). The light eahiby an LED is very linear with the cur-
rent that passes through it, permitting the brightness (ansithe perceived quality) of a site to be
set precisely. Each LED array was housed in an ABS plastie ggp with a piece of white tissue
paper fastened over its open end to serve as a diffuser. Aamvgltructed from card was slid over
the pipe cap, enabling the size of the spot projected on thengrto be controlled, which in turn
determined the physical size of a site(the diameter of the illuminated spot on the ground). Two
sites were placed on opposite sides of the experimental@mient. The currents supplied to the
two were 17.5 milliamperes and 4.0 milliamperes. These efernmed to as théetter siteand the
poorer site respectively.

Due to the non-linear response of the cadmium-sulfide phststors that were used in the
robots’ overhead light sensors, the two sites were muctecliosquality from the robots’ points
of view than these two currents suggest. The sites’ currgate adjusted along with their shades
so that the two sites were equally easy for the robots to find sa that there was some overlap in

their qualities as perceived by the robots. Figure 5.12gmsshe quality of the two sites according
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to the robots. Each robot recognized that the better siteiddvas brighter than the poorer one, but
they were perceived to be sufficiently similar in qualityttha individual robot’s direct comparison
of two was unlikely to be precise. The distributions presdrim Figure 5.12 are based on the robots’
assessments of site quality during the experimental fpi@sented later in this Chapter.

The robots possessed no means of localizing themselvemwiith environment (odometry
would have been too inaccurate, whereas a more rigourousagpwould have exceeded the indi
vidual robots’ computational capabilities), so the folitie-leader behaviour used in the simulations
was impractical for the physical experiments. Insteadywad beacons were placed on the ground
adjacent to each site. These beacons made the sites unidestifiable and provided a common
ontology for the robots to refer to thermg| a robot could recruit a teammate to its favoured site by
communicating the colour of the site’s beacon as part oitsuit-message). Each beacon was illu-
minated by a fluorescent work light covered with a colouredtte gel, enclosed in a wedge-shaped
enclosure lined with black felt (Figure 5.10(b)). The ersciges minimized the light from the bea-
cons that reflected off of the ceiling, reducing the beacanstference with the robots’ searching
behaviour and measurements of site quality. One of the Insagas blue and the other was red, and
these were placed on the floor of the arena adjacent to baetigy@orer sites, respectively. When it
is more convenient to do so, the sites are referred to by tleeicof their beacon: thélue siteand
thered site A completed site with a robot next to it in the darkened emwinent is shown in Figure
5.10(c)

5.3.2 Robots

The same robots were used for the physical best-of-N deeisiaking experiments as were used for
the unary decisions. In addition to the 360 degree bumpesosdhat was used to detect obstacles
and teammates, the robots also possessed other sensotse ©p bf each robot were three pho-
toresistors pointed straight up, arranged in an equilbteaamgle with one of its vertices pointing
towards the robot’s rear (refer to Figure 5.11(a)). A trialag piece of plastit was placed at the
centroid of the photoresistor triangle, rotated 180 degrefative to the resistors. The plastic trian-
gle selectively shaded the photoresistors like a sundiahat when an overhead light was placed
near a robot, the relative azimuth to the light could be deiteed. The magnitude of each photore-
sistor’s response represented the length of a vector pgifrom the center of the assembly towards
the photoresistor itself. By summing the three vectors,aaignt was computed. The angle of the
gradient provided the heading towards the overhead lighgreas its length allowed a robot to de-
cide whether or not it was sufficiently close to the brighfesint under the overhead light to make
a reliable measurement of its brightness (the length of tadignt would be zero when directly
under an overhead light). A short circular rim surroundedéhtire assembly to prevent lights from

being seen until they were at least 30 degrees above thersamanzon, reducing the interference

6A small piece of a three-sided engineering scale painteckbla
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Photoresistors

(a) Overhead Light Sensor (b) Beacon Sensors

Figure 5.11: In order to find, measure and identify sites,rtimts were outfitted with upward
pointing site sensors and forward-pointing beacon sensbine sensory elements in all of these
were cadmium-sulfide photoresistors. 5.11(a) shows theheae site sensor. Three photoresistors
(the one in the rear cannot be seen in this image) were amdngeplane with a triangular shade
separating them. Their relative responses to an overhglattHilowed a robot to compute direction
to the point on the ground directly under a site’s overheglutJiwhere a measurement of its quality
should be made. At 5.11(a) can be seen a robot’s beacon sehte, a column of three photore-
sistors, each covered by a different coloured gel (red,gaed blue) allowed the robot to determine
which coloured beacon it was facing. Each robot had threbkedd to increase the beacon sensor’s
field of view.

from the coloured beacons. This sensor, referred to simpilgeoverhead light sensopallowed the
robots to find the candidate sites in the environment andecéhémselves under the sites’ lights.
This centering operation allowed them to measure a sitefityuat its brightest point.

Once a robot had found a site, its next task would be to deteritiie colour of its beacon.
Beacon sensors also were assembled from photoregigtefsr to Figure 5.11(b)). An array of
three photoresistors was arranged into a column, with eaehcovered by a different coloured
piece of theatre lighting gel (red, green or blue). Each el@mwas connected to an 8-bit analog to
digital converter, so the array was able to see a single psB@P® pixel. Each robot was equipped
with three of these arrays; one pointing forward and one gadtiting 30 degrees to either side.
Because of the wide tolerances typical of photoresistdrgfahe robots’ beacon sensors were
calibrated to the actual site beacons. This ensured thanwhy two robots observed the same
beacon, they would agree about its identity. The robots wbleto detect a beacon once they were

within approximately three meters of it.

Communication

Because the robots used in the physical best-of-N triale Wer same as those used to demonstrate
unary decision-making, communication amongst them wasechout using 802.11B wireless Eth-

ernet. Again, the range of these radios was global in thereérpatal environment, so local peer-to-

"Photoresistors are known to be non-linear, have wide totexs and slow responses. However, in the experimental
environment, they were sufficiently fast for the purposethete experiments and are incredibly cost effective, amitapt
consideration when eleven robots must be equipped with.them

8The term “pseudo-RGB” is used because the passbands oftthgreen and blue theatre gels used, combined with the
responses of the photoresistors did not match that spetifie¢die RGB.
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Figure 5.12: Unlike the simulated site selection experitpethe real robots’ perception of site
quality was noisy. This figure plots each of the eleven ralmgmions of site quality. The median,
minimum, first and third quartiles, and maximum readingsauftesite’s quality are plotted. All of
the robots agreed that the blue site was better than the tesdathough most had noisy enough
perception of site quality that a single robot’s opinion \ebhe unreliable. The horizontal dotted
lines indicate the perceived site qualities above or beltickvthe robots’ interecruitment delays
would saturate (see Figure 5.13).

peer communication had to be simulated. This was accongalishthe same way as it was for the
physical unary decision-making experiments. When a roboventered an obstacle (being unable
to tell the difference between a teammate and the wall) dnatg half and communication was ap-
propriate, it would randomly select a teammate’s |P-addiresn a list supplied to it at run-time and
send a peer-to-peer message to that teammate via TCP. Tipiemeéevould respond (if appropri-
ate) with a peer-to-peer message back to the sender’s liesgld he resulting random peer-to-peer
communication [59, 61] mimicked that of a well-stirred ddRkS. IP-addresses were only used to
address messages, and were not used for any other computatioreceived opinions were not

associated with the identities of their senders).

