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Abstract 

 Amyotrophic lateral sclerosis (ALS) is a highly heterogeneous disease in terms of its 

clinical presentation, progression, and detected pathology in the body. It is a multi-system 

degenerative disorder, though a diagnosis is made based on the presence of both upper motor 

neuron (UMN) and lower motor neuron (LMN) degeneration. However, the disease rests on a 

spectrum of both motor and cognitive systems degeneration. ALS is fatal with a typical course of 

2-5 years. The diagnostic process is long and complicated, often taking about one year from 

symptom onset. For these reasons, ALS needs a biomarker – an objective measure of disease 

presence and progression. This would simplify diagnosis and allow treatment and drug trials to 

be implemented earlier in the disease process. Studies have explored neuroimaging as a source of 

potential biomarkers. Techniques such as voxel-based morphometry (VBM) and diffusion tensor 

imaging (DTI) have been previously used to study cerebral degeneration but have yet to be 

refined as highly sensitive and specific diagnostic tools. A more novel tool called texture 

analysis (TA) has recently been applied to various diseases as a means to examine pathology in 

vivo. Furthermore, TA has been applied in two previous studies of ALS, finding high sensitivity 

and specificity in differentiating patients from controls. TA examines both grey matter and white 

matter in the brain simultaneously by quantifying the relationships between grey level intensities 

in neighbouring voxels of a 3D magnetic resonance image. It does so using T1-weighted images 

– often acquired as part of the diagnostic process. The present study aims to examine cerebral 

degeneration in ALS patients as detected by TA in a multicentre dataset, and how degeneration 

correlates with clinical signs of UMN degeneration. Furthermore, this study aims to test the 

reliability of TA both within and between sites of acquisition to further support the future 

implementation of TA as a clinical biomarker.  
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1. ALS 

1.1. Disease Overview 

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease identifiable by 

degeneration of both upper motor neurons (UMN) and lower motor neurons (LMN). It is also 

known as Lou Gehrig’s disease in the United States, and motor neurone disease in Europe. First 

described by Jean-Martin Charcot in 1887 [Turner, 2015], the disease is estimated to affect 2.16 

in every 100 000 people based on European population studies [van Es, 2017]. Other population 

studies including that by Roberts et al. (2016) have indicated that the prevalence can be variable 

based on ancestral origin, though fewer studies have been carried out on non-European 

populations. Roberts (2016) explains that in the United States, white participants were at a 

significantly higher risk of ALS mortality than non-white populations. ALS is a highly 

heterogeneous disease, both in terms of its clinical presentation and its progression [Swinnen and 

Robberecht, 2014]. There is currently no cure for the disease, and it leads to death normally in 2-

5 years from symptom onset. However, this is also quite variable with some patients progressing 

unusually slowly and some unusually quickly. Furthermore, the disease can present in a number 

of different ways. It is generally accepted now that ALS is a multisystem degenerative disorder 

that rests along a spectrum of diseases including several variants of ALS and frontotemporal 

dementia (FTD) [van Es, 2017; Strong, 2009]. Roughly 50% of all ALS patients develop some 

form of frontotemporal lobar degeneration (FTLD) which leads to cognitive and behavioural 

impairment [van Es, 2017]. In the most severe cases of cognitive decline, patients may go on to 

develop FTD as a comorbidity, in which case the diagnosis is termed ALS-FTD.  
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Figure 1. Representation of ALS disease spectrum and associated symptoms, taken from van Es et 

al. (2017). 

Disease onset is typically after the age of 45 years, but in rare circumstances the disease 

may manifest in early adulthood as juvenile ALS which can affect people as young as 20 years 

[Turner, 2012]. The mean age of onset is slightly earlier for men than women (65 and 67 years 

old, respectively) [Langefeld, 2013; Turner, 2012]. Furthermore, the incidence and prevalence of 

the disease is higher in men, both of which show a ratio of 1.5:1 (men : women) [Wang, 2017]. 

However, Gordon et al. (2011) state in their study that this ratio is becoming more even in the 

recent years and suggest that women may now be more often exposed to environmental factors 

contributing to the manifestation of the disease. While it is unclear what exactly the cause of the 

disease is, there are a number of risk factors that have been identified as being possibly linked to 

ALS. One such environmental factor is the exposure to heavy metals such as lead and mercury. It 

was found that history of exposure to heavy metals was significantly elevated in ALS patients 

when compared with healthy controls in the same studies [Wang, 2017]. Another such risk factor 

is exposure to agricultural chemicals including pesticides and herbicides [Kamel, 2012]. Through 
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meta-analysis, it was found that people exposed to these types of chemicals had a 50% greater 

chance of developing ALS than those not exposed [Wang, 2017]. Studies such as that by Seals et 

al. (2016) have even suggested that head trauma at least 5 years prior to ALS onset can be a risk 

factor in the manifestation of the disease. They go on to suggest that this might put certain 

professions at greater risk of developing ALS, such as professional athletes and military veterans 

[Seals et al. 2016]. A number of studies have also identified cigarette smoking as a risk factor in 

ALS [Fang et al. 2009; Okamoto et al. 2009]. However, the meta-analysis performed by Wang et 

al. (2017) has noted that while there may be some mild risk associated with smoking, it is likely 

as low as increasing chances to 1.3 times the normal risk. It has been suggested that some 

socioeconomic factors can be influential in the development of ALS. Roberts et al. (2016) state 

that even once adjusted for race/ethnicity, higher level of attained education such as university 

and post-graduate training were positively associated with increased risk of developing ALS. In 

contrast, some studies have identified potential mild protective factors against ALS such as 

consumption of coffee and vitamin E [Beghi et al. 2011; Freedman et al. 2013]. 

The diagnostic process is heavily reliant on neurological examination in clinic and is 

complicated by the heterogeneity in presentation of symptoms. ALS diagnosis is dependent on 

the clinical presentation of both UMN and LMN signs in at least one of four regions of the body 

– bulbar, cervical, thoracic, and lumbosacral – and until both are detected, a definite diagnosis 

cannot be made. For this reason, the process can often be delayed by roughly one year from 

symptom onset. A diagnosis of ALS typically made dependent on the El Escorial criteria for 

ALS, though some other criteria exist including the Awaji criteria which includes a greater 

emphasis on electrodiagnostic tools. Diagnosis based on the El Escorial criteria splits patients 

into several different designations based on how certain their diagnosis is. Suspected ALS is 
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defined as the presence of LMN signs in two or more regions. Possible ALS is given if the 

patient presents with LMN signs and UMN signs in only one region of the body, or if UMN 

signs are present in two regions. Probable ALS is defined as the presence of LMN and UMN 

signs in at least two regions each. Lastly, a patient is diagnosed with definite ALS if LMN and 

UMN signs manifest in the bulbar region as well as at least two other regions of the body. 

However, these diagnoses can only be made in the absence of other clinical or electrodiagnostic 

evidence that the signs and symptoms are not caused by another pathological process. Disease 

mimics can be one of the major confounding and complicating factors of the diagnostic process. 

Some common disease mimics of ALS are primary lateral sclerosis (PLS), a motor neuron 

disease only affecting UMN of the body, and progressive muscular atrophy (PMA), which only 

affects the LMN. Other diagnoses which can present with similar symptoms include 

spinocerebellar ataxia, and various neuropathies leading to muscle weakness and ALS-like 

abnormalities.  

As mentioned, one of the major complicating factors in ALS diagnosis is the variable 

presentation of pathological signs. Signs of LMN degeneration include weakness and atrophy of 

muscles, fasciculations, cramps, and loss of reflexes due to muscle loss. Muscle loss can also 

occur in the muscles of respiration – often the cause of death in ALS patients. UMN pathology 

presents in the form of spasticity, brisk reflexes, clonus, and pathological reflexes such as 

Babinski’s sign. Furthermore, there are a number of bulbar-related symptoms such as slurred 

speech, and difficulty swallowing.  Depending on the first symptoms that present, ALS is 

divided into two onset types. Of the roughly 70% of patients present with classic ALS, 33% 

suffer from bulbar onset [van Es, 2017]. This characterised by difficulty with speech and 

swallowing. In contrast, limb onset (66%) is characterised by the weakness and loss of dexterity 
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in the limbs where patients often notice awkwardness in walking or inability to lift objects [van 

Es, 2017]. Additionally, a less common (3%) variant is termed respiratory onset ALS, which 

begins with a degeneration of the muscles of respiration – a symptom that typically develops late 

in the disease process – and is often associated with a poorer prognosis [van Es, 2017].  

1.2. Genetic Contributions 

 ALS patients are split into 2 categories: familial (10%) and sporadic (90%). There have 

been a number of genes that have been identified as being linked to ALS. Among the familial 

ALS patients, roughly 60-80% of patients have an identifiable genetic mutation contributing to 

their development of the disease. The first major genetic factor identified was the SOD1 gene 

and is identified as the predominant cause of disease in 20% of these patients with an identifiable 

genetic component. Other genetic variations that have been identified since include the C9orf72 

which is now known to be the most common genetic factor (40%), TARDBP (1-5%), and FUS 

genes (1-5%) [van Es, 2017; Al-Chalabi, 2012]. Genetic involvement in ALS is also not entirely 

clear. The most common genetic cause of ALS is the C9orf72 mutation which is present in 

roughly 40% of familial cases and 10% of patients labelled as sporadic [van Es, 2017; Swinnen, 

2014]. Furthermore, the immediate family members of these sporadic ALS patients are at an 

increased risk of developing ALS themselves [van Es, 2017]. Genetic studies are also further 

complicated by phenotypic heterogeneity in ALS patients [Swinnen and Robberecht, 2014]. 

Involvement of different genes is spread across the ALS disease spectrum, and while the 

presence of one mutation can be predictive of presenting phenotype it does not guarantee the 

manifestation of it. There has recently been a greater acknowledgement of the overlap in disease 

process and pathology for ALS and FTLD and how they might be linked in their underlying 

genetic contributions [Al-Chalabi, 2012]. Additionally, as previously stated, there are a number 



6 
 

of environmental risk factors that have been identified as potential contributors to the 

manifestation of motor neuron degeneration. There is often an interplay of both genetic and 

environmental factors in the development of any disorder or disease. While someone may carry a 

particular mutation, they may require the presence of any risk factor or stressor for the disease to 

develop. Conversely, a person may live their entire life exposed to one of the previously 

mentioned risk factors and not develop the disease as there was no susceptibility present for 

them. There is a significant interplay between the genetic component and the environmental 

component of ALS that is not entirely understood. This is another complicating factor in the 

diagnostic process, as it is difficult to determine with absolute certainty the cause of a patient’s 

symptoms based solely on the genetic and environmental factors that they have present in their 

life. 
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Figure 2. Representation of variable genetic involvement along the ALS disease spectrum, taken 

from Al-Chalabi et al. (2012). 

1.3. Pathogenesis 

 Little is known for certain about the pathogenesis of ALS. However, ongoing research 

points toward several possible mechanisms leading to cerebral degeneration and progression of 

the disease.  One of these possible mechanisms is glutamate excitotoxicity [Introna, 2018; 

Kumar, 2016]. This process works by a cascading mechanism in which overstimulated cells 

release large amounts of glutamate. Pathologically high levels of glutamate or other excitatory 

molecules which bind to NMDA glutamate receptors can alter intra-cellular levels of Ca2+ ions, 

leading to degenerative processes in the cells [Jaiswal, 2009]. Furthermore, upon death of any 

affected cell, its contents may be released into the extracellular space, triggering an excessive 
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release from neighbouring cells due to receptors on the extracellular membrane [Manev, 1990]. 

This process can lead to spread of cell death via adjacent cells. 

 In addition to the excitotoxic hypothesis, it has been suggested that the involvement of 

mutant Superoxide Dismutase 1 (SOD1) in ALS patients could be harmful in other ways than 

just the lack of functional enzyme. SOD1 is typically involved in apoptotic processes in its 

removal of harmful superoxide products from cells [Sea, 2015]. It has been suggested that the 

SOD1 mutant form found in ALS patients could be toxic to neuronal cells. Furukawa and 

O’Halloran (2005) state that mutant SOD1 is unstable and easily reduced, leading to both an 

inability to perform its enzymatic function and an aggregation of these mutant proteins in the 

cytoplasm of neuronal cells. These cytoplasmic aggregations have been detected on several 

occasions in familial ALS patients [Furukawa, 2005]. It has also been proposed that a possible 

mechanism of ALS pathogenesis is via SOD1 mutated glial cells [Julien, 2007]. Julien’s paper 

goes on to explain that while SOD1 mutation in neuronal cells is more likely involved in disease 

onset, the affected and adjacent microglial and astrocytic cells are involved in the progression 

and exacerbation of the disease process. This might be due in part to reactive oxygen species 

present in the mutant glial cells, but also due to ineffective clearance of glutamate from the 

extracellular space by these astrocytes [Julien, 2007]. 

