Graph Pricing With Limited Supply

by

Maryam Mahboub

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

(© Maryam Mahboub, 2020

Abstract

In this thesis, we study approximation algorithms for graph pricing where we
have a set of items V' and a set of customers X where each customer i € X
has a budget b; and is interested in a bundle of items S; C V with |S;| < 2.
However, there is a limited supply of each item: we only have pu, copies of
item v to sell for each v € V. We should assign prices p(v) to each v € V' and
chose a subset Y C X of customers so that each ¢ € Y can afford their bundle
(p(S;) < b;) and at most u, chosen customers have item v in their bundle
for each item v € V. Each customer i € Y pays p(S;) for the bundle they
purchased: our goal is to do this in a way that maximizes revenue.

Such pricing problems have been studied from the perspective of enwvy-
freeness where we also must ensure that p(S;) > b; for each ¢ ¢ Y. However,
the version where we simply allocate items to customers after setting prices
and do not worry about the envy-free condition has received less attention.

With unlimited supply of each v € V, Balcan and Blum (2006) give a
4-approximation for graph pricing which was later shown to be tight by Lee
(2015) unless the Unique Games conjecture fails to hold.

Our main result is an 8-approximation for the capacitated case via local

search. If all capacities are bounded by a constant C', we further show a multi-

i

swap local search algorithm yields an (4 . QCT_l + e)—approximation. We also
give a (4 + €)-approximation in simple graphs through LP rounding when all
capacities are very large as a function of e.

The reduction by Balcan and Blum to the case of bipartite graphs where
all items on one side must be assigned a price of 0 holds in this setting as well.
However, unlike the unlimited supply setting, the resulting problem remains
APX-hard even if all items have at most 4 copies to sell. We also show our
multi-swap analysis is tight using an interesting construction based on regular,

high-girth graphs.

il

Preface

[, Maryam Mahboub, declare that this thesis titled, ‘Graph Pricing With Lim-

ited Supply’ and the work presented in it are my own. I confirm that:

s This work was done wholly or mainly while in candidature for a research

degree at this University.

s Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this

has been clearly stated.

m Where I have consulted the published work of others, this is always
clearly attributed.

s Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own

work.
m [have acknowledged all main sources of help.

s Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have

contributed myself.

v

“No two things have been combined better than knowledge and patience.”

Prophet Muhammad (peace be upon him)

To:

The great savior of the world

vi

I think there is a world market for maybe five computers.

— Thomas J. Watson, IBM Chairman, 1943.

vil

Acknowledgements

There are many people I want to thank for both supporting me through my
degree as for their help with this thesis. First and foremost, I want to thank my
supervisor, Zachary Friggstad. You have been a great teacher, mentor, and
role-model who has pushed me to become a better student and researcher.
While I have had my fair share of failures and stumbles along the way, you
have shown me how much more I can achieve, and how much further I can
still grow as a researcher.

I also want to thank Mohammad R. Salavatipour for not only providing
insightful and constructive comments in this thesis, but for being great col-
league. You have been a inspiration to me, and I have valued your guidance,
especially during the more difficult times over the past two years.

I would also like to thank to my beloved husband, Mirmahdi Rahgoshay.
Thank you for supporting me for everything, and especially I can’t thank you
enough for encouraging me throughout this experience.

Finally I thank my God, for helping me through all the difficulties. I have
experienced Your guidance day by day. You are the one who let me finish my

degree. I will keep on trusting You for my future. Thank you, Lord.

viii

Contents

Introduction
1.1 Preliminaries
1.1.1 Graph

1.1.2 Optimization Problems and Approximation Algorithms
1.1.3 Linear Programming
1.1.4 Local Search Algorithms
1.1.5 Probability Inequalities
Problem Considered
Prior Worko
Main Resultso

raph Pricing with Limited Supply
1 Problem Overview
2.1.1 Reduction to L-SIDED PRICING Problem
212 OurResults
2.2 Local Search Algorithm
2.2.1 Single Swap Analysis
2.2.2 An Improved Multi-Swap Algorithm for Bounded Ca-
pacities Lo
Proof of Theorem 8
Efficient Versions of Local Search
Extension to Multi-Swap

T W

Linear Programming Based Algorithms

3.1 OurResults
3.1.1 Randomized Rounding Algorithms
3.1.2 Extension to k-Hypergraphs

Locality Gaps and Hardness

4.1 Single-Swap
4.2 Multi-Swap
4.3 APX-Hardness for L-Sided Pricing
4.4 A Lower Bound on the Integrality Gap of (LP-Pricing)

X

5 Conclusion

5.1 Incorporating Loops

5.2 Future Directions

References

List of Figures

2.1

4.1

4.2

[lustration of the case d = 6 where dy(u,v) = 4. The directed
ball BT (u,6) contributes to the “distance 4” requirement for v,
B*(u,5) contributes to the “distance 5” requirement for v, and
B*(u,4) contributes to the “distance 6” requirement for v. . .

An example with C' = 2. Left: the bipartite graph H con-
structed from H' in the proof of Lemma 9. Right: the resulting
graph G' with ¢t = 4. Edges of E’ are solid and the edges of E*
are dashed. oL

An Example Instance Showing A Lower Bound on the Integral-
ity Gap of (LP-Pricing)

x1

31

46

Chapter 1

Introduction

Choosing prices to sell items in order to maximize revenue is a complicated
task even in environments where one can be certain of customer behaviour.
Indeed, many so-called pricing problems have been studied in combinatorial
optimization. One popular model is this: a collection of items V' is available
to be sold where we have u, € Z>oU{oc} copies of item v € V. Additionally,
we are given a collection of customers X where each ¢ € X has some budget
b; > 0. In the single-minded setting, each customer i € X is interested in a
bundle S; C V. We must assign prices p : V' — R to the items and sell them

to some customers Y C X while respecting two constraints:
e Affordability: p(S;) :=) g p(v) < b; for i € Y, and
e Supply Constraints: [{i € Y :v € S;}| < p, forve V.

That is, each customer that purchases their bundle can afford it and no item
is oversold. Such a solution (p,Y) is said to be feasible, and the goal is to
find a feasible (p, Y") maximizing revenue, i.e. Y., p(S;).

Much attention has been given to the envy-free setting, where a feasible
solution must additionally satisfy the property p(S;) > b; for i ¢ Y or to the
unlimited supply setting where 1, = oo for each v € V. Observe that in the

unlimited supply setting, any pricing yields an envy-free solution by simply

choosing the customers that can afford the price. However, the problem still
remains APX-hard in this relaxed setting (unlimited supply) and, further, is
hard to approximate within a factor better than 4 unless the Unique Games
Conjecture, an open problem in computer theory, fails to hold, see the prior
works section.

We study single-minded pricing problems yet without the envy-free con-
straint. This is a natural variant of pricing problems where customer satis-
faction is less of a concern than overall revenue generation. To the best of
our knowledge, it seems that pricing problems without the envy-free condition
like this have received virtually no attention so far except in simpler cases
of unlimited supply where envy-freeness is a superfluous constraint (i.e. any
solution can be trivially be made envy-free without losing revenue).

More specifically we mainly consider the case when |S;| = 2 for each cus-
tomer ¢. That is, the set of customers can be thought of as edges F in a graph

G = (V, E) with vertex capacities and, perhaps, parallel edges.

1.1 Preliminaries

We begin by formalizing the terminology we will use throughout this thesis.

The definitions given here are adapted from [34], [36], and [35].

1.1.1 Graph

A graph G is defined by its finite edge set E(G) = {ey, ez, ..., €, } and finite
vertex set V(G) = {vy,vq, ..., v, }, where each edge e € E(G) is an unordered
pair of vertices in V(G). To simplify notation, we may drop the parameters
of V and F when the graph is clear from context, and instead denote G as
the pair (V, E). We also consider directed graphs; in a directed graph G, each
edge e € E(G) is an ordered pair of vertices. We use the same notation as for

undirected graphs.

In undirected graph for each edge e = wv € E(G), we say u and v are
adjacent and e is incident to v and v. The neighbours of a vertex v are the
vertices u such that u and v are adjacent; we denote this set as Ng(v), or
simply N(v) when G is clear from context.

A subgraph of a graph G is a graph H, where H is obtained from G by
deleting some edges and/or some vertices (and their incident edges) from G.
We notate this relation as H C GG, and may simply say that G contains H or
Hisin G. A subgraph H C G is spanning if V(H) = V(G).

Multigraph

A multigraph (in contrast to a simple graph) is a graph with a multiset of edges
which is permitted to have multiple edges (also called parallel edges), that is,
edges that have the same end nodes. Thus two vertices may be connected by
more than one edge. Also, multigraphs could have edges that connects one
vertex to itself which are called self loops.

Bipartite Graph

A bipartite graph is a graph whose vertices can be divided into two disjoint
sets U and V such that every edge is incident to exactly one vertex in U and
one vertex in V. Vertex sets U and V are usually called the parts of the graph.
Hypergraph

A hypergraph H is a pair H = (X, FE) where X is a set of elements called
vertices, and F is a set of non-empty subsets of X called edges. Therefore,
E is a subset of P(X) \ {0}, where P(X) is the power set of X. The size of
vertex set is called the order of the hypergraph, and the size of edges set is
the size of the hypergraph. A k-hypergraph is a hypergraph such that all the
edges have cardinality k (a subset of vertices with size k).

Walk in Graph

A walk in graph G is a finite non-empty sequence W = vgejv;€90s...€,0;, whose

terms are alternately vertices and edges, such that, for 1 < i < k, the ends of

e; are v;_1 and v;. We say that W is a walk from vy to vg. The vertices vy and
vy, are called the origin and terminus of W, respectively, and vy, vg, ..., v5_; its
internal vertices. The integer k is the length of W. A walk is closed if it has
positive length and its origin and terminus are the same.

Eulerian Circuit

A Eulerian circuit in a graph is a walk that visits every edge exactly once and
ends at the starting node (terminus is same as origin) of the walk.

Cycle in Graph

A closed walk whose origin and internal vertices are distinct is a cycle. Just as
with paths we sometimes use the term 'cycle’ to denote a graph corresponding
to a cycle. A cycle of length k is called a k — cycle.

Girth of the Graph

The girth of a graph is the length of a shortest cycle contained in the graph.
If the graph does not contain any cycles its girth is defined to be infinity.

1.1.2 Optimization Problems and Approximation Algo-
rithms

Decision Problems and NP

A decision problem is a problem that can be answered with either “yes” or
“no”. We view decision problems as languages. A language is a subset of
binary strings over the alphabet {0,1}. Language L corresponding to some
decision problem is the set of all strings in L that encode “yes” instances to
the problem.

A language L € NP if there are polynomials p, ¢ and a Turing machine M
(called a verifier) such that for each string x € {0,1}*, the following holds. If
x € L, then a certificate string y of length at most p(|x|) must exist such that
M (z,y) accepts in at most ¢(|z|) steps. Otherwise, for all strings y of length at

most p(|z|), M(x,y) rejects in at most ¢(|z|) steps. NP is therefore the class

of all languages for which there are short and quickly verifiable yes-certificates.
Let L; and Ly be two languages in NP. A language L; reduces to Lo if

there is a Turing machine that, given the string = € {0,1}*, outputs a string

y such that y € Lo if and only if x € L, and does so in poly(|x|) steps. A

language L is NP-hard if for every language Ly, € NP, L, reduces to L. A

language L is NP-complete if L is NP-hard and L € NP.

Optimization problems

An NP-optimization problem II consists of:

e A set of valid instances Dy, where we can determine if some instance
I € Dy in time polynomial in |I|. We assume all instances I € Dy
can be expressed as finite binary strings; this implies all numeric values
could be integer or rational. The size of an instance I, written ||, is

the number of bits needed to express it.

e A set of feasible solutions Syy([) for each instance I € Dy, where we can
determine if S € S in time poly(|I]). The length of each solution must
be polynomially bounded in the length of I.

e An objective function objy that assigns each instance-solution pair (1, s)

a non-negative value, computable in time that is polynomial in |I|.

We also specify whether II is a minimization problem or a maximization
problem. For a minimization/maximization problem IT and instance I € Dy,
an optimal solution is a feasible solution s € S;(I) that minimizes/maximizes
the value of objy ; that is, argminges, objn(I,s) or argmaxscs, objn(1,s),
respectively. We denote such a solution as OPTy(I), or simply OPT if the
problem and instance are clear from context. We slightly abuse this notation
by using OPT to also refer to the objective value of the optimum solution,

when the type of OPT is clear from context.

