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ABSTRACT 
Nowadays, application of massive mining methods has been increased due to the 

economic condition of mining companies. It is a step change for the industry, from 

the traditional open-pit to a move underground. Among the underground mining 

methods available, caving methods are favored because of their low-cost and 

high-production rates. They offer a much smaller environmental footprint 

compared to equivalent open-pit operations due to the much smaller volume of 

waste to be moved and handled. 

Planning of caving operations poses complexities in different areas such as 

safety, environment, ground control, and production scheduling. As the mining 

industry is faced with more marginal resources, it is becoming essential to 

generate production schedules that will provide optimal operating strategies 

while meeting practical, technical, and environmental constraints. Unfortunately, 

common methodologies and tools used in mining industry for block-cave 

scheduling are not adequate in dealing with the complexity of the optimal 

production scheduling of mineable deposits. Also, the traditional long-term mine 

planning is based on deterministic ore-body models, which ignore the uncertainty 

in the geological resources. Grade uncertainty has profound impact on 

production targets which also impacts the financial expectations of the project. 

Initial evaluation of a range of levels for starting the extraction of block-cave 

mining is an important issue that needs to consider a variety of parameters 

including extraction rate, block height, discount rate, block profit, cost of mining 

and processing and revenue factors.  
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The objective of this study is to present a methodology to find the best extraction 

level and the optimum sequence of extraction for that level under grade 

uncertainty. A set of simulated realizations of the mineral grade is modeled based 

on stochastic sequential simulation to address this problem. The average grade of 

all the realizations is calculated and a new block model is generated, called 

average-simulated block model (first case study). Another case study is original 

block model which is created from the drillhole data. A method is introduced to 

find the best level to start extraction based on the maximum discounted ore profit. 

The best level of extraction is determined for all the realizations, original and 

average-simulated block models. Then, Maximum net present value (NPV) is 

obtained using a mixed-integer linear programming (MILP) model given some 

constraints such as mining capacity, production grade, extraction rate and 

precedence. Application of the method has been verified on both original and 

average-simulated block models for block cave production scheduling over 15 

Periods. The best level for the original bock model was 38 and for average-

simulated block model was 39. The obtained NPVs were $0.925B and $0.726B for 

the original and average-simulated block models, respectively, and all the 

constraints were satisfied. Finally, risks associated with grade uncertainty are 

investigated and analyzed which considerably helps the decision makers in better 

understanding of various cases and conditions. Among all the examined scenarios 

with unique scheduling parameters, the worst and the best case for the NPV were 

$0.85B and $1.081B, respectively. The ore tonnage also varies between 28.68Mt 

and 39.64Mt.  
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CHAPTER 1  

INTRODUCTION 

 

This chapter is a general overview of the research. It concludes the background of 

the research; the problem statement; the objectives of the study, scope and 

limitations; the research methodology; and the contributions of the research.  
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1.1 Background 

Mine planning determines the source, destination and sequence of extraction of 

ore and waste during the mine life. Production scheduling because of its 

significant impact on the project’s value, has been considered a key issue to be 

improved. Production scheduling defines the tonnages and input grades to the 

plant throughout the mine life. The scheduling problems are difficult due to the 

natural complexity of minerals and variety of constraints on the system. 

Moreover, a production schedule must provide a mining sequence with respect to 

the operational and technical constraints and, to the extent possible, meet the 

target capacity of the processing plant.  

The use of massive mining methods is increasing in major mining companies due 

to the economic issues of today’s mining industry. Among the underground 

mining methods, block-cave mining could be considered as an appropriate 

alternative because of its low operation cost and high production rates 

(Pourrahimian, 2013). Block caving is the method that uses gravity to fracture a 

block of unsupported ore-body, allowing it to be extracted through pre-

constructed drawpoints. It is more suitable for large, massive and low-grade ore-

bodies. Block-cave mining offer a much smaller environmental footprint 

compared to equivalent open-pit operations due to the much smaller volume of 

waste to be moved and handled.  

The uncertainties have profound impact on optimality of production schedules. 

Dimitrakopoulos (1998) has categorized these uncertainties into three types: (i) 

the ore-body model and variability of in-situ grade and material type; (ii) 

technical mining parameters such as mining capacity and (iii) economic factors 

such as capital and operating costs.  

The initial evaluation of a range of levels for starting the extraction of block-cave 

mining is an important issue which affects the NPV of the project. To do this, it is 

necessary to consider a variety of parameters including extraction rate, block 

height, discount rate, block profit, cost of mining and processing and revenue 

factors. 
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One of the main steps involved in optimizing underground mines is determining a 

mining outline and inventory. The open-pit corollary to this is open-pit 

optimization, which is completed with algorithms such as those by Lerchs and 

Grossmann (1965). 

To optimize block-cave mine scheduling, most researchers have used 

mathematical programming: linear programming (LP) (Guest et al. (2000), 

Hannweg and Van Hout (2001)); mixed-integer linear programming (MILP) 

(Song (1989), Chanda (1990), Winkler (1996), Rubio (2002), Rahal et al. (2003), 

Rubio and Diering (2004), Rahal (2008), Rahal et al. (2008), Weintraub et al. 

(2008), Smoljanovic et al. (2011), Pourrahimian et al. (2012), Parkinson (2012), 

Pourrahimian (2013), Pourrahimian and Askari-Nasab (2014)); and quadratic 

programming (QP) (Rubio and Diering (2004), Diering (2012)). LP is the simplest 

program for modelling and solving.  

In this research, the main focus is to present a methodology to find the best 

extraction level and the optimum sequence of extraction for that level under grade 

uncertainty. A set of simulated realizations of the mineral grade is modeled based 

on stochastic sequential simulation. Maximum net present value (NPV) is 

determined for the block models using a MILP model after choosing the best level 

of extraction.  

1.1 Statement of the problem 

The proposed research is categorized in the area of applied operations research 

and stochastic sequential simulation. 

The production schedule for a block-cave mine primarily is to define the amount 

of material to be mined from each block in each period of production and achieve 

a specific planning purpose (Pourrahimian, 2013).  

Geostatistical simulation is used to model two kinds of geological uncertainty: 

rock type uncertainty and grade uncertainty within each rock type. The generated 

realizations provide reasonable outcomes to determine and assess uncertainty 

(Koushavand, 2014). 
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In traditional mine planning, Kriging (Goovaerts, 1997; Deutsch and Journel, 

1998) as a common estimation is used to assign a grade to each block. But kriging 

does not reproduce uncertainty and its estimations are too smooth which causes 

consistently biased reserve estimates (McLennan and Deutsch, 2004). 

The following research question drives this dissertation. 

Is it possible to create a strategic production schedule for block-cave 

mines that will result in near optimal NPV, considering grade uncertainty 

and all the technical and operational constraints, such as mining capacity, 

grade blending, extraction rate, continuous extraction, number of new 

blocks, sequence of extraction, and reserves? 

In this research, block-cave production scheduling under grade uncertainty is 

studied. The ore-body is represented by a geological block model. Numerical data 

are used to represent each block’s attributes, such as tonnage, density, grade, rock 

type, elevation, and profit data.  

The first step is to construct an original block model based on the drillhole data 

and the grid definition. The next step is a geostatistical study to generate the 

realizations using drillholes data. Average grade of all the realizations (block 

models) for each cell is calculated to consider one block model instead of all the 

block models. This generated block model called average-simulated block model. 

Then, the best level of extraction based on maximum discounted profit is found 

for all the realizations, original and average-simulated block models. The most 

frequent level is chosen from the simulated block models. According to the results 

from both average-simulated block model and frequent level from the realizations, 

the best level is selected. The outline of the ore-body is determined at the best 

level and based on distances between drawpoints and the assumed footprint size, 

the blocks are placed into bigger blocks to decrease the number of variables and 

size of the problem. Finally, the optimal sequence of extraction is determined to 

maximize the NPV. The material in each big block is scheduled over T periods 

respecting the constraints. Figure 1.1 shows the summary of the methodology. 
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Figure 1.1. Schematic representation of problem definition 
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1.2 Summary of Literature Review 

Mathematical programming optimization with exact solution methods have been 

proved to be powerful in solving production scheduling problems (Pourrahimian, 

2013). Relying only on manual planning methods or computer software based on 

heuristic algorithms for solving a production scheduling problem cannot secure 

the optimal global solution. Scheduling more complicated mining systems is 

possible with great enhancements in recent years in computing power and 

scheduling algorithms (Alford et al., 2007). 

Few numbers of researchers to date have studied production scheduling in 

underground mining. The complexity of underground mining is much more than 

the complexity of surface mining (Kuchta et al., 2004). Geotechnical, space and 

equipment constraints make underground mining less adoptable than the surface 

mining (Topal, 2008).  

Various types of scheduling algorithms have been applied in production 

scheduling of underground mines. There are two main research areas in 

production scheduling algorithms and formulations: 1) heuristic methods and 2) 

exact solution methods for optimization (Pourrahimian, 2013). 

Mathematical programming models that have been implemented in optimization 

of block-caving scheduling include: linear programming (LP), mixed-integer 

linear programming (MILP), goal programming (GP), and quadratic programming 

(QP) (Song (1989); Chanda (1990); Guest et al. (2000); Rubio (2002); Diering 

(2004); Rubio and Diering (2004); Rahal et al. (2008); Weintraub et al. (2008); 

Smoljanovic et al. (2011); Parkinson (2012); Epstein et al. (2012); Diering (2012); 

Pourrahimian et al. (2013); Alonso-Ayuso et al. (2014); Pourrahimian and Askari-

Nasab (2014)).  

Grade uncertainty can lead to significant differences between actual production 

and planning expectations and, as a result, the net present value (NPV) of the 

project (Osanloo et al., 2008; Koushavand and Askari-Nasab, 2009). Various 

researchers have considered the effects of grade uncertainty in open-pit mines. 

They introduced different methodologies to address those effects (Ravenscroft 
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(1992); Dowd (1994); Godoy and Dimitrakopoulos (2003); Ramazan and 

Dimitrakopoulos (2004); Leite and Dimitrakopoulos (2007); Dimitrakopoulos and 

Ramazan (2008); Koushavand (2014)). But less numbers of publications have 

concentrated on grade uncertainty in underground mining especially in block 

caving, where it is not so easy to revise production plans after caving has begun 

(Vargas et al. (2014); Grieco and Dimitrakopoulos (2007); Vargas et al. (2014); 

Montiel et al. (2015); Carpentier et al. (2016)).  

The major limitations of the current production scheduling optimization in block-

cave mining reviewed on chapter 2 are: 

 Not taking into account detailed geotechnical constraints into real-scale 

production scheduling, extraction sequence and advancement directions. 

 Not considering a solution for solving large-scale problems. 

 Not considering the uncertainties associated with grade and only relying 

on deterministic models. 

1.3 Objectives of the study 

One of the objectives of this study is to consider grade uncertainty in finding the 

best level of extraction. A set of simulated realizations of the mineral grade is 

modeled based on stochastic sequential simulation. 

Another objective of this study is to present a mathematical formulation to 

optimize a block-cave production scheduling in which the objective function is to 

maximize NPV with respect to technical and operational constraints.  This 

objective consists of two elements: (i) developing a mixed-integer linear 

mathematical programming, (ii) verification of the mathematical formulation with 

real mining data.    

The proposed methodology generates near-optimal schedules with respect to the 

following operational constraints: mining capacity, minimum required mining 

footprint, number of new big-blocks, extraction rate (production rate per block 

and per period), grade blending, continuous extraction, reserves, and extraction 

sequence.  
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The objectives of this study are to:  

 Considering grade uncertainty using stochastic sequential simulation to 

decrease the effect of this uncertainty on the optimality of the project.  

 Finding best level of extraction to start the mining operation based on the 

maximum discounted profit and grade uncertainty. 

 Maximizing NPV of the mining operations with taking into account the 

effects of technical and operational constraints. 

 Creating big-block columns to decrease number of blocks which 

reasonably reduces the amount of CPU time. 

 Developing computer codes and tools to implement those mathematical 

formulations. 

 Evaluating the results in terms of both feasibility and optimality of the 

solution using real mining data.  

1.4 Scope and Limitations of the Study 

This research is concerned with developing, implementing and verifying a MILP 

model to generate an optimal production schedule for block-cave mining in 

presence of some operational and geomechanical constraints and grade 

uncertainty. The model’s objective is to maximize NPV of the block-caving 

operations subject to real world requirements and constraints.  

The following assumptions are made in developing the mathematical model and 

stochastic sequential simulation: 

 Size of the layout is fixed. 

 Stationary domain within each rock type is assumed to be able to perform 

geostatistical modeling for each rock type separately.  

 Developed MILP model is used to generate a production schedule only for 

block-cave mining. 
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There are some limitations in the problem due to the incorporated assumptions. In 

other words, detailed parameters such as drilling, blasting and ventilation are not 

considered in the model. Although grade uncertainty is examined to capture one 

of the uncertain inputs but other uncertainties such as prices, costs, recoveries and 

other practical mining constraints are still assumed to be deterministic. Any 

change in one of the mentioned input parameters needs re-schedule and re-

optimization like all the deterministic models in capturing uncertainty.  

1.5 Research Methodology 

The main motivation for conducting this research is to improve block-cave 

production scheduling with considering more practical constraints in presence of 

grade uncertainty. There are two main steps to achieve this research’s objectives: 

conducting n realizations based on drillhole data and perform geostatistical 

analysis and maximizing NPV through MILP model subject to a set of constraints. 

The following tasks should be completed to achieve this research’s objectives:  

 Implement geostatistical simulation to take grade uncertainty into account 

and generate a set of realizations. 

 Develop a model using mathematical programming, specifically MILP 

which is a robust operations research method because of allowing binary 

variables. 

 Verify the proposed model to make sure that whether the model works 

correctly according to the expectations or not. 

 Implement the model through block-cave mine case studies to generate 

production schedule for the life of mine. For large scale mine problems, 

clustering small blocks into big-blocks will be used to not only decrease 

the number of variables but also decrease the run time.  

 Assess the results of case study from practical point of view.   

In the first part of this research geostatistical software library (GSLIB) (Deutsch 

and Journel, 1998) is used for geostatistical modeling. A number of realizations 

should be constructed using stochastic sequential simulation, based on the 
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drillhole data. The following steps are implemented to achieve the objectives of 

the research in the first part: 

1. Perform declustering which is used to get the representative distribution of 

each rock type to decrease the weight of clustered samples. 

2. Perform multivariate statistical analysis to determine the correlation 

between the multivariate data. 

3. Determine the principle direction of continuity for calculating variograms. 

4. Transform data to Gaussian units. 

5. Calculate the variograms. 

6. Define the grid for simulation according to three parameters: (1) distance 

between the grid nodes in each direction, (2) the number of grid nodes in 

each direction and (3) the coordinates of the first grid node (Koushavand, 

2014). 

7. Generate n realizations (block models) using stochastic sequential 

simulation.  

In the second part of this research the main focus is on developing a code to find 

the best level to start the extraction and an create big-block columns to reduce the 

size of the problem and developing MILP model to maximize the NPV with 

respect to practical constraints. The following steps are followed to complete this 

objective: 

1. Find the best level to start the extraction for the average-simulated block 

model and all the simulated block models based on the maximum 

discounted profit. Based on the obtained results the best level is selected. 

2. Determine the actual outline of the ore-body at the best level. 

3. Create big-blocks based on the minimum required mining footprint inside 

the outline of ore-body at the best level to reduce the size of the problem. 

Weighted average grade, profit and total tonnage for each ore big-block 

are calculated. The big-blocks are the whole big-blocks above every 

footprint block at the selected level. 
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4. Define scheduling parameters. 

5. Create objective function and constraints in MATLAB (Math Works Inc., 

2015). 

6. Solve the model using IBM/CPLEX (IBM, 2015) which uses a branch-

and-bound algorithm to solve the MILP model, assuring an optimal 

solution if the algorithm is run to completion. An optimal production 

schedule is generated for different advancement directions. The direction 

with maximum NPV is employed as the mining direction.  

7. A gap tolerance (EPGAP) is used as an optimization termination criterion. 

This is an absolute tolerance between the gap of the best integer objective 

and the objective of the remained best node. 

1.6 Scientific Contributions and Industrial Significance of the Research 

The main scientific contribution of this research is to develop, evaluate and 

implement a mathematical programming in context of block-cave mine 

production scheduling and in presence of grade uncertainty to find the best level 

of extraction and to maximize NPV. A need for an absolute solution for block-

cave production planning under grade uncertainty is necessary especially with 

increasing use of massive mining methods. The summary of the contributions are: 

 Combination of mixed-integer linear programming with geostatistical 

simulation in the context of block-cave mine planning. 

 Analysis of grade uncertainty and studying its effect on mine planning 

and as a result on NPV of the underground mining operations. 

 Determination of best level to initiate the extraction based on the 

maximum discounted profit and grade uncertainty. 

 A method is presented which contributes significantly to reducing the 

number of variables and consequently solution time of the model. 

 The proposed model can be applied on real size industrial applications 

as it has been tested on a real block-cave mine case study. 
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 The MILP model is subjected to a set of practical constraints including: 

mining capacity, grade blending, mining precedence, extraction rate, 

continuous mining, reserves and number of new big blocks. 

 Introducing a methodology to determine the predecessor big-blocks and 

its implementation as prototype software with a graphical user 

interface. 

 Development of a prototype open-source software application with the 

graphical user interface called Block Cave Footprint Optimizer 

(BCFO). The prototype software helps transfer knowledge and 

optimization technology developed in this thesis to practitioners and 

end-users in the field of block-cave production scheduling.    

1.7 Organization of Thesis 

Chapter 1 of this thesis is an introduction to the study. It concludes a general 

description about the background of the research followed by the statement of the 

problem, objectives, scope and limitation of the study, the proposed methodology 

and the contribution of the research. 

Chapter 2 contains a literature review of the block-caving, production scheduling 

methodologies in both surface and underground mining. It provides a review 

about mathematical programming and its usage in mining operations. Also 

methods and models have captured grade uncertainty to date are discussed in both 

surface and underground mining.  

Chapter 3 is concerned with geostatistical study followed by a theoretical 

framework for the MILP formulation for block-cave production scheduling 

optimization. At the first part, it provides steps for stochastic sequential 

simulation to assess the grade uncertainty. Calculating average-simulated block 

model is the next step of this part. At the second part, the best level to start 

extraction is found based on the maximum discounted profit. To overcome the 

size of real mining projects, a method is presented which lead to creating big-

blocks. The MILP model aims to maximize the NPV of the project while 
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controlling mining capacity, extraction rate, advancement direction and number of 

new big blocks in each period. The result is the optimal production schedule for 

the big-blocks which determines the active and new big-blocks in each period and 

the sequence and amount of extraction for each big-block. Finally the 

implementation of the MILP formulation and the creation of the matrices for each 

constraint and objective function are highlighted.  

Chapter 4 provides the implementation of the proposed model and steps in chapter 

3 on a real block-cave mining case studies. It describes how various components 

of the MILP model can be set in MATLAB (Math Works Inc., 2015) and how 

IBM/CPLEX (IBM, 2015) can be used to solve the problem. Various analysis and 

comparisons have been done to address the risks and instabilities in block-cave 

mining due to presence of grade uncertainty.  

Finally, summary, contribution of the research and suggestions for future work are 

discussed in chapter 5.   
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CHAPTER 2  

LITERATURE REVIEW 

 

 

 

Chapter 2 provides a review of production scheduling algorithms in mining 

industry. Production scheduling methods in both underground and surface 

operations are discussed and compared. It contains a brief description about 

block-cave mining system, as well as usage of mathematical programming in the 

context of production scheduling of the block-cave mining. On the other hand, to 

deal with geological uncertainty several researchers provided various algorithms 

in open-pit mines but less in underground mining systems.grade uncertainty and 

ways to address its effects on mine planning are concluded as an important factor 

from the profitability perspective. The chapter contains the remarks and 

summary. 
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2.1 Block Caving 

The use of massive mining methods is increasing in major mining companies due 

to the economic issues of today’s mining industry. Among the underground 

mining methods, block-cave mining could be considered as an appropriate 

alternative because of its low operation cost and high production rates 

(Pourrahimian, 2013).  

Additionally, block-caving is much more suitable for weak rock masses which 

needs small footprint to reach continuous mining. The advantages of using small 

area are: better controlling of cave foundation and production and more stability 

of panel cave front. On the other hand, current relatively near surface ore-bodies 

will be exhausted and the new ore-bodies now are found in much deeper depths. 

As a result the use of block-caving methods will be incredibly increased in the 

near future (Flores, 2014).    

Block caving concerns with a mass mining operation and the extraction of ore 

material is done with the help of gravity. As a thin horizontal layer of the ore 

column is removed at the production level by using conventional mining methods, 

the vertical support of the ore column above is also removed. Then, ore caves by 

gravity. By removing the broken ore from the production level of the ore column, 

the above ore proceeds to break and cave by gravity (Julin, 1992). There are three 

forms of block caving: 1) creating rectangular or square blocks in the horizontal 

area and in this case the drawing should be constant over the whole area; 2) 

creating panels in the horizontal area across the ore-body and keep a sloping plane 

of contact between the broken ore and caved capping; and 3) the horizontal area is 

not divided into blocks or panels. In this method the total production demand and 

the size of the block are key factors in specifying the total active caved area 

(Tobie and Julin, 1998).  

There are three principle methods in block caving: grizzly, slusher and LHD. 

Grizzly or gravity method is more appropriate for finer material essentially free-

flowing to the drawpoint. For coarser material, the slusher method is used and for 

relatively coarsely fragmented deposits, Load-Haul-Dump (LHD) can be the best 
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option (Brannon et al., 2011).  Ore-body characteristics, types of ore, size and 

shape of the ore-body are important factors in selecting a mining method. 

Toughness or softness of the ore is another controlling factor that must take into 

account.  

There are 25 parameters mentioned by Laubscher (1994) that should be 

considered before implementing any cave-mining. Some of these parameters are 

caveability, fragmentation, drawzone spacing, draw control, dilution entry, layout, 

undercutting, and support requirements. Caveability is an underlying factor for 

mine design. The important aspect in this element is hydraulic radius, which is the 

calculation of the area of the caved zone divided by the length of the perimeter 

(Brannon et al., 2011). Three steps have been defined for fragmentation. First one 

is in-situ fragmentation which is the natural movement of the blocks before 

initiating the caving operation. The second one is primary fragmentation which 

happens during the start of caving. The last one is secondary fragmentation in 

which the blocks moves through the draw column throughout mining process 

(Brannon et al., 2011). Various parameters should be considered in drawpoint 

spacing. Some of these parameters are: isolated draw zone diameter, the 

fragmentation for the bulk of the draw, the internal friction of the material to be 

drawn, and the number of drawpoints (Laubscher, 2003). Draw control means to 

govern the tonnages drawn from individual drawpoints while taking into account 

some objectives such as: minimizing the overall dilution, ensuring maximum ore 

recovery, preventing any destruction to the load concentrations, and avoiding 

having air blasts (Laubscher, 2003). Dilution can be happened due to extremely 

soft material which prevents the extraction of clean ore from blocks. To have 

minimum dilution, it is better that the dilution zone breaks into the same size as 

the ore or larger (Tobie and Julin, 1998). The rate of drawing fluctuates according 

to the caveability of the ore. The drawing of the caved material should be fast 

which allow continuing to cave upward through the rock mass (Tobie and Julin, 

1998). The height of ore column is a principal component of block caving. It 

should be as much as that after deducting all the costs such as development, 

production, processing, and overhead still be profitable (Julin, 1992). The 
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applications of block caving are in the following deposits: porphyry copper, 

molybdenite, limonite, diamond, asbestos, nickel, and magnetite (Tobie and Julin, 

1998).  

A block-cave mine consists of multiple horizontal levels including: undercut 

level, extraction level, ventilation level, and haulage level (Brannon et al., 2011). 

Undercut level lies directly with some distance above the production level. This 

level is made up of a series of parallel drifts from which a series of longholes are 

drilled. The longholes are loaded and blasted, then a thin horizontal layer of ore is 

removed and afterwards, removing the vertical support from the ore column 

above is continued (Tobie and Julin, 1998). Undercut level can be divided into 

three types: post-undercutting, pre-undercutting and advance-undercutting in 

which according to its name is started after, before or in advance of development 

of extraction level. The drawpoint drifts are developed in extraction level which 

lies above the haulage level. The ventilation level is appropriate for providing 

intake and exhaust ventilation across the production footprint for the other levels. 