5.3.3 Robot Behaviours

As illustrated by Figure 5.1, the best-of-N decision-makframework employs several distinct
robot behaviours. In this section, the individual robotdeburs are described in detail, presented

in the order that they appear in a best-of-N decision.

Searching/ldle

Robots began a decision in either the searching or idlesstatke searching robots, also referred
to asscouts search the arena for candidate sites. The search behasi@entical to the wan-

der/reorient behaviour of the robots in the task compledigperiments. The robots travel in straight
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Figure 5.13: Restraintive recruitment was used by the slothe physical experiments. In this
approach, the advocate robots delay for a certain periachefhetween attempting to recruit team-
mates to favour their site; the better a robot believes itstsi be, the less time it will delay, and
thus the more frequently it will recruit. The solid line ingHigure shows the relationship between
a robot’s perception of site quality and the amount of tirreg thdelays between attempting to re-
cruit. Additionally, to reveal any biases in the experina®environment itself, trials were run with
unbiased recruitment, given by the dotted line. If one ofsites was easier to find, then this would
be revealed by these unbiased trials.

lines, and reorient to random headings when they encountebstacle (a teammate or the environ-
ment’s walls). As they wander, the scouts continually meathe intensity of the light above them.

When this exceeds a preset threshold, a searching robosihanit has found the edge of a site. It
then moves towards the center of the site (its brightesttpbinfollowing the overhead light gradi-

ent. Once the robot has moved to within a preset distanceafdhter of the site (determined by the
length of the gradient computed from the overhead light @eimdensities, not physical distance),
the site's quality is recorded as the average of the thremgities reported by the overhead light
sensors’ elements. Finally, the robot rotates on the spdetttify the site’s beacon. A site’s quality

and beacon having been found, a scout becomes an advoadiotgentering the deliberation phase
of the decision favouring the site that it found. As was ek@d earlier, in the general case of a
best-of-N decision, some scouts might not find an altereativ perhaps some robots would not
be equipped to participate as scouts. These robots aresespeel by the idle state. Idle robots sit

motionless at the side of the arena until they are recruitedd decision.

Iterative Recruitment and Resear ching

Once a robot has entered the advocating state, the deldrepdtase of a best-of-N decision begins.
The advocating robots iteratively recruit their teammabetheir favoured sites, modifying the ap-

parent consensus in favour of those sites that have beetifieénin the simulated decisions, four
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variations of iterative recruitment were examined. Réstiige recruitment performed very well in

those experiments, and since it was the only biased modeoofiitment that did not necessitate
direct comparisons of site quality by the individual rofpis was the only iterative recruitment
strategy implemented in the physical trials.

Robots that have found a site and entered the advocatirgrstuit their teammates to it at a
rate that is based on the site’s qualitg(the brightness of the overhead light). The better a robot
believes its site to be, the more frequently it will recreidinmates to it. The rate of recruitment by
a robot is controlled by the period of time between a robdtsmapts to recruit teammates, called
the interrecruitment period7,.. The relationship between the perceived quality of a sit: the
inter-recruitment period in the physical experiments iegiby Figure 5.13T,. decreases linearly
from a maximum value as perceived site quality increasese Nat there are both maximum and
minimum perceived site qualities (215 and 85), and thatrkerirecruitment period is constant for
site qualities above or below these values (60 and 600 secmgpectively). Limiting the minimum
value ofT,. prevented recruitment from proceeding too rapidly. Rettelt robots concluded that
they had found the center of a site once the magnitude of théhead light gradient was sufficiently
close to zero. However, a robot might also observe a shodigmif it got lost and wandered into
complete darkness. The areas of the environment away frersitis registered as approximately
50 on the robots’ overhead sensors, so 85 was selected agtiggdrainimum site quality.

A recruit-message specifies only the colour of the beacohtoeRke site favoured by its sender.
A recruitable roboté.g. a robot in the searching, idle, or advocating states) tleaives a recruit-
message immediately enters the researching state in wihselaiches for a site near the specified
beacon. Note that, because advocators do not need to leaddtmiits to their favoured sites,
recruiting is an atomic act for them. Therefore, an advogatbbot cannot be interrupted mid-
recruitment, and thus they are always recruitable. Thecheaghaviour of a researching robot
consists of a random walk similar to that described for theuts; except that a researching robot
will periodically rotate on the spot, scanning for the tadgeacon. If the target beacon is observed,
the robot will reorient to face it and then resume straigié-Imotion. This scanning/reorienting
behaviour biases a researching robot’s search to the asghynthe target beacon, increasing its
likelihood of finding the associated site. If a researchiolgot happens to find a different site, it
will move away from it before resuming its search for the jgatar site specified by its recruiter.
Although recruiting is an atomic action, researching agitee recruited is not. Therefore, research-
ing robots could not be recruited. Instead, they would redpo recruit-messages as though they
were queries for their opinions. Once a researching rohatddhe site that it was looking for, it
would measure its quality and adopt it as its favoured sitefarget about any other site that it might
previously have favoured. The robot, now in the advocatiagefavouring the new site, would iter-
atively recruit robots that it encountered ev&tyseconds based on its own opinion of its favoured

site’s quality. If a researching robot was unable to find thectfied site in a predetermined period
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of time (set to 180 seconds in all of the physical trials),@uhd give up and revert to whatever state
it had been in prior to being recruited. This time limit rgrelas reached during the experimental
trials. If an advocating robot received a reciiessage instructing it to research a site that it already
favoured, the recruit-message would be responded to aglthibwas a query for its opinion and the

robot would not enter the researching state.

Quorum Testing

As the advocating robots iteratively recruit each othezytalso estimate the popularity of the sites
that they favour and compare their estimates to the quorueshiold. The apparent consensus in
favour of a particular site was estimated using the digipgdraach described in Section 3.4.2, by
computing the proportion of the most recently received teammate opinions that were agyeein
Teammate opinions were gathered via query-messages. A-qessage in a best-of-N decision
is equivalent the question “Do you favour alternati¥€@”, where X is the particular alternative
favoured by the querying robot. The response to this quemyldvbe “yes” if the queried robot
favoured alternativeX, or “no” if it did not®. Each advocating robot only tests quorum for the
particular alternative that it favours, which means thattimber of known candidate alternatives
in no way affects the complexity of quorum testing. It alsocréases the likelihood of false positive
guorum tests for unpopular sites, since fewer robots testLop for them.

