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INELASTIC LATERAL BUCKLING OF STEEL BEAM-COLUMNS

SUMMARY

A series of investigations of the inelastic lateral buckling behaviour of
steel beam—columns is described. These originate from many previous studies
of the elastic lateral buckling of beams. It was found that present methods
of predicting the effects of moment gradient in elastic beam—-columns are
unnecessarily conservative, and it was concluded that many practical
continuous beam-columns will have significant warping restraints.

Fourteen inelastic lateral buckling tests were carried out on 9
continuous steel beam-columns. The results of these tests were compared with
predictions made by a new and improved finite element computer method of
analysing inelastic buckling, and very good agreement was found. The
analytical method was then used to develop a simple approximation for
predicting the inelastic buckling of isolated beam-columns with unequal end

moments, and a design method was proposed.

KEYWORDS: Beams, buckling, columns, flexure, residual stresses, steel,
structural design, structural engineering, torsiom.
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1. INTRODUCTION

When a steel beam~column which is bent about its major axis is
insufficiently braced laterally, then it may fail by deflecting laterally out
of the plane of bending and twisting. For beam-columns of intermediate
slenderness, the in-plane actions cause yielding which reduces the resistance
to lateral buckling. This paper describes a series of investigations of the
inelastic lateral buckling of steel beam—columns.

The investigations have their origin in many previous studies of the
elastic lateral buckling of beams. 1In these, the effects of cross-section,
slenderness, support, moment gradient, load height, and restraint have been
thoroughly researched. Extensions to the inelastic buckling of beams have
shown the importance of residual stresses, moment gradient, and the location
of yield regions in both simply supported and continuous beams, and have led
to methods of incorporating these effects into design procedures.

The initial studies of beam-columns concentrated on elastic members, and
it was first found that a more accurate method was required for predicting the
effects of moment gradient than those of present design procedures. Following
this the restraining effects caused by concentrated moments in continuous
members were investigated.

The second phase of the investigations was experimental, and 14 tests
were conducted on 9 continuous steel beam-columns which buckled
inelastically. At the same time, a new and improved analytical method was
developed for predicting the inelastic lateral buckling of continuous beam-
columns, and tested against the results of previous analytical studies. The
predictions of the new method were then compared with the experimental
results, and a very high degree of correlation was obtained.

The next phase of the investigations involved the use of the new
analytical method to undertake systematic research into inelastic lateral
buckling. Already the effects of moment gradient on isolated beam-columns
have been studied, and a significantly improved design method has been
developed. Future work planned includes the lateral buckling of beam—columns
which sway in the plane of loading, and the buckling interactions between
adjacent segments of continuous beam-columns.

2. LATERAL BUCKLING OF BEAMS

2.1 Elastic Buckling

The elastic flexural-torsional buckling of beams has been studied by many
investigators, and there are a number of research summaries (5,11,16-18). For
simply supported beams of length L bent in uniform bending in a plane of
symmetry as shown in Fig. 1, the elastic buckling moment M is given by

M BXP 2 BXP
[1] =7 L+ G+ (D
yz yz yz

where Myz is the buckling moment for a doubly symmetric beam

(2] M, = / {Py(GJ + nZEIw/LZ)}
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Py is the flexural buckling load of a column
.2 2
3 P_=m EI /L
(3] y y/
Bx is a monosymmetry property of the cross-section

[4] b, = (11) ] (Py +y°) an - 2y,

Yo is the shear centre coordinate, and EI_, GJ, EI, are the flexural,
torsional, and warping rigidities of the tross-section.

For doubly symmetric beams bent by unequal end moments M, BM as shown in
Fig. 2, the maximum moment at elastic buckling can be expressed as

. = mM
(5] Mo vz

where m is approximated by

[6] m=1.75+ 1.058 + 0.352 } 2.5

The elastic buckling resistance of a beam may be significantly increased
by end restraints (22). For doubly symmetric beams in uniform bending with
equal flange end restraints as shown in Fig. 3, the elastic buckling moment
can be obtained from Equations [2] and [3] by substituting the effective
length

(7] 2 = KL

for the actual length L, in which the effective length factor k is

approximated by
2 + ocL/EIy

(8] k=373 2aL7E1y

where a@ is the moment-rotation stiffness of each of the four flange end
restraints.

