
Graph Pricing With Limited Supply

by

Maryam Mahboub

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Maryam Mahboub, 2020

Abstract

In this thesis, we study approximation algorithms for graph pricing where we

have a set of items V and a set of customers X where each customer i ∈ X

has a budget bi and is interested in a bundle of items Si ⊆ V with |Si| ≤ 2.

However, there is a limited supply of each item: we only have µv copies of

item v to sell for each v ∈ V . We should assign prices p(v) to each v ∈ V and

chose a subset Y ⊆ X of customers so that each i ∈ Y can afford their bundle

(p(Si) ≤ bi) and at most µv chosen customers have item v in their bundle

for each item v ∈ V . Each customer i ∈ Y pays p(Si) for the bundle they

purchased: our goal is to do this in a way that maximizes revenue.

Such pricing problems have been studied from the perspective of envy-

freeness where we also must ensure that p(Si) ≥ bi for each i /∈ Y . However,

the version where we simply allocate items to customers after setting prices

and do not worry about the envy-free condition has received less attention.

With unlimited supply of each v ∈ V , Balcan and Blum (2006) give a

4-approximation for graph pricing which was later shown to be tight by Lee

(2015) unless the Unique Games conjecture fails to hold.

Our main result is an 8-approximation for the capacitated case via local

search. If all capacities are bounded by a constant C, we further show a multi-

ii

swap local search algorithm yields an
(
4 · 2C−1

C
+ ε
)
-approximation. We also

give a (4 + ε)-approximation in simple graphs through LP rounding when all

capacities are very large as a function of ε.

The reduction by Balcan and Blum to the case of bipartite graphs where

all items on one side must be assigned a price of 0 holds in this setting as well.

However, unlike the unlimited supply setting, the resulting problem remains

APX-hard even if all items have at most 4 copies to sell. We also show our

multi-swap analysis is tight using an interesting construction based on regular,

high-girth graphs.

iii

Preface

I, Maryam Mahboub, declare that this thesis titled, ‘Graph Pricing With Lim-

ited Supply’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated.

� Where I have consulted the published work of others, this is always

clearly attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own

work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others,

I have made clear exactly what was done by others and what I have

contributed myself.

iv

“No two things have been combined better than knowledge and patience.”

Prophet Muhammad (peace be upon him)

v

To:

The great savior of the world

vi

I think there is a world market for maybe five computers.

– Thomas J. Watson, IBM Chairman, 1943.

vii

Acknowledgements

There are many people I want to thank for both supporting me through my

degree as for their help with this thesis. First and foremost, I want to thank my

supervisor, Zachary Friggstad. You have been a great teacher, mentor, and

role-model who has pushed me to become a better student and researcher.

While I have had my fair share of failures and stumbles along the way, you

have shown me how much more I can achieve, and how much further I can

still grow as a researcher.

I also want to thank Mohammad R. Salavatipour for not only providing

insightful and constructive comments in this thesis, but for being great col-

league. You have been a inspiration to me, and I have valued your guidance,

especially during the more difficult times over the past two years.

I would also like to thank to my beloved husband, Mirmahdi Rahgoshay.

Thank you for supporting me for everything, and especially I can’t thank you

enough for encouraging me throughout this experience.

Finally I thank my God, for helping me through all the difficulties. I have

experienced Your guidance day by day. You are the one who let me finish my

degree. I will keep on trusting You for my future. Thank you, Lord.

viii

Contents

1 Introduction 1
1.1 Preliminaries . 2

1.1.1 Graph . 2
1.1.2 Optimization Problems and Approximation Algorithms 4
1.1.3 Linear Programming 8
1.1.4 Local Search Algorithms 10
1.1.5 Probability Inequalities 11

1.2 Problem Considered . 12
1.3 Prior Work . 13
1.4 Main Results . 18

2 Graph Pricing with Limited Supply 20
2.1 Problem Overview . 20

2.1.1 Reduction to L-Sided Pricing Problem 21
2.1.2 Our Results . 22

2.2 Local Search Algorithm . 24
2.2.1 Single Swap Analysis 25
2.2.2 An Improved Multi-Swap Algorithm for Bounded Ca-

pacities . 27
2.2.3 Proof of Theorem 8 . 30
2.2.4 Efficient Versions of Local Search 32
2.2.5 Extension to Multi-Swap 34

3 Linear Programming Based Algorithms 35
3.1 Our Results . 35

3.1.1 Randomized Rounding Algorithms 36
3.1.2 Extension to k-Hypergraphs 38

4 Locality Gaps and Hardness 44
4.1 Single-Swap . 44
4.2 Multi-Swap . 45
4.3 APX-Hardness for L-Sided Pricing 51
4.4 A Lower Bound on the Integrality Gap of (LP-Pricing) . . . 52

ix

5 Conclusion 55
5.1 Incorporating Loops . 55
5.2 Future Directions . 56

References 57

x

List of Figures

2.1 Illustration of the case d = 6 where dH(u, v) = 4. The directed
ball B+(u, 6) contributes to the “distance 4” requirement for v,
B+(u, 5) contributes to the “distance 5” requirement for v, and
B+(u, 4) contributes to the “distance 6” requirement for v. . . 31

4.1 An example with C = 2. Left: the bipartite graph H con-
structed from H ′ in the proof of Lemma 9. Right: the resulting
graph Gt with t = 4. Edges of E ′ are solid and the edges of E∗

are dashed. 46
4.2 An Example Instance Showing A Lower Bound on the Integral-

ity Gap of (LP-Pricing) . 53

xi

Chapter 1

Introduction

Choosing prices to sell items in order to maximize revenue is a complicated

task even in environments where one can be certain of customer behaviour.

Indeed, many so-called pricing problems have been studied in combinatorial

optimization. One popular model is this: a collection of items V is available

to be sold where we have µv ∈ Z≥0 ∪ {∞} copies of item v ∈ V . Additionally,

we are given a collection of customers X where each i ∈ X has some budget

bi ≥ 0. In the single-minded setting, each customer i ∈ X is interested in a

bundle Si ⊆ V . We must assign prices p : V → R≥0 to the items and sell them

to some customers Y ⊆ X while respecting two constraints:

• Affordability: p(Si) :=
∑

v∈Si
p(v) ≤ bi for i ∈ Y , and

• Supply Constraints: |{i ∈ Y : v ∈ Si}| ≤ µv for v ∈ V .

That is, each customer that purchases their bundle can afford it and no item

is oversold. Such a solution (p, Y) is said to be feasible, and the goal is to

find a feasible (p, Y) maximizing revenue, i.e.
∑

i∈Y p(Si).

Much attention has been given to the envy-free setting, where a feasible

solution must additionally satisfy the property p(Si) ≥ bi for i /∈ Y or to the

unlimited supply setting where µv =∞ for each v ∈ V . Observe that in the

unlimited supply setting, any pricing yields an envy-free solution by simply

1

choosing the customers that can afford the price. However, the problem still

remains APX-hard in this relaxed setting (unlimited supply) and, further, is

hard to approximate within a factor better than 4 unless the Unique Games

Conjecture, an open problem in computer theory, fails to hold, see the prior

works section.

We study single-minded pricing problems yet without the envy-free con-

straint. This is a natural variant of pricing problems where customer satis-

faction is less of a concern than overall revenue generation. To the best of

our knowledge, it seems that pricing problems without the envy-free condition

like this have received virtually no attention so far except in simpler cases

of unlimited supply where envy-freeness is a superfluous constraint (i.e. any

solution can be trivially be made envy-free without losing revenue).

More specifically we mainly consider the case when |Si| = 2 for each cus-

tomer i. That is, the set of customers can be thought of as edges E in a graph

G = (V,E) with vertex capacities and, perhaps, parallel edges.

1.1 Preliminaries

We begin by formalizing the terminology we will use throughout this thesis.

The definitions given here are adapted from [34], [36], and [35].

1.1.1 Graph

A graph G is defined by its finite edge set E(G) = {e1, e2, ..., em} and finite

vertex set V (G) = {v1, v2, ..., vn}, where each edge e ∈ E(G) is an unordered

pair of vertices in V (G). To simplify notation, we may drop the parameters

of V and E when the graph is clear from context, and instead denote G as

the pair (V,E). We also consider directed graphs; in a directed graph G, each

edge e ∈ E(G) is an ordered pair of vertices. We use the same notation as for

undirected graphs.

2

In undirected graph for each edge e = uv ∈ E(G), we say u and v are

adjacent and e is incident to u and v. The neighbours of a vertex v are the

vertices u such that u and v are adjacent; we denote this set as NG(v), or

simply N(v) when G is clear from context.

A subgraph of a graph G is a graph H, where H is obtained from G by

deleting some edges and/or some vertices (and their incident edges) from G.

We notate this relation as H ⊆ G, and may simply say that G contains H or

H is in G. A subgraph H ⊆ G is spanning if V (H) = V (G).

Multigraph

A multigraph (in contrast to a simple graph) is a graph with a multiset of edges

which is permitted to have multiple edges (also called parallel edges), that is,

edges that have the same end nodes. Thus two vertices may be connected by

more than one edge. Also, multigraphs could have edges that connects one

vertex to itself which are called self loops.

Bipartite Graph

A bipartite graph is a graph whose vertices can be divided into two disjoint

sets U and V such that every edge is incident to exactly one vertex in U and

one vertex in V . Vertex sets U and V are usually called the parts of the graph.

Hypergraph

A hypergraph H is a pair H = (X,E) where X is a set of elements called

vertices, and E is a set of non-empty subsets of X called edges. Therefore,

E is a subset of P (X) \ {∅}, where P (X) is the power set of X. The size of

vertex set is called the order of the hypergraph, and the size of edges set is

the size of the hypergraph. A k-hypergraph is a hypergraph such that all the

edges have cardinality k (a subset of vertices with size k).

Walk in Graph

A walk in graph G is a finite non-empty sequence W = v0e1v1e2v2...ekvk, whose

terms are alternately vertices and edges, such that, for 1 ≤ i ≤ k, the ends of

3

ei are vi−1 and vi. We say that W is a walk from v0 to vk. The vertices v0 and

vk are called the origin and terminus of W , respectively, and v1, v2, . . . , vk−l its

internal vertices. The integer k is the length of W . A walk is closed if it has

positive length and its origin and terminus are the same.

Eulerian Circuit

A Eulerian circuit in a graph is a walk that visits every edge exactly once and

ends at the starting node (terminus is same as origin) of the walk.

Cycle in Graph

A closed walk whose origin and internal vertices are distinct is a cycle. Just as

with paths we sometimes use the term ’cycle’ to denote a graph corresponding

to a cycle. A cycle of length k is called a k − cycle.

Girth of the Graph

The girth of a graph is the length of a shortest cycle contained in the graph.

If the graph does not contain any cycles its girth is defined to be infinity.

1.1.2 Optimization Problems and Approximation Algo-
rithms

Decision Problems and NP

A decision problem is a problem that can be answered with either “yes” or

“no”. We view decision problems as languages. A language is a subset of

binary strings over the alphabet {0, 1}. Language L corresponding to some

decision problem is the set of all strings in L that encode “yes” instances to

the problem.

A language L ∈ NP if there are polynomials p, q and a Turing machine M

(called a verifier) such that for each string x ∈ {0, 1}∗, the following holds. If

x ∈ L, then a certificate string y of length at most p(|x|) must exist such that

M(x, y) accepts in at most q(|x|) steps. Otherwise, for all strings y of length at

most p(|x|), M(x, y) rejects in at most q(|x|) steps. NP is therefore the class

4

of all languages for which there are short and quickly verifiable yes-certificates.

Let L1 and L2 be two languages in NP. A language L1 reduces to L2 if

there is a Turing machine that, given the string x ∈ {0, 1}∗, outputs a string

y such that y ∈ L2 if and only if x ∈ L1, and does so in poly(|x|) steps. A

language L is NP-hard if for every language L0 ∈ NP, L0 reduces to L. A

language L is NP-complete if L is NP-hard and L ∈ NP.

Optimization problems

An NP-optimization problem Π consists of:

• A set of valid instances DΠ, where we can determine if some instance

I ∈ DΠ in time polynomial in |I|. We assume all instances I ∈ DΠ

can be expressed as finite binary strings; this implies all numeric values

could be integer or rational. The size of an instance I, written |I|, is

the number of bits needed to express it.

• A set of feasible solutions SΠ(I) for each instance I ∈ DΠ, where we can

determine if S ∈ S in time poly(|I|). The length of each solution must

be polynomially bounded in the length of I.

• An objectivefunction objΠ that assigns each instance-solution pair (I, s)

a non-negative value, computable in time that is polynomial in |I|.

We also specify whether Π is a minimization problem or a maximization

problem. For a minimization/maximization problem Π and instance I ∈ DΠ,

an optimal solution is a feasible solution s ∈ Sπ(I) that minimizes/maximizes

the value of objΠ ; that is, argmins∈SΠ
objΠ(I, s) or argmaxs∈SΠ

objΠ(I, s),

respectively. We denote such a solution as OPTΠ(I), or simply OPT if the

problem and instance are clear from context. We slightly abuse this notation

by using OPT to also refer to the objective value of the optimum solution,

when the type of OPT is clear from context.

5

An NP optimization problem Π gives rise to a class of NP decision prob-

lems Π′, by asking if a feasible solution of at most/at least some objective value

exists (for minimization/maximization problems, respectively). A polynomial

time algorithm that solves Π can thus be used to answer the decision problem

Π′. On the other hand, proving that the decision version of a problem I ′ ∈ Π′

is hard in some sense, shows that the optimization version I ∈ Π is at least as

hard as I ′. For example if we prove that I ′ in NP-hard, then it means that I

is NP-hard too.