 One mechanism more recently associated with ALS is the involvement of TDP-43 

protein aggregation. Cytoplasmic TDP-43 inclusions have also been implicated as a point of 

overlap in both ALS and FTD pathology, indicating a link in the pathology for these diseases 

along the spectrum of disorders [Rothstein, 2009]. Furthermore, mutation of the TAR DNA-

binding protein (TARDBP) gene and TDP-43 protein inclusions have been identified in both 

sporadic and familial cases of ALS [Rothstein, 2009]. TDP-43 is a protein most often found in 
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cell nuclei which is involved in RNA transcription and regulation of gene splicing mechanics 

[Mackenzie, 2010]. Mackenzie explains that the typical presentation of TDP-43 abnormalities in 

ALS patients is the presence of cytoplasmic aggregates in the motor cortex and associated fiber 

tracts leading into the spinal cord, and as one might expect in cases of FTLD, these inclusions 

are also found in the frontotemporal cortical regions as well as in some cases the dentate gyrus. 

Apart from inclusions, animal cell models have shown that in the presence of mutant TDP-43, 

muscle strength is reduced with observed motor disturbances [Kraemer, 2010].  

 Similar to TARDBP, recent research has gone into the Fused in Sarcoma (FUS) gene as a 

source of the pathological process in ALS. Mackenzie (2010) states that normally the FUS gene 

is involved in several cellular processes such as “cell proliferation, DNA repair, transcription 

regulation, and RNA and microRNA processing.” In cases where the gene is mutated, much like 

SOD1 and TARDBP, intracellular inclusions are found [Mackenzie, 2010]. Furthermore, Vance 

et al. (2009) state that FUS pathology appears to be widespread, with FUS-mutated patients 

experiencing loss of neuronal cells in the spinal cord, brainstem, and motor cortex. Furthermore, 

this pathology included a spread of inclusions to glial cells, and in some cases there has been 

evidence of mild demyelination [Vance, 2009]. These findings were in the absence of both TDP-

43 protein aggregation and cognitive changes, indicating an independent pathological process.  

 The most common genetic cause of ALS is the chromosome 9 open reading frame 72 

(C9orf72) mutation which is a pathogenic hexanucleotide expansion [Maurel, 2018]. Normal 

function of the healthy protein is not well understood, but the mutation manifests as neuronal 

inclusions which may in turn be toxic to the cells [Maurel, 2018]. As is the case with both SOD1 

and FUS, C9orf72 inclusions are often ubiquitin-positive, and the C9orf72 inclusions are found 

in both brain and skeletal muscle tissue [Maurel, 2018]. Ubiquitination of proteins is a form of 
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post-translational modification which is known to have a role in degradation, but also protein 

binding and interaction [Komander, 2009; Natarajan and Takeda, 2017]. It has been suggested 

that a deregulation of the ubiquitin system in ALS is responsible for progressive degeneration of 

motor neurons, and further that the hexanucleotide expansion in the C9orf72 mutation 

contributes to this impairment of the ubiquitin system [Maurel, 2018]. C9orf72 inclusions have 

also been noted to test positive in the cerebellum, hippocampus, and frontotemporal regions for 

p62, a protein involved in autophagy [Al-Sarraj, 2011; Maurel, 2018].  

1.4. Pathology 

In terms of gross anatomical changes, the brains of ALS patients appear to be largely 

unaffected. Few studies in ALS have detected gross atrophic changes in the brain, though some 

atrophic changes have been reported in the precentral gyrus as detected by post mortem and 

imaging studies [Saberi, 2015; Rajagopalan, 2014; Devine, 2015; Bede, 2013]. Atrophy appears 

to be the most substantial in patients who experience comorbid dementia or cognitive changes 

due to FTLD, in which case atrophic changes are seen in the frontal and temporal lobes of the 

brain [Saberi, 2015; Rajagopalan, 2014; Kim, 2017; Masuda, 2016; Lillo, 2012; Chang, 2005]. 

Furthermore, atrophy is known to occur in the spinal cords of ALS patients [Branco, 2014; 

Saberi, 2015]. Apart from gross atrophy, studies have noted neuronal loss and degeneration in 

the precentral gyri, as well as the CST [Saberi, 2015; Eisen, 2001]. However, degenerative 

processes in the WM of ALS patients seem to be largely microscopic changes rather than gross 

atrophic changes. Saberi (2015), suggests that ALS, on a microscopic level, leads to both 

neuronal and axonal loss. In contrast, reactive astrogliosis – an abnormal increase in astrocytes – 

is known to occur in areas of neuronal loss [Saberi, 2015]. While ALS is not a demyelinating 

disorder, both studies of diffusion imaging and tissue samples have noted pathological changes 
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in CST myelin of ALS patients [Sugiyama, 2013; Chapman, 2014]. Studies including that by 

Stephens et al. (2006) have also noted that there is significant neuronal loss in the ventral horn of 

the spinal cord when compared with healthy controls. Neuronal loss in the spinal cord is 

inclusive of myelinated axons, and this can be visualised in tissue samples using Luxol fast blue 

stains [Saberi, 2015]. Furthermore, they noted that there was a loss of interneurons in the 

dorsomedial quadrant of the spinal cord. Other changes on the cellular level include a loss of 

cortical Betz cells in the precentral gyrus, as well as a degeneration of pyramidal cells in 

medullary regions [Eisen, 2001; Hammer, 1979]. Betz cell loss in the cortex is best seen using 

H&E stains [Saberi, 2015]. Bunina bodies, which are small intracellular inclusions, have also 

been observed in motor neurons of the brain and spinal cord, though their significance is not well 

understood [Saberi, 2015]. Intracellular, ubiquitin-positive inclusions are common in ALS with 

different genetic variants of the disease contributing to this [Al-Chalabi, 2012]. Pathological 

protein aggregations are known to be associated with, SOD1, TARDBP, FUS, and C9orf72 

mutations and can occur throughout the brain [Furukawa, 2005; Rothstein, 2009; Mackenzie, 

2010; Maurel, 2018]. Many of their effects are discussed in Section 1.3. Additionally, in some 

cases ALS patients may present with tau protein pathology in the amygdala and entorhinal 

cortex, though this is more common in patients who develop cognitive impairment [Al-Chalabi, 

2012; Strong, 2006]. Saberi et al. (2015) notes that other forms of pathology seen in ALS are 

cellular changes such as shrinking of neurons, vacuolisation, and spongiosis. However, 

vacuolisation – an increase in large, empty spaces in areas adjacent to neurons that are 

degenerating – is rarely seen apart from in rapidly progressing patients [Tandan and Bradley, 

1985; Saberi, 2015].  
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The spatial distribution of pathological changes in the brain is variable, though the most 

widely recognised degeneration occurs in the motor cortex and the descending motor tracts 

starting at the CST. In cases of cognitive decline, studies have demonstrated degeneration of the 

prefrontal cortex and the temporal lobe [Lillo, 2012; Chang, 2005]. However, detected 

abnormalities in imaging studies can be widespread and can occur in structures such as the 

cerebellum, the thalamus, the basal ganglia, and other deep brain structures [Kim, 2016; de 

Albuquerque, 2016; Masuda, 2016]. Brettschneider et al. (2012) state that apart from the motor 

regions, some of the most common areas of pathology in both ALS and FTLD are the amygdala, 

the hippocampus, the middle frontal gyrus, and the middle and superior temporal gyri. 

Furthermore, extra-motor and subcortical regions seem less affected by neuronal loss compared 

to the motor cortex and spinal cord [Brettschneider, 2012]. Microglial activation, which is 

associated with neuroinflammation, is also known to occur in the motor and extra-motor regions 

of the brain [Brettschneider, 2012]. Additionally, Brettschneider et al. (2012) linked microglial 

activation and TDP-43 pathology in the extra-motor regions to reduced performance on 

neuropsychometric testing. Microglia in the brain act against neuronal distress by releasing 

proinflammatory molecules including reactive oxygen species [Saberi, 2015]. 

Neuroinflammation appears to have both helpful and harmful effects in the brain and can be 

responsible for some degeneration [Saberi, 2015]. Brettschneider et al. (2013) additionally 

proposed a model for the progression of TDP-43 pathology which aims to provide a basis of 

understanding for the spread of this pathology in ALS patients. It begins in the motor cortex and 

brainstem and spreads outward to involve extra-motor regions including the hippocampus.  
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Figure 3. Typical neuropathology seen in sporadic ALS patients compared to healthy controls, taken from Saberi et al. (2015). 

1.5. Clinical Signs of ALS 

As mentioned in the Disease Overview section, there are a number of signs and 

symptoms that are characteristic of UMN and LMN degeneration. One of the most obvious signs 

of LMN degeneration in patients is a general atrophy of muscle tissue. This can lead to cramps, 

or weakness and a loss of dexterity in movement. Many patients will notice an inability to lift 

Figure 3. Typical neuropathology seen in 

sporadic ALS patients compared to healthy 

controls, taken from Saberi et al. (2015). 

Panels A – J are H&E stains. A and C 

demonstrate loss of motor neurons and 

astrogliosis in the spinal cord and motor cortex, 

respectively. E shows shrinking and contraction 

of motor neurons, G shows vacuolisation and 

spongiosis, and I demonstrates the presence of 

Bunina bodies. K and M present staining for 

cystatin c in Bunina bodies and microglial 

activation, respectively. Panels B, D, F, H, J, L, 

and N all show the absence of these pathologies 

in healthy controls. 
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objects or themselves after falls, or they may notice clumsiness in walking. Patients may also 

notice a foot drop in walking which can sometimes lead to tripping. Additionally, this muscle 

weakness can affect the muscles of speech, leading to slurred or nasal speech known as 

dysarthria. Eventually dysarthria can progress to a point of inability to produce speech, in which 

patients require the use of adaptive forms of communication. Furthermore, patients may 

experience difficulty in or an inability to swallow, known as dysphagia. As the disease 

progresses, the muscles of respiration begin to degenerate. As mentioned, respiratory failure is 

often the cause of death in ALS patients. Another sign of LMN degeneration is the appearance of 

fasciculations in the muscles – small, involuntary, and repetitive twitches which are visible at the 

surface of the skin. These are often visible in any of the limbs, and occasionally also in the 

tongue. Physicians may also notice a decrease in reflex response if muscles that support the 

movement begin to degenerate.  

 In contrast, a major sign of UMN degeneration is hyperreflexia – an increased reflex 

response. UMN activity is typically a regulatory mechanism for voluntary and reflexive 

movements, and with a degeneration of these neurons the movements become more exaggerated 

or repetitive. One such repetitive response is clonus. This is identifiable if upon a rapid flexion of 

the wrist or the ankle, the hand or foot jerks back and forth a number of times. Another common 

sign of UMN degeneration in ALS is Babinski’s Sign. In this abnormal response to stimulation 

of the sole of the foot, the normal downward flexion of the big toe is replaced by upward 

extension. A similar pathological reflex also seen in the presence of UMN degeneration is the 

Hoffmann’s Reflex. This is tested by holding underneath the middle finger, pressing down on the 

nail, and allowing it to flick up naturally upon release. If there is a flexion of the terminal joint of 

the thumb on the same hand, this indicates the presence of UMN pathology. Apart from specific 
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abnormal reflexes, other reflexes tested may become pathologically brisk relative to a normal 

response to the same type of stimulation. Unfortunately, reflex measurement can be somewhat 

subjective given that there is variation in the strength of reflex responses between individuals. 

For instance, a healthy subject might have a relatively brisk reflex with no pathology present. In 

addition to hyperreflexia, patients with UMN degeneration may experience spasticity in their 

muscles, which is a constantly increased muscle tone. This can occur in the limbs, but also in the 

muscles of speech and swallowing, further contributing to dysarthria and dysphagia experienced 

due to LMN involvement. Patients who first experience symptoms such as these are 

characterised as limb-onset ALS. 