An NP optimization problem II gives rise to a class of NP decision prob-
lems IT'; by asking if a feasible solution of at most/at least some objective value
exists (for minimization/maximization problems, respectively). A polynomial
time algorithm that solves Il can thus be used to answer the decision problem
IT". On the other hand, proving that the decision version of a problem I’ € II’
is hard in some sense, shows that the optimization version I € II is at least as
hard as I’. For example if we prove that I’ in NP-hard, then it means that I
is NP-hard too.

Approximation algorithms

Let IT be a minimization (maximization) problem, and let o : Zt — QT be
a function such that «(I) > 1 for all inputs I € Dy. An algorithm A is an
a — approximation for II if, for all instances I, A returns a feasible solution

S € Su(I) such that obju(I,S) < a(|I|).OPTn(I) (obju(I,S) > Og(Tl?lg”)

and the running time is bounded by poly(|I|). The function « is called the

approximation ratio of A.

It is sometimes difficult to obtain an algorithm that meets this definition
exactly. We might need to relax the running time bound, for example to
a quasi-polynomial factor, which is O(|I]*°¢"(1D) where ¢ is a constant. Or,
the algorithm makes random choices, and so the approximation ratio only
holds in expectation over all random choices. We still loosely refer to these as
approximation algorithms, although we will state such relaxations explicitly.

An algorithm A is an approximation scheme for the minimization (max-
imization) problem IT if for the valid instance I and error parameter e >
0, it returns a feasible solution S such that objn(1,S) < (1 + €).OPTn(I)
(obju(1,S) > (1—€).OPTy(I)). We call A a polynomial time approxzimation
scheme (PTAS) if its running time is poly(|/|) for each fixed e. We call A a
fully polynomial time approxzimation scheme (FPTAS) if its running time

is poly (||, %) for each fixed e.

Problem II is said to be in the class PTAS or FPTAS if it admits the
respective approximation scheme. It is said to be in the class APX if it admits
any constant approximation.

Let II and II' be two optimization problems. II PTAS-reduces to II" if
there exists an algorithm A and function ¢ : Rt — R*, where for each valid

instance I of IT and each fixed ¢ > 0,

e Algorithm A returns an instance I’ = A([,¢€) of II' in time poly(|/]),
such that if I is feasible then I’ is feasible, and

e Given any feasible solution s’ € Sy(I’), there exists a feasible solu-
tion s € Sp(I) such that if objn’(I’,s") < (1 4 ¢(¢)).OPTy' (I'), then
objn(1,s) < (1+4¢€).OPTy(I)

An optimization problem II is said to be APX-hard if for every other
problem IT" € APX, IT" PTAS-reduces to II. If in addition IT € APX, then
IT is said to be APX-complete.

Hardness of approximation

Roughly speaking, a hardness proof shows that a certain optimization prob-
lem cannot be approximated better than some threshold assuming certain
complexity assumptions. As an extreme example, it was shown in [37] that
the maximum independent set problem cannot be approximated better than
O(n'=¢) for any constant ¢ > 0 assuming P # NP, ruling out all but the
most trivial approximations. A less extreme example, implied by the PCP
theorem, is that approximating Max-3SAT better than (1 + ¢) for some € > 0
is NP-hard, ruling out a PTAS assuming P # NP [34]. Since this problem is
also APX-complete, a consequence of this hardness is that for any APX-hard
optimization problem II, IT ¢ PTAS unless P = NP.

Unique Games Conjecture

In computational complexity theory, the unique games conjecture (often re-

ferred to as UGC) is a conjecture made by Subhash Khot in 2002 [26]. The
conjecture postulates that the problem of determining the approximate value
of a certain type of game, known as a unique game, is NP-hard. It has broad
applications in the theory of hardness of approximation. If it is true, then for
many important problems it is not only impossible to get an exact solution
in polynomial time (as postulated by the P versus NP problem), but also
impossible to get a good polynomial-time approximation.

However, UGC' is not the only assumption to help for such an inapproxima-
bility results. For example it has been shown that the Minimum Vertex Cover
problem is NP-hard to approximate to within a factor of v/2, by assuming the
traditional assumption of P # NP [27], [28].

1.1.3 Linear Programming

Many problems in NP can be formulated as an integer program that describes
the problem. Let ¢ € Q", b € Q™ be vectors, and A = (a;;) € Q™" be
a matrix. Let u - v denote the dot-product of two vectors u and v. The
integer programming problem is to find a non-negative integer vector z € Z"

maximizing the value c¢ - x, satisfying:
A<D

Note that we can use this definition to define minimization problems as
well (i.e. by maximizing —c -), and allow for > and = constraints.

Finding such a binary vector, or determining if such a vector even exists,
is itself an NP-hard problem in general (otherwise, we could use integer pro-
gramming to solve other NP-hard problems). Instead, suppose we relax this
problem: instead of trying to find a binary vector x, we try to find a satisfying

xr € Q" . This yields a linear program:

maximize c-x (LP)
subject to Az <b, (1.1)
z>0 (1.2)

It is usually more convenient to explicitly write out the constraints and the
objective function rather than specifying A, b, ¢ directly, as in the following

(equivalent) LP:

n

maximize E CjT;
j=1

n
subject to Zaijxj <b;, i=1,...m
j=1
; >0, j=1,..,n
We say that we “solve” a linear program if we either determine no solution
x exists, the value ¢ - x is unbounded, or return a solution minimizing the
objective ¢ - x. Unlike integer programs, linear programs can be solved in time
polynomial in n, m, and the number of bits A required to write the rational
entries of A, b, and ¢; one such approach is the interior point method (see, for
example, [24]).
Usefulness in approximations
Linear programming is a useful tool to build approximation algorithms with.
The general procedure for a minimization (maximization) problem is to write
the integer program, relax its constraints that force the variables to be non-
negative integers, by allowing the variables to take any non-negative real num-
bers, solve it, and try to round the fractional result to an integer solution in
polynomial time, without either violating constraints or increasing (decreas-

ing) the objective value significantly. If we can do this while only increasing

9

(decreasing) the objective value by a factor of f(n), where n = |x|, then we
will have an f(n)-approximation to the original problem.

We say a linear program of a minimization (maximization) problem has an
integrality gap of f(n) if for an optimum solution z* and optimum solution z

*

for the corresponding integer program, Cc’”* < f(n) (C'I >f (n))

-T cT

1.1.4 Local Search Algorithms

A local search algorithm starts with an arbitrary feasible solution, and then it
iteratively improves the current solution by selecting a neighboring solution
with a better objective function value. The algorithm stops when no further
improvement is possible. Neighboring solutions of a given feasible solution are
determined by a set of local operations.

In combinatorial optimization we look for a solution S from the solution
space A, that optimizes an objective function ¢ : A — Q. A local search
algorithm is defined by its local operations. A local operation transforms a
solution S € A into a new solution S’ by for example, adding, removing or
exchanging elements of S with elements not in S. Local operations are usually
simple and they should be able to be performed quickly, in polynomial time.
A neighborhood function N is defined by the local operations. For each
solution S € A, N(S) includes all the solutions S’ € A that can be obtained
by performing a single local operation on S. |N(S)| is polynomially bounded.

A local optimum solution S is a solution for which we have ¢(S) > ¢(5") for
all S” € N(S). Note that the actual optimum solution of the problem (global
optimum) is a local optimum solution too, but we could have more than one
local optimum solution as well. The main idea of a local search algorithm is to
define the local operations such that we can prove any local optimum solution
is not too far from the global optimum solution.

Locality Gap

10

The locality gap of a local search algorithm is the largest ratio of the value
of a local optimal solution produced by the algorithm to the value of a corre-
sponding global optimal solution. Let s; be a local optimal solution produced
by a local search algorithm for some instance I of a maximization problem
P and let s*(I) be a global optimal solution for I, then the locality gap of
the algorithm is defined as mimepcc((si(([}))), where ¢(s(I)) is the cost of s(I)
and c(s*(I)) is the cost of s*(I). Similarly, for minimization problems P the

c(s(1))
e(s*(1)) -~

locality gap is defined as mazcp

1.1.5 Probability Inequalities

Markov’s Inequality
In probability theory, Markov’s inequality gives an upper bound for the prob-
ability that a non-negative function of a random variable is greater than or

equal to some positive value.

Lemma 1 (Theorem 3.2 in [30]). Let Y be a random variable assuming only

non-negative values. Then for all t € R*:

ElY
PrlY > < Y]
a
FEquivalently,
1
Pr[Y > (E[Y]] < -
Chernoff Bound

The Chernoff bound, named after Herman Chernoff but due to Herman Rubin,
gives exponentially decreasing bounds on tail distributions of sums of indepen-
dent random variables. there are many forms (inequalities) of Chernoff bound,

but we mention the one we want to use in the thesis.

Lemma 2 (Theorem 1.1 in [13]). Let X =" | X; where X;, 1 < i < n are

independent random variables distributed in [0,1]. Then for every e > 0:

11

2

Pr[X > (1+ € E[X]] < exp (- %E[X]).

1.2 Problem Considered

We focus on the following problem.

Definition 1.2.1. Let G = (V, E) be a graph with vertex capacities u, €
Z>o U {oo} where each e = uv € E has a budget b, > 0 and is interested in
the bundle of vertices {u,v}. In CAPACITATED GRAPH PRICING, we want to
find a pricing p : V' — Rs¢ and F' C FE such that (p, F) is a feasible solution
to the pricing problem with considering the capacity of each vertex and the

budget of each edge. The goal is to maximize revenue:) _ . p(u) + p(v).

Note that, for edges, we use shorthand notation like e = uv € F when we
want to consider an edge e € E in some graph G = (V, E) and also want to
name the endpoints u, v of e. This allows us to name distinct edges interested
in the same bundle of items (i.e. {u,v} and {w,v}).

All of our algorithmic results extend in a simple way to the case where each
customer is interested in a bundle of size at most 2, but it is slightly simpler
to describe the algorithms and their analysis for the case where each customer
wants precisely two different items. Unless otherwise stated, the graph G may
have parallel edges. We use the term simple graph to indicate it does not have
parallel edges.

To get approximations for CAPACITATED GRAPH PRICING, we use the
reduction from Balcan and Blum [4] to reduce to the case of a bipartite graph
where all items on one side will be priced 0. Specifically, we consider the

following problem.

12

Definition 1.2.2. In L-SIDED PRICING, we are given a CAPACITATED GRAPH
PRICING instance in a bipartite graph (L U R, E)). A feasible solution (p, I)
must also have p(v) =0 for v € R.

1.3 Prior Work

The basic model of pricing problems of this sort were introduced by Gu-
ruswami et al. [21]. Among other results, they have given an O(logn+logm)-
approximation for the case of single-minded pricing without item capacities
if we have n items and m customers. Here, the bundle S; for each customer
i may be any subset of items (not just size 2). This was later improved by
Briest and Krysta to an O(log D + log k)-approximation where each set has
size at most k and each item appears in at most D sets [5]. Chalermsook et al.
show that for any constant € > 0 there is no O(log'~“(m + n))-approximation
unless NP C DTIME(nP°¥1°8(")) [7], so the logarithmic approximation of [5]
is essentially tight.

If all customers are interested in a set of size at most k, Balcan and Blum
give an O(k)-approximation for the uncapacitated pricing which specializes to
a 4-approximation in the case k = 2 [4]. Amazingly, this may also be tight:
building on work by Khadekar et al. [25], Lee showed that there is no (4 — ¢€)-
approximation when k = 2 for any constant € > 0 unless the Unique Games
Conjecture [29] fails.

Cheung and Swamy studied the envy-free variant of capacitated pricing
problems [12]. As mentioned earlier, they show that LP-based approximations
that choose the maximum-profit set of customers for given prices translate to
approximation algorithms for envy-free pricing with capacities while losing an
O(10g fimax)-factor. In particular, for envy-free CAPACITATED GRAPH PRIC-
ING they get an O(log fimayx)-approximation.

Hartline and Koltun design near-linear and near-cubic time approxima-

13

tion schemes under the assumption that the number of distinct items for sale
is constant [22]. In the unlimited supply case, they give a near-linear time
approximation schemes for both the problem. Specifically, for unit-demand
consumers a (1 + €)-approximation is achieved in time O(nlog(%logZ) +
(log 2)™m+D) for n consumers, m = O(1) items, and an arbitrarily small
e > 0. For single-minded consumers a (14¢)-approximation is achieved in time
O((n+ (% log 2)™) log (% log %)) For the more general limited supply case and
for unit-demand consumers they give a (1+¢)-approximation algorithm for the
limited supply (envy-free) pricing problem that runs in time O(n®log!". n).