Approximation algorithms

Let Π be a minimization (maximization) problem, and let α : Z+ → Q+ be

a function such that α(I) ≥ 1 for all inputs I ∈ DΠ. An algorithm A is an

α − approximation for Π if, for all instances I, A returns a feasible solution

S ∈ SΠ(I) such that objΠ(I, S) ≤ α(|I|).OPTΠ(I)
(
objΠ(I, S) ≥ OPTΠ(I)

α(|I|)

)
and the running time is bounded by poly(|I|). The function α is called the

approximation ratio of A.

It is sometimes difficult to obtain an algorithm that meets this definition

exactly. We might need to relax the running time bound, for example to

a quasi-polynomial factor, which is O(|I|logc(|I|)), where c is a constant. Or,

the algorithm makes random choices, and so the approximation ratio only

holds in expectation over all random choices. We still loosely refer to these as

approximation algorithms, although we will state such relaxations explicitly.

An algorithm A is an approximation scheme for the minimization (max-

imization) problem Π if for the valid instance I and error parameter ε >

0, it returns a feasible solution S such that objΠ(I, S) ≤ (1 + ε).OPTΠ(I)(
objΠ(I, S) ≥ (1− ε).OPTΠ(I)

)
. We call A a polynomial time approximation

scheme (PTAS) if its running time is poly(|I|) for each fixed ε. We call A a

fully polynomial time approximation scheme (FPTAS) if its running time

is poly(|I|, 1
ε
) for each fixed ε.

6

Problem Π is said to be in the class PTAS or FPTAS if it admits the

respective approximation scheme. It is said to be in the class APX if it admits

any constant approximation.

Let Π and Π′ be two optimization problems. Π PTAS-reduces to Π′ if

there exists an algorithm A and function c : R+ → R+, where for each valid

instance I of Π and each fixed ε > 0,

• Algorithm A returns an instance I ′ = A(I, ε) of Π′ in time poly(|I|),

such that if I is feasible then I ′ is feasible, and

• Given any feasible solution s′ ∈ SΠ
′(I ′), there exists a feasible solu-

tion s ∈ SΠ(I) such that if objΠ
′(I ′, s′) ≤ (1 + c(ε)).OPTΠ

′(I ′), then

objΠ(I, s) ≤ (1 + ε).OPTΠ(I)

An optimization problem Π is said to be APX-hard if for every other

problem Π′ ∈ APX, Π′ PTAS-reduces to Π. If in addition Π ∈ APX, then

Π is said to be APX-complete.

Hardness of approximation

Roughly speaking, a hardness proof shows that a certain optimization prob-

lem cannot be approximated better than some threshold assuming certain

complexity assumptions. As an extreme example, it was shown in [37] that

the maximum independent set problem cannot be approximated better than

O(n1−ε) for any constant ε > 0 assuming P 6= NP, ruling out all but the

most trivial approximations. A less extreme example, implied by the PCP

theorem, is that approximating Max-3SAT better than (1 + ε) for some ε > 0

is NP-hard, ruling out a PTAS assuming P 6= NP [34]. Since this problem is

also APX-complete, a consequence of this hardness is that for any APX-hard

optimization problem Π, Π /∈ PTAS unless P = NP.

Unique Games Conjecture

In computational complexity theory, the unique games conjecture (often re-

7

ferred to as UGC) is a conjecture made by Subhash Khot in 2002 [26]. The

conjecture postulates that the problem of determining the approximate value

of a certain type of game, known as a unique game, is NP-hard. It has broad

applications in the theory of hardness of approximation. If it is true, then for

many important problems it is not only impossible to get an exact solution

in polynomial time (as postulated by the P versus NP problem), but also

impossible to get a good polynomial-time approximation.

However, UGC is not the only assumption to help for such an inapproxima-

bility results. For example it has been shown that the Minimum Vertex Cover

problem is NP-hard to approximate to within a factor of
√

2, by assuming the

traditional assumption of P 6= NP [27], [28].

1.1.3 Linear Programming

Many problems in NP can be formulated as an integer program that describes

the problem. Let c ∈ Qn, b ∈ Qm be vectors, and A = (aij) ∈ Qm×n be

a matrix. Let u · v denote the dot-product of two vectors u and v. The

integer programming problem is to find a non-negative integer vector x ∈ Z+n

maximizing the value c · x, satisfying:

A · x ≤ b

Note that we can use this definition to define minimization problems as

well (i.e. by maximizing −c · x), and allow for ≥ and = constraints.

Finding such a binary vector, or determining if such a vector even exists,

is itself an NP-hard problem in general (otherwise, we could use integer pro-

gramming to solve other NP-hard problems). Instead, suppose we relax this

problem: instead of trying to find a binary vector x, we try to find a satisfying

x ∈ Qn . This yields a linear program:

8

maximize c · x (LP)

subject to Ax ≤ b, (1.1)

x ≥ 0 (1.2)

It is usually more convenient to explicitly write out the constraints and the

objective function rather than specifying A, b, c directly, as in the following

(equivalent) LP:

maximize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≤ bj, i = 1, ...,m

xj ≥ 0, j = 1, ..., n

(1.3)

We say that we “solve” a linear program if we either determine no solution

x exists, the value c · x is unbounded, or return a solution minimizing the

objective c · x. Unlike integer programs, linear programs can be solved in time

polynomial in n, m, and the number of bits ∆ required to write the rational

entries of A, b, and c; one such approach is the interior point method (see, for

example, [24]).

Usefulness in approximations

Linear programming is a useful tool to build approximation algorithms with.

The general procedure for a minimization (maximization) problem is to write

the integer program, relax its constraints that force the variables to be non-

negative integers, by allowing the variables to take any non-negative real num-

bers, solve it, and try to round the fractional result to an integer solution in

polynomial time, without either violating constraints or increasing (decreas-

ing) the objective value significantly. If we can do this while only increasing

9

(decreasing) the objective value by a factor of f(n), where n = |x|, then we

will have an f(n)-approximation to the original problem.

We say a linear program of a minimization (maximization) problem has an

integrality gap of f(n) if for an optimum solution x∗ and optimum solution x̄

for the corresponding integer program, c·x∗
c·x̄ ≤ f(n)

(
c·x∗
c·x̄ ≥ f(n)

)
.

1.1.4 Local Search Algorithms

A local search algorithm starts with an arbitrary feasible solution, and then it

iteratively improves the current solution by selecting a neighboring solution

with a better objective function value. The algorithm stops when no further

improvement is possible. Neighboring solutions of a given feasible solution are

determined by a set of local operations.

In combinatorial optimization we look for a solution S from the solution

space A, that optimizes an objective function c : A → Q. A local search

algorithm is defined by its local operations. A local operation transforms a

solution S ∈ A into a new solution S ′ by for example, adding, removing or

exchanging elements of S with elements not in S. Local operations are usually

simple and they should be able to be performed quickly, in polynomial time.

A neighborhood function N is defined by the local operations. For each

solution S ∈ A, N(S) includes all the solutions S ′ ∈ A that can be obtained

by performing a single local operation on S. |N(S)| is polynomially bounded.

A local optimum solution S is a solution for which we have c(S) ≥ c(S ′) for

all S ′ ∈ N(S). Note that the actual optimum solution of the problem (global

optimum) is a local optimum solution too, but we could have more than one

local optimum solution as well. The main idea of a local search algorithm is to

define the local operations such that we can prove any local optimum solution

is not too far from the global optimum solution.

Locality Gap

10

The locality gap of a local search algorithm is the largest ratio of the value

of a local optimal solution produced by the algorithm to the value of a corre-

sponding global optimal solution. Let sI be a local optimal solution produced

by a local search algorithm for some instance I of a maximization problem

P and let s∗(I) be a global optimal solution for I, then the locality gap of

the algorithm is defined as minI∈P
c(s(I))
c(s∗(I))

, where c(s(I)) is the cost of s(I)

and c(s∗(I)) is the cost of s∗(I). Similarly, for minimization problems P the

locality gap is defined as maxI∈P
c(s(I))
c(s∗(I))

.

1.1.5 Probability Inequalities

Markov’s Inequality

In probability theory, Markov’s inequality gives an upper bound for the prob-

ability that a non-negative function of a random variable is greater than or

equal to some positive value.

Lemma 1 (Theorem 3.2 in [30]). Let Y be a random variable assuming only

non-negative values. Then for all t ∈ R+:

Pr
[
Y ≥ t] ≤ E[Y]

a

Equivalently,

Pr
[
Y ≥ tE[Y]] ≤ 1

t

Chernoff Bound

The Chernoff bound, named after Herman Chernoff but due to Herman Rubin,

gives exponentially decreasing bounds on tail distributions of sums of indepen-

dent random variables. there are many forms (inequalities) of Chernoff bound,

but we mention the one we want to use in the thesis.

Lemma 2 (Theorem 1.1 in [13]). Let X =
∑n

i=1Xi where Xi, 1 ≤ i ≤ n are

independent random variables distributed in [0, 1]. Then for every ε > 0:

11

Pr
[
X ≥ (1 + ε)E[X]

]
≤ exp

(
− ε2

3
E[X]

)
.

1.2 Problem Considered

We focus on the following problem.

Definition 1.2.1. Let G = (V,E) be a graph with vertex capacities µv ∈

Z≥0 ∪ {∞} where each e = uv ∈ E has a budget be ≥ 0 and is interested in

the bundle of vertices {u, v}. In Capacitated Graph Pricing, we want to

find a pricing p : V → R≥0 and F ⊆ E such that (p, F) is a feasible solution

to the pricing problem with considering the capacity of each vertex and the

budget of each edge. The goal is to maximize revenue:
∑

e=uv∈F p(u) + p(v).

Note that, for edges, we use shorthand notation like e = uv ∈ E when we

want to consider an edge e ∈ E in some graph G = (V,E) and also want to

name the endpoints u, v of e. This allows us to name distinct edges interested

in the same bundle of items (i.e. {u, v} and {w, v}).

All of our algorithmic results extend in a simple way to the case where each

customer is interested in a bundle of size at most 2, but it is slightly simpler

to describe the algorithms and their analysis for the case where each customer

wants precisely two different items. Unless otherwise stated, the graph G may

have parallel edges. We use the term simple graph to indicate it does not have

parallel edges.

To get approximations for Capacitated Graph Pricing, we use the

reduction from Balcan and Blum [4] to reduce to the case of a bipartite graph

where all items on one side will be priced 0. Specifically, we consider the

following problem.

12

Definition 1.2.2. In L-Sided Pricing, we are given a Capacitated Graph

Pricing instance in a bipartite graph (L ∪ R,E). A feasible solution (p, F)

must also have p(v) = 0 for v ∈ R.

1.3 Prior Work

The basic model of pricing problems of this sort were introduced by Gu-

ruswami et al. [21]. Among other results, they have given an O(log n+logm)-

approximation for the case of single-minded pricing without item capacities

if we have n items and m customers. Here, the bundle Si for each customer

i may be any subset of items (not just size 2). This was later improved by

Briest and Krysta to an O(logD + log k)-approximation where each set has

size at most k and each item appears in at most D sets [5]. Chalermsook et al.

show that for any constant ε > 0 there is no O(log1−ε(m+ n))-approximation

unless NP ⊆ DTIME(npolylog(n)) [7], so the logarithmic approximation of [5]

is essentially tight.

If all customers are interested in a set of size at most k, Balcan and Blum

give an O(k)-approximation for the uncapacitated pricing which specializes to

a 4-approximation in the case k = 2 [4]. Amazingly, this may also be tight:

building on work by Khadekar et al. [25], Lee showed that there is no (4− ε)-

approximation when k = 2 for any constant ε > 0 unless the Unique Games

Conjecture [29] fails.

Cheung and Swamy studied the envy-free variant of capacitated pricing

problems [12]. As mentioned earlier, they show that LP-based approximations

that choose the maximum-profit set of customers for given prices translate to

approximation algorithms for envy-free pricing with capacities while losing an

O(log µmax)-factor. In particular, for envy-free Capacitated Graph Pric-

ing they get an O(log µmax)-approximation.

Hartline and Koltun design near-linear and near-cubic time approxima-

13

tion schemes under the assumption that the number of distinct items for sale

is constant [22]. In the unlimited supply case, they give a near-linear time

approximation schemes for both the problem. Specifically, for unit-demand

consumers a (1 + ε)-approximation is achieved in time O
(
n log (1

ε
log n

ε
) +

(1
ε

log n
ε
)m(m+1)

)
for n consumers, m = O(1) items, and an arbitrarily small

ε > 0. For single-minded consumers a (1+ε)-approximation is achieved in time

O
(
(n+(1

ε
log n

ε
)m) log (1

ε
log n

ε
)
)
. For the more general limited supply case and

for unit-demand consumers they give a (1+ε)-approximation algorithm for the

limited supply (envy-free) pricing problem that runs in time O(n3 logm1+ε n).

Many other variants of envy-free pricing problems have been studied. For

example, it could be that each customer is interested in acquiring just a single

item from their subset (rather than all items). This was also studied in [21]

and follow-up work [14] where they obtain fairly general results that relate

the approximability of the profit-maximization problem to the corresponding

social-welfare-maximization (SWM) problem, which is the problem of finding

an allocation ({S1, . . . , Sn}) satisfying the capacity constraints that has maxi-

mum total value
∑

j vj(Sj). This yields an O(log cmax)-approximation for the

profit-maximization problem, where cmax is the maximum item-supply.