 In addition to these LMN and UMN signs, ALS can spread into extra-motor areas in 

cases of FTLD. ALS with FTLD is typically separated into two subcategories: ALS with 

behavioural impairment (ALSbi), and ALS with cognitive impairment (ALSci). Cognitive 

impairment-related degeneration in ALS typically affects areas such as the prefrontal cortex 

which can contribute to impaired performance on executive function tasks. Executive function 

involves cognitive processes such as task switching, working memory, attention and inhibitory 

control, and behavioural planning. Specific tasks showing deficits in ALS often include semantic 

and verbal fluency, alternation tasks, and social cognition. Conversely, behavioural impairment 

in ALS is characterised by disinhibition leading to socially inappropriate behaviour, apathy, and 

a general loss of empathy or sympathy [Rascovsky et al. 2011]. These symptoms can typically be 

assessed using behavioural observer checklists as well several social and affect-related 

questionnaires.  

In addition to these motor and cognitive manifestations of the disease, some patients 

experience bulbar dysfunction. Patients who notice this type of symptom first are described as 
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having bulbar-onset ALS. This bulbar involvement in ALS typically manifests as a degeneration 

of the muscles of speech and swallowing. Furthermore, this can include change in levels of 

salivation or a general difficulty with clearing it. This is of particular importance in MRI related 

studies given that for patients who experience a large amount of salivation. Combined with 

difficulty swallowing, it can be difficult to lay still for an extended period of time without risking 

choking, or at the very least some significant movement in order to clear it. For that reason, there 

is an unintentional bias toward recruiting patients with less bulbar involvement in MRI studies. 

A slightly rarer manifestation of bulbar degeneration in ALS is in the instance of corticobulbar 

degeneration. In these cases, patients may experience symptoms of pseudo-bulbar affect. These 

symptoms include inappropriate and uncontrollable laughter or crying [Demler, 2017].  

1.6. Treatment and Management 

 Currently, there is no cure for ALS. Furthermore, there is only one drug currently 

prescribed to ALS patients. Riluzole acts by blocking excitatory action of glutamate with the 

goal of minimizing excitotoxic activity [Martin, 1993]. Glutamate is one of the major excitatory 

neurotransmitters of the brain, and excess release can lead to excitotoxic activity leading to cell 

death [Jaiswal, 2009, Manev, 1990]. Riluzole has been shown to have modest success at slowing 

disease progression, though these results have been inconsistent [Keating, 2016]. Keating (2016) 

details a number of studies of riluzole which show varied success, though results show the drug 

slowing progression by 4-19 months on average. In addition, a newer drug called edaravone has 

been recently approved by the Food and Drug Administration [Introna, 2018]. A number of other 

clinical drug trials have screened possible strategies for managing the disease, but few have had 

any greater success [Kumar, 2016]. Thus, much of the disease management for ALS is a process 
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of maintaining patient quality of life in the degenerative process. Due to weakness in the 

respiratory muscles, many patients require ventilators such as BIPAP machines.  

1.7. Need for Biomarkers 

 ALS is in desperate need of a biomarker – some form of measure which can indicate a 

departure from normal physiological process. An ideal biomarker candidate is something that 

can objectively measure presence and progression of pathology with little experimental error. 

They can be anything from blood, urine, or CSF content to neuroimaging-based sources. The 

best method currently used to track disease progression is the ALSFRS-R scale, which typically 

shows a decreasing trend of 1 point per month. However, the ALSFRS-R is primarily a measure 

of dysfunction related to LMN involvement and can also be somewhat subjective. Moreover, the 

ALSFRS-R is not a diagnostic test and still requires clinical examination to determine ALS to be 

the cause of symptoms. Thus, it does not meet the requirements of being a biomarker. There are 

several current biomarker candidates for ALS, though none of these have been – as of yet – fully 

validated. One of the most promising candidates is CSF neurofilament content. Neurofilaments 

are an important factor in axonal integrity, and their dysfunction is thought to be involved in the 

degeneration of motor neurons [Turner, 2009]. Elevated CSF neurofilament content is seen in 

ALS patients when compared to healthy controls and even disease mimics [Turner, 2009]. 

Additionally, while some studies have examined change in neurofilament levels over time, more 

research must be done to determine if they can reliably be used as a measure of disease 

progression [Vu and Bowser, 2017]. Though this is a promising biomarker with relatively high 

sensitivity and specificity for diagnosis, taking CSF samples is rather invasive and there may be 

a risk of infection. Perhaps less invasively, neurofilament levels can also be measured through 

blood samples, which can also be of use for the prognosis of disease progression rate and 
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survival [Vu and Bowser, 2017]. Blood and CSF can also be used to measure levels of 

inflammatory factors and MicroRNAs, and while these can be linked to disease presence, they do 

not yet offer any substantial improvement of sensitivity and specificity [Turner, 2009; Vu and 

Bowser, 2017]. Urine content may also be a novel and non-invasive source of biomarkers [Vu 

and Bowser, 2017]. One of the more recent and promising candidates is neurotrophin receptor 

p75 (p75NTR) which is known as a regulator of cell survival [Shepheard, 2014]. Shepheard et al. 

(2014) suggest that p75NTR appears in increased levels in the urine of ALS patients and also 

correlates with disease progression and severity measured by ALSFRS-R. However, p75NTR 

has not yet been studied in great detail and requires further testing. Neuroimaging has been seen 

recently as a new and exciting source of biomarkers for ALS. Techniques such as VBM and DTI 

have been used to examine structural degeneration in the brain [Prudlo, 2012; Masuda, 2016; 

Rajagopalan, 2014; Bede, 2013]. Despite high costs of operation and limited availability in some 

centres, MRI is minimally invasive and relatively easy to implement in clinic. This makes it an 

appealing source of biomarkers. Electrodiagnostic tests such as electromyography (EMG) have 

also been recognised as a means to study LMN burden at the level of the muscle fibre [de 

Carvalho and Swash, 2011]. EMG along with another technique called electrical impedence 

myometry have been suggested to be potential measures of survival and disease progression, 

respectively, though more research must be done to validate them as biomarkers of the disease 

[de Carvalho and Swash, 2011]. Objective measures allow for diagnoses to be made more 

quickly and with greater certainty. Additionally, biomarkers allow for more effective monitoring 

of disease progression which is crucial in the development of new treatment strategies – namely 

in drug trials. In the case of ALS, drug trials can only include patients once they have been 

diagnosed, something that often only occurs a year or more after symptom onset. This means that 
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the pathology has already progressed significantly. If a truly effective biomarker is found for 

ALS it would allow an earlier diagnosis, and thus an earlier initiation of drug trials with the 

potential of catching the disease at a point of vulnerability to treatment. Furthermore, biomarkers 

enable the implementation of drug trials with less participants involved. This is based on the 

consideration that a biomarker would reduce experimental error, which in turn reduces the 

numbers required for meaningful statistical results. 
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2. Magnetic Resonance Imaging in ALS 

2.1. Structural Imaging 

 MRI imaging works on the premise of exciting the protons in the imaged tissues using a 

radio frequency pulse in a strong magnetic field, and then examining the varying rates at which 

these molecules relax back to their initial state [Jackson, 1997]. These different rates of 

relaxation are what allows a differentiation between tissue types in the body based on their 

respective compositions. In structural MRI different relaxation properties of individual tissue 

types contribute to the image contrast acquired [Jackson, 1997]. T1 relaxation refers to the 

reorientation of the protons resulting in a recovery of longitudinal magnetisation [Preston, 2006]. 

In contrast, T2 relaxation is the desynchronization of proton spins resulting in the decay of 

transverse magnetisation [Preston, 2006]. Image acquisition parameters can be manipulated in 

order to emphasize either of these two types of relaxation in the image. Repetition time (TR) and 

echo time (TE) are the two main factors manipulated by technologists in order to obtain different 

types of structural images [Jackson, 1997]. For brain imaging, there are several forms of standard 

structural imaging techniques which are effective at analysing anatomy and pathology. T1-

weighted images are acquired using a short TR and TE and are excellent for imaging of anatomy 

as they are the most representative of the way tissues appear macroscopically in the brain 

[Preston, 2006, Abdulla, 2017]. T2-weighted images are acquired using a long TR and TE, and 

they are useful for examining pathology and lesions associated with increased water content such 

as hemorrhaging [Preston, 2006; Abdulla, 2017]. An even longer TR and TE produces a fluid 

attenuated inversion recovery (FLAIR) image in which pathological abnormalities appear bright 

while CSF appears darker [Preston, 2006]. Proton density (PD) weighted images use a mixture of 

long TR and short TE in order to obtain a clear tissue contrast with defined, visible lesions, 
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though they have been more or less replaced by FLAIR [Jones, 2016; Abdulla, 2017]. Structural 

imaging can be quite useful in the diagnostic process for different types of pathology. For 

instance, PD weighted, T2-weighted, and associated sequences are very effective at detecting 

pathological lesions in multiple sclerosis (MS) patients which appear as hyperintense regions in 

the image [Maggi, 2018; Rashid, 2008].  

 

Figure 4. MS lesions as detected by neuroimaging – images extracted from Rashid et al. (2008). A) 

Lesions appear as hyperintense regions in PD weighted images. B) Lesions appear as hypointensities in 

T1 image. 

T1-weighted images are useful for examining the relatively overt atrophic degeneration 

seen in Alzheimer’s disease (AD) patients [Jack Jr., 2008; Dustin, 2016], but it is also possible to 

see MS lesions on these images presenting as hypointensities in this case [Rashid, 2008]. 
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Figure 5. Alzheimer’s disease pathology compared with healthy control in T1-weighted imaging – 

taken from Dustin et al. (2016). Coloured regions trace the different hippocampal subfields and are 

meant to demonstrate atrophy of these regions. A) T1 scan of healthy control with ROIs for medial 

temporal lobe volumetric measurements. B) T1 scan of AD patient demonstrating significant medial 

temporal lobe – and global – atrophy.  

In contrast to these neurological disorders, ALS patients inconsistently show any 

differences from healthy controls on conventional structural imaging. Some studies have 

demonstrated signal intensity changes in the CST on T1 and T2 images [Hecht, 2001; Chio, 

2014; Waragai, 1997]. More specifically, Keller et al. (2011) state that there have been instances 

of hyperintensities in the posterior limb of the internal capsule detected in T2 and FLAIR 

images. In some cases, ALS patients may also present with hypointense rims around the 

precentral gyrus using T2 images [Chio, 2014; Keller, 2010]. Furthermore, in the examination of 

T1 and T2 images, it is not uncommon that no signal intensity changes are present at all. Hecht et 

al. (2001) note that T1 signal intensity changes were present in only 3 of 31 total ALS patients, 

compared to detected hypointensities in 20 healthy controls. They state that FLAIR images were 

more consistently able to detect signal intensity changes in patients, though these changes are 

also present in a number of healthy controls [Hecht, 2001]. The presence of signal intensity 

changes in healthy controls greatly reduces specificity and is problematic for the employment of 
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conventional structural imaging sequences as a means of diagnosis [Kalra and Arnold, 2003; 

Hecht, 2001; Abe, 1993]. Sensitivity and specificity in structural imaging studies are variable, 

but they are most often moderate to low in value [Grosskreutz, 2008; Kalra and Arnold, 2003; 

Kassubek, 2012]. Gupta, et al. (2014) report an overall sensitivity and specificity for CST 

hyperintensity of 48% and 76%, respectively, using conventional sequences. Depending on the 

portion of the CST in question, specificity values ranged from 32-92%. While signal intensity 

changes may be indicative of ALS pathology, they cannot be used as a firm or reliable diagnostic 

tool [Chio, 2014; Keller, 2010]. Physician examination of structural images may also introduce a 

certain level of subjectivity. For these reasons, structural MRI sequences are employed in the 

diagnostic process only as a means to rule out other causes of pathology [Chio, 2014; Kassubek, 

2012].  
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Figure 6. ALS patients compared with healthy controls in various conventional MRI sequences, 

taken from Hecht et al. (2001). Panels 1A and 1C demonstrate hyperintensities in FLAIR images of ALS 

patients in the precentral gyrus and the insula, respectively. 1D shows T2 hypointensity at the precentral 

gyrus. 1F and 1G are images of the same patient showing T1 isointensity and FLAIR hyperintensity of 

the internal capsule, respectively. Panels 1B and 1E are FLAIR and T1 images, respectively, of healthy 

controls.  
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2.2. Alternative Imaging Sequences and Image Analysis Tools 

 Apart from standard structural imaging sequences, many studies have examined 

sequences and analysis tools developed to explore other aspects of ALS pathology. Susceptibility 

weighted imaging (SWI) is used to image iron levels in imaged tissue. In the brain, abnormal 

iron deposits can cause inflammation, oxidative damage, and activation of microglia [Prell, 

2015]. Increased iron levels have been known to occur in a number of neurodegenerative 

diseases including Alzheimer’s, Parkinson’s, and ALS [Mittal, 2009].  One study of SWI in ALS 

patients detected abnormal iron levels along the CST from the precentral gyrus to the posterior 

limb of the internal capsule [Prell, 2015]. Furthermore, these detected iron abnormalities were 

seen in other white matter structures including the corpus callosum and the superior longitudinal 

fasciculus [Prell, 2015]. One additional study demonstrated that abnormal iron levels can also be 

detected the motor cortex [Yu, 2014].  

