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Abstract

In this thesis, we consider the Travelling Salesman Problem with Neighbour-

hoods (TSPN) on the Euclidean plane and present a Polynomial-Time Approx-

imation Scheme (PTAS) when the neighborhoods are parallel line segments

with lengths between [1, λ] for any constant value λ. In TSPN (which general-

izes classic TSP) each client represents a set (or neighbourhood) of points in a

metric and the goal is to find a minimum cost TSP tour that visits at least one

point from each client set. In the Euclidean setting, each neighbourhood is a

region on the plane. TSPN is significantly more difficult than classic TSP even

in the Euclidean setting. A notable case of TSPN is when each neighbourhood

is a line segment. Although there are PTAS’s for when neighbourhoods are fat

objects (with limited overlap), TSPN over line segments is APX-hard even if

all the line segments have unit length. For parallel (unit) line segments, the

best approximation factor is 3
√
2 from 20 years ago [10]. The PTAS we present

in this thesis settles the approximability of this case of the problem. Our al-

gorithm finds a (1 + ε)-factor approximation for an instance of the problem

with n segments with lengths in [1, λ] in time nO(λ/ε3).
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Chapter 1

Introduction

The Traveling Salesman Problem (TSP) is one of the most fundamental and

well-studied problems in Theoretical Computer Science with various applica-

tions such as in microchip wiring and vehicle navigation for package delivery.

In TSP, one is given a set of points (which we refer to as clients) in a metric

and the goal is to find a tour of minimum cost visiting all the points. We study

this problem in the two dimensional Euclidean plane, meaning the points are

given on the plane and metric is the Euclidean distance. TSP even in the

Euclidean Setting is an NP-hard problem. The topic of this thesis is in Ap-

proximation Algorithms. In the field of Approximation Algorithms, we study

NP-hard problems while leaning towards the assumption that P ̸= NP; so

instead of looking for polynomial-time exact solutions for NP-hard problems,

we take compromises to guarantee a near-optimum solution. In Subsection

1.1.2, we properly describe Approximation Algorithms. Given an instance of

an NP-hard optimization problem, we guarantee a solution within an α-factor

of the optimum solution along with specific runtime guarantees (usually poly-

nomial time in the size of the input and possibly α). Parameter α can be a

constant value in R+, or a function of the size of the input.

In Section 1.1, we introduce some terminologies and proper definitions used

throughout this thesis. In Section 1.2 we give examples of some variations of

TSP other than the problem we considered, then mention some related work.

We then summarize our results in Section 1.3.
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1.1 Preliminaries

Some definitions are borrowed from the books of Vazirani [24] and Williamson

& Shmoys [26] on Approximation Algorithms.

1.1.1 Graphs and Metrics

Whenever we use the notion of a graph, we use the same definitions found

in West’s book on Graphs [25]; meaning a graph G is defined by a vertex set

V (G), and an edge set E(G). Throughout this thesis, the only graphs we

consider are simple graphs.

Metrics

A function d : V × V → R≥0 over a vertex set V is a metric if the following

properties hold:

1. For all v ∈ V, d(v, v) = 0

2. For all u, v ∈ V : d(u, v) = d(v, u)

3. For all u ̸= v, d(u, v) > 0

4. For all u, v, w ∈ V : d(u, v) ≤ d(u,w) + d(w, v). This is referred to as

the triangle inequality.

Consider a graph G with vertex set V such that any v ∈ V corresponds to

a point (vx, vy) on the two dimensional plane. Define d : V × V → R≥0 on

this vertex set such that for u, v ∈ V : d(u, v) =
√︁
|ux − vx|2 + |uy − vy|2; in

other words, d(u, v) is the Euclidean distance of the points corresponding to

these two vertices. It can be seen that d is a metric and we refer to it as the

Euclidean metric. We use the notation ||pq|| to denote the Euclidean distance

between any two points p and q on the plane.
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1.1.2 Optimization Problems and Approximation Algo-
rithms

Optimization Problem

An NP-optimization problem Π is defined by quadruple (I, DΠ, SΠ, objΠ)

where:

� Set I is the set of instances.

� DΠ is the set of valid instances, and given any instance I ∈ I, we can

check in polynomial time in |I| whether or not I is a valid instance.

� For any valid instance I ∈ DΠ, the set SΠ(I) is the set of feasible solutions

of I, where SΠ(I) ̸= ∅ and each s ∈ SΠ(I) has a length polynomially

bounded in |I|. We can, in polynomial time in |I|, decide whether or not

any given solution s is a feasible solution for I.

� objΠ is a polynomial-time computable objective function that given a

valid instance I and a feasible solution s ∈ SΠ(I), assigns a non-negative

rational value to the pair (I, s).

Problem Π is specified to either be a minimization problem or a maximization

problem. The goal for a minimization problem Π given any I ∈ DΠ, is to find

a solution s ∈ SΠ(I) that minimizes the objective function between all pairs

(I, s); meaning s = argmin
s′∈SΠ(I)

objΠ(I, s
′). The formulation for a maximization

problems is analogous. We denote such a desired solution s as the optimum

solution for instance I and write it as OPTΠ(I), and denote the value of the

objective function for this solution as optΠ(I). In this thesis, when context

is clear, we simplify these notations and only use OPT to refer to an opti-

mum solution, and opt to refer to the value of the objective function for that

optimum.

TSP is an example of an optimization (minimization) problem that is

shown to be NP-hard even in the Euclidean metric. The set of valid instances

for TSP are any number of points on the Euclidean plane, the set of feasible

solutions are any tour that intersects all the points in the given instance, and

the objective function is the total length of the given tour.
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Approximation Algorithms

Informally, in approximation algorithms we are given a valid instance I of

some NP-hard optimization problem (say a minimization problem). The goal

is to present a feasible solution s′ such that the value of the objective function

for s′ is at most an α-factor larger than the objective function value for the

optimum solution of instance I. A formal definition is as follows:

Consider a minimization problem Π and a function α : Z+ → Q≥1. An

algorithm A is an α-approximation (or factor α approximation) for Π if for

any valid instance I, A outputs a feasible solution s for which objΠ(I, s) ≤

α(|I|) · optΠ(I), and that the running time of A for instance I is polynomial

in |I|. We refer to α as the approximation ratio of A. Analogous definition

holds for maximization problems. Since TSP is a minimization problem, we

focus on minimization problems for the definitions from now on.

Unless P = NP, we will not be able to find any algorithm that is a 1-

approximation for any NP-hard problem. So in this line of research, the goal

is to find algorithms with approximation factors as close to 1 as possible, and

with the most efficient running times.

Polynomial-Time Approximation Scheme

One special case of approximation algorithms are those with a (1 + ε)-factor

approximation for any given real number ε > 0. If A is a (1 + ε)-factor

approximation for a minimization problem Π that runs in poly-time in the

size of the input, then A is called a Polynomial-Time Approximation Scheme

(PTAS) of Π. Sometimes finding such A that runs in poly-time will prove to

be difficult and there might be some relaxations in the running time; those

relaxations, however, are not needed in this thesis as we will present a PTAS

at the end. A special case of a PTAS is when the running time is not only

polynomial in the size of the input, but also poly-time in 1/ε; these algorithms

are called Fully Polynomial-Time Approximation Schemes (FPTAS).
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PTAS-reduction

Given two optimization (minimization) problems Π and Π′, we say Π is PTAS-

reducible to Π′ [7], and use the notation Π ≤PTAS Π′ if there exist a triplet

(f, g, c) of functions such that:

1. For any I ∈ DΠ and any rational ε > 1, f(I, ε) ∈ DΠ′ and f is com-

putable in poly-time with respect to |I|.

2. For any I ∈ DΠ, for any rational ε > 1 and s′ ∈ SΠ′(f(I, ε)), g(I, s′, ε) ∈

SΠ(I), and g is computable in poly-time in respect to both |I| and |s′|.

3. c : R>1 → R>1 is computable and invertible.

4. For any I ∈ DΠ, for any rational ε > 1 and s′ ∈ SΠ′(f(I, ε)), if

objΠ′(f(I, ε), s′) ≤ c(ε) ·OPTΠ′(f(I, ε)),

then

objΠ(I, g(I, s
′, ε)) ≤ ε ·OPTΠ(I).

Approximation Classes

An optimization problem Π is said to be in the class APX if there are any

approximation algorithms for it with a constant approximation ratio. Π is said

to be in the class PTAS or FPTAS if respective approximation schemes exist

for it.

An optimization problem Π is said to be APX-hard if for any Π′ ∈ APX,

Π′ ≤PTAS Π. If for an APX-hard problem Π we have Π ∈ APX, then Π is

said to be APX-complete.

Hardness of Approximation

A hardness proof consists of showing that there cannot be an approximation al-

gorithm for a given optimization problem with a ratio better than some thresh-

old, assuming some specific complexity theory assumptions. As an example,

for Max-3SAT it is shown that there exist some ε0 > 0 such that finding an

approximation algorithm for this problem with ratio better than (1 + ε0) is
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NP-hard. Since it is also shown that Max-3SAT is APX-complete, then this

implies that any APX-hard problem Π will not have a PTAS unless P = NP.

1.1.3 Randomized Algorithms and Derandomization

In some approximation algorithms, ours included, the provided solution is

a randomized solution with a guaranteed expected value (i.e. a guaranteed

expected ratio) approximation. These randomized algorithms can usually be

derandomized. We will explain the process in which this derandomization

happens, after mentioning Markov’s inequality:

Concentration Bounds

When discussing the Dynamic Program for our algorithm, we will use Markov’s

Inequality, stated as follows [21]: If X is a non-negative random variable, then

for all a > 0, Pr[X ≥ a] ≤ E(X)/a.

We will use Markov’s inequality in this context: For any a ∈ R+, if E[X] ≤ a/2,

then with probability of at least 1/2 we have X < a.

Proof. Using Markov’s inequality, we have Pr[X ≥ a] ≤ E[X]/a ≤ 1/2,

implying that with probability at least 1/2, we have X < a.

Derandomization

Suppose we provide a proof with parameter j that is uniformly at random

chosen from {1, 2, . . . , h} for some integer h, such that if X is the expected in-

crease in the value of the objective function (compared to an optimum solution

OPT with value opt), then with probability of at least 1/2, E[X] ≤ opt
2
.

Using the linearity of expectation, we have

E[X] =
h∑︂

k=1

E[X | j = k] Pr[j = k] =
1

h

h∑︂
k=1

E[X | j = k].

Therefore, if j∗ = argmin
1≤k≤h

E[X | j = k], we have E[X] ≥ E[X | j = j∗].

The same argument holds for cases that there are variables x1, x2, . . . , xm,

where each of which are independently chosen uniformly at random from

6



{1, 2, . . . , h}. Starting by x∗
1 = argmin

1≤k≤h
E[X | x1 = k], for each i = 2, . . . , n

iteratively set

x∗
i = argmin

1≤k≤h
E[X | (x1 = x∗

1) ∧ (x2 = x∗
2) ∧ · · · ∧ (xi−1 = x∗

i−1) ∧ (xi = k)].

Similar to before, using the linearity of expectation it can be seen the above

value is not larger than E[X]; notice that if we continue this process until

i = n, then the expected value above is equal to the actual value of the final

solution for (x1, x2, . . . , xn) = (x∗
1, x

∗
2, . . . , x

∗
n), which is now a deterministic

solution.

In our case, the randomization that we have is based on only two variables

(that correspond to two lines parallel to the axis on the plane); we can simply

try out all the possible choices of those two variables and be sure that the

minimized (expected) cost we get, is not worse than the expected value that

we calculate using randomized parameters.

1.2 Related Work and Other Generalizations

of TSP

There is a wide variety of generalizations for TSP such as different metrics,

dimensions, or clients with special properties. The generalization that we con-

sider in this paper is the Euclidean TSP with clients are parallel line segments

with similar size, and the goal is to find a minimum cost tour that intersects

with each segment at least once.

For several decades, the classic algorithm by Christofides [6] and indepen-

dently by Serdyukov [23] that implies a 3
2
-approximation was the best known

approximation for TSP until a recent result by Karlin et al. [17] that shows

a slight improvement. Several generalizations (or special cases) of TSP have

been studied as well. Perhaps the most notable special case is when the points

are given in fixed dimensional Euclidean space. Arora and Mitchell [4], [20]

presented different PTAS’s for Euclidean TSP. There have been many papers

that have extended these results. Arkin and Hassin [3] introduced the notion

of TSP with Neighborhoods (TSPN). Notice that if every region is a single
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point, this problem reduces to the vanilla TSP. An instance of TSPN is a set

of neighbourhoods or regions given in a metric space and the goal is to find a

minimum cost tour that visits all these regions. Each region can be a single

point or could be defined by a subset of points of the plane. They gave several

constant-factor approximations for the geometric settings where each regions

is some well-defined shape on the plane, such as disks, parallel unit length

segments, and more generally, for regions which have diameter segments that

are parallel to a common direction, and have bounded ratio of the largest to

smallest diameter. Several papers have studied TSPN for various classes of

objects (neighborhoods) and under different metrics.

TSPN is much more difficult than TSP in general and in special cases, just

as group Steiner tree is much more difficult than Steiner tree (one can consider

each neighborhood as a group/set from which at least one point needs to be

visited). In group Steiner tree or group TSP, one is given a metric along with

groups of terminals. The goal is to find a minimum cost Steiner tree (or a

tour) that contains (or visits) at least one terminal from each group. Using the

result of Halperin and Krauthgamer [15] for hardness of group Steiner tree,

it follows that general TSPN is hard to approximate within a factor better

than Ω(log2−ε n) for any ε > 0 even on tree metrics. The algorithms for group

Steiner tree on trees by Garg et al. [14] and embedding of metrics onto tree

metrics by Fakcharoenphol et al. [13], imply an O(log3 n)-approximation for

TSPN in general metrics. Unlike Euclidean TSP (which has a PTAS), TSPN

is APX-hard on the Euclidean plane as shown by Berg et al. [5]. The special

case when each region is an arbitrary finite set of points in the Euclidean

plane (also known as Group TSP) has no constant approximation [22] and the

problem remains APX-hard even when each region consists of exactly two

points [9].

Focusing on Euclidean metrics, most of the earlier work have studied the

cases where the regions (or objects) are fat. Roughly speaking, it usually

means the ratio of the smallest enclosing circle to the largest circle fitting in-

side the object is bounded. There are some work on when regions are not fat,

most notably when the regions are (infinite) lines or line segments or in higher
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dimensions when they are hyperplanes. For the case of infinite line segments

in R2, the problem for n lines can be solved exactly in O(n4 log n) time by a re-

duction to the Shortest Watchman Route Problem (see [8], [16]). For the same

setting, Dumitrescu and Mitchell [10] presented a linear time π
2
-approximation

which was later improved to
√
2 by Jonsson [16] (again in linear time). For in-

finite lines in higher dimensions (i.e. dimension d ≥ 3), the problem is proved

to be APX-hard (see Antoniadis et al. [2] and references there). For neigh-

borhoods being hyperplanes and dimension being d ≥ 3, Dumitrescu and Tóth

[11] present a constant factor approximation (which grows exponentially with

d). For arbitrary d, they present an O(log3 n)-approximation. For any fixed

d ≥ 3, Antoniadis et al. [1] present a PTAS.

For parallel (unit) line segments on the plane Arkin and Hassin [3] pre-

sented a (3
√
2 + 1)-factor approximation which was improved to 3

√
2 by [10]

and it remains the best known approximation for this case as far as we know

for over two decades. Elbassioni et al. [12] proved that TSPN for unit line

segments (in arbitrary orientation) is APX-hard.

In this thesis, we settle the approximability of TSPN when regions are

parallel line segments of similar length (which includes unit length as a spe-

cial case) and present a PTAS for it. As mentioned above, the best known

approximation for unit length parallel segments has ratio 3
√
2 [10]. We first

focus on the case of unit line segments and show how our result extends to

when line segments have bounded length ratio. This is in contrast with the

APX-hardness of [12] when we have unit line segments with arbitrary orien-

tation. Our result also implies a (2 + ε)-approximation for the case where we

have axis-parallel similar size line segments.

1.3 Our Results

We prove the following theorem in this thesis:

Theorem 1 Given a set of n parallel line segments with lengths in [1, λ] for

a fixed λ as an instance of TSPN, there is an algorithm that finds a (1 + ε)-

approximation solution in time nO(λ/ε3).

9



The algorithm we present is randomized but can be easily derandomized

(see Subsection 1.1.3). To simplify the presentation, we give the proof for the

case of unit line segments, and then explain how the result can be extended

to the case where the aspect ratio is bounded by λ at the end of the thesis.

This problem generalizes the classic (point) TSP (at a loss of (1+ε) factor).

To see this, note that for the special case of line TSP where the line segments

are far apart, i.e. the diameter of the minimal bounding box is at least Ω(n/ε),

scaling the plane by a factor of ε yields an instance where the line segments

have length equal to ε and the diameter is Ω(n). Since in this case the optimum

is at least Ω(n), replacing each line segment with a point and solving (point)

TSP implies that the solutions for both instance (the line version and point

version) are within (1 + ε)-factor of each other.

With some modifications, we follow the paradigm of Arora [4] for designing

a PTAS for classic Euclidean TSP, specifically for dissecting the problem into

smaller problems and recursively solving them using Dynamic Programming

(DP). The reader is encouraged to familiarize themself with that solution, as

explaining all the details of that solution are outside of the scope of this thesis.

The difficult cases are when the line segments are not too far apart (for

e.g. they can be packed in a box of size O(
√
n) or smaller). There are two

key ingredients to our proof that we explain here. One may try to adapt

the hierarchical decomposition of Arora [4] for the PTAS for classic (point)

TSP (which works by dissecting the plane into squares and making the tours

portal respecting and using DP to combine the solutions), to this setting.

Following that hierarchical decomposition, the first issue is that some line

segments might be crossing the horizontal dissecting lines and so we don’t have

independent sub-instances and it is not immediately clear in which subproblem

these crossing segments must be covered. Note that the line segments might

be spread in a grid fashion (e.g.
√
n segments spaced equally over each of

√
n

many horizontal lines). So the number of line segments crossing a dissecting

line can be large. Our first insight is the following:

Insight 1: At a loss of (1+ε), we can drop the line segments crossing horizontal

10



dissecting lines and instead requiring a subset of portals of each square to be

visited, provided we continue the quad-tree decomposition until each square has

size Θ(1/ε).

In other words, assuming all the squares in the decomposition have height

at least Ω(1/ε), then at a small loss we can show a solution for the modified

instance where line segments on the boundary of the squares are dropped, can

be extended to a solution for the original instance. So proving this property

allows us to work with the hierarchical (quad-tree) decomposition until squares

of size Θ(1/ε). This can be proved by a proper packing argument. But then

we need to be able to solve instances where the height is bounded by O(1/ε).

Let’s define the notion of shadow of a solution (or in general, shadow of a

collection of paths on the plane) as the maximum number of times a vertical

line Γ intersects any of these paths. Our second insight is the following:

Insight 2: If we consider a window that is a hor-

izontal strip of height O(h) and move this window

vertically anywhere over an optimum solution, then

the shadow of the parts of optimum visible in this

strip is at most O(h).

In other words, one expects that in the base case

of the decomposition (where squares have height

Θ(1/ε)) the shadow is bounded by O(1/ε). De-

spite our efforts, proving this appears to be more

difficult than thought and it seems there are exam-

ples where even in the unit length segments, the

shadow may be large (see Figure 1.1). Figure 1.1: A potential
arrangement of line seg-
ments where the solution
has a large shadow

However, we are able to prove the following slightly weaker version that still

allows us to prove the final result:

(Revised) Insight 2: There is a (1 + ε)-approximate solution such that the
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shadow of any strip of height h over that solution is bounded by O(f(ε) · h).

for some function f(·).

The proof of this insight forms bulk the of this thesis. To prove this, we

characterize specific structures that would be responsible for having a large

shadow in a solution and show how we can modify the solution so that for

each of these structures the shadow is bounded by O(1/ε) while increasing the

cost by a (1 + ε) factor at most. This is formulated in the Theorem 2. For an

instance with line segments of length 1, suppose opt is the cost of an optimum

solution.

Theorem 2 Given any ε > 0, there is a solution O′ of cost at most (1+ε)·opt

such that in any strip of height 1, the shadow of O′ is O(1/ε).

We will show that this near optimum solution has further structural properties

that allows us to solve the bounded height cases at the base cases of the

hierarchical decomposition using a DP (later on, referred to as the inner DP).

Proof of this theorem is fairly long and involves multiple steps that gradually

proves structural properties for specific configurations.

Organization of the thesis: In Chapter 2, we define the problem and de-

scribe how to make changes to an optimum solution for a given instance of

the problem to obtain specific structural properties. We start by proving some

structural properties of an optimum and then a near-optimum solution in Sec-

tions 2.3 and 2.4; and finally prove Theorem 2 in Section 2.6. We describe the

main algorithm in Chapter 3, which includes the outer DP (responsible for

breaking the instance of a problem into smaller subproblems, then combining

the answers) and inner DP (responsible for “solving” the base case subprob-

lems). In Chapter 4, we summarize our results and mention some further

problems one can consider next.