Haulage level is also designed based on the required type of transportation 

(Brannon et al., 2011). Tobie and Julin (1998) have highlighted some advantages 

and disadvantages for block caving. The advantages include: 1) the cost of mining 

is low compared to other systems because of less number of drilling, blasting, and 

small amount of development operation per ton; 2) adequate control can be 

achieved through concentrated production which result in higher labor 

productivity and safe working conditions; 3) more control on ventilation system; 

4) high rate of production; and 5) appropriate for low grade ore-bodies. The 

disadvantages are: 1) necessity to have more time and money for preparing blocks 

before starting production; 2) maintaining drifts in the draw area needs spending 

money; 3) ore recovery can be low due to unfavorable conditions; 4) changeable 

production due to increased demand for the product needs more time to prepare 

additional blocks for production; and 5) the method is inflexible and change to 

other underground mining method is hard. 
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2.2 Mine Production Scheduling 

Mining industry is made up of different types of operations such as exploration, 

planning, extraction, transportation and processing. Huge investments and large 

amount of material are the common characteristics of the mining operations. 

Therefore, even a small improvement in any stage of the procedure can have a 

large effect on the net present value (NPV) of the project (Tabesh, 2015).  

Evaluations of mineral resources to date showed that mine-planning decisions 

play a key role in profitability of the project (Askari-Nasab and Awuah-Offei, 

2009; Newman et al., 2010). Osanloo et al. (2008) and Newman et al. (2010) have 

presented a complete review on mine planning.  

Three time horizons have been defined for production scheduling: long-, medium- 

and short-term. Long-term mine-production scheduling develops a strategic 

procedure for mining operations, while medium-term scheduling prepares more 

detailed operational plan towards strategic procedure for ore extraction and 

purchasing necessary equipment. The medium-term schedule can be divided into 

short-term periods as well (Osanloo et al., 2008).    

Operations research techniques can be helpful in improving the efficiencies of the 

operations and optimizing the plans, operation of equipment and other resources 

(Tabesh, 2015). Different operations research methods including linear 

programming (LP), mixed-integer linear programming (MILP), and quadratic 

programming (QP) have been used in field of mine planning. 

Some of the benefits of production scheduling include optimum recovery of 

marginal ores, reduced costs, increased equipment utilization, reduced costs, high 

production rates, and consistent product quality (Dagdelen and Johnson, 1986; 

Chanda, 1990; Wooller, 1992; Chanda and Dagdelen, 1995; Winkler, 1996). 

Most of the available scheduling publications are devoted to surface-mining 

operations, although complication of underground mining is much more than 

surface mining (Kuchta et al., 2004). Also underground mining is less adoptable 

than the surface mining due to the geotechnical, equipment, and space constraints 
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(Topal, 2008). As a consequence, many of the scheduling algorithms developed 

for surface mining are implemented in underground mining as well.  

2.2.1 Open-Pit Production Scheduling 

There are two steps in open-pit mine planning: 1) finding ultimate pit limit and 2) 

order of extraction of blocks in the determined ultimate pit limit (Tabesh, 2015).  

The floating cone method developed in 1961 by Kennecott Copper (Kim et al., 

1988) and the graph theory based approach by Lerchs and Grossmann (1965) 

which is known as the LG algorithm, are two popular techniques in finding the 

ultimate pit limit. 

Researchers in surface-mining scheduling have tried to develop the optimum 

ultimate pit-limit algorithms instead of solving the optimal open-pit production 

schedule. Although, ultimate pit-limit method is almost easy to solve, but it just 

imposes limitations on pit slope, not on production. In optimizing the mine 

production various methodologies have been utilized as more production 

constraints should be taken into account by mining companies (Kim and Zhao, 

1994).   

Current production scheduling algorithms in literature have been divided into two 

categories: 1) heuristic methods and 2) exact solution methods for optimization 

(Askari-Nasab and Awuah-Offei, 2009). 

Heuristic methods are the basis of developing most of the commercial software. 

These methods implement different alternatives to generate the ultimate pit limit 

which result in different discounted cash flow and as a result different NPV. The 

negative point of these methods is the possibility of sub-optimality of the solution 

(Pourrahimian, 2013).  

Optimization with exact solution methods using mathematical programming have 

been proved to be powerful in solving long-term production scheduling problems. 

Using these methods contributes significantly to generating production schedules 

with higher NPVs than those obtained from heuristic optimization methods 

(Pourrahimian, 2013).  
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Implementation of LP model by Johnson (1969) was the earliest mathematical 

method. To decide on the extraction of the block in each period and its 

destination, continuous variables were defined. Afterwards, Gershon (1983)  

presented two mathematical models: LP and IP. The author used continuous 

variables for LP model indicating the portion of extraction for each block in each 

period. IP model consisted of binary variables that determine whether a block 

should be extracted in a period or not. Then, the differences between two models 

were studied. Integer variables are necessary for adding different constraints. It 

was one of the drawbacks of LP model. Another disadvantage of both of the 

models was the large size of the problem which was mentioned by Gershon 

(1983). 

Caccetta and Hill (2003) used an MILP model for production scheduling and 

proposed a branch-and-cut algorithm for solving the problem. The disadvantage 

of the model stated by the authors was disability to find the optimal solution 

specifically for large-scale problems (Tabesh, 2015).  

An MIP model was developed by Ramazan and Dimitrakopoulos (2004) which 

tried to reduce the number of variables, considering ore blocks as binary and the 

remaining variables as linear. This technique has not been applied to production 

scheduling in the mining industry due to its complexity in implementation. 

Moreover, Ramazan (2007) proposed a MILP model for production scheduling of 

open-pit mines in which a new algorithm called “Fundamental Tree Algorithm” 

was developed. This algorithm helped noticeably to decrease the number of 

integer variables and required constraints by aggregating blocks of material.  

Boland et al. (2009) reduced the number of variables using blocks aggregation 

and MIP formulation for solving open-pit production scheduling problem. 

Aggregates were used in excavation decisions while individual blocks were used 

for processing decisions. In their work, iterative disaggregation method was 

proposed to refine the aggregates up to the point that optimal solution of 

aggregates level gained from LP relaxation of the MIP was equal to the optimal 
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solution of LP relaxation of the blocks level. Different disaggregation methods 

were used and the resulted NPVs and CPU time were compared. 

Another noticeable study in the field of aggregation was done by Askari-Nasab et 

al. (2011). The authors aggregated blocks into larger units called mining-cuts to 

decrease the number of integer variables. Four MILP formulations were presented 

which two of them were new and the other two were the modification of the 

available models. The performance between them was compared based on the 

generated net present value, practical mining production constraints, size of the 

model, number of required integer variables, and the computational time. An iron 

ore mine case study over 12 periods in TOMLAB/CPLEX (Holmstrom, 2011) 

environment was implemented to test the practicality of the formulations. 

Meta-heuristics are also used in production scheduling problem. Sattarvand and 

Niemann-Delius (2008) reviewed meta-heuristics algorithms in open-pit mine 

planning. 

Kumral and Dowd (2005) used a simulated annealing approach for mine 

production scheduling. In their method, three minimization objective functions 

were defined: deviation from the required tonnage, penalty and opportunity cost 

for each variable, and content variability of each variable. Lagrangean 

parameterization was applied toward an initial sub-optimal solution and then 

improved that solution by multi-objective simulation annealing. 

Samanta et al. (2005) also used genetic algorithm for mine planning problems. In 

their research layering approach was utilized towards minimizing the cumulative 

grade deviations from the target ore grade for the entire schedule period of 12 

months.  Five best grade control schedules were generated which one of them 

could be chosen by the management.  

Another technique for long-term open-pit production scheduling presented by 

Sattarvand and Niemann-Delius (2013) was ant colony optimization. A series of 

variables for each block were considered named pheromone trails that illustrate 

the desirability of the block for being at the deepest point of the mine for a 
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specified period of time. The objective function was maximizing net present 

value.  

Sayadi et al. (2011) determined the optimum pit limit using artificial neural 

network in presence of constraints of wall slopes and impurities. The 3D blocks 

coordinates were the inputs of neural network and blocks net economic values 

were the output of the model. Comparing the results with LG algorithm through a 

case study of phosphate mine showed that this new model generates a pit limit 

with higher profit because of considering ore impurity constraints.  

Back to mathematical programming, another fresh paper in the field of mine 

production scheduling is proposed by Bley et al. (2010).  They reduced the 

number of decision variables by combining the block precedence constraints with 

the production constraints. They have implemented and compared different 

techniques for single-block, multiple-block and, block conflicts cases which 

helped enormously to decrease the CPU time for the solver.  

Cullenbine et al. (2011) presented a sliding time window heuristic for solving the 

open-pit mine block sequencing problem. They used this approach to divide the 

problem into smaller IP models and the time window was moved forward yearly 

to solve another problem. Their algorithm is able to solve the small problems with 

reasonable run time but not large model with 53,668 blocks. 

Chicoisne et al. (2012) implemented three steps to solve the open-pit production 

scheduling problem: (1) solve the linear programming relaxation of the problem 

using decomposition method and with one resource constraint per time period, (2) 

rounding heuristic approach to the fractional solution of the previous step, and (3) 

improve the solutions by applying local-search heuristic. 

Kumral (2012) used two MILP models: (1) with pre-defined cut-off grade and (2) 

without cut-off grade. The second model was able to discriminate ore and waste, 

so the binary decision variables contained the destinations as well. Using a case 

study of gold mine over five periods, authors reported 5% improvement in the 

NPV of the second model.  
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2.2.2 Underground Mines Production Scheduling 

Current publications in underground-mine scheduling implement simulation and 

heuristic software which determine feasible solutions rather than optimal 

solutions. Almost identical to open-pit mines, heuristic methods and exact 

solution methods are two principal categories for production scheduling 

algorithms in literature (Pourrahimian, 2013). Besides, there are other methods 

that have been used for production scheduling and/or material transport including: 

queuing theory (Su, 1986; Huang and Kumar, 1994), dynamic programming 

(Sherer and Gentry, 1982; Muge et al., 1992) and network analysis (Russell, 

1987; Brazil et al., 2000; Brazil et al., 2003).  

There are successful applications of simulation in underground mining. Hanson 

and Selim (1975) implemented mine simulation for room-and-pillar mining. In 

this model stochastic variables were all event times. Drilling, blasting, mucking 

and proof bolting were integrated into a system that described equipment 

utilization, production tonnage, and the number of holes drilled using mine 

simulation. Another study using simulation system in mining was performed by 

Maxwell (1978). Mill feed grades were estimated given a considered drawpoint 

production rate. This work emphasized on the power of simulation to tackle the 

non-linearity of the ground mining system. But the optimality of the schedule was 

not guaranteed by the authors in both recent works. The simulation was used by  

Gerling and Helms (1986) to deal with the deposit reserves through a series of 

sub-models including the drift system, the development drifting operations, and 

the stopping operations. 

Nehring et al. (2012) used two objective functions to incorporate short- and 

medium-term production schedules of a sublevel stopping mine. Minimizing 

deviation from target head grade for the short-term schedule and maximizing the 

net present value for medium-term schedule were the two objectives of the model. 

They applied their model in a case-study and a minor improvement in integrated 

model was shown in compared with solving two models separately. Newman et 

al. (2010) and Alford et al. (2007) presented complete reviews about the 

underground mine planning literature.  
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2.2.2.1 Production Scheduling in Block-cave Mines 

Mathematical programming that have been implemented by various researchers 

for optimizing of block-cave mine production scheduling are: linear programming 

(LP) (Guest et al. (2000)); mixed-integer linear programming (MILP) (Chanda 

(1990), Song (1989),  Rubio (2002), Diering (2004), Rubio and Diering (2004), 

Rahal et al. (2008), Weintraub et al. (2008), Smoljanovic et al. (2011), Parkinson 

(2012), Epstein et al. (2012), Pourrahimian et al. (2013), Alonso-Ayuso et al. 

(2014), Pourrahimian and Askari-Nasab (2014)); and quadratic programming 

(QP) (Diering (2012), Rubio and Diering (2004)). Khodayari and Pourrahimian 

(2015) presented a comprehensive review of mathematical programming 

applications in block-caving scheduling. They summarized authors’ attempts to 

develop methodologies to optimize production scheduling in block-cave mining. 

Song (1989) has studied the geological and geomechanical environments of Tong 

Kuang Yu mine in china. The author used displacement discontinuity method and 

undercut parameters to simulate the caving process. The result of simulation were 

analysed in order to obtain an optimal mining sequence. The objective function 

was to minimize the total mining cost. The drawback of this work was the run 

time particularly in long-term production scheduling. 

Chanda (1990) used a combination of MILP formulation and simulation to model 

a short-term production scheduling problem at Chingola mine of Zambia. To 

solve the integer programming the authors applied the branch-and-bound 

algorithm and the decision variables were whether to draw or not to draw from a 

particular finger raise during a shift. The objective function was to minimize the 

fluctuation of average grade between shifts.  

Guest et al. (2000) considered different constraints including geotechnical 

constraints, mining capacity, metallurgical limitations, economic parameters and 

geological limitations such as grade. In this case, maximizing tonnage would not 

necessarily result in maximum NPV. The objective function can be maximizing 

NPV, minimizing dilution or maximizing mine life (Rubio, 2002). 
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Rubio (2002) has defined two goals in his research: 1) maximization of NPV 2) 

optimization of the mine life in block caving. He considered geomechanical 

aspects, resource management, mining system and metallurgical parameters as the 

constraints of the proposed model. In this formulation he integrated the draw 

control factor and the angle of draw to compute production schedules with high 

performance in draw control.  

Rahal et al. (2003) applied a MILP goal program at De Beers Kimberlite mine to 

obtain two objective functions: 1) minimizing deviation from the ideal draw 

profile, 2) achieving the production target. The constraints defied were: deviation 

from ideal practice, panel state, material flow conservation, production quality, 

material flow capacity, and production control.  

A non-linear optimization method was introduced by Diering (2004) to minimize 

the deviation between a current draw profile and the goal of mine planner. The 

applied constraints were: geotechnical constraints, cave shape, draw point 

development sequence, draw point productivity, production block limits such as 

loader capacity and variable shut-off grade. He also stated that this algorithm can 

link the short-term plan with the long-term plan.  

Rubio and Diering (2004) utilized mathematical programing to optimize the 

production strategy for the block-cave mine. Maximizing the NPV, minimizing 

the difference between actual height of draw and the target, and computing best 

height of draw by merging opportunity cost into PC-BC (GEOVIA) achieved 

using this algorithm. Various techniques such as direct iterative methods, linear 

programming, golden section search technique, and integer programming were 

performed for solving the proposed problem.  

Rahal (2008) presented a goal programming model through two strategic goals of 

total monthly production tonnage and cave shape. Three main production control 

constraints were defined in the MILP: 1) the draw maturity rules that aims to have 

stability between drawpoint production and cave propagation rates, 2) minimum 

draw rate constraint to limit production and 3) relative draw rate (RDR) securing 

the consistent extraction across the cave.  
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Weintraub et al. (2008) developed an approach to aggregate the MIP original 

models in order to reduce the size of the problem. Two types of aggregation 

procedures based on clustering analysis were applied: a priori and a posteriori.    

Smoljanovic et al. (2011) introduced a model for optimizing the sequence of 

opening of the drawpoints in a panel caving mine. They combined capacity and 

sequencing constraints in their approach. In this case, the objective function was 

not only maximizing NPV, but also robustness and constructability of the plans, 

subjected to other constraints such as geometallurgy, stocks and geometric 

constraints.    

Parkinson (2012) formulated five models for sequence optimization in block cave 

mining in which three of them were integer programming models named: Basic, 

Malkin, and 2Cone. They helped to provide an appropriate input to the PC-BC 

program.  

Epstein et al. (2012) presented a methodology for long-term production plans 

considering underground and open-pit deposits sharing multiple downstream 

processing plants. Solving the LP relaxation of formulation contributes 

significantly to decrease the size of the problem. Limitation on extraction rate, 

safety restrictions caused by rock spillage and instability of wall, and controls on 

pollutants were the constraints implemented by the authors.  

Diering (2012) introduced QP applications instead of LP to the block cave 

production scheduling problems. The main reason for applying QP instead of LP 

is the solution space in which LP always seeks for the edges of the solution space 

even if there is a good average solution. Three types of constraints were defined: 

mandatory constraints, modifying constraints, and grade related constraints. Also 

the objective function in this case was the shape of the cave not maximizing some 

form of profit function.  

Pourrahimian et al. (2012) solved two MILP formulations for the long-term 

production scheduling of block caving: first, at drawpoint level and then at cluster 

level in which drawpoints were aggregated into larger units. Maximizing NPV 

determined as the objective function with respect to operational constraints such 
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as development rate, vertical mining rate, lateral mining rate, mining capacity, 

maximum number of active-drawpoints, and advancement direction. The authors 

implemented Fussy c-means clustering in order to create clusters and as a result, 

reduce the number of binary variables. 

Pourrahimian et al. (2013) implemented a multi-step method for long-term 

production scheduling of block caving in order to reduce the size of the model. 

They presented three different formulations for three level of resolution; cluster 

level, drawpoint level, and drawpoint-and-slice level. The authors showed that 

both single-step method, in which each formulation was used independently; and 

multi-step method, in which the solution of each step was used to reduce the 

number of variables at the next step, can be utilized in the formulations.  

Pourrahimian and Askari-Nasab (2014) presented a MILP formulation to 

determine the best height of draw (BHOD) in block-caving mine sequence 

optimization. Using a modified hierarchical algorithm they were able to aggregate 

the slices within each draw column into selective units. The optimal schedule is 

generated for the clustered slices. 

2.3 Uncertainty-based Production Scheduling 

Mining is different from most businesses because knowledge of the product is 

essentially based on estimates, which by their very nature include a degree of 

uncertainty. World commodity prices and exchange rates largely control potential 

changes in revenue, and consequently the size of the economic mineral inventory. 

Efficient mining is effectively about managing risk. 

Production scheduling is a critical mechanism in the planning of a mine that deals 

with the effective management of a mine’s production and cash flows in the order 

of millions of dollars.  

The importance of incorporating uncertainty and risk from the technical, 

geological, and mining sources in mine production schedules, particularly the 

possible in situ variability of pertinent ore-body grade and ore quality 

characteristics, is well appreciated.  
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Dimitrakopoulos (1998) classified the uncertainties of mining projects into three 

groups; (i) uncertainty of the ore-body model and related in-situ grade variability 

and material distribution, (ii) uncertainty of technical mining specifications such 

as slope constraints and excavation capacities, and (iii) uncertainty of economic 

issues including capital and operating costs, and commodity price. Among these 

uncertainties, the uncertainty related to the ore-body model and in-situ grade 

variability is the major one that affects the pre-feasibility and feasibility studies. 

Although over the last decades, stochastic optimization methods have been 

developed to deal with geological uncertainty in open-pit mine design and life-of-

mine production scheduling, similar efforts in underground mine planning and 

production scheduling are very limited. 

Grade uncertainty can lead to significant differences between actual production 

and planning expectations and, as a result, the NPV of the project (Osanloo et al., 

2008; Koushavand and Askari-Nasab, 2009). Various researchers have considered 

the effects of grade uncertainty in open-pit mines and introduced different 

methodologies to address those effects. Dowd (1994) presented a risk-based 

algorithm for surface mine planning. In their algorithm, for different variables 

such as commodity price, processing cost, mining cost, investment required, grade 

and tonnages, a predefined distribution function was implemented. Several types 

of schedules were generated for a number of realizations of the grades. This 

methodology produced various schedules that account for grade uncertainty. 

Ravenscroft (1992) and Koushavand and Askari-Nasab (2009) used simulated 

ore-bodies to show the influence of the grade uncertainty on production 

scheduling. Ramazan and Dimitrakopoulos (2004) used a MILP model to 

maximize the NPV for each realization. Then they calculated the probability of 

extraction of a block at each period. These probabilities were the input of a second 

stage of the optimization, which is necessary in order to generate one schedule at 

the end. Dimitrakopoulos and Ramazan (2008) presented an integer linear 

programming (ILP) model to generate optimal production schedules. This model 

considered multiple realizations of the block model and defined a penalty function 

that is the cost of deviation from the target production. This cost was calculated 
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based on the geological risk discount rate which was the discounted unit cost of 

deviation from the target production. Linear programming was used to maximize 

a new function: NPV less penalty costs. Leite and Dimitrakopoulos (2007) 

implemented an approach that incorporated the geological uncertainty in the 

open-pit mine scheduling process. This new scheduling approach was based on a 

simulated annealing (SA) technique and stochastically simulated representations 

of the ore-body. Albor and Dimitrakopoulos (2009) developed a method which 

was based on scheduling with an SA algorithm and equally probable realizations 

of a mineral deposit. To generate production schedules, the equally probable 

realizations were utilized to minimize the possibility of deviations from 

production targets. Sabour and Dimitrakopoulos (2011) presented a procedure that 

combined geological uncertainty and operational flexibility in the design of open-

pits. When designing an optimal production schedule and ultimate pit limit, Asad 

and Dimitrakopoulos (2013) considered both geological uncertainty and 

commodity prices with respect to the production capacity restrictions. Two-stage 

stochastic integer programming (SIP) was used in an optimization model to 

consider uncertainty (Ramazan and Dimitrakopoulos, 2013). Lamghari and 

Dimitrakopoulos (2012) also considered metal uncertainty in the open-pit 

production scheduling problem using a metaheuristic solution approach based on 

a Tabu search. Lamghari et al. (2013) proposed two variants of a variable 

neighborhood decent algorithm to solve the open-pit mine production scheduling 

problem under geological uncertainty.  Maleki and Emery (2015) worked on the 

joint simulation of copper grade and rock type in a given deposit. To conduct the 

joint simulation, they implemented multi-Gaussian and pluri-Gaussian models in 

a combined form. They studied three main rock types with various grade 

distributions in which three auxiliary Gaussian random fields were considered. 

One of the rock types was used for copper grade simulation and the other two for 

rock-type simulation. Moreover, they looked at cross correlations between these 

Gaussian random fields before reproducing the dependence between copper grade 

and rock types. 
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Other than the aforementioned authors, few authors have examined geological 

uncertainty in underground mining. Grieco and Dimitrakopoulos (2007) 

implemented a new probabilistic mixed-integer programming model which 

optimized the stope designs in sublevel caving. Vargas et al. (2014) developed a 

tool that took geological uncertainty into account by using a set of conditional 

simulations of the mineral grades and defining the economic envelope in a 

massive underground mine. Montiel et al. (2015) incorporated geological 

uncertainty into their methodology that optimized mining operation factors such 

as blending, processing, and transportation. They used a simulated annealing 

algorithm to deal with uncertainty. Carpentier et al. (2016) introduced an 

optimization formulation that looked at a group of underground mines under 

geological uncertainty. Their formulation evaluated the project’s influence on 

economic parameters including capital investments and operational costs. Alonso-

Ayuso et al. (2014) considered two resources of uncertainty in their model: copper 

price along a given time horizon and grade. Uncertainty was described using a 

multi-stage scenario tree and then resulting stochastic model was transformed into 

MIP model.      

2.4 Summary and Remarks 

In chapter 2 of this dissertation, the relevant literature has been presented. 

Production scheduling specifically in block-cave mine defines the amount of 

material to be mined in each period, and in total, determines a strategic plan for 

the life of mine. It plays a key role in the operation’s economics, and any 

deviation from the target plan can cause irrecoverable damages to the mine 

economics. The majority of current studies tended towards using simulation and 

heuristic methodologies to deal with the underground production scheduling 

optimization problems because of the complex nature of underground mines. The 

drawback of these methodologies is that they generate feasible solutions instead 

of optimal global schedules. The literature review showed that usage of 

mathematical programming and operation research algorithms in block-cave mine 

planning such as LP, MILP and QP has been extended recently and they became 

more powerful in generating exact optimal solutions.  
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On the other hand, grade uncertainty has profound impact on the NPV of the 

mining projects as it may induce large differences between the actual and 

expected production target. To deal with geological uncertainty several 

researchers provided various algorithms in open-pit mines but less in underground 

mining systems. Some of the implemented algorithms are: stochastic integer 

programming, risk-based algorithms, simulated annealing, and stochastic 

sequential simulation.   

The major shortcomings of the current block-cave mine planning optimization can 

be summarized as: 1) limitations in considering uncertainties such as grade and 

commodity price; 2) limitations in solving the large-scale problems; 3) 

implementing fewer number of geotechnical constraints. These restrictions and 

deficiencies should be addressed in the new optimization tools to have viable 

mining projects.   
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CHAPTER 3  

THEORETICAL FRAMEWORK: 

BLOCK-CAVE PRODUCTION SCHEDULING 

 

Chapter 3 describes using stochastic sequential simulation approach to overcome 

the grade uncertainty through generating a set of realizations. A methodology is 

presented for finding the best level of extraction. To overcome the size of the 

problem and according to footprint dimensions, a method for creating big-block 

columns is reported. This chapter includes mixed-integer linear programming 

(MILP) formulations to obtain the optimal production schedule for the block-cave 

mine. The production scheduler aims to maximize the net present value (NPV) of 

the project while handling practical constraints including mining capacity, grade 

blending, number of new big-blocks, precedence, continuous extraction, draw 

rate, minimum required mining footprint, and reserves. At the end of this chapter, 

the MILP model’s implementation is discussed. The numerical modeling of the 

MILP model is reviewed and how different parts of it such as objective function 

and constraints can be set in MATLAB programming environment is illustrated. 