Feldman et al. [16] study envy-free (EF) mechanisms for multi-unit auc-

tions with budgeted agents that approximately maximize revenue. In an EF

auction, prices are set so that every bidder receives a bundle that maximizes

her utility amongst all bundles; They show that the problem of revenue-

maximizing EF auctions is NP-hard, even for the case of identical items and

additive valuations (up to the budget). They also provide a novel algorithm

that runs in polynomial time and provides a approximation of 1/2 with respect

to the revenue-maximizing EF auction.

Chen et al. [11] study the unit-demand envy-free pricing problem faced by

a profit-maximizing seller with unlimited supply when there is metric substi-

14

tutability among the items. More precisely consumer i’s value for item j is

vi − ci,j, and the substitution costs, {ci,j}, form a metric. They show that the

problem of maximizing revenue with metric substitutability among items can

be solved exactly in polynomial time.

Chen and Deng [9] study the revenue maximization envy-free pricing in

multi-item markets where there are m items and n potential buyers where each

buyer is interested in acquiring one item. The goal is to determine allocations

(a matching between buyers and items) and prices of all items to maximize

the total revenue given that all buyers are envy-free. They give a polynomial

time algorithm to compute a revenue maximization envy-free pricing when

every buyer evaluates at most two items a positive valuation, by reducing it to

an instance of weighted independent set in a perfect graph and applying the

Strong Perfect Graph Theorem. They also show that the problem becomes

NP-hard if some buyers are interested in at least three items.

Another recent variation is studied by Chen et al. [10] where they consider

markets consisting of a set of indivisible items, and buyers that have sharp

multi-unit demand. This means that each buyer i wants a specific number di

of items and a bundle of size less than di has no value. They focus on the case

where each buyer i has a valuation viqj for item j, where vi and qj are positive

quantities associated with buyer i and item j, respectively. They showed that

for envy-free pricing, if the demand of each buyer is bounded by a constant, a

revenue maximizing solution can be found efficiently, and the general demand

case is shown to be NP-hard.

In a different version of the problem Balcan et al. [3] consider the prob-

lem of pricing n items to maximize revenue when faced with a series of un-

known buyers with complex preferences, and show that a simple pricing scheme

achieves surprisingly strong guarantees. They show that in the unlimited sup-

ply setting, a random single price achieves expected revenue within a loga-

15

rithmic factor of the total social welfare for customers with general valuation

functions, which may not even necessarily be monotone. This generalizes work

of Guruswami et al. [21], who show a logarithmic factor for only the special

cases of single-minded and unit-demand customers. In the limited supply set-

ting, they show that for subadditive valuations, a random single price achieves

revenue within a factor of 2O(
√

(logn log logn) of the total social welfare, i.e., the

optimal revenue the seller could hope to extract even if the seller could price

each bundle differently for every buyer.

Graph pricing problems is another interesting directions that has gained so

much attention during recent years. The items can be represented as the edges

of an undirected (multi)graph G, where an edge multiplicity larger than one

corresponds to multiple copies of the same item. Each customer is interested

in purchasing a bundle of edges of G, and we assume that each bundle forms a

simple path in G. Each customer has a known budget for her respective bundle,

and is interested only in that particular bundle. The goal is to determine item

prices and a feasible assignment of items to customers in order to maximize

the total profit. Grigoriev et al. [20] show some early algorithms for special

graph families along with some hardness results.

Other directions have considered more restricted subsets of items in single-

minded pricing, for example the customers may be interested in the edges of

sub-paths of a tree (the tollbooth problem) or a sub-path of a large path

(the highway problem).

More precisely, An instance of the tollbooth problem consists of an undi-

rected network and a collection of single-minded customers, each of which is

interested in purchasing a fixed path subject to an individual budget con-

straint. The objective is to assign a per-unit price to each edge in a way that

maximizes the collective revenue obtained from all customers. The revenue

generated by any customer is equal to the overall price of the edges in her de-

16

sired path, when this cost falls within her budget; otherwise, that customer will

not purchase any edge. A deterministic algorithm for the tollbooth problem

on trees whose approximation ratio is O(logm/ log logm), where m denotes

the number of edges in the underlying graph, is provided in [18]. Elbassioni

et. al. [15] also study a special case of the tollbooth problem, when all the

paths that customers are interested in purchasing go towards a fixed root. In

this case, they present an algorithm that returns a (1− ε)-approximation, for

any ε > 0, and runs in quasi-polynomial time, which is O(nlogc n), where c is a

constant.

In the highway problem, we are given an n-edge path graph (the highway),

and a set of paths (the drivers), each one with its own budget. For a given

assignment of edge weights (the tolls), the highway owner collects from each

driver the weight of the associated path, when it does not exceed the budget of

the driver, and zero otherwise. The goal is to choose weights so as to maximize

the profit. The highway problem was shown to be strongly NP-hard [15]. In

[19] Grandoni and Rothvoss present a polynomial-time approximation scheme

(PTAS) for the highway problem, hence greatly improving the understanding

of the complexity status of this problem. Their result is based on a novel

randomized dissection approach.

Another related approach is the work done by Patrick Briest and Piotr

Krysta [6], where they investigate non-parametric unit-demand pricing prob-

lems, in which we want to find revenue maximizing prices for products P based

on a set of consumer profiles C. A consumer profile consists of a number of

non-zero budgets for different products and possibly an additional product

ranking. Once prices are fixed, each consumer chooses to buy one of the prod-

ucts she can afford based on some predefined selection rule.

17

1.4 Main Results

The main contributions of this thesis are the following:

In Chapter 2, we use the Local Search technique for L-Sided Pricing to

show the following:

Theorem 1. There is a polynomial-time 2-approximation for L-Sided Pric-

ing.

Theorem 2. For any constant C ≥ 2, ε > 0, there is a polynomial-time(
2C−1
C

+ ε
)
-approximation for L-Sided Pricing if µv ≤ C for all v ∈ L.

In Chapter 3, we consider an alternative approach to get better approxima-

tion guarantees as well. Recall that the best known approximation algorithm

for unbounded capacity version of the problem has approximation ration of 4.

We also show that in the case that all the capacities are large enough we can

have a (4 + ε)-approximation algorithm:

Theorem 3. For any ε > 0, let Cε = 3 ln(1/ε)/ε2 + 1 ≥ 0. Instances of

Capacitated Graph Pricing in simple graphs satisfying µv ≥ Cε, admit a

randomized, polynomial-time (4 + ε)-approximation.

We also show that it is possible to get an 4k-approximation for L-Sided

Pricing in k-hypergraphs through straightforward rounding of a natural lin-

ear programming relaxation that is presented in Chapter 3, and then by using

a reduction from Capacitated Graph Pricing to L-Sided Pricing which

loses an other ke factor, we would have an 4k2(k
k−1

)k−1 = O(k2)-approximation

for Capacitated Graph Pricing:

Theorem 4. k-Hypergraph Capacitated Graph Pricing problem admits

a randomized, polynomial-time (4k2(k
k−1

)k−1)-approximation.

18

Note for k = 2 this is not better than the result which is obtained using

the Local Search technique for L-Sided Pricing in Theorem 1.

In Chapter 4, we present a few different results that provide further insight

into the Locality gaps for single-swap and multi-swap for L-Sided Pricing

as following:

Theorem 5. For any C ≥ 1 and ε > 0, there is an instance Φ = (G, µ, b)

of L-Sided Pricing where all u ∈ L have capacity C and all v ∈ R have

capacity 1 such that the locality gap of Φ is at least 2 − ε with respect to the

single-swap heuristic.

Theorem 6. For all C ≥ 2, ρ ≥ 1 and ε > 0, there is an instance Φ = (G, µ, b)

of L-Sided Pricing where all u ∈ L have capacity C and all v ∈ R have

capacity 1 such that the locality gap Φ is at least 2C−1
C
− ε with respect to the

simple ρ-swap algorithm.

Also we show some APX-hardness results for L-Sided Pricing as fol-

lowing:

Theorem 7. L-Sided Pricing is APX-hard, even if all capacities are at

most 4 and all customers have a budget of 1 or 2.

At the end of Chapter 4 we will provide an instance of L-Sided Pricing

for which the LP solution is slightly better than the optimal integral solution

which gives us a lower-bound on the integrality gap.

19

Chapter 2

Graph Pricing with Limited
Supply

2.1 Problem Overview

We consider multigraphs that may have parallel edges and loops, unless we

explicitly specify that we are working with simple graphs. For a set of nodes

S in a graph G = (V,E), we let N(S) denote all nodes not in S that are

neighbours of some node in S. For u ∈ V we let δG(u) be all edges having

u as an endpoint. Often the subscript G is omitted when it is clear from the

context. For a subset of edges B, we let δB(u) = δ(u) ∩ B, again when the

graph G is clear from the context.

We refer to an edge e by uv where u, v are the endpoints of e. For brevity,

we may use notation like e = uv ∈ E when we want to consider an edge e ∈ E

but also want to name the endpoints u, v of e as well. The reason for using this

notation rather than simply saying uv ∈ E is that our local search algorithms

do work for graphs with parallel edges (i.e. customers interested in identical

bundles), so e would be one particular customer and u, v would name the items

that e is interested in.

Given a function f : T → R on some finite set T , for any S ⊆ T we

let f(S) denote
∑

x∈S f(x). Similarly, if p : V → R≥0 is a pricing of the

20

vertices of a graph G = (V,E), for an edge e = uv ∈ E we let p(e) denote

p(u) + p(v). For two pricings p, p′ : V → R≥0 of the nodes of a graph, we let

HW(p, p′) = |{v ∈ V : p(v) 6= p′(v)}|.

Finally, consider an instance G = (L ∪ R,E) of L-Sided Pricing where

edges have budgets be and vertices have capacities µv. For any pricing p of

the vertices, let val(p) = max F⊆E
(p,F) feasible

∑
e∈F p(e) be the maximum profit

of a feasible solution with prices p. Note that val(p) can be computed in

polynomial time as it is merely asking for a maximum-weight µ-matching

solution using only edges e = uv with p(e) ≤ be (the weight of such an edge

being p(e)) [31].

2.1.1 Reduction to L-Sided Pricing Problem

To begin, we use a reduction by Balcan and Blum [4] which was stated origi-

nally only for the uncapacitated case.

Lemma 3 (Balcan and Blum [4]). If there is an α-approximation for L-Sided

Pricing with unlimited supply, then there is a 4α-approximation for Graph

Pricing with unlimited supply.

We modify their proof to work for the limited capacity version:

Lemma 4. If there is an α-approximation for L-Sided Pricing then there

is a 4α-approximation for Capacitated Graph Pricing.

Proof. Consider an optimal price-vector p∗, where each vertex v is assigned

the price of p∗v. Define opt(e) to be the amount of profit that OPT makes

from edge e. If e has only one endpoint v, opt(e) could be either 0 or p∗v, but

if e = uv has two different endpoints v 6= u, then opt(e) is either 0 or p∗v + p∗u.

We will think of opt(e) as the weight of edge e, though it is unknown to our

algorithm. Let E2 be the set of edges that have two distinct endpoints, and let

21

E1 be the set of self-loops. Let OPT1 be the profit made by p∗ on edges in E1

and let OPT2 be the profit made by p∗ on edges in E2 , so
∑

e∈Ei
opt(e) = OPTi

for i = 1, 2 and OPT1 +OPT2 = OPT .

Now, randomly partition the vertices into two sets L and R, by putting

each vertex in L or R with probability equal to 1
2
. Since each edge e ∈ E2 has

a 50% chance of having its endpoints on different sides, in expectation 1
2
OPT2

weight is on edges with one endpoint in L and one endpoint in R. Thus, if we

simply ignore edges in E2 whose endpoints are on the same side the profit we

lose in expectation is no more than 1
2
OPT2. Now suppose we set the price of

all the vertices in L/R to zero, while gaining the profit from the same set of

edges. Suppose this would give us the profit OPTL/OPTR:

OPT2

2
+OPT1 = E[OPTL +OPTR]

This means that if we take the better of the two choices we would have at

least a quarter of the total profit:

E[max(OPTL, OPTR)] ≥ 1

2
· E[OPTL +OPTR] =

OPT2

4
+
OPT1

2
≥ OPT

4

This can be efficiently derandomized because we only require pairwise in-

dependence of the events u ∈ L for various u ∈ V , see [30] for details behind

this technique. This proves the desired result.

2.1.2 Our Results

Based on Theorem 1, there is a polynomial-time 2-approximation for L-Sided

Pricing. This 2-approximation is fairly simple to obtain using local search.

But we think it nicely highlights a direction for designing approximations for

pricing+packing problems. To expand on the potential for this technique, we

consider a much more involved algorithm for L-Sided Pricing with bounded

capacities.

22

Also, as we saw in Theorem 2, for any constants C ≥ 2, ε > 0, there is a

polynomial-time
(

2C−1
C

+ ε
)
-approximation for L-Sided Pricing if µv ≤ C

for all v ∈ L. Note that this does not require any bounds on capacities for

nodes in R. For example with C = 2 this yields a (1.5 + ε)-approximation and

in the case we prove is APX-hard (in Chapter 4), where C = 4, this yields a

(1.75 + ε)-approximation. Observe if C = 1 then both Capacitated Graph

Pricing and L-Sided Pricing reduce to maximum-weight matching because

we can easily set prices to match the full budget of all edges in any matching.

Theorems 1 and 2 are proven using local search algorithms. That is, if

we are given prices p : L → R≥0 then the optimal customers F ⊆ E can be

computed using a maximum-weight µ-matching algorithm. The local search

algorithm for Theorem 1 iteratively tries to change the price of one item in L

to see if it yields a better matching. We prove with a simple argument that a

local optimum is a 2-approximate solution for L-Sided Pricing.

To prove Theorem 2, we consider a local search algorithm that changes

O(1) prices at a time in each step. To analyze the performance of such an

algorithm, we need a result about covering directed graphs by directed balls

in a uniform way.