The restraining actions between adjacent segments of braced or continuous
beams are more difficult to assess, since there are a number of different
restraining modes possible, as shown in Fig. 4. These include the easily
analysed zero interaction case, in which each segment buckles as if
independent of the adjacent segments. An approximate method has been
developed for more general analysis (12,17), in which a lower bound is first
produced by assuming that each segment buckles independently, and by
determining the most critical segment. The restraining actions of the
adjacent segments are then approximated and used to obtain an improved
estimate of the buckling load of the critical segment.

A recent study (8) has considered the elastic buckling of continuous
beams with concentrated moments acting at the support points, as shown in Fig.
5. It was found that the jump discontinuities in the bending moment caused
unexpected restraint effects, which might be approximated as equivalent end
warping restraints. Recognition of the fact that concentrated moments will
often require significant web stiffening of the beam (6), which will produce
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further warping restraints, suggests that it is not unreasonable to assume
that end warping is effectively prevented in continuous members with
concentrated moments.

2.2 Inelastic Buckling

The buckling resistance of an intermediate length steel beam is reduced
by yielding caused by a combination of the effects of the applied loads and
the residual stresses left in the beam after manufacture. A tangent modulus
theory of inelastic buckling has been developed (19,21), in which the initial
elastic moduli E, G are replaced by the strain-hardened values Es’ G_ for all
yielded and strain-hardened regions of the beam, and which accounts %or the
non-uniform, monosymmetric nature of the beam after partial yielding.

For a simply supported steel beam under moment gradient, the inelastic

buckling resistance M; may be approximated (13) as shown in Fig. 6 by
M 0.3 (1 - 0.7MP/ME)
[9] o= 0.7+ 5 < 1.0
P (0.61 - 0.3 + 0.07p“)

in which Mp is the fully plastic moment capacity. It can be seen that the
moment distribution is very important, as there are very substantial
reductions in buckling resistance for uniform bending (B = -1), when all the
beam is yielded. On the other hand, the reductions are quite small for double
curvature bending (B = 1), for which yielding is concentrated near the

supports.

For simply supported beams with central concentrated loads (Fig. 7), the
resistance is a little higher than for uniform bending, because while yielding
occurs in the mid-span region of the beam, it is limited in its extent. A
similar conclusion can be drawn for continuous beams (23), except in the
special cases where yielding first occurs at the supports, in which case the
inelastic buckling resistance is much higher, as indicated by the results for
Q;/Qy = 1.56 shown in Fig. 7. ‘

3. ELASTIC BUCKLING OF BEAM—-COLUMNS

The elastic flexural-torsional buckling of a simply supported beam—column

in uniform bending (B = -1) is approximated by

o] (+ey )t =(p -2 {(z”+ ") (¢, - ) + w8}

y o
in which P, is the torsional buckling load of a column

GJ + nZEI /L2
[11] P = w

z 2 2
r0 + y°

and r, is the polar radius of gyration given by
2
[12] r, (Ix Iy)/A

For doubly symmetric sections, y, = 0 and Bx = 0, and a more accurate solution
(17) is obtained from
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2 -
[13] (M/Myz) - (1 P/Px) (1- P/Py) (1 - P/Pz)
in which P, is the in-plane column buckling load
2 2
[14] P = EIX/L
The term (1 - P/P ) in Equation [13] is often close to unity.

For beam-columns with end moments, M, BM, the elastic buckling resistance
may be approximated by

2
[15] (M/mMyz) = (1 - P/Py) (1 - P/Pz)

in which the moment distribution factor m is given by Equation [6]. However
this approximation is often conservative (7), as indicated in Fig. 8, and more
accurate predictions may be obtained (7,2) by using

3
[16] Ei— < (558 + (0.4 - 0.23 ) (138
c y

for 1/m in Equation [15].

4. ANALYSTIS OF INELASTIC BUCKLING

4.1 Pre-Buckling Analysis of In-Plane Bending

Before a prediction can be made of inelastic lateral buckling, the in-
plane bending must be analysed so that the distributions of the elastic,
yielded, and strain-hardened regions throughout the member can be
determined. The effective out-of-plane rigidities which contribute to the
inelastic buckling resistance can be evaluated using these distributions.