IBM/CPLEX is implemented as solver for optimization.  
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3.1   Introduction 

Uncertainty clearly affects the solution of long-term production planning. Several 

authors mentioned by Osanloo et al. (2008) who considered geological 

uncertainties such as grade in long-term mine planning. They reviewed that grade 

uncertainty can cause differences between designed and actual production, 

especially in early years of extraction.   

Long-term mine planning purpose is to find the mining sequence, amount of 

material to be extracted, and input grade to the plant over the mine life. Production 

scheduling typically optimizes the company’s objective with respect to some 

technical and operational constraints.  

This chapter describes steps for block-cave mine planning in presence of grade 

uncertainty. It focuses on stochastic sequential simulation to deal with grade 

uncertainty, formulating, and developing the MILP model for production 

scheduling optimization. The best level to start extraction based on the maximum 

discounted profit will be found on the output of simulation. To reduce the size of 

problem and according to the distances between drawpoints, the blocks are placed 

into big-block columns along the advancement direction. The objective function 

of the MILP model is maximizing NPV, while controlling over: 1) mining 

capacity, 2) grade blending, 3) extraction rate, 4) continuous extraction, 5) number 

of new big-block columns, 6) mining precedence, and 7) total reserves. The 

production scheduler defines the number of active big-block columns in each 

period, the number of new opened big-block columns in each period, ore 

production tonnage and average grade in each period, and the sequence of 

extraction for each big- block column.    

3.2  Steps of the proposed methodology  

More accurate long-term production planning requires taking grade uncertainty 

into account. Production planning aims to generate a strategic plan throughout the 

mine life while honoring physical, economical, and environmental limitations. The 

steps that should be followed to generate a schedule for block-cave mine under 

grade uncertainty using the developed MILP model in this research include: 
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1. Creating an original block model from drillhole data and grid definition 

using GEOVIA GEMS software (6.7.1) 

2. Implementing geological study to create several realizations (block 

models) based on drillholes data to consider grade uncertainty with the 

help of Geostatistical software library (GSLIB) (Deutsch and Journel, 

1998). 

3. Finding the best level to start the extraction through maximum discounted 

ore profit for all realizations, original and average-simulated block model. 

4. Determining the best advancement direction at the obtained best level. 

5. Determining the actual outline of the ore-body at the best level. 

6.  Creating big-block columns based on the minimum required mining 

footprint inside the outline of the ore-body at the best level. 

7. Defining the input scheduling parameters. 

8. Creating the objective function and the constraints of the MILP model.  

9. Solving the problem to maximize NPV. 

10. Discussing the results. 

The ore-body is represented by a geological block model. Numerical data are used 

to represent each block’s attributes, such as tonnage, density, grade, rock type, 

elevation, and profit data.  

The first step is a geostatistical study to generate the realizations based on the 

drillholes data. At the next step, the best level of extraction is found. Finally, the 

optimal sequence of extraction is determined to maximize the NPV. Figure 3.1 

shows the workflow that has to be followed to generate an optimal production 

schedule for the block-cave mine using MILP model under grade uncertainty in 

this research.   
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Figure 3.1. Required steps for the proposed methodology 
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3.2.1  Geostatistical Modeling 

The first step for a geostatistical study is to define different rock types based on 

the drillhole data. In this study, which assumes a stationary domain within each 

rock type, the geostatistical modeling is performed for each rock type separately. 

The following steps are common for generating a geological model: 

First, a declustering algorithm is used to get the representative distribution of each 

rock type to decrease the weight of clustered samples. Then, the correlation of the 

multivariate data is determined. To determine the principle directions of 

continuity, global kriging is performed using arbitrary variograms with a high 

range. Indicator kriging is used for rock type modeling, and simple kriging is used 

for grade modeling. The data is transformed to Gaussian units to remove the 

correlation between the variables in each rock type. The experimental variograms 

are calculated by using the determined directions of continuity in the previous step 

and a model is fitted to these variograms in different directions. An indicator 

variogram is used for rock type modeling and a traditional variogram is used for 

grade modeling. A rock type model is generated for the chosen grid definition by 

using a sequential indicator simulation algorithm (SIS). A grade model for each 

rock type is generated based on a Sequential Gaussian Simulation algorithm 

(SGS). Then, the data is back-transformed to original units. Finally, grade 

modeling is done within each rock type. The result will be several number of 

block models, the same as assumed number of realizations.  

To investigate the effect of the grade uncertainty, the methodology of finding the 

best level of extraction and the MILP model should be applied on all the simulated 

block models.  

3.2.2 Placement of Extraction Level 

To find the best level of extraction, the ore tonnage and discounted profit are 

calculated for each level of each block model. The discounted profit of each ore 

block (Diering et al., 2008)  and the total discounted profit of each level are 

calculated using equations (3.1) and (3.2). 
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Figure 3.2. Summary of steps in geostatistical modeling 
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Where PblLDis is the discounted profit of ore block bl in level L ; PLDis  is the 

total discounted profit of level L  , which is the summation of discounted profit of 

all the blocks in that level;  Prbll is the profit (undiscounted) of ore block bl  at 

level l ; i  is the discount rate; d  is the distance between the center points of ore 

block bl in level L and the ore blocks above it; ER is the extraction rate per 

period; BL is the total number of ore blocks in level L . The profit of each ore 

block is calculated using the following equations: 

 ( )R CT g Ton R P S                                                          (3.3) 

( )C C CT Ton M P                                                                                                (3.4) 

R CP T T                                                                                                             (3.5)                                                            
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Where 
RT  is the total revenue; R  is the processing plant recovery; P is the price 

per ton of the product; 
CS is the selling cost per ton of material; g is the element 

grade; 
CT  is the total cost; 

CP  is the processing plant cost and 
CM is the cost of 

mining per ton of material which is assumed to be a constant number and 

development cost is considered in this cost. The following example (Figure 3.3) 

clearly shows how to calculate the discounted profit of a block at a given level. 

Two blocks are assumed to be in each level. Equations (3.6) and (3.7) show the 

calculation of 14PDis  and 24PDis , which are the discounted profit of 1bl  and 

2bl  at level 4, respectively. ER is a constant number representing extraction 

rate which its unit is meter per period. Equation (3.8) shows the total discounted 

profit of blocks 1 and 2 at level4.  
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Figure 3.3. Schematic example of calculating discounted profit of ore block at a given 

level 

 At the next step, the tonnage-profit curve is plotted and the level with the highest 

profit is selected for starting the extraction (Figure 3.4). The best level of 

extraction is found for the created average-simulated block model. When the 

method is applied on each realization, the best elevation for each block model is 
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determined and the most frequent level is specified. According to the results of 

both procedures (best level of all realizations and best level of average-simulated 

block model) the best level will be selected. 

 

Figure 3.4. Schematic view of finding best level of extraction methodology 

3.2.3 Production Scheduling  

After determining the best elevation, the interior of the ore-body outline is divided 

into rectangles based on the minimum required mining footprint (Figure 3.5). The 

minimum mining footprint (plan view) represents the minimum sized shape that 

will induce and sustain caving. This is similar to the hydraulic radius in a caving 

operation. Then all blocks inside of the rectangle and above that, create a big-

block. In the next step, the sequence of extraction of the big-blocks is optimized. 

 

Figure 3.5. Schematic view of production scheduling methodology 
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3.3 Mathematical Programming Formulation 

In this part, the MILP formulations are presented. The purpose is to maximize the 

NPV of the mining operation, while controlling mining capacity, grade blending, 

extraction rate, continuous extraction, binary, number of new big blocks, 

precedence, and reserve. The production scheduler defines the extraction rate from 

each big-block, the number of active and new big-block in each period, and the 

sequence of extraction from each big-block. 

3.3.1 Model Assumptions 

The following assumptions are used in the MILP formulations: 

1. Numerical data are used to represent ore-body attributes in each block, 

such as tonnage, density, grade of elements, coordinates, and profit data.  

2. There is no material mixing between blocks as a function of draw. The 

source model is assumed to be static with time. 

3. The big-block columns are created according to the minimum required 

mining footprint. 

4. The portion scheduled to be extracted from each big-block is assumed to 

be taken from all the small blocks inside of the big-block. 

3.3.2 Objective Function 

Various strategic targets could be considered by different companies such as cost 

minimization or reserve maximization. Usually, the aim is to maximize the mining 

operation’s NPV with respect to the existing technical, physical, and 

environmental constraints.  

In this research, the objective function of the MILP formulation is to maximize the 

mining operation’s NPV which depends on the value of the big-block columns.  

3.3.3 Constraints 

The following set of constraints is included in the formulation: 
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3.3.3.1 Mining capacity 

The desired production target can be achieved by this constraint. It ensures that the 

total tonnage of material extracted from big-blocks in each period is within the 

acceptable range. The constraints are controlled by the continuous variables. 

3.3.3.2 Grade blending 

The desired grade can be achieved by this constraint. It ensures that the 

production’s average grade is in the acceptable range in each period.    

3.3.3.3 Big-block extraction rate and continuous extraction  

This constraint ensures that the extraction rate from each big-block per period is 

between the defined maximum and minimum extraction rates. 

3.3.3.4 Binary 

This constraint ensures that if the extraction of a big-block is started, its binary 

variable takes the value of 1 and stays 1 till the end of the mine life, otherwise it 

takes value of 0. 

3.3.3.5 Number of new big-blocks 

These constraints ensure that the number of new big-blocks which are opened in 

each period are in an acceptable range.  

3.3.3.6 Mining precedence 

These constraints ensure that all the predecessor big-blocks of a given big-block 

have been started prior to extracting this big-block. 

To apply this constraint, first the adjacent big-blocks of each big-block are 

determined and then an advancement direction is defined. Afterwards, a 

perpendicular line to the advancement direction is imagined at the center point of 

the considered big-block. Then a point should be found on the perpendicular line 

using equation (3.9). The coordinate of this point is ( newX , newY ). 
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1
( )new bbl new bblY y X x

m
                                                         (3.9)                                                      

Where m is the slope of the advancement direction; bbly and bblx are the 

coordinates of the considered big-block in the extraction level; newX is an arbitrary 

coordinate and as a result, newY is calculated by equation (3.9). Then, using 

equation (3.10), the value of D  is calculated for each adjacent big-block. 

( )( ) ( )( )     adj bbl new bbl adj bbl new bblD x x Y y y y X x                                         (3.10)                                                                               

Where adjx  and adjy are the coordinates of the adjacent big-blocks of each big-

block. By calculating D , if the mining direction points to the direction that y

increases, big-blocks with 0D are below the perpendicular line and considered as 

the predecessors of a given big-block and if not, big-blocks with 0D  are 

considered as predecessors of the specified big-block.  

The following example contributes significantly to a clear understanding of the 

methodology used for precedence constraint.  

Figure 3.6 shows how to select the predecessors for different advancement 

directions. A big-block (red block) is considered and its adjacent big-blocks are 

BL1-BL8. In Figure 3.6, it assumes that the blue arrow shows the advancement 

direction and the orange line is the imaginary perpendicular line at the center of 

the considered big-block (red block). The related calculation has been summarized 

in Table 3.1. According to Figure 3.6a, the advancement direction is from 

Southwest to Northeast (SW to NE) which means y is increasing; therefore the 

extraction of the big-blocks with the negative value of D should be started before 

the considered block (see Table 3.1). Figure 3.6b and c are examples of positive 

values with similar directions. Big blocks 4, 6, 7, and 8 and 6, 7, and 8 are 

predecessor big-blocks for red block in b and c respectively, as they have positive 

D. Also, in Figure 3.6d, as the advancement direction is from East to West (E to 

W) and D should be negative, big-blocks 3, 5, and 8 are chosen as the 

predecessors. 
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Figure 3.7 shows the summary and schematic view of determining the sign of D

for different advancement directions.  

 

Figure 3.6. Schematic examples of methodology used in precedence constraint 
 

Table 3.1. Example of calculation to find the predecessors of a big-block in the 

considered advancement direction in Figure 3.6a 

Direction: SW → NE  

Slope of advancement direction: m = 1.8 

Considered block’s coordinates: (395,215)  

200newX   

Adjacent 

blocks 
1 2 3 4 5 6 7 8 

Coordinates (365,185) (395,185) (425,185) (365,215) (425,215) (365,245) (395,245) (425,245) 

D 

(Eq.(3.10)) 
< 0 < 0 < 0 < 0 > 0 > 0 > 0 > 0 

predecessor Yes Yes Yes Yes No No No No 

 

Figure 3.7. Schematic presentation of determining sign of D based on various 

advancement directions 
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3.3.3.7 Reserves 

This constraint ensures that the extracted amount of material of a big-block over 

the scheduling periods sum to one, which means all material inside of the big-

block, should be extracted. 

3.3.4 MILP Formulations  

The profit of each big-block is equal to the summation of the profit of all the small 

blocks within the big-block column. To solve the problem, three sets of decision 

variables are employed: one continuous variable and two binary variables. The 

continuous variable indicates the portion of extraction from each big-block in each 

period. One of the binary variables controls the precedence of the extraction of 

big-blocks and the other one is used for activating either of two constraints. The 

objective function tries to mine the big-blocks with higher profit earlier than the 

others according to the defined constraints. The notation used to formulate the 

problem is divided into indices, sets, decision variables, and parameters.  

Indices  

 1,....,t T  Index for scheduling periods. 

 1,...,BLbl  Index for small blocks. 

 1,...,BBLbbl  Index for the ore big-blocks 

Set  

bblS  For each big-block,bbl , there is a set bblS , which define the 

predecessor big-blocks that must be started prior to 

extracting the big-block bbl . 

Decision variables 

 , 0,1bbl tB   Binary variable controlling the precedence of the extraction 

of big-blocks. It is equal to one if the extraction of big-block 

bbl  has started by or in period t; otherwise it is zero. 

 ,x 0,1bbl t   Continuous variable, representing the portion of big-block 

bbl  to be extracted in period t. 

 , 0,1bbl ty   Binary variable used for activating either of two constraints. 

Parameters  

Pr bblofit  Profit of each big-block which is equal to the summation of 
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the small ore blocks’ profit within that big-block. 

bblTon  Tonnage of each big-block. 

( )tMCL Mt  Lower bound of mining capacity in period t. 

( )tMCU Mt  Upper bound of mining capacity in period t. 

bblg  Average grade of the element to be studied in big-block bbl  

(%)tGL  Lower bound of acceptable average head grade of 

considered element in period t. 

(%)tGU  Upper bound of acceptable average head grade of considered 

element in period t. 

( )tExtU Mt  Maximum possible extraction rate from each big-block in 

period t. 

( )tExtL Mt  Minimum possible extraction rate from each big-block in 

period t. 

L  Arbitrary big number. 

T  Maximum number of scheduling periods. 

BBL  Number of ore big-blocks in the model. 

n  Number of predecessor big-blocks of big-block bbl  

,NBBL tN  Upper bound for the number of new big-blocks, the 

extraction from which can start in period t . 

,NBBL tN  Lower bound for the number of new big-blocks, the 

extraction from which can start in period t .  

Objective function: 

,

1 1

Pr

(1 ) 

 
 

 


T BBL
bbl

bbl tt
t bbl

ofit
Max x

i
                                                                     (3.11)            

Constraints: 

 ,

1

,    1,....,
BBL

t bbl bbl t t

bbl

MCL Ton x MCU t T


                                                 (3.12)         

 
,

1

,

1

,   1,...,

BBL

bbl bbl bbl t

bbl
t tBBL

bbl bbl t

bbl

g Ton x

GL GU t T

Ton x





 

   






                                             (3.13) 

   , , ,     1,..., , 1,...,bbl bbl t bbl tTon x ExtU bbl BBL t T                                                (3.14) 
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   , , , ,( ) ( ) ,     1,..., , 1,...,bbl t bbl t bbl bbl t bbl tExtL B Ton x L y bbl BBL t T                        (3.15)
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The objective function, equation (3.11), is composed of the big-blocks’ profit 

value, discount rate, and a continuous decision variable that indicates the portion 

of a big-block, which is extracted in each period. The most profitable big-blocks 

will be chosen to be part of the production in order to maximize the NPV. 

The constraints are presented by equations (3.12) to (3.21). Equation (3.12) 

represents the mining capacity. This constraint is controlled by the continuous 

variable ,xbbl t . There is one constraint per period.  

Equation (3.13) ensures that the production’s average grade is in the acceptable 

range. This constraint is controlled by the continuous variable ,xbbl t . There is one 

constraint per period.  

Equations (3.14), (3.15), and (3.16) are related to extraction rate and continuous 

extraction constraints. Equation (3.14) ensures that the extraction rate from each 

big-block per period does not exceed the maximum extraction rate. 
,bbl ty in 

equations (3.15) and (3.16) is a binary variable which is used to activate either 
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equation (3.15) or (3.16).  Whenever equation (3.15) is active, it ensures that 

minimum extraction rate from each big-block per period is extracted. If the 

remaining tonnage of a big-block is less than the minimum extraction rate, 

equation (3.16) will be activated and forces that big-block to be extracted as much 

as the remaining tonnage which results in continuous extraction from each big-

block.    

Equations (3.17) and (3.18) are defined for binary constraints. Equation (3.17) 

ensures that if the extraction of a big-block is started its binary variable should be 

one. Also equation (3.18) controls the fact that if the extraction of a big block in 

period t has been started (
, 1bbl tB  ), the related binary variable should be kept one 

till end of the mine life. Both equations (3.16) and (3.18) contribute to the 

continuity of the extraction. The results of these constraints will be used for the 

precedence constraint for which the maximum number of active big-blocks is 

needed.  

Equations (3.19) and (3.20) ensure that the number of new big-blocks in each 

period should be in an acceptable range. It is obvious that the number of new big-

blocks in period one is more than other periods; therefore equation (3.19) is 

applied to period one and equation (3.20) is applied from period two to the end of 

the mine life. 

Equation (3.21) ensures that all the predecessor big-blocks of a given big-block 

bbl have been started prior to extracting the big-block. 

In this formulation, all material inside of the big blocks should be extracted. This 

is controlled by equation (3.22).   

3.4 MILP Formulation Implementation 

The application of numerical models is discussed in this part through instructions 

and methods. Two important elements in formulation and application of the MILP 

model are: (1) objective function, and (2) constraints (Pourrahimian, 2013).  

Selecting the appropriate numerical platform is the first step in each MILP 

formulation development. In this research, MATLAB (Math Works Inc., 2015) 
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was used as the numerical modeling platform and IBM/CPLEX (IBM, 2015) as 

the solver to optimize the production scheduling. MATLAB is a powerful 

language for numerical computation and programming. It enables the users to 

reach a solution faster than traditional programming languages, such as C/C++ or 

spreadsheets. CPLEX is useful for solving the large-scale mixed-integer linear and 

quadratic programming. The package contains simplex and barrier solvers 

(Pourrahimian, 2013). 

A generalized structure of MILP problem which is used by IBM/CPLEX is 

stablished and is implemented as a basis for numerical modeling. The main 

components of the MILP model are built in MATLAB to be transmitted to 

IBM/CPLEX for optimization (Pourrahimian, 2013).  

3.4.1 Numerical Modeling 

MILP formulation for mine optimization usually results in large-scale problems. 

CPLEX (IBM, 2015) as a commercial optimization solver is capable of tackling 

this issue. It uses a branch-and-cut algorithm that is a method of combinatorial 

optimization (Horst and Hoang, 1996; Wolsey, 1998).   

The proposed MILP model is developed in MATLAB (Math Works Inc., 2015), 

and solved in the IBM ILOG CPLEX environment (IBM, 2015). A branch-and-

bound algorithm is used to solve the MILP model, assuring an optimal solution if 

the algorithm is run to completion. Gap tolerance (EPGAP) is used as an 

optimization termination criterion in CPLEX. This is an absolute tolerance 

between the gap of the best integer objective and the objective of the remained 

best node. 

3.4.2 General Formulation 

Equations are the general structure of a MILP problem which is used by 

IBM/CPLEX. 

'min .xf                  (3.23) 

Subject to: 
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.Aineq x bineq             (3.24) 

.Aeq x beq                       (3.25) 

lb x ub                                                                                                         (3.26) 

 Where  

 f  is a column vector for linear objective function . 

 x is the decision variable of the MILP model (a column vector). 

 Aineq is a matrix for linear inequality constraints.   

 bineq is a column vector for linear inequality constraints (boundary 

vector). 

 Aeq is a matrix for linear equality constraints. 

 beq is a column vector for linear equality constraints (boundary vector). 

 lb and ub column vector of lower and upper bounds.  

3.4.2.1 The MILP Objective Function 

The objective function of this block-cave production scheduling problem as sated 

by equation (3.11) is to maximize NPV. The general form of the objective 

function in CPLEX according to equation (3.23) is minimization. Therefore, the 

objective function coefficient vector for equation (3.11) should be multiplied by a 

negative sign and consequently, the objective function will change to minimizing 

the –NPV of the mining operation. The objective function of this model as 

presented in equation (3.11), has a coefficient vector, f . Table 3.2 shows the size 

and values of this vector. In the second column of Table 3.2, ProfitD  is a 

( ) 1N T   vector which is the big-blocks’ discounted profit values shown by 

equation (3.11). Also, 0 is a (2 ) 1N T   vector with all elements equal to zero; 

N is the number of the big-blocks and T is the number of scheduling periods. The 

matrix vertical concatenation operator, ‘;’ is used for notation simplification that 

creates a matrix by concatenating them along the vertical dimension of the matrix. 
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Table 3.2. Size of the coefficient vector of objective function 

Size of the coefficient vector Coefficient vector 

(3 ) 1N T     Pr ;0ofitD  

Different units of the coefficient matrices of the objective function and constraints 

lead to transforming them into unitless vectors and matrices. Normalizing the 

vectors and matrices is performed for this issue by dividing them by norm(s) of 

their multiplier vector(s). Table 3.3 shows the size of the vector for decision 

variables and its order. X is a ( ) 1N T  vector holding the continuous decision 

variables controlling the extraction portion of each big block in each period: 

 ,x 0,1bbl t  . B is a ( ) 1N T  vector holding the binary decision variables 

controlling the precedence of the extraction of each big-block in each period: 

 , 0,1bbl tB  . Y is a ( ) 1N T  vector holding the binary decision variables 

controlling activating of either of two constraints:  , 0,1bbl ty  . 

Table 3.3. Size of the decision variables’ vector and its order 

Size of the decision variable 

vector 
Structure 

(3 ) 1N T     X; ;B Y  

3.4.2.2 The Constraints of the MILP Models 

The constraints of the MILP model is presented by equations (3.12) to (3.22). A 

numerical model for these equality and inequality constraints has been developed 

in the following section. In this formulation the binary variable defines whether 

the extraction of a big-block has been started by/in each period or not. Figure 3.8 

shows the structure of the constraints’ coefficient matrix. Table 3.4 demonstrates 

the number of rows for each constraint.  

The constraints’ coefficient matrix itself is divided into various parts based on the 

decision variables. Figure 3.9 shows these parts in the formulation. The number of 

the decision variables determines the number of parts. In this research there are 

three types of decision variables and therefore the number of the parts are three, 

belonging to the related variables. Also each part is sub-divided into smaller parts 



Chapter 3                                                                                          Theoretical Framework 

 

51 

 

according to the number of scheduling periods. Figure 3.10 shows the structure of 

each variable in the constraints’ coefficient matrix and decision variable vector. 

The number of columns in each period is equal to the maximum number of big-

blocks for all variables X, B, and Y. 

Table 3.4. Number of rows in constraint’ coefficient matrix  

Constraints Number of rows in coefficient matrix 

Mining capacity 2 T  

Grade blending 2 T  

Draw rate 3 N T   

Binary ( 1)N T N T     

Precedence N T  

Number of new big blocks 2 T  

Reserves N  

 

 

 

Figure 3.8. Order of constraints in the constraint’ coefficient matrix in the formulation 
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Figure 3.9. Division of the constraints’ coefficient matrix based on the decision variables 

 

 

Figure 3.10. The structure of each variable in the constraints coefficient matrix and 

decision variables vector 



Chapter 3                                                                                          Theoretical Framework 

 

53 

 

The detail description of the structure for all the constraints is explained in the 

following section. For saving the memory space and decrease the size of the 

constraints’ coefficient matrix, MATLAB’s sparse function is used through 

squeezing out any zero elements. 

Mining Capacity 

2T  rows of the constraint coefficient matrix is belonged to this constraint. 

Equation (3.12) itself is divided into the following equations: 

 ,

1

0,    1,....,
BBL

bbl bbl t t

bbl

Ton x MCU t T


 
     

 
       (3.27) 

 ,

1

0,    1,....,
BBL

t bbl bbl t

bbl

MCL Ton x t T


 
     
 
        (3.28) 

The first T rows form the upper bound of the mining capacity equation 

(equation(3.27)) and the next T rows is belonged to the lower bound of this 

equation (equation(3.28)). Equation (3.29) demonstrates the structure of this 

constraint. Mc
X  , Mc

B , and Mc
Y are  2T N T  matrices in the formulations. All 

the elements of McB and McY matrices are equal to zero. 