Many other variants of envy-free pricing problems have been studied. For
example, it could be that each customer is interested in acquiring just a single
item from their subset (rather than all items). This was also studied in [21]
and follow-up work [14] where they obtain fairly general results that relate
the approximability of the profit-maximization problem to the corresponding
social-welfare-mazimization (SWM) problem, which is the problem of finding
an allocation ({Sy,...,S,}) satisfying the capacity constraints that has maxi-
mum total value 3 v;(S;). This yields an O(log ¢nq.)-approximation for the
profit-maximization problem, where ¢,,q, is the maximum item-supply.

Feldman et al. [16] study envy-free (EF) mechanisms for multi-unit auc-
tions with budgeted agents that approximately maximize revenue. In an EF
auction, prices are set so that every bidder receives a bundle that maximizes
her utility amongst all bundles; They show that the problem of revenue-
maximizing EF auctions is NP-hard, even for the case of identical items and
additive valuations (up to the budget). They also provide a novel algorithm
that runs in polynomial time and provides a approximation of 1/2 with respect
to the revenue-maximizing EF auction.

Chen et al. [11] study the unit-demand envy-free pricing problem faced by

a profit-maximizing seller with unlimited supply when there is metric substi-

14

tutability among the items. More precisely consumer 2’s value for item j is
v; — ¢; ;, and the substitution costs, {¢; ;}, form a metric. They show that the
problem of maximizing revenue with metric substitutability among items can
be solved exactly in polynomial time.

Chen and Deng [9] study the revenue maximization envy-free pricing in
multi-item markets where there are m items and n potential buyers where each
buyer is interested in acquiring one item. The goal is to determine allocations
(a matching between buyers and items) and prices of all items to maximize
the total revenue given that all buyers are envy-free. They give a polynomial
time algorithm to compute a revenue maximization envy-free pricing when
every buyer evaluates at most two items a positive valuation, by reducing it to
an instance of weighted independent set in a perfect graph and applying the
Strong Perfect Graph Theorem. They also show that the problem becomes
NP-hard if some buyers are interested in at least three items.

Another recent variation is studied by Chen et al. [10] where they consider
markets consisting of a set of indivisible items, and buyers that have sharp
multi-unit demand. This means that each buyer ¢ wants a specific number d;
of items and a bundle of size less than d; has no value. They focus on the case
where each buyer 7 has a valuation v;q; for item j, where v; and ¢; are positive
quantities associated with buyer ¢ and item 7, respectively. They showed that
for envy-free pricing, if the demand of each buyer is bounded by a constant, a
revenue maximizing solution can be found efficiently, and the general demand
case is shown to be NP-hard.

In a different version of the problem Balcan et al. [3] consider the prob-
lem of pricing n items to maximize revenue when faced with a series of un-
known buyers with complex preferences, and show that a simple pricing scheme
achieves surprisingly strong guarantees. They show that in the unlimited sup-

ply setting, a random single price achieves expected revenue within a loga-

15

rithmic factor of the total social welfare for customers with general valuation
functions, which may not even necessarily be monotone. This generalizes work
of Guruswami et al. [21], who show a logarithmic factor for only the special
cases of single-minded and unit-demand customers. In the limited supply set-
ting, they show that for subadditive valuations, a random single price achieves
revenue within a factor of 20V (lgnloglogn) f t1)a total social welfare, i.e., the
optimal revenue the seller could hope to extract even if the seller could price
each bundle differently for every buyer.

Graph pricing problems is another interesting directions that has gained so
much attention during recent years. The items can be represented as the edges
of an undirected (multi)graph G, where an edge multiplicity larger than one
corresponds to multiple copies of the same item. Each customer is interested
in purchasing a bundle of edges of G, and we assume that each bundle forms a
simple path in G. Each customer has a known budget for her respective bundle,
and is interested only in that particular bundle. The goal is to determine item
prices and a feasible assignment of items to customers in order to maximize
the total profit. Grigoriev et al. [20] show some early algorithms for special
graph families along with some hardness results.

Other directions have considered more restricted subsets of items in single-
minded pricing, for example the customers may be interested in the edges of
sub-paths of a tree (the tollbooth problem) or a sub-path of a large path
(the highway problem).

More precisely, An instance of the tollbooth problem consists of an undi-
rected network and a collection of single-minded customers, each of which is
interested in purchasing a fixed path subject to an individual budget con-
straint. The objective is to assign a per-unit price to each edge in a way that
maximizes the collective revenue obtained from all customers. The revenue

generated by any customer is equal to the overall price of the edges in her de-

16

sired path, when this cost falls within her budget; otherwise, that customer will
not purchase any edge. A deterministic algorithm for the tollbooth problem
on trees whose approximation ratio is O(logm/loglogm), where m denotes
the number of edges in the underlying graph, is provided in [18]. Elbassioni
et. al. [15] also study a special case of the tollbooth problem, when all the
paths that customers are interested in purchasing go towards a fixed root. In
this case, they present an algorithm that returns a (1 — €)-approximation, for
any € > 0, and runs in quasi-polynomial time, which is O(n'°¢""), where c is a
constant.

In the highway problem, we are given an n-edge path graph (the highway),
and a set of paths (the drivers), each one with its own budget. For a given
assignment of edge weights (the tolls), the highway owner collects from each
driver the weight of the associated path, when it does not exceed the budget of
the driver, and zero otherwise. The goal is to choose weights so as to maximize
the profit. The highway problem was shown to be strongly NP-hard [15]. In
[19] Grandoni and Rothvoss present a polynomial-time approximation scheme
(PTAS) for the highway problem, hence greatly improving the understanding
of the complexity status of this problem. Their result is based on a novel
randomized dissection approach.

Another related approach is the work done by Patrick Briest and Piotr
Krysta [6], where they investigate non-parametric unit-demand pricing prob-
lems, in which we want to find revenue maximizing prices for products P based
on a set of consumer profiles C'. A consumer profile consists of a number of
non-zero budgets for different products and possibly an additional product
ranking. Once prices are fixed, each consumer chooses to buy one of the prod-

ucts she can afford based on some predefined selection rule.

17

1.4 Main Results

The main contributions of this thesis are the following:
In Chapter 2, we use the Local Search technique for L-SIDED PRICING to

show the following:

Theorem 1. There is a polynomial-time 2-approzimation for L-SIDED PRIC-

ING.

Theorem 2. For any constant C' > 2,¢ > 0, there is a polynomial-time

(&C_l + 6) -approximation for L-SIDED PRICING if u, < C' for allv € L.

In Chapter 3, we consider an alternative approach to get better approxima-
tion guarantees as well. Recall that the best known approximation algorithm
for unbounded capacity version of the problem has approximation ration of 4.
We also show that in the case that all the capacities are large enough we can

have a (4 + €)-approximation algorithm:

Theorem 3. For any ¢ > 0, let C. = 3In(1/€e)/e* + 1 > 0. Instances of
CAPACITATED GRAPH PRICING in simple graphs satisfying p, > C¢, admit a

randomized, polynomial-time (4 + €)-approzimation.

We also show that it is possible to get an 4k-approximation for L-SIDED
PRICING in k-hypergraphs through straightforward rounding of a natural lin-
ear programming relaxation that is presented in Chapter 3, and then by using

a reduction from CAPACITATED GRAPH PRICING to L-SIDED PRICING which

k

)1 = O(k?)-approximation

loses an other ke factor, we would have an 4k (

for CAPACITATED GRAPH PRICING:

Theorem 4. k-Hypergraph CAPACITATED GRAPH PRICING problem admits

a randomized, polynomial-time (4k*(25)F~1)-approzimation.

18

Note for k = 2 this is not better than the result which is obtained using
the Local Search technique for L-SIDED PRICING in Theorem 1.

In Chapter 4, we present a few different results that provide further insight
into the Locality gaps for single-swap and multi-swap for L-SIDED PRICING

as following:

Theorem 5. For any C > 1 and € > 0, there is an instance ® = (G, p,b)
of L-SIDED PRICING where all w € L have capacity C and all v € R have
capacity 1 such that the locality gap of ® is at least 2 — € with respect to the

single-swap heuristic.

Theorem 6. For allC > 2,p > 1 and e > 0, there is an instance ® = (G, u, b)
of L-SIDED PRICING where all w € L have capacity C and all v € R have
capacity 1 such that the locality gap ® is at least &C_l — € with respect to the

simple p-swap algorithm.

Also we show some APX-hardness results for L-SIDED PRICING as fol-

lowing:

Theorem 7. L-SIDED PRICING is APX-hard, even if all capacities are at

most 4 and all customers have a budget of 1 or 2.

At the end of Chapter 4 we will provide an instance of L-SIDED PRICING
for which the LP solution is slightly better than the optimal integral solution

which gives us a lower-bound on the integrality gap.

19

Chapter 2

Graph Pricing with Limited
Supply

2.1 Problem Overview

We consider multigraphs that may have parallel edges and loops, unless we
explicitly specify that we are working with simple graphs. For a set of nodes
S in a graph G = (V, E), we let N(S) denote all nodes not in S that are
neighbours of some node in S. For u € V we let dg(u) be all edges having
u as an endpoint. Often the subscript GG is omitted when it is clear from the
context. For a subset of edges B, we let dg(u) = §(u) N B, again when the
graph G is clear from the context.

We refer to an edge e by uv where u, v are the endpoints of e. For brevity,
we may use notation like e = uv € E when we want to consider an edge e € E
but also want to name the endpoints u, v of e as well. The reason for using this
notation rather than simply saying uv € E is that our local search algorithms
do work for graphs with parallel edges (i.e. customers interested in identical
bundles), so e would be one particular customer and u, v would name the items
that e is interested in.

Given a function f : T — R on some finite set T', for any S C T we

let f(S) denote > .o f(z). Similarly, if p : V' — R is a pricing of the

20

vertices of a graph G = (V, E), for an edge e = uv € E we let p(e) denote
p(u) + p(v). For two pricings p,p’ : V' — Rsq of the nodes of a graph, we let
HW(p,p') = {v € V : p(v) # p'(v)}].

Finally, consider an instance G = (L U R, F) of L-SIDED PRICING where
edges have budgets b. and vertices have capacities u,. For any pricing p of
the vertices, let val(p) = max pcp > .pp(e) be the maximum profit
of a feasible solution with pricég’lg.feal%%?ce that val(p) can be computed in

polynomial time as it is merely asking for a maximum-weight p-matching

solution using only edges e = uv with p(e) < b, (the weight of such an edge
being p(e)) [31].

2.1.1 Reduction to L-Sided Pricing Problem

To begin, we use a reduction by Balcan and Blum [4] which was stated origi-

nally only for the uncapacitated case.

Lemma 3 (Balcan and Blum [4]). If there is an a-approzimation for L-SIDED
PRICING with unlimited supply, then there is a 4a-approximation for GRAPH

PRICING with unlimited supply.
We modify their proof to work for the limited capacity version:

Lemma 4. If there is an a-approzimation for L-SIDED PRICING then there

1s a da-approrimation for CAPACITATED GRAPH PRICING.

Proof. Consider an optimal price-vector p*, where each vertex v is assigned
the price of pf. Define opt(e) to be the amount of profit that OPT makes
from edge e. If e has only one endpoint v, opt(e) could be either 0 or p¥, but
if e = uwv has two different endpoints v # u, then opt(e) is either 0 or p! + pi.
We will think of opt(e) as the weight of edge e, though it is unknown to our
algorithm. Let E5 be the set of edges that have two distinct endpoints, and let

21

E; be the set of self-loops. Let OPT) be the profit made by p* on edges in F;
and let O PT; be the profit made by p* on edges in Fy , 50), opt(e) = OPT;
for:=1,2 and OPT; + OPTy, = OPT.

Now, randomly partition the vertices into two sets L and R, by putting
each vertex in L or R with probability equal to % Since each edge e € F5 has
a 50% chance of having its endpoints on different sides, in expectation %OPTQ
weight is on edges with one endpoint in L and one endpoint in R. Thus, if we
simply ignore edges in F, whose endpoints are on the same side the profit we
lose in expectation is no more than %OPT 5. Now suppose we set the price of
all the vertices in L/R to zero, while gaining the profit from the same set of
edges. Suppose this would give us the profit OPT;,/OPTk:

OPT;
2

+ OPT, = E|OPTy, + OPTy]

This means that if we take the better of the two choices we would have at

least a quarter of the total profit:

orPT, OPT, OPT
+ >

Elmaz(OPTy, OPTy)] > - - BOPT, + OPTy] : > 2

=2

This can be efficiently derandomized because we only require pairwise in-
dependence of the events u € L for various u € V', see [30] for details behind
this technique. This proves the desired result. O

2.1.2 Our Results

Based on Theorem 1, there is a polynomial-time 2-approximation for L-SIDED
PriciNG. This 2-approximation is fairly simple to obtain using local search.
But we think it nicely highlights a direction for designing approximations for
pricing+packing problems. To expand on the potential for this technique, we
consider a much more involved algorithm for L-SIDED PRICING with bounded

capacities.