Let H = (L, F) be a directed graph. For any u ∈ L and r ≥ 0 consider the

“directed ball” B+(u, r) = {v ∈ L : dH(u, v) ≤ r} of nodes in L reachable from

u in at most r steps. Similarly, let ∂B+(u, r) = {v ∈ L : d(u, v) = r} be nodes

v such that the shortest u − v path in H has length exactly r (the boundary

of B+(u, r)). We prove the following covering result for directed graphs.

Theorem 8. Let H = (L, F) be a directed graph where the indegree of each

node is at most C and let d ∈ Z≥0. There is a “weighting” of directed balls

τ : L× {0, 1, . . . , d} → Z≥0 with the following properties:

23

• For any v ∈ V ,
∑

u∈L,0≤r≤d
s.t. v∈B+(u,r)

τ(u, r) =
d∑
i=0

Ci =
Cd+1 − 1

C − 1
.

• For any v ∈ V ,
∑

u∈L,0≤r≤d
s.t. v∈∂B+(u,r)

τ(u, r) = Cd.

Furthermore, τ(u, r) ≤ Cd−r for each u ∈ V and 0 ≤ r ≤ d.

That is, each v ∈ L lies in these balls with total weight precisely Cd+1−1
C−1

and appears on the boundary of the balls with weight precisely Cd. The bound

on τ(u, r) at the end of the statement is required to ensure the local search

algorithm used to prove Theorem 2 runs in polynomial time.

We also show the analysis of both algorithms are tight. See Section 2.2 for

definitions of the two local search algorithms mentioned in the results below

and Section 4 for precise statements of how the analysis is tight.

2.2 Local Search Algorithm

We consider local-search algorithms for L-Sided Pricing. Recall we are given

a bipartite graph G = (L∪R,E) where each v ∈ L∪R has a capacity µv ≥ 0,

each e ∈ E has a budget be, and we are restricted to setting p(v) = 0 for each

v ∈ R.

It is clear that there is an optimal solution p such that for each u ∈ L we

have p(u) = be for some e ∈ δ(u). Otherwise we could increase p(u) to the

next budget of an edge touching u (or decrease, if p(u) exceeds all budgets of

edges touching u) while not decreasing the value of the solution. So, for u ∈ L

we define Pu = {be : e ∈ δ(u)} to be the set of budgets of customers interested

in item u.

We run a local-search approximation based on this observation. Here,

a vector p over L is a pricing if p(u) ∈ Pu for each u ∈ L. The local-

search algorithm iteratively tries to improve a pricing by changing the price

24

of only one vertex until no such improvement is possible. The full algorithm

is presented in Algorithm 1. Because a price p(u) is chosen from Pu for each

u ∈ L, it is clear that an iteration can be executed in polynomial time.

Algorithm 1 Single-Swap Algorithm for L-Sided Pricing.

let p be any pricing
while val(p′) > val(p) for some pricing p′ with HW(p, p′) = 1 do
p← p′

return p

Call a pricing p locally optimal if it cannot be improved by changing the

price for any u ∈ L, note Algorithm 1 returns a locally-optimal pricing. As is

common in local search, we analyze the quality of a locally-optimal solution.

In the next subsection we show val(p) ≥ val(p∗)/2 where p∗ is an optimal

pricing for the L-Sided Pricing instance.

The main concern is then the efficiency of the algorithm. Clearly each

iteration can be executed in polynomial time but the number of iterations is

not apparently bounded. We use a more recent observation from [17] to find a

solution which may not be a local optimum but is still guaranteed to have value

at least 1/2 of the optimum value with no ε-loss in the guarantee, unlike in

older standard tricks where an ε-loss is necessary to have a polynomial running

time (See [2] for a specific example of this approach). A simple application of

this trick is discussed in Section 2.2.4.

2.2.1 Single Swap Analysis

We fix p∗ to be some particular optimal pricing.

Theorem 9. For any locally-optimal pricing p, val(p) ≥ val(p∗)/2.

Proof. Let B ⊆ E be the edges that are bought in the local optimum solution,

and B∗ ⊆ E the edges that are bought in the global optimum solution. Thus,

val(p) =
∑

u∈L p(u) · |δB(u)| and p(e) ≤ be for each e ∈ δB(u).

25

For each u ∈ L, consider the local search step that changes the price of u

from p(u) to p∗(u). That is, consider pu where pu(u) = p∗(u) and pu(u′) = p(u′)

for u′ ∈ L − {u}. We refer to this swap as the p → pu swap. For brevity, let

∆u := val(pu) − val(p) and note ∆u ≤ 0 because p is a local optimum. We

provide a lower bound on ∆u in a way that relates part of the global optimum

with part of the local optimum.

First, construct a subset B′ ⊆ B∗ and an injective mapping σ : B′ → B

iteratively as follows in Algorithm 2. Intuitively, it greedily pairs edges in

B∗ with edges in B sharing the same endpoint in R until no more pairs can

be made. After this pairing, for each v ∈ R we either have δB∗(v) ⊆ B′ or

δB(v) ⊆ σ(B′) (or both).

Algorithm 2 Constructing B′ and σ.

B′ := ∅
for each e∗ = uv ∈ B∗ where v ∈ R do

if there is some e ∈ δB(v) such that no e′ ∈ B∗ has σ(e′) = e then
set B′ := B′ ∪ {e∗} and σ(e∗) := e

Now we bound ∆u. One possible matching with the modified prices pu is

Bu := B ∪ δB∗(u)− δB(u)− {σ(e) : e ∈ δB′(u)}.

To show this is feasible, note than no vertex capacities are violated and

each edge e ∈ Bu has pu(e) ≤ be. That is, it alters B by swapping δB(u)

for δB∗(u) and removes edges paired, via σ, with δB∗(u) to make room across

nodes in R for these new edges. It could be that some edges in δB∗(u) are not

paired by σ but this indicates their right-endpoints already have enough room

to accommodate these edges without removing other edges from B. So, Bu

respects the vertex capacities.

Now, ∆u represents the cost change when using the maximum value match-

ing with the new profits. This can be bounded as follows, based on the fact

26

that Bu is a feasible solution under prices pu:

0 ≥ ∆u ≥ p∗(u) · |δB∗(u)| − p(u) · |δB(u)| −
∑

e′∈δB′ (u)

p(σ(e′)).

Summing over all u ∈ L and noting each e ∈ B has its corresponding term

appearing in the last sum for at most one u ∈ L because σ′ is one-to-one shows

0 ≥ val(p∗)− 2 · val(p).

2.2.2 An Improved Multi-Swap Algorithm for Bounded
Capacities

Here we consider the restriction of L-Sided Pricing to instances where µu ≤

C for each u ∈ L for some fixed constant C ≥ 2. Note we do not require

capacities of v ∈ R to be bounded by C.

Let d ≥ 1 be a fixed integer: larger d will result in better approximation

guarantees with a slower, but still polynomial-time, algorithm. The multi-swap

algorithm we consider is given in Algorithm 3. Let ρ = 1+C+C2 + . . .+Cd =

Cd+1−1
C−1

. An iteration runs in polynomial time because ρ is a constant.

Algorithm 3 Multi-Swap Algorithm For L-Sided Pricing.

let p be any pricing
while there is a pricing p′ with HW(p, p′) ≤ ρ and val(p′) > val(p) do
p← p′

return p

As before, call a pricing p locally optimal if val(p′) ≤ val(p) for any pricing

p′ with HW(p, p′) ≤ ρ. Recall Pu for u ∈ L is the set of distinct budgets of the

edges incident to u and that, in L-Sided Pricing, we can assume any pricing

p has p(u) ∈ Pu for all u ∈ L. So, as C and d are constants, a single iteration

can be executed in polynomial time by trying all subsets S ⊆ L of bounded

size and, for each of those, trying all
∏

u∈S(|Pu| − 1) ≤ |E|O(1) ways to change

the prices of all u ∈ S. We prove the following approximation guarantee.

27

Theorem 10. Let p be a locally-optimal solution and p∗ a global optimum

solution. Then val(p) ≥ C−C−d

2C−1−C−d · val(p∗).

So for any fixed C ≥ 2 and ε > 0, and large enough d we see there

is a
(

C
2C−1

− ε
)
-approximation for instances of L-Sided Pricing where all

capacities of nodes in L are bounded by C. We can again use the same trick

from Section 2.2.4 to ensure the number of iterations is polynomially-bounded.

We will soon prove Theorem 8 stated in Section 1.2. For now, we show

how to complete the local search analysis using this result. Let p∗ denote an

optimal pricing, B ⊆ E the edges bought in the local optimum p, and B∗ ⊆ E

the edges bought under p∗. Let σ : B′ → B be a pairing constructed in the

same way as in the single swap analysis (using Algorithm 2) where B′ ⊆ B∗.

To describe the swaps used in the analysis, first consider the following

auxiliary directed graph H = (L, F) whose nodes are the same as the left-side

of this L-Sided Pricing instance and whose edges are given as follows. For

any e∗ = uv ∈ B′, let w ∈ L be the left-endpoint of σ(e∗). Add a directed

edge from u to w in F .

Observe that both the indegree and outdegree of a vertex in H is at most

C by this construction, so Theorem 8 applies. Let τ : L×{0, 1, . . . , d} → Z≥0

be the given weighting of directed balls in H. These weights will be used to

combine inequalities generated by the test swaps below.

Test Swaps

For any u ∈ L and any 0 ≤ i ≤ d, consider the prices pu,i defined by

pu,i(v) =

{
p∗(v) if dH(u, v) ≤ i
p(v) otherwise

Note HW(p, pu,i) = |B+(u, i)| ≤ C0 + C1 + . . . + Ci ≤ ρ because the outdegree

of each vertex is at most C, so p → pu,i is a valid test swap. Let ∆u,i =

val(pu,i) − val(p) and note ∆u,i ≤ 0 by local optimality. We bound the

28

difference by explicitly describing a feasible set of edges Bu,i, namely:

Bu,i = B ∪ δB∗(B+(u, i))− δB(B+(u, i))− σ(δB′(∂B
+(u, i))).

That is, add all edges from B∗ touching a vertex in the directed ball

B+(u, i) and remove all edges from B that either touch B+(u, i) or are paired

(via σ) with an edge in B′ that touches ∂B+(u, i). It is again easy to check

that (pu,i, Bu,i) is a feasible solution: across u ∈ L we simply exchanged edges

in B touching U for edges in B∗ touching u and we ensured any new e∗ ∈ B′

has σ(e∗) removed to make room for e∗ across its right-endpoint. Observe for

any e∗ ∈ δB′(B
+(u, i − 1)) that σ(e∗) is already removed when δB(B+(u, i))

is removed from B, which is why the last part of the definition of Bu,i only

uses the boundary ∂B+(u, i) instead of all of B+(u, i) to remove the remaining

edges of B that are paired with δB′(B
+(u, i)).

Weighting the inequalities by τ(u, i),

0 ≥ τ(u, i) ·∆u,i ≥ τ(u, i) ·

(∑
e∈Bu,i

pu,i(e)−
∑
e∈B

p(e)

)
= τ(u, i) ·

∑
e∈B∗∩Bu,i

p∗(e)− τ(u, i) ·
∑

e∈B−Bu,i

p(e). (2.1)

It remains to consider the contribution of each edge in B∗ and B to this

bound if we sum over all u ∈ L, 0 ≤ i ≤ d. Observe an edge e = vw ∈ B∗ is

“swapped in” in this analysis for the swap p→ pu,i if and only if v ∈ B+(u, i).

So by Theorem 8, the total contribution of p∗(e) to
∑

u,i τ(u, i)·∆u,i is precisely

Cd+1−1
C−1

.

On the other hand, an edge e = vw ∈ B is “swapped out” in this analysis

for the swap p→ pu,i if and only if v ∈ B+(u, i) or σ−1(e) ∈ ∂B+(u, i) (if e is

indeed paired by σ). Again by Theorem 8, the total τ -weight of the first event

is exactly Cd+1−1
C−1

and, if σ−1(e) is defined, the total τ -weight of the second

29

event is exactly Cd. Thus,

0 ≥
∑
u∈L

0≤i≤d

τ(u, i) ·∆(u, i) ≥ Cd+1 − 1

C − 1
· val(p∗)−

(
Cd+1 − 1

C − 1
+ Cd

)
· val(p),

which proves Theorem 10.

2.2.3 Proof of Theorem 8

Before presenting the full proof to conclude the analysis, we consider a simpler

setting to develop intuition. Suppose, for each 0 ≤ i ≤ d and each u ∈ L there

are precisely Ci nodes w ∈ L with dH(w, u) = i. This would happen if, say,

H has indegree and outdegree exactly C at each vertex and the undirected

version of H has girth > 2d. Then setting τ(u, i) = 1 if i = d and 0 otherwise

for each u ∈ L would suffice.

In the general setting without this assumption, we have to consider other

directed balls B+(u, i) for different 0 ≤ i ≤ d and with, perhaps, larger weights

than 1. This is because the radius-d balls B+(u, d) themselves for various u ∈ L

do not cover each v ∈ L precisely
∑d

i=0 C
i times.

Inductively define τ(u, i) for u ∈ L and 0 ≤ i ≤ d as follows:

τ(u, i) =

1 if i = d,

Cd−i −
d∑

j=i+1

∑
v∈L

dH(v,u)=j−i

τ(v, j) otherwise.

The inspiration behind this construction is that in general we would have

dH(u, v) = i for only at most Ci nodes u. So we consider smaller directed balls

to make up this deficiency. If we think that the distance i requirement for

each v ∈ V is exactly Ci, then for each u ∈ L the ball B+(u, j) contributes to

the distance d − j + dH(u, v) requirement for each v ∈ B+(u, j). See Figure

2.1 for an illustration.