When the member is statically determinate, the in-plane analysis can be
made in two separate stages. First the variation of the axial force and
bending moment along the member can be determined from statics. Following

_ this, the locations of the boundaries of the elastic, yielded, and strain-

hardened regions within selected cross-sections can be determined using the
cross-section geometry, material properties, residual stresses, and the axial

force and bending moment.

When an elastic member is statically indeterminate, the two stages cannot
be separated, because the material non-linearity closes the chain of
dependence of yielding on stress resultants, on redundant actiomns, on
deflections, on stiffnesses, on ylelding. In addition, it may be necessary to
consider the effects of geometric non-linearity, as for example when the term
(1 - P/P,) is not close to unity.

A finite element computer method of analysing the in-plane behaviour of
steel frames is discussed in Reference 9. This method, which allows for the
effects of residual stresses, yielding, strain-hardening, and finite
deflections, is used to determine the yielded and strain-hardened boundaries.

4.2 Analysis of Qut-of-Plane Buckling

Finite element methods of analysing elastic flexural-torsional buckling
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(10) may be simply adapted for the analysis of inelastic buckling. For
members with equal flanges, it is easiest to specify the buckling
displacements in terms of the lateral displacement u and twist ¢ of the
elastic centroidal axis, in which case the strain energy stored in an element
can be expressed as (1)

L
1 T
[17] U= 2£ {au} [Du] {eu} dz
where the generalised strain vector is
T
[18] {e b7 = {um, 0r, 07}
[Du] = (EIT + EIB)t 0 (EIT - EIB)t
[19]
0 (61, 0
2
(EIT - EIB)t 0 (EIT + EIB)t h°/4

and the subscript t denotes the tangent modulus values of GJ and the top and
bottom flange rigidities El;, Elg, and the dash indicates differentiation with
respect to z.

The work done by the forces acting on the element during buckling can be
expressed as

L
(o0 v=3/ {1 (o] (e} d

o
where the generalised stability strain vector is

VNN CH AR CURE R D
= i 1
[22] [o,] 51 5 5
. "
82 S2 yq
s, 0 (33 + s4)
[23] s, =/ £daA
LY
s, = [ fyaa
2
A o
S4 = [ £y° dA
A
2
s, = [ fx° dA
4 A

f is the total normal longitudinal stress, and y_ 1is the distance below the

centroidal axis at which the distributed load - gz' acts.
The element stiffness and stabllity matrices may be formed from Equations
{17] and [20], and these may be transformed and assembled into the global
matrices [K], [G] in :
1 T
[24] ) {u}” [K+6] {u} =0

in which {u} is the vector of the global nodal deformations. In inelastic



buckling problems, [K] and [G] must be recalculated for each load level on the
structure, and so the usual eigenvalue methods used for elastic buckling
problems lose their efficiency. Instead, a series of calculations are made at
increasing load levels until an approximately zero determinant is obtained
from [K + G], which determines the buckling load. Some care must be taken to
ensure that the lowest buckling load is not missed.

5. INELASTIC BUCKLING PREDICTIONS

5.1 Tests on Continuous Beam—Columns

Reference 6 describes a series of 14 tests on 9 beam—-columns which were
continuocus over three spans, as shown in Fig. 9. The hot-rolled I-section
members were loaded by end forces Py, P, and concentrated in-plane moments

"developed by the forces P4, P%, and were restrained against in-plane sway by

the bracing force P,. These Iorces caused significant yielding of the beam-
columns, reducing tgeir resistances to out-of-plane buckling. Because of
this, the restraining out-of-plane actions developed by weak axis beams played
important roles in increasing the member strengths.

The purpose of the tests was to obtain experimental data which could be
used to evaluate inelastic buckling theories. A comparison of the
experimental failure loads Pp with the predictions Py obtained (3) from the
theory developed in Reference 1 1is shown in Fig. 10, which indicates extremely
close agreement.