22

Also, as we saw in Theorem 2, for any constants C' > 2,¢ > 0, there is a
polynomial-time (207_1 + e)—approximation for L-SiDED PRICING if p, < C
for all v € L. Note that this does not require any bounds on capacities for
nodes in R. For example with C' = 2 this yields a (1.5 + €)-approximation and
in the case we prove is APX-hard (in Chapter 4), where C' = 4, this yields a
(1.75 + €)-approximation. Observe if C'= 1 then both CAPACITATED GRAPH
PRICING and L-SIDED PRICING reduce to maximum-weight matching because
we can easily set prices to match the full budget of all edges in any matching.

Theorems 1 and 2 are proven using local search algorithms. That is, if
we are given prices p : L — R then the optimal customers F' C E can be
computed using a maximum-weight pg-matching algorithm. The local search
algorithm for Theorem 1 iteratively tries to change the price of one item in L
to see if it yields a better matching. We prove with a simple argument that a
local optimum is a 2-approximate solution for L-SIDED PRICING.

To prove Theorem 2, we consider a local search algorithm that changes
O(1) prices at a time in each step. To analyze the performance of such an
algorithm, we need a result about covering directed graphs by directed balls
in a uniform way.

Let H = (L, F') be a directed graph. For any u € L and r > 0 consider the
“directed ball” Bt (u,r) = {v € L : dy(u,v) <r} of nodes in L reachable from
w in at most 7 steps. Similarly, let OB (u,r) = {v € L : d(u,v) = r} be nodes
v such that the shortest u — v path in H has length exactly r (the boundary

of B*(u,r)). We prove the following covering result for directed graphs.

Theorem 8. Let H = (L, F) be a directed graph where the indegree of each
node is at most C' and let d € Z>y. There is a “weighting” of directed balls
T:Lx{0,1,...,d} = Z>o with the following properties:

23

B Cd-i—l -1

o ForanyveV, Z T(u,r) = Z ok

weL,0<r<d i=0
s.t. vEBT (u,r)

o ForanyveV, Z 7(u,r) = C°.
ueL,0<r<d
s.t. v€OBT(u,r)
Furthermore, 7(u,r) < C4" for eachu € V and 0 < r < d.

cd+1_1

That is, each v € L lies in these balls with total weight precisely ==—

and appears on the boundary of the balls with weight precisely C¢. The bound
on 7(u,r) at the end of the statement is required to ensure the local search
algorithm used to prove Theorem 2 runs in polynomial time.

We also show the analysis of both algorithms are tight. See Section 2.2 for
definitions of the two local search algorithms mentioned in the results below

and Section 4 for precise statements of how the analysis is tight.

2.2 Local Search Algorithm

We consider local-search algorithms for L-SIDED PRICING. Recall we are given
a bipartite graph G = (LU R, E') where each v € LU R has a capacity u, > 0,
each e € E has a budget b, and we are restricted to setting p(v) = 0 for each
vE R.

It is clear that there is an optimal solution p such that for each u € L we
have p(u) = b, for some e € §(u). Otherwise we could increase p(u) to the
next budget of an edge touching u (or decrease, if p(u) exceeds all budgets of
edges touching u) while not decreasing the value of the solution. So, for u € L
we define P, = {b. : e € 6(u)} to be the set of budgets of customers interested
in item wu.

We run a local-search approximation based on this observation. Here,
a vector p over L is a pricing if p(u) € P, for each u € L. The local-

search algorithm iteratively tries to improve a pricing by changing the price

24

of only one vertex until no such improvement is possible. The full algorithm
is presented in Algorithm 1. Because a price p(u) is chosen from P, for each

u € L, it is clear that an iteration can be executed in polynomial time.

Algorithm 1 Single-Swap Algorithm for L-SIDED PRICING.
let p be any pricing
while val(p’) > val(p) for some pricing p’ with HW(p,p’) = 1 do
pep
return p

Call a pricing p locally optimal if it cannot be improved by changing the
price for any u € L, note Algorithm 1 returns a locally-optimal pricing. As is
common in local search, we analyze the quality of a locally-optimal solution.
In the next subsection we show val(p) > val(p*)/2 where p* is an optimal
pricing for the L-SIDED PRICING instance.

The main concern is then the efficiency of the algorithm. Clearly each
iteration can be executed in polynomial time but the number of iterations is
not apparently bounded. We use a more recent observation from [17] to find a
solution which may not be a local optimum but is still guaranteed to have value
at least 1/2 of the optimum value with no e-loss in the guarantee, unlike in
older standard tricks where an e-loss is necessary to have a polynomial running
time (See [2] for a specific example of this approach). A simple application of

this trick is discussed in Section 2.2.4.
2.2.1 Single Swap Analysis
We fix p* to be some particular optimal pricing.

Theorem 9. For any locally-optimal pricing p, val(p) > val(p*)/2.

Proof. Let B C E be the edges that are bought in the local optimum solution,
and B* C FE the edges that are bought in the global optimum solution. Thus,
val(p) = > e P(u) - [0p(u)| and p(e) < b, for each e € dp(u).

25

For each u € L, consider the local search step that changes the price of u
from p(u) to p*(u). That is, consider p* where p*(u) = p*(u) and p*(u') = p(u’)
for v € L — {u}. We refer to this swap as the p — p* swap. For brevity, let
A, :=val(p") — val(p) and note A, < 0 because p is a local optimum. We
provide a lower bound on A, in a way that relates part of the global optimum
with part of the local optimum.

First, construct a subset B’ C B* and an injective mapping o : B' — B
iteratively as follows in Algorithm 2. Intuitively, it greedily pairs edges in
B* with edges in B sharing the same endpoint in R until no more pairs can
be made. After this pairing, for each v € R we either have dp«(v) C B’ or
dp(v) C o(B’) (or both).

Algorithm 2 Constructing B’ and o.
B =10
for cach e* = uv € B* where v € R do
if there is some e € dp(v) such that no ¢’ € B* has o(¢’) = e then
set B’ := B'U{e*} and o(e*) :=¢

Now we bound A,. One possible matching with the modified prices p* is
B":= BUdp-(u) —dp(u) —{o(e) e € dp(u)}.

To show this is feasible, note than no vertex capacities are violated and
each edge e € B" has p“(e) < b.. That is, it alters B by swapping dp(u)
for dp«(u) and removes edges paired, via o, with dp«(u) to make room across
nodes in R for these new edges. It could be that some edges in dp-(u) are not
paired by o but this indicates their right-endpoints already have enough room
to accommodate these edges without removing other edges from B. So, B*
respects the vertex capacities.

Now, A, represents the cost change when using the maximum value match-

ing with the new profits. This can be bounded as follows, based on the fact

26

that B* is a feasible solution under prices p*:

0> A, 2 p(u) - [8p-(u)] = p(u) - [5p(w)] = D plo(e)).

e'€dpr(u)
Summing over all v € L and noting each e € B has its corresponding term

appearing in the last sum for at most one u € L because ¢’ is one-to-one shows

0 > val(p*) — 2 - val(p). O

2.2.2 An Improved Multi-Swap Algorithm for Bounded
Capacities

Here we consider the restriction of L-SIDED PRICING to instances where p,, <
C for each u € L for some fixed constant C' > 2. Note we do not require
capacities of v € R to be bounded by C.

Let d > 1 be a fixed integer: larger d will result in better approximation
guarantees with a slower, but still polynomial-time, algorithm. The multi-swap

algorithm we consider is given in Algorithm 3. Let p = 1+C+C?+...+C% =

citl—1
c-1

. An iteration runs in polynomial time because p is a constant.

Algorithm 3 Multi-Swap Algorithm For L-SIDED PRICING.
let p be any pricing
while there is a pricing p’ with HW(p,p') < p and val(p’) > val(p) do
p7
return p

As before, call a pricing p locally optimal if val(p') < val(p) for any pricing
p’ with HW(p,p’) < p. Recall P, for u € L is the set of distinct budgets of the
edges incident to u and that, in L-SIDED PRICING, we can assume any pricing
p has p(u) € P, for all w € L. So, as C' and d are constants, a single iteration
can be executed in polynomial time by trying all subsets S C L of bounded

size and, for each of those, trying all [[,.«(|P.] — 1) < |E|°M) ways to change

ueS

the prices of all u € S. We prove the following approximation guarantee.

27

Theorem 10. Let p be a locally-optimal solution and p* a global optimum

solution. Then val(p) > % -wval(p®).

So for any fixed C' > 2 and € > 0, and large enough d we see there

C

o1 e)—approximation for instances of L-SIDED PRICING where all

is a (
capacities of nodes in L are bounded by C. We can again use the same trick
from Section 2.2.4 to ensure the number of iterations is polynomially-bounded.

We will soon prove Theorem 8 stated in Section 1.2. For now, we show
how to complete the local search analysis using this result. Let p* denote an
optimal pricing, B C E the edges bought in the local optimum p, and B* C F
the edges bought under p*. Let o : B — B be a pairing constructed in the
same way as in the single swap analysis (using Algorithm 2) where B’ C B*.

To describe the swaps used in the analysis, first consider the following
auxiliary directed graph H = (L, F') whose nodes are the same as the left-side
of this L-SIDED PRICING instance and whose edges are given as follows. For
any e = uv € B, let w € L be the left-endpoint of o(e*). Add a directed
edge from u to w in F'.

Observe that both the indegree and outdegree of a vertex in H is at most
C' by this construction, so Theorem 8 applies. Let 7: L x{0,1,...,d} — Z>
be the given weighting of directed balls in H. These weights will be used to

combine inequalities generated by the test swaps below.

Test Swaps
For any v € L and any 0 < i < d, consider the prices p** defined by

wigy —) pr(w) i dp(u,v) <
b (U>_{ p(v) otherwise

Note HW(p, p»?) = |BT(u,1)| < CY + C' + ... + C* < p because the outdegree
of each vertex is at most C, so p — p*’ is a valid test swap. Let A,; =

val(p®') — val(p) and note A,; < 0 by local optimality. We bound the

28

difference by explicitly describing a feasible set of edges B“*, namely:
B"" = BU6p-(B"(u,i)) — 6p(BT(u,1)) — 0(65 (0BT (u,1))).

That is, add all edges from B* touching a vertex in the directed ball
B*(u,i) and remove all edges from B that either touch B (u,) or are paired
(via o) with an edge in B’ that touches 0B (u,i). It is again easy to check
that (p“!, B“") is a feasible solution: across u € L we simply exchanged edges
in B touching U for edges in B* touching u and we ensured any new e* € B’
has o(e*) removed to make room for e* across its right-endpoint. Observe for
any e* € 0p/(BT(u,i — 1)) that o(e*) is already removed when dg(B™(u,1))
is removed from B, which is why the last part of the definition of B%! only
uses the boundary 0B (u, i) instead of all of B (u,4) to remove the remaining
edges of B that are paired with dp/ (B (u,1)).

Weighting the inequalities by 7(u, 1),

0 > r<u,z'>-Au,@-zr<u,i>~<Z pu»"<e>—zp<e>>

e€ Bu»t e€B

= r(wi)- Y pe)-rwi) Y ple). (2.1)

e€B*NBW? e€ B—Bw?
It remains to consider the contribution of each edge in B* and B to this
bound if we sum over all w € L,0 < i < d. Observe an edge e = vw € B* is
“swapped in” in this analysis for the swap p — p®* if and only if v € BT (u, 7).

So by Theorem 8, the total contribution of p*(e) to >, , 7(u, 1)-A,; is precisely

cdtl_i
c-1 -

On the other hand, an edge e = vw € B is “swapped out” in this analysis
for the swap p — p“" if and only if v € BT (u,7) or 0~ !(e) € 9B"(u,1) (if e is
indeed paired by o). Again by Theorem 8, the total T7-weight of the first event

is exactly Ctgjf and, if 071(e) is defined, the total T-weight of the second

29

event is exactly C¢. Thus,

‘ L Cit -1 cH -1
0 Z UEZL T(U,Z) . A(U,Z) 2 ﬁ . Val(p) - (ﬁ _|_ C) . Val(p),
0<i<d

which proves Theorem 10.