When a robot was recruited successfully, it would forgetdlamy previously favoured alterna-
tive. An essential part of this process was forgetting amyipusly received vote-messages, since
these would be relevant only to the previously favouredadtive. However, a robot would begin
to favour a new alternative and forget previous teammateiops only after it had found the site
to which it was recruited and entered the advocating stateuféing it. Although robots in the re-
searching state would not query the teammates that theyiatered for their opinions, they would
respond to query-messages, and did so as if they had not bemnted. For example, suppose
that a robot favoured the red site, and then received a tenessage for the blue site. The robot
would enter the researching state and begin to search fdsltieesite, but until it found the blue
site and entered the advocating state favouring it, thetnobald continue to respond to queries as
though it still favoured the red site. This choice of behavifor researching robots is somewhat
arbitrary. Alternatively, researching robots could haeet programmed to ignore query-messages
altogether. Given that researching robots tended to findtémget sites relatively quickly, the over-
all impact of this decision on the collective decisions ljke/as insignificant. Robots responded to
recruit-messages as though they were queries, too. Thévlme ensured that robots that recruited
more frequently would not be deprived of their teammategiops for their quorum tests. Once an
advocating robot believed that the apparent consensussftavioured site had reached the quorum

threshold, it would enter the committed state.

9Robots also would answer “no” if they favoured no alterreatt all.
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Commitment

This is the final behavioural state through which the robatsilel pass before exiting a decision,
and it essentially is the same in a be$tN decision as commitment in a unary decision. When
an advocator commits because it computed a positive quagsinit continues to favour the alter-
native that it did as an advocator. Instead of querying enmyad teammates for their opinions, a
committed robot instructs them to commit, and it includegdrcommit-messages the identity of its
favoured site as the particular site to which the recipidithe message should commit. Unless the
recipient has entered the finished state and exited theidegdisalways obeys, committing to what-
ever site was specified. These robots in turn tell the rolatsthey encounter to commit, too. If
the recipient of a commit-message was not already comniittte specified site, it would respond
with an acknowledgment, otherwise no response would bangivethis way, if more than one site
satisfied quorum and triggered commitment, a period oftiattrivould follow after which one of
the commitment-inducing sites would remain and thus becssdeunanimously. The site with the
most committed robots at the beginning of this attrition Wddae the most likely to be chosen in the
end since it would have had a head start building up a corpshafts committed to it.

Once a committed robot has been in the committed state fgeldhan the commitment timeout
without receiving any acknowledgments to its commit-mgssait will conclude that all of its team-
mates have committed to the same site as it and will enterrifehéd state, exiting the collective
decision. If the commitment timeout is made sufficientlydpall of the robots will be very likely to
exit the decision at approximately the same time, each\ie{ighat every other robot had exited the
decision similarly committed. This behaviour was illust@ by the results of the simulated unary

decision-making experiments.

5.34 Experimental Trials

A series of experimental trials was conducted with an 1Iotelstem to examine decision-making
performance in the site selection domain. Apparent consanas estimated using= 15 samples,
and the quorum threshold)j was set to 33%, 53%, and 80%. These configurations wereteghea
with four and eleven (all) of the robots participating in ihéial search for candidate sites. When
only four robots scouted, the remaining seven would begihéndle state. The 11-scod}, = 80%
configuration was repeated with the inter-recruitmentqebset to a constant 90 seconds (indicated
by the dashed line in Figure 5.13). This configuration immeated unbiased decision making, the
performance of which served as a control trial that revealedbias in the experimental environ-
ment. An 11-scoutp = 5, Q@ = 20% system also was implemented. With so many robots testing
such a low quorum based upon such inaccurate estimatesarfeaygonsensus, the purpose of these
trials was to induce commitment to both sites in order to pleséhe resulting attrition during the
commitment phase. The robots were lined up along the twaswélhe arena that were the furthest

from the two sites at the beginning of each trial. The comraithtimeout was 60 seconds in every
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Timeline of a Real Best-of-N Decision,
Robots 1-4 Search for Alternatives
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Figure 5.14: This timeline depicts a best-of-N decisiomgstleven real robots, the first four of
which acted as scouts. Solid and hollow symbols refer to #tteband poorer sites, respectively.
Two of the scouts find the better site and two find the poorer &ven though robot-4 makes a poor
evaluation of the better site’s quality, this error evelijuia overcome by other robots recruited to
the better site, and the final decision is unanimous in faebitr This illustrates the self-correcting
nature of the proposed decision-making framework. Whemati®timeline indicates that it recruits
a teammate, the recruited teammate can be identified by &eug®wvn triangle of the same colour
in its timeline at the same time. For example, robot-3 résreobot-10 to the better site at 200
seconds, and robot-10 finds the site soon after.

trial, and every one of the nine experimental configurativas repeated between 20 and 26 times.

5.35 Results

The results of the physical experiments are presentedsrs#dtion in the same order as they were
for the simulated trials. Figures 5.14 and 5.15 presentlitm@g of two trials, illustrating typical
decision-making behaviour. In both of these, the quoruesthold was 80% and apparent consensus
was estimated using = 15 samples. In Figure 5.14, only four of the robots scouted fi@ss
whereas all eleven did so in the trial shown in Figure 5.15.

Once a robot found a site, it began to recruit its teammatés avfrequency determined by its
own opinion of its favoured site’s quality. As soon as onénefitobots believed that quorum had been
met, it committed to its favoured site, and its teammate&lhafollowed suit as commit-messages
flooded the system. After all of the robots had committed sgame site, the acknowledgments
to commit-messages ceased, and approximately 60 secdedgtte length of the commitment
timeout), the robots began to enter the finished state hawnagimously selected one of the sites.
When all of the robots scouted, the early stages of the daliloe phase appear somewhat chaotic,
but over time, the consensus in favour of the better siteeamrs, and ultimately it is chosen. Note
also that more robots find the poorer site in Figure 5.15, lyetdetter site still is selected by the

system as a whole by the trial’s end. The individual robotgrslem-level behaviours illustrated by
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Timeline of a Real Best-of-N Decision,
All Eleven Robots Search for Alternatives
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Figure 5.15: This timeline illustrates a best-of-N deaisio which all eleven of the robots acted as
scouts. Overall, recruitment is more frequent by the besdterfavouring robots, so the proportion
of the robots that favour that site tends to increase. Ewdigtuobot-7 determines that quorum for
the better site has been satisfied (note that it initiallpfag the poorer site, and that it's opinion of
the better site actually is quite low) and it commits, indgcihe rest of the dec-MRS to follow suit.
Once all of the robots have committed to the same site, regsoto commit-messages cease, and
the robots all exit the decision unanimously favouring & tietter site.

these timelines is typical of that observed in the physidals.