Equation (3.30) shows the structure of the decision variable Mc
X in the coefficient 

matrix of the mining capacity constraint. In this structure, 
t

ton
K and -

t

ton
K  are a 

1 N row vector containing the tonnage and -tonnage of the big-blocks in period 

t . 0  is a 1 N vector in which all the elements of this vector is equal to zero. In 

this matrix, each row is related to each period and the corresponding equations 

(3.27) or (3.28).  Therefore, in the first T rows, 
t

ton
K is placed in period t , and 

-

t

ton
K is related to the second T rows belonging to period t . For example, 

1

ton
K

should be placed in row 1 at period 1 and 
1

ton
K

 should be placed in row 1T  at 

period 1.  

          Mc Mc Mc Mc McLb X B Y Ub            (3.29) 
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1

2

1

2

0 . 0

0 . 0

. . . 0

. . . 0

0 0 .

0 . 0

. . 0

. . . 0

. . . 0

0 0 .

ton

ton

t

ton

Mc

ton

ton

t

ton

K

K

K
X

K

K

K







 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

           (3.30) 

Draw rate 

3 N T  rows of the constraints’ coefficient matrix is belonged to this constraint. 

Equations (3.14), (3.15), and (3.16) control this constraint. Each of the equations 

forms N T rows of the draw rate constraint coefficient matrix. Equation (3.31) 

illustrates the structure of this constraint. Indices 1, 2, and 3 are associated with 

equations (3.14), (3.15), and (3.16), respectively.  
1DR

X , 
2DR

X , 
3DR

X , 
1DR

B , 
2DR

B

, 
3DR

B , 
1DR

Y , 
2DR

Y , and 
3DR

Y are  ( )N T N T   matrices in the formulations. 

All the elements of matrices
1DR

B , 
3DR

B , and 
1DR

Y  are equal to zero. 

The following example clearly shows the structure of the coefficient matrix of this 

constraint for each of decision variables.  

3N   and 2T   are the assumptions of this example. In the following matrices, 

notation 
t

bblton contains the tonnage of big-block bbl  in period t , and notation 

t

bblExtL contains the minimum possible extraction rate from each big-block bbl  in 

each period t . Also, L is an arbitrary big number. For instance, in equation (3.35)

, 
1

2ExtL  stands for the minimum extraction rate of big-block 2 in period 1.  

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

DR DR DR DR DR

DR DR DR DR DR

DR DR DR DR DR

Lb X B Y Ub

Lb X B Y Ub

Lb X B Y Ub

     
     

      
     
     

        (3.31) 
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1

1

1

1

2

1

3

2

1

2

2

2

3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

DR

ton

ton

ton
X

ton

ton

ton

 
 
 
 

  
 
 
 
  

         (3.32) 

 

2

1

1

1

2

1

3

2

1

2

2

2

3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

DR

ton

ton

ton
X

ton

ton

ton

 
 

 
 

  
 

 
 

  

       (3.33) 

 

3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

DRX

 
 
 
 

  
 
 
 
 

           (3.34) 

 

2

1

1

1

2

1

3

2

1

2

2

2

3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

DR

ExtL

ExtL

ExtL
B

ExtL

ExtL

ExtL

 
 
 
 

  
 
 
 
  

       (3.35) 

 

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

DR

L

L

L
Y

L

L

L

 
 
 
 

  
 
 
 
 

          (3.36) 
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3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

DRY

 
 
 
 

  
 
 
 
 

           (3.37) 

Grade blending 

2T rows of the constraints’ coefficient matrix is belonged to this constraint. 

Equation (3.13) itself is divided into two following constraints:  

    ,

1

0,   1,...,
BBL

bbl bbl t bbl t

bbl

Ton g GU x t T


            (3.38) 

    ,

1

0,   1,...,
BBL

bbl t bbl bbl t

bbl

Ton GL g x t T


            (3.39) 

Each of these constraints forms T rows of the coefficient matrix. The first T rows 

represent the upper bound and the rest represent the lower bound of the grade 

blending equation. Equation (3.40) shows the structure of this constraint. g
X , g

B

, and g
Y are 2 ( )T N T   matrices in which all the elements of the g

B and g
Y

matrices are equal to zero. In equation (3.41), l
G  and u

G are 1 N vectors in 

which each element of these vectors is calculated based on the tonnage of each big 

block, grade of the big block, acceptable range for the grade in each period, and 

the period of extraction. The lower and upper bounds of the grade constraint are 

2 1T   vectors. All the elements in the lower bound are –infinity and all the upper 

bound elements are zero.  

   B    Yg g g g gLb X Ub                    (3.40) 
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0 . 0

0 . 0

. . . .

. . . .

0 0 .

0 . 0

0 . 0

. . . .

. . . .

0 0 .

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

u

u

u

g

l

l

l

G

G

G
X

G

G

G

         (3.41) 

Binary 

( 1)N T N T    rows of the constraints’ coefficient matrix is belonged to this 

constraint. Equations (3.17) and (3.18) control this constraint. The first N T

rows are for equation (3.17) and the next ( 1)N T  rows are for equation (3.18). 

Equation (3.42) illustrates the structure of this constraint. Indices 1 and 2 are 

associated with equation (3.17) and (3.18) respectively. 
1B

X , 
1B

B , and 
1B

Y  are 

( ) ( )N T N T    matrices while 
2B

X , 
2B

B , and 
2B

Y are ( ( 1)) (N T)N T   

matrices in the formulation. All the elements of the 
1B

Y , 
2B

X , and 
2B

Y  are equal to 

zero. Equation (3.43) shows the structure of the coefficient matrix of decision 

variable 
1B

X  all the elements are equal to zero except the diagonal of the matrix, 

which is equal to 1. For decision variable 
1B

B  all the elements are equal to zero 

except the diagonal of the matrix, which is equal to -1. Equation (3.45) is the form 

of coefficient matrix for the decision variable 
2BB . In this matrix ,1, 1

t

bblK   is a 

1 ( 1)N  vector with all the elements equal to zero except the bbl th and 

( )bbl N th elements, which are equal to 1 and -1, respectively. 

1 1 1 1 1

2 2 2 2 2

B B B B B

B B B B B

Lb X B Y Ub

Lb X B Y Ub

     
      

          
          (3.42) 
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1

1 0 . . . . 0

0 1 0 . . . .

. 0 . 0 . . .

. . 0 . 0 . .

. . . 0 . 0 .

. . . . 0 . 0

0 . . . . 0 1

BX

 
 
 
 
 

  
 
 
 
 
 

              (3.43) 

            

1

1 0 . . . . 0

0 1 0 . . . .

. 0 . 0 . . .

. . 0 . 0 . .

. . . 0 . 0 .

. . . . 0 . 0

0 . . . . 0 1

BB

 
 


 
 
 

  
 
 
 
  

                       (3.44) 

 

2

1

1,1, 1

1

2,1, 1

,1, 1

0 . . . . 0

0 0 . . . .

. 0 . 0 . . .

. . 0 . 0 . .

. . . 0 . 0 .

. . . . 0 . 0

0 . . . . 0







 
 
 
 
 

  
 
 
 
 
 

B

t

bbl

K

K

B

K

          (3.45) 

Number of new big blocks 

2 T rows of the constraints’ coefficient matrix is belonged to this constraint. 

Equation (3.19) is divided into two equations ((3.46) and (3.47)) and equation 

(3.20) is divided into two equations((3.48) and (3.49)). Equations (3.46) and 

(3.48) form the upper bound of the equations (3.19) and (3.20), respectively. 

Equations (3.47) and (3.49) form the lower bound of the equations (3.19) and 

(3.20), respectively. Equation (3.50) shows the structure of this constraint. The 

first two rows of this constraint’ coefficient matrix belong to equations (3.46) and 

(3.47). On the other hand, the next 2 ( 1)T  rows of the constraint’ coefficient 

matrix is for equations (3.48) and (3.49). Index 1 is used for equations (3.46) and 
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(3.47), whereas index 2 is used for equations (3.48) and (3.49). 
1NBBL

X , 
1NBBL

B , 

and 
1NBBL

Y are 2 ( )N T  matrices while 
2NBBL

X , 
2NBBL

B , and 
2NBBL

Y are 

(2 ( 1)) (N T)T    matrices in the formulation. All the elements of decision 

variables 
1NBBL

X , 
2NBBL

X , 
1NBBL

Y , and 
2NBBL

Y are equal to zero. Equation (3.51) 

illustrates the structure of coefficient matrix related to decision variable 
1NBBL

B in 

which 
1

1
K  is a 1 ( )N T  vector with all the elements equal to zero except the first 

N elements which are equal to 1. Also, 
1

1
K

 is a 1 ( )N T  vector with all the 

elements equal to zero except the first N elements which are equal to -1. Equation 

(3.52) shows the structure of the coefficient matrix related to decision variable 

2NBBL
B in which 1

t
K  is a 1 N vector with all the elements equal to 1 related to 

period t  , whereas 
1

1

t
K



  is a 1 N vector with all the elements equal to -1 at 

period 1t  .  

,1,

1

0 ,   1
BBL

NBBLbbl t

bbl

B N t


            (3.46) 

,1 ,

1

0,    1
BBL

NBBL bbl t

bbl

N B t


            (3.47) 

 ,, , 1

1 1

( ) 0,   2,...,
BBL BBL

NBBL tbbl t bbl t

bbl bbl

B B N t T

 

                (3.48) 

 

 , , , 1

1 1

( ) 0,    2,...,
BBL BBL

NBBL t bbl t bbl t

bbl bbl

N B B t T

 

             (3.49) 

 

1 1 1 1 1

2 2 2 2 2

NBBL NBBL NBBL NBBL NBBL

NBBL NBBL NBBL NBBL NBBL

Lb X B Y Ub

Lb X B Y Ub

     
      

          
        (3.50) 

 

1

1

1

1

1

 
  
 

NBBl

K
B

K
                 (3.51) 
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2

1 2

1 1

2 3

1 1

1

1 1

1 2

1 1

2 3

1 1

1

1 1

0 . . 0

0 0 . .

. 0 . . 0 .

. . 0 . . 0

0 0 . 0

0 . 0 0

0 0 . .

. 0 . . 0 .

. . 0 . . 0

. . . 0

















 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

t t

NBBl

t t

K K

K K

K K
B

K K

K K

K K

        (3.52) 

Precedence 

N T rows of the constraints’ coefficient matrix is belonged to this constraint. 

Equation (3.21) controls this constraint. Equation (3.53) shows the structure of 

precedence constraint. P
X  , P

B , and P
Y  are ( ) ( )N T N T    matrices in the 

formulation. All the elements of the decision variables, P
X  and  P

Y are equal to 

zero. Equation (3.54) illustrates the structure of the decision variable P
B in which 

1,

t

nK  is a N N vector that the elements are placed according to the number of 

predecessors for each big block, -1 for the predecessors of a given big block and 

n  for that given big block in period t .  

   P P P P pLb X B Y Ub             (3.53) 

1

1,

2

1,

1,

0 . . 0

0 0 . .

. 0 . 0 .

. . 0 . 0

0 . . 0







 
 
 
 
 
 
 
 

n

n

P

t

n

K

K

B

K

       (3.54) 

Reserves 

N rows of the constraints’ coefficient matrix belonged to this constraint. Equation 

(3.22) controls this constraint. Equation (3.55) shows the structure of this 
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constraint. res
X  , res

B , and res
Y  are ( ) ( )N N T   matrices in the formulation. All 

the elements of the matrices res
B , and res

Y  are zero. Equation (3.56) demonstrates 

the structure of the res
X , in which 

,1T

bblK  is a 1 N vector that all the elements are 

zero except the bbl th element, which is equal to 1. bbl  represents the ID number 

of the big-block. resLb  and resUb  are 1N   vectors of ones in the formulation.  

     res res res res resLb X B Y Ub          (3.55) 

1,1 2,1 1,1 ,1

1 1 1 1

1,1 2,1 1,1 ,1

2 2 2 2

1,1 2,1 1,1 ,1

.

.

. . . . .

. . . . .

. . . . .

. . . . .

.







 
 
 
 
 

  
 
 
 
 
 

T T

T T

res

T T

bbl bbl bbl bbl

K K K K

K K K K

X

K K K K

      (3.56) 

3.5  Summary and Conclusion 

In summary, stochastic sequential simulation is implemented to deal with the 

grade uncertainty in the first part of this chapter. Average-simulated block model 

is created through calculating weighted average grade of all the realizations for 

each cell. Afterwards, the best extraction level is determined according to the 

maximum discounted profit. The discounted ore profit is calculated based on the 

discount rate, profit values of each block, extraction rate, and the distance between 

the center points of each ore block and its above ore block. Determining the 

outline of the ore-body for each level and creating the big-blocks are the next parts 

that discussed in this chapter. Then, MILP formulation framework is developed in 

which the main objective is to maximize NPV in presence of a number of practical 

constraints.  

Finally, the numerical model of the MILP formulations is created in MATLAB 

(Math Works Inc., 2015) and a generalized form is used by IBM/CPLEX (IBM, 

2015) to solve large-scale MILP problems. The structure of all the vectors and 
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matrices related to objective function and constraints is explained at the next part 

and the results are passed on to IBM/CPLEX for optimization.  
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CHAPTER 4  
 

VERIFICATION, EXPERIMENTS, AND 

DISCUSSION OF RESULTS 

 

Chapter 4 presents experimentation with the stochastic sequential simulation, best 

level determination, and MILP model framework. This includes two case studies 

called original and average-simulated block models and verification of the 

methods. The MILP formulation is carried out and certified for both the block 

models. The simulation methodology is implemented and verified on a dataset 

from drillholes. The best level determination method and MILP model are applied 

on the simulated block models. Finally, the near-optimal realistic production plan 

under grade uncertainty is generated. At the end of this chapter, risk analysis has 

been done to investigate the effect of grade uncertainty on NPV and tonnage.  
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4.1 Introduction 

In this chapter, the stochastic sequential simulation algorithm and mathematical 

formulations are implemented on a standard drillhole dataset in order to 

demonstrate how the methodology works. First the simulation method was applied 

on the dataset to consider grade uncertainty by creating average-simulated block 

model, and then the methodology to find the best level of extraction is tested on 

all the realizations, original and average-simulated block models, and finally 

MILP model was examined and verified on both original and average-simulated 

block models to generate the near-optimal production schedule. Then, some 

investigation and comparison were studied to assess the involved risks and NPV 

changes due to existence of grade uncertainty.  

4.2 Grade uncertainty 

A geostatistical study based on the drillhole data of a copper deposit and 

according to what is mentioned in section 3.2.1 was performed. Geostatistical 

software library (GSLIB) (Deutsch and Journel, 1998) was used for geostatistical 

modeling in this research. The only rock property that is used in this study is 

copper. The histogram and cumulative density function (CDF) of the data is 

shown in Figure 4.1. The data set has 837 samples of percent copper with the 

mean and standard deviation of 1.47 and 0.22 %, respectively. Also, from the 

CDF curve, most of the data are between 1.2 and 1.8 % of copper. As the copper 

grade is univariate data, there is no need for multivariate statistical analysis and 

transferring data to multivariate Gaussian framework to find the correlation 

between the variables. The initial inspection of the locations of the drillholes 

showed that the drillholes were equally spaced. As a result, the declustering 

algorithm was not implemented. 

The next step in the study was to define the grid for the simulation. The distance 

between the grid nodes in each direction, the number of grid nodes in each 

direction, and the coordinates of the first grid node are important parameters for 

defining a grid. As it is demonstrated in Table 4.1, all of these parameters were 

considered in order to choose the size of the grid. 
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Figure 4.1. (a) Histogram and (b) the CDF of copper grade (%) for drillholes 

 

Table 4.1. Grid definition for geostatistical study 

Direction Number of nodes Center coordinates of first node (m) Grid Spacing 

Easting 45 105 10 

Northing 60 5 10 

Elevation 70 305 10 
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There were two parts to the modeling: rock type modeling and grade modeling. 

The grade modeling should be implemented for both rock types (ore and waste) 

separately, but as the grade for all the waste blocks were zero, the grade modeling 

was performed just for ore blocks. In this research, rock type 1 and 0 represent ore 

and waste blocks, respectively.    

4.2.1 Rock type modeling 

The principal directions of continuity were found using indicator kriging (ik3d 

program) based on two categories: 0 (waste) and 1 (ore). The azimuths of major 

and minor directions were chosen to be 0 and 90 degrees and were used at the next 

step to calculate the variograms. Afterwards, the indicator variograms were 

calculated and a theoretical variogram model was fitted with three structures, the 

nugget effect of 0, and the sill of 0.14. Varcalc, varmodel and varplot programs 

are utilized for this purpose, respectively. Figure 4.2 shows the plan view of 

maximum direction of continuity for rock type 1 at Elevation 40. Experimental 

directional variograms and the fitted models are illustrated in Figure 4.3. At the 

next step, 20 realizations for rock type 1 were generated using Sequential 

Indicator Simulation (SIS) algorithm. Blocksis program is used for this purpose 

that generates multiple realizations. Plan view of rock type simulation for first 

realization at Elevation 40 is shown in Figure 4.4. 

 

Figure 4.2. Plan view of maximum direction of continuity for rock types at Elevation 40 
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Figure 4.3. Experimental directional variograms (dots) and the fitted variogram models 

(solid lines) for rock type and distance units in meters 

 

Figure 4.4. Plan view of rock type simulation for first realization at Elevation 40 
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4.2.2 Grade modeling 

For ore modeling, the principal directions of continuity were extracted by doing 

simple kriging with the help of arbitrary variograms. As the mean of data was 

known, simple kriging was used instead of ordinary kriging. kt3dn program was 

implemented for this purpose. As it can be seen in Figure 4.5, the azimuth of 90° 

(major) and zero (minor) in the horizontal direction were selected for variogram 

calculation at the next step. Then the copper grades were transformed to Gaussian 

space with the help of nscore program. Traditional variogram calculation and 

modeling with three structures and a nugget effect of 0.1 were done for the copper 

grade. Following the same procedure as rock type modeling, Varcalc, varmodel 

and varplot programs are utilized in this step, respectively. Figure 4.6 shows the 

experimental directional variogarms and their fitted models. Afterwards, 20 

realizations for the copper grade were generated by using sgsim program which is 

based on Sequential Gaussian Simulation algorithm (SGS). The SGS needs a 

back-transformation to original units by using backtr program. The plan view of 

copper grade simulation for first realization at Elevation 40 is shown in Figure 4.7. 

 

Figure 4.5. Plan view of maximum direction of continuity for copper grade (%) at 

Elevation 40 
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Figure 4.6. Experimental directional variograms (dots) and the fitted variogram models 

(solid lines) for the Cu grade of ore blocks, distance units in meters 

 

Figure 4.7. Plan view of Cu grade (%) simulation for first realization at Elevation 40 
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4.2.3 Merging grade models into rock type models 

The next step was to match and merge the rock type model with the grade model 

for each realization using mergemod program. Figure 4.8 shows the plan view of 

the final simulation for the first realization. Figure 4.9 shows the variogram 

reproduction of the copper (ore) simulation (left) and rock type simulation (right) 

in three major, minor, and vertical directions. Since the variograms were 

reproduced quite reasonably, the generated realizations were considered 

representative of the grade uncertainty. 

In order to create average-simulated block model only grids that were ore in 85% 

of the realizations were considered and average grade was calculated for those 

grids.  

 

Figure 4.8. Final simulation of first realization at Elevation 40  
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Figure 4.9. Variogram reproduction at Gaussian units of copper grade (left) and rock type 

(right) realizations (gray lines), the reference variogram model (red line), and the average 

variogram from realizations (blue line) in three directions. 
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4.3 Placement of the extraction level 

The discounted profit and tonnage of the ore blocks above each ore block in each 

level were calculated and the profit-tonnage curve was plotted. The input 

parameters for calculating discounted profit as mentioned in section 3.2.2 are 

block height and extraction rate which were assumed to be 10 meters and 15 

(meter/period), respectively. This led to selecting the best level for starting 

extraction based on maximum discounted profit for each realization.   

According to the procedure described in section 3.2.1 and 3.2.2, the appropriate 

level of extraction was determined for original block model, average-simulated 

block model, and all realizations. Figure 4.10, and Figure 4.11 illustrate the best 

level of extraction for average-simulated and original block models, respectively. 

For original block model level 38, and for average-simulated block model level 39 

have the maximum discounted profit. Figure 4.12 shows the histogram of the 

obtained extraction levels for all realizations, in 40 % of the realizations, level 39 

is the best level of extraction. In this case, level 39 of average-simulated block 

model with the highest discounted profit was selected for starting the extraction.   

 

 

Figure 4.10. Best level selection based on tonnage-profit curve of average-simulated 

block model 
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Figure 4.11. Best level selection based on tonnage-profit curve of original block model 
 

 

 Figure 4.12. Histogram of best level of extraction for all the realizations 

4.4 Production scheduling  

In this section, the procedure explained in section 3.2.3 to obtain the optimal 

production schedule for the block-cave mine has been examined. At first, the 

verification of the MILP model has been done on the original and average-

simulated block models to make sure that the models work properly. The gap 

tolerance (EPGAP) of 1% was used as an optimization termination criterion to 

solve the models. 



Chapter 4                                          Verification, Experiments, and Discussion of Results 

 

74 

 

4.4.1 Original block model 

To maximize the NPV, the proposed mathematical model was applied to generate 

the production schedule for the best level of original model which was level 38 

from the previous section. The case consists of 189,000 blocks which 20,889 of 

them were ore blocks. Each block is 10×10×10 m (Figure 4.13). 

The ore blocks layout for level 38 was determined (Figure 4.13b). Then based on 

the method presented by Khodayari and Pourrahimian (2015) the best 

advancement direction for level 38 was determined to be from Southeast to 

Northwest (SE NW ),see Figure 4.14a. Then, because of the distances between 

drawpoints and the assumed footprint size (30m × 30m), the blocks are placed into 

bigger blocks along the advancement direction. Additionally, as the big-blocks 

close to the boundaries did not constitute a complete set (with nine small blocks), 

only sets with seven or more blocks were considered (see Figure 4.14b). A big-

block contains seven, eight, or nine small ore blocks and small ore blocks above 

that big-block in the extraction level. Afterwards, the average grade of new big-

blocks column was calculated using a weighted average method. Also, the total 

ore tonnage and profit values of each big-block column were calculated. After the 

big-block columns were created, the optimal production schedule was generated 

for the columns using MILP model. The objective was to maximize the NPV.  

Table 4.2 illustrates the number of variables and constraints used in the 

formulation. Table 4.3 shows the scheduling parameters to generate the production 

schedule. The coefficient matrices were created in MATLAB (Math Works Inc., 

2015). IBM/CPLEX (IBM, 2015) was used to solve the problem. The model was 

run for level 38 with 90 big-block columns over 15 periods. The amount of 

extracted ore was 37.45 Mt with the NPV of $925.1 M. Figure 4.15 shows the 

production average grade and production tonnage in each period for this level. As 

it can be seen from production graph, the maximum amount of material has been 

extracted in all the periods except period 15 which slightly drops. Also from grade 

graph, it has been increased gradually in early periods and the material with higher 

grades were extracted at first and then it has been decreased slowly near the end of 

the mine life.   
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Figure 4.16 shows the number of active and new big-blocks in which the number 

of new big-blocks was within the defined range. The formulation tries to open 

more big-blocks at first period in order to maximize the NPV and because of that 

25 big-blocks were opened at period one. Moreover, maximum number of active 

big-blocks was 28. The precedence of extraction is shown in Figure 4.17.  