2.2.3 Proof of Theorem 8

Before presenting the full proof to conclude the analysis, we consider a simpler
setting to develop intuition. Suppose, for each 0 < ¢ < d and each u € L there
are precisely C* nodes w € L with dg(w,u) = i. This would happen if, say,
H has indegree and outdegree exactly C' at each vertex and the undirected
version of H has girth > 2d. Then setting 7(u,7) = 1 if i = d and 0 otherwise
for each v € L would suffice.

In the general setting without this assumption, we have to consider other
directed balls B (u,) for different 0 < i < d and with, perhaps, larger weights
than 1. This is because the radius-d balls Bt (u, d) themselves for various u € L
do not cover each v € L precisely E?:o C" times.

Inductively define 7(u, i) for u € L and 0 < i < d as follows:
1 if i = d,
d
T(u,i) = ¢ Ci - Z Z 7(v,j) otherwise.

J=i+1 veL
dH (v,u):j—i

The inspiration behind this construction is that in general we would have
dp(u,v) =i for only at most C* nodes u. So we consider smaller directed balls
to make up this deficiency. If we think that the distance ¢ requirement for
each v € V is exactly C?, then for each u € L the ball B*(u,j) contributes to
the distance d — j + dy(u,v) requirement for each v € Bt (u,j). See Figure

2.1 for an illustration.

30

The recurrence above ensures the total contribution to the distance 7 re-
quirement for each v by all all directed balls is exactly C*. We formalize this

idea and show the 7 values are nonnegative in Lemma 5 below.

o

Figure 2.1: Illustration of the case d = 6 where dy(u,v) = 4. The directed
ball BT (u,6) contributes to the “distance 4” requirement for v, B (u,5) con-
tributes to the “distance 5” requirement for v, and B*(u,4) contributes to the
“distance 6”7 requirement for v.

d
Lemma 5. For each v € L,0 < i < d we have Z Z T(v,j) = cd

= dH(vU,S)L:j—i

and 0 < 7(u,i) < C4.
Proof. The equality is by construction and the observation that dy(v,u) =0
if and only if v = u. The inequalities are proven inductively with the base
case i = d being given. Now suppose for i < d we know 0 < 7(u,j) < C4J
for any i < j < d and any u € L. By the recurrence for 7(u,) and because
7(v,j) > 0foranyi < j < dand v €V, we see 7(u,i) < C?%. Next, we prove
7(u,i) > 0 for each u € L.

For any i < j < dand any v € L with dy(v,u) = j—1, there is some w € L
such that dg(v,w) =i —j — 1 and dy(w,u) = 1. That is, consider a shortest
v —u path Pin H, as i < j, we have v # u so the second-last node on this

path is a node w whose distance to u is 1 (it could be w = v, if j —i =1).

31

From this and using the equality from the first part of the theorem state-

ment, we bound the double sum in the recurrence defining 7(u,) by

oY) < D> > DR ()

j=i+1 veL widy (w,u)=1j=i+1 vel
dg (vyu)=j5—1i dp (v,w)=j—(i+1)

_ Z Cd—(i+1)

widg (w,u)=1

S Cd_i.

The last bound follows as each v € L has indegree at most C' in H. Thus,

from the recurrence again, we see 7(u,1) > 0. O

Lemma 5 finishes the proof of Theorem 8 as follows. The first bullet point
in Theorem 8 follows by summing over all 0 < ¢ < d. The second point follows

by fixing ¢ = 0.

2.2.4 Efficient Versions of Local Search

The standard trick to make local search algorithms efficient is to only make
an improvement if it is somewhat noticeable. That is, a swap is performed
only if it improves the cost by a factor of at least 1+ ¢/A where A is the total
“weight” of all inequalities generated by test swaps to complete the analysis
(typically, A is polynomial in the input size). See [2] for a specific example of
this approach.

However, such analysis typically “loses an €’ in the approximation guar-
antee. We adapt an alternative approach outlined in [17] that avoids this
e-loss while still achieving the same approximation guarantee that a true local
optimum is proven to have. We consider the single-swap algorithm first, the
extension to the multi-swap algorithm is in Section 2.2.5.

Recall that the proof of Theorem 9 described a set of test swaps and placed

a bound on the cost change. That is, for each u € L the swap p — p" is

32

considered and a bound A, on the change in val() was given as

Ay > p*(u) - 85 (w)] — p(u) - 1os(u)| — Y plole)).

e€dpgr(u)

Observe this bound holds even if p is not a local optimum solution. The only
place in the proof of Theorem 9 that used the fact that p was a local optimum
was in asserting 0 > A,, which is not required here.

Summing the above over all u € L shows

Z A, > val(p*) — 2-val(p).
uelL
Thus, the u € L with largest A, satisfies

A, > val(p®) I_LT -val(p)

So if we take the best improvement in each step of the algorithm, the next
price p’ then satisfies

val(p*) —2- Val(p)'

val(p') > val(p) + 7

Consider the potential function ®(p) := val(p*) — 2 - val(p). If ®(p) > 0,
then ®(p') < (1 - %) - ®(p) follows from the expression above. That is, ®(p)
decreases by a factor of exp(—1) after every |L|/2 iterations as long as the
current price p satisfies ®(p) > 0.

With the standard assumption that the budgets b, are expressed as ratio-
nal numbers in the input, there is a big integer M, whose bit complexity is
polynomial in the total bit complexity of the input, such that ®(p) could not

be less than -, unless it is zero. This means that after a polynomial number

M
of iterations, we will reach a solution p with ®(p) <0, i.e. val(p) > val(p*)/2

as required, provided we take the best improvement in each step.

33

2.2.5 Extension to Multi-Swap

Each swap of the form p — p*" for 0 < ¢ < d and u € L in the analysis was

weighted with a value 0 < 7(u,r) < C". Let k = Cdctll_l -|L|, so k is an

upper bound on the total weight of all test swaps and x = O(|L]) as C' and d
are constants.
Again, even if p is not a local optimum our analysis still shows

d+1 _ d+1 _
> rlur () va) = S) (T) e

weL,0<r<d
Local optimality of p was only used to show the left-hand side was not positive.
Without local optimality, we may still conclude the most improving swap
p — p satisfies

val(p') > val(p) + — -
K

d+1 _ d+1 _
(C’C'fl -val(p®) — (% + C'd) ~va1(p)) :
Consider the potential function
d+1 _ 1 d+1 1
olp) = T) - (ﬁ ! Cd) valle)
The above bound shows if ¢(p) > 0 then choosing the best improving swaps
will result in a solution p’ with ¢(p') < (1 — (Cd;_l;l + C’d> : l) -¢(p). So ¢(p)

K

decreases geometrically every O(k) iterations as long as it remains positive.
As k = O(|L]) and by using rationality of the input values, the potential ¢(p)
will become nonpositive after a polynomial number of iterations in the total

bit complexity of the input as long as we take the most improving swap.

34

Chapter 3

Linear Programming Based
Algorithms

3.1 Our Results

So far, our focus has been on approximations based on local search. Here,
we consider linear programming relaxations for L-SIDED PRICING. Recall for
each u € L that P, = {b. : e € 6(u)} is a set of possible prices for vertex wu:
there is an optimal solution that selects p(u) from P, for each u € L.

For w € L and p € P,, we let y,, be a variable indicating we select price
p for w. Similarly, for each e = uv € E and p € P, we let x., be a variable
indicating edge e is selected and vertex u is assigned price p (so e buys their
bundle at price p). The following relaxation provides an upper bound on the

optimal solution to the given instance of the L-SIDED PRICING.

35

maximize Z Z D Teyp (LP-Pricing)

e=uv peEP,
subject to Z Yup =1 Vuel (3.1)
pEPy
Z Tep < Yup * Hu Vue L,p S Pu (32)
e€d(u)

Z Z Tep < [y VveR (3.3)

e=uv€d(v) pEPy

Tep < Yuyp Vuée Le€d(u),p € P,st. p<b

(3.4)
Zep =10 Ve =uv,p € P, st. p>b. (3.5)
r,y >0

Constraints (3.1) indicate one price must be selected for each u € L, (3.2)
ensures the capacity constraints for u € L are satisfied and (3.3) ensures the
capacity constraints for v € R are satisfied, (3.4) ensures we must set the price
of u to p if we are to have e pay p, and (3.5) ensures a chosen edge does not

pay more than it can afford.

3.1.1 Randomized Rounding Algorithms

In this section we are going to prove Theorem 3 by first showing that in simple
graphs with large capacities for nodes in R, the integrality gap is close to 1.
This will help us to use the reduction described in Lemma 4 and provide
a (4 + €)-approximation for instances of CAPACITATED GRAPH PRICING in
simple graphs satisfying p, > C¢ which completes the proof of Theorem 3.

More specifically we prove the following;:

Theorem 11. For any € > 0, the integrality gap of (LP-Pricing) is 1 — 2¢
in simple graphs when 1, > 31n(1/€)/e* + 1 for all v € R.

36

Proof. Consider the following randomized rounding algorithm. For each u € L,
sample a price p'(u) € P, from the distribution with Pr[p/(u) = p| = yup.
This is a distribution by (3.1) and non-negativity of y. For brevity, we will let
p'(e) = p'(u) for an edge e = uw.

Then define a fractional matching in G as follows. The idea is that we want
to assign a value of T¢ y(e)/Yuyp(e) to each edge (using 0 if y, () = 0), this is
at most 1 by (3.4). By (3.2) this fractional matching would always satisfy the
capacity constraints for nodes in L. But it may violate constraints for nodes
in R. The obvious solution would be to scale each of these fractional values
to be a feasible matching satisfying all vertex constraints. We take a simpler
view which is sufficient for our purposes, we scale all resulting values by 1 — ¢,
and then outright discard edges e = uv where the capacity of v is still violated
after this scaling.

More precisely, for each e = uv we first let 7 = (1 —€) - -2 (again using

Yu,p! (e)

0 if Yup(e) = 0). Then for each edge e = uv, we define

e

L { wg 3D e wves) e < Hos
0 otherwise.
Now 2/(6(w)) < p, for each w € L U R. Also, (3.5) ensures any e € F with
x> 0 has p/(e) < b,. So, considering the fact that the bipartite u-matching
polytope is unimodular [33], there would be an integral matching p’ obtaining
at least as much value as the fractional matching «’: val(p’) > > p-al. It
remains to show that the fractional matching 2’ has good profit in expectation.
For any e = wv € E let B, be the bad event that ZE,:U,UE(S(U)@,# al, >
iy — 1. Notice that the second case in the definition of 2, applies only if event
B. happens. We show Pr[B.] < e. If so, for each e = uv € E the fact that B,
is independent of the choice of p'(e) (as G is a simple graph) we then have

BY/(0)-al] 2 (1= PrlB) - (L= 0 B[i(0) 220] > 1= - T peay,

yu,p’(e) peEP,

37

Summing over all edges:

| S0 2] 2020 T s

eckE e=uv peP,

To bound Pr[B.], for an edge ¢’ let X, denote the random variable with
value (1 —€) - e)/ Yo pr(ey and let X =37 50 . Xero Then E[Xo] =
(L—€) > ,ep, Terp 50 by (3.3) we have E[X¢] < (1 —€) - .

Again by simplicity of G, the random variables X. are independent for
different ¢’ € 0(v),e’ #e. Let Y = (1 —€) - (uy, —1). AsY > E[X*¢] and

0 < e < 1, by using Lemma 2 (Chernoff Bound) we have
PriX¢> (1+¢€) Y] <exp(—Ye?/3) <e

Finally, since event B, implies X¢ > p,—1 > (1+4¢€)-Y, we have Pr[B,] < e,

as required. O

The fact that G was simple was used in the application of the Chernoff
bound. The random variables X, for edges in d(v) for some v € R are inde-

pendent if G is simple.

3.1.2 Extension to k-Hypergraphs

To begin, we use a reduction by Balcan and Blum [4] which was stated origi-

nally only for the uncapacitated case.

Lemma 6 (Balcan and Blum [4]). If there is an a-approxzimation for L-
SIDED PRICING with unlimited supply, then there is a O(k - a)-approzimation

for GRAPH PRICING problem with unlimited supply in k-Hypergraph.
We modify their proof to work for the limited capacity version:

Lemma 7. If there is an a-approximation for L-SIDED PRICING then there
is a O(k-«)-approximation for k-Hypergraph CAPACITATED GRAPH PRICING

problem.

38

Proof. We can use the following procedure.

Step 1: Randomly partition V into V7, and V., by independently placing
each node into V, with probability % :

Step 2: Let E’ be the set of edges with exactly one endpoint in V7, . Ignore
all edges in E'\ E'.