Another imaging sequence that can be used to examine pathology in the brain is diffusion 

weighted imaging (DWI), or its derivative diffusion tensor imaging (DTI). Diffusion imaging 

works on the premise of examining the diffusion of water molecules in the WM of the brain. 

Measured changes in diffusion properties can be indicative of pathological degeneration of WM 

structures. Some diffusion metrics of particular interest are fractional anisotropy (FA), axial 

diffusivity (AD), and radial diffusivity (RD). FA measures how unidirectional water diffusion is 

while AD and RD measure diffusion parallel to and perpendicular to the main direction of 

diffusion, respectively. FA can be linked to various pathological processes, but decreased AD is 

thought to be related to axonal degeneration and increased RD has been linked to a loss of 

myelin in the WM [Alexander, 2007]. In ALS patients, a number of studies have reported 

decreased FA and increased RD along the CST [Prudlo, 2012; Masuda, 2016; Bastin, 2013; 
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Muller, 2016; Sarica, 2017]. Cardenas-Blanco et al. (2016) also state that FA was able to 

strongly demonstrate disease progression in ALS with FA being highly influenced by RD values. 

Studies using DTI in ALS have used both deterministic and probabilistic tractography, with both 

demonstrating degeneration in the CST as well as other WM structures such as the stria 

terminalis, corpus callosum, and the subcortical WM of the caudate [Prudlo, 2012; Masuda, 

2016; Bastin, 2013; Muller, 2016; Sarica, 2017; Cardenas-Blanco, 2016; Lillo, 2012].   

 

Figure 7. Significant areas of WM degeneration as detected by large multicentre study of diffusion 

imaging in ALS – taken from Muller et al. (2016). 

While diffusion imaging techniques are used to examine WM in the brain, voxel-based 

morphometry (VBM) and cortical thickness are used to study the GM. Cortical thickness is self-

explanatory, but VBM can measure either GM density or volume – though the default is 



27 
 

typically density. Significant reductions in both GM density and volume have been reported in 

the motor cortex of ALS pure patients [Rajagopalan, 2014; Devine, 2015; Bede, 2013]. 

Furthermore, this detected GM degeneration is more diffuse and moves into frontotemporal 

regions such as the prefrontal and orbitofrontal cortices, and the temporal poles in cases of 

patients with cognitive impairment [Rajagopalan, 2014; Kim, 2017; Masuda, 2016; Lillo, 2012; 

Chang, 2005]. Kim et al. (2017) examined differences in GM reduction based on onset type and 

found that bulbar onset patients showed a similar pattern of distribution, though their atrophy 

was more severe. Cortical thickness studies have been inconsistent in detected degeneration, but 

several have noted significant reductions of cortical thickness in the motor cortex of ALS 

patients [Rajagopalan, 2014; Rajagopalan, 2015]. These analysis tools are useful in the 

examination of patterns of GM and WM degeneration in ALS patients, but they have yet to be 

refined as methods to accurately and consistently differentiate ALS from mimic diseases. Thus, 

they cannot yet be considered as biomarkers for ALS. VBM, cortical thickness and DTI are also 

limited by their examination of only one tissue type at a time.  
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Figure 8. Areas of significant reduction in GM volumes for ALS and ALS-FTD patients – taken 

from Chang et al. (2005). Red regions are representative of significant patient-control differences. 

 In addition to these analysis tools for structural imaging sequences, other studies have 

looked to functional MRI (fMRI) in order to examine degeneration in the brain. Cerebral 

degeneration in fMRI would be measured as a disruption of functional networks such as the 

default mode network (DMN). Chio et al. (2014) examine the results of papers targeting resting-

state fMRI. They detail several accounts in which there is altered connectivity in sensorimotor 

network, and extra-motor networks related to cognition and behaviour (2014). During task-based 

paradigms ALS patients demonstrate increased recruitment of premotor and supplementary 

motor areas for the same types of tasks – likely to compensate for degeneration of the motor 

cortex [Chio, 2014]. In addition to motor tasks, activation is altered during tasks related to 

language, executive function, and normal social-emotional function [Chio, 2014; Abrahams, 

2004; Lulé, 2007]. 
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 One further MRI-based tool used to examine the brain in ALS patients is proton magnetic 

resonance spectroscopy (1H-MRS), which examines the levels of metabolites in the brain. These 

metabolites can be indicative of neuronal health, as well as possible imbalances leading to 

pathology. MRS results have been variable in previous literature. Rooney et al. (1998) found 

NAA/(Cho+Cr) ratio to be reduced in the motor cortex, as well as the centrum semiovale and the 

internal capsule in the CST. Furthermore, they found that the ratio reductions in the motor cortex 

to be correlated with maximum finger tapping [Rooney, 1998]. Sivák et al. (2010) found 

significant differences in NAA/Cr ratio in the precentral gyrus, though no significant differences 

elsewhere or using other metabolite ratios. They make reference to a study by Chan et al. (1999) 

in which patients with purely UMN pathology (PLS) or more advanced ALS would present with 

reduced metabolite levels in the motor cortex. In contrast, patients with purely LMN syndromes 

did not show any significant differences [Chan, 1999]. Sivák et al. (2010) suggest that a lack of 

change in metabolite levels in ALS patients could be due to a mixed syndrome which hasn’t yet 

progressed to substantial UMN involvement.  

 A final type of imaging used as a marker of degeneration in ALS is radiotracer-based 

imaging which includes both positron emission tomography (PET) and single-photon emission 

computed tomography (SPECT). F-fluorodeoxyglucose (F-FDG)-PET can be used as part of the 

diagnostic process of ALS and has been proposed as a diagnostic biomarker [van Es, 2017]. In 

ALS patients, there is a widespread decrease in glucose metabolism which affects areas 

including the motor cortex, extra-motor regions of the cortex, and the basal ganglia [van Es, 

2017; Chio, 2014]. Furthermore, studies have noted hypermetabolism in the brainstem which 

could be indicative of reactive astrogliosis surrounding degenerating descending motor tracts 

[van Es, 2017; Chio, 2014].  Tanaka et al. (1993) examined oxygen metabolism using 15O-PET 
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and found that cerebral oxygen metabolism was reduced in ALS patients compared to controls, 

though it was not statistically significant. However, they found that this hypometabolism was 

significant in the frontal and temporal lobes of patients suffering from comorbid dementia when 

compared to patients with only motor degeneration (Tanaka, 1993). Abe et al. (1993) performed 

a study using SPECT to examine the extent of cerebral degeneration in ALS and how that 

corresponds to cognitive impairment. They determined that patients with greater spatial extent of 

reduced metabolism as measured by SPECT – hypometabolism moving into frontotemporal 

regions from the motor cortex – corresponded with patients who had greater cognitive 

impairment [Abe, 1993].  

2.3. Texture Analysis 

 Texture Analysis is an image analysis tool which was developed initially for pattern 

recognition in aerial landscape photos [Darling, 1968; Kassner, 2010]. However, more recently 

the scientific community has regained interest in texture as a means to assess medical images. 

Texture itself is traditionally defined as the feel or consistency of an object. However, in the 

context of imaging, texture is a quantification of the regional relationships of grey level 

intensities in an image. Intensity is simply how bright or dark a given pixel (2D) or voxel (3D) is. 

In medical imaging, the raw intensity value is indicative of the type of tissue being imaged, or it 

can also indicate the presence of pathology as seen in structural imaging studies [Maggi, 2018; 

Rashid, 2008; Hecht, 2001; Keller, 2010]. However, visual assessment of image intensities relies 

on a certain level of subjectivity. This subjectivity is theoretically eliminated with texture 

calculation based on intensity values. Different texture features are calculated using 

mathematical equations which consider grey level homogeneity, contrast, and a number of other 

qualities within a set radius from a seed point. In a medical image, each pixel or voxel acts as a 
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seed for these calculations. There have been a number of different methods for texture 

calculation.  

 

Figure 9. Demonstration of how T1 images are altered visually by calculation of various texture 

features. Top images are of a single control, and bottom images are of a single patient. From left to right, 

both rows consist of a T1-weighted image and texture features autoc, contr, and energ, respectively. 

Differences are difficult to see on visual inspection, though they are most visible in the CST. 

Kassner (2010) details the three most common forms of texture features, the first of 

which being syntactic texture features. Syntactic features identify “fundamental elements of the 

image, which are then linked through syntax,” and while there are potential applications to brain 

volumetry and surface mapping there has been little use in medical imaging [Kassner, 2010]. 

Spectral features are another one of these feature types and are used primarily to detect larger 

scale or coarse changes in an image [Kassner, 2010]. The final type – also the most popular and 

successful among medical imaging studies – is statistical features which are inclusive of first 

order features (ex. MGL and VGL), and second order features which are extracted from grey 

level co-occurrence matrices (GLCM) or run length matrices (RLM) [Kassner, 2010; Maani, 

2015]. GLCMs work by tabulating grey level values in a matrix and calculating various 

interrelationships between those intensity values, whereas RLMs work by calculating the number 
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of times the same intensity value occurs in a row along a vector moving away from a seed point 

[Kassner, 2010]. Both of these can be useful in examining how brain tissue can change with 

pathology, as they can detect even slight variations in how neighbouring pixels and voxels 

appear in relation to each other.  

 

Figure 10. Graphic representation of a basic 3x3 GLCM design – taken from Kassner and 

Thornhill, (2010). 
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 GLCM features have been used to examine cerebral pathology for a number of different 

conditions. Bonhila et al. (2003) used MAZDA software to examine hippocampal sclerosis in 

medial temporal lobe epilepsy patients. They determined that TA of FLAIR images detected this 

sclerotic pathology using nearly all of the features examined, and that this detected pathology 

was consistent with histological evidence for each patient [Bonhila, 2003]. Additionally, Sankar 

et al. (2008) implemented TA as a means to study different tissue properties in temporal lobe 

epilepsy patients. They determined that TA was more sensitive than conventional MRI visual 

assessment and volumetry for the detection of pathological signs such as temporopolar blurring 

[Sankar, 2008]. Further applications in epilepsy include work by Antel et al. (2003) who were 

investigating GLCM-based texture abnormalities associated with focal cortical dysplasia (FCD). 

Based on their analysis, the GLCM features were able to detect pathological lesions with 83% 

sensitivity, compared to a 61% sensitivity by a standard visual assessment [Antel, 2003]. While 

neither method resulted in misclassification – 100% specificity in both cases – an increased 

sensitivity is useful in presurgical planning to help control the condition [Antel, 2003]. TA has 

also been applied in the differentiation of glioblastoma phenotypes. Chaddad and Tanougast 

(2016) performed GLCM-based TA on T1 and FLAIR images to determine whether texture is 

indicative of phenotype and survival. They found that each of 22 examined texture features 

detected significant differences between phenotypes, and they were able to discriminate with 

high sensitivity and specificity [Chaddad and Tanougast, 2016]. Furthermore, seven of these 

features were predictive of survival for each respective phenotype [Chaddad and Tanougast, 

2016].  