 

Figure 4.13. (a) Block model of ore-body, (b) outline of ore-body at level 38 

 

 

Figure 4.14. (a) Best advancement Direction based on the profit at the best level, (b) 

Schematic view of considering big blocks with more than seven small blocks 
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Table 4.2. Number of variables and constraints for original block model 

Number of 

big-blocks 

Number of 

constraints 

Decision variables 

Total Continuous Binary 

90 8,190 4,050 1,350 2,700 

 

Table 4.3. Scheduling parameters for original block model  

Parameter Value  Parameter Value 

T  15  ($ )P tonne
 6,000 

( )MCL Mt
 1  ($ )CS tonne  0.5 

( )MCU Mt
 2.5  ($ )CM tonne  10 

(%)GL
 1.1  ($ )CP tonne  16.1 

(%)GU
 1.7  

,1NBBLN  25 

( )ExtL Kt  90  
,1NBBLN  0 

( )ExtU Kt  350  
,NBBL tN  5 

i (%)
 10  

,NBBL tN  4 

(%)R
 85  L  100,000,000 

 

 

Figure 4.15. Production tonnage and average grade of production at level 38 
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Figure 4.16. Number of active and new big-blocks for each period at level 38 

 

Figure 4.17. Starting extraction period of big-blocks at level 38 (numbers represent the 

starting period) 

4.4.2 Average-simulated block model 

In this section, the algorithm and MILP formulation were applied on the average-

simulated block model to generate the optimal production plan in presence of 

grade uncertainty. Average-simulated block model contains 189,000 blocks which 

14,956 of them were ore blocks. Each block is 10×10×10 m. As described in 

section 4.3, level 39 with the highest discounted profit was selected for starting the 

extraction. Figure 4.19a shows level 39 ore blocks and above. Figure 4.18a and b 



Chapter 4                                          Verification, Experiments, and Discussion of Results 

 

78 

 

show the histogram and cumulative density function (CDF) of copper above best 

level (level 39) of average-simulated block model, respectively. The numbers of 

ore blocks above level 39 were 10,580. As it can be seen from the graphs, mean 

and standard deviation were 1.517 and 0.137, respectively. And CDF shows that 

most of the ore blocks have a range grade between 1.2% and 1.6%.  

 

Figure 4.18. (a) Histogram and (b) the CDF of copper grade (%) above level 39 for 

average-simulated block model 
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According to the methodology presented by Khodayari and Pourrahimian (2015) 

the best advancement direction for this level was specified which in this case was 

from SE NW (Figure 4.20a). Following the same procedure as original block 

model, the big-block columns were created (Figure 4.19b). The next step is 

calculating the average grade and total ore tonnage and profit values of the created 

big block columns. The optimal production schedule was generated for these 

columns using proposed mathematical formulation.  

The number of constraints, decision variables, and big-block columns which is 66 

in this case is shown in Table 4.4. Table 4.5 shows the scheduling parameters that 

were used in running the mathematical programming. The constraints’ coefficient 

matrix was created in MATLAB (Math Works Inc., 2015) according to what 

described in section 3.4. IBM/CPLEX (IBM, 2015) was implemented as a solver 

to maximize the NPV. The results were 27.33 Mt of extracted ore and NPV of $ 

726.5 M.  

 

 

Figure 4.19. (a) Block model of ore-body above level 39, (b) outline of ore-body and 

created big blocks at level 39 
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Figure 4.20. Best advancement direction based on the profit at level 39 

 

Table 4.4. Number of variables and constraints for average-simulated block model 

Number of 

big-blocks 

Number of 

constraints 

Decision variables 

Total Continuous Binary 

66 6,030 2,970 990 1,980 

 

Table 4.5. Scheduling parameters for average-simulated block model   

Parameter Value  Parameter Value 

T  15  ($ )P tonne
 6,000 

( )MCL Mt
 1.2  ($ )SC tonne

 0.5 

( )MCU Mt
 1.875  ($ )MC tonne

 10 

(%)GL
 1.3  ($ )PC tonne

 16.1 

(%)GU
 1.6  

,1NBBLN  15 

( )ExtL Kt  90  
,1NBBLN  0 

( )ExtU Kt  350  
,NBBL tN  4 

i (%)
 10  

,NBBL tN  2 

(%)R
 85  L  100,000,000 
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The ore production tonnage and average grade in each period for level 39 is shown 

in Figure 4.21 and Figure 4.22, respectively. As it can be seen, the formulation 

tried to keep the mining capacity at the upper bound and the material with highest 

grades was used in the early years of production. The number of active and new 

opened big-block columns for each period is demonstrated in Figure 4.23 which is 

within the defined range. Figure 4.24 shows the precedence of extraction at level 

39. The results show that all assumed constraints were satisfied.  

 

Figure 4.21. Ore production tonnage at level 39 

 

 

Figure 4.22. Average grade of production at level 39 
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Figure 4.23. Number of active and new big blocks for each period at level 39 

 

Figure 4.24. Starting extraction period of big-blocks at level 39 (numbers represent the 

starting period) 

4.4.3 Comparison and analysis 

In order to evaluate the risks involved in this block-cave mine dataset due to 

presence of grade uncertainty, the changes in NPV and tonnage should be 

investigated. Considering the deterministic values for grade, original block model 

or average-simulated block model result in one NPV or tonnage at the end, which 

cannot assess the effects of grade uncertainty and inspect the instability of the 

results. On the other hand, determining the range of NPV or tonnage and its 

maximum and minimum values considerably helps to understand the worse and 
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the best case scenarios. Figure 4.25 shows the need of using simulation for risk 

analysis. It is obvious that optimizing one block model (original or average-

simulated) will result in a single number. But when a number of block models are 

optimized, the obtained results show a range associated with the risk of project. 

 

Figure 4.25. Schematic presentation of the NPV analysis 

 

In the following section different scenarios have been studied to obstacle the risks. 

For all these cases unique scheduling parameters have been implemented to be 

able to compare the results. Table 4.6 shows the new scheduling parameters that 

are valid for all the block models. 

4.4.3.1 Original and average-simulated block models  

The best level for original block model was 38 and according to the new 

scheduling parameters the NPV was $1.01B and the ore tonnage that can be 

extracted was 37.45 Mt. The same procedure has been used for average-simulated 

block model with the best level of 39 and in this case the obtained NPV and ore 

tonnage were $0.84B and 27.33 Mt, respectively.  
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Table 4.6. Scheduling parameters for all the block models 

Parameter Value  Parameter Value 

T  15  ($ )P tonne
 6,000 

( )MCL Mt
 1.2  ($ )SC tonne

 0.5 

( )MCU Mt
 3  ($ )MC tonne

 10 

(%)GL
 1.3  ($ )PC tonne

 16.1 

(%)GU
 1.6  

,1NBBLN  27 

( )ExtL Kt  90  
,1NBBLN  0 

( )ExtU Kt  350  
,NBBL tN  5 

i (%)
 10  

,NBBL tN  2 

(%)R
 85  L  100,000,000 

4.4.3.2 All realizations at their own best levels 

In this case, the best level for each realization was determined and maximum NPV 

for each of them was specified. Figure 4.26 clearly shows the frequency of NPV 

for all the realizations at their own best levels. As it can be seen from the graph, 

the NPV changes between $0.84B and $1.08B and the mean was $1B. 

Additionally, the NPV for original block model was within the lower and upper 

quartile.  

 

Figure 4.26. The NPV frequency for all the realizations at their own best levels 
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The same work has been done for the tonnage and Figure 4.27 shows the results. 

The minimum and maximum ore tonnages that can be extracted were 28.68 Mt 

and 38.64 Mt, respectively. The original block model tonnage value was within 

the upper and lower quantile as well.  

 

Figure 4.27. The tonnage frequency for all the realizations at their own best levels 

4.4.3.3 All realizations at level 39 

As described in section 4.3, level 39 was the best level of extraction for 40% of 

the realizations. In this case the tonnage and NPV changes for all the realizations 

at level 39 were examined. Figure 4.28 illustrates the frequency of NPV at level 

39 for all the realizations. As it can be seen, the NPV changes were much less in 

compared to the previous scenario and the NPV of original block model was again 

within the upper and lower quartile. Figure 4.29 shows the tonnage analysis for 

this case. The ore tonnage changes between 33.1 Mt and 39.6 Mt and for the 

original block model it stands within this range.  
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Figure 4.28. The NPV frequency for all the realizations at level 39 

 

 

Figure 4.29. The tonnage frequency for all the realizations at level 39  
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4.4.3.4 Realizations with best level of 39 

In this scenario, the evaluation of ore tonnage and NPV was just done on 

realizations which their best level of extraction was 39. Eight realizations out of 

20 had the best level of 39 (40%). Figure 4.30 and Figure 4.31 show the NPV and 

ore tonnage frequency for just realizations with the best level of 39.  

 

Figure 4.30. The NPV frequency for realizations with the best level of 39 

 

 

Figure 4.31 The tonnage frequency for realizations with best level of 39 
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4.4.3.5 NPV comparison at different levels 

In Figure 4.32, the NPV for each realization at their own best levels has been 

demonstrated. Moreover, the NPV of original and average-simulated block models 

are highlighted. The green line shows the average NPV for each level.  

 

 

Figure 4.32. NPV comparison for different extraction levels 

4.5 Summary and Conclusion 

Geological uncertainty has been used in open-pit mining, but is less studied in 

underground mining, especially in block caving, where it is not so easy to revise 

production plans after caving has begun (Vargas et al., 2014). This methodology is 

able to find the best extraction horizon placement under grade uncertainty. Also, it 

is able to define an optimal production scheduling using mathematical 

programming and MILP formulation in MATLAB and solving it using 

IBM/CPLEX. 

Two case studies were used in this chapter to verify the proposed geostatistical 

study and MILP model. To verify the production scheduling algorithm and 

mathematical formulation, at first, original block model was implemented and the 



Chapter 4                                          Verification, Experiments, and Discussion of Results 

 

89 

 

results were discussed, then average-simulated block model which considered 

grade uncertainty was used.  

The average-simulated block model was generated and level 39 with the highest 

discounted ore profit was selected as the level of extraction. Also for the original 

block model level 38 as the best level was determined. By utilizing the proposed 

MILP model, the highest NPV of $726M for 66 big-block columns for average-

simulated block model and $925.1M for 90 big-block columns for original block 

model, at the EPGAP of 1%, were achieved. As the graphs show, the production 

amount is at its optimal level with highest grade for early periods and the 

maximum capacity is used during the extraction. Also it is clear from the 

precedence graph that the big blocks are extracted along the advancement 

direction trying to extract more big-blocks in first period.  

Finally, the risks associated with the grade uncertainty were studied. A unique 

scheduling parameters was defined which was valid for all the block models. 

Various scenarios was presented to deal with the problem including: optimizing 

all the realizations at their own best levels, optimizing all the realizations at level 

39 as the best level for all of them and optimizing those realizations that their best 

level was 39. The range of ore tonnage and NPV in these scenarios were analyzed 

to understand the best and the worst case. Considering all those scenarios, the 

NPV varied between $0.85B and $1.081B that means, at the worst case the NPV 

would be $0.85B and the NPV for the best case would be $1.081B. The same 

description is justifiable for tonnage. The minimum and maximum ore tonnages 

were 28.68 Mt and 39.64 Mt, respectively.  
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CHAPTER 5  

SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

 

Chapter 5 contains the summary and conclusion of this thesis. The contributions 

of this research are emphasized, as well as recommendation for future work in 

block-cave production scheduling.  
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5.1 Summary of Research 

Production scheduling should be considered as an important issue due to the fact 

that mining industry is facing with lower grades and marginal reserves nowadays. 

Production scheduling should provide a mining sequence that takes into account 

the physical constraints of the mine as well as defining the tonnages and input 

grades to the processing plant throughout the mine life. The use of massive 

mining methods is increasing in major mining companies due to the economic 

issues of today’s mining industry. Among the underground mining methods, 

block-cave mining could be considered as an appropriate alternative because of its 

low operation cost and high production rates (Pourrahimian, 2013). Optimal 

production schedule plays a critical role in underground mining as it is impossible 

to change the mining method once the cave is initiated. Software packages which 

use the simulation and heuristic methods generate feasible schedules rather than 

an optimal global solution. On the other hand, grade uncertainty has profound 

impact on optimality of the production schedule and it cannot be ignored due to 

the widely spaced drillholes in block caving (Koushavand, 2014). More studies 

have been done to address optimization of open pit production scheduling 

problems but fewer efforts have been made in underground mining. Some major 

weaknesses of the current production scheduling in block caving are: 1) restriction 

on solving large-scale problems; 2) considering stochastic variables as 

deterministic; 3) taking fewer geotechnical constraints into account in real-scale 

operations; 4) determination of extraction level; 5) trial-and-error to find the 

advancement direction.  

This research is conducted to solve the shortcomings in dealing with large-scale 

problems, determining the extraction level, grade uncertainty, and integration of 

fewer geotechnical constraints through developing a mixed-integer linear 

programming (MILP) model and stochastic sequential simulation.  

Two main goals of this research are to: 1) implement and verify stochastic 

sequential simulation to take grade uncertainty into account; 2) develop, 

implement, and verify a MILP model to optimize block-cave long-term 

production scheduling. The objective function is to maximize NPV with respect to 
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technical and operational constraints. These constraints are the draw rate, mining 

capacity, minimum required mining footprint, grade blending, precedence, 

number of new big-blocks, continuous extraction, and reserves.  

MATLAB (Math Works Inc, 2015) programming platform was used to create the 

objective function and constraints. IBM/CPLEX (IBM, 2015) which is a solver 

for large-scale optimization problems, was used in this research. It uses branch-

and-bound algorithm to solve the problem.  

The best level of extraction was determined for original block model, average-

simulated block model and all the realizations according to the maximum 

discounted profit. The most frequent level from the realizations was determined. 

According to the best level of average-simulated block model and most frequent 

level from the realizations, the best level was specified. The actual outline of the 

ore-body at the best level was specified and then big-blocks were created inside 

this outline based on the minimum required mining footprint. The MILP 

formulations were applied on both the original and average-simulated block 

models containing 90 and 66 big-blocks, respectively, over 15 periods and 

scheduling parameters were defined. The results showed that all the considered 

constraints had been satisfied and the MILP model worked properly. After 

making sure that the MILP model works well for both the models. To solve the 

two models, the EPGAP of 1% was set. The formulations yielded a NPV of 

$925.1M and $726.5M for the original and average-simulated block models, 

respectively. Finally, in order to assess the involved risks due to grade 

uncertainty, the changes in NPV and tonnage have been examined. 

 Figure 5.1 shows a summary of the workflow for completing case study based on 

the proposed algorithms and model. 
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Figure 5.1. Summary of the research methods 

5.2 Conclusions 

All the research objectives outlined in Chapter 1, have been achieved. The 

following conclusions were obtained from stochastic sequential simulation and 

mathematical programming: 
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1. Implementing stochastic sequential simulation contributes significantly to 

decrease the effect of grade uncertainty on the optimality of the project.  

2. The presented method is able to find the best level of extraction to start the 

mining operation based on the maximum discounted profit. 

3. The proposed MILP model maximizes the NPV of the block-cave mine 

while enforcing the model to satisfy constraints. 

4. The MILP model is able to generate a production schedule for large-scale 

block-caving operations through creating big-block columns.  

5. The proposed methodology is verified in terms of both feasibility and 

optimality on two case-studies and run with an optimality gap of 1% in 

which two schedules with maximum NPV were generated. 

5.3 Contributions of the Research 

This research has implemented stochastic sequential simulation and developed 

mathematical formulations, which contributes notably to generate an optimal 

production schedule for the block-cave mine under grade uncertainty. The 

following constitute the main contributions of this research. 

1. Combination of geostatistical simulation with MILP model in the context 

of block-cave mine planning. 

2. Studying the effect of grade uncertainty on block-cave mine production 

scheduled, and consequently on the NPV of the mining projects.   

3. Determination of best level to initiate the extraction based on maximum 

discounted profit and grade uncertainty. 

4. Creation of big-block columns based on the minimum required mining 

footprint enormously help to decrease the number of variables and enable 

mine planners to solve large-scale production scheduling problems.  

5. Maximizing NPV through the MILP model and subjected to a set of 

practical constraints including: mining capacity, grade blending, mining 

precedence, draw rate, number of new big-blocks, and reserves.  
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6. Introducing a methodology to determine the predecessor big-blocks and its 

implementation as prototype software with a graphical user interface. 

7. Development of a prototype open-source software application with the 

graphical user interface called Block Cave Footprint Optimizer (BCFO). 

The prototype software helps transfer knowledge and optimization 

technology developed in this thesis to practitioners and end-users in the 

field of block-cave production scheduling.    

5.4 Recommendations for Future Research 

In spite of the fact that the developed model and implemented algorithms in this 

thesis have presented new methods and formulations for block-cave production 

scheduling problems, but there are still some limitations in production scheduling 

of block-cave mines that should be eliminated through using mathematical 

programming models. The following recommendations could significantly 

improve the block-cave mine production scheduling problems: 

1. More uncertain attributes other than grade should be added to the 

optimization problem. It means other economic variables such as cost and 

price are not deterministic in the future and there is a need to re-optimize 

the production schedules. To overcome this shortcoming, the MILP model 

should be extended to take stochastic variables into account during 

optimization. 

2. One of the assumptions in the proposed model was no material mixing 

between blocks. In future research the dilution should be considered 

during optimization. 

3. There can be other mining parameters other than assumed constraints in 

this thesis that should be defined in the future works.   

4. Generating more number of realizations can be helpful in interpretation 

and analysis of data.   
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APPENDIX A 

BEST LEVEL OF EXTRACTION 

 

After simulation the best level of extraction should be found. Two steps should be 

followed: (1) import the block model, and (2) find the best level. 

function Import()  
[filename] = uigetfile('.txt'); 
fileID = fopen(filename); 
Data = fscanf(fileID,'%f %f %f %f %f %f %f %f %f %f',[10 Inf])'; 
InputData.Levels = Data(:,1); 
InputData.Rows = Data(:,2); 
InputData.Columns = Data(:,3); 
InputData.X = Data(:,4); 
InputData.Y = Data(:,5); 
InputData.Z = Data(:,6); 
InputData.Rock = Data(:,7); 
InputData.CU = Data(:,8); 
InputData.Tonnage = Data(:,9); 
InputData.Density = Data(:,10); 
save('Results/InputData','InputData'); 
h = msgbox('All required data was imported.'); 
end 

 
function MinHOD21 
load('Results/InputData.mat')  
% Level data matrix 
nLevel = max(InputData.Levels); 
LevelData = [(1:nLevel)',zeros(nLevel,6)]; 
%*************************************************** 
TonnageTest = zeros(nLevel,1); 
for level = 1:nLevel 
    % Find amout of ore in each level 
    LevelIDs = find(InputData.Levels == level); 
    RockData_help = InputData.Rock(LevelIDs); 
    TonData_help = InputData.Tonnage(LevelIDs); 
    GradeData_help = InputData.CU(LevelIDs); 
    % Ore = 12; 
    % Waste = 13; 
    ID_Ore = find(RockData_help == 12);     
    TonOre = TonData_help(ID_Ore);      % vertical vector 
    GradeOre = GradeData_help(ID_Ore);  % vertical vector 
    Level_Ore = TonOre .* (GradeOre./100);     % vertical vector - 

Determines the amount of ore in each level 
    % --------------------------------------------------- 
    % Economic Data 
    % --------------------------------------------------- 
    Price = 6000         ;% (US$/t) 
    SellingCost = 0.50   ;% (US$/t) 
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    MineCost = 10        ;% (US$/t)  
    PlantCost = 16.1     ;% (US$/t) 
    Rec = 0.85           ;% (%)     
    LevelData (level,2) = sum(Level_Ore);      
    Revenue = Level_Ore .* Rec .* ((Price-

SellingCost)*ones(size(Level_Ore,1),1)); 
    Cost = TonOre .* 

((MineCost+PlantCost)*ones(size(Level_Ore,1),1)); 
    LevelData (level,3) = sum(Revenue - Cost)/1000000000; 
    TonnageTest(level,1) = sum(TonOre); 
end 
%---------------------Plot the tonnage & profit of each level 
Ax = 1:nLevel; 
[ax,p1,p2] = 

plotyy(Ax,LevelData(:,2),Ax,LevelData(:,3),'semilogy','plot'); 
ylabel(ax(1),'Ore Tonnage (kt)') % label left y-axis 
ylabel(ax(2),'Profit (b$)') % label right y-axis 
xlabel(ax(2),'Levels') % label x-axis 
p1.LineStyle = '--'; 
p1.LineWidth = 2; 
p2.LineWidth = 2;  
%-----------------------MHOD (First Method)-----------------------  
ID_Data = zeros(4,nLevel); 
for lLoop = 1:nLevel    
    stopBar= progressbar(lLoop / nLevel,0); 
    if (stopBar) break; end 

                     
    LevelIDs = find(InputData.Levels == lLoop); 

     
    RockData_help = InputData.Rock(LevelIDs); 
    ID_Ore = find(RockData_help == 12); 

     
    XI_Data = InputData.Rows(LevelIDs); 
    YI_Data = InputData.Columns(LevelIDs); 

     
    ID_X = XI_Data(ID_Ore); 
    ID_Y = YI_Data(ID_Ore); 

     
    if isempty(ID_X) == 1 

     
        ID_Data(1,lLoop) = 1000000; 
        ID_Data(2,lLoop) = 0; 
    else 
        ID_Data(1,lLoop) = min(ID_X); 
        ID_Data(2,lLoop) = max(ID_X); 
    end 

     
    if isempty(ID_Y) == 1 

         
        ID_Data(3,lLoop) = 1000000; 
        ID_Data(4,lLoop) = 0; 
    else 
    ID_Data(3,lLoop) = min(ID_Y); 
    ID_Data(4,lLoop) = max(ID_Y); 
    end 
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end 
close  
MinAll_X_Id = min(ID_Data(1,:)); 
MinAll_Y_Id = min(ID_Data(3,:)); 
MaxAll_X_Id = max(ID_Data(2,:)); 
MaxAll_Y_Id = max(ID_Data(4,:));  
%------------------------------------------ 
%Calculating Economic Values for each block 
Revenue_All = InputData.Tonnage .* Rec .* ((InputData.CU)./100) 

.*((Price-SellingCost)*ones(size(nLevel,1),1)); 
Cost_All = InputData.Tonnage .* 

((MineCost+PlantCost)*ones(size(nLevel,1),1)); 
ProfitAll = Revenue_All - Cost_All; 
%------------------------------------------ 
X = cell(nLevel,1); 
nRows = max(InputData.Rows); 
nColumns = max(InputData.Columns); 
Tonnage = cell(nLevel,1); 
Profit = cell(nLevel,1); 
for iiLoop = 1:nLevel 
    X{iiLoop} = zeros(nRows,nColumns);  
    LevelInfo = [InputData.Rows(InputData.Levels == 

iiLoop),InputData.Columns(InputData.Levels == 

iiLoop),InputData.Rock(InputData.Levels == 

iiLoop),InputData.Tonnage(InputData.Levels == 

iiLoop),ProfitAll(InputData.Levels == iiLoop)]; 
    for iLoop = 1:length(LevelInfo) 
        X{iiLoop}(LevelInfo(iLoop,1),LevelInfo(iLoop,2)) = 

double(LevelInfo(iLoop,3)==12);  %Specifying the ore blocks in 

each level  
        Tonnage{iiLoop}(LevelInfo(iLoop,1),LevelInfo(iLoop,2)) = 

X{iiLoop}(LevelInfo(iLoop,1),LevelInfo(iLoop,2)).*(LevelInfo(iLoop

,4));  %Put the relative tonnage of each ore block in each level  
        Profit{iiLoop}(LevelInfo(iLoop,1),LevelInfo(iLoop,2)) = 

X{iiLoop}(LevelInfo(iLoop,1),LevelInfo(iLoop,2)).*(LevelInfo(iLoop

,5));   %Put the relative profit of each ore block in each level 
    end 
end   
MHOD.TopLevel = cell(nLevel,1); 
MHOD.TopTonnage = cell(nLevel,1); 
MHOD.TopProfit = cell(nLevel,1); 
for j = 1:nLevel 
    MHOD.TopLevel{j} = zeros(nRows,nColumns); 
    MHOD.TopTonnage{j} = zeros(nRows,nColumns); 
    MHOD.TopProfit{j} = zeros(nRows,nColumns); 
    for jLoop = j:-1:1  
         MHOD.TopLevel{j} = MHOD.TopLevel{j} + (X{j}.*X{jLoop});   

% Calculating the number of ore blocks above each ore block in 

every level including the ore blocks in that level itself. 
         MHOD.TopTonnage{j} = MHOD.TopTonnage{j} + 

(X{j}.*Tonnage{jLoop});   %Calculating the total tonnage of ore 

blocks above each block in every level. 
         MHOD.TopProfit{j} = MHOD.TopProfit{j} + 

(X{j}.*Profit{jLoop});      %Calculating the total Proft of ore 

blocks above each block in every level. 
    end  
end 
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%Calculating the Total Tonnage and Profit of ore above each level 
MHOD.Total_Ore_Profit_each_Level = zeros(nLevel,1); 
MHOD.Total_Ore_Tonnage_each_Level = zeros(nLevel,1); 
for t = 1:nLevel 
    MHOD.Total_Ore_Profit_each_Level(t) = 

sum(sum(MHOD.TopProfit{t})); 
    MHOD.Total_Ore_Tonnage_each_Level(t) = 

sum(sum(MHOD.TopTonnage{t})); 
    MHOD.Test = sum(MHOD.TopTonnage{t}); 
end 
save('Results/MHOD','MHOD') 
%-------------------------Plot the tonnage & profit of each level 
figure 
X_Axis = 1:nLevel; 
[ax,p3,p4] = 

plotyy(X_Axis,MHOD.Total_Ore_Tonnage_each_Level(:,1),X_Axis,MHOD.T

otal_Ore_Profit_each_Level(:,1),'semilogy','plot'); 
ylabel(ax(1),'Ore Tonnage (kt)') % label left y-axis 
ylabel(ax(2),'Ore Profit (b$)') % label right y-axis 
xlabel(ax(2),'Levels') % label x-axis 
p3.LineStyle = '--'; 
p3.LineWidth = 2; 
p4.LineWidth = 2;  

  
%-----------------------------MHOD (Second Method)-------------- 
%Considering the extraction rate & discounted rate in the ore 

profit calculation 
prompt1 = 'What is the blocks height? '; 
BLsHeight = input(prompt1); 
prompt2 = 'What is Extraction Rate? '; 
Ex = input(prompt2); 
%------------%Calculating the NPV for each ore Block of each level 
iRate = 0.1; 
B1.NPV = cell(nLevel,1); 
for lLoop = nLevel:-1:1 
    B1.NPV{lLoop} = zeros(nRows,nColumns); 
    for rLoop = 1:nRows 
        for cLoop = 1:nColumns 
            if X{lLoop}(rLoop,cLoop) == 1 
                for Level = lLoop:-1:1 
                    B1.NPV{lLoop}(rLoop,cLoop) = 

B1.NPV{lLoop}(rLoop,cLoop)+(Profit{Level}(rLoop,cLoop)*X{Level}(rL

oop,cLoop)/(1+iRate)^((lLoop-Level)*BLsHeight/Ex)); 
                end 
            end 
        end 
    end 
end 
%----------------------------------------------------------------- 
%Calculating the total NPV for the ore blocks of each level 

considering 
%just the ore blocks above 
%----------------------------------------------------------------- 
B1.NPV_Total = zeros(nLevel,1); 
for Level = 1:nLevel 
    B1.NPV_Total(Level) = sum(sum(B1.NPV{Level})); 
end 
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%------------------------------------------------- 
%Plotting discounted profit & tonnage in one figure 
%------------------------------------------------- 
figure 
X_Axis = 1:nLevel; 
[ax,p3,p4] = 

plotyy(X_Axis,MHOD.Total_Ore_Tonnage_each_Level(:,1),X_Axis, 

B1.NPV_Total(:,1),'semilogy','plot'); 
ylabel(ax(1),'Ore Tonnage (kt)') % label left y-axis 
ylabel(ax(2),'Ore Discounted Profit (b$)') % label right y-axis 
xlabel(ax(2),'Levels') % label x-axis 
p3.LineStyle = '--'; 
p3.LineWidth = 2; 
p4.LineWidth = 2;  
save('Results/B1','B1') 
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APPENDIX B 

PRODUCTION SCHEDULING 

After finding the best level of extraction the following steps should be done to run 

the MILP model: 

1. Import block model.  

2. Find the maximum and minimum of the coordinates. 

3. Determine the coordinates of the ore blocks in a given level and plot the ore 

boundary for that specific level. 