Step 3: To analyze this algorithm, let OPT; . denote the profit made by p*
selling item 4 to bidder e. (So OPT;. € {0, p;} where p} is the price of item ¢
in the optimal solution p* and OPT =}, .\, . OPT;.).

Notice that the total profit made in Step 3 is at least OPT, .

i€Vy,ecE’
because setting prices in V,.y to 0 can only increase the number of sales
made by p* to bidders in E’. Thus, we simply need to analyze the quantity
ER iev, eeOFPTic]

Define indicator random variable X;, = 1 if i € V and e € E' | and

Xie = 0 otherwise. We have:

k-1
1 1
E[X;.]=PrlieV,ande€ E'| > Z (1 — —>

k
Therefore,
E| Y OPT,.| =E|) X, OPT,
i€VL e€E’ i€V,ecE

= Y E[X,]OPT,,

i€eVeeE

1 1\
>—1-= OPT

OPT
ke
Where e is the base of the natural logarithm. O

39

Now we are going to prove Theorem 4 which says k-Hypergraph CA-
PACITATED GRAPH PRICING problem admit a randomized, polynomial-time

(4k* (L5)" 1)-approximation.

Proof. We first use the reduction to a k-hypergraph where we are only allowed
to use nonzero prices on one part losing a (k(:£5)*7') < ke factor in the
guarantee of lemma 7 and then use a natural rounding of LP-Pricing to this

setting while losing only an additional 4k factor.

Algorithm 4 Randomized Rounding LP-Pricing for L-SIDED PRICING in
k-Hypergraphs.
Solve LP-Pricing for L-SIDED PRICING
For each u € L sample price p'(u) € P, with Pr[p’(u) = p| = yuy
For each e € E N d(u) where u € L, sample e with probability i .
if Yupe) = 0)
For each w € L U R, if edges picked from §(WW') are more than its capacity
drop all of them
return the remaining set of edges

Ze,p/(e)

Yu,p! (e)

To prove 4k additional loss, we use Algorithm 4. More specifically, for each
u € L, sample a price p/(u) € P, from the distribution with Pr[p'(u) = p|] =
Yup- This is a distribution by (3.1) and non-negativity of y. For brevity, we
will let p'(e) = p'(u) for an edge e € §(u), where u € L. Then for each edge
e € E, where e € §(u) and u € L, set 7 = 1 with probability i s 4G} (0

Yu,p/ (e)

if Yo (e) = 0) and 27 = 0 otherwise. Note that = is at most 1 by (3.4).

u,p’ (e)
More precisely we are picking each edge e into our integral solution z” with

Zep/(e

probability - - yu,p/(e; (again zero if y,) = 0).

But the problem with solution z” is that it may violate the capacity con-
straints for vertices on both sides L and R. Our approach is to convert integral
solution z” to z’ by going through all the vertices in L and R and if the ca-
pacity constraint is violated for some u € L (v € R), we would remove all

the edges connected to u (v). For each edge e € E we set 2, = 2/ only if

40

the capacity constraints of all its & endpoints are not violated in z”. Now
' (0(w)) < gy for each w € LU R. Also, (3.5) ensures any e € F with 2/, > 0
has p/(e) < b,. The only remaining thing is to show that it has good profit in
expectation.

For any e € E, where e € 6(u) and u € L, let B, be the bad event that
there is a vertex w € {u} U R where e € d(w) and }_ 5, Ter > ftw. Notice

that 2/, = 2 if event B, does not happen and 2/, = 0 otherwise. We show
Pr(B.] < 5. If so, we then have
Bl(e)] > (1 PelB) - oo B [p(e) 2| > 25" p o
o= 2k Yup(e)) 4k o

peEP,

Summing over all edges:

E Zp/(e).x’e] ik S peae,

ecl e=uv peP,

So, it only remains to show Pr[B,] < i for any e € E. For each vertex w €
LU R and each edge e € ENd(w), let BY be the bad event that),

- 1t is enough to prove that Pr{BY] < ﬁ for each e and w. Then, because

"
e'ed(w ’>

each edge has exactly k endpoints in k-hypergraphs by using a simple union
bound Pr[B,] <
Now fix a vertex v € R and edge e € ENd(v). Foralle’ € 6(v) let X denote

3.
the random variable with value —k Ter (e /Yo p(e), Where v’ € L is the only
endpoint of ¢’ in L, and let X = >~ 5,y Xe. Then E[Xo] = ﬁ'zpePu/ Ter p SO
by (3.3) we have E[X¢] < o y,. Since event BY implies X¢ > p, > 2k-E[X¢],
using a simple Markov’s inequality we have Pr[BY] < Pr[X®¢ > 2k-E[X¢]] < 5=
as required.

Similarly, fix a vertex u € L and edge e € FNd(u). For all ¢ € §(u)
let X, denote the random variable with value ﬁ Ter (e Yup(ey and let

X¢ =3 vesw Xerw Then E[Xo] = 5237 _p ey 50 by (3.3) we have E[X¢] <

41

5 Hu. Since event BY implies X¢ > p1, > 2k-E[X¢], using Lemma 1 (Markov’s
inequality) we have:
1
Pr(B!] < Pr[X° > 2k -E[X°]] < %
This means that For each vertex w € L U R and each edge e € E'N d(w),
Pr([BY] < 5- which completes the proof.
O]

This proof also shows that the integrality gap of the (LP-Pricing) would
be no more than 4k. However, for the case of graphs, where k = 2, we can

have even better:

Lemma 8. The integrality gap of (LP-Pricing) is no worse than 1/4 in any

instance of L-SIDED PRICING.

Proof. We can change randomized rounding we used for general k and use
a rounding algorithm similar to the proof of Theorem 11. For each u € L,
sample a price p'(u) € P, from the distribution with Pr[p’(u) = p| = yu,-
This is a distribution by (3.1) and non-negativity of y. For brevity, we will let
p'(e) = p'(u) for an edge e = uw.

Then define a fractional matching in G as follows. The idea is that we want
to assign a value of & (c)/Yup(e) to each edge (using 0 if y, () = 0), this is
at most 1 by (3.4). By (3.2) this fractional matching would always satisfy the
capacity constraints for nodes in L. But it may violate constraints for nodes in
R. We scale all resulting values by %, and then outright discard edges e = uv
where the capacity of v is still violated after this scaling.

1 Tep/(e)

More precisely, for each e = uv we first let x = 3 e
u,p’ (e

(again using 0 if
Yup'(e) = 0). Then for each edge e = uv, we define

/ { I’g if Ze’:u’veé(v) ZL‘Z S Ho,

T = .
¢ 0 otherwise.

42

Now 2/(6(w)) < p, for each w € LU R. Also, (3.5) ensures any e € E with
x!, > 0 has p/(e) < b,. So, considering the fact that the bipartite p-matching
polytope is unimodular [33], there would be an integral matching p’ obtaining
at least as much value as the fractional matching z’: val(p’) > > p-al. It
remains to show that the fractional matching 2’ has good profit in expectation.

For any e = uv € E let B, be the bad event that Ze’:u’vEE(v) > .
Notice that if event B, happens then z, = 0. We show Pr[B,] < 1. If so, for
each e = uv € E the fact that B, is independent of the choice of p(e) (as G is

a simple graph) we then have

E[p'(e) -] > (1 — Pr[B]) -

DN | —
=
|
—~
&
Y
:5\
o
| IS |
vV
=~ =
=
8
(4]
3

Summing over all edges:

Zp,(e)'$,e] 2%' Z Zp‘xe,p

eckE e=uv pEP,

E

To bound Pr[B.], for an edge ¢’ let X, denote the random variable with
value % Tt () Yu ey and let X¢ = Ze,eé(v) Xe. Then E[X.] =
> pep, Tep 80 by (3.3) we have E[X¢] < 2 o

Let Y = 1./, AsY > E[X¢] and 0 < € < 1, by using Markov’s inequality

L,
2

we have

Pr[X°>2.Y] <Pr[X°>2 E[X°)] <

[NSRIE

.Y, we have Pr[B,] < 3, as

Finally, since event B, implies X¢ > p, > 3

required. O

Note that this approximation guarantee is even worse than our single-swap

algorithm.

43

Chapter 4

Locality Gaps and Hardness

4.1 Single-Swap

In this section we are going to provide a proof for Theorem 5 which says for
any C' > 1 and € > 0, there is an instance ® = (G, pu, b) of L-SIDED PRICING
where all u € L have capacity C and all v € R have capacity 1 such that the
locality gap of ® is at least 2 — ¢ with respect to the single-swap heuristic.
Our single-swap analysis is tight. While this is most striking when C' = 1,
we remark it is still interesting for larger C' because it is not obvious, a priori,
that the single-swap algorithm’s analysis cannot be improved as the capacities

in L increase.

Proof. For n > 2, consider the graph G"“ = (LUR, E), L = {u; : 1 <i < n}
and R = {v;; : 1 <i<n,1 <j<C}. The edges are the union of the edges
on the paths P; = {uy,v1 5, u2, V25, . .., Up, vy, } for 1 <5 <C. Weuse p, =C
for w € L and p, =1 for v € R.

The budgets are given as follows. First let Epoc = {wv;;:1<i<n,1<
J < C}and Eopr = {uvi—1; : 2 <i<n,1<j5<C} All edges in Eroc
have a budget of 1 and all edges in Eppr have a budget of 2.

Using p*(u) = 2 for every vertex in L and corresponding edges Fopr is a

solution with value of 2C'(n — 1). Now consider the solution with p(u) = 1 for

44

each vertex in L. This solution is just Eroc with a value of C'n, which can
be seen to be the optimal matching under these prices because the capacity of
every vertex in L is saturated by Eroc. Note val(p) = (ﬁ) -val(p*). We
claim this is a local optimum with respect to the single-swap heuristic.

The only possible swap is to change the price of some u; to 2. If i = 1, this
is clearly not an improving swap because no edge incident to u; can afford the
new price and all other vertices are priced 1 so no matching has value > n —1.
So suppose i > 2.

The only edges incident to w; that can afford this new price are (u;, v;_1 ;)
for all 1 < j < C. Furthermore, for any p-matching B that does not use an
edge e € 0, pp(u;), we can get a better p-matching (with respect to the new
prices) by adding e to B and, if necessary, removing some edge of E;oc N B
sharing the right-endpoint with e.

Thus, the optimum matching after changing p(u) to 2 uses all of dg, ., N B.
After fixing these edges, which have total value 2C| it is easy to see the best
matching we can get in the graph obtained by removing the endpoints of edges
dgypr(w) N B (plus all edges incident to these endpoints) has value at most

C'(n — 2). So this is not an improving swap. O

4.2 Multi-Swap

The construction for the multi-swap analysis is much more involved than the
one for the single-swap case. As a starting point for the construction, we
require simple graphs of constant degree but arbitrarily large girth. Such
graphs were shown to exist by Sachs [32]. Before presenting the lower bound,
we describe a construction of a layered graph with high girth and particular

degree bounds. The construction is depicted in Figure 4.1.

Lemma 9. For any C > 2,p > 1 and t > 1 there is a simple, layered, and

45

E; a

l®

@

.4/ @
o—— @
r®

®

\J,

mEasesenm
F@eseses®
F@eseses®

A B Iy Lo Ls Ly

=

Figure 4.1: An example with C' = 2. Left: the bipartite graph H constructed
from H’ in the proof of Lemma 9. Right: the resulting graph G* with ¢ = 4.
Edges of E’ are solid and the edges of E* are dashed.

bipartite graph G* = (L U R, E) with consecutive layers Ly, Ry, Lo, ..., Ly, Ry
where the subgraph induced by L; and R; is a (C,1)-bireqular bipartite graph
and the subgraph induced by R; and L;1 is a (1,C)-biregular bipartite graph
(for each relevant i). Further, G has girth exceeding 2t - p.

Note, this implies |L;| = |L|/t and |R;| = |R|/t = C-|L;| for each 1 < i <.

Proof. In [32], it is shown that for any C’, g > 3 there is a simple connected
C’'-regular graph whose girth (i.e. shortest cycle length) is at least g. In our
setting, this means a (2C')-regular graph with girth exceeding p-t exists where
p,t are as in the statement of Lemma 9. Call this graph H = (V, F").

As H is (2C)-regular it contains an Eulerian circuit. Direct all edges along
this circuit so that each vertex of H has indegree C' and outdegree C'. Finally,
build a bipartite graph H = (AU B, F') where A and B are disjoint copies
of V, and where u € A and v € B is an edge of F if uwv is a directed edge
obtained when we directed the Eulerian circuits.