 Neurodegenerative disorders have also previously been a target of study using TA. Sikio 

et al. (2015) used four texture features in MAZDA to look at patterns of cerebral degeneration 
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associated with Parkinson’s disease, and how longitudinal texture changes are associated with 

clinical measures of disease progression. They found significant differences in patients located in 

areas including the substantia nigra, the pons, and the basal ganglia [Sikio, 2015]. Additionally, 

they determined that longitudinal change was present in the thalamus and basal ganglia, and that 

texture changes correlated with MMSE and UPDRS scores [Sikio, 2015].  Dementia has also 

been a point of interest for TA. Oppedal et al. (2015) used local binary pattern (LBP) texture 

features for classification of Lewy Body dementia and Alzheimer’s disease. Performance was 

relatively good with classification as accurate as 0.74 when only factoring in the two, and 0.87 

when also factoring in healthy controls [Oppedal, 2015]. Sørensen et al. (2016) used 

hippocampal texture as a classifier for early detection of Alzheimer’s disease. Support vector 

machine was able to differentiate AD from healthy controls with an AUC of 0.912, and MCI 

from control at 0.764 [Sørensen, 2016]. Furthermore, when combined with hippocampal volume 

this classification improved to 0.915 and 0.806, respectively, lending support to both texture 

itself and a multimodal approach to diagnosis [Sørensen, 2016]. In addition to these 

classifications, TA has been used to study patterns of cerebral degeneration associated with AD 

noting significant pathological change spreading outward from the hippocampus [Maani, 2015]. 

Other neurodegenerative disorders targeted include Huntington’s disease and MS. Doan et al. 

(2014) used GLCM texture features to assess cerebral change associated with Huntington’s 

disease, and found significant texture abnormalities localised to the basal ganglia, thalamus, and 

hippocampus. They further noted that there were significant texture abnormalities present in 

premanifest patients, indicating TA’s ability to detect cerebral change before manifestation of 

symptoms [Doan, 2014]. In the case of MS, studies have looked at TA’s ability to assess 

pathological lesions in the brain. Early works by Yu et al. (1999) determined that TA had the 
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ability to define whether or not a lesion was active with high sensitivity and specificity. TA’s 

success here is important as its implementation to identify active lesions would minimize use of 

gadolinium injections [Yu, 1999]. 

 ALS, thus far, has only been studied twice in published works using texture. de 

Albuquerque et al. (2016) used a 2D, ROI-based approach to study pathological change in the 

deep grey nuclei. The study sample was made up of 8 bulbar onset and 25 limb onset patients, 

and they used eleven GLCM-based texture features for their analysis [de Albuquerque, 2016]. 

This analysis found significant patient-control differences to be located bilaterally in the 

thalamus, and in the right caudate. They also used texture as a classifier for ALS patients versus 

controls to relatively good success with peak performance being 81.25% sensitivity and 56.25% 

specificity. The other study of ALS patients was a 3D whole-brain analysis of GLCM features as 

a measure of cerebral degeneration [Maani, 2016]. Of four features calculated, all detected 

significant texture abnormalities in the precentral gyrus and the CST, and two features detected 

additional changes in the cingulum, thalamus and hippocampus [Maani, 2016]. The texture 

abnormalities detected had high sensitivity and specificity – the best of which having AUC 

values greater than 0.9 [Maani, 2016]. Additionally, feature Svar in the right CST correlated 

negatively with right-hand finger tapping, and all features correlated negatively with symptom 

duration [Maani, 2016]. Both of these previous studies in ALS as well as applications to other 

pathological processes provide promising evidence for TA being an effective and objective 

measure of disease presence and progression.  

 

 



36 
 

3. Rationale for Thesis 

 As previously described, ALS is a highly heterogeneous and aggressive degenerative 

disorder. The current diagnostic process is long and complicated. Not only would a biomarker 

for ALS facilitate diagnosis, but an earlier diagnosis will also allow for earlier initiation of drug 

trials when the pathological process is potentially more amenable to treatment. Furthermore, 

biomarkers allow for the tracking of disease progression, thereby allowing for an objective 

measure of whether or not a drug trial is offering any improvement in the patient’s condition. An 

earlier diagnosis would also allow for a more rapid implementation of any treatment with the 

goal of improving patient quality of life. TA holds promise as a potential biomarker of cerebral 

degeneration in ALS. Previous studies using TA have examined different diseases including 

temporal lobe epilepsy, Alzheimer’s disease, and glioblastoma, all showing a strong 

discrimination between patients and controls or pathological phenotypes [Bonhila, 2003; Antel, 

2003; Sikio, 2015; Oppedal, 2015; Sørensen, 2016; Chaddad and Tanougast, 2016]. In addition, 

TA has been applied to ALS in two previous studies. One of these studies examined deep grey 

structures using a 2D, ROI based analysis [de Albuquerque, 2016], and one examined cerebral 

degeneration using a 3D, whole-brain analysis [Maani, 2016]. Both of these studies report that 

TA was excellent in terms of its ability to differentiate between patients with ALS and controls 

[de Albuquerque, 2016; Maani, 2016]. The present study looks to examine cerebral degeneration 

in ALS and replicate previous findings using data collected prospectively from multiple centres. 

A major benefit of TA is that it uses routine clinical scans that are acquired during the diagnostic 

process of the disease. These routine scans typically show few differences between ALS patients 

and healthy controls. However, as has been shown in previous studies, TA effective at examining 

cerebral degeneration in both GM and WM structures [de Albuquerque, 2016; Maani, 2016]. 
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One of the major goals was to examine areas of degeneration as detected by texture 

abnormalities in a cross-sectional analysis, both in areas of known pathology such as the 

precentral gyri and the corticospinal tracts, but also in areas that may not be expected. In addition 

to this, the present study aimed to show that TA is a reliable and objective measure regardless of 

the site of acquisition – or more specifically, the scanner used to acquire the images. This project 

hoped to examine patterns of cerebral degeneration primarily using a pooled sample from all 

sites of acquisition, but also to look at these sites individually. Finally, this project hoped to 

examine the relevance of any detected degeneration to the overt impairment seen in clinic. To do 

this, extracted texture values were compared with clinical measures of degeneration such as 

finger and foot tapping scores.  

 

The hypotheses for the thesis project as a whole were as follows: 

1. TA will detect cerebral degeneration in ALS patients when compared to controls. 

2. Texture abnormalities will be present in pathologically relevant GM and WM regions of 

the brain including both motor and extra-motor areas. 

3. Texture is a reliable and reproducible measure between sites of acquisition. 

4. Texture abnormalities will be consistent across all sites of acquisition in cross-sectional 

analyses. 

5. Detected pathology in motor regions of the brain will correlate with clinical measures of 

disease-related impairment.  
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4. Preliminary Analyses 

4.1. Optimising Pipeline 

 The initial stage of data analysis involved a large amount of troubleshooting. A major 

consideration in the processing pipeline was that each step was tailored to use with a particular 

version of their respective software. The software versions present on the computer I was using 

were not consistent with those that were ultimately required. This led to some processing 

mismatches. The most significant of these issues was a mismatch in preprocessed files, masks, 

and the deformation fields used to subsequently normalise the texture maps into MNI space. The 

automation of the mask creation process was run using a batching script in Python. However, the 

script was written for a different version of the software than the version running on my 

computer, leading to an issue in properly executing the task. This subsequently led to improper 

pairing of masks with bias corrected images meaning that texture feature extraction was 

performed in the masked space of the wrong subject. This mismatch presented as diffuse 

abnormalities throughout the whole brain. Most peculiarly, there was a very large cluster group 

around the base and outside of the cerebellum, and the rest of the results carried no biological 

validity to them.  Because of this mismatch, texture calculations for a number of subjects 

included ventricular space and areas outside the brain. The mismatch was rectified by 

uninstalling all the software, and subsequently reinstalling the versions required. 

4.2. Refining Analysis Techniques 

 Subsequent processing of data was more successful with the results showing significant 

texture differences between ALS patients and controls in pathologically relevant areas. Cross-

sectional group comparisons of each of the individual sites were run, as well as a pooled analysis 

of subjects from all sites. These were both carried out using 2-sample t-tests which took into 
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account participant age as a covariate so as to remove any confounding texture abnormalities that 

were present due to normal, healthy aging processes. Texture abnormalities were variable 

between sites of acquisition with significant patient-control differences occurring in the CST, the 

PCG, and several other GM and WM structures throughout the brain. Results here were more 

promising and demonstrated changes that were relevant to the disease based on accepted 

literature. 

4.3. Tuning Inter-Site Corrections 

 After ensuring that the processing pipeline was working properly, I decided that it would 

be important to correct for differences between sites of image acquisition. This was added into 

the t-test analysis as a covariate in the pooled-samples model alongside participant age. It wasn’t 

possible to add a categorical variable in as a factor in the t-test, so it was added here as a 

continuous value – each site having its own value from 1-4. The addition of this controlling 

factor helped to remove some of the noise present in the previous version of the analysis.  

However, it was subsequently decided that in order to ensure proper statistical protocol, 

site of acquisition needed to be controlled for by way of a full factorial model. Thus, the pooled 

sample cross-sectional analysis was rerun using a full factorial analysis that included site of 

acquisition and diagnosis as the main factors of the analysis. In addition to this, age and brain 

parenchymal fraction (BPF) were included as covariates. BPF is recognised as a measure of 

global brain atrophy and is calculated as the ratio of the combined GM and WM volumes to the 

total intracranial volume. It was thought that controlling for BPF in this analysis would allow for 

us to examine change in the brain that is not associated with atrophy. Following this adjustment 

to the statistical model, BPF was added as a covariate for each site’s individual analysis as well. 
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4.4. ACPC Realignment 

 The final adjustment made to the processing pipeline was realignment to ACPC 

orientation. Despite this being the desired orientation for the images upon acquisition, a number 

of them were off to some degree. Normally this issue would be resolved by registration in 

analyses such as VBM. However, due to the fact that TA is calculated in the image native space 

within a matrix of predefined orientation, it becomes necessary to ensure as much consistency in 

image alignment prior to actual processing. Therefore, this realignment was added onto the 

analysis for each individual as the first step of processing after conversion of the raw DICOM 

images to Niftii format. 

4.5. A-Priori ROI Correlations 

 One of my initial hypotheses involved the correlation of texture changes in specific 

structures of known pathology in ALS. These structures were the precentral gyri and the 

corticospinal tracts. These structures were selected from a literature-based train of reasoning that 

pointed toward this type of focal pathology. FSL was used to extract masks of these two 

structures with atlases as a guide. The CST masks were created with the Jülich Histological Atlas 

and the precentral gyrus masks were extracted from the Automatic Anatomical Labelling (AAL) 

brain atlas. These masks were extracted both unilaterally (L and R individually) and bilaterally. 

These masks were created slightly larger than the structure of interest to control for mild 

individual differences in the MNI space. However, the CST and PCG masks were subtracted 

from each other to ensure no overlap of GM and WM in the extracted values. This was done with 

the understanding that GM and WM might behave differently in texture calculations, and any 

overlap of these areas should be mitigated prior to analysis. Seven features were examined in this 

analysis. The values extracted from these ROIs were analysed using partial correlations to 
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control for both age and site in the model. Correlations with contralateral finger tapping, 

contralateral foot tapping, UMN total score, ALSFRS-R, and BPF were examined. Results here 

were deemed to be significant at P<0.05. 

 The results of this analysis showed that two of the seven calculated texture features were 

significantly correlated with either contralateral finger tapping or contralateral foot tapping. No 

features significantly correlated with UMN burden total score in the examined ROIs. However, 

five features correlated with BPF in at least one ROI. No ROIs correlated significantly with 

ALSFRS-R in the pooled sample. The results are summarised in Table 1. It was decided after 

this analysis that using an ROI created based on any significant differences discovered by the full 

factorial model in the motor regions of the brain would be more representative of the objectives 

of the project. The hypothesis that this decision was based on was that the detected areas of 

significant change in the large sample would be more representative of the pathology 

contributing to any clinical measure of UMN degeneration.   
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Table 1. Significant correlations between pooled-sample texture feature values and clinical measures 

of disease severity. Correlations between texture feature values and clinical measures of finger tapping, 

foot tapping, and UMN burden, and BPF are shown. Seven features were examined in an ROI-based 

analysis of the precentral gyri (PCG), the corticospinal tracts (CST). Tapping scores were examined in 

comparison with texture in contralateral structures (eg. Right finger tapping with Left PCG) while UMN 

burden and BPF were compared to bilateral ROIs. 