12



Chapter 2

Properties of a Structured
Near-Optimum Solution

2.1 Problem Specification and Parameters

Suppose we are given n vertical line segments s1, . . . , sn of length in the range

[1, λ], where the top and bottom points of each si are denoted by sti and sbi ,

respectively. These end-points are also called tips of the segment. For any

point p, let x(p) and y(p) denote the x and y-coordinates of p, respectively.

Similarly, for any segment or vertical line s, let x(s) denote its x-coordinate.

For two points p, q, we use ||pq|| to denote the Euclidean distance between

them. A TSP tour on the plane is specified by a sequence of points where

each of these points is on one of the segments of the instance such that each

line segment has at least one such point, and the tour visits these points

consecutively using straight lines. The line that connects two consecutive

points in a tour is called a leg of the tour. In our problem, the goal is to find a

TSP tour of minimum total length that touches (i.e. has an intersection with)

each of these line segments. As mentioned earlier, we focus on the case where

all line segments have length 1 and then show how the proof easily extends to

the setting where they have lengths in [1, λ]. So from now on, all line segments

are assumed to be unit length. Fix an optimum solution, which we refer to

by OPT and use opt to refer to its cost. Our goal is to show the existence

of a near-optimum (i.e. (1 + ε)-approximate) structured solution that allows

us to find it using dynamic programming. We will state and prove a series of
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properties for OPT and later show how we can modify OPT to a near optimum

solution with further structures.

First we show at a small loss we can assume all the line segments have

different x-coordinates. We assume that the minimal bounding box of these

line segments has length L and height H. For now, assume H > 3 (see

Theorem 3). Let B = max{L,H − 2}. So opt ≥ 2B; we can also assume

B ≤ n
ε
, because otherwise opt ≥ 2n/ε and if we consider an arbitrary point on

each line segment (say the lower tip) and solve the classic TSP (using a PTAS)

for these points, then it will be a PTAS for our original instance as well; that

is because we pay at most an extra +2 for each line for a total of 2n which is

O(ε · opt). For a given ϵ > 0, consider a grid on the plane with side length ϵB
n2 .

Now move each line segment (parallel to the y-axis) so that the lower tip of

each si is moved to the nearest grid point where there is no other line segment

si with that x-coordinate. By doing this, all segments will have different x-

coordinates and each segment would move at most
√
2
2
· εB

n
< ϵB

n
, and in total,

all segments would move at most a distance of ϵB. So the optimum value of

the new instance has cost at most (1 + ε) · opt. For simplicity of notations,

from now on we assume the original instance has this property and let OPT

(and opt) refer to an optimum (and its value) of this modified instance.

As mentioned before, let the length of the sides of the minimal bounding

box of an instance of the problem be L×H. The following theorem holds:

Theorem 3 If H ≤ 3, then the shadow of an optimum solution is at most 2.

We will not prove this theorem just yet, as we need some definitions and

properties before we can prove it. In Section 2.5, we will prove this theorem.

For now, assume that H > 3 for the lemmas and definitions in the following

sections.

2.2 Structure Theorem

Our main goal is to prove Theorem 2. First we start by stating several prop-

erties for an optimum and later for a near-optimum solution.
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In Section 2.3, we show the properties of an optimum solution; Subsection

2.3.1 includes the main property we want to prove. The lemma in Subsection

2.3.1, essentially proves that if we focus on a connected subpath of OPT in a

bounded-height strip, then that subpath can be partitioned into disjoint parts

made from structures called sinks and zig-zags (see Definition 8). We will

leverage this property along with the properties proved its following subsection

to find a structured solution with low complexity. Our notion of complexity

is referred to as the shadow of the solution (see Definition 1). The shadow of

a solution directly affects the size of the DP-table in Chapter 3.

In Section 2.4, we prove three main lemmas. The lemma in Subsection 2.4.1

shows that the aforementioned partitions in Subsection 2.3.1 (namely sinks and

zig-zags) can be altered to a near-optimum solution such that each of them

have a low complexity (more precisely, a constant shadow). In Subsection

2.4.3, we show that with some alterations, the number of subpaths of OPT

that vertically overlap with each other (this is formally defined later on) can

be bounded (at no extra cost) to a constant integer. All the alterations will

lead to a solution with at most an O(ε)-factor increase in cost for the given

ε > 0 and all the constant bounds are O(1/ε) at worst. The three lemmas

we mentioned so far, are alone enough to prove Theorem 2. The proof of that

Theorem is in Section 2.6. There is an additional lemma in Subsection 2.4.2

that we later use in the DP for the problem. That lemma ensures that the

number of “guesses” we need to take in our subproblems of the DP will be

polynomially bounded. The near-optimum solution we provide will satisfy all

these lemmas we mentioned. We will also prove Theorem 3 in Section 2.5.

2.3 Properties of an optimum Solution

We start by stating some lemmas that give a better understanding of the

geometrical properties of an optimum solution, and later build up the proof of

the lemma in subsection 2.3.1 from these properties.

One special instance of the problem is when there is a horizontal line that

crosses all the input segments. This special case can be detected and solved
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easily. Otherwise, any optimum solution will visit at least 3 points that are

not colinear. In such cases, like in the classic (point) TSP [4], we can assume

the optimum does not cross itself, i.e. there are no two legs of optimum ℓ

(between points p, q) and ℓ′ (between points p′, q′) that intersect, as otherwise

removing these two and adding the pair of pq′, p′q or pp′, qq′ will be a feasible

solution of smaller cost.

Observation 1 OPT is not self-crossing.

Definition 1 Given a collection P of paths on the plane and a vertical line

at point x0 ∈ R, the shadow at x0 is the number of legs of the paths in P that

have an intersection with the vertical line at x0. The shadow of a given range

[a, b] is defined to be the maximum shadow of any of values x0 ∈ [a, b].

Note that if a solution is self-crossing, the operation of uncrossing (which

reduces the cost) does not increase the shadow. Suppose the sequence of

points of OPT is p1, p2, . . . , pσ and the straight lines connecting these points

(i.e. legs of OPT) are ℓ1, ℓ2, . . . , ℓσ where ℓi connects two points pi, pi+1 (with

pσ+1 = p1), and each si has at least one point pj on it. We consider OPT

oriented in this order, i.e. going from pi to pi+1. Since all segments have

distinct x-coordinates, we can assume:

Observation 2 No two consecutive points pi, pi+1 can be on the same line seg-

ment of the instance (or else we can short-cut them), all points pi on different

line segments have distinct x-coordinates, and no leg ℓi is vertical.

Definition 2 Given a segment s of the problem (or any vertical line s) and a

leg ℓ touching it (i.e. incident to a point on s), we say ℓ is to the left of s if ℓ

is entirely in the subplane x ≤ x(s); and ℓ is to the right of s if ℓ is entirely

in the subplane x ≥ x(s).

Since there are no vertical legs, there is no leg that is both to the left and to

the right of a segment of the instance at the same time.

Consider any segment si of the problem, and suppose that ℓj, ℓj+1 are the

two legs of OPT with common end-point pj that is on si. Let s
t
i and sbi denote
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the top and the bottom tips of si. We consider 3 possible cases for the location

of pj and the arrangement of ℓj, ℓj+1. Informally, one possibility is that the

two legs ℓj, ℓj+1 form a straight line that crosses si at pj; one possibility is that

the two legs are touching si at one of its tips (i.e. pj = sti or pj = sbi) such that

one is to the left and one is to the right of si and they don’t make a straight

line, and the third possibility is that the two legs ℓj, ℓj+1 are on the same side

(both left or both right) of si.

Observation 3 Consider any segment si of the problem, and suppose that

ℓj, ℓj+1 are the two legs of OPT with common end-point pj that is on si. Let

sti and sbi denote the top and the bottom points of si. Then either:

� (Straight point): the subpath of OPT going through pj−1, pj, pj+1 forms

a straight line and ℓj and ℓj+1 are on two sides (left/right) of si and

∠ℓipjℓi+1 = π; in this case pj is called a straight point, or

� (Break point): pj is a tip of si (i.e. pj = sti or pj = sbi), ∠ℓipjℓi+1 ̸= π

and ℓj and ℓj+1 are on two sides of si (one left and one right); in this

case pj is called a break point, or

� (Reflection point): both ℓj, ℓj+1 are on the left or both are on the right of

si; in this case pj is called a reflection point.

For the case of a reflection point pj with two legs ℓj, ℓj+1, if both legs are

to the left of the segment it is called a left reflection point and otherwise it is

a right reflection point.

Also note that if ℓj, ℓj+1 are on the two sides of si and ∠ℓipjℓi+1 ̸= π, then

pj must be a tip or else we could move pj slightly up or down and reduce the

length of OPT (see Figure 2.1).

Figure 2.1: If pj isn’t a tip of si, then ℓj, ℓj+1 must be collinear
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We now state several lemmas about the structure of OPT.

Lemma 1 If P is a subpath of OPT with end-points p, q where both are to the

right of a vertical line Γ, and if P crosses Γ, then the left-most point on P to

the left of Γ is a right reflection point (symmetric statement holds for opposite

directions).

Proof. Let r (on segment s) be the left-most point P visits, so both subpaths

Ppr = p → r and Pqr = q → r are entirely to the right of r, in particular

the two legs ℓ− and ℓ+ of P incident to r (which are the last two legs of the

subpaths Ppr, Pqr) must be on the right of s which implies that r is a right

reflection point.

Definition 3 Consider an arbitrary reflection point r on a segment s. Let the

two legs of OPT incident to r visited before and after r (on the orientation

of OPT) be ℓ− and ℓ+, respectively. ℓ− is said to be on top of ℓ+ if all the

points of ℓ− have larger y-coordinate than all of points of ℓ+. In this case

we also call ℓ− the upper leg and ℓ+ the lower leg. Also, in this case r is

called a descending reflection point. If ℓ+ is on top of ℓ−, then r is called an

ascending reflection point.

Definition 4 If ℓj, ℓj+1 are two legs incident to a reflection point p on a seg-

ment s, if the angle between ℓj and s is the same as the angle between ℓj+1 and

s (i.e. ℓj+1 is like the reflection of ray ℓj on mirror s), then p is called a pure

reflection point.

Lemma 2 Any reflection point that is not a tip of a segment is a pure reflec-

tion point.

Proof. Suppose pj is a reflection point on si and is not a tip of it. If the

two legs ℓj, ℓj+1 don’t have the same angle with si, then we can move pj along

si slightly up or down and one of the moves will decrease the cost of OPT, a

contradiction.
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Lemma 3 If a sweeping vertical line Γ moves left to right on the x-axis, the

only values of x for which the shadow at Γ changes will be when Γ hits a

reflection point on that x-coordinate. Specifically, this means that any subpath

of OPT that doesn’t contain a reflection, must have a shadow of 1 throughout

its length. We say a subpath contains a reflection point pj if pj is not at the

start or the end of the subpath (i.e. both legs of incident to pj belong to that

subpath.)

Proof. According to Observation 3, we can see that straight points or break

points will always contribute 1 to the shadow of Γ. But reflection points,

depending on which direction the sweeping line moves, will either increase or

decrease the shadow by 2. If a path doesn’t contain any reflections, it means

that it can only contain straight points or break points, meaning its shadow

throughout its length will be equal to 1.

Definition 5 Let P1 and P2 be any two subpaths of OPT. We say P1 is above

P2 in range I = [x0, x1] if for every vertical line Γ with x(Γ) ∈ I, the top-most

intersection of Γ with these two paths is a point on P1. We say P2 is below

P1 if the bottom-most intersection of Γ with P1, P2 is a point on P2. Similarly,

we say L1 is to the left of L2 in range I ′ = [y0, y1] if for every horizontal line

Λ with y(Λ) ∈ I ′, the left-most intersection point of Λ with L1, L2 (i.e. one

with the least x value) always belongs to L1. We say L2 is to the right of L1

if the right-most intersection of Λ is with L2.

Figure 2.2: In range I, P1 is above P2, P3, and P2 is above P3.
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Lemma 4 For any distinct points pj and pj′ on OPT, following OPT accord-

ing to its orientation, either the path from pj to pj′ or the path from pj′ to pj

must contain at least one reflection point.

Proof. Without loss of generality, assume x(pj) < x(pj′), and following the

orientation of OPT starting from pj, suppose the path from pj to pj′ does not

contain any reflection points (or the statement of lemma holds). According to

Observation 3, the x-coordinate of points on OPT will not decrease if and only

if the path contains only straight points or break points. The path from pj′ to

pj has to have a decrease in the x-coordinate, due to x(pj′) > x(pj), which is

only possible if there is a reflection in this part of the path.

Lemma 5 Let rj be any reflection point on OPT, say it is a right reflection

point, with incident legs ℓi, ℓi+1. Without loss of generality, assume that ℓi is

above ℓi+1. Take any two subpaths P1 and P2 of OPT both starting at rj with

shadow of 1 such that ℓi ∈ P1 and ℓi+1 ∈ P2. If there is a vertical line Γ with

x(Γ) > x(rj) that intersects with both P1 and P2, then P1 will be above P2 in

range I = [x(rj), x(Γ)].

Proof. Note that for any vertical line Γ′ with x(Γ′) ∈ I, both P1 and P2 will

intersect with it. Now assume the contrary, that P1 is not above P2. This

means for some vertical line Γ′ with x(Γ′) ∈ I, there are points p1 and p2

on Γ′ such that p1 ∈ P1, p2 ∈ P2, and y(p2) > y(p1). Since both P1 and P2

have a shadow of 1, then using Lemma 3, we get that neither of them have

a reflection point; this implies that the value of the x-coordinate on both P1

and P2 is monotone (or else there must be a reflection point). Since P1 travels

from rj to p1 and P2 travels from rj to p2, both are crossing the same vertical

lines (at x = x(rj) and Γ′). Now, because ℓi is above ℓi+1 but p1 is below p2,

we conclude that P1 and P2 will intersect with each other in the area between

the vertical lines Γ′ and x = x(rj). This is a contradiction, hence the lemma.

Lemma 6 Among the set of points visited by OPT following its orientation,

suppose pj, pj′, j < j′ (on segments si, si′, respectively) are two consecutive
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reflection points (i.e. no other reflection point exists in between them). Then

pj and pj′ cannot be both left or both right reflection points. Furthermore, if si

is to the left of si′ then pj is a right reflection and pj′ is a left reflection (the

opposite holds if si′ is to the left of si).

Proof. Without loss of generality, assume that si is to the left of si′ , meaning

x(pj) < x(pj′). By way of contradiction, first suppose both pj and pj′ are right

reflection points, i.e. the two legs incident to pj (ℓj, ℓj+1) and the two legs

incident to pj′ (ℓj′ , ℓj′+1) are on the right of si and right of si′ , respectively.

This means following the orientation on OPT, along ℓj we have a decrease in x-

coordinate, then following ℓj+1 have an increase, then again following ℓj′ have a

decrease and following ℓj′+1 have an increase. So the value of the x-coordinate

isn’t monotone in the subpath of OPT from pj to pj′ (excluding these two

points themselves), because the legs ℓj+1 and ℓj′ are visited in this path in this

order. Similar to the proof in Lemma 4, we see that this is only possible if

there is a reflection point on this subpath, which contradicts the assumption

that pj, pj′ are consecutive. Similar argument implies that we cannot have

both pj, pj′ being left reflections or pj being a left reflection and pj′ being a

right reflection; otherwise the leg after visiting pj will have decreasing x-value

while it will have to visit pj′ eventually, which has a larger x-value. So the path

from pj to pj′ must include another reflection point, again a contradiction.

Corollary 1 Consecutive reflection points in OPT alternate between left re-

flections and right reflections.

Lemma 7 If segment si has a reflection point pj on it, then it cannot have

any other intersections with OPT (i.e. no other point p′j of OPT can be on

si).

Proof. Assume otherwise, that a segment si contains a reflection point pj with

legs ℓj and ℓj+1, and another point pj′ on si. We can by-pass pj locally and

reduce the length of OPT which would be a contradiction. More specifically,

let R− ∈ ℓj and R+ ∈ ℓj+1 be points on the legs that have a distance of δ > 0

21



from pj. By replacing the subpath R− → pj → R+ with R− → R+, the total

cost of OPT will decrease, which gives us a contradiction.

Figure 2.3: There can’t be another pj′ ∈ si if pj ∈ si is a reflection.

We decompose the problem into horizontal strips by considering some hor-

izontal lines. Starting from the bottom tip of the top-most segment, draw

horizontal lines that are 1-unit apart, these are called cover-lines. Each input

segment is considered “covered” by the top-most (i.e. the first in this process)

cover-line that intersects with it. Let’s call these cover-lines C1, C2, . . . and so

on.

Definition 6 (strip, top/bottom segments) The region of the plane be-

tween two consecutive cover-lines Cτ , Cτ+1 is called a strip and denoted by Sτ .

We consider Cτ , Cτ+1 to be parts of Sτ as well. The input line segments that

are intersecting the top cover-line of Sτ (i.e. Cτ) are called top segments and

the segments covered by the bottom cover-line (i.e. Cτ+1) are called bottom

segments of the strip.

We show the near-optimum solution guaranteed by Theorem 2 has more

structural properties that will be defined later. Note that once we prove this

theorem, it follows that if we restrict a solution to h > 1 many strips, then

the shadow is bounded by O(h/ε) as well.

For now, let us focus on an (arbitrary) strip Sτ and imagine we cut the

plane along Cτ , Cτ+1 and look at the pieces of line segments of the instance

left inside this strip, along with pieces of OPT inside Sτ . Each top segment

is now a partial segment in Sτ that has one end on Cτ and each bottom

segment has one end on Cτ+1. Let OPTτ be the restriction of OPT to Sτ .
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For each leg of OPT that intersects Cτ or Cτ+1, we add a dummy point at

the intersection(s) of that leg with Cτ and Cτ+1 (so that the components of

OPTτ become consistent with our definition of legs). So OPTτ can be seen as

a collection of subpaths within Sτ (possibly along Cτ or Cτ+1); following the

orientation of OPT, each subpath of OPTτ is when it intersects with Sτ , travels

within Sτ (possibly along one of the cover-lines) until it exits Sτ . Using the

dummy points added, each path in OPTτ is a subpath of OPT that is between

two points on cover-lines (these are called the entry points of the path with

the strip. A formal definition is provided later on).

Recall Definition 5 of paths being above or below each other. Having the

definition of top/bottom segments, we get the following:

Observation 4 Consider OPTτ , the restriction of OPT to any strip Sτ . Take

any two subpaths of OPTτ like P1 and P2 such that P1 is above P2 in some

range I. If st is any top segment in range I that P2 intersects with, then P1

will also intersect with it. Similar statement holds for bottom segments if P2

is below P1.

Definition 7 (entry points, loops, ladders) For each subpath Pj of OPTτ ,

let ej and oj be the first and last intersections of Pj with the interior of Sτ .

Points ej and oj are called the entry points of Pj.

If both ej and oj lie on the same cover-line (either Cτ or Cτ+1), then Pj is

called a loop, otherwise it’s called a ladder. If a subpath of OPTτ enters Sτ

at ej on a cover-line and follows on that cover-line to point oj and exits the

strip, it is a special case of loop that we refer to as a cover-line loop.
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Figure 2.4: An example of loops and ladders in a strip Sτ

Since we’re assuming H > 3 (see Theorem 3), we can assume that OPT

is not limited to a single strip, and that it has to actually enter and exit any

given strip that it intersects with (i.e. there is no strip that OPT completely

lies inside it).

Note that if a path of OPTτ is a cover-line loop, i.e a section of the line

Cτ or Cτ+1, then the entry points of that path must be the two end-points of

this section. In other words, if for a cover-line loop of OPTτ the first point

is ej on (say) Cτ , and the last point is oj on Cτ , then this subpath must be

traveling straight from ej to oj without any change of direction. This is true

because otherwise, that cover-line loop would have to go back and forth on

some portion on a cover-line, which is only possible if it’s self-intersecting; but

this is against our assumption that OPT is not self-crossing.

The two structures defined below (called a zig-zag and a sink) are the two

configurations that can cause a large shadow.

Definition 8 (Zig-zag/Sink) Consider any loop or ladder of OPTτ , call it

P . Let R = r1, r2, . . . , rm be the sequence of points of P that are reflec-

tion points (indexed by the order they’re visited). Consider any maximal sub-

sequence rj, rj+1, . . . , rq of R with q ≥ 2 such that the segments of the reflection

points alternate between top and bottom segments and all are ascending or all

are descending, then the subpath P that starts at rj and ends at rq is called a

zig-zag.

If rj, rj+1, . . . , rq is a maximal sub-sequence of R that all belong to top segments
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or all belong to bottom segments and are all ascending or all descending. The

subpath P that starts at rj and ends at rq is called a sink (see Figure 2.5).

(a) A sink (b) A zig-zag

Figure 2.5: Examples of sinks and zig-zags. The bold black dots represent the
reflection points along these paths.

Using Corollary 1, the reflection points in a zig-zag or sink should alternate

between left and right reflections.

Lemma 14 in Section 2.3.1 is used critically to show that very specific

structures (made by zig-zags and sinks) are responsible for having large shadow

along a ladder or loop in OPTτ . And we can partition each ladder or loop

into parts (subpaths), such that the shadow of the ladder/loop is equal to the

maximum shadow among these parts; and that each part is a path consisting

of up to three sinks and/or zig-zags. So the shadow of a loop/ladder is with

O(1) of the maximum shadow of zig-zag/sinks along that.