4. Create big-blocks and calculate the profit, tonnage and average grade of each 

big-block. 

5. Plot the boundary of created big-blocks. 

6. Determine the coordinates, indices, grade, profit, and tonnage of big-blocks 

with more than seven small blocks in them.  

7. Determine the scheduling parameters. 

8. Create the objective function. 

9. Create the binary constraints. 

10. Create the mining capacity constraint. 

11. Create grade blending constraint. 

12. Create drawrate constraint. 

13. Create reserve constraint. 

14. For precedence constraint the following steps should be applied:  

14.1. Find the adjacent big-blocks for each big-block. 

14.2. Determine the mining direction and find the predecessor big- blocks for 

each big-block. 

14.3. Create the precedence constraint. 
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15. Create the number of new big-blocks constraint. 

16. Run the model. 

function Import()  
[filename] = uigetfile('.txt'); 
fileID = fopen(filename); 
Data = fscanf(fileID,'%f %f %f %f %f %f %f %f %f %f',[10 Inf])'; 
InputData.Levels = Data(:,1); 
InputData.Rows = Data(:,2); 
InputData.Columns = Data(:,3); 
InputData.X = Data(:,4); 
InputData.Y = Data(:,5); 
InputData.Z = Data(:,6); 
InputData.Rock = Data(:,7); 
InputData.CU = Data(:,8); 
InputData.Tonnage = Data(:,9); 
InputData.Density = Data(:,10); 
save('Results/InputData','InputData'); 
h = msgbox('All required data was imported.'); 
end 

 
function  MaxMin() 
load('Results\InputData.mat'); 
InputData.ux= max(InputData.X); 
InputData.lx= min(InputData.X); 
InputData.uy= max(InputData.Y); 
InputData.ly= min(InputData.Y); 
InputData.uz= max(InputData.Z); 
InputData.lz= min(InputData.Z); 
save('Results\InputData','InputData'); 
h = msgbox('Operation Completed'); 
end 

 
function Plot_PlanView  
load('Results/InputData.mat') 
prompt = 'What is the production level? '; 
noLevel = input(prompt); 
% find the size of the matrix 
nRow = max(InputData.Rows); 
nCol = max(InputData.Columns); 
nLevel = max(InputData.Levels); 
%join row, col, rocktype 
LRCRT=[InputData.Levels,InputData.Rows,InputData.Columns,InputData

.Rock,InputData.X,InputData.Y]; 
% create the main matrix 
MainMatrix = zeros(nRow,nCol);  
X = zeros(nRow,nCol); 
Y = zeros(nRow,nCol);   
i_index = zeros(nRow,nCol); 
j_index = zeros(nRow,nCol);  
for level = 1:nLevel 
    Data = LRCRT(((nRow*nCol*(level-1)+1)):(level*nRow*nCol),:); 
    for iLoop = 1:(nRow*nCol)  
            if Data(iLoop,4) == 12 && Data(iLoop,1) <= noLevel 
                MainMatrix(Data(iLoop,2),Data(iLoop,3)) = 1; 
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                i_index(Data(iLoop,2),Data(iLoop,3)) = 

Data(iLoop,2); 
                j_index(Data(iLoop,2),Data(iLoop,3)) = 

Data(iLoop,3);  
                X(Data(iLoop,2),Data(iLoop,3)) = Data(iLoop,5); 
                Y(Data(iLoop,2),Data(iLoop,3)) = Data(iLoop,6); 
            end    
    end 
end 
InputPlot.Level = noLevel; 
InputPlot.i_plot = i_index(find(i_index)); 
InputPlot.j_plot = j_index(find(i_index)); 
InputPlot.X_plot = X(find(X)); 
InputPlot.Y_plot = Y(find(Y)); 
%----------------------------- >> Plots darwpoints  
 figure 
 hold on 
  k = boundary(InputPlot.X_plot,InputPlot.Y_plot); 
  % Find Boundary Data (I, J, K, X, Y) 
  BoundaryData = zeros (numel(k),4); 
  BoundaryData(:,1) = InputPlot.i_plot(k); 
  BoundaryData(:,2) = InputPlot.j_plot(k); 
  BoundaryData(:,3) = noLevel*ones(numel(k),1); 
  BoundaryData(:,4) = InputPlot.X_plot(k); 
  BoundaryData(:,5) = InputPlot.Y_plot(k); 
  InputPlot.BoundaryData = BoundaryData; 
  plot(InputPlot.X_plot(k),... 
       InputPlot.Y_plot(k),... 
                  'Linewidth',2,... 
                  'linestyle', '-',... 
                  'color','g');                
xlabel('X (m)','fontsize',11,'fontweight','bold'); 
ylabel('Y (m)','fontsize',11,'fontweight','bold'); 
axis equal %square 
% find Min X, Y for this level 
MinX_L = min(BoundaryData(:,4));  
MaxX_L = max(BoundaryData(:,4)); 
MinY_L = min(BoundaryData(:,5)); 
MaxY_L = max(BoundaryData(:,5));  
ax = gca; 
ax.XGrid = 'on'; 
ax.YGrid = 'on'; 
ax.XTick = [MinX_L-5:10:MaxX_L+5]; 
ax.YTick = [MinY_L-5:10:MaxY_L+5]; 
save('Results\InputPlot','InputPlot'); 

 
function OutputPlot = ClusteringBlocksAll(InputPlot) 
load('Results/InputPlot.mat') 
prompt = 'What is the production level? '; 
noLevel = input(prompt); 
OreBlocks = [InputPlot.X_plot,InputPlot.Y_plot]; 
MinX = min(InputPlot.X_plot); 
MinY = min(InputPlot.Y_plot); 
MaxX = max(InputPlot.X_plot); 
MaxY = max(InputPlot.Y_plot);  
OutputPlot.id9 = []; 
counter9 = 1;  
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for yloop = (MinY):30:(MaxY) 
    for xloop = (MinX):30:(MaxX) 
        x1 = xloop; 
        x2 = x1+30; 
        y1 = yloop; 
        y2 = y1+30; 
        OutputPlot.id9(OreBlocks(:,1) >= x1 & OreBlocks(:,1) <= x2 

& OreBlocks(:,2) >= y1 & OreBlocks(:,2) <= y2) = counter9; 
            counter9 = counter9 + 1; 
    end 
end  
OutputPlot.squares=[InputPlot.X_plot,InputPlot.Y_plot,OutputPlot.i

d9']; 
%************************************************ 
Data_id = OutputPlot.squares(:,3); 
Min_id = min(Data_id); 
Max_id = max(Data_id); 
Data_X = OutputPlot.squares(:,1); 
Data_Y = OutputPlot.squares(:,2); 
Unique_Ids = unique(OutputPlot.squares(:,3)); 
noBigBls = numel(Unique_Ids); 
XY_MinMax = zeros(noBigBls,4); 
noXs_Bl = zeros(noBigBls,1); 
noYs_Bl = zeros(noBigBls,1); 
CenterData = zeros(noBigBls,3); 
for BlLoop = 1: noBigBls 
    Xs_Bl = Data_X(Data_id==Unique_Ids(BlLoop,1)); 
    Ys_Bl = Data_Y(Data_id==Unique_Ids(BlLoop,1)); 

  
    noXs_Bl(BlLoop,1) = numel(Xs_Bl); 
    noYs_Bl(BlLoop,1) = numel(Ys_Bl); 
    CenterData(BlLoop,1) = min(Xs_Bl)+10;    
    CenterData(BlLoop,2) = min(Ys_Bl)+10; 
    CenterData(BlLoop,3) = BlLoop; 

    
    XY_MinMax(BlLoop,1) = min(Xs_Bl); 
    XY_MinMax(BlLoop,2) = max(Xs_Bl); 

     
    XY_MinMax(BlLoop,3) = min(Ys_Bl); 
    XY_MinMax(BlLoop,4) = max(Ys_Bl); 
end 
OutputPlot.XY_MinMax = XY_MinMax; 
OutputPlot.CenterData = CenterData; 

 
load('Results\InputPlot.mat');  
load('InputData.mat'); 
Total_X = InputData.X; 
Total_Y = InputData.Y; 
Total_Levels = InputData.Levels; 
Total_Rock = InputData.Rock; 
Total_CU = InputData.CU; 
Total_Tonnage = InputData.Tonnage; 
Total_Density = InputData.Density; 
nLevel = max(InputData.Levels); 
clear InputData   
Price = 6000         ;% (US$/t) 
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SellingCost = 0.50   ;% (US$/t) 
MineCost = 10        ;% (US$/t)  
PlantCost = 16.1     ;% (US$/t) 
Rec = 0.85           ;% (%)     
Revenue_All = Total_Tonnage .* Rec .* ((Total_CU)./100) .*((Price-

SellingCost)*ones(size(nLevel,1),1)); 
Cost_All = Total_Tonnage .* 

((MineCost+PlantCost)*ones(size(nLevel,1),1)); 
ProfitAll = Revenue_All - Cost_All; 
for BigBL =1:noBigBls 
     TempData_ind = find(Total_X > XY_MinMax(BigBL,1)-0.5 & 

Total_X <XY_MinMax(BigBL,2)+0.5 & Total_Y > XY_MinMax(BigBL,3)-0.5 

& Total_Y <XY_MinMax(BigBL,4)+0.5  ); 
     Temp_Data 

=[Total_Levels(TempData_ind),Total_Rock(TempData_ind),Total_CU(Tem

pData_ind),ProfitAll(TempData_ind),Total_Tonnage(TempData_ind),Tot

al_Density(TempData_ind)]; 
     Ton = 0; 
     bl = 0; 
     P = 0; 
     SigmaGrade = 0; 
     SigmaDensity = 0;      
     for kLoop = 1:numel(TempData_ind) 
         if Temp_Data(kLoop,1) <= noLevel && Temp_Data(kLoop,2)~= 

11 
         bl = bl + 1; 
         Ton = Ton + Temp_Data(kLoop,5); 
         P = P + Temp_Data(kLoop,4); 
         SigmaGrade = SigmaGrade + Temp_Data(kLoop,3); 
         SigmaDensity = SigmaDensity + Temp_Data(kLoop,6); 
         end 
     end 
     BigBLsData.allTon (BigBL,1) = Ton; 
     %----------------------------------------------------- 
     BigBLsData.Profit(BigBL,1) = P; 
     BigBLsData.CU (BigBL,1) = SigmaGrade / (bl); 
     BigBLsData.Density (BigBL,1) = SigmaDensity / (bl); 
     %------------------------------------------------------ 
end  
     OutputPlot.BigBLsData = 

[BigBLsData.allTon,BigBLsData.Profit,BigBLsData.CU,BigBLsData.Dens

ity]; 
%----------------------------- >> Plot 
blk_i = InputPlot.X_plot; 
blk_j = InputPlot.Y_plot; 
g = OutputPlot.id9'; 
mark0 = num2str(g);   
mark = cellstr(mark0); 
figure('units','normalized','outerposition',[0 0 1 1]); 
F = gscatter(blk_i,blk_j,g,'','s',15); 
title('Block Model'); 
xlabel('X coordinate'); 
ylabel('Y coordinate'); 
text(blk_i,blk_j,mark,'FontSiz',7); 
save('Results\OutputPlot','OutputPlot'); 
end 
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function Plot_PlanView_BigBL() 
load('Results/InputData.mat')  
prompt = 'What is the production level? '; 
noLevel = input(prompt);  
% find the size of the matrix 
nRow = max(InputData.Rows); 
nCol = max(InputData.Columns); 
nLevel = max(InputData.Levels);  
%join row, col, rocktype 
LRCRT = 

[InputData.Levels,InputData.Rows,InputData.Columns,InputData.Rock,

InputData.X,InputData.Y]; 
% create the main matrix 
MainMatrix = zeros(nRow,nCol); 
X = zeros(nRow,nCol); 
Y = zeros(nRow,nCol); 
i_index = zeros(nRow,nCol); 
j_index = zeros(nRow,nCol); 
for level = 1:nLevel 
    Data = LRCRT(((nRow*nCol*(level-1)+1)):(level*nRow*nCol),:); 
    for iLoop = 1:(nRow*nCol)     
            if Data(iLoop,4) == 12 && Data(iLoop,1) <= noLevel 
                MainMatrix(Data(iLoop,2),Data(iLoop,3)) = 1; 
                i_index(Data(iLoop,2),Data(iLoop,3)) = 

Data(iLoop,2); 
                j_index(Data(iLoop,2),Data(iLoop,3)) = 

Data(iLoop,3);            
                X(Data(iLoop,2),Data(iLoop,3)) = Data(iLoop,5); 
                Y(Data(iLoop,2),Data(iLoop,3)) = Data(iLoop,6); 
            end   
    end 
end 
PLPV.i_plot = i_index(find(i_index)); 
PLPV.j_plot = j_index(find(j_index)); 
PLPV.X_plot = X(find(X)); 
PLPV.Y_plot = Y(find(Y)); 
save('Results/PLPV','PLPV') 
%***************************************************************** 
MinX = min(PLPV.X_plot); 
MinY = min(PLPV.Y_plot); 
MaxX = max(PLPV.X_plot); 
MaxY = max(PLPV.Y_plot);  
OutputPlot.id9 = []; 
counter9 = 1;  
for yloop = (MinY):30:(MaxY) 
    for xloop = (MinX):30:(MaxX) 
        x1 = xloop; 
        x2 = x1+30; 
        y1 = yloop; 
        y2 = y1+30; 
        OutputPlot.id9(PLPV.X_plot >= x1 & PLPV.X_plot <= x2 & 

PLPV.Y_plot >= y1 & PLPV.Y_plot <= y2) = counter9; 
            counter9 = counter9 + 1; 
    end 
end 
OutputPlot.squares = [PLPV.X_plot,PLPV.Y_plot,OutputPlot.id9'];  
% How many Big Block 
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Data_id = OutputPlot.squares(:,3); 
Min_id = min(Data_id); 
Max_id = max(Data_id); 
Data_X = OutputPlot.squares(:,1); 
Data_Y = OutputPlot.squares(:,2); 
Unique_Ids = unique(OutputPlot.squares(:,3)); 
noBigBls = numel(Unique_Ids); 
CornerData = zeros(noBigBls,4); 
CenterData = zeros(noBigBls,3);  
% find the left bottom corner of each Big Bl 
for BlLoop = 1: noBigBls 
    % which blocks equal to id 
    %BL_id9 = find(Data_id==BlLoop); 
    Xs_Bl = Data_X(find(Data_id==Unique_Ids(BlLoop,1))); 
    Ys_Bl = Data_Y(find(Data_id==Unique_Ids(BlLoop,1)));  
    if numel (Xs_Bl) >= 7 
    CornerData(BlLoop,1) = min(Xs_Bl)-5; 
    CornerData(BlLoop,2) = min(Ys_Bl)-5; 
    CornerData(BlLoop,3) = 1000; 
    CornerData(BlLoop,4) = BlLoop; 
    %************************************   
    Xs_Bl = Data_X(Data_id==Unique_Ids(BlLoop,1)); 
    Ys_Bl = Data_Y(Data_id==Unique_Ids(BlLoop,1)); 
    noXs_Bl(BlLoop,1) = numel(Xs_Bl); 
    noYs_Bl(BlLoop,1) = numel(Ys_Bl); 
    CenterData(BlLoop,1) = min(Xs_Bl)+10;    
    CenterData(BlLoop,2) = min(Ys_Bl)+10; 
    CenterData(BlLoop,3) = BlLoop; 
    %************************************ 
    end 
end 
PLPV.CornerData = CornerData; 
PLPV.CenterData = CenterData; 
 figure 
 for Rect = 1: noBigBls      
     if CornerData(Rect,3) == 1000 
     Xrec = CornerData(Rect,1); 
     Yrec = CornerData(Rect,2); 
     rectangle('Position',[Xrec,Yrec,30,30]); 
     end 
 end 
%***************************************************************** 
  k = boundary(PLPV.X_plot,PLPV.Y_plot); 
  % Find Boundary Data (I, J, K, X, Y) 
  BoundaryData = zeros (numel(k),4); 
  BoundaryData(:,1) = PLPV.i_plot(k); 
  BoundaryData(:,2) = PLPV.j_plot(k); 
  BoundaryData(:,3) = noLevel*ones(numel(k),1); 
  BoundaryData(:,4) = PLPV.X_plot(k); 
  BoundaryData(:,5) = PLPV.Y_plot(k); 

  
  PLPV.BoundaryData = BoundaryData; 
  plot(PLPV.X_plot(k)-5,... 
       PLPV.Y_plot(k)-5,... 
                  'Linewidth',2,... 
                  'linestyle', '-',... 
                  'color','g');        
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xlabel('X (m)','fontsize',11,'fontweight','bold'); 
ylabel('Y (m)','fontsize',11,'fontweight','bold'); 
axis equal %square 
% find Min X, Y for this level 
MinX_L = min(BoundaryData(:,4));  
MaxX_L = max(BoundaryData(:,4)); 
MinY_L = min(BoundaryData(:,5)); 
MaxY_L = max(BoundaryData(:,5)); 
ax = gca; 
ax.XGrid = 'on'; 
ax.YGrid = 'on'; 
ax.XTick = (MinX_L-5:100:MaxX_L+5); 
ax.YTick = (MinY_L-5:50:MaxY_L+5); 
save('Results\PLPV','PLPV');  
x = CenterData (:,1); 
y = CenterData (:,2); 
ID = CenterData (:,3);  
for jLoop=1:numel(x) 
                 line(x(jLoop),... 
                 y(jLoop),... 
                 'linestyle', 'none',... 
                 'marker', 'o',... 
                 'MarkerSize',2,... 
                 'MarkerEdgeColor',[0 0 0],... 
                 'MarkerFaceColor','w'); 
             text(x(jLoop),y(jLoop),num2str(ID(jLoop)),... 
                  'FontName','Times New Roman',... 
                  'Color','k','FontSize',12,'fontweight','bold'); 
 end 
load OutputPlot.mat 
X_CenterBL = OutputPlot.CenterData(:,1); 
Y_CenterBL = OutputPlot.CenterData(:,2); 
BBLProfit = OutputPlot.BigBLsData(:,2); 

 
MinX = min(X_CenterBL); 
MaxX = max(X_CenterBL); 

  
MinY = min(Y_CenterBL); 
MaxY = max(Y_CenterBL); 

  
u = linspace(MaxX,MinX,100); 
v = linspace(MaxY,MinY,100); 
[X,Y] = meshgrid(u,v); 
Z = griddata(X_CenterBL,Y_CenterBL,BBLProfit, X, Y);  
%plotting based on the Big Blocks Profit 
mesh(X,Y,Z); 
xlabel('X(m)'); 
ylabel('Y(m)'); 
zlabel('BBLProfit (M$)'); 
%axis tight 
axis equal %square 
% find Min X, Y for this level 
MinX_L = min(BoundaryData(:,4));  
MaxX_L = max(BoundaryData(:,4)); 
MinY_L = min(BoundaryData(:,5)); 
MaxY_L = max(BoundaryData(:,5)); 
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ax = gca; 
ax.XGrid = 'on'; 
ax.YGrid = 'on'; 
ax.XTick = (MinX_L-5:10:MaxX_L+5); 
ax.YTick = (MinY_L-5:10:MaxY_L+5);  
%shading interp 
colorbar 
view(0,90) 

 
function ModelInputAll() 
prompt = 'What is the production level? '; 
noLevel = input(prompt);  
load('Results\PLPV.mat') 
% get Id of candidate blocks 
ID_selected_BLs = find (PLPV.CornerData(:,4)); 
P = PLPV.CenterData(:,1); 
M = PLPV.CenterData(:,2); 
X_selected_BLs = P(find (PLPV.CenterData(:,1))); 
Y_selected_BLs = M(find (PLPV.CenterData(:,2))); 
load('Results\OutputPlot.mat')  
TonTemp = OutputPlot.BigBLsData(:,1); 
ModelTon = TonTemp(ID_selected_BLs);  
DensityTemp = OutputPlot.BigBLsData(:,4); 
ModelDensity = DensityTemp(ID_selected_BLs);  
GradeTemp = OutputPlot.BigBLsData(:,3); 
ModelGrade = GradeTemp(ID_selected_BLs);  
ProfitTemp = OutputPlot.BigBLsData(:,2); 
ModelProfit = ProfitTemp(ID_selected_BLs);  
Index = (1:numel(ID_selected_BLs))';  
ModelInputNotInclude = 

[ID_selected_BLs,X_selected_BLs,Y_selected_BLs , ModelTon, 

ModelGrade, ModelProfit,Index, ModelDensity]; 
ModelInputInclude = 

[OutputPlot.CenterData(:,3),OutputPlot.CenterData(:,1),OutputPlot.

CenterData(:,2),TonTemp,GradeTemp,ProfitTemp]; 
name = strcat('Level_',num2str(noLevel));  
if exist('Model\MainModelInput.mat') == 2 
    load('Model\MainModelInput.mat') 
    MainModelInput.NotInclude.(name) = ModelInputNotInclude; 
    MainModelInput.Include.(name) = ModelInputInclude; 
    save('Model\MainModelInput', 'MainModelInput'); 
else 
    MainModelInput.NotInclude.(name) = ModelInputNotInclude; 
    MainModelInput.Include.(name) = ModelInputInclude; 
    save('Model\MainModelInput', 'MainModelInput'); 
end 
NoBigBlInclude.(name) = numel(MainModelInput.Include.(name)(:,1)); 
NoBigBlNotInclude.(name) = 

numel(MainModelInput.NotInclude.(name)(:,1)); 

  
NoBigBlDif.(name) = NoBigBlInclude.(name) - 

NoBigBlNotInclude.(name); 

  
SumTonnageInclude.(name) = 

sum(MainModelInput.Include.(name)(:,4)); 
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SumTonnageNotInclude.(name) = 

sum(MainModelInput.NotInclude.(name)(:,4)); 

  
SumTonnageDif.(name) = SumTonnageInclude.(name) - 

SumTonnageNotInclude.(name); 
MainModelInput.Total.(name) = 

[NoBigBlInclude.(name),SumTonnageInclude.(name),NoBigBlNotInclude.