30

The recurrence above ensures the total contribution to the distance i re-

quirement for each v by all all directed balls is exactly Ci. We formalize this

idea and show the τ values are nonnegative in Lemma 5 below.

u

6 5
4

v

Figure 2.1: Illustration of the case d = 6 where dH(u, v) = 4. The directed
ball B+(u, 6) contributes to the “distance 4” requirement for v, B+(u, 5) con-
tributes to the “distance 5” requirement for v, and B+(u, 4) contributes to the
“distance 6” requirement for v.

Lemma 5. For each u ∈ L, 0 ≤ i ≤ d we have
d∑
j=i

∑
v∈L

dH(v,u)=j−i

τ(v, j) = Cd−i

and 0 ≤ τ(u, i) ≤ Cd−i.

Proof. The equality is by construction and the observation that dH(v, u) = 0

if and only if v = u. The inequalities are proven inductively with the base

case i = d being given. Now suppose for i < d we know 0 ≤ τ(u, j) ≤ Cd−j

for any i < j ≤ d and any u ∈ L. By the recurrence for τ(u, i) and because

τ(v, j) ≥ 0 for any i < j ≤ d and v ∈ V , we see τ(u, i) ≤ Cd−i. Next, we prove

τ(u, i) ≥ 0 for each u ∈ L.

For any i < j ≤ d and any v ∈ L with dH(v, u) = j− i, there is some w ∈ L

such that dH(v, w) = i− j − 1 and dH(w, u) = 1. That is, consider a shortest

v − u path P in H, as i < j, we have v 6= u so the second-last node on this

path is a node w whose distance to u is 1 (it could be w = v, if j − i = 1).

31

From this and using the equality from the first part of the theorem state-

ment, we bound the double sum in the recurrence defining τ(u, i) by

d∑
j=i+1

∑
v∈L

dH(v,u)=j−i

τ(v, j) ≤
∑

w:dH(w,u)=1

d∑
j=i+1

∑
v∈L

dH(v,w)=j−(i+1)

τ(v, j)

=
∑

w:dH(w,u)=1

Cd−(i+1)

≤ Cd−i.

The last bound follows as each v ∈ L has indegree at most C in H. Thus,

from the recurrence again, we see τ(u, i) ≥ 0.

Lemma 5 finishes the proof of Theorem 8 as follows. The first bullet point

in Theorem 8 follows by summing over all 0 ≤ i ≤ d. The second point follows

by fixing i = 0.

2.2.4 Efficient Versions of Local Search

The standard trick to make local search algorithms efficient is to only make

an improvement if it is somewhat noticeable. That is, a swap is performed

only if it improves the cost by a factor of at least 1 + ε/∆ where ∆ is the total

“weight” of all inequalities generated by test swaps to complete the analysis

(typically, ∆ is polynomial in the input size). See [2] for a specific example of

this approach.

However, such analysis typically “loses an ε” in the approximation guar-

antee. We adapt an alternative approach outlined in [17] that avoids this

ε-loss while still achieving the same approximation guarantee that a true local

optimum is proven to have. We consider the single-swap algorithm first, the

extension to the multi-swap algorithm is in Section 2.2.5.

Recall that the proof of Theorem 9 described a set of test swaps and placed

a bound on the cost change. That is, for each u ∈ L the swap p → pu is

32

considered and a bound ∆u on the change in val() was given as

∆u ≥ p∗(u) · |δB∗(u)| − p(u) · |δB(u)| −
∑

e∈δB′ (u)

p(σ(e)).

Observe this bound holds even if p is not a local optimum solution. The only

place in the proof of Theorem 9 that used the fact that p was a local optimum

was in asserting 0 ≥ ∆u, which is not required here.

Summing the above over all u ∈ L shows∑
u∈L

∆u ≥ val(p∗)− 2 · val(p).

Thus, the u ∈ L with largest ∆u satisfies

∆u ≥
val(p∗)− 2 · val(p)

|L|
.

So if we take the best improvement in each step of the algorithm, the next

price p′ then satisfies

val(p′) ≥ val(p) +
val(p∗)− 2 · val(p)

|L|
.

Consider the potential function Φ(p) := val(p∗)− 2 · val(p). If Φ(p) > 0,

then Φ(p′) ≤
(

1− 2
|L|

)
·Φ(p) follows from the expression above. That is, Φ(p)

decreases by a factor of exp(−1) after every |L|/2 iterations as long as the

current price p satisfies Φ(p) > 0.

With the standard assumption that the budgets be are expressed as ratio-

nal numbers in the input, there is a big integer M, whose bit complexity is

polynomial in the total bit complexity of the input, such that Φ(p) could not

be less than 1
M , unless it is zero. This means that after a polynomial number

of iterations, we will reach a solution p with Φ(p) ≤ 0, i.e. val(p) ≥ val(p∗)/2

as required, provided we take the best improvement in each step.

33

2.2.5 Extension to Multi-Swap

Each swap of the form p → pu,r for 0 ≤ i ≤ d and u ∈ L in the analysis was

weighted with a value 0 ≤ τ(u, r) ≤ Cd−r. Let κ = Cd+1−1
C−1

· |L|, so κ is an

upper bound on the total weight of all test swaps and κ = O(|L|) as C and d

are constants.

Again, even if p is not a local optimum our analysis still shows∑
u∈L,0≤r≤d

τ(u, r)·(val(pu,r)−val(p)) ≥ Cd+1 − 1

C − 1
·val(p∗)−

(
Cd+1 − 1

C − 1
+ Cd

)
·val(p).

Local optimality of p was only used to show the left-hand side was not positive.

Without local optimality, we may still conclude the most improving swap

p→ p′ satisfies

val(p′) ≥ val(p) +
1

κ
·
(
Cd+1 − 1

C − 1
· val(p∗)−

(
Cd+1 − 1

C − 1
+ Cd

)
· val(p)

)
.

Consider the potential function

φ(p) =
Cd+1 − 1

C − 1
· val(p∗)−

(
Cd+1 − 1

C − 1
+ Cd

)
· val(p).

The above bound shows if φ(p) > 0 then choosing the best improving swaps

will result in a solution p′ with φ(p′) ≤
(

1−
(
Cd+1−1
C−1

+ Cd
)
· 1
κ

)
·φ(p). So φ(p)

decreases geometrically every O(κ) iterations as long as it remains positive.

As κ = O(|L|) and by using rationality of the input values, the potential φ(p)

will become nonpositive after a polynomial number of iterations in the total

bit complexity of the input as long as we take the most improving swap.

34

Chapter 3

Linear Programming Based
Algorithms

3.1 Our Results

So far, our focus has been on approximations based on local search. Here,

we consider linear programming relaxations for L-Sided Pricing. Recall for

each u ∈ L that Pu = {be : e ∈ δ(u)} is a set of possible prices for vertex u:

there is an optimal solution that selects p(u) from Pu for each u ∈ L.

For u ∈ L and p ∈ Pu, we let yu,p be a variable indicating we select price

p for u. Similarly, for each e = uv ∈ E and p ∈ Pu we let xe,p be a variable

indicating edge e is selected and vertex u is assigned price p (so e buys their

bundle at price p). The following relaxation provides an upper bound on the

optimal solution to the given instance of the L-Sided Pricing.

35

maximize
∑
e=uv

∑
p∈Pu

p · xe,p (LP-Pricing)

subject to
∑
p∈Pu

yu,p = 1 ∀ u ∈ L (3.1)∑
e∈δ(u)

xe,p ≤ yu,p · µu ∀ u ∈ L, p ∈ Pu (3.2)

∑
e=uv∈δ(v)

∑
p∈Pu

xe,p ≤ µv ∀ v ∈ R (3.3)

xe,p ≤ yu,p ∀ u ∈ L, e ∈ δ(u), p ∈ Pu s.t. p ≤ be
(3.4)

xe,p = 0 ∀e = uv, p ∈ Pu s.t. p > be (3.5)

x, y ≥ 0

Constraints (3.1) indicate one price must be selected for each u ∈ L, (3.2)

ensures the capacity constraints for u ∈ L are satisfied and (3.3) ensures the

capacity constraints for v ∈ R are satisfied, (3.4) ensures we must set the price

of u to p if we are to have e pay p, and (3.5) ensures a chosen edge does not

pay more than it can afford.

3.1.1 Randomized Rounding Algorithms

In this section we are going to prove Theorem 3 by first showing that in simple

graphs with large capacities for nodes in R, the integrality gap is close to 1.

This will help us to use the reduction described in Lemma 4 and provide

a (4 + ε)-approximation for instances of Capacitated Graph Pricing in

simple graphs satisfying µv ≥ Cε which completes the proof of Theorem 3.

More specifically we prove the following:

Theorem 11. For any ε > 0, the integrality gap of (LP-Pricing) is 1 − 2ε

in simple graphs when µv ≥ 3 ln(1/ε)/ε2 + 1 for all v ∈ R.

36

Proof. Consider the following randomized rounding algorithm. For each u ∈ L,

sample a price p′(u) ∈ Pu from the distribution with Pr[p′(u) = p] = yu,p.

This is a distribution by (3.1) and non-negativity of y. For brevity, we will let

p′(e) = p′(u) for an edge e = uv.

Then define a fractional matching in G as follows. The idea is that we want

to assign a value of xe,p′(e)/yu,p′(e) to each edge (using 0 if yu,p′(e) = 0), this is

at most 1 by (3.4). By (3.2) this fractional matching would always satisfy the

capacity constraints for nodes in L. But it may violate constraints for nodes

in R. The obvious solution would be to scale each of these fractional values

to be a feasible matching satisfying all vertex constraints. We take a simpler

view which is sufficient for our purposes, we scale all resulting values by 1− ε,

and then outright discard edges e = uv where the capacity of v is still violated

after this scaling.

More precisely, for each e = uv we first let x′′e = (1− ε) · xe,p′(e)

yu,p′(e)
(again using

0 if yu,p′(e) = 0). Then for each edge e = uv, we define

x′e =

{
x′′e if

∑
e′=u′v∈δ(v) x

′′
e ≤ µv,

0 otherwise.

Now x′(δ(w)) ≤ µw for each w ∈ L ∪ R. Also, (3.5) ensures any e ∈ E with

x′e > 0 has p′(e) ≤ bu. So, considering the fact that the bipartite µ-matching

polytope is unimodular [33], there would be an integral matching p′ obtaining

at least as much value as the fractional matching x′: val(p′) ≥
∑

e p · x′e. It

remains to show that the fractional matching x′ has good profit in expectation.

For any e = uv ∈ E let Be be the bad event that
∑

e′=u′v∈δ(v),e′ 6=e x
′′
e′ ≥

µv− 1. Notice that the second case in the definition of x′e applies only if event

Be happens. We show Pr[Be] ≤ ε. If so, for each e = uv ∈ E the fact that Be
is independent of the choice of p′(e) (as G is a simple graph) we then have

E[p′(e) · x′e] ≥ (1−Pr[Be]) · (1− ε) ·E
[
p′(e) ·

xe,p′(e)
yu,p′(e)

]
≥ (1− ε)2 ·

∑
p∈Pu

p · xe,p.

37

Summing over all edges:

E

[∑
e∈E

p′(e) · x′e

]
≥ (1− 2ε) ·

∑
e=uv

∑
p∈Pu

p · xe,p

To bound Pr[Be], for an edge e′ let Xe′ denote the random variable with

value (1 − ε) · xe′,p′(u)/yu′,p′(e′) and let Xe =
∑

e′∈δ(v),e′ 6=eXe′ . Then E[Xe′] =

(1− ε) ·
∑

p∈Pu′
xe′,p so by (3.3) we have E[Xe] ≤ (1− ε) · µv.

Again by simplicity of G, the random variables Xe′ are independent for

different e′ ∈ δ(v), e′ 6= e. Let Y = (1 − ε) · (µv − 1). As Y ≥ E[Xe] and

0 < ε < 1, by using Lemma 2 (Chernoff Bound) we have

Pr[Xe > (1 + ε) · Y] ≤ exp(−Y ε2/3) ≤ ε

Finally, since event Be implies Xe ≥ µv−1 ≥ (1+ε)·Y , we have Pr[Be] ≤ ε,

as required.

The fact that G was simple was used in the application of the Chernoff

bound. The random variables Xe′ for edges in δ(v) for some v ∈ R are inde-

pendent if G is simple.

3.1.2 Extension to k-Hypergraphs

To begin, we use a reduction by Balcan and Blum [4] which was stated origi-

nally only for the uncapacitated case.

Lemma 6 (Balcan and Blum [4]). If there is an α-approximation for L-

Sided Pricing with unlimited supply, then there is a O(k ·α)-approximation

for Graph Pricing problem with unlimited supply in k-Hypergraph.

We modify their proof to work for the limited capacity version:

Lemma 7. If there is an α-approximation for L-Sided Pricing then there

is a O(k ·α)-approximation for k-Hypergraph Capacitated Graph Pricing

problem.

38

Proof. We can use the following procedure.

Step 1: Randomly partition V into VL and Vrest by independently placing

each node into VL with probability 1
k

.

Step 2: Let E ′ be the set of edges with exactly one endpoint in VL . Ignore

all edges in E \ E ′.

Step 3: To analyze this algorithm, let OPTi,e denote the profit made by p∗

selling item i to bidder e. (So OPTi,e ∈ {0, p∗i } where p∗i is the price of item i

in the optimal solution p∗ and OPT =
∑

i∈V,e∈E OPTi,e).