Before getting to the proof of Lemma 14, we still need to state some further

lemmas and definitions.

Definition 9 Let OPTτ be the restriction of OPT to any strip Sτ . We say a

segment s ∈ Sτ is exclusively covered by some path P ∈ OPTτ if P covers s
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but no other subpath of OPTτ intersects with s, i.e. OPTτ/P doesn’t intersect

with it.

Lemma 8 Each loop with entry points on Cτ+1 in OPTτ (i.e. bottom cover-

line of Sτ) must exclusively cover a top segment, or else it must be a cover-line

loop. Analogous argument holds for loops that have entry points on Cτ .

Proof. Suppose P is a loop with entry points e1, o1 on Cτ+1 that does not

exclusively cover a point on a top segment. This implies if we change it to

cover only bottom segments in Sτ , then the solution remains feasible. Let

sℓ and sr be the left-most and right-most bottom segments that P covers,

let qℓ, qr be intersections of sℓ and sr with Cτ+1, respectively. Replace P with

e1, qℓ, qr, o1 and then short-cut e1, o1 like the way we argued for cover-line loops

after Definition 7. So we obtain a path that is shorter than the original, but

is a cover-line loop and covers all the (bottom) segments P was covering.

Corollary 2 If P is a non-cover-line loop with entry points on the bottom

cover-line of some strip Sτ , then P has to exclusively cover some top segment

in Sτ . Similar argument holds for bottom segments and non-cover-line loops

with entry points on the top cover-line.

Lemma 9 Suppose that OPTτ is crossing a vertical line Γ at least two times.

Let p1, p2 be two such crossings and, L1 be a subpath of OPTτ from p1 to p2

with no other crossings with Γ. Then there cannot be any other crossings of

OPTτ with Γ on the section p1p2 of Γ.

Proof. Without loss of generality, since L1 doesn’t intersect with Γ other than

at points p1 and p2, assume that L1 is on the left of Γ. By way of contradiction,

suppose q1 is another crossing of OPTτ with Γ such that y(p1) < y(q1) < y(p2).

This implies that there is a subpath of OPTτ inside the region A = L1 ∪ p1p2

with one end-point being q1. So there must be another crossing of OPTτ with

the region A = L1 ∪ p1p2; and since OPTτ is not self-crossing, that other

crossing point with A must be on p1p2, call it q2. Let us denote the subpath of

OPTτ inside A with end-points q1, q2 by L2. Let r1 be the left-most point on
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L1. Since L1 is a path from a point on Γ to the left of Γ and back to a point

on Γ, using Lemma 1, r1 must be a right reflection point. Similarly, if r2 is the

left-most point on L2 then r2 must be a right reflection point, say on segment

sr2 (see Figure 2.6). But since r2 is inside A, then regardless of whether sr2

is a top segment or a bottom segment it will intersect with L1, contradicting

Lemma 7.

Figure 2.6: Configuration for Lemma 9

The following lemma is a special case of Lemma 9 but since it is used

frequently, we state it as a separate lemma.

Lemma 10 Consider a strip Sτ and OPTτ (the restriction of OPT within

this strip). Let s be any segment in this strip which has a reflection point pj

on it. Without loss of generality, assume s is a top segment and pj is a left

reflection point. Let ℓu and ℓl be the upper and lower legs of OPTτ incident

with pj. Then the subpath of OPTτ starting at pj and traveling on ℓu, will not

reach to the right side of s.

Proof. Suppose the subpath of OPTτ starting at pj and traveling along ℓu,

call it Pu, reaches the right side of s while entirely within strip Sτ . So Pu

crosses the vertical line x = x(s) at a point p inside Sτ (different from pj).

This path will be L1 in the setting of Lemma 9 and pj, p will be p1, p2 of the

lemma. Consider the subpath Pl of OPTτ starting at pj and following ℓl. This

subpath is in the region defined by Pu and the vertical line at x = x(s). Since
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OPT is non-self-crossing, Pl has to exit this area between the lower tip of s

and point p. But this will violate Lemma 9. This contradiction results in the

statement of the lemma.

Figure 2.7: In a strip Sτ , the path from the upper leg of a left reflection on a
top segment, can’t reach to the right of that segment.

Lemma 11 Suppose P1 and P2 are two ladders of OPTτ in Sτ with entry

points e1 and e2 on the bottom cover-line and entry points o1, o2 on the top

cover-line, respectively, such that x(e1) < x(e2), x(o1) < x(o2) and both inter-

sect a vertical line Γ to the right of e1, e2. Then P1 is above P2 to the left of

Γ. (symmetric arguments apply to the top cover-line as well as entry points to

the right of Γ)

Proof. By way of contradiction, suppose P1 is not above P2 on the left of Γ,

so there is a vertical line Γ′ to the left of Γ whose top-most intersection is with

P2, say point p on Γ′. Consider the (vertical) segment of Γ′ from p to the top

cover-line, call it Γ′′ and let the subpath of P2 from e2 to p be called P ′
2. If

we cut the strip Sτ along P ′
2 ∪ Γ′′, then e1 is on one side, and o1 on the other,

which implies L1 must be crossing P ′
2∪Γ′′, which would be a contradiction (as

it would have an intersection point on Γ′ higher than p or has to cross P ′
2).

Lemma 12 Let P be any ladder or loop of OPTτ in strip Sτ . Let ri1 (on

segment sm1) and ri2 (on segment sm2) and ri3 (on segment sm3) be any three

consecutive reflections in the orientation of OPTτ in that order. If x(ri2) <

x(ri1) < x(ri3) and ri2 is an ascending reflection, then sm1 is a bottom segment

and ri1 is an ascending reflection. Symmetric argument applies for ri2 being a
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descending reflection (for which case sm1 will be a top segment and ri1 will be

descending).

Proof. See Figure 2.8. According to Lemma 6, since ri1 and ri2 are consecutive

reflections with x(ri2) < x(ri1), then ri1 is a left reflection and ri2 is a right

reflection. Let P1,2 be the subpath of P from ri1 to ri2 , and P2,3 be the subpath

of P from ri2 to ri3 . Since ri2 is an ascending reflection, then P1,2 contains the

lower leg of ri2 , and P2,3 contains the upper leg of ri2 .

Since ri1 and ri2 are two consecutive reflections with x(ri1) > x(ri2), this means

that P1,2 cannot reach to the left of ri2 or to the right of ri1 ; because otherwise

due to the difference in the x-coordinates, P1,2 would require an additional

reflection between ri1 and ri2 , which isn’t possible.

This implies that the entirety of P1,2, and specifically ri1 , are in the region

defined by x = x(ri2), x = x(ri1), and the path P2,3. So P1,2 is below P2,3 in

I = [x(ri2), x(ri1)].

Figure 2.8: Valid arrangement of three consecutive reflections provided the
x-coordinate of ri1 is between the x-coordinates of ri2 and ri3 , and ri2 is an
ascending reflection. Segments sm2 and sm3 could either be top or bottom
segments in this strip, but sm1 must be a bottom segment.

Since x(ri2) < x(ri3) and P2,3 is a path between these two reflections, we get

that for any x0 ∈ [x(ri2), x(ri3)], there is an intersection between x = x0 and

P2,3. Now for the sake of contradiction, assume sm1 is a top segment. Since ri1

is below P2,3, this would imply that sm1 is intersecting with P2,3. But this is

in violation with Lemma 7. Thus, sm1 must be a bottom segment. According

to Lemma 10, ri1 cannot be a descending reflection, because otherwise, P1,2
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would contain the lower leg of ri1 ; therefore, the path P1,2∪P2,3 is a path that

contains the lower leg of ri1 and reaches to the right of segment sm1 , which

isn’t possible. So we conclude that sm1 is a bottom segment and furthermore,

ri1 is an ascending reflection.

Lemma 13 Suppose P is a loop or ladder of OPTτ for a strip Sτ and ri1 , ri2 , ri3

are three reflection points visited in this order but not necessarily consecutively

(following orientation of OPT), all are ascending (or all are descending) and

are on segments sm1 , sm2 , sm3, respectively. Assume that ri1 , ri3 are left reflec-

tions and ri2 is a right reflection and ri2 is to the left of both ri1 and ri3, i.e.

x(sm2) < x(sm1) and x(sm2) < x(sm3).

Let P0,1 be the subpath of P up to ri1, P1,2 be the subpath of P from ri1 to ri2,

P2,3 be the subpath of P from ri2 to ri3, and P3,4 be the subpath of P from ri3

to the end of P . Then we cannot have both P0,1 and P3,4 reach to the left of

x(sm2).

Proof. Each of P1,2 and P2,3 include a leg of ri2 ; Without loss of generality,

assume that the lower leg of ri2 is in P1,2, and its upper leg is in P2,3 (i.e. assume

that ri2 is an ascending reflection). We take two cases based on whether sm2

is a top segment or a bottom segment:

� sm2 is a top segment: Path P u
2 = P2,3 ∪ P3,4 includes the upper leg of

ri2 (a right reflection) on a top segment sm2 , so we can use the result of

Lemma 10 to conclude that P u
2 and particularly P3,4 can’t reach to the

left of sm2 .

� sm2 is a bottom segment: Path P l
2 = P0,1∪P1,2 includes the lower leg

of ri2 (a right reflection) on a bottom segment sm2 . Again, using Lemma

10, we get the same result that P l
2 and consequently P0,1 can’t reach to

the left of sm2 .
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Figure 2.9: Configuration of Lemma 13 when sm2 is a top segment

2.3.1 Vertically partitioning the solution in each strip

This subsection is dedicated to the proof of the following:

Lemma 14 Consider any strip Sτ and any ladder or loop P ∈ OPTτ within

Sτ . Suppose the sequence of reflection points of P is r1, . . . , rq. These reflection

points can be partitioned into disjoint parts, say part i consists of reflection

points rai , rai+1, . . . , raj , where the subpath of P from rai to raj is concatenation

of up to three sections in the following order:

a) A sink

b) A zig-zag

c) A sink

where any of these three sections can possibly be empty, and the last reflection

of a section is common with the first reflection of the next section. Further-

more, for any vertical line Γ, there is at most one of these parts (of the parti-

tion) that intersects with it, i.e. the shadow of the ladder/loop is the maximum

shadow among the parts plus 2.

The proof of this lemma is rather involved. To give an overview of the proof,

we essentially show that for any loop or ladder in any strip, the vertical line at

which the largest shadow for that loop or ladder happens, can intersect with

at most two sinks and a zig-zag. So the shadow of a loop or ladder is O(1) of

the maximum shadow of the zig-zags and sinks along that.

If q ≤ 2 then the correctness of lemma follows easily; so let’s assume q > 2.

Starting from i = 1, find the largest j such that the sequence ri, . . . , rj are all
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monotone, i.e. are all ascending or all are descending reflections. This will be

the first part. We set i = j+1 and again, find the largest j such that ri, . . . , rj

are monotone; this becomes the 2nd part. We repeat this procedure. So we

find a partition into maximal sub-sequences of consecutive reflection points

ra’s such that each sub-sequence contains only ascending or only descending

reflections; each part might have just one point and the subpath path between

the last reflection point of a part and the first reflection point of the next part

has shadow 1 (since change in shadow can only happen if there is a reflection

point by Lemma 3). The proof has two parts, we first show that each part

can only have up to two sinks and possibly a zig-zag in between them, and

then we show that for any vertical line, there is at most one part intersecting

with it. Since the subpath from one part to another is a path between two

consecutive reflections (and has shadow 1) the statement of the lemma will

follow. We will use the following claim throughout this proof:

Claim 1 For any subpath P of OPTτ that is either a loop or a ladder, let rj

(on segment sm) and rj′ (on segment sm′) be any two consecutive reflections

along P . Without loss of generality assume that rj is an ascending left reflec-

tion and in the orientation of OPTτ , rj comes before rj′. If both sm and sm′

are bottom segments, then the subpath of P up to rj (which includes the lower

leg ℓj) can only contain reflection points lying on bottom segments. Analogous

statement holds when both sm, sm′ are top segments.

Proof. According to Lemma 6, rj′ is a right reflection and sm′ is to the left of

sm. Let Pj be the subpath of P from rj to rj′ . Refer to the area of Sτ enclosed

by sm and sm′ and below Pj by Aj; then ℓj lies inside Aj (see Figure 2.10).

Let the subpath of P ending with leg ℓj be called P ′
j . So P ′

j is entirely within

Aj as it cannot intersect with either of sm, sm′ (due to Lemma 7, since they

both have reflection points) and P ′
j cannot intersect Pj other than at rj (since

the solution is not self-crossing). So P ′
j is below Pj within Aj. This implies

any top segment that intersects P ′
j must also intersect Pj due to Observation

4. So P ′
j cannot have a reflection on a top segment by Lemma 7. So P ′

j can

have reflection points only on bottom segments.
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Figure 2.10: Aj is the area in Sτ surrounded by segments sm, sm′ and the
subpath Pj

Now back to the proof of the lemma, we prove the following two parts:

1. Each partition can have up to two sinks and a zig-zag

Consider any part in the partition we defined before, which is a maximal sub-

sequence of consecutive reflections that are all ascending or all descending.

Our goal is to show this part is concatenation of a sink (possibly empty),

followed by a zig-zag (possibly empty), followed by a sink (possibly empty),

where the last point of the first sink is common with the first point of the

zig-zag, and the last point of the zig-zag is common with the first point of the

last sink. For simplicity, suppose the sequence of this part is R = r1, . . . , rk.

Without loss of generality, assume R contains only ascending reflections and

that the first one, r1, is on a bottom segment. If all ri’s belong to bottom

segments, then R is a sink and we are done. Otherwise, let j be the first index

such that rj is on a top segment (i.e. r1, . . . , rj−1 are all on bottom segments).

If j = 2, i.e. r1 was a bottom and r2 is a top segment, then the first sink is

empty and this part starts with a zig-zag. If j > 2, then r1, . . . , rj−1 is a sink.

We argue that starting at j′ = max{1, j − 1}, we can form a zig-zag. Let m

be the largest index such that rj′ , rj′+1, . . . , rm is a zig-zag, i.e. the reflection

points alternate between top and bottom segments. If no such m exists, it

means rj′ , . . . , rk all belong to top segments, giving us a sink; so this together

with the first possible sink gives us two sinks at most, concluding the lemma.

If m = k, then the partition has (up to) a single sink followed by a zig-zag,

and we’re done. Otherwise, m < k, meaning rm+1 ∈ R. Since any zig-zag has
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at least 2 reflections, we have m ≥ 2, meaning rm−1 ∈ R and since alternation

between top and bottom ends at rm, it means rm and rm+1 are both either

on top segments or both on bottom segments. We show that they can’t be

both on bottom segments. For the sake of contradiction, assume otherwise,

i.e. both rm and rm+1 are on bottom segments (and we assumed they are

ascending). Also we know rm−1 is on a top segment (as it must be different

from rm). This violates Claim 1; because rm−1 is on a top segment and is on

the subpath of OPTτ reaching rm. Thus both rm, rm+1 are on top segments.

Without loss of generality, assume that rm is a left reflection; Lemma 7 implies

rm+1 is right reflection with x(rm+1) < x(rm). Let the path from rm to rm+1

be Pm. Let Am denote the area (of Sτ ) bounded by Pm and between the

segments containing rm and rm+1. If ℓm′′ , ℓm′′+1 are the legs incident to rm+1

in the orientation of OPT, then ℓm′′+1 lies inside Am (see Figure 2.11). Once

again using Claim 1, we get that there can’t be any reflections in the subpath

in P starting at rm+1 through ℓm′′+1 that lie on a bottom segment. This implies

all of rm, rm+1, . . . , rk lie on top segments. Since all the remaining reflections

are on top segments and all are ascending, this by definition means they form

a sink. Thus, in total, we have up to a (bottom) sink, a zig-zag, and a (top)

sink in this partition, concluding the first part of the proof.

Figure 2.11: The upper leg of rm+1 lies inside Am, and therefore, so does the
rest of the path of OPTτ until rk.

2. Any vertical line can intersect at most one part

Recall that r1, r2, . . . , rq denotes the sequence of all the reflection points on

P (in strip Sτ ). Let’s call this R. If R is made of only ascending or only
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descending reflections, we are done as it will have only one part in the partition.

Otherwise, there must be two consecutive reflections ri, ri+1 ∈ R such that one

is an ascending reflection, but the other is descending. Suppose i is the first

index that this happens. So the subpath from r1 to ri is one part, and ri+1

is the start point of another part. Note that the path from ri to ri+1 has no

reflection points; hence has shadow 1 because of Lemma 3. Without loss of

generality, assume ri is a right reflection and is an ascending reflection. Then

ri+1 is descending and according to Lemma 6, it must be a left reflection as

well with x(ri) < x(ri+1). Let Pi be the subpath of P from ri to ri+1. Since

q > 2, we either have i > 1 or (if i = 1 then) i + 1 < q; meaning ri−1 ∈ R

or ri+2 ∈ R. In other words, there either is a reflection in R before ri, or

there is a reflection after ri+1. Assume the first case holds, similar argument

applies to the second one. Since ri is a right reflection, using Lemma 6, we get

that ri−1 is a left reflection with x(ri) < x(ri−1). We claim that we must have

x(ri−1) < x(ri+1). For the sake of contradiction, assume otherwise. This means

we have x(ri) < x(ri+1) < x(ri−1). So we can use the result of Lemma 12 with

parameters being i1 = i + 1, i2 = i, i3 = i − 1 and following the points in

reverse order of orientation, i.e. ri+1 → ri → ri−1 (this is the mirrored setting

of Lemma 12). This implies ri+1 must be a descending reflection in the reverse

orientation, which means it must be ascending in the original orientation (that

ravels ri to ri+1). But we assumed ri+1 is descending. This contradicts Lemma

12 and proves our initial claim that x(ri−1) < x(ri+1). (see Figure 2.12). Thus,

Figure 2.12: If between ri and ri+1 one is ascending and the other is descending,
then ri−1 (or ri+2) must have an x-coordinate between x(ri) and x(ri+1)
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x(ri) < x(ri−1) < x(ri+1). Let sj be the segment of the instance that ri−1 lies

on. Once again, using Lemma 12, we get that ri−1 is an ascending reflection

and sj is a bottom segment (see Figure 2.13).

According to Lemma 10, we get that the subpath of P from r1 to ri−1

(since it contains the lower leg of ri−1 due to it being an ascending reflection)

can’t reach to the right of sj.

We will show that the subpath of P from ri+1 to rk will not reach to the left

of sj either. This implies no vertical line can at the same time cross the first

part that ends at ri and the other parts starting at ri+1 onward. Repeating this

argument implies no vertical line can intersect two parts as wanted. Consider

the area surrounded by the line x = x(sj) and Pi−1 ∪Pi, and refer to it by Aj.

Now consider the subpath of P from ri+1 to rk and refer to it as Pi+1. Similar

to the proof of Lemma 10, Pi+1 can’t enter Aj, because in order to exit from

Aj, it has to reflect at some point inside Aj. But for such a reflection point to

exists, there has to be a segment containing it, and that segment will intersect

with Pi−1 or Pi, which contradicts Lemma 7. So we conclude that if Pi+1 were

to go to the left of sj, it has to do so from outside of Aj, i.e. from above Pi

(since Pi is the upper hull of Aj).

Take two cases based on whether the segment sj′ that contains ri+1 is a

top segment or a bottom segment:

� sj′ is a top segment:

The area of Sτ is cut into two parts by Pi−1 ∪ Pi ∪ sj ∪ sj′ . Since ri+1

is a descending reflection, then the lower leg of ri+1 is in the same part

as the bottom tip of sj′ ; refer to this part by A1 and let A2 be the other

area. Since Pi+1 includes this leg, it means that if Pi+1 is going to reach

to the left of sj, it has to reach from A1 to A2. This would require it to

either intersect with Pi or with sj′ . The former isn’t possible because it

would make OPT self-crossing, and the latter isn’t possible because of

Lemma 7.

� sj′ is a bottom segment:

The lower leg of ri+1 is in the area Aj′ surrounded by Pi−1∪Pi∪ sj ∪ sj′ .
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Since we mentioned Pi+1 can’t reach inside of Aj, then it needs to exit

Aj′ and go over Pi. This means Pi+1 has to either intersect with Pi or

sj′ , which gives us the same contradictions as above.

Figure 2.13: If ri is an ascending reflection and ri+1 is a descending reflection,
then ri−1 must be an ascending reflection lying on a bottom segment. ri and
ri+1 can be either on top or bottom segments.

So we conclude that there is no vertical line Γ that intersects both subpath

P−
i =

⋃︁i
u=1 Pu and subpath Pi+1 =

⋃︁k
u=i+1 Pu. Thus, r1, . . . , ri gives us a

partition as desired. By continuing this process for the rest of the reflections,

we get that no vertical line can intersect two parts. Since the path between

two conseutive parts (last reflection of one part and the first reflection of the

next part) has shadow 1, this completes the proof of the last part of Lemma

14.