(name),SumTonnageNotInclude.(name),NoBigBlDif.(name),SumTonnageDif

.(name)]; 
save('Model\MainModelInput', 'MainModelInput'); 
end 

  
function varargout = SchedulingParameters(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', 

@SchedulingParameters_OpeningFcn, ... 
                   'gui_OutputFcn',  

@SchedulingParameters_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
function SchedulingParameters_OpeningFcn(hObject, eventdata, 

handles, varargin) 
% Choose default command line output for Scheduling Parameters. 
% If the user does not enter the value these default will be used. 
handles.output = hObject; 
num=0;                                % default value=0 
handles.edit_ND = num;                % Number of Big Blocks 
handles.edit_Periods = num;           % Number of Periods  
handles.edit_i = num;                 % Discount rate 
handles.edit_Mue = num;               % number related to 

uncertainty 
handles.edit_M = num;                 % big enough number for 

Binary cons. 
handles.edit_Cost = num;              % Mining cost 
handles.edit_LowerCapacity = num;     % Lower Mining Capacity 
handles.edit_UpperCapacity = num;     % Upper Mining Capacity 
handles.edit_LowerGrade = num;        % Lower Grade 
handles.edit_UpperGrade = num;        % Upper Grade 
handles.edit_LowerNnew = num;         % Lower Nnew 
handles.edit_UpperNnew = num;         % Upper Nnew 
handles.edit_NactL = num;             % Minimum Number of Active 

Drawpoints 
handles.edit_NactU = num;             % Maximum Number of Active 

Drawpoints 
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handles.edit_Workingdays = 350;       % # of working days during a 

year 
handles.edit_LowerPRC = num;          % Lower Draw rate 
handles.edit_UpperPRC = num;          % Upper Draw rate 
handles.edit_P1_dep = num;            % PRC curve 1st point 

depletion(P1) 
handles.edit_P2_dep = num;            % PRC curve 2nd point 

depletion(P2) 
handles.edit_P3_dep = num;            % PRC curve 3rd point 

depletion(P3) 
handles.edit_P1_DR = num;             % PRC curve 1st point draw 

rate(P1) 
handles.edit_P2_DR = num;             % PRC curve 2nd point draw 

rate(P2) 
handles.edit_P3_DR = num;             % PRC curve 3rd point draw 

rate(P3) 
%========================================PLOT HISTOGRAMS 
load('MODEL/MainModelInput.mat')  
DataTemp = MainModelInput.NotInclude.Level_39; 
colormap cool 
%======= Grade Histogram 
axes(handles.axes_GradeHist) 
hist(handles.axes_GradeHist,DataTemp(:,5)); 
xlabel('Grade(%)','fontsize',9,'fontweight','bold'); 
grid on 
datacursormode on 
%======= Tonnage Histogram  
axes(handles.axes_TonnageHist) 
hist(handles.axes_TonnageHist,DataTemp(:,4)); 
xlabel('Tonnes','fontsize',9,'fontweight','bold'); 
grid on 
datacursormode on  
%======= May we need in future 
 axes(handles.axes_TonnageBarChart) 
 %hist(handles.axes_TonnageBarChart,DPtonnage); 
X_DR = DataTemp(:,2); 
Y_DR = DataTemp(:,3); 
ND =size(X_DR); 
hold on 
     %----------------------------- >> Plots darwpoints 
 for jLoop=1:ND 
                line(X_DR(jLoop),... 
                 Y_DR(jLoop),... 
                 'linestyle', 'none',... 
                 'marker', 'o',... 
                 'MarkerSize',5,... 
                 'MarkerEdgeColor',[0 0 0],... 
                 'MarkerFaceColor','g');                

text(X_DR(jLoop)+2.5,Y_DR(jLoop),num2str(jLoop),... 
                  'FontName','Times New Roman',... 
                  'Color','b','FontSize',4,'fontweight','bold'); 
end  
datacursormode on 
% Tonnage & Grade ============================ 
%== Total tonnage 
str1=sprintf('%g',sum(DataTemp(:,4))/1000000); 
set(handles.text_TG1,'string',str1); 
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%== Min grade 
str2=sprintf('%g',min(DataTemp(:,5))); 
set(handles.text_TG2,'string',str2); 
%== Max grade 
str3=sprintf('%g',max(DataTemp(:,5))); 
set(handles.text_TG3,'string',str3); 

 
%== Weighted grade 
str4=sprintf('%g',sum(DataTemp(:,4) .* 

DataTemp(:,5))/sum(DataTemp(:,4))); 
set(handles.text_TG4,'string',str4); 

  
%== Min tonnage  
str5=sprintf('%g',min(DataTemp(:,4))); 
set(handles.text_TG5,'string',str5); 

  
%== Max tonnage  
str6=sprintf('%g',max(DataTemp(:,4))); 
set(handles.text_TG6,'string',str6); 

  
%== Number of DPs 
str7=sprintf('%g',numel(DataTemp(:,4))); 
set(handles.DP,'string',str7); 

  
% %== Mining Capacity upper bound 
 str8=sprintf('%g',sum(DataTemp(:,4))*1.2); 
 set(handles.Mcap_Up,'string',str8); 

  
% Update handles structure 
guidata(hObject, handles); 

  
% --- Outputs from this function are returned to the command line. 
function varargout = SchedulingParameters_OutputFcn(hObject, 

eventdata, handles)  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
**************************************>> Number of Drawpoints 
function edit_ND_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_ND = num; 
guidata(hObject,handles) 

  
function edit_ND_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor','white'); 
end 
%********************************************>> Number of Periods 
function edit_Periods_Callback(hObject, eventdata, handles)  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_Periods = num; 
guidata(hObject,handles) 
function edit_Periods_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%******************************************>> Discount rate 
function edit_i_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_i = num; 
guidata(hObject,handles) 

  
function edit_i_CreateFcn(hObject, eventdata, handles) 

 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%***********************************************>> Mue 
function edit_Mue_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_Mue = num; 
guidata(hObject,handles) 

 
function edit_Mue_CreateFcn(hObject, eventdata, handles) 
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if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%*****************************************************>> M 
function edit_M_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_M = num; 
guidata(hObject,handles) 

  
% --- Executes during object creation, after setting all 

properties. 
function edit_M_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%************************************************>> Mining Cost 
function edit_Cost_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_Cost = num; 
guidata(hObject,handles) 

  
function edit_Cost_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%***************************>> Number of Active Drawpoints 
% Lower bound 
function edit_NactL_Callback(hObject, eventdata, handles) 
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
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    errordlg('Input must be a number', 'Error') 
end 
handles.edit_NactL = num; 
guidata(hObject,handles) 

  
function edit_NactL_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% Upper bound 
function edit_NactU_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_NactU = num; 
guidata(hObject,handles) 

  
function edit_NactU_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%******************************>> Lower Mining Capacity 

  
function edit_LowerCapacity_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_LowerCapacity = num; 
guidata(hObject,handles) 

  
function edit_LowerCapacity_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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%**************************************>> Upper Mining Capacity 

  
function edit_UpperCapacity_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_UpperCapacity = num; 
guidata(hObject,handles) 

  
function edit_UpperCapacity_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%***********************************>> Lower grade  

  
function edit_LowerGrade_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_LowerGrade = num; 
guidata(hObject,handles) 

  
function edit_LowerGrade_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%*************************************************>> Upper grade 

  
function edit_UpperGrade_Callback(hObject, eventdata, handles) 
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_UpperGrade = num; 
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guidata(hObject,handles) 

  
function edit_UpperGrade_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%***************************************************>> Lower Nnew 

  
function edit_LowerNnew_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_LowerNnew = num; 
guidata(hObject,handles) 

  
function edit_LowerNnew_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end  
%***************************************************>> Upper Nnew 

  
function edit_UpperNnew_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_UpperNnew = num; 
guidata(hObject,handles) 
function edit_UpperNnew_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%*************************************>> Working days and radius 
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function edit_Workingdays_Callback(hObject, eventdata, handles) 
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
    beep 
    errordlg('Input must be a number', 'Error') 
end 
handles.edit_Workingdays = num; 

  
guidata(hObject,handles) 

  
function edit_Workingdays_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%*************************************************>> Lower PRC 

  
function edit_LowerPRC_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
%     beep 
%     errordlg('Input must be a number', 'Error') 
end 
handles.edit_LowerPRC = num;  
guidata(hObject,handles) 

  
function edit_LowerPRC_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%***************************************************>> Upper PRC 

  
function edit_UpperPRC_Callback(hObject, eventdata, handles) 

  
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
%     beep 
%     errordlg('Input must be a number', 'Error') 
end 
handles.edit_UpperPRC = num;  
guidata(hObject,handles) 
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function edit_UpperPRC_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%*******************************************>> PRC points 

  
function edit_P1_dep_Callback(hObject, eventdata, handles) 
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
%     beep 
%     errordlg('Input must be a number', 'Error') 
end 
handles.edit_P1_dep = num;  
guidata(hObject,handles) 

  
function edit_P1_dep_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function edit_P2_dep_Callback(hObject, eventdata, handles) 
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
%     beep 
%     errordlg('Input must be a number', 'Error') 
end 
handles.edit_P2_dep = num;  
guidata(hObject,handles) 

  
function edit_P2_dep_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

    
function edit_P3_dep_Callback(hObject, eventdata, handles) 
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
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    set(hObject,'String',num); 
%     beep 
%     errordlg('Input must be a number', 'Error') 
end 
handles.edit_P3_dep = num;  
guidata(hObject,handles) 

  
function edit_P3_dep_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function edit_P1_DR_Callback(hObject, eventdata, handles) 
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
%     beep 
%     errordlg('Input must be a number', 'Error') 
end 
handles.edit_P1_DR = num;  
guidata(hObject,handles) 

  
function edit_P1_DR_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function edit_P2_DR_Callback(hObject, eventdata, handles) 
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
%     beep 
%     errordlg('Input must be a number', 'Error') 
end 
handles.edit_P2_DR = num;  
guidata(hObject,handles) 
function edit_P2_DR_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function edit_P3_DR_Callback(hObject, eventdata, handles) 
num = str2double(get(hObject,'String')); 
if isnan(num) 
    num = 0; 
    set(hObject,'String',num); 
%     beep 
%     errordlg('Input must be a number', 'Error') 
end 
handles.edit_P3_DR = num;  
guidata(hObject,handles) 

  
function edit_P3_DR_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% ================>>>>  PLOT PRC 

  
function PRC_plot_Callback(hObject, eventdata, handles) 

  
x=[handles.edit_P1_dep,... 
   handles.edit_P2_dep,... 
   handles.edit_P3_dep]; 

  
y=[handles.edit_P1_DR,... 
   handles.edit_P2_DR,... 
   handles.edit_P3_DR]; 

  
axes(handles.PRC_axes) 
 plot(x,y,'--rs','LineWidth',2,... 
                 'MarkerEdgeColor','k',... 
                 'MarkerFaceColor','g',... 
                 'MarkerSize',5);  
 set(handles.PRC_axes,'XMinorTick','on') 
 axis([0 110 0 max(y)+20]); 
 xlabel('Depletion(%)'); 
 ylabel('Draw Rate (tonne/Period)'); 
 grid on 
%************************************************>> Save 

  
function pushbutton_Save_Callback(hObject, eventdata, handles) 
 if exist('MODEL/CPLEX.mat')== 2 
   load('MODEL/CPLEX.mat'); 
else 
end 
             SchParam = struct('ND',0,... 
                               'T',0,... 
                               'i_rate',0,... 
                               'Cost',0.0,... 
                               'Mue',0.0,... 
                               'McapLower',0.0,... 
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                               'McapUpper',0.0,... 
                               'GradeLower',0.0,... 
                               'GradeUpper',0.0,... 
                               'NnewLower',0.0,... 
                               'NnewUpper',0.0,... 
                               'NactL',0.0,... 
                               'NactU',0.0,... 
                               'WorkingDays',0.0,... 
                               'PRCLower',0.0,... 
                               'PRCUpper',0.0,... 
                               'PRCcurve',0.0); 

                        
     CPLEX.SchParam.nBigBl=handles.edit_ND; 
     CPLEX.SchParam.T=handles.edit_Periods; 
     CPLEX.SchParam.i_rate=handles.edit_i; 
     CPLEX.SchParam.Mue = handles.edit_Mue; 
     CPLEX.SchParam.L = handles.edit_M; 
     CPLEX.SchParam.Cost=handles.edit_Cost; 
     CPLEX.SchParam.McapLower=handles.edit_LowerCapacity; 
     CPLEX.SchParam.McapUpper=handles.edit_UpperCapacity; 
     CPLEX.SchParam.GradeLower=handles.edit_LowerGrade; 
     CPLEX.SchParam.GradeUpper=handles.edit_UpperGrade; 
     CPLEX.SchParam.NnewLower=handles.edit_LowerNnew; 
     CPLEX.SchParam.NnewUpper=handles.edit_UpperNnew; 
     CPLEX.SchParam.NactL=handles.edit_NactL; 
     CPLEX.SchParam.NactU=handles.edit_NactU; 
     CPLEX.SchParam.WorkingDays=handles.edit_Workingdays; 
     CPLEX.SchParam.PRCLower=handles.edit_LowerPRC; 
     CPLEX.SchParam.PRCUpper=handles.edit_UpperPRC; 
     

CPLEX.SchParam.PRCcurve=[handles.edit_P1_dep,handles.edit_P2_dep,h

andles.edit_P3_dep;... 
                                     

handles.edit_P1_DR,handles.edit_P2_DR,handles.edit_P3_DR ]; 
            save('MODEL/CPLEX','CPLEX'); 
                close            
            clear all 

  
%*******************************************************>> Cancel 
function pushbutton_Cancel_Callback(hObject, eventdata, handles) 
close 
% 

END=============================================================== 

 

 
function ObjFuncGeneralAllAddingBandY() 
load('MODEL\MainModelInput.mat') 
load('MODEL\CPLEX.mat') 
prompt = 'What are the production level? '; 
InData = input(prompt); 
noLevel = InData(1,1); 
T = CPLEX.SchParam.T ; 
r = CPLEX.SchParam.i_rate/100; 
name = strcat('Level_',num2str(noLevel)); 
Data4Cons = cell(1,10); 
% 1st col: level number 
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% 2nd col: T 
% 3rd col: Tonnage (vertical vector) 
% 4th col: Grade (vertical vector) 
% 5th col: Profit (vertival vector) 
% 6th col: Mining capacity lower bound 
% 7th col: Mining capacity upper bound 
% 8th col: Grade lower bound 
% 9th col: Grade upper bound 
% 10th col: DR upper bound 
if isfieldRecursive(MainModelInput,'NotInclude',name) == 1 
%Data = strcat('MainModelInput.','NotInclude.',name); 
Data = MainModelInput.NotInclude.Level_39; 
% Prepare data for constraint creation 
Data4Cons{1,1} = noLevel; 
Data4Cons{1,2} = T; 
Data4Cons{1,3} = (Data(:,4)); 
Data4Cons{1,4} = (Data(:,5)); 
Data4Cons{1,5} = (Data(:,6)); 
save('Data4Cons','Data4Cons') 
Profit = (Data(:,6))'; 
noBigBl = CPLEX.SchParam.nBigBl; 
f = zeros(1,(3*T*noBigBl)); 
for t = 1:T  
    f(1,(t-1)*noBigBl+1:t*noBigBl) = -Profit(1,:)./(1+r)^t;      

%creating coefficient matrix for the objective function  
end 
fnorm = norm(f); 
f = f/fnorm; 
CPLEX.Inputs.ObjectiveFunction.f = f; 
CPLEX.Inputs.Parameters.fnorm = fnorm; 
save('MODEL/CPLEX','CPLEX'); 
      createMode.Interpreter='tex'; 
      createMode.WindowStyle='modal'; 
      msgbox('\bfObjective functuion was created 

successfully.','saha Model - V1.0 ','help',createMode); 
else 
    errordlg('There is no data for the selected level','Data 

Error'); 
end 

 

function Binary_Constraints_AddingY 
load('MODEL\MainModelInput.mat') 
if exist('MODEL/CPLEX.mat')== 2 
   load('MODEL/CPLEX.mat'); 
else 
end 
prompt = 'What are the production level? '; 
InData = input(prompt); 
noLevel = InData(1,1); 
name = strcat('Level_',num2str(noLevel)); 
T = CPLEX.SchParam.T;    %number of periods 
if isfieldRecursive(MainModelInput,'NotInclude',name) == 1 
Data = MainModelInput.NotInclude.Level_39; 
N = CPLEX.SchParam.nBigBl;  %number of Blocks 

 
Aineq_Binary_2_1 = sparse(zeros(N*T,N*T)); 
Aineq_Binary_2_2 = sparse(zeros(N*T,N*T)); 
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Aineq_Binary_2_3 = sparse(zeros(N*T,N*T)); %Y part 
Aineq_Binary_3 = zeros(N*(T-1),N*T); 

  
A1_2 = repmat(1,N*T,1); 

 
Aineq_Binary_2_1(1:N*T,1:N*T) = diag(A1_2); %the first part of the 

second binary equation, creating matrix for the x-b<=0 creating 

the coefficient for x   
Aineq_Binary_2_2(1:N*T,1:N*T) = diag(-A1_2); %the second part of 

the second binary equation, creating matrix for the x-b<=0 

creating the coefficient for b 

 
%creating the coefficient matrix for the third constraint 
for t = 1:N*(T-1) 
    Aineq_Binary_3(t,t) = 1; 
    Aineq_Binary_3(t,t+N) = -1; 
end 
%concatenation 
Aineq_Binary_2 = 

[Aineq_Binary_2_1,Aineq_Binary_2_2,Aineq_Binary_2_3]; % x-b<=0 
pp = sparse(zeros(N*(T-1),N*T)); 
ppp = sparse(zeros(N*(T-1),N*T)); 
Aineq_Binary_3 = [pp,Aineq_Binary_3,ppp]; 

  
bineq_Binary_2 = sparse(zeros(N*T,1)); %right hand side matrix for 

the second equation x-b<=0 
bineq_Binary_3 = sparse(zeros(N*(T-1),1)); %right hand side matrix 

for the third equation b(n,t)-b(n,t+1)<=0 
Aineq_Binary = [Aineq_Binary_2;Aineq_Binary_3]; 
bineq_Binary = [bineq_Binary_2;bineq_Binary_3];   
CPLEX.Inputs.Constraints.Aineq_Binary = Aineq_Binary; 
CPLEX.Inputs.Constraints.bineq_Binary = bineq_Binary;  
save('MODEL/CPLEX','CPLEX'); 
      createMode.Interpreter='tex'; 
      createMode.WindowStyle='modal'; 
      msgbox('\bfBinary constraints were created 

successfully.','saha Model - V1.0 ','help',createMode); 
else 
    errordlg('There is no data for the selected level','Data 

Error'); 
end 
end 

 
function MCCGeneralBinary_AddingY()  
load('MODEL\MainModelInput.mat') 
load('Data4Cons.mat') 
if exist('MODEL/CPLEX.mat')== 2 
   load('MODEL/CPLEX.mat'); 
else 
end  
N = CPLEX.SchParam.nBigBl; 
T = CPLEX.SchParam.T; 
Tonnage = (Data4Cons{1,3})'; 
Data4Cons{1,6} = CPLEX.SchParam.McapLower; 
Data4Cons{1,7} = CPLEX.SchParam.McapUpper;  
BL = Data4Cons{1,6}; 
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BU = Data4Cons{1,7}; 
save('Data4Cons','Data4Cons')  
% Coefficient matrix 
A_Mcap_Uhelp = zeros(T,3*T*N); 
A_Mcap_Lhelp = zeros(T,3*T*N); 
for t = 1:T 
%Upper 
A_Mcap_Uhelp(t,(t-1)*N+1:t*N) = Tonnage;        
%Lower 
A_Mcap_Lhelp(t,(t-1)*N+1:t*N) = (-1)*Tonnage; 
end 
A_Mcap_U = A_Mcap_Uhelp ./norm(A_Mcap_Uhelp); 
A_Mcap_L = A_Mcap_Lhelp ./ norm(A_Mcap_Lhelp);  
%Boundaries 
BU_Mcap = (BU*ones(T,1))./norm(A_Mcap_Uhelp); 
BL_Mcap = (-BL*ones(T,1))./ norm(A_Mcap_Lhelp); 
load('MODEL/CPLEX.mat')  
CPLEX.Inputs.Cons.AMcap = [A_Mcap_U;A_Mcap_L] ; 
CPLEX.Inputs.Cons.BMcap = [BU_Mcap;BL_Mcap];  
save('MODEL/CPLEX','CPLEX');  
clear all 
      createMode.Interpreter='tex'; 
      createMode.WindowStyle='modal'; 
      msgbox('\bfMining capacity constraint was created 

successfully.','Saha Model - V1.0 ','help',createMode); 

 
function GCBinary_AddingY() 
load('MODEL\MainModelInput.mat') 
load('Data4Cons.mat') 
if exist('MODEL/CPLEX.mat')== 2 
   load('MODEL/CPLEX.mat'); 
else 
end  
N = CPLEX.SchParam.nBigBl; 
T = CPLEX.SchParam.T; 
Tonnage = (Data4Cons{1,3})'; 
Grade = (Data4Cons{1,4})'; 
BL = CPLEX.SchParam.GradeLower; 
BU = CPLEX.SchParam.GradeUpper; 
Data4Cons{1,8} = CPLEX.SchParam.GradeLower; 
Data4Cons{1,9} = CPLEX.SchParam.GradeUpper; 
save('Data4Cons','Data4Cons') 
% Coefficient matrix 
A_GU_help = zeros(T,3*T*N); 
A_GL_help = zeros(T,3*T*N); 
%Upper ***************************************** 
GupVector = BU * ones(1,N);  
% Gbl-Gup 
GblGup = Grade - GupVector; 
% (Gbl-Gup)*tonnage 
TempUpper = GblGup .* Tonnage; 
%Lower ***************************************** 
GlVector = BL * ones(1,N);  
% Gbl-Gup 
GblGl = GlVector - Grade; 
% (Gl-Gbl)*tonnage 
TempLower = GblGl .* Tonnage; 
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for t = 1:T 
%Upper 
A_GU_help(t,(t-1)*N+1:t*N) = TempUpper;        
%Lower 
A_GL_help(t,(t-1)*N+1:t*N) = TempLower;  
end 
% join A_Gcap_U and A_Gcap_L 
AGNOTnormalized = [A_GU_help;A_GL_help]; 
% Norm of Each Line (NEL) 
NEL_AGNOTnormalized = sqrt(sum(abs(AGNOTnormalized).^2,2)); 
                A_Grade=[]; 
                ChunkSize=300; 
                Chunks = ceil(size(AGNOTnormalized,2)/ChunkSize); 
                for iLoop=1:Chunks 
                        range = ((iLoop-1) * ChunkSize + 1): 

(min((iLoop * ChunkSize),size(AGNOTnormalized,2)));  
                        Norm_matrix_help = 

repmat(NEL_AGNOTnormalized,1,size(range,2)); 
                        tempL = 

AGNOTnormalized(:,range)./Norm_matrix_help; 
                        A_Grade = [A_Grade,tempL]; 
                end 
                close 
%Boundaries 
BU_Grade = zeros(T,1); 
BL_Grade = zeros(T,1); 
load('MODEL/CPLEX.mat') 
CPLEX.Inputs.Cons.AGrade = A_Grade; 
CPLEX.Inputs.Cons.BGrade = [BU_Grade;BL_Grade];  
save('MODEL/CPLEX','CPLEX');  
clear all 
      createMode.Interpreter='tex'; 
      createMode.WindowStyle='modal'; 
      msgbox('\bfGrade constraint was created successfully.','Saha 

Model - V1.0 ','help',createMode); 

 
function DrawRateBinary_AddingY2() 
load('MODEL\MainModelInput.mat') 
load('Data4Cons.mat') 
if exist('MODEL/CPLEX.mat')== 2 
   load('MODEL/CPLEX.mat'); 
else 
end 
N = CPLEX.SchParam.nBigBl; 
T = CPLEX.SchParam.T; 
Tonnage = (Data4Cons{1,3})'; 
%Grade = (Data4Cons{1,4})'; 
L = CPLEX.SchParam.L; 
% Drawrate Upper bound 
DR_U = CPLEX.SchParam.PRCUpper; 
Data4Cons{1,10} = DR_U; 
save('Data4Cons','Data4Cons') 
% Drawrate Lower bound 
DR_L = CPLEX.SchParam.PRCLower; 
% Coefficient matrix : size for the matrix is [N*T, N*T] we have 

to write 
% this constraint for each drawpoint 
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A_DR_help = zeros(T*N,3*T*N);  
%>>>>>>>>>>>>>>>>>>>>>>>> 
A_DR_help2 = zeros(T*N,3*T*N); 
%>>>>>>>>>>>>>>>>>>>>>>> 
A_DR_help3 = zeros(T*N,3*T*N); 
counter =0; 
for t = 1:T 
    for BL = 1:N 
        A_DR_help(BL+counter,BL+counter) = Tonnage(1,BL); 