Correlate Feature ROI (n) P-value 
Correlation 

coefficient (r)  

Contralateral 

finger tapping 

autoc PCG 112 0.0474 0.191 

cprom PCG 112 0.0060 0.262 

Contralateral 

foot tapping 
cprom PCG 100 0.0478 0.203 

BPF 

corrp PCG 64 0.0274 0.285 

cprom CST 64 0.0273 -0.285 

cshad PCG 64 0.0491 0.255 

energ PCG 64 0.0021 0.390 

indnc 
CST 64 0.0021 0.390 

PCG 64 <0.0001 0.670 

  

4.6. Controlling for Site, Scanner, or Both 

 One of the major considerations in the analysis was how to correct for image acquisition 

at multiple sites. Studies suggest that multicentre data acquisition with MRI can be prone to 

significant differences due to hardware differences [Takao, 2013; Focke, 2011]. In the 

acquisition of data for the present study, two different scanner platforms were used. For this 

reason, it was important in the analysis to do everything possible to control for any effect of 

scanner difference. The initial thought was that controlling for site of acquisition would be the 

most careful way of examining the effect of diagnosis. However, given that this study is 

examining patients with ALS – a notoriously heterogeneous disease – it was thought that 

controlling for MRI scanner platform might be an accurate way of controlling for acquisition 
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differences while minimising effects of heterogeneity. Based on glass brain representation, the 

results are marginally different when controlling by site compared to controlling by scanner 

platform. It was then thought that perhaps to be the most mindful of these differences, it would 

be best to control for both scanner and site. When this analysis was run as a test, the results were 

identical to those controlling for only site for all features calculated. This suggests that results 

controlling for site rather than scanner platform does in fact also account for any variation 

introduced even by scanners of the same model. Controlling for site was selected as the course of 

action moving forward for all aspects of the analysis. Results are shown below in Figure 11. 

 

Figure 11. Glass brain representation of feature autoc controlling for site of acquisition (A) and 

scanner platform (B). Noteworthy differences between the two analyses are seen in the right internal 

capsule, the middle frontal gyrus, and Brodmann area 28 in A, and the precentral gyrus and thalamus in 

B. Results controlling for both site of acquisition and scanner platform were identical to those controlling 

for only site (A). 
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5. Experiment 1: Travelling Heads Reliability 

5.1. Introduction 

 The reliability of 3D TA has not been adequately tested in previous literature. Few 

studies have previously evaluated the reproducibility of TA results, though a handful have 

examined the effects of scanner and scanning parameters on TA’s ability to differentiate between 

different textures in foam phantoms [Lerski, 1999; Mayerhoefer, 2009; Waugh, 2011]. These 

studies have reported mixed results, though they have reported that GLCM features are often 

relatively robust compared to other categories of texture features [Lerski, 1999; Mayerhoefer, 

2009; Waugh, 2011]. Previous studies have also only examined 2D TA. The present study looks 

to examine the reliability and reproducibility of 3D texture features both within and between 

sites of image acquisition using a harmonised data acquisition protocol. Furthermore, the present 

experiment looks to test the reliability of TA on human subjects which means it is more 

generalizable to future works examining effects of disease. Showing that texture is consistent 

both within and between sites of acquisition provides greater support for its implementation in 

larger scale multi-centre studies. Furthermore, examination of reliability on a multi-centre scale 

is an important step in the validation of TA as a biomarker prior to implementation in a clinical 

setting in which images will be acquired on different hardware at each centre.  

 

5.2. Materials and Methods 

5.2.1. Study Participants 

 6 healthy subjects (4 male, 2 female) were recruited from the University of Alberta to 

participate in the study. To be included in the study, participants had to have no history of 

neurological or psychiatric conditions, nor could they have had any prior history of a head injury. 
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Subjects were scanned at five sites across Canada: Edmonton – Peter S. Allen MR Research 

Centre, Calgary – Seaman Family MR Research Centre, London – Robarts Research Institute, 

Montreal – Montreal Neurological Institute, and Toronto – Sunnybrook Research Institute. At all 

sites of acquisition, two scans were performed on the same day for each subject (~1 hour apart).  

5.2.2. MRI Acquisition Protocol 

Scans were acquired at all sites on clinical research MRI systems operating at 3 T: 

Siemens Prisma (Erlangen, Germany) in Edmonton, Siemens Trio (Erlangen, Germany) in 

Montreal, and General Electric MR750 (Milwaukee, WI) in Calgary, London, and Toronto. It 

was targeted to scan with the same spatial parameters at each site of acquisition to produce 

images optimized for signal to noise ratio (SNR) and contrast to noise ratio (CNR) despite 

different scanner models and manufacturers. 3D T1 scans were acquired using MPRAGE 

sequence on Siemens scanners (TR = 2300 ms, TE = 3.43 ms, TI = 900 ms, flip angle = 9°, FOV 

= 256 × 256 mm, resolution = 1 mm × 1 mm × 1 mm), and using FSPGR on GE scanners (TR = 

7400 ms, TE = 3.1 ms, TI = 400 ms, flip angle = 11°, FOV = 256 × 256 mm, resolution = 1 mm 

× 1 mm × 1 mm). 

5.2.3. Data Preprocessing 

 Data were converted from raw DICOM format to Niftii files using dcm2nii converter 

(MRIcron). These files were then realigned to ACPC orientation using an automation script 

called acpc_coreg running in SPM12. The data were subsequently modulated, segmented into 

grey and white matter, and bias corrected using the high dimensional DARTEL algorithm in the 

VBM8 toolbox of SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). During this step, deformation fields 

were also created for subsequent normalization of texture maps into MNI standard space.  
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5.2.4. 3D Texture Analysis 

The binarized GM and WM segments created in the VBM preprocessing were used to 

create a mask of each subject’s brain in its own native space. The masks were created including 

the GM and WM regions so as to exclude ventricular regions in each brain. These masks were 

created using the image calculator tool in SMP8. Texture analysis was run using VGLCM 

TOP3D [Maani, 2015], a toolbox developed in our lab that is also run through SPM8. The input 

for this toolbox is the modulated, bias corrected image for each subject, and their respective 

binary mask created from the segmented GM and WM images. Texture feature extraction is done 

using the mask as a guide for what to include in the calculated area of the brain. Each voxel is 

used as a point of origin for its respective texture value. The texture value calculation is done 

with a neighbourhood radius of 1, a distance of 1, and a quantization level of 8.  

 

Figure 12. Image processing pipeline for 3D texture analysis. 

Each feature is calculated at every voxel included in the mask in the axial, sagittal, and 

coronal planes relative to the voxel of origin, and these values are then averaged to represent the 
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value for that three-dimensional voxel space. These calculations are done in the native space of 

each brain, and they are subsequently warped to the MNI152 standard space using the 

deformation fields created during preprocessing steps. 

 

Figure 13. Graphic representation of feature calculation using VGLCM TOP3D toolbox, taken 

from Maani et al. (2015). 

 The toolbox consists of 22 different texture features from which 7 were chosen as non-

redundant. This selection was done by correlating the calculated feature values and removing one 

from any pair of features that correlated with a coefficient of greater than 0.9. The calculated 

features for this analysis included Autocorrelation (autoc), Contrast (contr), Correlation (corrp), 
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Cluster Prominence (cprom), Cluster shade (cshad), Energy (energ), and Inverse Difference 

Normalised (indnc). A brief description of each feature is included in Table 2. 

Table 2. Description of texture features calculated in the present study. Information was extracted 

from various sources [Yang, 2012; Shapiro and Stockman, 2000; Maani, 2015]. 

 

5.2.5. Anatomical ROI Extraction 

 Masks of twelve anatomical structures throughout the brain were created manually using 

FMRIB Library (FSL), guided by multiple atlases.  The Jülich Histological Atlas was used to 

produce probabilistic masks of the amygdala, Broca’s area, the hippocampus, and the 

corticospinal tract with a probabilistic threshold of 30%. The MNI Structural Atlas was used for 

a mask of the thalamus. Lastly, the AAL atlas was used to produce masks of the caudate, 

pallidum, putamen, precentral gyrus, postcentral gyrus, the cingulate cortex, and the orbitofrontal 

cortex. In addition to these structures, a whole brain mask was created using the MNI Structural 

Atlas to extract a whole brain average texture value. These masks were applied to the calculated 

texture maps to extract average values at each structure for each individual scan. 



49 
 

5.2.6. Statistical Analysis 

 Intra-class correlations (ICC) were examined as a measure of reliability and 

reproducibility of texture within and between sites of image acquisition. ICCs measure how 

strongly units in groups of the same measure resemble each other. ICCs were computed in 

MedCalc version 17.6 using a two-way mixed effects model. This was based on the assumption 

that the statistical effect of the rater is fixed and the effect of the ratee is random. They were 

calculated for each extracted ROI on each of the seven features calculated. To calculate scan-

rescan reliability, each subject’s scan 1 was grouped and each subject’s scan 2 was grouped. To 

calculate inter-site reliability, all scans were divided into their respective sites of acquisition for a 

total of 5 groups. 

 

5.3. Results 

5.3.1. Scan-Rescan Reliability 

 Scan-rescan reliability was high for five of the seven features examined. Features autoc, 

contr, cprom, energ, and indnc had excellent agreement between measurements at most ROIs 

(ICC>0.7). In contrast, features corrp and cshad had lower reliability at most ROIs (ICC<0.5). 

Results are summarised in Table 3.  
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Table 3. Scan-rescan ICC values at all ROIs for each of seven texture features. Results indicate high 

reliability for five features (autoc, contr, cprom, energ, and indnc), and moderate to low reliability for two 

(corrp and cshad). 
 

autoc contr corrp cprom cshad energ indnc 

Amygdala 0.8602 0.956 -0.6405 0.9286 0.3861 0.9689 0.9223 

Broca's Area 0.8751 0.9752 -0.4231 0.9733 0.4398 0.9556 0.9805 

Hippocampus 0.7361 0.953 -0.4693 0.9417 0.3884 0.977 0.9734 

Cingulate Cortex 0.8984 0.9568 -0.2819 0.9661 0.4367 0.9634 0.9913 

Postcentral Gyrus 0.9516 0.9829 -0.3427 0.9754 0.4653 0.9743 0.9948 

Orbitofrontal Cortex 0.924 0.9333 -0.5521 0.9543 0.4159 0.8656 0.9667 

Caudate 0.9622 0.9598 0.3789 0.9626 0.5754 0.969 0.9981 

Pallidum 0.9114 0.969 -0.3882 0.952 0.3698 0.942 0.9586 

Putamen 0.9538 0.9318 -0.535 0.9066 0.3708 0.9241 0.9331 

Thalamus 0.9058 0.983 -0.4089 0.9677 0.3375 0.9825 0.993 

Corticospinal Tract 0.9221 0.8822 -0.3653 0.9443 0.3707 0.8662 0.9253 

Precentral Gyrus 0.9569 0.9758 -0.4366 0.9647 0.4359 0.9724 0.9847 

Whole Brain 0.8435 0.9004 -0.476 0.939 0.3954 0.976 0.9812 

 

 

5.3.2. Inter-Site Reliability 

 Inter-site reliability was high once again features autoc, contr, cprom, energ, and indnc. 