2.4 Properties of a Near optimum Solution

As mentioned before, we prove three main lemmas in subsections 2.4.1, 2.4.2,

and 2.4.3. In this section, we make alterations to an assumed optimum solution

such that some new structural properties hold; we ensure that the alterations

have a limited additional cost.

Before getting to the main lemmas of this section, we need a few more

definitions and lemmas. Note that some of the lemmas we prove here apply to

any optimum solution, but we put them in this section (rather than Section

2.3) due to their connection to the near-optimum configuration.
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Lemma 15 Let R = r1, r2, . . . , rk denote the reflection points for any zig-zag

or sink in a strip Sτ where k ≥ 3. Without loss of generality, assume r1 is on

a bottom segment and is an ascending left reflection point. Then:

� If R is a zig-zag, then x(r1) < x(r3) < · · · < x(r2i−1) < . . . and x(r2) <

x(r4) < · · · < x(r2i) . . ..

All the inequalities hold in the other direction if r1 is a right reflection

point.

� If R is a sink then x(r1) < x(r3) < · · · < x(r2i−1) < . . . and x(r2) >

x(r4) > · · · > x(r2i) . . ..

Again, all the inequalities hold in the other direction if r1 is a right

reflection point.

Proof. Assume r1, . . . , rk lie on segments si1 , si2 , . . . , sik , respectively. Also

let’s denote the path (following the orientation of OPT) from rm to rm+1 by

Pm. By definition, all Pm’s are monotone in the x-coordinates (see Lemma 3).

First, consider the case that R is a zig-zag. Since r1 is a left reflection and

si1 is a bottom segment, and all reflection points are ascending, it means r2

is a right reflection to the left of r1 (because of Lemma 6), and si2 is a top

segment. This implies P1 is a decreasing path in the x-coordinate. Once again

using Lemma 6, since r2 is a right reflection, we have x(r3) > x(r2). We claim

that x(r3) > x(r1). If this is not the case, then we have x(r2) < x(r3) < x(r1).

Using Lemma 12 for parameters ri1 = r3, ri2 = r2, and ri3 = r1 in the order

r3 → r2 → r1 (which makes these reflections descending), implies that si3 must

be a top segment, which is a contradiction. So we get x(r3) > x(r1). Analogous

argument shows that we must have x(r2) < x(r4). Iteratively applying this

argument establishes the inequalities.

Now consider the case that R is a sink. The argument is very similar to

the case of zig-zag. Note that in this case, all the segments si1 , . . . , sik are

now bottom segments, all the reflection points are ascending and they must

alternate between left and right reflection points. Since r1 is a left reflection,

r2 is a right reflection with x(r2) < x(r1) (due to Lemma 6). We again have
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x(r3) > x(r2) because of Lemma 6. Again, if we have x(r3) < x(r1), then we

have x(r2) < x(r3) < x(r2). Using Lemma 12 for parameters ri1 = r3, ri2 =

r2, and ri3 = r1 in the order r3 → r2 → r1 (which means the reflections

are descending) implies si3 is a top segment, a contradiction. Thus, we get

x(r3) > x(r1). Similar argument shows that x(r2) > x(r4), otherwise by an

application of Lemma 6, si4 must be a top segment, which contradicts the

assumption of a sink. By iteratively applying the same argument, we obtain

the inequalities stated.

Lemma 16 If pj, pj′ are consecutive reflection points in OPT, and both are

pure reflections and all the other points of OPT in between them (if any) are

straight points, then either both pj, pj′ are ascending or both are descending.

Proof. By way of contradiction, suppose pj is ascending and pj′ is descending.

Note that one is a left reflection and the other is a right reflection (as reflection

points must alternate). Suppose pj is a point on segment si, and pj′ is on

segment si′ . From the assumption, the path from pj to pj′ is a straight line.

Let ℓj, ℓj+1 be the two legs incident to pj and ℓj′ , ℓj′+1 be the two legs incident to

pj′ . From the definition of pure reflection, we need to have the angle between ℓj

and si and the angle between ℓj+1 and si be the same, and the angle between

ℓj′ and si′ and the angle between ℓj′+1 and si′ be the same. The only way

this is possible is when ℓj, ℓj+1, ℓj′+1 are all horizontal but this means OPT is

self-crossing. This contradiction yeilds the result of the lemma.

Lemma 17 Let R = r0, r1, . . . , rk be any sequence of reflections that form

a sink or zig-zag in a strip Sτ . For 1 ≤ j ≤ k let Pj be the subpath of R

between rj−1 to rj. Let P = {P1, P2, . . . , Pk}. Take any vertical line Γ and let

PΓ = {Pj1 , Pj2 , . . . , Pjm} (j1 < j2 < · · · < jm) be the maximal subset of P that

each Pj ∈ PΓ intersect with Γ. Then PΓ must be a consecutive subset of P. In

other words, PΓ = {Pj1 , Pj1+1, Pj1+2, . . . , Pj1+m−1}

Proof. We say a reflection rj is included in PΓ if Pj ∈ PΓ or Pj+1 ∈ PΓ. We

prove the following claim to use throughout this proof:
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Claim 2 There are no included left reflections to the left of Γ (and similarly

no included right reflections to the right of it).

Proof of Claim. Assume the contrary, that there is some left reflection rji

included in PΓ that is to the left of Γ. Without loss of generality, assume that

Pji ∈ PΓ. Similar to the proof of Lemma 4, the points on Pji are monotone

in the x-coordinate. This means the path from rji on Pji , is decreasing in the

x-coordinate (because rji has its legs facing left), implying Pji is completely to

the left of rji . Since Γ is to the right of rji , this means that Pji can’t intersect

with Γ, contradicting the assumption that Pji ∈ PΓ. This proves the claim.

Now back to the statement of the lemma; Without loss of generality, as-

sume that reflections in R are all ascending. For the sake of contradiction,

assume that there is an index 1 ≤ a < m for which Pja and Pja+1 aren’t con-

secutive. This means ja < ja+1 − 1, and so we conclude that the subpath

P ′ =
⋃︁ja+1−1

j′=ja+1 Pj′ of R from rja to rja+1 − 1 is on one side of Γ (or else there

will be another Pj′ ∈ PΓ with ja < j′ < ja+1). So there is at least one reflec-

tion point from R that is in P ′. Let ri be the first reflection on P ′ after rja .

Without loss of generality, assume that rja (and therefore the entirety of P ′) is

on the right side of Γ. So rja is a left reflection because of Claim 2. By Lemma

6, both ri and rja−1 (the reflection in R before rja) are right reflections.

Let rq be the end-point of Pja+1 that is to the left of Γ (either rq = rja+1 or

rq = rja+1−1). Once again, using Claim 2, we get that rq is a right reflection.

So we have three right reflections rja−1, ri, and rq such that x(ri) ≥ x(Γ) ≥

{x(rja−1), x(rq)} and the order they’re visited in R is rja−1, then ri, and then

rq. According to Lemma 15, based on whether R is a sink or a zig-zag, we

either must have x(rja−1) < x(ri) < x(rq) or the reversed inequality; which

neither are the case here. This contradiction implies the statement of the

lemma.

2.4.1 Bounding the Shadow of each Sink/Zig-zag

In this section, we prove the following lemma:
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Lemma 18 Consider OPTτ for an arbitrary strip Sτ and let optτ be the total

cost of OPTτ . Given any ε > 0, we can change OPTτ to a solution of cost

at most (1 + O(ε))optτ where the shadow of each zig-zag and sink is at most

O(1/ε).

Let σ = ⌈1/ε⌉+1 and consider any loop or ladder P ∈ OPTτ and let R be an

arbitrary zig-zag/sink along P with shadow larger than σ at some vertical line

x = x0. Without loss of generality, assume that following the orientation of

OPT along P , reflection points on R are ascending. Suppose that the subpath

of P following reflection points rj, rj+1, . . . , rk ofR is crossing x = x0 (note that

using Lemma 17, the reflection points must be consecutive). Let this subpath

of P starting at rj and ending at rk be R′ and let saj , saj+1
, . . . , sak denote

the segments that contain reflections rj, rj+1, . . . , rj+k, respectively. Also let

Pi (for 1 ≤ i ≤ k − j) be the subpath of R′ from rj+i−1 to rj+i. Note that

there might be several straight points or break points between rj′ , rj′+1 on P

(for each j′); the segments of these points are all covered by the shadow one

path (due to Lemma 3) from rj′ to rj′+1. According to Lemma 5, since all

reflections are ascending, if m1 < m2, then Pm1 is below Pm2 (in the range

that Pm1 is defined on the x-axis). So this specifically implies P1 is below any

other Pm (in the range that P1 is defined), and similarly, Pk is above any other

Pm (in the range that Pk is defined). Note that R′ is part of a zig-zag/sink

itself (the only difference with the definition of zig-zag/sink is that R′ is no

longer necessarily maximal in OPTτ ). Also, note that for each path Pi, the

x value of the points it visits between the two reflection points rj+i−1 to rj+i

are monotone increasing or decreasing (see Lemma 3). Let Ψ denote the cost

of legs of R′. It follows that rj, rj+2, rj+4, . . . are on one side of x0 (say to the

right) and rj+1, rj+3, . . . are on the other side (say left of x0). Since the number

of reflections to the right of x = x0 differs from the number of reflections to

the left of x = x0 by at most 1, then on each side of x = x0 we have at least

(σ − 1)/2 = ⌈1/2ε⌉ reflections. Let σ′ = ⌈1/2ε⌉. The idea of the proof is to

show that aside from the 2σ′ reflections at the end of of R′ (i.e. the last 2σ′

paths Pj), we can replace the paths between the rest of the reflection points
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so that it reduces the shadow of the entire R′ to O(1/ε) while increasing the

cost of the path by at most O(ε ·Ψ).

Note that using Lemma 3, each subpath Pj ofR′ is between two consecutive

reflection points and so has a shadow of 1. This implies that Pk−2σ′∪ . . .∪Pk−1

has a shadow of O(1
ε
) as it has 2σ′ consecutive reflections. We replace the rest

of R (as we describe below) with a new path of a shadow of O(1); this will

yield the result of the lemma.

When R′ is a part of a zig-zag

Figure 2.14: Alternative path for a zig-zag; The red parts are discarded. There
are further details about Γm’s that are explained throughout the proof of
Lemma 18.

Without loss of generality, assume that saj , saj+2
, . . . are bottom segments

and to the right of x = x0, and consequently, saj+1
, saj+3

, . . . are top segments

and to the left of x = x0. Let dm for m = 0, 1, . . . , k−j denote |x(rj+m)− x0| .

Using Lemma 15, we have d0 < d2 < · · · and d1 > d3 > · · · . Let’s focus on the

right side of x = x0 (where the bottom segments are), so rj, rj+2, . . . , rj+2q are
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all the reflections of R′ on this side where q ≥ σ′−1. We claim that except for

at most the σ′ largest values in d2, d4, d6, . . ., all other values of d2m’s are at

most ε·Ψ and this is done by an averaging argument. More specifically, we show

that the largest integer m0 ∈ {0, 2, 4, . . . , 2q} for which we have dj+m0 ≤ ε ·Ψ,

has value m0 ≥ 2(q− (σ′ − 1)). To see why this is the case, assume otherwise,

that for all even integers m ≥ 2(q − (σ′ − 1)), we have dj+m > ε · Ψ. Adding

these inequalities for m = 2(q − (σ′ − 1)), 2(q − (σ′ − 2)), . . . , 2q give us

dj+2(q−(σ′−1)) + dj+2(q−(σ′−2)) + · · ·+ dj+2(q) > σ′ · (ε ·Ψ)

= ⌈1/2ε⌉ · ε ·Ψ

≥ Ψ/2,

which clearly isn’t possible, due to 2
∑︁

m∈{2(q−(σ′−1)),...,2q} dj+m ≤ Ψ; this in-

equality holds because paths Pj+m, Pj+m+1 (m ∈ {2(q−(σ′−1)), . . . , 2q}) have

to travel the x-distance from x0 to saj+m
to the reflection points rj+m, and all

these paths are part of R′. This contradiction shows our initial claim, that for

some m0 ≥ 2(q − (σ′ − 1)), we have all of dj, dj+2, . . . , dj+m0 ≤ ε ·Ψ.

We are going to change R′ from rj up to rj+m0 , but keep Pj+m0+1 and after;

this change will result in another feasible solution with an O(1) shadow up to

rj+m0 , and cost increase will be at most O(ε · Ψ). Our modification of R′ is

informally as follows (skipping some details to be explained soon). Starting

at rj instead of following P1 to rj+1, we first travel horizontally to the right

until we hit saj+m0
(the bottom segment which rj+m0 is located on), and travel

back to rj. Let’s call this horizontal back and forth subpath Γ. This subpath

Γ will ensure that all the bottom segments that R′ covers between x = x0 and

saj+m0
are covered (we may need to deviate from Γ further down if R′ goes

further below Γ at some point; will formalize this soon). The shadow of Γ will

easily be shown to be 2. Then from rj, we follow P1 and go to rj+1 which is

the left-most reflection on a top segment (to the left of x = x0). Now instead

of following P2 to go to rj+2 and then P3 to go to rj+3, we go straight from

rj+1 to rj+3 (with some little details skipped here), then to rj+5 and so on

until we get to rj+m0+1, and from there we follow R′. One observation is that

the shadow of the new path from rj+1 to rj+m0+1 is also 1 since it won’t have
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any reflection points. The rest of the path from rj+m0+1 to rk that follows R′

has at most O(σ′) reflection points and hence the shadow is O(1/ε). We show

that the new path hits all the segments R′ was hitting; and so we still have

a feasible solution where the overall increase in the cost is at most O(dj+m0),

which is bounded by O(ε · Ψ). Hence we find a modification of the path R′

with shadow bounded by O(1/ε), and cost increase is at most O(ε ·Ψ). Note

that any bottom segment (if any) to the left of x = x0 that was covered by R′,

must intersect P1; as P1 is below the rest of R′ to the left of x = x0. Thus,

any bottom segment to the left of x0 that is covered by any of the Pb>1, is

also covered by P1. There are some details missing in this informal description

that are explained below.

We will introduce a new subpath Γ0, responsible for covering all bottom

segments in R′ to the right of x = x0 until sj+m0 ; and we introduce a collection

of subpaths Γm for odd m in {1, . . . ,m0} for covering the top segments to the

left of x = x0. All of Γm’s, will have a shadow of 1. We ensure that any bottom

segment hit by R′ between sj0 and sj+m0 , is also hit by Γ0 between x = x(sj)

and x = x(sj+m0); and also any top segments that R′ was hitting in the range

that each Γm is defined, is hit by Γm, for m ≥ 1.

Consider the horizontal line y = y(rj) from saj to saj+m0
. Refer to this

horizontal portion as Γ. For reflection points rj, rj+2, . . . , rj+m0 (on bottom

segments saj , saj+2
, . . . , saj+m0

), the two paths that contain a leg incident to

rj+m are Pj+m and Pj+m+1 for each 0 ≤ m ≤ m0. Recall that using Lemma

5, Pj+m is below Pj+m+1 between saj+m−1 and saj+m. Consider the area AΓ

of the strip bounded by Γ ∪ saj ∪ saj+m0
. Then R′ ∩ AΓ are (possibly empty)

subpaths that start and end at Γ. These subpaths form the lower-envelope of

R′ ∪ Γ in AΓ (for e.g. in Figure 2.15, paths P4, P5 that reach rj+4, cross Γ at

points q41, q
4
2.).
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Figure 2.15: Γ0 is the lower envelope of the blue line (the segment Γ) together
with the green parts (portions of OPTτ that go below Γ)

We define Γ0 to be a path starting at rj that travels right along Γ and

the lower envelope of R′ in this area, i.e. whenever traveling right on Γ, if we

arrive at an intersection of R′ with Γ (say a path Pj+m) then we travel along

Pj+m inside AΓ until we hit back at Γ, and then continue traveling right. For

instance, in Figure 2.15, when traveling on Γ from rj to right, once we arrive

at q41, we follow P4 to rj+4, then follow P5 to q42, and then continue right on

Γ. Once we arrive at saj+m0
, we travel Γ horizontally back to rj. The length

of Γ0 can be bounded by the length of R′ ∩ AΓ plus 2dj+m0 ≤ 2εΨ. Also,

it can be seen that any bottom segment that was covered by R′ in between

x(rj) and x(rj+m0), is covered by Γ0 (since we travel the lower envelope of

R′ ∪ AΓ in the range we’re defining Γ0). Any top segment that is covered

by R′ within [x(rj), x(rj+m0)], must be also covered by Pm0+1; as that path

is above all other Pm’s in the range of [x0, x(rj+m0)]. After traveling Γ0, we

travel along P1 to rj+1. Now we’re going to define Γm for odd 1 ≤ m ≤ m0.

Each Γm goes from rj+m to rj+m+2 until we arrive at rj+m0+1; after which

we follow along R′ (i.e. Pj+m0+2, then Pj+m0+3 and so on). Path Γ1 will

replace P2 + P3, Γ3 will replace P4 + P5, and so on. Note that Γm’s are all to

the left of x = x0. For any two reflections rj+m and rj+m+2 that lie on top

segments saj+m
and saj+m+2

, let γm be the subpaths of R′ restricted to the area

of the strip cut by segment rj+mrj+m+2 and saj+m
and saj+m+2

(i.e. the area

between saj+m
and saj+m+2

and above rj+mrj+m+2). Path Γm is obtained by

starting at rj+m and following line rj+mrj+m+2 and whenever we hit R′, i.e. a
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subpath of γm (see Figure 2.16) we follow that subpath until we arrive back

to rj+mrj+m+2 again; we continue until we reach rj+m+2. In other words, we

follow the upper envelope of rj+mrj+m+2 ∪ R′ between rj+m and rj+m+2. If

Figure 2.16: Γm is traveling the upper envelope of the blue line (the seg-
ment rj+m rj+m+2 ) and the green parts (portions of OPTτ that go above
rj+m rj+m+2 )

we define qm1 , . . . , q
m
2im to be the intersections of R′ with Γm, ordered in the

direction of rj+m → rj+m+2, then if R′ intersects with rj+mrj+m+2 and goes

above it, it has to be at a point qmu where u is odd, and otherwise u has to be

even.

Overall, we have changed the subpaths of R′ from rj to rj+m0 as follows

(see Figure 2.14):

� Follow Γ from rj towards saj+m0
, such that every time an intersection

point with R′ (say point q02u−1) is reached, then follow along R′ until the

next intersection of R′ with Γ (say point q02u) is reached; then continue

along Γ. Repeat this process until we reach saj+m0
, then follow along Γ

from right to left directly back to rj; this is subpath Γ0

� From rj, follow P1 to reach rj+1.

� From rj+m (initially m = 1), follow Γm similar to the first step; meaning

follow the segment rj+m rj+m+2 , and when an intersection point qm2u−1

withR′ is reached, followR′ instead, until you reach the next intersection

point qm2u on rj+mrj+m+2. Repeat this process (for m = 1, 3, . . . ) until

rj+m0+1 is reached.

� From rj+m0+1, follow Pj+m0+2 and the rest of R′ to the end.
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First, we show that we still have a feasible solution, i.e. every segment that

R′ used to cover, will have an intersection with the new solution. To see why

this is the case, first note that Γ0 by definition is always on or below R′ in the

ranges it’s defined; this means that (using Observation 4) Γ0 covers any bottom

segment that R′ covers between saj to saj+m0
. Also all the top segments in this

range will be intersecting the path Pm0+1, since Pm0+1 is above all P≤m0 in this

range. Similarly, each Γm is on or above R′ in the range [x(rj+m), x(rj+m+2)],

meaning they cover all the top segments that R′ used to cover between saj+1
to

saj+m0+1
. Also, any bottom segment that was covered in this range is covered

by P1.

Next note that from rj to rj+m0+1, the shadow is at most 3. That is because

shadow of Γ0 is 2, shadow of each Γm (1 ≤ m) is 1, and shadow of P1 is 1.

Now we show the new solution has an additional cost of at most 3εΨ. All

parts of Γ0 and the rest of Γm’s that used portions of R′ can be charged onto

R′ itself. So we only have to properly charge the line segment Γ along with its

duplicate (part of Γ0) and line segments rj+mrj+m+2 (part of Γm). We know

that ||Γ|| = x(rj+m0)−x(rj) < x(rj+m0)−x0 = dm0 ≤ ε ·Ψ. So we pay at most

2εΨ extra (compared to OPTτ ) for traveling Γ0. We consider one additional

copy of Γ for the extra cost we pay elsewhere in Γm (m ≥ 1), and we are going

to use this for our charging scheme. So at the end, the total extra cost is going

to be bounded by 3εΨ.