Ability to Make Correct Decisions

Every one of the physical decision-making experiments éndenimously, including those that
experienced attrition during the commitment phase. Howen@ every experiment ended with a
correct decision. Whether or not the robots selected thegtlue) site by the end of a trial is
not a good indicator of decision-correctness, since it wassible in a given trial that none of the
scouts would find that site. Furthermore, because the ropetseption of site quality was noisy,
their opinions of the two sites should be taken into accourgmiabeling a particular decision as
correct or not. For example, if most of the robots that foumsl hlue site undervalued it amite
versg then from the robots’ points of view, it could be argued tblavosing the red site would
be the correct decision to make. However, the later in deliiien phase that a robot measured a
site’s quality, the less of an impact that robot’s opinionuebhave on the decision. Therefore, the
correctness of a decision is not black and white. Insteadfdlowing heuristic was used to make
this classificationin a given trial, a decision was correct if and only if it unamusly selected the
alternative that received the single highest evaluatioraby robot Note, however, that using the
average evaluation of a site, or the best evaluation by & ¢simge scouts make their evaluations of
site quality early in a trial) instead of the aforementiomegiximal rule does not significantly alter

the trends observed, so the following discussion of deisiaking ability does not hinge upon this
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Correct Decisions Versus Quorum Threshold
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Figure 5.16: This figure plots the proportion of the besN decisions that chose the best site
found. In general, the ability of a dec-MRS to make correciglens increases with quorum. When
qguorum is low, the results of the initial search for sites adwuersely affect performance when too
many scouts are involved. Raising quorum overcomes thisl@ny, but reveals another mode of
failure. Too few scouts allows stochastic effects to infeeethe outcome of a decision, reducing
performance. The horizontal dotted line indicates how eately an unbiased dec-MRS was able to
make the decisions. Even when quorum was as low as 33%, htasatil’e recruitment made good
decisions much more likely than random chance.

definition.

Figure 5.16 plots the percentage of the trials in which aemimecision was made. Both scout-
ing populations made the correct decision at least 60% ofithe, and this increases to at least
80% when the quorum threshold is increased to 50% or more sifkeof the scouting population
deployed by a system appears to affect its decision-makitityaparticularly when quorum is less
than 50%. When quorum is greater than 50%, the system witk somuts performs better, although
the difference between the performances of the two scoptipglations is somewhat less here than
it was whenQ = 33%.

When all of the robots participated in the initial searchdibes, there was a chance that quorum
would be satisfied without any recruitment having to takeglaFor instance, if all eleven of the
scouts found a site, a quorum threshold of 33% would have satsfied for one of the sites since

at least six of the robots would have favoured the same siéalimg to an apparent consensus of

50% (161111 x 100%). Because the scouts were equally likely to find either $fite particular site

that would have satisfied quorum in this case would be detexdnby random chance. In prac-
tice, however, the scouts did not all find sites at the same,tsn some of them would have had
an opportunity to recruit before one of them believed thairgm had been satisfied. Therefore,
iterative recruitment still influenced the outcome of theidi®ns, although its ability to do so was

much reduced. Eight of the twenty eleven-sc@yit= 33% trials made incorrect decisions, and in
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three of these no recruitment occurred at all. The remaiftiegncorrect decisions involved only
one, two or three recruitments. Thus iterative recruitmérg process that compares the known
alternatives, was largely absent in this configuration. kvtihee scouting population was reduced
to four, however, recruitmemtiwayswas necessary to satisfy quorum. Even if all four scouts hap
pened to find the same site (6.25% probability), the appa@mensus would only have been 30%

% x 100%). Because iterative recruitment had a greater opporttmjpyomote the better site in
the four-scout configuration when the quorum threshold v&#,3hey performed better than their
eleven-scout counterpart [63].

The situation is reversed when quorum is increased, as éverelscout system performed as
well or better than the four-scout system when the quorumstiold> 50%. A greater quorum
was much less likely to be satisfied by the outcome of the beaggphase alone, and so iterative
recruitment always played a role regardless of the sizemtiouting population. When the four-
scout trials in which incorrect decisions were made are é@xaghin greater detail, a second mode
of failure becomes evident. Recall that a dec-MRS knows aigt its individual members know.
If all of them were to forget about a particular site, thag¢ sitould be forgotten by the dec-MRS as
a whole and thus would not be selected. The following exarfiplgrates how deploying a small
number of scouts could negatively impact a dec-MRS’ deoisi@king ability. Consider a system
in which only four robots are scouts. The probability of #hi@ them finding one site and only
one finding the other is 50%. In half of these cases, threetsolould find the red site and one
would find the blue site, and it is likely that the quality @gstd to the blue site by the latter robot
would be greater than any of the qualities assigned to thaited If the lone blue-site-favouring
robot was recruited successfully to favour the red sitepthe site would be forgotten by the dec-
MRS altogether, resulting in an incorrect decision acaaydo the aforementioned definition. This
is because the site that was assigned the highest qualitytteweourse of the decision (the blue
one) was forgotten when its lone advocator was recruiteti¢cother site. This mode of failure
accounts for 60% of all of the four-scout trials in which anorrect decision was made. Increasing
the scouting population decreases the likelihood of a stagbfound by just one or two robots,
making this kind of failure much less likely.

Furthermore, because the early stages of the four-scaignsigsdeliberation phases were based
on fewer evaluations of site quality (compare Figures 51d &.15), the noise in the individual
robots’ overhead site sensors would have resulted in malsigision-making behaviour than that of
the eleven-scout system. The slight dip observed in thedoaut system’s ability to make correct
decisions likely can be attributed to this noise. With sigfit trials upon which to base the plotted
means, itis likely that the four-scout system would disgdgveling off in its ability to make correct

decisions as quorum is increased from 50% to 80%, if not &tsigrease.
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Observed Quorum Versus Quorum Threshold
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Figure 5.17: This figure illustrates the relationship betwéhe observed quorum and the quorum
threshold @) from the besf-N decision-making trials. Notice that the observed muo here

is greater than it was in the unary decisions (Figure 4.149.th% individual robots gather each
other’s vote-messages, the also iteratively recruit edlcbrochanging the apparent consensus for
each alternative. Because a robot’s estimate of appareseosus is based on the average value of
C, during the period over which the most recent vote-messages were received, and because the
apparent consensus for the best alternative (the one rkelst1o induce commitment first) tends to
increase over time;, will tend to underestimaté,, and thus the observed quorum will tend to be
greater than expected.

Observed Quorum in a Best-of-N Decision

An alternative’s popularity reaching quorum signifies tamhat that favours it that the deliberation
phase’s iterative recruitment has identified its altexgasis the one that should be selected by the
dec-MRS as a whole. As was illustrated in Chapter 3, if iteeatecruitment is allowed to continue
for a sufficiently long period of time, all but one of the knowtternatives will be forgotten. In
practice, however, a system might not be able to afford thatimime for deliberation. Therefore,
a quorum threshold less than 100% is used to terminate thectiobé comparison of alternatives
before complete consensus is achieved, when one of themekasidentified agood enoughin
Chapter 4, the notion of the observed quorum was introdutdeel observed quorum is the consensus
(true consensus, not apparent consensus) in favour oftdreative that firstinduces commitment at
the time that the first commitment occurs. Figure 5.18 plotsabserved quorum for the four-scout
best-of-N decision-making trials versus the quorum thokesH.