These features showed almost entirely excellent agreement (ICC>0.7) between measures at 

different sites of acquisition while features corrp and cshad showed mostly moderate to low 

agreement (ICC<0.5). Results are summarised in Table 4. 
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Table 4. Inter-site ICC values at all ROIs for each of seven texture features. Results indicate high 

reliability for five features (autoc, contr, cprom, energ, and indnc), and moderate to low reliability for two 

(corrp and cshad). 
 

autoc contr corrp cprom cshad energ indnc 

Amygdala 0.9031 0.7211 0.1613 0.8335 -0.291 0.648 0.8533 

Broca's Area 0.8224 0.8271 0.2927 0.7517 -0.4693 0.8927 0.9619 

Hippocampus 0.5762 0.2759 0.2368 0.8072 -0.2613 0.7667 0.9721 

Cingulate Cortex 0.9426 0.8103 0.3354 0.8386 -0.377 0.8537 0.9619 

Postcentral Gyrus 0.9218 0.9322 0.3384 0.9193 -0.5501 0.8806 0.9813 

Orbitofrontal Cortex 0.9419 0.8267 0.2179 0.8598 -0.3427 0.6404 0.9363 

Caudate 0.9782 0.9664 0.7795 0.9847 -0.4894 0.936 0.9985 

Pallidum 0.9138 0.8208 0.2028 0.8925 -0.293 0.8543 0.8533 

Putamen 0.8883 0.9084 0.1954 0.9133 -0.2908 0.8386 0.8817 

Thalamus 0.949 0.566 0.2047 0.3795 -0.2661 0.6393 0.9867 

Corticospinal Tract 0.9345 0.8744 0.135 0.9333 -0.3088 0.882 0.8924 

Precentral Gyrus 0.9139 0.8381 0.2972 0.8697 -0.4523 0.9261 0.9814 

Whole Brain 0.8945 0.7674 0.1959 0.8136 -0.3518 0.9266 0.9678 

 

 

5.4. Discussion 

 The results of this experiment indicate that several of the texture features are highly 

reliable and reproducible both within and between sites of image acquisition. Few studies have 

been previously done testing the reliability of texture analysis. Those that have been done have 

all used foam phantoms as a measure of reliability [Lerski, 1999; Mayerhoefer, 2009; Waugh, 

2011]. These studies examined TA’s reliability in discrimination of these different foam types 

and found mixed results [Lerski, 1999; Mayerhoefer, 2009; Waugh, 2011]. Lerski et al. (1999) 

found that within single sites of acquisition TA was consistently able to differentiate between 

foam types. However, this same multivariate function could not be applied successfully to 
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images acquired at a different site [Lerski, 1999]. Scans for their study were acquired on 

different hardware, though using the same acquisition parameters [Lerski, 1999]. This indicates 

that the variability in their results was introduced due to the hardware itself, and that some 

parametric accommodation needs to be made for different scanners in a multicentre acquisition. 

Mayerhoefer et al. (2009) studied the effects of both variability in protocol heterogeneity and 

spatial resolution on TA’s discrimination of foam types. They found that texture features 

extracted from co-occurrence matrices and run-length matrices tended to be more sensitive to 

variability in scanning parameters than features of other categories [Mayerhoefer, 2009]. 

However, co-occurrence matrix features were shown to be highly robust to variation in image 

spatial resolution and were able to perfectly discriminate foam types even at clinical resolutions 

[Mayerhoefer, 2009]. The third study mentioned, by Waugh et al. (2011), examined the effects 

of sequence parameters, resolution, and hardware. They analysed a high spatial resolution 

sequence on a 1.5T scanner, the same sequence on a 3T scanner, and a slightly lower resolution 

sequence on the 3T scanner which was a faster acquisition [Waugh, 2011]. In contrast to 

Mayerhoefer et al. (2009), the results of their study indicate that co-occurrence matrix features 

performed well in foam-type discrimination across all three imaging protocols, and furthermore 

that these features were effective at discrimination regardless of parameter changes [Waugh, 

2011]. Another important finding of this study was that SNR appeared to have no significant 

effect on classification of foam types, suggesting that TA is robust to noise in an image [Waugh, 

2011]. Apart from the scanner itself, other factors such as the coil used may have an impact on 

the image quality and therefore the computation of TA.  

 Despite the mixed results of these previous phantom studies, the present analysis 

indicates that the GLCM features calculated are mostly robust to variation between scanners. 
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Some differences in the present study which may contribute to different results from previous 

studies include the present study examining reliability of raw texture values rather than a 

classification accuracy. Furthermore, this study examines agreement of measurements performed 

on the same subjects rather than seeking to establish consistency classification. Additionally, the 

present study examines 3D TA in contrast to the 2D, slice-based TA performed in the others 

[Lerski, 1999; Mayerhoefer, 2009; Waugh, 2011]. Given that there are slight differences in 

protocol between Siemens and GE scanners in the present study, these results also suggest that 

TA is robust to mild variation in scanning parameters. It is unclear why exactly features corrp 

and cshad showed reduced reliability compared to the other calculated features. However, trends 

in reliability for each feature might be explained by the nature of the respective mathematical 

computations that they represent. Features corrp and cshad are described as being measures of 

linear dependency of grey level intensities, and matrix asymmetry and skew, respectively (Table 

2). In comparison, autoc is described as a measure of repetitive or recurring voxel intensities, 

meaning that a more homogeneous tissue would carry a higher autoc value. It stands to reason 

then that corrp and cshad may be more sensitive to slight and single variations in intensity in the 

calculated matrix involving asymmetry and linear correlation of values and would therefore be 

more affected by mild variation in scanning conditions. This might account for reduced 

reproducibility of these features compared to others which examine homogeneity and repetitive 

recurrence of values. 

For features reporting high inter-site reliability, there were several ROIs which had a 

reduced ICC compared with the others. The most common of these ROIs were the amygdala, the 

hippocampus, and the thalamus. Scans acquired on different hardware may look different from 

each other in terms of the relative grey levels in the image. Furthermore, at increased field 
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strength signal dropout may occur in the more medial portions of the brain. This is typically not a 

substantial issue in studies using 3T scanners, though it can contribute to a lack of image 

contrast. Tissue segmentation also seems to be somewhat inconsistent in its success for the 

differentiation of brain structures [Helms, 2009; Wonderlick, 2009; Pereira, 2010]. Helms et al. 

(2009) suggest that T1 images are often unable to provide enough tissue contrast in deep brain 

structures to accurately and reliably perform automated segmentation of them. Wonderlick et al. 

(2009) describe their results in which some subcortical structures such as the caudate and the 

thalamus appeared to have more consistent and accurate segmentation than other subcortical 

structures. They suggest that improved performance on certain structures is likely due to the 

presence of WM and CSF adjacent to them, allowing more accurate differentiation by the 

segmentation algorithm [Wonderlick, 2009]. This holds true in part for the present study. The 

caudate ROI did have high ICC values across the board, both for intra-site and inter-site 

measurements. However, the thalamus saw some reduced reliability in the inter-site comparisons 

suggesting that tissue contrast was inconsistent between scanning hardware. This variation in 

tissue contrast may have contributed to reduced ICCs in other structures as well. 

All images were aligned automatically to ACPC orientation prior to texture feature 

calculation. This is done because texture is calculated in the image native space using a GLCM 

in set and standard orientation. This means that if images are misaligned in their native space, 

texture might be calculating different relative values based on the offset of the image in question. 

Upon visual comparison the automatic realignment does look very consistent, but of course there 

is the possibility of very slight variations between scans. This is a potential source of variance in 

the texture values calculated from scan to scan. 
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Apart from the steps already taken to ensure reliable results such as a harmonised 

protocol, some future steps could be included to mitigate any remaining variability. One such 

course of action might be a standardisation of texture values across sites. If there is a slight shift 

of values reported between each site of acquisition, it might be beneficial to scale these values 

such that each site is fully comparable. A possible way of doing this might be to calculate z-

scores for voxel-wise texture values, thus making values comparable based on variation from the 

mean rather than a raw value. Another possible way to minimize variation is to standardise 

brightness and contrast histograms prior to texture feature calculation such that relative voxel 

intensities would be consistent prior to feature extraction. Additionally, the inclusion of more 

subjects for this type of analysis may increase the statistical power. Further to this, it may be 

useful to include several ALS patients in this type of analysis, as that may be a better measure of 

whether TA is truly reliable and fit for analysis is the context of patients. However, this may 

prove to be logistically challenging depending on level of impairment. Another challenge with 

including ALS patients is that scans at each site would need to be done as close together as 

possible temporally so as to avoid introduction of any variation caused by the progression of the 

disease. 

The results of the study, however, do indicate that this method of 3D, voxel-wise texture 

analysis is relatively consistent and reliable both within and between sites. This supports its 

implementation for the study of cerebral degeneration in a patient population, as we can say with 

confidence that detected changes are due primarily to the disease course rather than random error 

of the software.  
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5.5. Conclusion  

 In summary, the results of this experiment indicate that TA is reliable both within and 

between sites of image acquisition. Some features performed better than others, and they should 

therefore be focused on for future studies. Reliability was reduced in some structures, though this 

may be due to reduced tissue contrast in those regions of the brain. As expected, reliability was 

reduced when compared between sites, though these reductions were not substantial enough to 

suggest that TA cannot be used on data acquired from multiple centres. Overall, the experiment 

supports further implementation in multicentre studies of cerebral degeneration. 
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6. Experiment 2: A Multicentre Study of ALS Pathology 

6.1. Introduction 

 The second experiment of the present study aims to implement TA as a means to study 

cerebral degeneration in ALS patients. The data for this study was also acquired using a 

harmonised protocol from multiple centres across Canada. Multicentre imaging studies are 

important as they can contribute to larger samples in diseases which are less common. 

Furthermore, as mentioned in the previous chapter, a multicentre study examining disease 

pathology can provide support for future implementation in clinical settings. TA has been 

implemented in previous studies of disease pathology including Alzheimer’s disease, MS, 

epilepsy, and ALS [Bonhila, 2003; Antel, 2003; Sikio, 2015; Oppedal, 2015; Sørensen, 2016; de 

Albuquerque, 2016; Maani, 2016]. Previous studies have demonstrated success in differentiation 

between patients and controls – or even between phenotypes of pathology – with high sensitivity 

and specificity. The goal of the present study is to examine cerebral degeneration in ALS patients 

on a multicentre scale, and further to test whether texture abnormalities detected correlate with 

disease severity as measured in clinic. Additionally, the present study looks to examine how the 

spatial distribution of texture abnormalities compares between sites.  

 

6.2. Materials and Methods 

6.2.1. Study Participants 

Participants for Experiment 2 were recruited as a part of the Canadian ALS Neuroimaging 

Consortium (CALSNIC), a multicentre effort to evaluate potential neuroimaging biomarkers in 

ALS. CALSNIC is ongoing with the goal of providing standardized clinical and MRI evaluations 

for patients with ALS at centres across Canada. All data for the study was collected prospectively 
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with a harmonized clinical and imaging protocol. Patients were included in this study only with a 

diagnosis of ALS based on El Escorial criteria. Subjects were excluded if they had prior history of 

other neurological or psychiatric disorders, or significant head injury. Additionally, subjects with 

claustrophobia, or pacemakers and other foreign metallic bodies are ineligible for participation in 

MRI studies. Participants for the present study were recruited at four sites across Canada: 

Edmonton – Peter S. Allen MR Research Centre (patients, n = 20; controls, n = 20), Calgary – 

Seaman Family MR Research Centre (patients, n = 10; controls, n = 10), Montreal – Montreal 

Neurological Institute and Hospital (patients, n = 13; controls, n = 7), and Toronto – Sunnybrook 

Research Institute (patients, n = 21; controls, n = 11). Samples were age and gender matched to 

the best of our ability despite constraints of in-clinic recruitment. A neurological examination was 

performed on each ALS patient at their study visit.  A scale of UMN burden was derived from data 

collected during these neurological evaluations. It consisted of two lateralized subscores for the 

right and left sides of the body, and a subscore for jaw-related symptoms. Each of the left and right 

subscores accounted for increase in tone and reflex for the respective arms and legs, as well as the 

presence of Babinski’s sign or clonus in the lower extremity. The final subscore accounted for a 

brisk reflex or clonus in the jaw. Presence of each of these listed signs added a value of 1 to the 

total score which was measured out of 14. Finger and foot tapping were also measured for each 

patient and healthy control during study visits. Finger tapping was measured by having the 

participant place their hand on a surface and tap their finger as many times as they could in 10 

seconds. Foot tapping was similarly performed by having the participants plant their heel and tap 

their foot as many times as they could in 10 seconds. These tapping scores are measures of UMN 

function. ALSFRS-R is a questionnaire that assesses disease severity with a score of 0-48 in which 
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a lower score indicates greater disease-related impairment.  Participant demographics are 

summarized in Table 5. 

Table 5. Summarized participant demographic information. Values noted for age, symptom duration, 

ALSFRS-R, forced vital capacity (FVC), and UMN score are medians with the associated range of values 

in the sample in brackets.  