For each two reflections rj+m and rj+m+2 that lie on top segments, note

that R′ had two subpaths paths Pj+m+1, Pj+m+2 whose concatenation makes

a path from rj+m to rj+m+2; but now, it is possible that some portions of

Pj+m+1, Pj+m+2 are used in Γ0 during our alternate solution (those that be-

longed to AΓ). But having that additional copy of Γ that we accounted for,

we can use it to short-cut the missing parts of Pj+m+1∪Pj+m+2 to again make

a path from rj+m to rj+m+2. Overall, the total length of P1 +
∑︁

m≥0 Γm that

is replacing P1 + P2 + . . . + Pj+m0+1 is at most 3εΨ larger than length of

P1 + P2 + . . .+ Pj+m0+1. Thus, we conclude the lemma for case of zig-zags.
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When R′ is a part of a sink

The proof is analogous to the case of zig-zags. Without loss of generality, as-

sume all reflections in R′ are on bottom segments. Define dm = |x(rj+m)− x0|

like before. If rj, rj+2, . . . , rj+2q are all the reflections to the right of x = x0,

then with the same arguments as the case of zig-zags, we will find an integer

m0 ≥ 2(q − (σ′ − 1)) (σ′ = ⌈ 1
2ε
⌉) for which we have dm0 ≤ ε ·Ψ.

We will replace the subpath ofR′ from rj to rj+m0 in the same fashion as be-

fore. Let Γ be the segment on the line y = y(rj) in the range [x(rj), x(rj+m0) ].

Define Γ0 to be the union of Γ with the portions of R′ that go below it. Define

each Γm for a reflection rj+m to the left of x = x0 to be the union of segment

rj+m rj+m+2 with the portions of R′ that go below it.

The same arguments as before hold, that each of Γ or rj+m rj+m+2 that we

defined above, will have an even number of intersections with R′. Define the

new path between these reflections in the same way as we did for zig-zags.

The cost arguments still hold, implying that the new path has an additional

cost of O(ε ·Ψ). Also, the new path is always on or below R′, so it covers all

the bottom segments that R′ used to cover previously. But one can see that

Pm0 is above all of R′ in the path between rj to rj+m0 . Thus, Pm0 alone will

cover all top segments that R′ used to cover. Once again, the new solution

has a shadow of at most 3 in the subpath between rj and rj+m0 and shadow

O(1/ε) afterwards. This concludes the proof for the case of sinks and the proof

of Lemma 18.

The following corollary immediately follows form Lemmas 14 and 18:

Corollary 3 There is a (1 + ε)-approximate solution in which any loop or

ladder has shadow O(1/ε).

The following definition is used in Lemma 19 that is later on applied in

our main algorithm:

Definition 10 Let R = pi, pi+1, . . . , pq be any sequence of consecutive points

in OPT such that pi and pq are reflection points. If none of pj’s in R is a tip

of a segment, then R is called a pure reflection sequence.

48



So each point in R is either a straight point or a pure reflection according to

Lemma 2.

2.4.2 Bounding the Size of Pure Reflection Sequences

In this section, we will prove the following lemma:

Lemma 19 Consider OPTτ for an arbitrary strip Sτ and suppose the total

length of legs of OPTτ is optτ . Given ε > 0, we can change OPTτ to a solution

of cost at most (1 + ε)optτ in which the size of any pure reflection sequence is

bounded by O(1
ϵ
).

We prove this by showing how to change each ladder or loop (i.e. any path of

OPTτ that starts and ends on one of the cover-lines) so that the size of each

pure reflection sub-sequence is bounded without increasing the cost by more

than (1 + ε) factor. Consider any loop or ladder P ∈ OPTτ and any maximal

pure reflection sequence P ′ = r0, r2, . . . , rk in P where k > 1
ϵ
. Let Ψ be the

length of subpath of OPTτ from r0 to rk. We show how we can modify this

subpath to another one whose length is at most (1 + O(ε))Ψ such that the

length of each pure reflection sub-sequence is bounded by O(1/ε). Note that

using Lemma 16, all ri’s are ascending or all are descending. This also implies

that the y-coordinates of ri’s are monotone. i.e. either y(r0) ≤ y(r1) ≤ · · · ≤

y(rk) or the other way around. Without loss of generality, assume it is the

former case and so all are ascending reflection points. Proof of Lemma 14,

shows if we have a maximal monotone (i.e. all ascending or all descending)

sequence of reflection points, then it consists of at most a sink followed by a

zig-zag, followed by a sink. Therefore, it suffices to bound the size of pure

reflection sequence in a single sink or a zig-zag alone as a function of 1/ε. So

let’s assume all ri’s form a single sink or all form a single zig-zag.

Recall from the definition of pure reflection sequence that there might

be straight points in P between two consecutive reflection points. For any

reflection point ri on a segment s, let d+i and d−i be the distances of ri to the

top and bottom tips of s, respectively. By the definition of a pure reflection

sequence, d−i > 0 and d+i > 0 for all 0 ≤ i ≤ k (because the reflections are not
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at the tips). With σ = ⌈1
ϵ
⌉, we break P ′ into m subpaths G1, . . . , Gm where

Gj is the subpath of P ′ from rj−1σ to rjσ, except that the last group ends at

rk. Note that the concatenation of these paths is P ′, and each subpath has

at most σ + 1 reflections. Consider any group Gj and let Gj be the cost of

the legs of P between the reflection points of Gj and let Dj be the smallest

value among minimum of d+a , d
−
a among all reflection points ra ∈ Gj, i.e.

Dj = min(j−1)σ≤a≤jσ{d+a , d−a }.

Claim 3 For each 1 ≤ j ≤ m: Dj ≤ 2ε
1−ε

· Gj.

Proof of Claim. For simplicity of notation of indices, we prove this for j = 1,

i.e. G1 = r0, . . . , rσ. As mentioned above, it suffices to show the claim for G1

being part of a a sink or a zig-zag.

• G1 is part of a sink:

Without loss of generality, assume all reflections in G1 are on bottom segments.

Consider the three consecutive reflection points r0, r1, and r2. Using Lemma

7, we get that subpath r1 → r2 (which according to the definition of pure

reflection sequence, is a straight line) does not intersect with the segment

containing r0. Since we assumed the y-coordinates of ri’s are increasing, this

implies that r1r2 and consequently r2 lie above the segment containing r0.

This along with triangle inequality yields us d+0 ≤ y(r2) − y(r0) ≤ ||r2r0|| ≤

||r0r1|| + ||r1r2||. With the same argument, we get d+i ≤ y(ri+2) − y(ri) ≤

||riri+1||+ ||ri+1ri+2|| for all 0 ≤ i ≤ σ−2 (see Figure 2.17). Considering these

inequalities for different ri’s (1 ≤ i ≤ σ− 2) and summing them up for all ri’s

in group G1, using the fact that D1 ≤ d+i , we obtain

(σ − 1) ·D1 ≤
σ−2∑︂
i=1

d+i ≤
σ−2∑︂
i=1

(||riri+1||+ ||ri+1ri+2||) ≤ 2 · G1

=⇒ D1 ≤
2

σ − 1
· G1.

This implies in a sink, D1 ≤ 2
1/ε−1

·G1 =
2ε
1−ε

·G1 and in general, Dj ≤ 2ε
1−ε

·Gj

for all 1 ≤ j ≤ m.

50



Figure 2.17: Each d+i (i ≤ σ − 2) can be charged into the lines reaching the
next two reflections

• G1 is part of a zig-zag:

The inequalities are almost analogous, but there are two of them. Without

loss of generality, assume that r1, r3, . . . are on bottom segments, and therefore

r0, r2, r4, . . . are on top segments. We give inequalities for d+i on bottom

segments, and for d−i on top segments. For i = 1, 3, . . . with i ≤ σ− 2, similar

to the case of G1 being a sink, we have d+i ≤ y(ri+2) − y(ri) ≤ ||riri+1|| +

||ri+1ri+2||. For i = 2, 4, 6, . . . , we have d−i ≤ y(ri) − y(ri−2) ≤ ||riri−1|| +

||ri−1ri−2|| (see Figure 2.18).

Now if we add these inequalities (with proper selection between d+i and

d−i′ ) we get

(σ − 1) ·D1 ≤ (d+1 + d+3 + · · · ) + (d−2 + d−4 + · · · )

≤
∑︂

i is odd, i≥1

(||riri+1||+ ||ri+1ri+2||) +
∑︂

i is even, i≥2

(||riri−1||+ ||ri−1ri−2||)

≤ 2 ·G1

=⇒ D1 ≤
2

σ − 1
· G1

And like before, this implies that in a zig-zag, D1 ≤ 2ε
1−ε

·G1, and in general,

Dj =
2ε
1−ε

· Gj.

So we see that the claim holds for loops and ladders.

Also note that if we have any three consecutive points p, rj, q on OPTτ

where rj is a reflection on segment s (with st being its top tip), then ||prj||+
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Figure 2.18: d+i (i ≤ σ−2) on bottom segments and d−i′ (i
′ ≥ 2) on top segments

can be charged into the lines reaching the next/previous two reflections

||rjq|| + 2d+j ≥ ||pst|| + ||stq|| using triangle inequality. Now consider any

group Gj (1 ≤ j ≤ m) and assume rj∗ is a reflection point in Gj that lies

on segment s for which d+j∗ = Dj (if d−j∗ = Dj, then consider the bottom tip,

sb instead). Consider the two legs of OPTτ incident to rj∗ , namely ℓj∗−1 and

ℓj∗ . Let ℓj∗−1 = parj∗ and ℓj∗ = rj∗pb where pa and pb are points on OPTτ .

Suppose we move rj∗ from its current location to st, i.e. replace the two legs

with pas
t and stpb. Note that this will remain a feasible solution as ℓj∗−1, ℓj∗

have no other intersections with any other segment (as the definition of legs).

The new cost is upper bounded by ||parj∗ ||+ ||rj∗pb||+ 2d+j , which means the

increase is bounded by 2d+j = 2Di ≤ 4ε
1−ε

· Gi.

Note that in this new solution in each group Gi, one of the points is moved

to be a tip of the segment it lies on. This implies the maximum size of a pure

reflection sequence is now bounded by 2σ = 2⌊1/ε⌋ and the total increase in

the cost (over all groups) is bounded by
∑︁

j
4ε
1−ε

· Gj = O(ε ·
∑︁

j Gj) = O(εΨ).

This completes the proof of Lemma 19.
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Our next goal, in Lemma 20, is to show that for any vertical line it can

intersect at most O(1) many loops or ladders of OPTτ in a strip Sτ . This

together with corollary 3 implies that there is a near optimum solution that

the shadow in each strip Sτ is bounded by O(1/ε). The following definition

formalizes what we mean by overlapping paths:

Definition 11 A collection of loops and or ladders are said to be overlapping

with each other if there is a vertical line that intersects all of them.

2.4.3 Bounding the Number of Overlapping Loops or
Ladders

This section is dedicated to the proof of the following lemma:

Lemma 20 Consider OPTτ , the restriction of OPT to any strip Sτ . We can

modify the solution (without increasing the shadow or the cost) such that there

are at most O(1) loops or ladders in OPTτ that all are overlapping with each

other.

We will show that there are at most 12 overlapping loops, and at most 7

overlapping ladders in OPTτ . Suppose there is a vertical line Γ and a number of

loops and ladders are all crossing Γ. We bound the number of loops separately

from the number of ladders.

Overlapping Loops

For each of the cover-lines of Sτ , we will show that there are at most 6 over-

lapping loops that have both their entry points on that cover-line. This will

imply that there are at most 12 overlapping loops in total. So from this point

onward, let’s focus on all overlapping loops on the bottom cover-line. This

holds for all the claims and proofs that we introduce in this subsection, unless

stated otherwise.

Recall Observation 1 that OPT is not self-crossing, so it cannot have two

overlapping cover-line loops. We say a loop L1 with entry points e1, o1 is nested

over loop L2 with entry points e2, o2 if both e2, o2 are between e1, o1.
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Lemma 21 Let L1 and L2 be any two loops such that L1 is nested over L2.

Let p2r and p2l be the right-most and left-most points on L2, respectively. Then

in the range I = [x(p2l ), x(p
2
r)], L1 is above L2. For simplicity, in this case we

say L1 is above L2.

Proof. For Lj, j = 1, 2, let ej and oj be its entry points and without loss of

generality, assume that x(e1) ≤ x(e2) ≤ x(o2) ≤ x(o1). So L1 is a path from

e1 to o1; meaning it crosses the vertical lines x = x(e2) and x = x(o2) at some

point. This implies if L1 is the area of strip Sτ bounded by L1 and the bottom

cover-line, then L2 is entirely inside L1. This means if the left-most and right-

most points on L1 are p1l and p1r, then x(p1l ) ≤ x(p2l ) and x(p1r) ≥ x(p2r). So

we conclude that L1 is defined in the range I ′ = [x(p1l ), x(p
1
r)] and that I ⊆ I ′.

Therefore in particular, L1 is defined in the range I and is above L2.

Lemma 22 Suppose L1 with entry points e1, o1 and L2 with entry points e2, o2

are overlapping such that x(e1) < x(e2) < x(o1). Then L1 must be nested over

L2 and L2 is a cover-line loop.

Proof. If L1, L2 are not nested (i.e. x(e1) < x(e2) < x(o1) < x(o2)) and none

is a cover-line loop, then they are intersecting inside Sτ , a contradiction. If

they are not nested and one (say L2) is a cover-line loop, then again they are

intersecting at one of the entry points. So they must be nested, say x(e1) <

x(e2) < x(o2) < x(o1). Thus, using Lemma 21, L1 is above L2; and if L2

intersects with any top segment, L1 would already be intersecting with it

because of Observation 4. So L2 should only cover bottom segments, which

means it must be a cover-line loop by Lemma 8.

Using these lemmas it follows that there are at most 2 overlapping loops

with entry points on opposite sides of Γ. Furthermore, if there are two such

loops, then one of them is a cover-line loop.

We will finally show that there are at most 2 overlapping loops that have

both their entry points on the same side, say left of Γ. This will imply the

result of the lemma for loops, because on each of the cover-lines, there are at

most 2 loops with entry points on the left of Γ, 2 with entry points on the
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right, and 2 with entry points on the opposite sides. Between the loops with

both entry points to the left of Γ, none can be a cover-line loop because such

a loop cannot intersect Γ (Γ needs to be between the two entry points of a

cover-line loop). We will show that there will be at most 2 (non-cover-line)

overlapping loops with entry points to the left of Γ.

For the sake of contradiction, assume that there are at least 3 loops with

entry points on the left of Γ that none are cover-line loops and all cross Γ.

Let L1, L2, and L3 be any 3 consecutive loops with this property. Without

loss of generality let x(e1) ≤ x(o1), x(e2) ≤ x(o2), and x(e3) ≤ x(o3), and

assume an order for the entry points of Lm’s, say x(e1) ≤ x(e2) ≤ x(e3).

We must have x(e2) ≥ x(o1); or else L1, L2 must be nested by Lemma 22,

implying L2 should be a cover-line loop which contradicts the assumption. So

we get that x(e2) ≥ x(o1). Similarly, we have x(e3) ≥ x(o2). These imply that

e1, o1, e2, o2, e3, o3 appear in this order on the bottom cover-line. Corollary 2

implies each of L1, L2, and L3 must exclusively cover some top segment. Let

r1, r2 be the right-most point on L1, L2, respectively. Since each L1, L2 starts

and ends on the left of Γ and travels to the right of Γ, by Lemma 1, the right-

most point on each is a reflection point, which implies it must be exclusively

covered by using Lemma 7. Let si1 be the segment that reflection point r1 lies

on, and similarly si2 the segment for r2 (see Figure 2.19).

Lemma 23 si1 , si2 are top segments and x(si1) < x(si2)

Proof. By way of contradiction, assume si1 is a bottom segment. Consider

the two subpaths of L1 between the entry points e1, o1 and r1, let us denote

them by P 1
r : e1 → r1 and P 1

l : r1 → o2. L2 (starting at e2) is in the region

bounded by P 1
r ∪ s1r and the bottom cover-line, which means L1 will intersect

any top segment L2 intersects with (i.e. L2 cannot exclusively cover any top

segment), which implies L2 is a cover-line loop, a contradiction. This implies

that si1 is a top segment. Similar argument (for L2, L3) implies si2 is a top

segment.

We show that x(si1) ≤ x(si2). Similar to before, define the subpath P 1
r of

L1 that goes from e1 to r1 and P 2
r from e2 to r2. Considering the two areas
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of strip Sτ separated by P 1
r ∪ si1 , if segment si2 is on one side and the entry

points o1, e2 on the other side, then path P 2
r must either intersect P 1

r or si1 ,

which is not possible (due to Lemma 7). So si2 and e2, o2 are on the same part

of Sτ cut by P 1
r ∪ si1 . This implies si2 is to the right of si1 i.e x(si1) ≤ x(si2).

We can reuse the same arguments in the second part of the proof to con-

clude the following lemma:

Lemma 24 Neither of L1 or L2 exclusively cover a bottom segment on the

right of Γ.

Proof. Let Lj be either one of L1 or L2. Assume the contrary, that there is

some bottom segment sj to the right of Γ that Lj exclusively covers. So L3

does not intersect with this segment. Let pj be the last intersection point of

Lj with sj. Consider the subpath Pj : pj → oj on Lj. Similar to the proof of

Lemma 23, we get that both entry points of L3 are surrounded by Pj ∪sj from

the right or above; which means any top segment that L3 intersects with, is

already intersecting with Pj. This requires L3 to be a cover-line loop, giving

us a contradiction.

Now we define an alternate path that replaces L1 and L2 with two new

loops that no longer overlap at Γ, and overall the shadow does not increase

but also costs less than the cost of current solution. The idea of this change

(which will be made precise soon) is to follow L1 from e1 to the right-most

point on L1 (which must be a reflection on si1), then from that point follow a

horizontal line until it hits si2 ; if there are portions of L2 that are above this

horizontal line, we follow the upper envlope of those portions of L2 and the

horizontal line (similar to how we reduced the shadow in the case of zig-zag

or sink), and then from the intersection point on si2 , follow the horizontal

line back to the right-most reflection on L1 and continue to follow L1 to o1;

L2 is going to be simply replaced with a smaller subset of its projection on

the bottom cover-line. We show we will have a cheaper feasible solution with

smaller shadow at Γ, a contradiction. Now we describe this more precisely.

Again, let r1, r2 be the right-most points on L1, L2, respectively. Lemma
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23 and 1 imply that they are reflection points on segments si1 , si2 , respectively,

which both are top segments. Consider the horizontal line y = y(r1), and let

q be the intersection point of this line with the vertical line x = x(si2). Define

the subpath P 2
r on L2 as P

2
r : e2 → r2 (assuming that e2 is to the left of o2), In

other words, between the two paths from r2 to the two entry points of L2, P
2
r

is the one that is above the other. Let U2 be the portion of P 2
r in the region

bounded by lines si1 ∪ (y = y(r1)) ∪ si2 , and the top cover-line. So these are

the portions of P 2
r that go above the line segment r1q (see Figure 2.19). Let

L′′
1 be the upper envelope of U2 ∪ r1q plus the line r1q.

So L′′
1 consists of a path that goes on the upper envelope of U2 ∪ r1q from

r1 to q and then goes straight back to r1. We now define the replacements for

L1 and L2.

Figure 2.19: Alternative solution for 3 overlapping (non-cover-line) loops.
Pairs of arcs represent doubled segments.

We replace L1 with L′
1 as follows:

� Take the subpath P 1
r : e1 → r1 on L1.

� From r1, follow L′′
1 and thus, get back to r1.

� From r1, follow the rest of L1 to o1.

So L′
1 is obtained by adding L′′

1 to L1 at r1. If l2 is the left-most point

that L2 travels, then let L′
2 be a cover-line loop that travels from e2 left to
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x(l2), then right to e3 and then back to o2 (this is essentially the projection of

the portions of L2 to the left of e3 and hence to the left of Γ on the bottom

cover-line); recall that we can reduce L′
2 to remove the possible overlapping of

its legs. Now replace L2 with L′
2. We will show that these two loops in total

cost strictly less than L1 and L2, the shadow does not increase (and in fact

shadow decreases at Γ) and we still have a feasible solution. It’s clear to see

that between the loops L′
1, L

′
2, and L3, only L′

1 and L3 overlap at Γ. So we

decreased the number of overlapping loops at Γ by at least one.

To prove all segments are still covered, note that L′
1 includes the entirety

of L1, and thus covers all the segments that L1 used to cover. In order to

show that all the segments that L2 covered, are still covered, we only need to

show that the segments that L2 exclusively covered, are still covered. That

is because in the new configuration we still have all the parts of L1 and L3.

According to Lemma 24, there are no bottom segments that L2 exclusively

covers to the right of Γ. Also, it is easy to see that any bottom segment

that was exclusively covered by L2 to the left of Γ must have an x-coordinate

between x(l2) and x(e3). All of those bottom segments are now covered by

L′
2. Finally, for the top segments that L2 exclusively covers, with the same

arguments as in the second part of the proof in Lemma 24, we get that there

are no such segments to the left of si1 . So it suffices to show that only the

top segments that L2 covers to the right of si1 , are covered. This is easy to

see, because L′′
1 includes the entire U2; and it is always on or above L2 in the

range between si1 and si2 . Thus, L′′
1 will cover all the top segments that L2

exclusively covers in that range.

Also, the shadow does not increase: the shadow of L′′
1 from r1 to r2 can

be charged to the sections of L2 between x = x(r1) and x = x(r2) and hence

is no more than that; note that this portion is entirely to the right of Γ. The

cover-line loop L′
2 is entirely to the left of Γ and its shadow can be charged to

the shadow of L2 to the left of Γ in the range [x(l2), x(e3)].