As was the case in the unary decision-making results, thereéd quorum increases with the
guorum threshold, demonstrating that a desired conseretessary for commitment can be set
a priori. However, if this figure is compared to Figure 4.8 or Figurg&44.one will notice that

the observed quorum is significantly greater for the bedt-afecisions than it was for the unary

10The observed quorum of the eleven-scout trials is muchemigarticularly when the quorum threshold is low, so it was
omitted from this plot.
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Number of Recruitments Versus Quorum Threshold
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Figure 5.18: A good decisiemaking algorithm will minimize the amount of time and engspent
considering alternatives that are unlikely to be seleatdtié end, because this represents a waste of
time and energy. This figure illustrates that, regardlesb®fkize of the searching population, con-
siderably more attention (in the form of the number of robetsuited) is paid to the site ultimately
selected by a decision than the unselected site, and teahthieases with quorum.

decisions. It also is greater than the theoretical preafistof Appendix A suggest it should be, too.
To understand why this is so, one must look at the two decisigles’ deliberation phases, as this
is the principle manner in which they differ. When a unaryisien-maker enters the deliberating
state, it begins to collect its teammates’ opinions to campl, its estimate of apparent consensus.
As more of its teammates enter the deliberating state, tharapt consensus will increase, and so
will C,. Because the robots’ estimates of apparent consensusrceatae error, it is likely that a
robot will believe that the apparent consensus has reableegliorum threshold before this actually
occurs. On the other hand, in a best-of-N decision, whilérttiwidual robots estimate the apparent
consensus, they also are recruiting each other, activeljifgiing it. Robots that favour inferior
alternatives are likely to be recruited and thus have td sttecting teammate opinions all over
again for some new alternative, so it will be less likely faoaot that favours a poor alternative to
commit. Furthermore, while a robot that favours a good a#téve is gathering vote-messages, the
popularity of its alternative will tend to increase, incsesy the value of observed quorum should it
or an agreeing advocator commit to that site. Thereforepbserved quorum for a given value of
the quorum threshold will tend to be greater than expectetthe degree to which it will exceed

the prediction likely depends on the domain and the pagralécision being made.

The Focus of Deliberation

The focus of the deliberation phase tended to be the sitaltigiately was selected by the robots.

Figure 5.18 plots the mean number of robots successfulljuited by advocating robots to the
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Deliberation Time Versus Quorum Threshold
1200 T T T T

4 Scouts----m---- .m

1000 11 Scouts e 1

800 - o _

600 |- - -

Time (seconds)

400 i

200 R

0 1 1 1 1
0 20 40 60 80 100

Quorum Threshold (%)

Figure 5.19: Increasing quorum demands greater accuraeydrdecision, so the robots spend more
time in the deliberation phase of the framework, where ttst-bfN is determined. The more robots
participate in the initial search for sites, the greaterghparent consensus in favour of the known
sites will tend to be at the beginning of deliberation, s lescruitment (and therefore a shorter
deliberation phase) would be required to satisfy a giverrgumo

site that ultimately was selected, and to the site that waselected. Regardless of the size of
the scouting population, significant recruitment occuriredavour of the selected site, while the
unselected site largely was ignored by the advocators.shows that the proposed decision-making
algorithm is able to discard and thus not waste time or enewggidering alternatives that ultimately
will not be chosen by the robots. Fewer robots needed to loeited when eleven of the robots acted
as scouts, since those that were able to find a site on thei(lwaifof which tended to find the site
that was selected in the end) did not need to be recruitedhetdeliberation phase. Of course, as
the data plotted in Figure 5.16 demonstrates, the abilitgake correct decisions can suffer because

of this unbiased head start.

Time Required for Deliberation

The amount of time required to complete a decision also &&#tl by the quorum threshold and the
size of the scouting population. Figure 5.19 plots the meditberation time of the robots versus

the quorum threshold. As the simulations predicted eairi¢his chapter, increasing the quorum
threshold increases the amount of time required by the saiootompare the known alternatives.
Decreasing improvements in decision-making accuracyu(€i§.16) require an increasing amount
of time to realize, meaning that diminishing returns areoemtered. This result illustrates why a
100% quorum might not be desirable in practice. Increadiegsize of the scouting population

decreases the deliberation time by a constant amount, éndiemt of quorum. Because fewer re-

cruitments are required by the eleven-scout system in dodeatisfy quorum (Figure 5.18), its
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Timeline of a Real Best-of-N Decision,
An Example of Commitment Attrition
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Figure 5.20: This final timeline demonstrates what happietmgi sites satisfy quorum. The robots
committed to each instruct every robot that they meet to cittortheir favoured site, but they switch
sites when they receive a commit-message referring to trex ohe. Normally, the site that induced
commitment first would be selected in the end. In this triad two were committed to so rapidly
that neither gains the upper hand. Robot-11 prematureligidgthat unanimity has been achieved
and exits the decision early. It is only due to luck that trst of its teammates end up committed to
the same site as it. Attrition in the commitment phase is &esided altogether by making quorum
higher and ensuring that it is measured with sufficient sasfl make the measurements accurate.

deliberation phase will tend to be shorter. Note the sirtjldretween the shape of the two curves
in this Figure 5.19 and those plotting the number of robatsuited to the site ultimately selected
in Figure 5.18. It is the time required by the additional tetnent to the selected site that largely

determines the duration of the deliberation phase, siresethy far are the most numerous.

Attrition During the Commitment Phase

All of the experimental trials ended unanimously. Furtherey even when quorum was as low
as 33% only one of the two sites ever induced commitment ag &napparent consensus was
measured with sufficient precision. It is possible, howewdikely, for two different alternatives to
induce commitment in a decision. This might occur when twiy \&milar alternatives are found
and quorum is less than 50%, or when the apparent conserestitigted inaccurately. When this
occurs, it falls to the commitment phase to ensure that uminis achieved. Because a committed
robot will not exit the committed state until it believes tlal of its teammates have committed
to the same alternative as it, a period of attrition will emsduring which the robots committed
to the different alternatives send each other commit-ngessaRecall that when a robot receives
a commit-message referring to an alternative to which itasaiready committed, it commits to
that alternative and responds with an acknowledgment. €heepved quality of a site plays no role

in the commitment phase, since committed robots send ewebot that they encounter a commit-
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message. In a war of attrition, it is the side with the greatamber of combatants that will emerge
victorious, and this also is the case when attrition ocauthé commitment phase. The alternative
that induces commitment first will have a head start, andnduttiis time its committed corps will
swell in number. Therefore, the first site to induce committwéll tend to be the one that is selected
at the end of a decision. Of the 20= 5, Q = 20% trials, commitment attrition was observed in just
eight of them. In every case, the site that induced commitfirshwas the one that was selected by
the robots in the end.