Build the following layered graph G' = (LU R, E). For each 1 < i < t,
let L; be a set of size V and R; be a set of size |F|. Recall that both A and
B in H are viewed as copies of V in H’, so each L; can be viewed either as
a copy of A or as a copy of B, when appropriate. Now, for each u € A, each

e € dg(u), and each layer 1 < i < t, add an edge in G* from the copy of u in

46

L; to the copy of e in R;. Call the set of all such edges added for a given i E!.
Similarly, for each v € B, each e € dy(u), and each layer 1 < ¢ <t —1, add
an edge in G from the copy of e in layer R; to the copy of v in L;. Call the
set of all such edges added for a given ¢ E.

Then let L = U'_,L;, R = U._|R; and E = ((J_; F/ U Ef) U E/. This
construction is depicted in Figure 4.1 in Section 4.

To complete the analysis, consider a simple cycle C' in G'. Note that
C alternates between using nodes in L and nodes in R. Furthermore, if C
uses nodes consecutive nodes a € L;,b € Rj,c € Ly (where |j —i] < 1 and
|k — 7] < 1) then the nodes of H corresponding to a and ¢ are connected by
an edge in H that corresponds to node b. Thus, the cycle C' corresponds to a
circuit C’ of H' with |C’| = |C|/2. Here, C' may use an edge more than once
so |C’| measures the steps taken by the circuit C".

Consider any node a € CNL and say it is a copy of node v of H. Because the
cycle C is simple in G*, then the two adjacent nodes b, b to a on C' correspond
to distinct edges in H incident to v. This is true for every a € C'N L, so the
set of nodes of H corresponding to nodes in C' N L are incident to at least
two distinct edges traversed by C’. That is, the edges used on the circuit C’
contain a cycle. As the girth of H is at least p-t, then |C| = 2-|C'| > 2-p-t. O

Now we are going to prove Theorem 6 which says for all C' > 2,p > 1
and € > 0, there is an instance ® = (G, u,b) of L-SIDED PRICING where all
u € L have capacity C' and all v € R have capacity 1 such that the locality
gap P is at least QCT_l — € with respect to the simple p-swap algorithm. That
is, our bound on the locality gap for the multi-swap algorithm on instances

with bounded capacity is tight.

Proof. Fix C'>2,p > 1,¢ > 0 and let ¢ be such that 20771% > QCT’l—e. Let
G' = (LU R, F) be the graph from Lemma 9 for these parameters C, p,t. For

47

each 1 <7 <t, let E! be the edges connecting L; to R; and for each 1 <i <t
let Ef be the edges connecting R; to L;y;. Naturally, let £/ = U!_, E! and
E* = UZ{Ef. See Figure 4.1 for an illustration. Let n be such that |L;| = n
and |[R;|=C - -nforall1 <i<t.

The optimum is at least (2C' —1)-C'- (|L| —n), which can be seen by using
edges E* where each vertex in L has a price of 2C' — 1. Now consider the
pricing p that uses price C for each vertex in L. The optimum set of edges to

buy with these prices is E’ with a value of C'- C' - |L|.

Claim 1. The pricing p s locally optimal with respect to the p-swap procedure.

If so, then the locality gap of this instance is as bad as &C_l . |L‘|L_‘"

20-1 =1
t

= , as required.

Proof. Consider any pricing p’ with HW(p, p’) < p. Let X C L be the nodes v
with p(v) # p'(v). So p'(v) = 2C — 1 for v € X. If some vertex v € X lies
in L; # () then no edge incident to v can afford the price 2C — 1, so we may
assume that X N L, = 0.

We show val(p’) < val(p). We first claim any optimal set of edges M*
under this price includes all of dg«(X) and excludes all of §g/(X). The latter
is simple, no edge in dp/(X) can afford the price of its endpoint in L. Then
if any e € dp+(X) is missing from M*, we can get an even better solution by
adding e and removing, if necessary, an edge of £’ N M sharing its R-endpoint
with e. The value increases by at least (2C'—1) —C =C — 1.

So M* contains all edges of g+ (X) with value 2C — 1 each plus some edges
in §(L — X)) (which could be in either E’ or E*) with value C' each. We then

see the value of M* is

(2C = 1) C - |X|+C - [6a-(L — X). (4.1)

48

The rest of the proof focuses on showing the following:
|oa+ (L — X)| <C-|L|—(2C -1) - |X]. (4.2)

If this holds, we can bound (4.1) by C'- C - |L| thus showing val(p’) < val(p).

To show (4.2), first consider the graph G’ obtained from G* by directing all
edges to higher layers: so an edge in EY is directed from L; to R; and an edge
in E} is directed from L; to R; ;1. Let S consist of R; plus all nodes reachable
from X in G, including X itself. We claim |62 (S)| = C - n. This can be seen

easily:

65(S)| = 65 (S) -1 ()] = Yo 10B@I-Y 103 (S) = Y 1" (w)] =nc.

vES vES veESNRy

The first equality holds because 62/ (S) = @) by construction of S, the second
holds for any cut of any directed graph, and the third holds because SNL; = ()
(as X N L; = () and because every vertex not in L; or R; has equal in- and
out-degree.

Now let Y be all endpoints of edges in dg«(X) and let G” be the subgraph
of G’ obtained by deleting Y and incident edges. Let S’ = S — Y, we claim
106 (S)| < n-C —(C—1)-|X|. One should think that dg(S’) is obtained
by deleting edges of 0% (X) N 62(S) from 62 (S). There are precisely C - | X|
edges in 02 (X), we show at least (C'— 1) - | X| of there were also in 6% (S).

To that end, consider an edge e € 6% (x) for some x € X that does not lie in
6&(S). Then v is reachable from some other node of X in G’ by construction
of S, pick the deepest such node and call this node 7(e). By this choice for
7(e), there is a 7(e) — z path in G’ that avoids every other vertex in X. Also,
the length of this path is at most 2t because the paths are monotone with
respect to the layers of G'. Also note for two different e, e’ € 6% (x) — 6 (S)
that 7(e) # 7(€’), or else we have two different 7(e) — = walks implying there

is a cycle of length at most 4¢ in G* which is not possible.

49

Build an auxiliary graph 7 = (X, F) where for each e € §%(z) — 02(9)
for some x € X we include an undirected edge from 7(e) to z in F. By the
above discussion, this is a simple graph. We also claim it is a forest, otherwise
consider a cycle C' in T. Focus on some edge zy € C and let z ¢ {z,y}
be another node in C'. As the xy-path from the construction in the last
paragraph avoids z, we get two different — y walks in G* by following the
paths corresponding to the two directions around C' from x to y. But this is
impossible because G* has no cycle of length at most 2¢ - | X| < 2t - p. So,
|F| <|X| — 1 meaning |6%(X) — 0(S)| < |X]| — 1. Thus,

05.(S) < Com = (C = 1) |X]. (4.3)

Now we can prove (4.2). Let G be the undirected version of G”, so G” is
obtained from G" by deleting Y and its incident edges from G?*. Call a subset
of edges of G a matching if they satisfy the capacity constraints of nodes in
G". Note 6+ (L — X) is a matching.

We bound the size of a maximum matching in el First, observe M :=
E* — §(X) is a matching in G and that G” is the directed graph we get
by directing edges along this matching. That is, the set of L; — R; paths
in G” are exactly the set of M-alternating path. By the max-flow/min-cut
theorem, the maximum number of edge-disjoint M-alternating paths is at
most |64, (S")| < C-n—(C —1)-]X|. So the maximum size of a matching in

@” 1s at most
|M|+C-n—(C—1)-|X| = C-(L—n)—C|X|+Cn—(C-1)-|X| < C-|L|—(2C—1)-| X|.

This proves (4.2) and completes the analysis of the locality gap.

50

4.3 APX-Hardness for L-Sided Pricing

In this section we provide a proof for Theorem 7 which says L-SIDED PRICING
is APX-hard, even if all capacities are at most 4 and all customers have a

budget of 1 or 2.

Proof. We reduce from the VERTEX COVER problem for 3-regular graphs,
which is known to be APX-hard [1]. Let G = (V, E) be a 3-regular graph,
with |[V| = n nodes and |E| = m = 2 edges.

Construct the following bipartite graph G’ = (L U R, E’) from G. Here, L
is a copy of V and R is a copy of V plus a copy of E. Each v € L has capacity
4 and each vertex in R has a capacity of 1. For a node v; € V, let [; denote
its copy in L and r; denote its copy in . Similarly, for each edge e¢; € E let
d; denote its copy in R.

All customers have budget equal to 1 or 2, and they fall into two classes:
node customers and edge customers. For each v; € V', we have a node customer
who is interested in /; and r; with budget 2. For each edge e¢; = v;ur, € F,
we define two edge customers interested in [;d; and [,d; respectively, both
with budget 1. We claim that the optimal solution to this L-SIDED PRICING
instance G has profit m + 2n — k where k is the size of the smallest vertex
cover of G.

First, suppose S is a vertex cover of G with |S| = k. Consider the pricing
p with p(l;) = 1if [; € S and p(l;) =2if [; ¢ S. As S is a vertex cover in
G, for each e; = v;v, € E we have at least one of [;d; or [,d; is incident to
a vertex with price 1. Form F’ C E' by adding one such edge from each e
and adding all node customers. We get profit m from edge customers, profit
2(n — k) from all node customers [;r; such that v; ¢ S, and profit & from all
node customers [;r; with v; € S for a total profit of m + 2n — k.

Conversely, consider an optimal pricing p, so each price is 1 or 2. For

51

e; = viuy € E, we claim that either p(v;) = 1 or p(v;) = 1. If not, then
consider changing p(v;) to 1. We lost a profit of 1 from the node customer I;r;
but have gained a profit of 1 by adding v;d;, which remains feasible because
neither v;d; nor vid; could afford the price of their left-endpoint before (i.e.
d; is not used by any edge that can afford their price under pricing p, so we
may add v;d; after adjusting prices).

Set S = {v; : p(l;) = 1}. By the above argument, S is a vertex cover
of G. Also observe that the optimal set of edges of G’ under prices p will
include every node customer plus exactly one from each pair {l;d;,d;} for
each e; = v;u, € E. So the profit of p is m + 2n — |S]|.

Therefore, the optimal profit in G’ is exactly g -n — k where k is the size of
a minimum vertex cover of G. There are constants 0 < a < < 1 such that
it is NP-hard to distinguish between 3-regular graphs having vertex covers of
size < a - n and 3-regular graphs requiring vertex covers of size > - n. So
it is NP-hard to distinguish between L-SIDED PRICING instances that have

optimal profit at least (g — a) -n or at most (g — 5) ‘n. n

4.4 A Lower Bound on the Integrality Gap of
(LP-Pricing)

Consider the following example of L-SIDED PRICING where we have 2 items a
and b on the left side which we have to assign a price and three items ¢, d and
e on the right side for which we have to set the price to zero. The capacities of
all items are 1 except for the item b which has capacity 2. Also, as you can see
in the picture we have 5 customers (edges) as well each with budget 2 except

the one interested in items b and e which has budget 1.

52

Figure 4.2: An Example Instance Showing A Lower Bound on the Integrality
Gap of (LP-Pricing)

The optimal integral solution for this instance would gain the total profit
of 4 by setting the price for items a and b to 2 and picking the customers
interested in bundles {a,c} and {b,d} as buyers. Of course, there could be
some other optimal solutions with the same total profit of 4.

On the other hand, consider this assignment of fractional values to the

variables of (LP-Pricing):

, 1 1
Ya2 = L, Ypoa = R Yb2 = 5
1 1 1 1 1
Lac2 = 7, Lqa = 5 Lheo2 = 7, X =7, Thel = 7
2=5 a2 = be2 = 5 b2 = 5 bedl = 5

One can simply verify that this assignment does not violate any constraint
of (LP-Pricing) and the total profit is 4.5. This means that the integrality
gap of (LP-Pricing) is at least % = 1.125.

Corollary 1. The integrality gap of (LP-Pricing) is no better than 9/8 in

any instance of L-SIDED PRICING.

53

Note that the best rounding algorithm for (LP-Pricing) we know has
approximation ratio much bigger than 9/8 and there is a big gap between the

lower bound and the upper bound of (LP-Pricing).

o4

Chapter 5

Conclusion

5.1 Incorporating Loops

The algorithms presented in this paper assumed every customer was interested
in a bundle with precisely two distinct items. This was done for notational
simplicity. However, the algorithmic results extend very easily to the case
where some customers may be only interested in a single item. The reduc-
tion to L-SIDED PRICING is valid in this case as well and we only have to
consider singleton customers interested in an item in L. One can still com-
pute an optimum matching for a given pricing in this case, so the local search
algorithm can still be executed. The analysis of the local search algorithms
using test swaps can then be adapted in a straightforward way by removing
singleton customers from the local optimum and adding singleton customers
from the global optimum who are interested in an item whose price changed
when constructing the matching used to generate the inequality for this swap.