Now let’s prove that the new cost is decreased compared to L1 and L2. L
′
1

includes L1, so we set aside those parts and charge them on L1. So it suffices

to show that L′′
1 along with L′

2 can be charged into L2. Note that L′
2 is part

58



of the projection of L2 on the bottom cover-line to the left of e3. So the cost

of L′
2 is strictly less than the cost of L2 to the left of Γ, since L′

2 extends at

most to e3 which is to the left of Γ. As for L′′
1, note that L2 travels back and

forth between x(si1), x(si2); so L′′
1 can be charged to these two sections of L2

between x(si1) and x(si2).

So at the end, we found a new solution with 1 fewer overlapping loops at

Γ, no increase of shadow elsewhere, and with a strictly less cost than OPTτ .

Applying this argument implies that at most two overlapping non-cover-line

loops can exist to the left of Γ. So in total on each of the cover-lines of Sτ ,

there are at most 2 non-cover-line loops to the left of Γ, similarly 2 to the

right, plus at most 2 with entry points to opposite sides of Γ. In total, there

are at most 6× 2 = 12 overlapping loops at Γ.

Overlapping Ladders

Recall that by Definition 7, ladders are subpaths of OPTτ (in strip Sτ ) that

have one entry point on the bottom cover-line of Sτ , and one on the top cover-

line. Depending on their orientation compared to Γ, there are two types of

ladders (see Figure 2.20):

� Type 1 Ladder: Has both its entry points on the same side of Γ.

� Type 2 Ladder: Has its entry points on opposite sides of Γ.

Figure 2.20: An example of type 1 and type 2 ladders.
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We will prove that there are at most 2 overlapping Type 1 ladders, and at

most 5 overlapping type 2 ladders.

Type 1 Ladders

In particular, we show that there is at most one Type 1 ladder with entry

points to the left of Γ, and one with entry points to its right. To prove this,

assume the contrary, that there are at least 2 overlapping Type 1 ladders with

entry points to the same side, say right of Γ. Let L1 and L2 be two such

ladders.

Let (bm, tm), m = 1, 2 be the entry points of Lm on the bottom cover-line

and the top cover-line, respectively. Without loss of generality, assume that

t1 is to the left of t2. This implies b1 is also to the left of b2 (or else L1 and

L2 intersect inside Sτ ). So if we consider cutting Sτ along L2, L1 is entirely

in one of the two regions created, namely the one that contains b1, t1. Since

both L1 and L2 overlap at Γ and are Type 1, and they both have their entry

points on the same side of Γ, say left, this means that both have to reach to

the right of Γ. First we show that the top-most and bottom-most intersection

point of L1, L2 with Γ must be on L2. By way of contradiction suppose p is

a point on L1 and is the bottom-most intersection of these two ladders on Γ.

Consider the subpath of L1 from b1 to p, call it L′
1 and consider the region

bounded by L′
1 ∪ Γ and the bottom cover-line, call it A. Since L2 starts at

b2 inside A and t2 is outside A, L2 must either cross Γ at a point lower than

p, or cross L′
1, both of which are contradictions. Similar argument shows the

top-most intersection point on Γ is with L2.

Consider any two consecutive crossing of L1 with Γ, say p1, p2, where the

subpath of L1 from p1 to p2 (denoted by L′
1) is to the right of Γ. Since L2

crosses Γ both above and below p1, p2 (the lowest and highst intersection points

on Γ are with L2), there is a subpath of L2 with end-points q1, q2 on Γ with q1

below p1, p2, and with q2 above them, call it L′
2. We consider two cases based

on whether L′
2 is on the left or right of Γ, and derive contradictions in each

case. If L′
2 is on the right (like L′

1) then L′
1 is inside the region bounded by

L′
2 ∪ q1q2 and this violates Lemma 9. So let us assume L′

2 is on the left of Γ.
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Since p1, p2 are between q1, q2 there is subpath of L1 starting from p1 inside

the region L′
2 ∪ q1q2 that crosses q1q2. This subpath with L′

2 violates Lemma

9 again. Thus, we conclude that there can be at most 1 Type 1 ladder with

entry points to the right of Γ, and similarly, at most 1 with entry points to

the left of Γ.

Type 2 Ladders

For each Type 2 ladder Lm with entry points (bm, tm) on bottom and top

cover-lines, there are two cases:

� bm is to the left of Γ, therefore tm is to the right of Γ. We say Lm is a

top-right/bottom-left ladder.

� bm is to the right of Γ, therefore tm is to the left of Γ. We say Lm is a

top-left/bottom-right ladder.

There can’t be two overlapping ladders that one is a top-right/bottom-left

ladder, and the other is a top-left/bottom-right ladder (or else they intersect).

So if we have a collection of Type 2 overlapping ladders they are all either

top-right/bottom-left or all top-left/bottom-right. We show we can have at

most 5 Type 2 overlapping ladders. For the sake of contradiction, assume

there is a maximal set L = {L1, L2, . . . , Lk} of Type 2 ladders that all overlap

at some vertical line Γ with k ≥ 6 and all are top-right/bottom-left. Let

(bm, tm), 1 ≤ m ≤ k denote the bottom and top entry points of ladder Lm.

Without loss of generality, assume that x(b1) ≤ x(b2) ≤ · · · ≤ x(bk), which

also implies x(t1) ≤ x(t2) ≤ · · · ≤ x(tk) (or else the ladders will be intersecting

each other). Let Ll
m be the subpath of of Lm from bm to the first intersection

of Lm with Γ (so Ll
m is to the left of Γ), and Lr

m be the subpath of Lm from its

last intersection with Γ to tm (so it is to the right of Γ). Note that if m < m′

then Ll
m is above Ll

m′ (in the range that Ll
m is defined) and Lr

m′ is below Lr
m

(in the range that Lr
m′ is defined) due to Lemma 11. Using Observation 4, this

implies Ll
1 covers all the top segments that Ll

2, L
l
3, . . . , L

l
k cover to the left of

Γ and similarly, Lr
k covers all the bottom segments that Lr

1, L
r
2, . . . , L

r
k−1 cover

to the right of Γ (we will use this fact shortly).
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We will introduce an alternate set of ladders (and loops) that cover all

the segments the ladders in L cover without increasing the shadow anywhere,

with a cost strictly smaller cost, and with a smaller shadow at Γ. The set

of ladders we introduce differ based on the parity of k. For odd k we keep

L1, Lk−1, Lk, and for even k we keep L1, L3, Lk−2, Lk. We also add some cover-

line loops (possibly two copies) to make sure we still have a tour that visits all

the points bj, tj and all the top and bottom segments that L1, . . . , Lk covered

remain covered in the new solution 1.

Imagine a graph G(V,E) where V consists of all bj, tj’s and there are edges

between two vertices if there is a subpath in OPT between them without

visiting any vertex (so we have direct edge between bj, tj and also an edge

between bj, ti if there is a path in OPT between them outside the strip Sτ ).

Note that G is simply a cycle. In the new alternative solution, we keep L1, Lk

and either Lk−1 or both L3, Lk−2 (depending on the parity of k) and add cover-

line loops between some consecutive bj’s and consecutive tj’s such that the

resulting graph G′ defined based on these new paths still forms an Eulearian

(connected) graph on V , all the segments covered in Sτ by L1, . . . , Lk are

covered. Let b′2 be the projection of the left-most point on L2 on the bottom

cover-line, and let t′k−1 be the projection of the right-most point on Lk−1 on

the top cover-line. We add doubled segment b2b
′
2 and tk−1t

′
k−1. These intend

to cover any bottom segment exclusively covered by L2 to the left of b2, and

any top segment exclusively covered by Lk−1 to the right of tk−1. The doubled

segments b2b
′
2 and tk−1t

′
k−1 fully appear in the projection of L2 and Lk−1 on

those cover-lines; meaning that they can be charged onto L2 and Lk−1 that

travel left (and right) to those segments, respectively. Add each of these two

segments twice to the solution. Since we’re adding these segments twice, the

parity of the degree of nodes in G′ won’t change. We keep L1, Lk from L and

add the following segments and ladders as well to the alternative solution (see

Figure 2.21):

� If k = 2m for some integer m ≥ 3, then include L3 and Lk−2. We also

1This change is somewhat similar to the proof of patching lemma used in the PTAS for
Euclidean TSP that reduces the number of crossings into a region.
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add the following cover-line loops:

– b2b3, bk−2bk−1, b2q−1b2q (2 ≤ q ≤ m− 1)

– t2t3, tk−2tk−1, t2q−1t2q (2 ≤ q ≤ m− 1)

We add double the following cover-line loops (i.e. a path back and forth

on the same pair of points):

– bk−1bk, b2qb2q+1 (2 ≤ q ≤ m− 2)

– t1t2, t2qt2q+1 (2 ≤ q ≤ m− 2)

� If k = 2m+1 for some integer m ≥ 3, then we include Lk−2 and also the

following cover-line loops:

– bk−2bk−1, b2qb2q+1 (1 ≤ q ≤ m− 2)

– t2qt2q+1 (1 ≤ q ≤ m− 2)

We add double the following segments:

– bk−1bk, b2q−1b2q (2 ≤ q ≤ m− 1)

– t2q−1t2q (1 ≤ q ≤ m)

Figure 2.21: Alternative solution for 8 overlapping (bottom-left/top-right)
ladders. Red dashed lines are discarded. The arcs represent the doubled
segments.
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It can be seen that with the above additions, if we build the graph G′ based

on the new paths it is an Eulerian graph as each bj, tj has even degree; also G′

remains connected since all the t1, . . . , tk−1 are connected via cover-line loops

added at the top and b2, . . . , bk are connected via cover-line loops at the bottom

and we have L1, Lk and there is a path from b1 to at least one of b2, . . . , bk in

outside the strip, and similarly a path from tk to one of t1, . . . , tk−1. Thus in

the new solution we visit all the points bj, tj and this tour can be short-cut

over repeated points to obtain a new solution that visits all the bj, tj’s and

covers all the segments outside the strip Sτ .

Next we show all the segments that L1, . . . , Lk were covering, remain cov-

ered. Recall that the portion of L1 to the left of Γ covers all the top segments

that were covered by these paths to the left of Γ, and similarly Lk covers all

the bottom segments that were covered to the right of Γ. The bottom seg-

ments covered to the left of Γ are covered by the new cover-line loops added

and similarly, the top segments covered to the right of Γ are covered by the

cover-line loops added. So the new solution remains feasible.

Now we are going to bound the total cost of the new solution. We charge

all the new parts that we added to some portion of the ladders that we have

discarded. Note that in every case, L2, L4, Lk−3, and Lk−1 are discarded. We

will use only these ladders to charge the new parts to. The doubled segments

b2b
′
2 and tk−1t

′
k−1 are already charged to the portion of L2 traveling in the in-

terval [x(b′2), x(b2)] and the portion of Lk−1 traveling in [x(tk−1), x(t
′
k−1)]. Now

consider the ranges βj = [x(bj−1), x(bj)], 3 ≤ j ≤ k and θj = [x(tj−1), x(tj)],

2 ≤ j ≤ k − 1. These are disjoint and all βj’s lie under Ll
2 and Ll

4, while all

θj’s lie above Lr
k−3 and Lr

k−1. Each of the new included segments (doubled or

not) can be charged to one or two of the ladders L2, L4, Lk−3, Lk−1.

It can be seen that in the new configuration, there are at most 4 overlapping

ladders and 2 overlapping loops (doubled segment loops that we added). This

concludes the case for ladders.

In general, when given a collection of loops and ladders, we first alter the

ladders as described above (and might get some new cover-line loops in the

process), then we apply the alteration on the loops. The statement of lemma
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20 follows from this.

We can now get to the proof of Theorem 3, then Theorem 2.

2.5 Proof of Theorem 3

We reiterate the theorem for convenience, then prove it:

Theorem 3 If H ≤ 3, then the shadow of an optimum solution is at most 2.

Proof. As defined before, let C1, . . . , Cσ be the cover-lines for an instance of

the problem with H ≤ 3. It can be seen that σ ≤ 2; in other words, all the

segments of the instance can be covered with only at most 2 cover-lines. If

H ≤ 2, then the number of cover-lines is 1, and similar to the special case

that we discussed at the start of Section 2.3, the portion on that cover-line

itself (doubled from the left-most segment to the right-most segment) is an

optimum solution. So let’s assume 2 < H ≤ 3, therefore σ = 2, and that we

have a single strip, S1. Furthermore, there must be both top segments and

bottom segments in S1 (otherwise one of the cover-lines would intersect with

all segments). We will essentially prove that the optimum solution must be a

bitonic tour.

Take any optimum solution OPT for this instance of the problem, and let

pl and pr be the left-most and right-most points on it, respectively. There is a

path P1 from pl to pr, and there is a path P2 in the other way. Since OPT is not

self-intersecting, and since both P1 and P2 cover the range I = [x(pl), x(pr)],

then for any vertical line Γ with x(Γ) ∈ I, they both will intersect with it

at distinct points. We can use Lemma 9 (for the concatenation of P1 and P2

restricted to the left of Γ) to get that pl is a right reflection. Similarly, pr is a

left reflection.

Without loss of generality, assume that P1 includes the upper leg of pl, and

thus P2 includes its lower leg. Using Lemma 5 for the reflection point pl and

the vertical line x = x(pr), we get that P1 is above P2 in range I, which is the

entirety of OPT. Observation 4 implies that all the top segments are covered

by P1, while all the bottom segments are covered by P2. We claim that there
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are no reflection points other than pr and pl in OPT. To see why this is the

case, assume the contrary, that there is some reflection point r on OPT other

than those two points.

Without loss of generality, assume r ∈ P1, and assume that r is the first

such reflection point on P1 after pl. According to Lemma 6, r is a right

reflection. Let s be the segment of the instance that r lies on. If s is a bottom

segment, then P2 will be intersecting with it, and we get a violation of Lemma

7. Thus, s is a top segment.

Now, let P1 be the concatenation of P1 (restricted to the subpath from

pl to r) along with the entirety of P2. P1 is a path that goes from r (a left

reflection on a top segment s) and reaches to the right of s. The rest of the

path of P1 (from r to pr), refer to it as P2, is another path that goes from r

and reaches to its right. Depending on whether the top leg of r belongs to P1

or P2, we get a violation of Lemma 23. This contradiction shows that such

r cannot exist, and that both P1 and P2 are monotone paths with shadow 1,

due to Lemma 3. So in total, OPT has a shadow of 2, as was to be shown.

Note. It can be shown that in these special cases, we can find an exact solution

in poly-time. But since we made some assumptions about the x-coordinates of

the segments of the instance, we have to undo those assumptions to prove this

claim. The resulting algorithm will be somewhat detailed for such a limited

special case of the problem, because we have to cover cases such as vertical

legs in an optimum solution. So we only settled on showing that an optimum

solution has a constant shadow instead, as it’s enough for the purposes of our

main algorithm in this thesis.

2.6 Proof of Theorem 2

For convenience, we re-estate the theorem, which is our main structure theorem

for a near-optimum solution:

Theorem 2 Given any ε > 0, there is a solution O′ of cost at most (1+ε) ·opt

such that in any strip of height 1, the shadow of O′ is O(1/ε) (where opt is
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the cost of an optimum solution).

Proof. If the height of the bounding box is at most 2, refer to Theorem

3. Consider any strip Sτ (to be more precise, Sτ can be any arbitrary strip

of height 1 in the plane). Using Lemma 18 for parameter ε1 = ε
2
, there is

a solution O′′ of cost at most (1 + ε
2
) · opt where the shadow of each sink

and zig-zag is bounded by O( 1
ε/2

) = O(1/ε). By Lemma 14, each loop or

ladder in Sτ has a shadow that is at most 3 times the maximum shadow of

a sink or zig-zag in it, plus two. So each loop or ladder has shadow O(1/ε).

Finally, Lemma 20 shows that there can be at most O(1) overlapping loops

or ladders in a strip. Thus, the overall shadow of O′′ in Sτ is bounded by

O(1/ε). Furthermore, we apply Lemma 19 on O′′ for parameter ε2 = ε
ε+2

to

get a solution O′. This new solution has the property that with an additional

cost of factor (1+ ε
ε+2

) compared to O′′, the size of any pure reflection sequence

is bounded by O( ε+2
ε
) = O(1/ε). The total cost of O′′ is at most

(1 + ε1) · (1 + ε2) · opt = (1 + ε
2
) · (1 + ε

ε+2
) · opt

= (1 + ε
2
+ ε

ε+2
+ ε2

2(ε+2)
) · opt

= (1 + ε(1
2
+ 1

ε+2
+ ε

2(ε+2)
)) · opt

= (1 + ε) · opt,

resulting in the statement of the theorem.
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Chapter 3

Dynamic Program and the
Main Algorithm

As mentioned in the introduction, we follow the paradigm of Arora [4] for

designing a PTAS for classic Euclidean TSP with some modifications. We focus

more on defining the modifications that we need to make to that algorithm.

In this chapter, we describe the main algorithm and how it reduces the

problem into a collection of instances with a constant-height bounding box.

We show how those instances can be solved using DP (referred to as the

inner DP), and how we can combine the solutions for them using another DP

(referred to as the outer DP) to find a near optimum solution of the original

instance. Recall that in Section 2.1, we assumed the minimal bounding box of

the instance has length L and height H and we defined B = max{L,H − 2},

which gives opt ≥ 2B and also we can assume that B ≤ n
ε
. Also, recall that

we moved each line segment to be aligned with a grid point with side length

ϵB
n2 , while making sure all line segments have distinct x-coordinates. By doing

this, we obtain an instance whose optimum is within a (1 + ε)-factor of the

optimum of the original instance. Now, we scale the grid (as well as the line

segments of the instance) by a factor of ρ = 4n2

ϵB
so that each grid cell has

size 4. We obtain an instance where each line segment has size ρ, all have

even integer coordinates, any two segments are at least 4 units apart, and the

bounding box has size N = O(n2/ε). Let this new instance be I. Note that

if we define cover-lines as before but with a spacing of ρ, all the arguments

for the existence of a near-optimum solution with a bounded shadow in any
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strip (the area between two consecutive cover-lines) still hold. We will present

a PTAS for this instance. It can be seen that this implies a PTAS for the

original instance of the problem. From now on, we use OPT to refer to an

optimum solution of instance I, and opt to refer to its value. Note that since

the bounding box has side length N , then opt ≥ 2N .

3.1 Dissecting the Original Instance into Smaller

Subproblems

Similar to Arora’s approach, we do the hierarchical dissectioning of the in-

stance into nested squares using random axis-parallel dissectioning lines, and

put portals at these dissecting lines. We continue this dissectioning process

until the distances between horizontal (and so vertical) dissecting lines is h · ρ

for h = ⌈1/ε⌉. So at the leaf nodes of our recursive decomposition quad-

tree, each square is (h · ρ) × (h · ρ), and the height of the decomposition is

log(N/ρh) = O(log n) since B ≤ n
ε
. We choose vertical dissecting lines only

at odd x-coordinates so no line segment of the instance will be on a vertical

dissecting line.

We define our cover-lines Cτ based on these horizontal dissecting lines

carefully. Consider the first (horizontal) dissecting line we choose, this will

be a cover-line, and then moving in both up and down directions from this

line, we draw horizontal lines that are ρ apart. These will be all the cover-

lines. Label the cover-lines from the top to bottom by C1, C2, . . . , Cσ in that

order. As before, and the smallest index τ such that Cτ hits a line segment

is the cover-line that “covers” that line segment. We partition the cover-lines

into h groups based on their indices: Group Gj contains all those cover-lines

with index τ where j = τ (mod h). Let Gj∗ be the group of cover-lines that

includes the first horizontal dissecting line, and hence all the other horizontal

dissecting lines as well.

The arguments in Chapter 2 for the case of unit-length line segments that

show there is a near optimum solution in which the shadow in each strip of

height 1 is O(1/ε) (Theorem 2), also imply the same for the scaled instance I;
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i.e. there is a near optimum solution with shadow O(1/ε) in each strip between

two consecutive cover-lines. Furthermore, if we consider h consecutive strips,

i.e. the area between two consecutive cover-lines in the same group Gj, then

there is a near optimum solution that has shadow O(h/ε) = O(1/ε2).

Our goal is to show that, at a small loss in approximation, we can simply

drop the line segments that are intersecting the horizontal dissecting lines

(i.e. all those intersecting cover-lines in Gj∗) with appropriate consideration of

portals (to be described). Removing the line segments that cross the dissecting

lines allows us to decompose the instance into “independent” instances that

interact only via portals.

For each cover-line Cτ , we define a set Bτ of disjoint intervals of length ρ

placed on it so that each line segment covered by Cτ , is intersecting one of

these interval. On Cτ , from left to right, start by placing the left corner of the

first interval of Bτ on it at the intersection of the left-most segment covered

by Cτ ; all the segments covered by Cτ intersecting this interval are considered

“covered” by this interval. Next, pick the first segment to the right of the

latest interval that is intersecting Cτ , but not intersecting (and so not covered

by) the previous intervals, and place the left point of the next interval of Bτ

at that intersection (all the segments intersecting Cτ and this interval are now

covered by this interval). Continue this process until all segments on Cτ are

covered by an interval (see Figure 3.1). Let B = ∪σ
τ=1Bτ .