A timeline of the trial that experienced the longest peribdittrition is depicted in Figure 5.20.
The squares appear on each robot’s timeline whenever it dathto an alternative, and most of
the robots can be seen to switch back and forth several timggebn the two sites. None of the
robots are supposed to enter the finished state until all@f thammates have committed to the
same site as them, but this particular timeline reveals getan commitment attrition. Robots will
conclude that all of their teammates have committed to threesste when they have been committed
to the same alternative for longer thanseconds without receiving any acknowledgments to their
commitmessages. However, it is possible for a particular conaghitbbot to encounter only those
teammates that are similarly committed and thus decidettbah exit the decision safely. Robot-
11 can be seen to do this so at approximately 150 secondshiatwial, at which point it enters
the finished state and exits the decision. It is only throwgh that the site ultimately selected by
the other robots later on is the same as the one chosen by tabdthis untidy behaviour occurs
because both sites induced commitment at almost the samaggining neither one the opportunity
to gain the upper hand before the other induced commitmenthd other trials that experienced
attrition, the second site to induce commitment did so sonawafter the first, so it quickly was
forgotten. Increasing the length of the commitment timeeatld make this sort of premature
exit from a best-of-N decision less likely, but commitmetitiion should be avoided as a general
rule whenever possible by choosingand@ such that commitment to multiple alternatives will be
unlikely. A reliable quorum test for a quorum 50%, such as: = 25, Q = 80% would satisfy this

criterion well for dec-MRS with populations up to at leasDI0bots.

5.4 Summary

This chapter extended the unary decision-making strateggepted in the Chapter 4 to accommo-
date best-of-N decisions. Unlike a unary decision, in whidngle proposed alternative is accepted
or rejected, a best-of-N decision identifies and selectsitigde best alternative from a decentralized
list. This list is created by the robots’ initial search. Tdendidate alternatives are compared via
iterative recruitment, and this process is terminated amgeof the alternatives is believed to have
obtained a quorum of support from the robots. The belief dhgle robot that quorum has been

satisfied by the particular alternative that it favours ipéfied by the final phase of a decision, com-

mitment, which induces the entire dec-MRS to adopt thatradtide as the result of the collective
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decision.

Experiments using both simulated and physical robots taerhastof-N decisions were carried
out in a site selection domain. These demonstrated thantieegent, three-phase decision-making
framework can make good best-of-N decisions, even whemittigidual robots’ sensing is noisy.
In the simulated experiments, off-swarm quorum testing imasstigated. This operation more
closely resembles the manner in which honeybeesTanthothoraxants estimate consensus and
test quorum, which is based on the sizes of the populatiaiting the favoured sites. Only certain
domains, such as site selection can take advantage of affis\yuorum testing. The only real
benefit that it offers is that it eliminates the need for int@vot communication to test quorum.
However, given that iterative recruitment still necegsianter-robot communication, the off-swarm
strategy offers no real savings to a dec-MRS in practicethieamore, it is limited to small quorums,
the robots must know the absolute population size of theitesy, and it increases the likelihood of
decision stagnation. For all of these reasons, on-swarmsermus estimation and quorum testing is
much better suited to collective decision-making by a d&RSVi

Somewhat surprisingly, best-of-N decisions exhibitedeatgr observed quorum than similarly
calibrated unary decisions. That is, for a given quorum(iestn and@), the consensus observed
at the time of commitment tended to be greater than expestdekibest-of-N operation. This ob-
servation makes sense, however, when the impact of iteredisruitment and its interaction with
consensus estimation is considered more closely. Iteradigruitment, which compares the can-
didate alternatives during the deliberation phase of asitatincreases the apparent consensus in
favour of the best known alternative by inducing robots taabur inferior alternatives to abandon
them for the best alternative. Therefore, robots that fapoorer alternatives are less likely to com-
mit to them, both because the apparent consensus in favahewf will tend to be both low and
decreasing, and because robots will tend to be recruited/tuf better alternatives before they have
favoured an inferior alternative long enough to make anreAtthe same time, the robots’ estimates
of consensus lag reality. When a robot commits to the bestradtive (the most likely outcome), the
actual apparent consensus will tend to be somewhat gréatethe robot’s estimate, since it likely
will have increased over the period of time that the robotectéd the necessary vote-messages to
make its estimate.

Both the simulated and real robots improved their decisi@king accuracy when either the
quorum threshold or the number of teammate opinions usedripuateC, was increased. Increas-
ing either of these parameters increased the amount ofiter@cruitment that would take place
in a decision, increasing the reliability of the procesg ttantifies the best alternative. Of course,
accuracy and speed are competing interests, as was iedgsiraChapter 3. Therefore, it was no
surprise that the increased decision-making accuracyaetiiby increasing quorum came at the
cost of additional deliberating time.

The variations on iterative recruitment investigated ygimulated best-of-N decisions demon-
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strated that direct comparisons of candidate alternabyethe individual robots are unnecessary,
as the emergent positive feedback of restraintive recaritirin which no direct comparisons ever
are made, performed just as well as (if not better than) idiscative recruitment. Direct compar
isons can be dangerous in a system composed of many simplairals, since it introduces the
potential for individual stubbornness, which could leagtgnation during collective deliberation.
Furthermore, real robots will have noisy sensors (illustldoy Figure 5.12), so the individual robots
should not be assumed able to directly compare two candidi@tematives. There is one exception
to this statement, however. Although it was not the caseerettperiments described in this chap-
ter, scouts could directly compare candidate alternatiedsrethey are recruited for the first time.
This is because it is the duty of the scouts to populate theurséigandidate alternatives. In this
way, a scout could increase the likelihood of informing @arhmates of a good alternative when it
enters the deliberating phase. The key point to make hehaishe scout would be comparing two
alternatives that had found.

The size of the scouting population was observed to haverdfis@nt impact on the accuracy
and precision of collective decision-making. If too manbkats scout for a decision that has only a
few alternatives, then the outcome of their searching hiebaalone might satisfy quorum without
any collective comparison every taking place. Howevemd tew scouts are deployed, then each
alternative found will be held in the collective memory ofecdMRS only tenuously. In general, a
greater population of robots will be able to perform a bettenparison of a given set of alternatives,
since the susceptibility of such a population to stochastiors will be less than that of a smaller
dec-MRS. However, the quorum for a decision should be mafficisatly large that collective
deliberation will be given a reasonable opportunity to tifgrthe best alternative. For domains
in which multiple alternatives are likely to be found, a ablie test for a quorum of 50% would
suffice, but when only two alternatives are expected.deciding between two paths at a fork in a
road), a greater quorum is advised. Iterative recruitmestially will bring about the unanimous
support of one of the candidate alternatives, so fear ohstiémn should not prevent the use of a

large quorum when domain-specific knowledge is lacking.
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Chapter 6

Discussion and Conclusions

In this, the final chapter of this thesis, the contributiohth@s work are summarized, and directions

for future work are provided.

6.1 Contributions

This work has focused on the ability of d&RS to make cohesive, system-level decisions through a
sequence of emergent behaviours. Itis the use of emergeanioeirs to build up the three phases of
the decision-making framework that is particularly impart, since it means that the entire process
depends only on the local interactions of the individualotsb This is the mode of operation of a
decentralized system like a dec-MRS, so the approach tgidaeinaking presented in this work is
ideally suited to such systems.