%x*Ton<=DR_U (x) 
        %>>>>> 
        A_DR_help2(BL+counter,BL+counter) = -Tonnage(1,BL); 

%B*DR_L-xTon-LY<=0 (x) 
        A_DR_help2(BL+counter,BL+counter+(N*T)) = DR_L ; %B*DR_L-

xTon-LY<=0 (B) 
        A_DR_help2(BL+counter,BL+counter+2*(N*T)) = -L; %B*DR_L-

xTon-LY<=0 (Y) 
        %>>>>> 
        A_DR_help3(BL+counter,BL+counter+2*(N*T)) = 1; %Y-

sigma(x)<=0 (Y) 
        for a = 1:t 
            A_DR_help3(BL+counter,BL+(a-1)*N) = -1; %Y-sigma(x)<=0 

(x) 
        end 
    end 
    counter = counter+N; 

     
    stopBar= progressbar(BL / N ,0); 
    if (stopBar) break; end 
close 
end             
% The A_DR_help matrix has not been normalized, so it has to be 

normalized. 
% Norm of each line (NEL) 
NEL_A_DR_help = sqrt(sum(abs(A_DR_help).^2,2)); 
%>>>>>>>>>> 
NEL_A_DR_help2 = sqrt(sum(abs(A_DR_help2).^2,2)); 
%>>>>>>>>>>>>>> 
NEL_A_DR_help3 = sqrt(sum(abs(A_DR_help3).^2,2)); 
% Sometimes we have to deal with a big size problems, to solve 

this kind of problems it is better we use the ChunkSize method. 
ADRhelp_Normalized = []; 
%>>>>>>> 
ADRhelp2_Normalized = []; 
%>>>>>> 
ADRhelp3_Normalized = []; 
ChunkSize=200; 
Chunks = ceil(size(A_DR_help,2)/ChunkSize); 
   for iLoop = 1:Chunks 
        range = ((iLoop-1) * ChunkSize + 1): (min((iLoop * 

ChunkSize),size(A_DR_help,2)));  
        Norm_matrix_help = repmat(NEL_A_DR_help,1,size(range,2)); 
        tempU = A_DR_help(:,range)./Norm_matrix_help; 

  
        ADRhelp_Normalized = [ADRhelp_Normalized,tempU]; 
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          stopBar= progressbar(iLoop / Chunks,0); 
          if (stopBar) break; end 
   end 
   close 

    
   A_DR1 = ADRhelp_Normalized; 
% Upper bound 
DR_Ub1 = (DR_U*ones(T*N,1))./NEL_A_DR_help; 
%>>>>>>>>>>>>>>>>> 
Chunks = ceil(size(A_DR_help2,2)/ChunkSize); 
   for iLoop = 1:Chunks 
        range = ((iLoop-1) * ChunkSize + 1): (min((iLoop * 

ChunkSize),size(A_DR_help2,2)));  
        Norm_matrix_help2 = 

repmat(NEL_A_DR_help2,1,size(range,2)); 
        tempU = A_DR_help2(:,range)./Norm_matrix_help2; 
        ADRhelp2_Normalized = [ADRhelp2_Normalized,tempU]; 
          stopBar= progressbar(iLoop / Chunks,0); 
          if (stopBar) break; end 
   end 
   close   
   A_DR2 = ADRhelp2_Normalized; 
% Upper bound 
DR_Ub2 = zeros(T*N,1); 
%>>>>>>>>>>>>>> 
Chunks = ceil(size(A_DR_help3,2)/ChunkSize); 
   for iLoop = 1:Chunks  
        range = ((iLoop-1) * ChunkSize + 1): (min((iLoop * 

ChunkSize),size(A_DR_help3,2)));   
        Norm_matrix_help3 = 

repmat(NEL_A_DR_help3,1,size(range,2)); 
        tempU = A_DR_help3(:,range)./Norm_matrix_help3; 
        ADRhelp3_Normalized = [ADRhelp3_Normalized,tempU]; 
          stopBar= progressbar(iLoop / Chunks,0); 
          if (stopBar) break; end 
   end 
   close    
   A_DR3 = ADRhelp3_Normalized;    
% Upper bound  
DR_Ub3 = zeros(T*N,1); 
%>>>>>>>>>>>>>>     
A_DR = [A_DR1;A_DR2;A_DR3]; 
DR_Ub = [DR_Ub1;DR_Ub2;DR_Ub3];   
load('MODEL/CPLEX.mat') 
CPLEX.Inputs.Cons.ADR = A_DR; 
CPLEX.Inputs.Cons.BDR = DR_Ub;  
save('MODEL/CPLEX','CPLEX');  
clear all 
      createMode.Interpreter='tex'; 
      createMode.WindowStyle='modal'; 
      msgbox('\bfDrawrate constraint was created 

successfully.','Saha Model - V1.0 ','help',createMode); 

 
function ReserveBinary_AddingY() 

  
% total ore material within each block must be extracted. 
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% The main coefficien matrix contains (N*T)columns.  
% Let say we have 5 blocks and 3 periods, so matrix A has 15 

columns.  
% First 5 columns indicate to the period 1. 
% Second 5 columns indicate to the period 2. 
% Third 5 columns indicate to the period 3. 
% Dimension of matrix A for this constraint is N*(N*T). We have T 

periods 
% so for each period we have N*N matrix. 
% 
%      <-Period1-><-Period2-><-Period3-> 
%     | 1 0 0 0 0 |1 0 0 0 0 | 1 0 0 0 0|  
%     | 0 1 0 0 0 |0 1 0 0 0 | 0 1 0 0 0| 
%  A= | 0 0 1 0 0 |0 0 1 0 0 | 0 0 1 0 0| 
%     | 0 0 0 1 0 |0 0 0 1 0 | 0 0 0 1 0| 
%     | 0 0 0 0 1 |0 0 0 0 1 | 0 0 0 0 1| 
%     <---  A1 ---> 
% It can be seen clearly, if we just make a 5*5  matrix with 1's 

on the diagonal and 0's elsewhere, then we can construct matrix A 
using matrix A1. 
load('Data4Cons.mat') 
if exist('MODEL/CPLEX.mat')== 2 
   load('MODEL/CPLEX.mat'); 
else 
end 
N = CPLEX.SchParam.nBigBl; 
T = CPLEX.SchParam.T; 
A1 = eye(N,N); 
ARes = repmat(A1,1,T); 
pp = zeros(N,2*N*T); 
ARes = [ARes,pp]; 
BRes_U = ones(N,1); 
load('MODEL/CPLEX.mat') 
CPLEX.Inputs.Cons.ARes = ARes; 
CPLEX.Inputs.Cons.BRes = BRes_U; 
save('MODEL/CPLEX','CPLEX');  
clear all 
      createMode.Interpreter='tex'; 
      createMode.WindowStyle='modal'; 
      msgbox('\bfReserve constraint was created 

successfully.','Saha Model - V1.0 ','help',createMode); 

 
function  Adj_Block_Indices_BigBLs 
prompt = 'What is the production level? '; 
noLevel = input(prompt); 
name = strcat('Level_',num2str(noLevel)); 
load('MODEL\MainModelInput.mat'); 
load('MODEL\CPLEX.mat'); 
OreBlocks = 

[MainModelInput.NotInclude.Level_39(:,2),MainModelInput.NotInclude

.Level_39(:,3)];  
X_BLs_Vvector = MainModelInput.NotInclude.Level_39(:,2); 
Y_BLs_Vvector = MainModelInput.NotInclude.Level_39(:,3);  
X_BLs_Hvector = MainModelInput.NotInclude.Level_39(:,2)'; 
Y_BLs_Hvector = MainModelInput.NotInclude.Level_39(:,3)';  
NBLs = CPLEX.SchParam.nBigBl;        % # of Blocks 
%====================calculating distance between Blocks 
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%======= Create dX^2 
X_BLS_1 = repmat(X_BLs_Hvector,NBLs,1); 
X_BLS_2 = repmat(X_BLs_Vvector,1,NBLs); 
dX = (X_BLS_1)-(X_BLS_2); 
dX_square = dX.^2; 
%========================== calculating distance between Blocks  

%========Create dY^2 
Y_BLS_1 = repmat(Y_BLs_Hvector,NBLs,1); 
Y_BLS_2 = repmat(Y_BLs_Vvector,1,NBLs); 
dY = (Y_BLS_1)-(Y_BLS_2); 
dY_square = dY.^2; 
%===================================  DISTANCE^2=dX^2+dY^2 
Distance_square = dX_square+dY_square; 
%========================================= Distance between Blocks 
Distance_BLs = sqrt(Distance_square); 
InData.Distance_BLs = Distance_BLs; 
save('Results/InData','InData'); 
load 'InData.mat'; 
Distance_BLs = InData.Distance_BLs; 
maxdist = 43; 
BLs_x =  MainModelInput.NotInclude.Level_39(:,2) ; 
N = CPLEX.SchParam.nBigBl; 
indices = []; 
indices = cell(N,3); 
for i = 1:N 
    temp = find(Distance_BLs(i,:)<=maxdist & Distance_BLs(i,:)>0); 
    indices{i,1} = temp;  
    indices{i,2} = X_BLs_Hvector(temp); 
    indices{i,3} = Y_BLs_Hvector(temp); 
end 
InData.indices = indices; 
save('Results/Indata','InData'); 
end 

 
function MiningDirection 
load('Results/InData','InData') 
load('MODEL/CPLEX.mat') 
prompt1 = 'What is the coordinates of point1? '; 
Point1 = input(prompt1); 
prompt2 = 'What is the coordinates of point2? '; 
Point2 = input(prompt2); 
%calculating the slope of the mining direction 
dify = Point2(1,2)-Point1(1,2); 
difx = Point2(1,1)-Point1(1,1); 
SlopeMD = dify/difx; 
%calculating the slope of the perpendicular line 
SlopePL = -1/SlopeMD; 
prompt = 'What is the production level? '; 
noLevel = input(prompt); 
name = strcat('Level_',num2str(noLevel)); 
load('MODEL\MainModelInput.mat') 
X = MainModelInput.NotInclude.Level_39(:,2); 
Y = MainModelInput.NotInclude.Level_39(:,3); 
Xnew = 200; 
N = CPLEX.SchParam.nBigBl; 
AdjecentIndices = InData.indices(:,1); 
X_Adjecent = InData.indices(:,2); 
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Y_Adjecent = InData.indices(:,3); 
for i = 1:N   
for adjecent = 1:numel(AdjecentIndices(i,1)) 
    Ynew(i,1) = SlopePL.*(Xnew-X(i,1))+Y(i,1); 
    d = cell(2,adjecent); 
    d{1,:} = (X_Adjecent{i,1} - X(i,1)).*(Ynew(i,1) - Y(i,1))-

(Y_Adjecent{i,1} - Y(i,1)).*(Xnew - X(i,1)); 
    d{2,:} = AdjecentIndices{i,1}; 
    Data1 = d{1,:}; 
    Data2 = d{2,:};   
    B{i,adjecent} = Data2(find(Data1<0)); %Adjacent below mining 

direction 
end 
end  
InData.B = B; 
save('Results/InData','InData'); 
end 
  

    
function Precedence_AddingY 
if exist('MODEL/CPLEX.mat')== 2 
    load('MODEL/CPLEX.mat'); 
else 
end 
prompt = 'What are the production level? '; 
InData = input(prompt); 
noLevel = InData(1,1); 
T = CPLEX.SchParam.T; 
name = strcat('Level_',num2str(noLevel)); 
load('MODEL\MainModelInput.mat') 
N = CPLEX.SchParam.nBigBl; 
load('Results/InData','InData'); 
AdjecentsBelowMiningDirection = InData.B; 
Precedence1 = zeros(N*T,N*T); 
Precedence2 = zeros(N*T,N*T); 
Precedence3 = zeros(N*T,N*T); %Because of Adding Y 
for jLoop = 1:T 
    for iLoop = 1:N 
        n(iLoop,1) = 

numel(AdjecentsBelowMiningDirection{iLoop,1}); 
        Precedence1((jLoop-1)*N+iLoop,(jLoop-1)*N+iLoop) = 

n(iLoop,1); 
        for kLoop = 

1:numel(AdjecentsBelowMiningDirection{iLoop,1}); 
            Precedence1((jLoop-1)*N+iLoop,(jLoop-

1)*N+AdjecentsBelowMiningDirection{iLoop,1}(1,kLoop)) = -1; 
        end 
    end 
end 
APrecedence_Binary = [Precedence2,Precedence1,Precedence3]; 
bPrecedence_Binary = sparse(zeros(N*T,1)); 
CPLEX.Inputs.Constraints.APrecedence_Binary = APrecedence_Binary; 
CPLEX.Inputs.Constraints.bPrecedence_Binary = bPrecedence_Binary; 
save('MODEL/CPLEX','CPLEX'); 
createMode.Interpreter='tex'; 
createMode.WindowStyle='modal'; 
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msgbox('\bfPrecedence constraints was created successfully.','saha 

Model - V1.0 ','help',createMode); 

 
function NumberOfNewBBLs  
if exist('MODEL/CPLEX.mat')== 2 
   load('MODEL/CPLEX.mat'); 
else 
end 
N = CPLEX.SchParam.nBigBl; 
T = CPLEX.SchParam.T; 
prompt1 = 'What is maximum number of new big blocks in period 1?'; 
NoNewBBLsPeriod1_U = input(prompt1);  
prompt2 = 'What is maximum number of new big blocks after 

period1?'; 
NoNewBBLsPeriod2On_U = input(prompt2);  
prompt3 = 'What is minimum number of new big blocks in period 1?'; 
NoNewBBLsPeriod1_L = input(prompt3); 

  
prompt4 = 'What is minimum number of new big blocks after 

period1?'; 
NoNewBBLsPeriod2On_L = input(prompt4); 
NoNewBBLsHelp = zeros(T,3*N*T); 
NoNewBBLsHelp1 = zeros(T,3*N*T);  
counter = 0; 
for t = 1:T 
    for BL = 1:N 
        if t == 1 
            NoNewBBLsHelp(t,(N*T)+BL) = 1; 
            NoNewBBLsHelp1(t,(N*T)+BL) = -1; 
        else  
           NoNewBBLsHelp(t,BL+counter+(T*N)) = 1; 
           NoNewBBLsHelp(t,(t-2)*N+BL+(N*T)) = -1; 
           NoNewBBLsHelp1(t,BL+counter+(T*N)) = -1; 
           NoNewBBLsHelp1(t,(t-2)*N+BL+(N*T)) = 1; 
        end 
    end 
    counter = counter+N; 
end 
A_NoNewBBLs = [NoNewBBLsHelp;NoNewBBLsHelp1]; 

 
BFirstPeriod_U = NoNewBBLsPeriod1_U; 
BSecondPeriodOn_U = NoNewBBLsPeriod2On_U*ones((T-1),1); 
B_NoNewBBLs_U = [BFirstPeriod_U;BSecondPeriodOn_U]; 

  
BFirstPeriod_L = NoNewBBLsPeriod2On_L; 
BSecondPeriodOn_L = -NoNewBBLsPeriod2On_L*ones((T-1),1); 
B_NoNewBBLs_L = [BFirstPeriod_L;BSecondPeriodOn_L]; 
% Norm of each line (NEL) 
NEL_A = sqrt(sum(abs(A_NoNewBBLs).^2,2)); 
Ahelp_Normalized = []; 
ChunkSize=200; 
Chunks = ceil(size(A_NoNewBBLs,2)/ChunkSize); 
   for iLoop = 1:Chunks 
        range = ((iLoop-1) * ChunkSize + 1): (min((iLoop * 

ChunkSize),size(A_NoNewBBLs,2)));  
        Norm_matrix_help = repmat(NEL_A,1,size(range,2)); 
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        tempU = A_NoNewBBLs(:,range)./Norm_matrix_help;  
        Ahelp_Normalized = [Ahelp_Normalized,tempU];  
          stopBar= progressbar(iLoop / Chunks,0); 
          if (stopBar) break; end 
   end 
   close 
   A_New = Ahelp_Normalized; 
B_New = [B_NoNewBBLs_U;B_NoNewBBLs_L]; 
B_New_Nomarlized = B_New./NEL_A; 
load('MODEL/CPLEX.mat') 
CPLEX.Inputs.Cons.ANoNewBBLs = A_New; 
CPLEX.Inputs.Cons.BNoNewBBLs = B_New_Nomarlized; 
save('MODEL/CPLEX','CPLEX'); 
createMode.Interpreter='tex'; 
      createMode.WindowStyle='modal'; 
      msgbox('\bfNumber of New BBLs constraint was created 

successfully.','Saha Model - V1.0 ','help',createMode); 
end 

 
function RunModelBinaryWithEPGAP() 
load('MODEL\CPLEX.mat') 
load('Data4Cons.mat') 
T = CPLEX.SchParam.T; 
N = CPLEX.SchParam.nBigBl; 
ton = Data4Cons{1,3}'; % Horizontal vector 
grade = Data4Cons{1,4}'; % Horizontal vector 
f = CPLEX.Inputs.ObjectiveFunction.f; 
fnorm = CPLEX.Inputs.Parameters.fnorm; 
A1 = CPLEX.Inputs.Cons.AMcap; 
B1 = CPLEX.Inputs.Cons.BMcap;  
A2 = CPLEX.Inputs.Cons.ADR; 
B2 = CPLEX.Inputs.Cons.BDR; 
A3 = CPLEX.Inputs.Cons.AGrade; 
B3 = CPLEX.Inputs.Cons.BGrade; 
A4 = CPLEX.Inputs.Constraints.Aineq_Binary; 
B4 = CPLEX.Inputs.Constraints.bineq_Binary; 
A5 = CPLEX.Inputs.Constraints.APrecedence_Binary; 
B5 = CPLEX.Inputs.Constraints.bPrecedence_Binary; 
A6 = CPLEX.Inputs.Cons.ANoNewBBLs; 
B6 = CPLEX.Inputs.Cons.BNoNewBBLs; 
Aineq = [A1;A2;A3;A4;A5;A6];  
bineq = [B1;B2;B3;B4;B5;B6]; 
Aineq = full(Aineq); 
bineq = full(bineq);  
Aeq = [CPLEX.Inputs.Cons.ARes]; 
beq = [CPLEX.Inputs.Cons.BRes]; 
% X vector size 
xSize = size(Aineq,2); 
lb = zeros(xSize,1); 
ub = ones(xSize,1); 
ctype_1 = [char('C'*ones(1,N*T))]; %Defining type of the 

variables, 1:N variables are Continues and N+1:2N are Binary 
ctype_2 = [char('B'*ones(1,N*T))]; 
ctype_3 = [char('B'*ones(1,N*T))]; 
ctype = [ctype_1,ctype_2,ctype_3]; 
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addpath('C:\Program 

Files\IBM\ILOG\CPLEX_Enterprise_Server126\CPLEX_Studio\cplex\matla

b\x64_win64'); 
addpath('C:\Program 

Files\IBM\ILOG\CPLEX_Enterprise_Server126\CPLEX_Studio\cplex\examp

les\src\matlab'); 
%***************************************************************** 
% Model Information 
A = [Aineq;Aeq]; 
[m,n] = size(A); 
fprintf('Block cave Scheduling Problem. Variables %d Constraints 

%d\n',n,m); 
%***************************************************************** 
%The CPLEX run function 
%[x,fval,exitflag,output] = 

cplexmilp(f,Aineq,bineq,Aeq,beq,[],[],[],lb,ub,ctype,[],options) 

%solution 
%[x,fval,exitflag,output] = 

cplexlp(f,Aineq,bineq,Aeq,beq,lb,ub,[],options) %solution 
options = cplexoptimset; 
   options.Display = 'on'; 
   options.parameter2009 = 0.01; 
[x,fval,exitflag,output] = 

cplexmilp(f,Aineq,bineq,Aeq,beq,[],[],[],lb,ub,ctype,[],options); 

%solution 
output 
Valu = -fval*fnorm 
%************************************************** 
%saving the results 
CPLEX.Results.out1 = Cplex();  
CPLEX.Results.out2 = CpxInfo(Cplex); 
   fprintf ('\nSolution status = %s \n', 

output.cplexstatusstring); 
   fprintf ('Solution value = %f \n', fval); 
CPLEX.Outputs.x = x; 
CPLEX.Outputs.fval = fval*fnorm; 
CPLEX.Outputs.exitflag = exitflag; 
CPLEX.Outputs.output = output; 
%preparing the results(x) based on the periods,  
%the first N decision variables(x1:xN) are for the first period 

and so on. 
for iloop = 1:T 
    y(iloop,:) = x((iloop-1)*N+1:N*iloop,1); 
end 
CPLEX.Outputs.y = y; 
BSolution = x((T*N)+1:(2*T*N)); 
for jloop = 1:T 
    BPeriod(jloop,:) = BSolution((jloop-1)*N+1:N*jloop,1); 
end 
CPLEX.Outputs.BPeriod = BPeriod; 
YSolution = x((2*T*N)+1:(3*T*N)); 
for jloop = 1:T 
    YPeriod(jloop,:) = YSolution((jloop-1)*N+1:N*jloop,1); 
end 
CPLEX.Outputs.YPeriod = YPeriod; 

  
%---------------Plot Total Production per Period------------------ 
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if exist('HelpPlot.mat') == 2 
    load('HelpPlot.mat') 
end 
%***************************************** Tonnage 
TonTemp = repmat(ton,T,1); 
BLPeriodicProduction = TonTemp .* y; %total production per each 

period(tonne), it will be used to plot the "production per period" 

graph 
CPLEX.Outputs.BLPeriodicProduction = BLPeriodicProduction; 
HelpPlot.BLPeriodicProduction = BLPeriodicProduction; 
fprintf('Initial tonnage before optimization = %d 

tonne\n',sum(ton)); 
fprintf('Extracted tonnege after optimization = %d 

tonne\n',sum(sum(BLPeriodicProduction))); 

 
%--------------------Plot Average Grade Per Period---------------- 
%***************************************** Grade 
GrTemp = repmat(grade,T,1); 
% grade * tonnage 
GrTon = GrTemp.* BLPeriodicProduction; 
Sigma_GrTon = sum(GrTon,2); 
SigmaTon = sum(BLPeriodicProduction,2); 
AvgGradeperiod = Sigma_GrTon ./ SigmaTon; 
HelpPlot.AvgGradeperiod =AvgGradeperiod; 
%----------Plot Number of Active and New Big Blocks in each Period 
%*************Calculating Number of Active Blocks in each period 
y = CPLEX.Outputs.y; 
ActiveBl = zeros(T,N); 
for iLoop = 1:N 
ActiveBl(:,iLoop) = (y(:,iLoop)>0); 
end 
NoActiveBlPeriod = sum(ActiveBl,2); 

  
%************Calculating Number of New Blocks in each period 
BinaryVariablesPeriod = CPLEX.Outputs.BPeriod; 
OpeningPeriod = zeros(T-1,N); 
for iLoop = 1:T-1 
    OpeningPeriod(iLoop,:) = BinaryVariablesPeriod(iLoop+1,:)-

BinaryVariablesPeriod(iLoop,:); 
end 
OpeningPeriodWithFirstPeriod = 

[BinaryVariablesPeriod(1,:);OpeningPeriod]; 
NoNewBlPeriod = sum(OpeningPeriodWithFirstPeriod,2); 
TwoDataforPlot = [NoActiveBlPeriod,NoNewBlPeriod];  
HelpPlot.TwoDataforPlot = TwoDataforPlot; 
%---------------------Plot Opening Period for each Big Block  
BinaryVariablesPeriod = CPLEX.Outputs.BPeriod; 
OpeningPeriod = zeros(T-1,N); 
for iLoop = 1:T-1 
    OpeningPeriod(iLoop,:) = BinaryVariablesPeriod(iLoop+1,:)-

BinaryVariablesPeriod(iLoop,:); 
end 
OpeningPeriodWithFirstPeriod = 

[BinaryVariablesPeriod(1,:);OpeningPeriod]; 
NoOpeningPeriod = zeros(1,N); 
for jLoop = 1:N 
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    Temp = find(OpeningPeriodWithFirstPeriod(:,jLoop)); 
    NoOpeningPeriod(1,jLoop) = Temp(1,1); 
end 
save('OpeningPeriodWithFirstPeriod','OpeningPeriodWithFirstPeriod'

) 
HelpPlot.NoOpeningPeriod = NoOpeningPeriod; 
CPLEX.Outputs.HelpPlot = HelpPlot;   
save('MODEL/CPLEX','CPLEX'); 
Test_variables 
      createMode.Interpreter='tex'; 
      createMode.WindowStyle='modal'; 
      msgbox('\bfThe problem was solved.','Saha Model - V1.0 

','help',createMode); 
end 

  

  

 

 

  

            

         

 

 

 

 

 

 

 

 

 

 

 