5.2 Isolated Beam—Columns Under Moment Gradient

Inelastic buckling predictions (2) of isolated hot-rolled beam-columns
with end moments M, BM have been compared with approximations obtained from
the linear interaction equation

C
P M M
[25] + —~ —— < 1
\ PIy (1 P/Px) Mo
in which
[26] C =0.6 - 0.48 > 0.4

These equations are similar to those used in present design codes, such as
Reference 4, except that Py, is the inelastic out-of-plane flexural buckling

‘load of a simply supported column and My, is the uniform buckling moment of a

simply supported inelastic beam. Approximations for Py,, M; were developed
(2) from inelastic buckling analyses of a wide range of hot-rolled I-section

members as

[27] PIy/PY

[28] MIO/MP

in which Py = AFy is the squash load.

1.035 - 0.181 /(P_/P ) - 0.128P_/P < 1.0
Y vy Y vy

1.008 - 0.245 MP/Myz < 1.0

It was found that the approximations calculated from Equation [25] were
generally conservative, and especially so for high moment gradients (f »
0.5). This conservatism was attributed to the use of a linear interaction



Load Specimen
Set Nominal Load Configuration Number (Ps/Pq), | (PY/PE)
| P —eP, 1 0.082 | 0.96
P+ +p, I 2 0.221 0.96
, | P e ep, 3 0.066 | 0.95
I I"Ps -»P: I 5A 0.032 1.03
,,,,, 1 — 4 0.116 1.00
P> salyIz P
3 1 | I I pﬂ' 2 6A 0.045 | 1.00
P 7A 0.045 | 0.99
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P P.
4 | | I | | 2 4A 0.0 1.00
5 0.0 0.98
s | P =A*P2 6 0.122 | 1.01
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0.6 P

Note: ‘A’ indicates specimen previously tested to failure
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equation, instead of a parabolic one similar to Equations [13] and [15], and
to the use of a C_ factor for non-uniform bending which was independent of the
axial load P, instead of varying with P as in Equation [16].

Because of this it was decided to modify the elastic parabolic
interaction equation and the non-uniform bending factor to

2
[29] (E{)MT") -(1-59) (-3 ;
c o, _ Iy z
[30] Ei— = (25 + (0.4 - 0.23 Ef%d (28
c y

These equations proved to be of high accuracy, as is demonstrated in Fig. 11.
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Fig. 12. Behaviour of Real Members

6. APPLICATION TO DESIGN

Beams and beam-columns which fail by flexural-torsional buckling must be
almost perfectly straight and untwisted before loading, and the applied loads
must initially cause deflections only in the plane of loading. Real members
have initial curvatures and twists, and their loads are applied eccentrically
and with components which cause out-of-plane bending and torsion immediately,
as shown in Fig. 12.

Because of this, the strengths of real members are reduced below their
buckling resistances. Design rules usually allow for this by modifying the
buckling predictions. For example, for simply supported columns (15), the
column strength P  may be approximated by

1/2
P 14+n+P_/P P 2P, /P 2
[31] Fg = 2 PY/P 1-[1- —Pl (1+nip /P
Y Yy Y Y vy

in which n is an imperfection parameter given by

[32] n = 0.293 {/(PY/Py) - 0.15} > 0



‘while the strength Mo of a beam in uniform bending may be approximated by (20)

M M 2 1/2 M
[33] 2.0 [[3) +3] -23<1
. M M M
P yz yz

At present, the flexural-torsional design strengths of beam~columns are
approximated by using equations similar to Equations [25] and [26], but with
PI s MI replaced by equations similar to Equations [31] and [32]. The
unzatisgactory nature of Equations [25] and [26] for inelastic flexural-
torsional buckling has been noted above, as has the marked improvement
provided by Equations [28] and [29]. It seems logical therefore to propose
that this should be extended to estimate the out-of-plane design strengths of

beam~columns from

2
’ M - g _ B
[34] () =(0-3) (-5
bc o o z
in which Cbc’ Mo’ and Po are given by Equations [30], [31], and [33].

Thus the design of beam—columns will require three conditions to be
satisfied: -

(1) Cross—section capacity,

(2) In-plane member strength, and

(3) Out-of-plane member strength ( Equation [34])
for which the present methods may be retained for assessing the first two
conditions of cross—-section capacity and in-plane strength.