Similarly, the LP-based (1 + €)-approximation for L-SIDED PRICING with
large capacities from Chapter 3 is trivial to adapt. The “edge-variables” for
singleton customers interested only an item in L do not contribute to the
load of any constraint for any v € R. The randomized rounding algorithm is

identical.

%)

5.2 Future Directions

We presented an 8-approximation for CAPACITATED GRAPH PRICING. If
all capacities were bounded from above by a constant or, in simple graphs,
were bounded from below by a sufficiently large constant then we get better
approximations. It would be nice to combine these two cases to beat the 8-
approximation in any CAPACITATED GRAPH PRICING instance even if only
for simple graphs. But the techniques we use are quite different and it is not
clear how to combine them in a single algorithm that works in the presence of
both small and large capacities.

It would also be interesting to know if the hardness lower bound for Ca-
PACITATED GRAPH PRICING is worse than 4. Intuitively, this could be the
case as the L-SIDED PRICING problem we reduce to is APX-hard in the
capacitated case.

We have proved both upper and lower bound for (LP-Pricing). But there
is still a big gap between these two bounds. Closing this gap by finding either
a better rounding algorithm or another instance with larger difference between
the optimal integral and fractional solution would be another interesting di-
rection to follow.

We also briefly remark that the generalization of CAPACITATED GRAPH
PRICING in hypergraphs, where each hyperedge has size < k, is a common
generalization of the uncapacitated case which has a hardness of Q(k'~¢) [§],
and the k-SET PACKING problem which has a hardness of Q(k/ log k) [23]. One
then wonders if CAPACITATED GRAPH PRICING in hypergraphs could be hard
to approximate better than Q(k*7¢). It would be interesting to determine if
this is the case or to see if there is a noticeably better approximation than our

O(k?) approximation, perhaps even O(k).

56

References

1]

P. Alimonti and V. Kann, “Some apx-completeness results for cubic
graphs.”, Theoretical Computer Science, vol. 237, no. 1, pp. 123-134,
2000.

V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V.
Pandit, “Local search heuristics for k-median and facility location prob-
lems”, SIAM J. Comput, vol. 33, no. 3, pp. 544-562, 2004.

M.-F. Balcan, A. Blum, and Y. Mansour, “Item pricing for revenue max-
imization”, in Proceedings 9th ACM Conference on Electronic Commerce
(EC-2008), Chicago, 1L, USA, June 8-12, 2008, 2008, pp. 50-59. [On-
line]. Available: https://doi.org/10.1145/1386790.1386802.

M.-F. Balcan and A. Blum, “Approximation algorithms and online mech-
anisms for item pricing”, Theory of Computing, vol. 3, no. 9, pp. 179—
195, 2007.

P. Briest and P. Krysta, “Single-minded unlimited supply setting pricing
on sparse instances”, in In Proceedings of SODA, 2006, pp. 1093-1102.

P. Briest and P. Krysta, “Buying cheap is expensive: Hardness of non-
parametric multi-product pricing”, in Proceedings of the Eighteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New
Orleans, Louisiana, USA, January 7-9, 2007, 2007, pp. 716-725. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=1283383.
1283460.

P. Chalermsook, J. Chuzhoy, S. Kannan, and S. Khanna, “Improved
hardness results for profit maximization pricing problems with unlimited
supply”, in In Proceedings of APPROX, 2012, pp. 73-84.

P. Chalermsoon, B. Laekhanukit, and D. Nanongkai, “Independent set,
induced matching, and pricing: Connections and tight (subexponen-
tial time) approximation hardnesses”, in In Proceedings of FOCS, 2013,
pp. 370-379.

57

51

25,

15

13

17

13

56

32

, 13, 21, 38

https://doi.org/10.1145/1386790.1386802
http://dl.acm.org/citation.cfm?id=1283383.1283460
http://dl.acm.org/citation.cfm?id=1283383.1283460

[10]

[11]

[12]

[13]

[14]

[16]

[17]

N. Chen and X. Deng, “Envy-free pricing in multi-item markets”, in
Automata, Languages and Programming, 37th International Colloquium,
ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II,
2010, pp. 418-429. [Online|. Available: https://doi.org/10.1007/
978-3-642-14162-1%5C_35.

N. Chen, X. Deng, P. W. Goldberg, and J. Zhang, “On revenue max-
imization with sharp multi-unit demands”, J. Comb. Optim., vol. 31,
no. 3, pp. 1174-1205, 2016. [Online]. Available: https://doi.org/10.
1007/s10878-014-9817-y.

N. Chen, A. Ghosh, and S. Vassilvitskii, “Optimal envy-free pricing with
metric substitutability”, in Proceedings 9th ACM Conference on Elec-
tronic Commerce (EC-2008), Chicago, IL, USA, June 8-12, 2008, 2008,
pp. 60-69. [Online]. Available: https://doi.org/10.1145/1386790.
1386803.

M. Cheung and C. Swamy, “Approximation algorithms for single-minded
envy-free profit-maximization problems with limited supply”, in In Pro-
ceedings of FOCS, 2008, pp. 35—44.

D. P. Dubhashi and A. Panconesi, Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009.

K. Elbassioni, M. Fouz, and C. Swamy, “Approximation algorithms for
non-single-minded profit-maximization problems with limited supply”,
in In Proceedings of the International Workshop on Internet and Network
Economics (WINE), 2012, pp. 462-472.

K. M. Elbassioni, R. Raman, S. Ray, and R. Sitters, “On profit-maximizing
pricing for the highway and tollbooth problems”, in Algorithmic Game
Theory, Second International Symposium, SAGT 2009, Paphos, Cyprus,
October 18-20, 2009. Proceedings, 2009, pp. 275-286. [Online]. Available:
https://doi.org/10.1007/978-3-642-04645-2%5C_25.

M. Feldman, A. Fiat, S. Leonardi, and P. Sankowski, “Revenue max-
imizing envy-free multi-unit auctions with budgets”, in Proceedings of
the 13th ACM Conference on FElectronic Commerce, EC 2012, Valencia,
Spain, June 4-8, 2012, 2012, pp. 532-549. [Online]. Available: https:
//doi.org/10.1145/2229012.2229052.

7. Friggstad, K. Khodamoradi, and M. R. Salavatipour, “Exact algo-
rithms and lower bounds for stable instances of euclidean k-means”, in
In Proceedings of SODA, 2019, pp. 2958-2972.

58

15

15

14

13

11

14

17

14

25, 32

https://doi.org/10.1007/978-3-642-14162-1%5C_35
https://doi.org/10.1007/978-3-642-14162-1%5C_35
https://doi.org/10.1007/s10878-014-9817-y
https://doi.org/10.1007/s10878-014-9817-y
https://doi.org/10.1145/1386790.1386803
https://doi.org/10.1145/1386790.1386803
https://doi.org/10.1007/978-3-642-04645-2%5C_25
https://doi.org/10.1145/2229012.2229052
https://doi.org/10.1145/2229012.2229052

[21]

[22]

[27]

[. Gamzu and D. Segev, “A sublogarithmic approximation for highway
and tollbooth pricing”, in In Proceedings of ICALP, 2010, pp. 582-593.

F. Grandoni and T. Rothvoss, “Pricing on paths: A ptas for the highway
problem”, in In Proceedings of SODA, 2011, pp. 675-684.

A. Grigoriev, J. van Loon, R. Sitters, and M. Uetz, “How to sell a
graph: Guidelines for graph retailers”, in Graph-Theoretic Concepts in
Computer Science, 32nd International Workshop, WG 2006, Bergen,
Norway, June 22-24, 2006, Revised Papers, 2006, pp. 125-136. [Online].
Available: https://doi.org/10.1007/11917496%5C_12.

V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon,
and F. McSherry, “On profit-maximizing envy-free pricing”, in Proceed-
ings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2005, Vancouver, British Columbia, Canada, January
23-25, 2005, 2005, pp. 1164-1173.

J. D. Hartline and V. Koltun, “Near-optimal pricing in near-linear time”,
in Algorithms and Data Structures, 9th International Workshop, WADS
2005, Waterloo, Canada, August 15-17, 2005, Proceedings, 2005, pp. 422—
431. [Online]. Available: https://doi.org/10.1007/11534273%5C_37.

E. Hazan, S. Safra, and O. Schwartz, “On the complexity of approximat-
ing k-set packing”, Computational Complexity, vol. 15, no. 1, pp. 20-39,
2006.

N. Karmarkar, “A new polynomial time algorithm for linear program-
ming”, in PALP, ser. Combinatorica, vol. 4(4):373-395, 1984.

R. Khandekar, T. Kimbrel, K. Makarychev, and M. Sviridenko, “On
hardness of pricing items for singleminded bidders”, in In Proceedings of
APPROX, 2009, pp. 202-216.

S. Khot, “On the power of unique 2-prover 1-round games”, in Proceed-
ings on 34th Annual ACM Symposium on Theory of Computing, May
19-21, 2002, Montréal, Québec, Canada, 2002, pp. 767-775. [Online].
Available: https://doi.org/10.1145/509907.510017.

S. Khot, D. Minzer, and M. Safra, “On independent sets, 2-to-2 games,
and grassmann graphs”, in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, 2017, pp. 576-589. [Online]. Available: https://doi.
org/10.1145/3055399.3055432.

59

17

17

16

14

56

13

, 14, 16

https://doi.org/10.1007/11917496%5C_12
https://doi.org/10.1007/11534273%5C_37
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1145/3055399.3055432

[30]

[31]

[32]

[33]
[34]
[35]

[36]

——, “Pseudorandom sets in grassmann graph have near-perfect expan-
sion”, in 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, 2018, pp. 592—
601. [Online]. Available: https://doi.org/10.1109/F0CS . 2018.
00062.

E. Lee, “Hardness of graph pricing through generalized max-dicut”, in
Proceedings of the Forty-seventh Annual ACM Symposium on Theory of
Computing, 2015, pp. 391-399.

R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

F. Rajabi-Alni, A. Bagheri, and B. Minaei-Bidgoli, “An o(n"3) time
algorithm for the maximum weight b-matching problem on bipartite
graphs”, CoRR, vol. abs/1410.3408, 2014. arXiv: 1410 .3408. [Online].
Available: http://arxiv.org/abs/1410.3408.

H. Sachs, “Regular graphs with given girth and restricted circuits”, Jour-
nal of the London Mathematical Society, vol. s1-32, no. 1, pp. 423-429,
1963.

A. Schrijver, “Combinatorial optimization : Polyhedra and efficiency.
algorithms and combinatorics”, Springer-Verlag, 2003.

V. Vazirani, “Approximation algorithms.”, in AA, ser. Lecture Notes in
Computer Science, vol. 380, Springer, 2003.

D. West, “Introduction to graph theory”, in ITGT, ser. Lecture Notes
in Computer Science, vol. 504, Prentice-Hall, 2001.

D. Williamson and D. Shmoys, “The design of approximation algo-
rithms”, in DAA, ser. Lecture Notes in Computer Science, vol. 504,
Cambridge University Press, 2011.

D. Zuckerman, “Linear degree extractors and the inapproximability of
max clique and chromatic number”, in LDIMCCN, ser. THEORY OF
COMPUTING, vol. 3:103-128, 2007.

60

13

11, 22

21

45, 46

37, 43

https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1109/FOCS.2018.00062
http://arxiv.org/abs/1410.3408
http://arxiv.org/abs/1410.3408

	Introduction
	Preliminaries
	Graph
	Optimization Problems and Approximation Algorithms
	Linear Programming
	Local Search Algorithms
	Probability Inequalities

	Problem Considered
	Prior Work
	Main Results

	Graph Pricing with Limited Supply
	Problem Overview
	Reduction to L-Sided Pricing Problem
	Our Results

	Local Search Algorithm
	Single Swap Analysis
	An Improved Multi-Swap Algorithm for Bounded Capacities
	Proof of Theorem 8
	Efficient Versions of Local Search
	Extension to Multi-Swap

	Linear Programming Based Algorithms
	Our Results
	Randomized Rounding Algorithms
	Extension to k-Hypergraphs

	Locality Gaps and Hardness
	Single-Swap
	Multi-Swap
	APX-Hardness for L-Sided Pricing
	A Lower Bound on the Integrality Gap of (LP-Pricing)

	Conclusion
	Incorporating Loops
	Future Directions

	References

