

Introduction

Project I: Based on research published in European Journal of Medicinal Chemistry where different benzoquinone derivatives were synthesized and tested in terms of anticancer activity.¹

- S-allyl substituent was determined to be optimal
- Some amino substituents containing hydroxyl groups were potent, but had low solubility in water

Will using a glycosylamino substituent improve the solubility and ADMET properties of the compound while retaining the potency?

Project II: Based on research published in the Journal of Medicinal Chemistry where perillylglycosides were shown to have improved antiproliferative activity.²

• Perillyl alcohol is a plant metabolite shown to be a possible anticancer agent

Will perillylglycosylamines be more effective as anticancer agents than perillyl alcohol?

Connection: Adding a glycosylamino substituent to a possible cancer drug to influence the compound's pharmacological or ADMET properties.

• ADMET refers to the Absorption, Distribution, Metabolism, Excretion and Toxicity of a compound

Methods: Organic Synthesis

Methods include the following generalized steps:

- 1. Setting up a reaction: combining reagents, adding catalysts and/or solvent
- 2. Monitoring the Reaction • TLC, NMR, Mass Spectrometry
- 3. Purification: isolating the desired product from the mixture • Extraction, evaporation under reduced pressure to remove solvent, filtration, flash chromatography, etc.

Synthesis of Potential Glycosylated Anticancer Compounds

Amy Au, Chun Jui Chu, Vitor Cunha, Todd L. Lowary Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

Project I: Synthesis of glucosylamine benzoquinone derivative

Synthesis of S-allylisothiuoronium bromide:

Synthesis of glucosylamine:

HO HO NH₄OH, 42 °C, 36 h HO HO

Synthesis of glucosylamine benzoquinone derivative:

+ HO OH HO

Synthesis and reduction of peracetylated glucosyl azide³:

Synthesis of protected glucosylamine benzyoquinone derivative:

Project II: Synthesis of perillylglucosylamine

Synthesis of glucosylamine:

Synthesis of perillylglucosylamine via Reductive Amination:

 $\xrightarrow{\text{NH}_4\text{HCO}_3}$

financial support.

. Zhao, Y.; Lu, Y.; Li, R.; He, J.; Zhang, H.; Wang, X.; Ge, Z.; Li, R. *Eur.* J. Med. Chem. 2018, 149, 1-9 2. Nandurkar, N. S.; Zhang, J.; Qing, Y.; Ponomareva, L. V.; She, Q. B.; Thorson, J. S. J. Med. Chem. 2014, 57, 7478-7484 3. Ibatullin, F. M.; Shabalin, K. A. Synth. Commun. 2000, 30, 2819-2823