Much of the existing research with dec-MRS also takes adgpmbf emergence and peer-to-
peer interactions, but it treats the robots as a kind of efedtefr, things that are to be commanded,
rather than an intelligent collective that senses its @mirent and computes its own cohesive re-
sponse. Thatis, most work has viewed the micro-macro liek#§g a one-way street, in which local
behaviours combine to produce a globally observed emetgshrdaviour with no direct link back
from the macro to the micro. In some cases, individual robaige been programmed to respond
indirectly to their macroscopic behaviour by tuning theidividual behaviours to the environment
that they collectively modify (stigmergy), but this is attlg arrangement [6].

Perceptual cues were introduced in [48], and the idea wadsintd&idual robots, instead of
physically responding to certain stimuli, might insteadatecognitively. For example, a robot might
respond to the Sun rising by switching to its daytime behadpswitching back to its nighttime
mode of operation after the Sun had set. In contrast, theugutest employed by the deliberating
robots to determine when sufficient deliberation had takeoegds asocial cue These robots did not
predicate their choice of behaviour on some varying asgahed environment, but instead directly
upon the global state of their team. Macro was sensed by ttr@naind the latter’'s response brought

about a phase change in the former. This completes the feledi@p (see Figure 6.1), enabling a
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Local interactions bring about
emergent global behaviours

Estimates of system state by the
individuals change their behaviours

Figure 6.1: In many deMRS, the micro-macro link is unidirectional. The indivaluobots interact
with each other and the environment, and a global (macrascbghaviour emerges. The system-
level decision-making framework of this thesis uses cosserestimation and quorum testing to
complete the loop, enabling the robots to predicate thdiabeurs directly upon their collective
state.

dec-MRS to respond directly to itself, and thus predicatedtlective behaviour on its state.
Completing this loop is significant. It means that dec-MRB loa viewed as intelligent entities
in and of themselves, rather than loose collections of doatdd individuals. In this way, a dec-
MRS mission could be designed as though it was any otherimimi¢sion, and the dec-MRS could
be treated as though it was any other robot. The illusion nfreized control provided by closing
the micro-macro loop is a useful layer of abstraction foliglesrs. When it makes sense to do so, a
cohesive dec-MRS could be treated as an intelligent anchaatousndividual, while still retaining

all of the robustness and scalability of a decentrally stned entity.

6.2 |Issuesfor Future Study

Although this work has demonstrated that a dec-MRS can thdegke intelligent, system-level

decisions, there still are issues that remain to be invatstibfurther.

6.2.1 Asynchronously Initiated Decisions

Two kinds of collective decisions have been discussed swhirk. These are the unary decision
and the best-of-N decision. Robots became involved in ayutecision after they independently
had decided that some alternative to #@tus qucshould be adopted by their entire system. In a
best-of-N decision, the robots collectively compared aoégrroposed alternatives and adopted the
best one, but it implicitly was assumed by the best-of-N sleniframework that thetatus quavas
inadequate, and that it therefore must be replaced by thealiemative that could be found. This
belief was simultaneously adopted by all of the robots abtteest of an external central controller:
the operator that began each decision-making trial.

A more general approach to decision-making would be a coatioinm of these two approaches.
As individuals notice the need for a collective decisioreytishould seek out alternatives. Other
robots that do not believe that a decision is required, hewaenill not participate in the search. If

these robots are recruited by an advocator, they mightstitlude that thetatus quas sufficiently
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satisfactory that the alternative proposed by the advosdiould be rejected, and thus they should
re-enter the idle state after researching it. Therefore, a@ator might attempt to recruit many
of its teammates, but if it is the only robot that believed thalecision is necessary, all of them
would reject it and no progress would be made by its actiortgs @bility of idle robots to reject
recruitment would prevent a dec-MRS from being subjectealdecision every time that one of its
robots believed that a decision was needed.

If an advocator detects such stagnatierg(the apparent consensus for its favoured alternative
was not increasing), it must conclude that its belief thabkective decision was required was
incorrect, and therefore it too should abandon its deciaiwhrevert to the idle state. However, if
a robot believes that a collective decision is requiiies {t is in either the searching or advocating
states), it should not reject recruitment and instead shbelan active participant in the iterative
recruitment process. Commitment need not be modified, aifietisame here as before.

With this slightly modified framework, a dec-MRS could iait either unary or best-of-N de-
cisions asynchronously, as circumstances demanded, @gnized by the individual robots. Note
that here, for quorum to be satisfied and thus commitment ¢arpa sufficient proportion of the
robots must agree not only that one of the alternatives ficgritly good, but also that th&tatus
quois sufficiently bad that a collective decision is requireddplace it. If the individual robots of a
dec-MRS were able to recognize the need for different typeecisions, then this general frame-
work would enable a dec-MRS to autonomously interact wiheitvironment as though it were a
superorganism, providing the illusion of central contrbhis synthesis has yet to be implemented,

and it is left here as a starting point for future study.

6.2.2 Recovery from Incomplete Commitment

A system that is based around stochastic processes wilt rej@y 100% reliability. For example,
some of the individual best-of-N decisions described in a5 were incorrect. Even a deter-
ministic algorithm, however, once deployed in the real @avbuld have some probability of error,
since the deterministic responses of such a system wollldesth response to the stochastic nature
of the real world. One potential problem has not been adddessplicitly by the decision-making
framework proposed by this work, and that is what should beedno the event of an incomplete
commitment.

Just like any other gossip-style algorithm, commitmenthhfgil to induce every robot to com-
mit to the same alternative. The probability of this ocaugrcan be decreased by increasing the
length of the commitment timeout, but the probability ofdaé can never be reduced to zero. How
should a robot respond to an incomplete commitment? Thema implicit question of economy
here, since it must also be asked at what point should theofas$ew robots be a concern? When
this is a minor inconvenience, it might be best to leave reppto the lost robots themselves. For

example, if a robot in a large a convoy traveling through aggaous area gets lost, it probably is
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not worth risking the entire convoy to recover it. In otheacamstances, the individual robots might
be much more valuable, and thus the system would have a viestedst in retaining them at all

costs. Given that robustness to individual failure is onthefmost common arguments in favour of
decMRS, it is more likely that the former scenario will be enotered than the latter. Nonetheless,

autonomous recovery from this mode of failure would be a wahtile problem to investigate.