Observation 5 A segment covered by an interval of cover-line Cτ and another

segment covered by an interval of cover-line Cτ+2 are at least ρ apart (τ ≤

σ − 2).

Lemma 25 opt ≥ ρ · |B|
6

.

Proof. For each Bτ , let i1, i2, . . . , iη be the intervals on Cτ ordered from left

to right. Now partition Bτ into Oτ ∪Eτ where Oτ consists of intervals iq with

an odd q, and Eτ consists of those with even q’s. We also partition Cτ ’s into 3

groups based on the value of τ (mod 3). We get a partition of all intervals into

6 groups based on: Whether an interval on Cτ is in Oτ or Eτ (two choices),
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and what τ (mod 3) is (three choices). Let Nj’s (1 ≤ j ≤ 6) be the total

number of intervals in these 6 parts. Note that
∑︁6

j=1 Nj = |B|, and any two

segments s, s′ covered by intervals from different groups are at least ρ apart

(if they there are covered by intervals in the same cover-line then they are ρ

apart horizontally and if they covered by intervals in different cover-lines then

by Observation 5 they are at least ρ apart). So an optimum solution for the

instance that only contains segments covered by intervals of part Nj, must

have cost at least ρNj as it must have at least Nj legs of size at least ρ. Since

one of these parts has size at least |B|/6, the statement follows.

Lemma 26 For a j chosen randomly from [1..h], we have

E[ ρ
∑︂

Cτ∈Gj

|Bτ | ] = O(ε · opt).

Proof. For each 1 ≤ j ≤ h, let Bj =
⋃︁

Cτ∈Gj
Bτ . Using Lemma 25, we have∑︁h

j=1 |Bj| = |B| ≤ 6 · opt/ρ. Now we obtain

E[ρ
∑︂

Cτ∈Gj

|Bτ | ] = ρ · E[
∑︂

Cτ∈Gj

|Bτ | ]

= ρ · E[ |Bj| ]

=
ρ

h
· |B|

≤ ρ

h
· 6 · opt

ρ
= O(opt/h) = O(ε · opt).

Similar to Arora’s scheme for TSP, for m = O(1
ε
log(N/ρh)), we place

portals at all 4 corners of a square in the decomposition, plus an additional

m − 1 equally distanced portals along each side (so a total of 4m portals on

the perimeter of a square of the dissection). For simplicity, we assume m is

a power of 2 and at least 4
ε
log(N/ρh). We say a tour is portal respecting if

it crosses between two squares in our decomposition only via portals of the

squares. A tour is r-light if it crosses the portals on each side of a square

of the dissection at most r times. For classic (point) TSP, it can be shown

that there is a near-optimum solution that is portal respecting and r-light for

r = O(1/ε). Our goal is to show a similar statement, except that we want the
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restriction of the tour to each “base” square of side length O(h · ρ) to have

bounded (by O(h/ε) = O(1/ε2)) shadow as well. We then show that we can

find an optimum solution with a bounded shadow for the base cases using a

DP. This will be our inner DP. We then show how the solutions of for the 4

sub-squares of a square in our decomposition can be combined into a solution

for the bigger subproblem (like in the case of TSP) using another DP, which

will be our outer DP.

We will show that at a small loss in approximation (i.e. O(ε · opt)), we

can drop all the line segments of input that are intersecting the horizontal

dissecting lines (i.e. covered by a cover-line in group Gj∗), solve appropriate

subproblems, and then extend the solutions to cover those dropped segments.

This modification requires certain portals of each square in the decomposition

to be visited in the solution for that square. More precisely, we will remove

all the segments crossing a horizontal dissecting line (i.e. those cover-lines

in Gj∗), and instead consider some of the portals around each square to be

required to be visited in a feasible solution. We show there is a feasible solution

that visits all the remaining segments as well as the “required” portals, of total

cost at most (1+ε) ·opt, and that such a solution can be extended to a feasible

solution visiting all the segments of the original instance (i.e. including the

ones that we dropped) at an extra cost of O(ε · opt).

3.1.1 Dropping the segments intersecting horizontal dis-
secting lines

We say the edges of the bounding box are level 0 dissecting lines, the first pair

of dissecting lines are level 1 dissecting lines, and so on.

Consider a square S in our hierarchical decomposition and suppose it is

cut into four squares S1, S2, S3, S4 by two dissecting lines where the horizontal

one, line Γ, is the cover-line Cτ from Gj∗ , and is a level j dissecting line. Recall

that we place a total of 2m portals along Γ inside S; m portals on the common

sides of S1, S4 and m along the common side of S2, S3. Define Bτ (S) to be the

set of intervals in Bτ (intervals of Cτ ) that cover a segment that lies inside S

(and so intersects with Γ) (see Figure 3.1).
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Figure 3.1: Breaking a square S into 4 smaller squares. The magenta parts on
line Γ (i.e. the cover-line Cτ ) show the interval set Bτ (S).

For each b ∈ Bτ (S), suppose p(b) is the nearest portal to it in S among

the portals on Γ, and let s(b) be the left-most segment covered by b that is

in S. We are going to modify OPT in the following way: Consider a point ps

on s(b) visited by OPT. Insert the following “legs” to the path: travel from

ps vertically along s(b) until you arrive at its intersection with Γ, i.e. arrive

on interval b (this length is at most ρ), then travel along Γ to the right-most

segment covered by b (this is also at most ρ), and then travel to p(b), and then

travel back to ps. For every other segment s′ covered by b in S, we are going

to short-cut any point on s′ that was visited by OPT as all these segments are

now covered by the newly added legs (see Figure 3.2). We also short-cut the

second visit to ps.

Using triangle inequality, the expected length of the new legs will increase

the cost of the solution by at most 2ρ + 2||psp(b)|| ≤ 2(ρ + N
2jm

). We do this

for all the intervals on Γ and inside S, i.e. if OPT visits a segment covered by

that interval b, we change OPT to make a detour to visit p(b) as well. Note

that each interval b ∈ Bτ can belong to at most two Bτ (S)’s (two adjacent

squares that b intersects with), and the intervals for which this modification

can happen for, are at least h · ρ apart because that is the minimum size of a
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Figure 3.2: The modified solution for dropping segments crossing horizontal
dissecting lines: follow the blue dashed lines from ps; red dashed lines are parts
of the original path.

square of the dissection.

Given the random choice of our dissecting lines, since dissecting lines are

h·ρ apart, are randomly chosen, and each interval has length ρ, the probability

that an interval b ∈ Bτ appears in two Bτ (S)’s (i.e. cut by a dissecting line),

is at most 1/h = ε. Also, each cover-line in Gj∗ is a level j dissecting line

with probability 2j−1/(N/ρh). Thus, the expected increase in the cost by this

modification for all the interval of Cτ is at most

log(N/ρh)∑︂
j=1

Pr[Γ is level j] · (1 + ε) · |Bτ | · 2(ρ+
N

2jm
)

≤ 2(1 + ε) · |Bτ | ·
log(N/ρh)∑︂

j=1

2j−1

N/ρh
· (ρ+ N

2jm
)

≤ 2(1 + ε) · |Bτ | ·
ρh

N
·
(︃
N

h
+

N log(N/ρh)

2m

)︃
≤ (1 + ε) · |Bτ | · ρ · (1 + εh)

≤ 4ρ · |Bτ |.

Considering all cover-lines in Gj∗ , this implies the total expected increase

in the cost is at most
∑︁

Cτ∈Gj∗
4ρ|Bτ |, which combined with Lemma 26, implies

with probability at least 1/2, the increase in total cost is at most O(ε · opt).

Each portal p that is visited by a detour as described above is called a required
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portal.

In fact, we can short-cut more paths so that the number of detours to each

portal is bounded by 2. Informally, only the left-most interval to the left of p

that has made a detour to p, along with the right-most interval to the right of

p that has made a detour to p are sufficient to cover all the segments of the

intervals in between them. More specifically, consider a portal p on Γ and let

bL(p) be the left-most interval in Bτ (S) to the left of p that covered a segment

whose path was detoured to visit p (null if there is no such interval). Similarly,

let bR(p) be the right-most interval among Bτ (S) to the right of p that covered

a segment whose path was detoured to visit p (this too can be null if there

is no such interval). In other words, there was a segment sL = s(bL(p)) and

a segment sR = s(bR(p)) that were visited by OPT, and we made a detour

to p when OPT visited sL and sR. The detour from sL to p covers all the

segments of intervals between bL(p) and p. Similarly, the detour from sR to p

covers all the segments of interval between p and sR. Thus, for any interval

b′ between bL(p) and bR(p), all the segments covered by b′ are also covered by

the detours of sL and sR. This means for all those intervals b′, we can short-

cut the segments covered by them entirely (in particular, they don’t need to

make a detour to p). Therefore, at most two intervals will have detours to p,

namely bL(p) and bR(p). And the detours to different portals are disjoint, so

the added detours don’t overlap on Γ, and since short-cutting doesn’t increase

the shadow, we only add a shadow of at most 2 per cover-line to the solution.

This implies that if we focus on the modified solution restricted to the strip

between two cover-lines inGj∗ , it still has a bounded shadow. These arguments

imply the following:

Lemma 27 Given instance I, there is another instance I ′ that is obtained by

removing all the segments that are crossing cover-lines in Gj∗ (i.e. intersect-

ing horizontal dissecting lines), and instead some of the portals around (more

precisely, the top and bottom sides of) each square of quad-tree dissection are

required to be covered (visited); such that there is a solution for I ′ of cost at

most (1+O(ε)) ·opt, and such a solution can be extended to a feasible solution
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of I of cost at most (1 +O(ε)) · opt. Furthermore, the shadow of the solution

for I ′ between any two consecutive cover-lines in Gj∗ is at most 4 more than

the shadow of OPT between those two lines.

3.2 Outer DP

The outer DP based on the quad-tree dissection is similar to the classic PTAS

for Euclidean TSP. One can show that for r = O(1/ε), there is an r-light

portal respecting tour for I ′ with cost at most (1 + ε) · opt′, where opt′ is the

cost of an optimum solution for I ′. The base case of this DP will be instances

with bounding box of size ρ ·h. For such instances, we solve the problem using

an inner DP that is described in the Section 3.3.

We will use the “patching lemma” the same way it is described in Arora’s

approach. We show there is a near optimum solution for I ′ that is portal

respecting and r-light, meaning each square in our quad-tree decomposition

is crossed by the solution only r many times on each side for a parameter

r = O(1/ε). Then a DP similar to the point TSP (outer DP) will combine

the solutions for the subproblems to find the solution for a bigger subproblem.

Since we don’t know which portals for each square are supposed to be “re-

quired” in I ′ (so that the solution can be extended to cover the dropped line

segments), for each such square we “guess” the set of required portals in our

DP; i.e. we will have an entry for each guessed set of portals on the horizontal

sides of a square as the set of required portals in our DP. Since the number of

portals is logarithmic, this guessing remains polynomially bounded. For now,

assume that we know all the required portals, and hence, instance I ′ itself

(even though I ′ is defined based on OPT which we don’t know).

Consider instance I ′ and let OPT′ be the optimum solution for it, and

let the cost of that solution be opt′. For each dissecting line Γ (vertical or

horizontal), let t(Γ) be the number of intersections of OPT′ with Γ and T =∑︁
Γ t(Γ).

Lemma 28 ([4]) T ≤ 2 · opt′/(ρh).
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Proof. Let ℓ = (x1, y1) → (x2, y2) be any leg of OPT′. Let ∆x = |x1 − x2|

and ∆y = |y1 − y2| . The contribution of ℓ to opt′ is its length, i.e. Lℓ =√︁
(∆x)2 + (∆y)2. Note that due to the scaling, we have Lℓ ≥ 4. Since the

dissecting lines are ρh apart, there are at most (∆x+∆y+2)/(ρh) dissecting

lines that intersect with Γ; so the contribution of Γ to T is at most the same

amount. Using the Cauchy-Schwarz inequality, we have 2((∆x)2 + (∆y)2) ≥

(∆x+∆y)2, which implies

(∆x+∆y + 2)/(ρh) ≤ (
√︁

2((∆x)2 + (∆y)2) + 2)/(ρh) = (
√
2 · Lℓ + 2)/(ρh).

It suffices to show
√
2 · Lℓ + 2 ≤ 2Lℓ; this is easily seen to be true because

Lℓ ≥ 4. Therefore, if we add these inequalities for all legs ℓ of OPT′, we get

the lemma’s statement as the result.

The following lemma is essentially the same as the one in the case of point

TSP (except we have different stopping points):

Lemma 29 ([4]) Considering the randomness of the dissecting lines, with

probability of at least 1
2
, there exists a portal-respecting solution for I ′ with

cost at most (1 + ε) · opt′ for portal parameter m = O(1
ε
· log N

ρh
)

Proof. The proof is similar to the survey in [24]. Consider any dissecting line

Γ of level j and focus on the intersections of OPT′ with that line. Consider

any leg ℓ = ab of OPT′ which intersects Γ, say at a point q and suppose p

is the nearest portal of Γ to q. Replace ℓ with with two new “legs” ℓ1 = ap

and ℓ2 = pb. Let d be the distance of q to p. Using triangle inequality, it can

be seen that ℓ1 + ℓ2 ≤ ℓ + 2d; meaning the additional cost for going through

portal p is at most 2d. The distances between the portals on level j line Γ are

dj =
N

2jm
, and clearly d ≤ dj. Recall that OPT′ intersects with Γ, t(Γ) times.

Thus, the expected increase in cost for any dissecting line Γ is at most

logN/ρh∑︂
j=1

Pr[Γ is level j] · t(Γ) · 2 · N

2jm
≤

logN/ρh∑︂
j=1

2j−1

N/ρh
· t(Γ) · 2 · N

2jm

=
ρh

m
·
logN/ρh∑︂

i=1

t(Γ)

=
ρh

m
· log N

ρh
t(Γ).
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For m ≥ 4
ε
log N

ρh
, the last value above is at most ερh

4
· t(Γ). Adding all these

inequalities over different Γ’s gives us ερh
4
·T , which according to Lemma 28 is

at most ε
2
·opt′. Using Markov’s inequality the statement of the lemma follows.

The patching Lemma (stated below) for classic Euclidean TSP holds in our

setting as well.

Lemma 30 (The patching Lemma [4]) For any dissecting line segment τ

with length Lτ , if a tour crosses τ more than twice, it can be altered to still

contain the original tour, but intersect with τ at most twice with an additional

cost not greater than 6Lτ .

Proof. The same proof as in [4] applies here.

Observation 6 A single point can be seen as a 0-length segment. By using

Lemma 30, we get that at no additional cost (i.e. extra cost of 6 × 0), each

portal is visited at most twice.

The next lemma shows the existence of a near-optimum solution that is r-light

and portal respecting for r = O(1/ε):

Lemma 31 Given the randomness in picking the dissecting lines, with prob-

ability at least 1
2
, there is an r-light portal respecting tour for I ′ with cost at

most (1 + ε) · opt′ for r = O(1
ε
).

Proof. This is implied by the Structure Theorem in [4], and the similar proof

works here.

3.2.1 DP Table and Time Complexity

The outer DP is similar to the DP for classic Euclidean TSP except that we

need to take care of required portals that are going to be guessed and passed

down to the subproblems. Note that there are O(n) subproblems in each

level of the dissection tree, and so a total of O(n log n) squares to consider.

For each square S with 4m portals around it, we guess a subset of portals
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on the horizontal sides of S to be required. The number of such guesses is

22m where m = O(1
ε
· log N

ρh
) = O(log n/ε). There are (4m + 1)4r guesses for

up to 4r portals to be chosen for an r-light portal respecting, and at most

(4r)! for the pairings of these portals. So the size of the DP table is at most

O(n log n · 22m · (4m+ 1)4r · (4r)!) = O(n logO(r) n).

The DP table is filled bottom up. The base cases are when we have a square

of side length ρ ·h. These subproblems are solved using the inner DP described

in the next section. For every other square S that is broken into 4 squares

S1, . . . , S4, we solve the subproblem of S after we have solved all subproblems

for S1, . . . , S4. The way we combine the solutions from those of the sub-squares

to obtain the solution for S is very much like the classic point TSP. However,

we have to extend the solutions so that the line segments that were intersecting

the horizontal dissecting line that split S, are now fully covered by the guessed

required portals for S1, . . . , S4. More specifically, suppose Γ is the horizontal

dissecting line that corresponds to a cover-line Cτ from group Gj∗ (and hence

we removed all the segments crossing Cτ and instead made some of the portals

along Cτ as required). We add those segments of the instance back, and we

extend the solutions from the require portals to travel left and right to cover

these segments. Similar to the classic TSP, the total time to fill in the outer

DP table is O(n logO(r) n).

3.3 Inner DP

Recall that each base case of the quad-tree decomposition is a subproblem

defined on a square S with size ρh×ρh, and has 4m portals around it. Since we

assume the solution we are looking for is r-light, it means the instance defined

by S has also a set P of size at most 4r of portal pairs (where r = O(1/ε)).

Each pair (pi, qi) ∈ P specifies that the solution restricted to S, has a pi, qi-

path. We are also given a guessed subsetQ of the portals around S (specifically

on the top and bottom side of S) as the required portals. The goal is to find

a minimum cost collection of paths that start/end at the given set of portal

pairs P that cover all the line segments in S, as well as visit all the required
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portals in Q. Let us denote this instance by (S, P,Q). Note that by Theorem

2, Lemma 27, and Lemma 31, there is a near-optimum solution such that it

is r-light for each square of the dissection, is portal respecting, covers all the

required portals, and has shadow bounded by O(1/ε2). Also using Lemma 19,

the length of any pure reflection sequence in it is bounded by O(1/ε). We

describe the inner DP to find an optimum solution with bounded shadow (and

pure reflection sequence bounded to O(1/ε) elements) restricted to subproblem

(S, P,Q). For square S, let us use OPTS and optS to denote such a bounded

shadow optimum solution and its value, respectively.

Informally, the DP is a (nontrivial) generalization of the DP for the classic

(and textbook example) bitonic TSP in which the shadow is 2. In our case,

the shadow is O(1/ε2). We are going to consider a sweeping vertical line Γ in

S (that moves left to right) and “guess” the intersections of OPTS with it.

We define an event point set in the following way:

Definition 12 (Event Point) Given a subproblem triplet (S, P,Q), each line

segment in S is in the event point set. Also, each portal that is on a horizontal

side of S and is either in Q, or participates in a pair of P , is also in the event

point set.

We consider an ordering of all the elements in the event point set from left to

right (i.e. increasing x-coordinate), say v1, v2, . . . , vnS
, where nS is the number

of event points; note that nS = O(n). There are nS − 1 equivalent classes

for positions of Γ, where each class corresponds to when Γ is located between

vi, vi+1. A sweep line between vi, vi+1 is denoted by Γi. Since the shadow of

OPTS is bounded, the intersection of Γi with OPTS has a low complexity. We

will give a more concrete explanation of that complexity below.

Recall Observation 3 and the types of points in a solution (straight point,

break point, or reflection point). Also recall the definition of a pure reflection

point (a reflection point that is not at a tip of a segment of the instance).

Consider the global optimum solution that is r-light and portal respecting

with bounded shadow and bounded pure reflection sequence that also covers

the required portals of each square. Suppose pa1 , pa2 , . . . , pak is the sequence
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of points in S visited by OPTS in this order that are not a straight point nor

a pure reflection point; so each of them is a break point (tip of a segment) or

perhaps a required portal in Q, or a portal in P (i.e. is an entry or exit point

in some pair belonging to P ). So any point visited by OPTS between pai , pai+1

(if there is any) is either a straight point or a pure reflection point. We define

subpaths of OPTS named large legs as follows:

Definition 13 (Large Leg) The path of OPTS from pai to pai+1
is a large

leg. Each large leg starts and ends from a portal or a tip of a segment, and all

the points in between are either straight points or pure reflection points.

It follows from Lemma 19 that the number of pure reflection points in each

large leg is bounded by O(1/ε). Each large leg can be guessed by making at

most O(1/ε) guesses for segments or points: guess the two end-points of the

large leg (which are either portals or tips of segments), then guess at most

O(1/ε) segments that have pure reflection points on them; once we guess the

two end-points and the segments for pure reflections, the pure reflection points

are uniquely determined. Since there are O(n2) choices for the end-points and

O(n1/ε) choices for the segments of pure reflection points, the total number

of possible large legs is bounded by nO(1/ε). Now since we assume OPTS has

bounded shadow of O(1/ε2), for any sweep line Γi, there are at most O(1/ε2)

large legs of OPTS that can cross Γi.

So for a fixed i (and sweep the line Γi), let Li = L1, . . . , Lσ be the se-

quence of large legs (σ = O(1/ε2)) of OPTS that cross Γi; where each large

leg is specified by the end-points as well as the intermediate segments for pure

reflections (if there are any). Then the number of possible choices for Li is

nO(1/ε3). Given i and Li, let S
L
i , S

R
i be the left and right part of S (cut by Γi).