Notice that the total profit made in Step 3 is at least
∑

i∈VL,e∈E′ OPTi,e

because setting prices in Vrest to 0 can only increase the number of sales

made by p∗ to bidders in E ′. Thus, we simply need to analyze the quantity

E[
∑

i∈VL,e∈E′OPTi,e]

Define indicator random variable Xi,e = 1 if i ∈ VL and e ∈ E ′ , and

Xi,e = 0 otherwise. We have:

E[Xi,e] = Pr[i ∈ VL and e ∈ E ′] ≥ 1

k

(
1− 1

k

)k−1

Therefore,

E

[∑
i∈VL,e∈E′

OPTi,e

]
= E

[∑
i∈V,e∈E

Xi,eOPTi,e

]

=
∑

i∈V,e∈E

E[Xi,e]OPTi,e

≥ 1

k

(
1− 1

k

)k−1

OPT

≥ OPT

ke

Where e is the base of the natural logarithm.

39

Now we are going to prove Theorem 4 which says k-Hypergraph Ca-

pacitated Graph Pricing problem admit a randomized, polynomial-time

(4k2(k
k−1

)k−1)-approximation.

Proof. We first use the reduction to a k-hypergraph where we are only allowed

to use nonzero prices on one part losing a (k(k
k−1

)k−1) ≤ ke factor in the

guarantee of lemma 7 and then use a natural rounding of LP-Pricing to this

setting while losing only an additional 4k factor.

Algorithm 4 Randomized Rounding LP-Pricing for L-Sided Pricing in
k-Hypergraphs.

Solve LP-Pricing for L-Sided Pricing
For each u ∈ L sample price p′(u) ∈ Pu with Pr[p′(u) = p] = yu,p
For each e ∈ E ∩ δ(u) where u ∈ L, sample e with probability 1

2k
· xe,p′(e)

yu,p′(e)
(0

if yu,p′(e) = 0)
For each w ∈ L ∪ R, if edges picked from δ(W) are more than its capacity
drop all of them
return the remaining set of edges

To prove 4k additional loss, we use Algorithm 4. More specifically, for each

u ∈ L, sample a price p′(u) ∈ Pu from the distribution with Pr[p′(u) = p] =

yu,p. This is a distribution by (3.1) and non-negativity of y. For brevity, we

will let p′(e) = p′(u) for an edge e ∈ δ(u), where u ∈ L. Then for each edge

e ∈ E, where e ∈ δ(u) and u ∈ L, set x′′e = 1 with probability 1
2k
· xe,p′(e)

yu,p′(e)
(0

if yu,p′(e) = 0) and x′′e = 0 otherwise. Note that
xe,p′(e)

yu,p′(e)
is at most 1 by (3.4).

More precisely we are picking each edge e into our integral solution x′′ with

probability 1
2k
· xe,p′(e)

yu,p′(e)
(again zero if yu,p′(e) = 0).

But the problem with solution x′′ is that it may violate the capacity con-

straints for vertices on both sides L and R. Our approach is to convert integral

solution x′′ to x′ by going through all the vertices in L and R and if the ca-

pacity constraint is violated for some u ∈ L (v ∈ R), we would remove all

the edges connected to u (v). For each edge e ∈ E we set x′e = x′′e only if

40

the capacity constraints of all its k endpoints are not violated in x′′. Now

x′(δ(w)) ≤ µw for each w ∈ L ∪R. Also, (3.5) ensures any e ∈ E with x′e > 0

has p′(e) ≤ bu. The only remaining thing is to show that it has good profit in

expectation.

For any e ∈ E, where e ∈ δ(u) and u ∈ L, let Be be the bad event that

there is a vertex w ∈ {u} ∪ R where e ∈ δ(w) and
∑

e′∈δ(w) x
′′
e′ > µw. Notice

that x′e = x′′e if event Be does not happen and x′e = 0 otherwise. We show

Pr[Be] ≤ 1
2
. If so, we then have

E[p′(e) · x′e] ≥ (1−Pr[Be]) ·
1

2k
· E
[
p′(e) ·

xe,p′(e)
yu,p′(e)

]
≥ 1

4k
·
∑
p∈Pu

p · xe,p.

Summing over all edges:

E

[∑
e∈E

p′(e) · x′e

]
≥ 1

4k
·
∑
e=uv

∑
p∈Pu

p · xe,p

So, it only remains to show Pr[Be] ≤ 1
2

for any e ∈ E. For each vertex w ∈

L∪R and each edge e ∈ E ∩ δ(w), let Bwe be the bad event that
∑

e′∈δ(w) x
′′
e′ >

µw. It is enough to prove that Pr[Bwe] ≤ 1
2k

for each e and w. Then, because

each edge has exactly k endpoints in k-hypergraphs by using a simple union

bound Pr[Be] ≤ 1
2
.

Now fix a vertex v ∈ R and edge e ∈ E∩δ(v). For all e′ ∈ δ(v) letXe′ denote

the random variable with value 1
2k
· xe′,p′(e′)/yu′,p′(e′), where u′ ∈ L is the only

endpoint of e′ in L, and letXe =
∑

e′∈δ(v) Xe′ . Then E[Xe′] = 1
2k
·
∑

p∈Pu′
xe′,p so

by (3.3) we have E[Xe] ≤ 1
2k
·µv. Since event Bve implies Xe > µv ≥ 2k ·E[Xe],

using a simple Markov’s inequality we have Pr[Bve] ≤ Pr[Xe > 2k ·E[Xe]] ≤ 1
2k

as required.

Similarly, fix a vertex u ∈ L and edge e ∈ E ∩ δ(u). For all e′ ∈ δ(u)

let Xe′ denote the random variable with value 1
2k
· xe′,p′(e′)/yu,p′(e′) and let

Xe =
∑

e′∈δ(v) Xe′ . Then E[Xe′] = 1
2k
·
∑

p∈Pu
xe′,p so by (3.3) we have E[Xe] ≤

41

1
2k
·µu. Since event Bue implies Xe > µu ≥ 2k ·E[Xe], using Lemma 1 (Markov’s

inequality) we have:

Pr[Bue] ≤ Pr[Xe > 2k · E[Xe]] ≤ 1

2k

This means that For each vertex w ∈ L ∪ R and each edge e ∈ E ∩ δ(w),

Pr[Bwe] ≤ 1
2k

which completes the proof.

This proof also shows that the integrality gap of the (LP-Pricing) would

be no more than 4k. However, for the case of graphs, where k = 2, we can

have even better:

Lemma 8. The integrality gap of (LP-Pricing) is no worse than 1/4 in any

instance of L-Sided Pricing.

Proof. We can change randomized rounding we used for general k and use

a rounding algorithm similar to the proof of Theorem 11. For each u ∈ L,

sample a price p′(u) ∈ Pu from the distribution with Pr[p′(u) = p] = yu,p.

This is a distribution by (3.1) and non-negativity of y. For brevity, we will let

p′(e) = p′(u) for an edge e = uv.

Then define a fractional matching in G as follows. The idea is that we want

to assign a value of xe,p′(e)/yu,p′(e) to each edge (using 0 if yu,p′(e) = 0), this is

at most 1 by (3.4). By (3.2) this fractional matching would always satisfy the

capacity constraints for nodes in L. But it may violate constraints for nodes in

R. We scale all resulting values by 1
2
, and then outright discard edges e = uv

where the capacity of v is still violated after this scaling.

More precisely, for each e = uv we first let x′′e = 1
2
· xe,p′(e)

yu,p′(e)
(again using 0 if

yu,p′(e) = 0). Then for each edge e = uv, we define

x′e =

{
x′′e if

∑
e′=u′v∈δ(v) x

′′
e ≤ µv,

0 otherwise.

42

Now x′(δ(w)) ≤ µw for each w ∈ L ∪ R. Also, (3.5) ensures any e ∈ E with

x′e > 0 has p′(e) ≤ bu. So, considering the fact that the bipartite µ-matching

polytope is unimodular [33], there would be an integral matching p′ obtaining

at least as much value as the fractional matching x′: val(p′) ≥
∑

e p · x′e. It

remains to show that the fractional matching x′ has good profit in expectation.

For any e = uv ∈ E let Be be the bad event that
∑

e′=u′v∈δ(v) x
′′
e′ > µv.

Notice that if event Be happens then x′e = 0. We show Pr[Be] ≤ 1
2
. If so, for

each e = uv ∈ E the fact that Be is independent of the choice of p′(e) (as G is

a simple graph) we then have

E[p′(e) · x′e] ≥ (1−Pr[Be]) ·
1

2
· E
[
p′(e) ·

xe,p′(e)
yu,p′(e)

]
≥ 1

4
·
∑
p∈Pu

p · xe,p.

Summing over all edges:

E

[∑
e∈E

p′(e) · x′e

]
≥ 1

4
·
∑
e=uv

∑
p∈Pu

p · xe,p

To bound Pr[Be], for an edge e′ let Xe′ denote the random variable with

value 1
2
· xe′,p′(u)/yu′,p′(e′) and let Xe =

∑
e′∈δ(v) Xe′ . Then E[Xe′] = 1

2
·∑

p∈Pu′
xe′,p so by (3.3) we have E[Xe] ≤ 1

2
· µv.

Let Y = 1
2
·µv. As Y ≥ E[Xe] and 0 < ε < 1, by using Markov’s inequality

we have

Pr[Xe > 2 · Y] ≤ Pr[Xe > 2 · E[Xe]] ≤ 1

2

Finally, since event Be implies Xe ≥ µv ≥ 1
2
· Y , we have Pr[Be] ≤ 1

2
, as

required.

Note that this approximation guarantee is even worse than our single-swap

algorithm.

43

Chapter 4

Locality Gaps and Hardness

4.1 Single-Swap

In this section we are going to provide a proof for Theorem 5 which says for

any C ≥ 1 and ε > 0, there is an instance Φ = (G, µ, b) of L-Sided Pricing

where all u ∈ L have capacity C and all v ∈ R have capacity 1 such that the

locality gap of Φ is at least 2− ε with respect to the single-swap heuristic.

Our single-swap analysis is tight. While this is most striking when C = 1,

we remark it is still interesting for larger C because it is not obvious, a priori,

that the single-swap algorithm’s analysis cannot be improved as the capacities

in L increase.

Proof. For n ≥ 2, consider the graph Gn,C = (L∪R,E), L = {ui : 1 ≤ i ≤ n}

and R = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ C}. The edges are the union of the edges

on the paths Pj = {u1, v1,j, u2, v2,j, . . . , un, vn,j} for 1 ≤ j ≤ C. We use µu = C

for u ∈ L and µv = 1 for v ∈ R.

The budgets are given as follows. First let ELOC = {uivi,j : 1 ≤ i ≤ n, 1 ≤

j ≤ C} and EOPT = {uivi−1,j : 2 ≤ i ≤ n, 1 ≤ j ≤ C}. All edges in ELOC

have a budget of 1 and all edges in EOPT have a budget of 2.

Using p∗(u) = 2 for every vertex in L and corresponding edges EOPT is a

solution with value of 2C(n− 1). Now consider the solution with p(u) = 1 for

44

each vertex in L. This solution is just ELOC with a value of Cn, which can

be seen to be the optimal matching under these prices because the capacity of

every vertex in L is saturated by ELOC . Note val(p) =
(

1
2−2/n

)
· val(p∗). We

claim this is a local optimum with respect to the single-swap heuristic.

The only possible swap is to change the price of some ui to 2. If i = 1, this

is clearly not an improving swap because no edge incident to u1 can afford the

new price and all other vertices are priced 1 so no matching has value ≥ n−1.

So suppose i ≥ 2.

The only edges incident to ui that can afford this new price are (ui, vi−1,j)

for all 1 ≤ j ≤ C. Furthermore, for any µ-matching B that does not use an

edge e ∈ δEOPT
(ui), we can get a better µ-matching (with respect to the new

prices) by adding e to B and, if necessary, removing some edge of ELOC ∩ B

sharing the right-endpoint with e.

Thus, the optimum matching after changing p(u) to 2 uses all of δEOPT
∩B.

After fixing these edges, which have total value 2C, it is easy to see the best

matching we can get in the graph obtained by removing the endpoints of edges

δEOPT
(u) ∩ B (plus all edges incident to these endpoints) has value at most

C(n− 2). So this is not an improving swap.

4.2 Multi-Swap

The construction for the multi-swap analysis is much more involved than the

one for the single-swap case. As a starting point for the construction, we

require simple graphs of constant degree but arbitrarily large girth. Such

graphs were shown to exist by Sachs [32]. Before presenting the lower bound,

we describe a construction of a layered graph with high girth and particular

degree bounds. The construction is depicted in Figure 4.1.

Lemma 9. For any C ≥ 2, ρ ≥ 1 and t ≥ 1 there is a simple, layered, and

45

L1 L2 L3 L4R1 R2 R3 R4A B

E⇤
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

E⇤
2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

E⇤
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

E0
1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

E0
2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

E0
3

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

E0
4<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 4.1: An example with C = 2. Left: the bipartite graph H constructed
from H ′ in the proof of Lemma 9. Right: the resulting graph Gt with t = 4.
Edges of E ′ are solid and the edges of E∗ are dashed.

bipartite graph Gt = (L ∪ R,E) with consecutive layers L1, R1, L2, . . . , Lt, Rt

where the subgraph induced by Li and Ri is a (C, 1)-biregular bipartite graph

and the subgraph induced by Ri and Li+1 is a (1, C)-biregular bipartite graph

(for each relevant i). Further, Gt has girth exceeding 2t · ρ.

Note, this implies |Li| = |L|/t and |Ri| = |R|/t = C ·|Li| for each 1 ≤ i ≤ t.