6.3 Final Thoughts

A decentralized multiple-robot systecan make system-level decisions through local peer-to-peer
interactions. Furthermore, the individual participamtghiese decisions need not be complex, yet
they collectively are able to make good decisions, betim they would be able to individually. In
fact, a close examination of the decision-making framewmwdposed by this work reveals that the
simplest case is not one robot, but two, as social intenagtith at least one other robot is required
in order for an individual to conclude that quorum has be¢isfgad. Implicit in this strategy is the
assumption by each robot that it is not alone, that it is a merobsome greater community that
extends beyond the boundaries of each individual. In maryswthe key to making decisions in a
decentralized system appears to be the practice of restradshacting on one’s own conclusions,
but based on those of one’s teammates, thereby freeing llbetoe from the tyranny of over-eager,
error-prone individuals. It is difficult not to be remindeflaur own brains, composed of a myriad
of individual nerve cells connected together, participgiin their own peer-to-peer interactions to
make their own system-level decisions. We compuith our brains, noin them. In the same way,

this thesis has demonstrated that we can compittea dec-MRS, not just within it.
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Appendix A

The Relationship between the
Observed Quorum and the Quorum
Threshold

When a robot measures the apparent consensus amongshitadéss for the alternative that it
favours, it cannot determine it precisely. Instead, ameste is computed, denoted,. It is this
estimate that it compares t, the quorum threshold. Given the unavoidable nois€’jnrobots
are likely to make errors when testing quorum. This appeddscribes the approach used in this
thesis to predict the relationship between the quorum ltmidsand the observed quorum, the latter

being the actual consensus present in a MRS when the verydiirst believes that’, > Q. Only

P(~Ca2 Q) Versus G, Population Size = 50 Robots
100 T T T T T

0=20%/0=40% 0=100%

P(C,> Q) (%)

52.0 100
Ca (%)

Figure A.1: The curves in this figure plot the probability afl@ast one of a system’d robots
believing that quorum has been satisfied. Each curve camelsto a different value of the quorum
threshold,Q. The likely value of the observed quorum for a given valu€)at the apparent cen
sensus (horizontal axis) that corresponds to a 50% likedihaf believing that quorum is satisfied.
These values are indicated by the intersections of the ddstes in this figure.
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Prediction of Observed Quorum Versus Quorum

100 Threshold, Population Size = 50 Robots

77.4

53.0

36.0

Observed Quorum (%)

21.3

10.1
2.0

0 20 40 60 80 100
Quorum Threshold (%)

Figure A.2: The values of observed quorum read off of Figurg &e in the units of apparent
consensus. These are converted to true consensus withidgaea?, which are then plotted against
the value ofp) corresponding to the curve in Figure A.1 from which they wesd. Because a robot
will always believe that quorum is satisfied whén= 0, the observed quorum for this particular
quorum threshold will bek.

the digital approach to consensus estimation is used haetaiven the results of Chapter 3, the
predictions derived here should be considered equallyicgipe to a similarly calibrated analog
qguorum test.

Given the population size of a d&RS and the number of teammate opinions used by each
robot to compute’,, the probability of at least one robot computifig > Q is given by Equation
A.1%. Plotting Equation A.1 witm = 5 for several values of) yields Figure A.1. Note that the
curves in Figure A.1 take into account the number of robais tompose a dec-MRS, as does the

entire derivation in this Appendix.

(lCa(N=1)]+1)

PC.>Q=1-| % (”) (Ca)i(1— Co)™ (A1)

i=mQl '

Each curve in Figure A.1 plots the probability of a rolédt > @ given the value of) asC,, is
varied from zero to 100%. By assuming that the most likelyeobsd quorum for a given value ¢f
occurs WhenP((fa > @) = 50%, the observed quorum for such a configuration can be read off o
the horizontal axis of Figure A.1 at the point where the ceponding curve reaches a height of 50%.
For example, the leftmost curve correspond@te- 20%. On that curve, Wheﬁ’((fa > Q) = 50%,

C, = 8.3%.
The values read off of the horizontal axis of Figure A.1, hegreare measured in the units

of apparent consensus. This is because the individual sokitiiin a dec-MRS do not know the

1This is the same equation as Equation 3.24, reproduced dregerivenience.
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Prediction of Observed Quorum  Prediction of Observed Quorum
Versus Quorum Threshold, Versus Quorum Threshold,

= 00Population Size = 15 Robots 00Population Size = 50 Robots
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Figure A.3: These graphs plot the predicted relationshipvéen observed quorum and the quorum
threshold for two different population sizes for differaaiues ofn. Asn is increased, the proba
bility of a robot overestimating’, decreases, which results in an increase in the observedmuor
Increasing the number of robots in a system decreases teevelbsguorum, both because apparent
consensus is less of an overestimate of true consensMsrageases, and also because the proba-
bility of at least one of the robots making an error in itsrastie of apparent consensus will tend to
increase.

population size of their system, and so they cannot measugecbnsensus. However, when the
observed quorum is reported, it is measured in the unitsiefdconsensus, since this is how it would
appear to an agent observing it from outside of the systeah as a designer. Apparent consensus
can be converted to true consensus by Equation A.2.

(N-1)C,+1

C, = 2 (A2)

Returning to the leftmost curve of Figure A.1, for whi¢h= 20%, the observed quorum equals
w = 10.1%. Therefore, when the robots of a 50-robot dec-MRS each cten@y
using the 15 most recently received teammate opinions,estdjtiorum by comparing, to Q =
20%, an observed quorum df.1% should be expected. By repeating this process for different
values of@, the relationship between the observed quorum and the gutiteshold is built up,
point by point. Figure A.2 portrays the relationship congalfrom the curves of Figure A.1. The
intercept of this curve with the vertical axis is more ea$ilynd. Becaus€&, > 0, a robot will
always believe that quorum is satisfied wh@n= 0, independent of:. Therefore, the observed
quorum will be%, since the first robot to test quorum is guaranteed to coedluak it has been met
when@ = 0.

Increasing: increases the precision with which each robot estimatearappconsensus. Robots
that use a larger value afwill be less likely to believe that quorum is satisfied foreegiC, < Q.

Of course, because the intercept with the vertical axisdependent of,, each curve corresponding
to a different value of, will share a common intercept, and they will divergegamcreases. This is
precisely the relationship that is shown in the graphs ofiFegA. 3.
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The population size of a system also impacts the relatiprisstween observed quorum and the
guorum threshold, as is evident when Figures A.3(a) andb) & compared. Figure A.3(a) eor
responds to a 15-robot system, whereas Figure A.3(b) qgnels to a 50-robot system. Increasing
N lowers the curves for two different reasons. First,\agncreases, apparent consensus is less
of an overestimate of true consensus. This effect is mostewdile for low quorum thresholds.
In particular, the intercept of Figure A.3(a) with the vedli axis isl%, whereas it is% in Figure
A.3(b). Second, a®v increases, more robots will simultaneously compute amesti ofC, and
compare their estimates @, and so the likelihood of at least one of them overestimafipglso
will increase. This also lowers the expected value of oleiquorum for a given quorum threshold.

The prediction of the relationship between the observeduqua@and the quorum threshold de-
rived in this appendix ignores one fact, and that is thatkiesatime for the robots to collect the
n teammate opinions that they use to comptite During the period of time in which the robots
gather vote-messages from each otligrwill tend to evolve as the robots independently change
their opinions based on their observations of the world sathay recruit each other in a best-of-N
decision. If, as was the case in the experimental domain aph 4,C, tends to increase with
time, then during the time required to collect the extra teete opinions demanded by a greater
value ofn, C, will increase, and the observed quorum will increase aloitly itv The more rapidly
C, tends to change relative to the time required to collect teata opinions, the more the experi-
mentally derived relationship between the observed quamndithe quorum threshold will tend to

deviate from the predictions presented here.
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