If we ignore the segments covered by Li in SL
i , and consider the end-points of

each Lj as portals too, then the restriction of OPTS to SL
i is a collection of

paths that start/end at portals of P in SL
i or end-points of Lj’s in SL

i that

cover all the segments in SL
i not already covered by Li, as well as points in

Q ∩ SL
i . More specifically, each part of OPTS in SL

i is a path that starts at a

pj for a pair (pj, qj) ∈ P , or at an end-point of Lk that is in SL
i and ends at a
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point pj′ (or qj′) of another pair in P that is also in SL
i , or at another end-point

of some Lk′ that is in SL
i . So this induces some pairs of points, denoted by

PL
i :

Definition 14 (Path-wise Pairing PL
i ) Set PL

i of pairs of points is said to

be the path-wise pairing for SL
i , if there is a path in SL

i between the two points

of any given pair (a, b) ∈ PL
i . Furthermore, each point in a pair (a, b) ∈ PL

i is

either a portal in SL
i that is part of a pair in P , or is an end-point of a large

leg Lj that is in SL
i .

For any such point in SL
i , say p, there must be a pair in PL

i containing

that point. We also assume (p, p) ∈ PL
i , and if p is an end point of a large leg

in Li or SL
i , and if q is the other end point of that large leg, then (p, q) ∈ PL

i .

We say a set of pairs PL
i is not promising if given Li, there is no feasible

solution in the entire S whose restriction to SL
i defines subpaths consistent with

PL
i (i.e. they start and end on the same pairs as specified by PL

i ). Otherwise,

we consider it promising. For example if (pj, qj) ∈ P , both pj, qj belong to

SL
i , and if (pj, u), (qj, v) ∈ PL

i where u is one end of a long leg L1 and v is

one end of a long leg L2, it must be the case that it is possible to have a path

from the other end of L1 to the other end of L2. This would be impossible

if, for instance, those other ends of L1, L2 are paired up with other portals in

PL
i . Note that since there are at most 4r pairs in P and O(1/ε2) end-points

in Li, the number of possible choices for PL
i is (1/ε)O(1/ε). Also, a given PL

i

(together with Li), it can be checked if PL
i is promising or not in poly-time in

n.

This suggests how we can break the instance (S, P,Q) into polynomially

many sub-instances. For a fixed i, guess Li among all those with shadow

O(1/ε2), break S into SL
i , S

R
i , let QL

i = Q ∩ SL
i , and guess the new pairs

PL
i (for SL

i ) that are promising. We solve (SL
i , P

L
i , Q

L
i ) for each SL

i , P
L
i , Q

L
i

obtained this way. We can solve each such subproblem assuming we have

solved all subproblems defined by each Γj for j < i. So formally, let us define

a configuration:

Definition 15 (Configuration) A configuration is a vector (i,Li, P
L
i ) where
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the components are:

� i (indicating Γi and defining SL
i ),

� The large legs of OPTS crossing Γi, denoted by Li, |Li| = O(1/ε2),

� The pairing PL
i defined by Li, P , and the restriction of OPTS to SL

i .

This configuration (see Figure 3.3), defines a subproblem: Suppose Li is a

given set of large legs crossing Γi. Find a collection of paths in SL
i such that

PL
i specifies the start/end of these paths (and is promising), such that these

paths cover all the segments in SL
i (excluding those already covered by Li),

and also cover all the points in Q ∩ SL
i , with shadow at most O(1/ε2).

Figure 3.3: An example of an event point vi and vertical lines Γi−1,Γi from
two consecutive equivalent classes in square S. In this figure, Li−1 = L1, L2

and Li = L1; plus, it is the case that (p2, n2) ∈ PL
i−1, (q1, n1) ∈ PL

i−1, and
(q1, n1) ∈ PL

i .

The cost of this solution is defined to be the sum of the costs of all the edges

that are entirely (i.e. both end-points) in SL
i (including those legs of a large

leg in Li that are entirely in SL
i , but not those that are crossing Γi). Entry
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A[i,Li, P
L
i ] of the inner DP, stores the minimum cost of such a solution. Recall

that there are ns = O(n) choices for i (and so for Γi), n
O(1/ε3) choices for Li,

and (1/ε)O(1/ε) choices for PL
i . So there are nO(1/ε3) possible configurations,

which is the size of our DP table as well.

We fill in the entries of this table A[., ., .] for increasing values of i. For

i = O(1), A[i, ., .] can be computed exhaustively in O(1) time.

For any other value of i, we compute A[i,Li, P
L
i ] by considering various

subproblems (i− 1,Li−1, P
L
i−1) that are consistent (see Subsection 3.3.1) with

(i,Li, P
L
i ). Consider event point vi−1; it is either a segment or a portal that is

between Γi−1 and Γi; which means it does not belong to SL
i−1, but belongs to

SL
i . Consider the solution for (i,Li, P

L
i ), and the legs (in that solution) that

visit vi. In case vi is a start/end portal in P , there is one leg incident to vi;

if vi ∈ Q there are two legs incident to vi, and if vi is a segment, there are

two legs that are incident to a point v′i on that segment. If there is one leg

only (vi is a start/end portal), call that leg ℓi, and if there are two legs, call

them ℓi−1, ℓi. Depending on whether these legs cross Γi−1 or Γi, we have the

following situations, which are the consistent outcomes:

1. vi is a start/end portal, we consider 2 different subcases:

(a) ℓi crosses Γi−1 but not Γi: Say ℓi = viu, where u is a point in

SL
i−1. In this case, there is a large leg L ∈ Li−1 with one end-point

vi. Then if L crosses Γi, it means L is a large leg in Li. If L does

not cross Γi, then Li = Li−1 \L. We consider both possibilities and

in each case, consider PL
i−1’s that are consistent with PL

i and set

A[i,Li, P
L
i ] = minPL

i−1,Li−1
{A[i− 1,Li−1, P

L
i−1]}+ ||ℓi||.

(b) ℓi crosses Γi but not Γi−1: In this case, there is a large leg L ∈ Li

that starts with ℓi and does not cross Γi−1, so does not belong to

Li−1. All the other large legs in Li−1 and Li are the same (as there

is no other event point between Γi−1 and Γi), and PL
i and PL

i−1 are

consistent. Then A[i,Li, P
L
i ] = minPL

i−1,Li−1
{A[i− 1,Li−1, P

L
i−1]}.

2. vi ∈ Q, we consider 3 different subcases:
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(a) ℓi−1, ℓi both cross Γi−1 but not Γi: In this case, there are two

large legs L,L′ ∈ Li−1 that both end at vi, say L contains ℓi and

L′ contains ℓi−1. If L crosses Γi, then L is a large leg in Li as well,

similarly for L′. The other large legs of Li and Li−1 are the same, and

PL
i−1 is consistent with PL

i . We set A[i,Li, P
L
i ] = minPL

i−1,Li−1
{A[i−

1,Li−1, P
L
i−1]}+ ||ℓi||+ ||ℓi−1||.

(b) ℓi−1, ℓi both cross Γi but not Γi−1: This similar to the previous

case. There are two legs L,L′ ∈ Li that both start at vi, say L

contains ℓi and L′ contains ℓi−1. If L crosses Γi−1, then L is a large

leg in Li−1 as well, similarly for L′. The other large legs of Li and

Li−1 are the same and PL
i−1 is consistent with PL

i . In this case,

A[i,Li, P
L
i ] = minPL

i−1,Li−1
{A[i− 1,Li−1, P

L
i−1]}.

(c) Exactly one of ℓi−1, ℓi crosses Γi−1 and one crosses Γi: Say

ℓi−1 crosses Γi−1, and ℓi crosses Γi. So ℓi−1 will be the last leg of a

large leg L ∈ Li−1, and ℓi will be the first leg of a large leg L′ ∈ Li.

If L does not cross Γi, then L is not in Li at all. Similarly, if L′

doesn’t cross Γi−1, then L′ isn’t a large leg in Li−1. We consider

both possiblities (i.e. consider sets Li−1 that are consistent with one

of these cases). A[i,Li, P
L
i ] = minPL

i−1,Li−1
{A[i − 1,Li−1, P

L
i−1]} +

||ℓi−1||.

3. vi is a segment: Subcases are similar to the previous case; let v′i be the

intersection point of OPTS with vi:

(a) ℓi−1, ℓi both cross Γi−1 but not Γi: If v
′
i is a tip, then ℓi−1 is the

last leg of a large leg L ∈ Li−1, and ℓi is the last leg of another

large leg L′ ∈ Li−1. Depending on whether L (L′) crosses Γi, it

can be a large leg in Li or not. We consider both possibilities. If

v′i is not a tip, then it must be a pure reflection, so there must

be a large leg L ∈ Li−1 that contains this as a pure reflection.

That large leg may or may not belong to Li. We consider all these

possibilities (i.e. those Li−1 consistent with these), and also for each
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case consider a PL
i−1 consistent with PL

i . Then set A[i,Li, P
L
i ] =

minPL
i−1,Li−1

{A[i− 1,Li−1, P
L
i−1]}+ ||ℓi−1||+ ||ℓi||.

(b) ℓi−1, ℓi both cross Γi but not Γi−1: If v′i is a tip, then ℓi−1 is

the first leg of a large leg L ∈ Li, and ℓi is the first leg of another

large leg L′ ∈ Li. Depending on whether L (L′) crosses Γi−1, it can

be a large leg in Li−1 or not. We consider both possibilities. If v′i

is not a tip, then it must be a pure reflection, so there must be a

large leg L ∈ Li that contains this as a pure reflection. That large

leg may or may not belong to Li−1 depending on whether it crosses

Γi−1 or not. We consider all these possibilities, and also for each

case consider a PL
i−1 consistent with PL

i . Then set A[i,Li, P
L
i ] =

minPL
i−1,Li−1

{A[i− 1,Li−1, P
L
i−1]}.

(c) Exactly one of ℓi−1, ℓi crosses Γi−1 and one crosses Γi: In this

case, v′i must be a tip or a straight point. Say ℓi−1 crosses Γi−1,

and ℓi crosses Γi. If v′i is a tip, then ℓi−1 is the last leg of a large

leg L ∈ Li−1, and ℓi is the first leg of a large leg L′ ∈ Li. L may

cross Γi (in which case it also belongs to Li), also L may cross

Γi−1 in which case belongs to Li−1. We consider these possibilities.

If v′i is a straight point, then both ℓi−1, ℓi are part of a large leg

L ∈ Li−1, and L belongs to Li as well. We consider all these cases

and consistent PL
i−1, P

L
i and set A[i,Li, P

L
i ] = minPL

i−1,Li−1
{A[i −

1,Li−1, P
L
i−1]}+ ||ℓi−1||.

3.3.1 Consistent Subproblems

The consistency of a subproblem by configuration (i,Li, P
L
i ), with a previous

subproblem by configuration (i−1,Li−1, P
L
i−1), comes down to one of the cases

mentioned in the previous Section. In each subcase, we only need to define

what we mean by consistent PL
i and PL

i−1.

We say PL
i as a part of the configuration (i,Li, P

L
i ), and PL

i−1 as a part of

the configuration (i− 1,Li−1, P
L
i−1) are consistent if for any pair (a, b) ∈ PL

i :

� If both a, b are in SL
i−1, then either:

86



– (a, b) ∈ PL
i−1, or

– (When vi ∈ Q or when vi is a segment containing a pure reflection)

There is a large leg Lj ∈ Li−1 ∪ Li with end points p1, p2 corre-

sponding to (i.e. having an intersection with) the event point vi,

such that (a, p1), (b, p2) ∈ PL
i−1, or

– (When vi ∈ P or vi is a segment containing a non-pure reflection

or a break point) There are two large legs (in Li−1 ∪ Li) that have

vi as an end point, and have another end point, say respectively p1

and p2, such that (a, p1), (b, p2) ∈ PL
i−1.

� If both a, b are not in SL
i−1, then it means that either a or b, say a,

corresponds to the event point vi. This means either a is a portal (∈

P ∪Q) between Γi−1 and Γi, or a is a tip of the segment corresponding

to vi. In either case, there is at least a large leg Lj ∈ Li−1 ∪ Li that has

a as one of its end points. There can be at most two such large legs;

say p1 and possibly p2 are the other ends of these at most two large legs.

Then it must be the case that (either) (b, p1) ∈ PL
i−1 (or (b, p2) ∈ PL

i−1).

3.4 Algorithm for Similar-Length Line Segments

We first finalize the proof of our algorithm for the case of unit length segments,

then generalize the proof to the case of similar-length segments.

3.4.1 Unit-Length Line Segments

We prove the following theorem to finalize the proof for unit-length line seg-

ments:

Theorem 4 There is a (1 + ε)-approximation algorithm for TSPN over n

parallel unit-length line segments that runs in time nO(1/ε3).

Proof. Take any instance of the problem. As described at the beginning

of this chapter, we first scale the instance (at a loss of (1 + ε)) so that all

segments have integer coordinates. We employ the hierarchical decomposition
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of Arora using dissecting lines as described in Section 3.1, and drop the line

segments crossing horizontal dissecting lines as described in Subsection 3.1.1.

We require a subset of portals around each square S of the dissectioning to

be covered in the subproblems as described in the outer DP in Section 3.2.

Lemma 27 shows that we lose at most another (1 + ε) factor in doing so.

At the leaf level of our decomposition, we need to solve instances where each

square has sides of length ρ ·h. Note that as discussed in the first paragraph of

Subsection 3.3, for any base square of the dissection, using Theorem 2, Lemma

27, Lemma 31, and Lemma 19, there is a near-optimum solution such that it

is portal respecting, r-light for r = O(1
ε
), covers all the required portals, has a

shadow bounded by O(1/ε2), and the length of any pure reflection sequence in

it is bounded by O(1/ε). The inner DP describes how to find such a solution.

Note that the size of the inner DP table is nO(1/ε3). To compute each entry,

we may consider (at worst) all other entries, and so the time complexity of

computing the table for each square S is at most nO(1/ε3). Given that the

number of squares at the leaf nodes of the decomposition is O(n logO(r) n), the

total time for the inner and outer DP is nO(1/ε3).

3.4.2 Similar-Length Line Segments (Main Theorem)

We finally prove the main theorem in this thesis, which we reiterate here for

convenience:

Theorem 1 Given a set of n parallel line segments with lengths in [1, λ] for

a fixed λ as an instance of TSPN, there is an algorithm that finds a (1 + ε)-

approximation solution in time nO(λ/ε3).

Proof. We discuss how the result presented for unit-length line segments in

Theorem 2 can be extended to the case that line segments have length ratio

λ = O(1), and obtain a PTAS for it. In the case of segments with lengths in

[1, λ], for every strip of height 1, we still have some top and bottom segments

and we might have some line segments that completely span the height of

the strip. Let’s call these segments full segments of a strip. We claim that

whenever we change the solution in the proof of Theorem 2 to one that has a
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bounded shadow, the full segments of the strip remain covered. These changes

are done in Lemmas 19 and 18. For each of these cases, any new subpath (with

smaller shadow) that replaces a subpath of larger shadow, will travel the same

interval in the x-coordinate, and hence any full segment covered by the original

path, remains covered by the new path.

Next, when we scale the instance, we get line segments with length between

[ρ, λρ]. Now we do our hierarchical decomposition until base squares have side

length of λρh, so the space between two cover-lines in the same group is λρh

instead of ρh. Lemma 25 holds with bound opt ≥ ρ·|B|
6λ

. This implies Lemma 26

holds if j is chosen from [1 . . . hλ]. It is straight-forward to check that Lemma

27 holds with the same ratio. For the inner DP, noting that the instance we

start from has height ρλh, the shadow is bounded by O(λ/ε2). The same DP

works but the runtime will be nO(λ/ε3). This implies we get a PTAS with the

same run time which completes the proof of Theorem 1.
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Chapter 4

Conclusion, Further Extensions,
and Open Problems

In this thesis, we proved Theorem 1, that there is a PTAS for parallel line

segments with comparable sizes. Recall that in [12], it is shown that the

Euclidean TSPN for segments of comparable sizes in arbitrary orientation is

APX-hard. There are still a few extensions of our problem that one can

consider:

1. Line segments of the instance have arbitrary sizes and they’re all parallel

to each other. Is there a PTAS for this case?

2. Line segments of the instance have comparable sizes, and they are par-

allel to the axes of the plane (so the slopes of the lines have two possible

choices). Is there a PTAS for this setting?

Note. If the segments are unit-length, we can apply our result in Theo-

rem 1 for this case and obtain a (2 + ε)-approximation for this problem

that runs in poly-time in the size of the input:

Proof sketch. Split the segments into two groups based on them being

horizontal or vertical. Let the minimal bounding box for the vertical

segments have sides Lv ×Hv, and the one for horizontal segments have

sides Lh×Hh. Similar to what was mentioned at the start of Chapter 3, if

opt is the cost of an optimum solution OPT, then opt/2 ≥ max{Lv, Hv−

2, Lh − 2, Hh}.
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Consider the boxes of sizes Lv × (Hv − 2) and (Lh − 2)×Hh contained

in the aforementioned minimal bounding boxes. Let B be the smallest

bounding box that contains these two new boxes. So we get that opt is

at least as large as any sides of B; and also it is the case that OPT lies

completely inside of B.

The left side of B, refer to it as Bl either has a vertical segment on it (in

the case when the left side of the Lv × (Hv − 2) box overlaps with Bl) or

it has the right-most point of the left-most horizontal line (in the case

when the left side of the (Lh− 2)×Hh box overlaps with Bl). The same

argument holds for Br, the right side of B. If neither of Bl and Br are

on a side of the (Lh − 2)×Hh box, then it means that all the horizontal

segments of the problem have an intersection with the interior of B. In

this case, take any horizontal segment sh that has a length of lh inside

of B; we get that opt ≥ lh.

Assuming opt ≥ lh, take the portion of sh lying inside B, and break it

into 8/ε parts of size lh · ε/8. For each of these parts, consider their

left-most points, and let them be p1, p2, . . . , p8/ε. OPT must intersect

this segment at one of these parts. Assume that pi is the left-most point

of the part that OPT intersects with (we can check all the 8/ε cases).

Add pi to the set of vertical segments, and apply the result of Theorem

1 for parameter ε/4 to get a solution covering all the vertical segments

along with point pi.

This solution is a lower bound for the restriction of OPT on sh along

with the vertical segments; with the exception that the intersection on

sh itself can add at most lh · ε/4 to the cost. So in total, this new solu-

tion along with a doubled copy of the part containing pi, cost at most

(1 + ε/4) · opt + lh · ε/4 ≤ (1 + ε/2) · opt.

Do the same thing for horizontal segments, meaning find a solution cov-

ering pi and all the other horizontal segments with parameter ε/4 in

Theorem 1. We get another solution with cost at most (1 + ε/2) · opt.

The conjunction of these two solutions, make a feasible solution for the
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main problem and cost at most (2 + ε) · opt, proving our claim.

If we don’t have opt ≥ lh, it must be the case that there is a point

on a horizontal segment on one of the vertical sides of B. This implies

that OPT must specifically contain that point. Similar to above, we can

add that point to the set of vertical segments and the set of horizontal

segments separately; we then find solutions using Theorem 1 with pa-

rameter ε/2. Combining those two solutions will yield the same result.

3. Line segments of the instance have comparable sizes, and each segment

has a slope equal to one of k possible choices, for some k ∈ Z+. What is

the best approximation when:

(a) k is a constant (specifically, is there a PTAS)?

(b) k is any positive integer in general?

Note. Using the result of Mitchell [19] that there exists a PTAS for

TSPN over convex neighborhoods, there is a constant-factor approxima-

tion (with unspecified factor) in both cases.

4. Line segments with similar size that are at least δ apart from each other

for some δ > 0. Is there a PTAS for this setting?

Answer. Yes.

Proof sketch. We will use the result in [18] that there is PTAS for

TSPN over disjoint fat objects. Assume we are given an instance I of

the problem and there are n segments. We get that if opt is the cost of

an optimum solution for I, then opt ≥ δ ·n. Take any ε ∈ (0, 1). For each

segment of length sL, consider a sL× εδ rectangle that has that segment

as a side. By the assumption of the problem, it’s implied that these

rectangles are not intersecting each other. For small enough ε, it can be

seen that all these rectangles are also “fat” aligning with the definition

in [18]. Define an instance I ′ of TSPN where the neighborhoods are

these rectangles we defined. Let opt′ be the cost of an optimum solution
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for I ′. Using [18], there’s a PTAS for I ′; we can now take a (1 + ε)-

factor solution for I ′, and extend each intersection with a rectangle to

its corresponding segment at a total additional cost of at most 2n·εδ. Let

this new extended solution be OPT′′ and its cost be opt′′. So OPT′′ will

be a feasible solution for I, and opt′′ ≤ (1+ ε) · opt′ +2nεδ. Note that a

feasible solution for I is also a feasible solution for I ′, thus opt′ ≤ opt. So

we get that opt′′ ≤ (1+ε)·opt+2nεδ ≤ (1+ε)·opt+2ε·opt = (1+ε′)·opt,

giving us a PTAS for I.

Moving away from the case of neighborhoods being segments, the following

open problems proposed in [18] remain:

5. Is there a PTAS for TSPN when neighborhoods are general connected

shapes on the plane that don’t overlap?

6. Is there a constant-factor approximation for TSPN when neighborhoods

are connected general shapes on the plane?
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