Proof. In [32], it is shown that for any C ′, g ≥ 3 there is a simple connected

C ′-regular graph whose girth (i.e. shortest cycle length) is at least g. In our

setting, this means a (2C)-regular graph with girth exceeding ρ · t exists where

ρ, t are as in the statement of Lemma 9. Call this graph H = (V, F ′′).

As H is (2C)-regular it contains an Eulerian circuit. Direct all edges along

this circuit so that each vertex of H has indegree C and outdegree C. Finally,

build a bipartite graph H = (A ∪ B,F) where A and B are disjoint copies

of V , and where u ∈ A and v ∈ B is an edge of F if uv is a directed edge

obtained when we directed the Eulerian circuits.

Build the following layered graph Gt = (L ∪ R,E). For each 1 ≤ i ≤ t,

let Li be a set of size V and Ri be a set of size |F |. Recall that both A and

B in H are viewed as copies of V in H ′, so each Li can be viewed either as

a copy of A or as a copy of B, when appropriate. Now, for each u ∈ A, each

e ∈ δH(u), and each layer 1 ≤ i ≤ t, add an edge in Gt from the copy of u in

46

Li to the copy of e in Ri. Call the set of all such edges added for a given i E ′i.

Similarly, for each v ∈ B, each e ∈ δH(u), and each layer 1 ≤ i ≤ t − 1, add

an edge in Gt from the copy of e in layer Ri to the copy of v in Li. Call the

set of all such edges added for a given i E∗i .

Then let L = ∪ti=1Li, R = ∪ti=1Ri and E = (
⋃t−1
i=1 E

′
i ∪ E∗i) ∪ E ′t. This

construction is depicted in Figure 4.1 in Section 4.

To complete the analysis, consider a simple cycle C in Gt. Note that

C alternates between using nodes in L and nodes in R. Furthermore, if C

uses nodes consecutive nodes a ∈ Li, b ∈ Rj, c ∈ Lk (where |j − i| ≤ 1 and

|k − j| ≤ 1) then the nodes of H corresponding to a and c are connected by

an edge in H that corresponds to node b. Thus, the cycle C corresponds to a

circuit C ′ of H t with |C ′| = |C|/2. Here, C ′ may use an edge more than once

so |C ′| measures the steps taken by the circuit C ′.

Consider any node a ∈ C∩L and say it is a copy of node v ofH. Because the

cycle C is simple in Gt, then the two adjacent nodes b, b′ to a on C correspond

to distinct edges in H incident to v. This is true for every a ∈ C ∩ L, so the

set of nodes of H corresponding to nodes in C ∩ L are incident to at least

two distinct edges traversed by C ′. That is, the edges used on the circuit C ′

contain a cycle. As the girth of H is at least ρ·t, then |C| = 2·|C ′| ≥ 2·ρ·t.

Now we are going to prove Theorem 6 which says for all C ≥ 2, ρ ≥ 1

and ε > 0, there is an instance Φ = (G, µ, b) of L-Sided Pricing where all

u ∈ L have capacity C and all v ∈ R have capacity 1 such that the locality

gap Φ is at least 2C−1
C
− ε with respect to the simple ρ-swap algorithm. That

is, our bound on the locality gap for the multi-swap algorithm on instances

with bounded capacity is tight.

Proof. Fix C ≥ 2, ρ ≥ 1, ε > 0 and let t be such that 2C−1
C
· t−1

t
≥ 2C−1

C
−ε. Let

Gt = (L∪R,E) be the graph from Lemma 9 for these parameters C, ρ, t. For

47

each 1 ≤ i ≤ t, let E ′i be the edges connecting Li to Ri and for each 1 ≤ i < t

let E∗i be the edges connecting Ri to Li+1. Naturally, let E ′ = ∪ti=1E
′
i and

E∗ = ∪t−1
i=1E

∗
i . See Figure 4.1 for an illustration. Let n be such that |Li| = n

and |Ri| = C · n for all 1 ≤ i ≤ t.

The optimum is at least (2C− 1) ·C · (|L|−n), which can be seen by using

edges E∗ where each vertex in L has a price of 2C − 1. Now consider the

pricing p that uses price C for each vertex in L. The optimum set of edges to

buy with these prices is E ′ with a value of C · C · |L|.

Claim 1. The pricing p is locally optimal with respect to the ρ-swap procedure.

If so, then the locality gap of this instance is as bad as 2C−1
C
· |L|−n|L| =

2C−1
C
· t−1

t
, as required.

Proof. Consider any pricing p′ with HW(p, p′) ≤ ρ. Let X ⊆ L be the nodes v

with p(v) 6= p′(v). So p′(v) = 2C − 1 for v ∈ X. If some vertex v ∈ X lies

in L1 6= ∅ then no edge incident to v can afford the price 2C − 1, so we may

assume that X ∩ L1 = ∅.

We show val(p′) ≤ val(p). We first claim any optimal set of edges M∗

under this price includes all of δE∗(X) and excludes all of δE′(X). The latter

is simple, no edge in δE′(X) can afford the price of its endpoint in L. Then

if any e ∈ δE∗(X) is missing from M∗, we can get an even better solution by

adding e and removing, if necessary, an edge of E ′∩M sharing its R-endpoint

with e. The value increases by at least (2C − 1)− C = C − 1.

So M∗ contains all edges of δE∗(X) with value 2C−1 each plus some edges

in δ(L−X) (which could be in either E ′ or E∗) with value C each. We then

see the value of M∗ is

(2C − 1) · C · |X|+ C · |δM∗(L−X)|. (4.1)

48

The rest of the proof focuses on showing the following:

|δM∗(L−X)| ≤ C · |L| − (2C − 1) · |X|. (4.2)

If this holds, we can bound (4.1) by C ·C · |L| thus showing val(p′) ≤ val(p).

To show (4.2), first consider the graph G′ obtained from Gt by directing all

edges to higher layers: so an edge in E ′i is directed from Li to Ri and an edge

in E∗i is directed from Li to Ri+1. Let S consist of Rt plus all nodes reachable

from X in G′, including X itself. We claim |δinG′(S)| = C · n. This can be seen

easily:

|δinG′(S)| = |δinG′(S)|−|δoutG′ (S)| =
∑
v∈S

|δinG′(v)|−
∑
v∈S

|δoutG′ (S)| =
∑

v∈S∩Rt

|δin(v)| = n·C.

The first equality holds because δoutG′ (S) = ∅ by construction of S, the second

holds for any cut of any directed graph, and the third holds because S∩L1 = ∅

(as X ∩ L1 = ∅) and because every vertex not in L1 or Rt has equal in- and

out-degree.

Now let Y be all endpoints of edges in δE∗(X) and let G′′ be the subgraph

of G′ obtained by deleting Y and incident edges. Let S ′ = S − Y , we claim

|δG′′(S ′)| ≤ n · C − (C − 1) · |X|. One should think that δG′′(S
′) is obtained

by deleting edges of δinG′(X) ∩ δinG′(S) from δinG′(S). There are precisely C · |X|

edges in δinG′(X), we show at least (C − 1) · |X| of there were also in δinG′(S).

To that end, consider an edge e ∈ δinG′(x) for some x ∈ X that does not lie in

δinG′(S). Then v is reachable from some other node of X in G′ by construction

of S, pick the deepest such node and call this node τ(e). By this choice for

τ(e), there is a τ(e)− x path in G′ that avoids every other vertex in X. Also,

the length of this path is at most 2t because the paths are monotone with

respect to the layers of G′. Also note for two different e, e′ ∈ δinG′(x) − δinG′(S)

that τ(e) 6= τ(e′), or else we have two different τ(e)− x walks implying there

is a cycle of length at most 4t in Gt which is not possible.

49

Build an auxiliary graph T = (X,F) where for each e ∈ δinG′(x) − δinG′(S)

for some x ∈ X we include an undirected edge from τ(e) to x in F . By the

above discussion, this is a simple graph. We also claim it is a forest, otherwise

consider a cycle C in T . Focus on some edge xy ∈ C and let z /∈ {x, y}

be another node in C. As the xy-path from the construction in the last

paragraph avoids z, we get two different x − y walks in Gt by following the

paths corresponding to the two directions around C from x to y. But this is

impossible because Gt has no cycle of length at most 2t · |X| ≤ 2t · ρ. So,

|F | ≤ |X| − 1 meaning |δinG′(X)− δinG′(S)| ≤ |X| − 1. Thus,

|δinG′′(S ′)| ≤ C · n− (C − 1) · |X|. (4.3)

Now we can prove (4.2). Let G
′′

be the undirected version of G′′, so G′′ is

obtained from Gt by deleting Y and its incident edges from Gt. Call a subset

of edges of G
′′

a matching if they satisfy the capacity constraints of nodes in

G
′′
. Note δM∗(L−X) is a matching.

We bound the size of a maximum matching in G
′′
. First, observe M :=

E∗ − δ(X) is a matching in G
′′

and that G′′ is the directed graph we get

by directing edges along this matching. That is, the set of L1 − Rt paths

in G′′ are exactly the set of M -alternating path. By the max-flow/min-cut

theorem, the maximum number of edge-disjoint M -alternating paths is at

most |δinG′′(S ′)| ≤ C · n− (C − 1) · |X|. So the maximum size of a matching in

G
′′

is at most

|M |+C·n−(C−1)·|X| = C·(L−n)−C·|X|+C·n−(C−1)·|X| ≤ C·|L|−(2C−1)·|X|.

This proves (4.2) and completes the analysis of the locality gap.

50

4.3 APX-Hardness for L-Sided Pricing

In this section we provide a proof for Theorem 7 which says L-Sided Pricing

is APX-hard, even if all capacities are at most 4 and all customers have a

budget of 1 or 2.

Proof. We reduce from the Vertex Cover problem for 3-regular graphs,

which is known to be APX-hard [1]. Let G = (V,E) be a 3-regular graph,

with |V | = n nodes and |E| = m = 3n
2

edges.

Construct the following bipartite graph G′ = (L ∪R,E ′) from G. Here, L

is a copy of V and R is a copy of V plus a copy of E. Each v ∈ L has capacity

4 and each vertex in R has a capacity of 1. For a node vi ∈ V , let li denote

its copy in L and ri denote its copy in R. Similarly, for each edge ej ∈ E let

dj denote its copy in R.

All customers have budget equal to 1 or 2, and they fall into two classes:

node customers and edge customers. For each vi ∈ V , we have a node customer

who is interested in li and ri with budget 2. For each edge ej = vivk ∈ E,

we define two edge customers interested in lidj and lkdj respectively, both

with budget 1. We claim that the optimal solution to this L-Sided Pricing

instance G′ has profit m + 2n − k where k is the size of the smallest vertex

cover of G.

First, suppose S is a vertex cover of G with |S| = k. Consider the pricing

p with p(li) = 1 if li ∈ S and p(li) = 2 if li /∈ S. As S is a vertex cover in

G, for each ej = vivk ∈ E we have at least one of lidj or lkdj is incident to

a vertex with price 1. Form F ′ ⊆ E ′ by adding one such edge from each ej

and adding all node customers. We get profit m from edge customers, profit

2(n − k) from all node customers liri such that vi /∈ S, and profit k from all

node customers liri with vi ∈ S for a total profit of m+ 2n− k.

Conversely, consider an optimal pricing p, so each price is 1 or 2. For

51

ej = vivk ∈ E, we claim that either p(vi) = 1 or p(vk) = 1. If not, then

consider changing p(vi) to 1. We lost a profit of 1 from the node customer liri

but have gained a profit of 1 by adding vidj, which remains feasible because

neither vidj nor vkdj could afford the price of their left-endpoint before (i.e.

dj is not used by any edge that can afford their price under pricing p, so we

may add vidj after adjusting prices).

Set S = {vi : p(li) = 1}. By the above argument, S is a vertex cover

of G. Also observe that the optimal set of edges of G′ under prices p will

include every node customer plus exactly one from each pair {lidj, lkdj} for

each ej = vivk ∈ E. So the profit of p is m+ 2n− |S|.

Therefore, the optimal profit in G′ is exactly 5
2
·n−k where k is the size of

a minimum vertex cover of G. There are constants 0 < α < β < 1 such that

it is NP-hard to distinguish between 3-regular graphs having vertex covers of

size ≤ α · n and 3-regular graphs requiring vertex covers of size ≥ β · n. So

it is NP-hard to distinguish between L-Sided Pricing instances that have

optimal profit at least
(

5
2
− α

)
· n or at most

(
5
2
− β

)
· n.

4.4 A Lower Bound on the Integrality Gap of

(LP-Pricing)

Consider the following example of L-Sided Pricing where we have 2 items a

and b on the left side which we have to assign a price and three items c, d and

e on the right side for which we have to set the price to zero. The capacities of

all items are 1 except for the item b which has capacity 2. Also, as you can see

in the picture we have 5 customers (edges) as well each with budget 2 except

the one interested in items b and e which has budget 1.

52

a

bac = 2

µa = 1

bµb = 2

bad = 2 bbc = 2

c µc = 1

d µd = 1

bbd = 2

e µe = 1bbe = 1

Figure 4.2: An Example Instance Showing A Lower Bound on the Integrality
Gap of (LP-Pricing)

The optimal integral solution for this instance would gain the total profit

of 4 by setting the price for items a and b to 2 and picking the customers

interested in bundles {a, c} and {b, d} as buyers. Of course, there could be

some other optimal solutions with the same total profit of 4.

On the other hand, consider this assignment of fractional values to the

variables of (LP-Pricing):

ya,2 = 1, yb,1 =
1

2
, yb,2 =

1

2

xac,2 =
1

2
, xad,2 =

1

2
, xbc,2 =

1

2
, xbd,2 =

1

2
, xbe,1 =

1

2

One can simply verify that this assignment does not violate any constraint

of (LP-Pricing) and the total profit is 4.5. This means that the integrality

gap of (LP-Pricing) is at least 9
8

= 1.125.