7. CONCLUSIONS

Previous studies of the elastic flexural-torsional buckling of beams and
beam—-columns have demonstrated the importance of the bending moment
distribution and of end restraints. The inelastic buckling of beams has also
been studied, including the effects of residual stresses and the yield
distribution.

Recent research studies have extended this work to the inelastic
flexural-torsional buckling of steel beam-columns, and have led to the
development of a general computer method of predicting inelastic buckling, and
this has received experimental confirmation. The computer method has been
used to study the inelastic buckling of beam-columns with unequal end moments,
and to develop comparatively simple equations for predicting their inelastic
buckling resistances. This has allowed the formulation of an improved method
of estimating their design out-of-plane member strengths. Thus a beam-column
bent in-plane would be checked for cross-section capacity and in-plane member
strength as at present, and for out-of-plane strength by using the new
formulation.

8. ACKNOWLEDGEMENT

The work described in this paper has been supported by research grants

'made under the Australian Research Grants Scheme, by the Natural Sciences and

Engineering Research Council of Canada, and by the University of Alberta, and
has been assisted by Professor D.W. Murray of the Department of Civil
Engineering of the University of Alberta.

12



13

9. REFERENCES

T Rt

10.

12.

BRADFORD, M.A., CUK, P.E., GIZEJOWSKI, M.A. and TRAHAIR, N.S. 1984.
Inelastic Lateral Buckling of Beam—Columns. School of Civil and Mining
Engineering, University of Sydney, Sydney, NSW, Australia, Research Report
No. R474, June, pp. 1-34.

BRADFORD, M.A., and TRAHAIR, N.S. 1984. 1Inelastic Buckling of Beam—
Columns with Unequal End Moments. School of Civil and Mining Engineering,
University of Sydney, Sydney, NSW, Australia, Research Report No. R479,
October, pp. 1-23.

BRADFORD, M.A., and TRAHAIR, N.S. 1985. Analysis of Imelastic Buckling
Tests on Beam—Columns. School of Civil and Mining Engineering, University
of Sydney, Sydney, NSW, Australia, Research Report No. 489, March, pp. 1-
19. '

CANADIAN STANDARDS ASSOCIATION. 1978. CAN3-S16.1-M78, Steel Structures
for Buildings - Limit States Design. CSA, Rexdale, Ontario, pp. 1-103.

COLUMN RESEARCH COMMITTEE OF JAPAN. 1971. Handbook of Structural
Stability. Corona Publishing Company, Tokyo.

CUK, P.E., ROGERS, D.F., and TRAHAIR, N.S. 1985. Inelastic Buckling of
Continuous Steel Beam—-Columns. School of Civil and Mining Engineering,
University of Sydney, Sydney, NSW, Australia, Research Report No. R480,
January, pp. 1-36.

CUK, P.E., and TRAHAIR, N.S. 198l. Elastic Buckling of Beam-Columns with
Unequal End Moments. Civil Engineering Transactions, Institution of
Engineers, Australia, Vol. CE23, No. 3, August, pp. 166-171.

CUK, P.E., and TRAHAIR, N.S. 1983. Buckling of Beams with Concentrated
Moments. Journal of Structural Engineering, ASCE, Vol. 109, No. 6, June,
pp. 1387-1401. '

. EL-ZANATY, M.H. and MURRAY, D.W. 1983. Non-Linear Finite Element

Analysis of Steel Frames. Journal of Structural Engineering, ASCE, Vol.
109, No. 2, February, pp. 353-368.

HANCOCK, G.J., and TRAHAIR, N.S. 1978. Finite Element Analysis of the
Lateral Buckling of Continuously Restrained Beam—Columns. Civil
Engineering Transactions, Institution of Engineers, Australia, Vol. CE20,
No. 2, pp. 120-127.

NETHERCOT, D.A. 1983. Elastic Lateral Buckling of Beams. Chapter 11 in
Beams and Beam Columns. Applied Science Publishers, Barking, England, ed.
Narayanan, R., pp. 1-33.