Corollary 1. The integrality gap of (LP-Pricing) is no better than 9/8 in

any instance of L-Sided Pricing.

53

Note that the best rounding algorithm for (LP-Pricing) we know has

approximation ratio much bigger than 9/8 and there is a big gap between the

lower bound and the upper bound of (LP-Pricing).

54

Chapter 5

Conclusion

5.1 Incorporating Loops

The algorithms presented in this paper assumed every customer was interested

in a bundle with precisely two distinct items. This was done for notational

simplicity. However, the algorithmic results extend very easily to the case

where some customers may be only interested in a single item. The reduc-

tion to L-Sided Pricing is valid in this case as well and we only have to

consider singleton customers interested in an item in L. One can still com-

pute an optimum matching for a given pricing in this case, so the local search

algorithm can still be executed. The analysis of the local search algorithms

using test swaps can then be adapted in a straightforward way by removing

singleton customers from the local optimum and adding singleton customers

from the global optimum who are interested in an item whose price changed

when constructing the matching used to generate the inequality for this swap.

Similarly, the LP-based (1 + ε)-approximation for L-Sided Pricing with

large capacities from Chapter 3 is trivial to adapt. The “edge-variables” for

singleton customers interested only an item in L do not contribute to the

load of any constraint for any v ∈ R. The randomized rounding algorithm is

identical.

55

5.2 Future Directions

We presented an 8-approximation for Capacitated Graph Pricing. If

all capacities were bounded from above by a constant or, in simple graphs,

were bounded from below by a sufficiently large constant then we get better

approximations. It would be nice to combine these two cases to beat the 8-

approximation in any Capacitated Graph Pricing instance even if only

for simple graphs. But the techniques we use are quite different and it is not

clear how to combine them in a single algorithm that works in the presence of

both small and large capacities.

It would also be interesting to know if the hardness lower bound for Ca-

pacitated Graph Pricing is worse than 4. Intuitively, this could be the

case as the L-Sided Pricing problem we reduce to is APX-hard in the

capacitated case.

We have proved both upper and lower bound for (LP-Pricing). But there

is still a big gap between these two bounds. Closing this gap by finding either

a better rounding algorithm or another instance with larger difference between

the optimal integral and fractional solution would be another interesting di-

rection to follow.

We also briefly remark that the generalization of Capacitated Graph

Pricing in hypergraphs, where each hyperedge has size ≤ k, is a common

generalization of the uncapacitated case which has a hardness of Ω(k1−ε) [8],

and the k-Set Packing problem which has a hardness of Ω(k/ log k) [23]. One

then wonders if Capacitated Graph Pricing in hypergraphs could be hard

to approximate better than Ω(k2−ε). It would be interesting to determine if

this is the case or to see if there is a noticeably better approximation than our

O(k2) approximation, perhaps even O(k).

56

References

[1] P. Alimonti and V. Kann, “Some apx-completeness results for cubic
graphs.”, Theoretical Computer Science, vol. 237, no. 1, pp. 123–134,
2000. 51

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V.
Pandit, “Local search heuristics for k-median and facility location prob-
lems”, SIAM J. Comput, vol. 33, no. 3, pp. 544–562, 2004. 25, 32

[3] M.-F. Balcan, A. Blum, and Y. Mansour, “Item pricing for revenue max-
imization”, in Proceedings 9th ACM Conference on Electronic Commerce
(EC-2008), Chicago, IL, USA, June 8-12, 2008, 2008, pp. 50–59. [On-
line]. Available: https://doi.org/10.1145/1386790.1386802. 15

[4] M.-F. Balcan and A. Blum, “Approximation algorithms and online mech-
anisms for item pricing”, Theory of Computing, vol. 3, no. 9, pp. 179–
195, 2007. 12, 13, 21, 38

[5] P. Briest and P. Krysta, “Single-minded unlimited supply setting pricing
on sparse instances”, in In Proceedings of SODA, 2006, pp. 1093–1102. 13

[6] P. Briest and P. Krysta, “Buying cheap is expensive: Hardness of non-
parametric multi-product pricing”, in Proceedings of the Eighteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New
Orleans, Louisiana, USA, January 7-9, 2007, 2007, pp. 716–725. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=1283383.
1283460. 17

[7] P. Chalermsook, J. Chuzhoy, S. Kannan, and S. Khanna, “Improved
hardness results for profit maximization pricing problems with unlimited
supply”, in In Proceedings of APPROX, 2012, pp. 73–84. 13

[8] P. Chalermsoon, B. Laekhanukit, and D. Nanongkai, “Independent set,
induced matching, and pricing: Connections and tight (subexponen-
tial time) approximation hardnesses”, in In Proceedings of FOCS, 2013,
pp. 370–379. 56

57

https://doi.org/10.1145/1386790.1386802
http://dl.acm.org/citation.cfm?id=1283383.1283460
http://dl.acm.org/citation.cfm?id=1283383.1283460

[9] N. Chen and X. Deng, “Envy-free pricing in multi-item markets”, in
Automata, Languages and Programming, 37th International Colloquium,
ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II,
2010, pp. 418–429. [Online]. Available: https://doi.org/10.1007/
978-3-642-14162-1%5C_35. 15

[10] N. Chen, X. Deng, P. W. Goldberg, and J. Zhang, “On revenue max-
imization with sharp multi-unit demands”, J. Comb. Optim., vol. 31,
no. 3, pp. 1174–1205, 2016. [Online]. Available: https://doi.org/10.
1007/s10878-014-9817-y. 15

[11] N. Chen, A. Ghosh, and S. Vassilvitskii, “Optimal envy-free pricing with
metric substitutability”, in Proceedings 9th ACM Conference on Elec-
tronic Commerce (EC-2008), Chicago, IL, USA, June 8-12, 2008, 2008,
pp. 60–69. [Online]. Available: https://doi.org/10.1145/1386790.
1386803. 14

[12] M. Cheung and C. Swamy, “Approximation algorithms for single-minded
envy-free profit-maximization problems with limited supply”, in In Pro-
ceedings of FOCS, 2008, pp. 35–44. 13

[13] D. P. Dubhashi and A. Panconesi, Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009. 11

[14] K. Elbassioni, M. Fouz, and C. Swamy, “Approximation algorithms for
non-single-minded profit-maximization problems with limited supply”,
in In Proceedings of the International Workshop on Internet and Network
Economics (WINE), 2012, pp. 462–472. 14

[15] K. M. Elbassioni, R. Raman, S. Ray, and R. Sitters, “On profit-maximizing
pricing for the highway and tollbooth problems”, in Algorithmic Game
Theory, Second International Symposium, SAGT 2009, Paphos, Cyprus,
October 18-20, 2009. Proceedings, 2009, pp. 275–286. [Online]. Available:
https://doi.org/10.1007/978-3-642-04645-2%5C_25. 17

[16] M. Feldman, A. Fiat, S. Leonardi, and P. Sankowski, “Revenue max-
imizing envy-free multi-unit auctions with budgets”, in Proceedings of
the 13th ACM Conference on Electronic Commerce, EC 2012, Valencia,
Spain, June 4-8, 2012, 2012, pp. 532–549. [Online]. Available: https:
//doi.org/10.1145/2229012.2229052. 14

[17] Z. Friggstad, K. Khodamoradi, and M. R. Salavatipour, “Exact algo-
rithms and lower bounds for stable instances of euclidean k-means”, in
In Proceedings of SODA, 2019, pp. 2958–2972. 25, 32

58

https://doi.org/10.1007/978-3-642-14162-1%5C_35
https://doi.org/10.1007/978-3-642-14162-1%5C_35
https://doi.org/10.1007/s10878-014-9817-y
https://doi.org/10.1007/s10878-014-9817-y
https://doi.org/10.1145/1386790.1386803
https://doi.org/10.1145/1386790.1386803
https://doi.org/10.1007/978-3-642-04645-2%5C_25
https://doi.org/10.1145/2229012.2229052
https://doi.org/10.1145/2229012.2229052

[18] I. Gamzu and D. Segev, “A sublogarithmic approximation for highway
and tollbooth pricing”, in In Proceedings of ICALP, 2010, pp. 582–593. 17

[19] F. Grandoni and T. Rothvoss, “Pricing on paths: A ptas for the highway
problem”, in In Proceedings of SODA, 2011, pp. 675–684. 17

[20] A. Grigoriev, J. van Loon, R. Sitters, and M. Uetz, “How to sell a
graph: Guidelines for graph retailers”, in Graph-Theoretic Concepts in
Computer Science, 32nd International Workshop, WG 2006, Bergen,
Norway, June 22-24, 2006, Revised Papers, 2006, pp. 125–136. [Online].
Available: https://doi.org/10.1007/11917496%5C_12. 16

[21] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon,
and F. McSherry, “On profit-maximizing envy-free pricing”, in Proceed-
ings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2005, Vancouver, British Columbia, Canada, January
23-25, 2005, 2005, pp. 1164–1173. 13, 14, 16

[22] J. D. Hartline and V. Koltun, “Near-optimal pricing in near-linear time”,
in Algorithms and Data Structures, 9th International Workshop, WADS
2005, Waterloo, Canada, August 15-17, 2005, Proceedings, 2005, pp. 422–
431. [Online]. Available: https://doi.org/10.1007/11534273%5C_37. 14

[23] E. Hazan, S. Safra, and O. Schwartz, “On the complexity of approximat-
ing k-set packing”, Computational Complexity, vol. 15, no. 1, pp. 20–39,
2006. 56

[24] N. Karmarkar, “A new polynomial time algorithm for linear program-
ming”, in PALP, ser. Combinatorica, vol. 4(4):373–395, 1984. 9

[25] R. Khandekar, T. Kimbrel, K. Makarychev, and M. Sviridenko, “On
hardness of pricing items for singleminded bidders”, in In Proceedings of
APPROX, 2009, pp. 202–216. 13

[26] S. Khot, “On the power of unique 2-prover 1-round games”, in Proceed-
ings on 34th Annual ACM Symposium on Theory of Computing, May
19-21, 2002, Montréal, Québec, Canada, 2002, pp. 767–775. [Online].
Available: https://doi.org/10.1145/509907.510017. 8

[27] S. Khot, D. Minzer, and M. Safra, “On independent sets, 2-to-2 games,
and grassmann graphs”, in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, 2017, pp. 576–589. [Online]. Available: https://doi.
org/10.1145/3055399.3055432. 8

59

https://doi.org/10.1007/11917496%5C_12
https://doi.org/10.1007/11534273%5C_37
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1145/3055399.3055432

[28] ——, “Pseudorandom sets in grassmann graph have near-perfect expan-
sion”, in 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, 2018, pp. 592–
601. [Online]. Available: https://doi.org/10.1109/FOCS.2018.

00062. 8

[29] E. Lee, “Hardness of graph pricing through generalized max-dicut”, in
Proceedings of the Forty-seventh Annual ACM Symposium on Theory of
Computing, 2015, pp. 391–399. 13

[30] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge Uni-
versity Press, 1995. 11, 22

[31] F. Rajabi-Alni, A. Bagheri, and B. Minaei-Bidgoli, “An o(nˆ3) time
algorithm for the maximum weight b-matching problem on bipartite
graphs”, CoRR, vol. abs/1410.3408, 2014. arXiv: 1410.3408. [Online].
Available: http://arxiv.org/abs/1410.3408. 21

[32] H. Sachs, “Regular graphs with given girth and restricted circuits”, Jour-
nal of the London Mathematical Society, vol. s1-32, no. 1, pp. 423–429,
1963. 45, 46

[33] A. Schrijver, “Combinatorial optimization : Polyhedra and efficiency.
algorithms and combinatorics”, Springer-Verlag, 2003. 37, 43

[34] V. Vazirani, “Approximation algorithms.”, in AA, ser. Lecture Notes in
Computer Science, vol. 380, Springer, 2003. 2, 7

[35] D. West, “Introduction to graph theory”, in ITGT, ser. Lecture Notes
in Computer Science, vol. 504, Prentice-Hall, 2001. 2

[36] D. Williamson and D. Shmoys, “The design of approximation algo-
rithms”, in DAA, ser. Lecture Notes in Computer Science, vol. 504,
Cambridge University Press, 2011. 2

[37] D. Zuckerman, “Linear degree extractors and the inapproximability of
max clique and chromatic number”, in LDIMCCN, ser. THEORY OF
COMPUTING, vol. 3:103–128, 2007. 7

60

https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1109/FOCS.2018.00062
http://arxiv.org/abs/1410.3408
http://arxiv.org/abs/1410.3408

	Introduction
	Preliminaries
	Graph
	Optimization Problems and Approximation Algorithms
	Linear Programming
	Local Search Algorithms
	Probability Inequalities

	Problem Considered
	Prior Work
	Main Results

	Graph Pricing with Limited Supply
	Problem Overview
	Reduction to L-Sided Pricing Problem
	Our Results

	Local Search Algorithm
	Single Swap Analysis
	An Improved Multi-Swap Algorithm for Bounded Capacities
	Proof of Theorem 8
	Efficient Versions of Local Search
	Extension to Multi-Swap

	Linear Programming Based Algorithms
	Our Results
	Randomized Rounding Algorithms
	Extension to k-Hypergraphs

	Locality Gaps and Hardness
	Single-Swap
	Multi-Swap
	APX-Hardness for L-Sided Pricing
	A Lower Bound on the Integrality Gap of (LP-Pricing)

	Conclusion
	Incorporating Loops
	Future Directions

	References