NETHERCOT, D.A., and TRAHAIR, N.S. 1976. Lateral Buckling Approximations
for Elastic Beams. The Structural Engineer, Vol. 54, No. 6, June, pp.
197-204. '



e e

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

NETHERCOT, D.A., and TRAHAIR, N.S. 1976. 1Inelastic Lateral Buckling of
Determinate Beams. Journal of the Structural Division, ASCE, Vol. 102,

No. ST4, April, pp. 701-717.

14

NETHERCOT, D.A., and TRAHAIR, N.S. 1983. Design of Laterally Unsupported.

Beams. Chapter 3 in Beams and Beam Columns. Applied Science Publishers,
Barking, England, ed. Narayanan, R., pp. 71-94.

ROTTER, J.M. 1982. Multiple Column Curves by Modifying Factors. Journal
of the Structural Division, ASCE, Vol. 108, No. ST7, July, pp. 1665-1669.

STRUCTURAL STABILITY RESEARCH COUNCIL. 1976. Guide to Stability Design
Criteria for Metal Structures. John Wiley and Sons, New York, 3rd ed.,

ed. Johnston, B.G.

TRAHAIR, N.S. 1977. The Behaviour and Design of Steel Structures.
Chapman and Hall, London.

TRAHAIR, N.S. 1977. 1Lateral Buckling of Beams and Beam—-Columns. Chapter
3 of Volume 2 of Theory of Beam—Columns by Chen, W.F., and Atsuta, T.
McGraw Hill, New York.

TRAHAIR, N.S. 1983. Inelastic Lateral Buckling of Beams. Chapter 2 in
Beams and Beam Columns. Applied Science Publishers, Barking, England, ed.
Narayanan, R., pp. 35-69.

TRAHAIR, N.S. 1984. lateral Buckling Design Strength of Steel Beams.
Civil Engineering Transactions, Institution of Engineers, Australia, Vol.
CE26, No. 4, pp. 319-326.

TRAHAIR, N.S. and KITIPORNCHAI, S. 1972. Buckling of Inelastic I-Beams
Under Uniform Moment. Journal of the Structural Division, ASCE, Vol. 98,
No. ST11, November, pp. 2551-2566.

TRAHAIR, N.S. and NETHERCOT, D.A. 1984. Bracing Requirements in Thin-
Walled Structures. Chapter 3 in Developments in Thin-Walled Structures,
Applied Science Publishers, Barking, England, ed. Rhodes, J., and Walker,
A.C., pp- 93-130.

YOSHIDA, H., NETHERCOT, D.A. and TRAHAIR, N.S. 1977. Analysis of
Inelastic Buckling of Continuous Beams. Proceedings, IABSE, No. P-3/77,
pp- 1-14.



——

10. NOTATION

A

cbc’cm

[0].[0,]

Cross—sectional area

Beam-column factors for unequal end moments
Element matrices (Equations [19] and [22])
Young's modulus of elasticity
Strain-hardening modulus

Total longitudinal stress

Yield stress

Global stability matrix

.Shear modulus of elasticity

Strain-hardening shear modulus
Distance between flange centroids
Second moments of area of bottom and top flanges
Warping section constant

Second moments of area about X, y axes
Torsion section constant
Effective length factor

Global stiffness matrix

Effective length

Length of member or element

Beam factor for moment gradient
Moment

Elastic buckling moment

Inelastic buckling moment

Value of My for uniform bending
Uniform bending strength

Full plastic moment

Value of Mp for uniform bending
Axial load

Forces on beam—column

Force at failure

Inelastic buckling load

Value of Py for flexural buckling

Out-of-plane column strength



Elastic buckling loads for flexure about x, y axes
Squash load

Elastic torsional buckling load

Transverse loads

Polar radius of gyration

Stress resultants (Equation [23])

Lateral deflection of shear centre

Vector of global nodal displacements

Strain energy stored in element

Work done on element

Principal axes of cross—-section

Shear centre coordinate

Distance below centroid of distributed load - Sp"
Longitudinal axis through centroid

Stiffness of flange end restraints
End moment ratio

Monosymmetry section constant

Strain vectors

Angle of twist rotation

Imperfection parameter (Equation [32])
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