  Patients (n = 64) Controls (n = 48) 

Age (years)  57 (33-86) 55.5 (29-69) 

 Bulbar 11 - 

Site of Onset Limb 50 - 

 Respiratory 3 - 

Symptom Duration (months)  25.5 (8-130) - 

ALSFRS-R Score  40 (22-47) - 

FVC (%)  3.32 (1.95-6.79) - 

UMN Score  5 (0-11) - 

 

6.2.2. MRI Acquisition Protocol  

3D T1 scans were acquired at all four sites on clinical research MRI systems operating at 

3 T: Siemens Prisma (Erlangen, Germany) in Edmonton, Siemens Trio (Erlangen, Germany) in 

Montreal, and General Electric MR750 (Milwaukee, WI) in Calgary and Toronto. Scan acquisition 

was performed with the same protocol as was detailed in the Travelling Heads experiment, though 

only four of the five sites were included. Scans were acquired with an MPRAGE sequence on 

Siemens scanners (TR = 2300 ms, TE = 3.43 ms, TI = 900 ms, flip angle = 9°, FOV = 256 × 256 

mm, resolution = 1 mm × 1 mm × 1 mm), and using FSPGR on GE scanners (TR = 7400 ms, TE 

= 3.1 ms, TI = 400 ms, flip angle = 11°, FOV = 256 × 256 mm, resolution = 1 mm × 1 mm × 1 

mm). 
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6.2.3. Data Preprocessing 

 Data were converted from raw DICOM format to Niftii files using dcm2nii converter 

(MRIcron). These files were then realigned manually to ACPC orientation using Mango 

software. From here, the data was modulated, segmented into grey and white matter, and bias 

corrected using the high dimensional DARTEL algorithm in the VBM8 toolbox of SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/). During this step, a deformation field was also created for 

subsequent normalization of texture maps into MNI standard space.  

6.2.4. 3D Texture Analysis 

3D texture analysis was performed and calculated exactly as described in Experiment 1. 

Furthermore, the same features were calculated for this analysis as were in Experiment 1. 

6.2.5. Pooled Voxel-Wise Statistical Analysis 

 Cross-sectional analysis of the pooled samples was performed using a full factorial model 

in SPM8. Factors in this analysis were diagnosis and site with age as an additional covariate. 

Furthermore, the analysis was run both with and without controlling for brain parenchymal 

fraction (BPF – a measure of global brain atrophy). This model was used to examine both the 

main effect of diagnosis on calculated texture feature values, and any interaction between site of 

acquisition and the diagnosis of the subjects. Significant results were accepted at a p-value of 

<0.001 and a voxel cluster threshold of 50. Clusters are groups of voxels deemed to be 

significantly different between groups. Single voxels or very small clusters which are significant 

are often attributable to false positive error. Thus, only groups of significant voxels exceeding a 

threshold size are deemed to be truly pathological in nature, and all other groups are eliminated. 

No multiple comparisons corrections were performed due to the exploratory nature of this study. 
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Further to this analysis, the model examined the interaction between site and diagnosis. 

Significant results were accepted at the same threshold as previously described.  

6.2.6. Site-Specific Voxel-Wise Statistical Analysis 

 Cross-sectional analysis of each site’s respective samples individually was performed 

using 2-sample t-tests, again in SPM8. Within these comparisons, subject age was assigned as a 

covariate of the analysis. These results were also accepted at p<0.001 and a voxel cluster 

threshold of 50. Differences between sites for demographics were compared using one-way 

ANOVA. Parametric testing was performed due to the potential of differences in sample spread 

and distribution. Subject information broken down by site is included in Table 6. 

Table 6. Patient and control demographic information by site listed as medians with ranges in 

brackets. * indicates a significant difference between sites. ALSFRS-R was significantly different at 

p<0.001, and symptom duration (SD) was significant at p<0.002. 

 

6.2.7. ROI-Based Correlations 

 For the ROI analysis clinical measures were to be correlated with areas of significant 

difference in the motor regions of the brain as detected by the full factorial model. Based on the 

full factorial model’s results for the main effect of diagnosis, a mask of significant texture 

abnormalities in the internal capsule as detected by feature autoc was extracted using xjView 

toolbox (http://www.alivelearn.net/xjview). This structure was extracted in unilateral and 

bilateral masks. As mentioned previously in the Preliminary Analyses section, this structure was 

  Calgary Edmonton Montreal Toronto 

  P (n=10) C (n=10) P (n=20) C (n=20) P (n=13) C (n=7) P (n=21) C (n=11) 

Onset 
Limb n=8 - n=16 - n=9 - n=20 - 

Bulbar n=2 - n=4 - n=4 - n=1 - 

Age (years) 60 (41-82) 55 (40-69) 58.5 (37-74) 60 (37-68) 57 (41-86) 54 (38-66) 54 (33-88) 49 (29-68) 

ALSFRS-R* 33 (22-45) - 41.5 (32-47) - 40.5 (33-44) - 38 (28-47) - 

SD (months)* 46.5 (21-117) - 19 (11-60) - 18 (8-72) - 39 (8-130) - 

FVC (%) 3.02 (1.95-4.61) - 2.49 (2.41-4.88) - 3.76 (2.67-4.98) - 3.32 (1.98-6.79) - 

UMN score 4.5 (2-9) - 5 (1-11) - 5 (2-8) - 5 (0-11) - 

 

http://www.alivelearn.net/xjview
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chosen based on the idea that the detected abnormalities in the internal capsule might represent 

focal pathology of the disease process and potentially demonstrate a less diluted link between 

cerebral degeneration and the outward signs of UMN impairment. The comparisons were made 

using partial correlations which controlled for both age and site in the analysis. Due to the nature 

of the partial correlation setup in MedCalc, site was controlled for using dummy variables. The 

results were accepted as being significant at p<0.05. 

6.2.8. ROC Analysis 

 ROC analysis was performed by using a logistic regression model to produce predictive 

values, which were then used as the classification parameters in the ROC. The logistic regression 

was used in this way such that it was possible to control for age and site in the analysis. The 

autoc values from the bilateral internal capsule ROI were used for this classification. Once the 

predictive values for this analysis were saved, they were input and allowed classification based 

on a threshold defined by the statistical model for differentiation based on diagnosis. Area under 

the curve (AUC), sensitivity, and specificity were examined. Results were again accepted as 

being significant at p<0.05. 

 

6.3. Results 

6.3.1. Pooled Voxel-Wise Analysis 

The results of this portion of the study indicate that different texture features detect 

different changes in the brain. Results which were not corrected for BPF showed more diffuse 

abnormalities. Five of the seven features showed significant differences between patients and 

controls at p<0.001. For feature autoc texture differences were detected in the internal capsule, 

but also in the frontal and temporal lobes. Features contr and cprom showed abnormalities in the 
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anterior cingulate cortex. Energ detected patient control differences in the internal capsule as 

well as in the cerebellum and the frontal lobe. Indnc detected significant differences in the 

temporal lobe white matter. These results are seen in Figure 14, and significant clusters are 

summarised in Table 7. 

It should be noted that any clusters appearing outside the brain area in Figure 14 and 

Figure 15 are, in fact, within the brain. It appears this way due to the limited space of the glass 

brain format. However, when overlaid on a T1-weighted image, all significant clusters rest 

within the brain. 
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Figure 14. Glass brain representations of features showing significant differences between ALS 

patients and controls without correction for BPF. A) autoc. B) contr. C) cprom. D) energ. E) indnc.  
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Table 7. Summary of significant voxel clusters in pooled analysis not correcting for BPF. MNI 

coordinates are listed in columns X, Y, and Z. 

Feature Structure Cluster Size F-stat p-value X Y Z 

autoc 

L internal capsule 135 29.64 <0.001 -20 -16 -2 

L entorhinal cortex 72 28.44 <0.001 -18 5 -20 

R internal capsule 55 22.58 <0.001 21 -16 -2 

L splenium 56 18.93 <0.001 -14 -42 13 

L middle frontal gyrus 82 17.38 <0.001 -24 38 28 

cprom Anterior cingulate cortex 107 28.41 <0.001 5 35 1 

cprom Anterior cingulate cortex 104 31.35 <0.001 5 35 3 

energ 

L internal capsule 55 24.81 <0.001 -18 -18 1 

Cerebellum 106 23.17 <0.001 -27 -64 -57 

Corpus callosum 59 18.72 <0.001 3 -12 25 

indnc L entorhinal cortex 92 22.44 <0.001 -24 6 -23 

 

 

For the analysis which controlled for BPF, four of the seven calculated texture features 

detected significant results between ALS patients and controls at p<0.001. These abnormalities 

were typically more focal than the previous analysis. Specifically, for features autoc and energ 

significant texture abnormalities were present in the internal capsule of the CST. Furthermore, 

for features contr and cprom significant abnormalities were detected in the anterior cingulate 

cortex. Additionally, these results were supplemented by an interaction statistic examining the 

effect of site on diagnosis. Most features were largely unaffected, with autoc showing no 

interaction at all. Results can be seen below in Figure 15, and significant clusters are summarised 

in Table 8. 
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Figure 15. Texture features demonstrating significant differences between ALS patients and 

controls when corrected for BPF. A) autoc. B) contr. C) cprom. D) energ. 
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Table 8. Summary of significant voxel clusters for pooled analysis corrected for BPF. MNI 

coordinates are listed in columns X, Y, and Z. 

Feature Structure Cluster Size F-stat p-value X Y Z 

autoc 
L internal capsule 139 28.76 <0.001 -18 -16 0 

R internal capsule 90 21.67 <0.001 21 -16 -2 

contr 
Anterior cingulate cortex 85 24.07 <0.001 2 32 -3 

L internal capsule 57 20.63 <0.001 -20 -16 3 

cprom Anterior cingulate cortex 94 27.14 <0.001 5 35 3 

energ 

L internal capsule 108 28.41 <0.001 -18 -18 1 

L inferior parietal lobule 158 27.91 <0.001 -27 -64 -57 

Cerebellum 65 21.77 <0.001 -35 -33 25 

Cerebellum 56 20.42 <0.001 18 -66 -59 

Cerebellum 58 18.07 <0.001 17 -81 -48 

 

 

6.3.2. Site-Specific Voxel-Wise Analysis 

 Significant texture abnormalities were detected for most features at each individual site. 

However, these patient-control differences were not consistent across sites of acquisition. The 

most consistent feature in this site-specific analysis was autoc, showing change in regions 

including the CST and throughout the frontotemporal regions. Other features demonstrated 

significant differences in the cerebellum, the thalamus, and the cingulate cortex as well as multiple 

regions in the frontal and temporal lobes. These changes were also not entirely in pathologically 

relevant or expected regions with some changes occurring in areas including the occipital lobe. 

Results for autoc are shown in Figure 16. 
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Figure 16. Cross-sectional analysis of feature autoc for each individual site. In panels A), B), and D) 

blue indicates an increase in autoc for patients compared to controls, and red indicates decreased autoc. In 

the Montreal sample (C) only a significant decrease was detected and is indicated in yellow. A) 

Significant texture abnormalities in the Calgary sample occurred in several areas of the brain including 

Brodmann area 30, Brodmann area 13, and the anterior cingulate cortex. B) Significant differences in the 

Edmonton sample included the corona radiata of the CST, the thalamus, and several regions in the 

temporal lobes. C) The Montreal sample showed significant texture abnormalities only in the left superior 

temporal gyrus. D) Significant texture differences occurred in Toronto ALS patients in the cerebellum, 

the middle frontal gyrus, and the superior parietal lobule. 

 

6.3.3. ROI-Based Correlations 

 The results of the correlation analysis showed that there was a significant correlation 

between feature autoc values in the internal capsule and the score of UMN burden. Additionally, 

three features correlated with BPF. Within this ROI there were no significant correlations 

between texture values and finger and foot tapping scores, nor were there any correlations 

between texture and ALSFRS-R scores. Significant results are summarised in Table 9. 
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Table 9. Summary of significant correlations between clinical measures and texture values in the 

internal capsule. Both UMN score and BPF were compared with a bilateral ROI of the internal capsule. 

Correlate Feature ROI n p-value 
Correlation 

coefficient (r)  

UMN total score autoc Internal capsule 60 0.0091 0.345 

BPF 

contr Internal capsule 64 0.0146 0.314 

energ Internal capsule 64 0.0089 -0.335 

indnc Internal capsule 64 0.0085 -0.337 

 

 

 

Figure 17. Scatterplots for the significant correlation of A) autoc values in the internal capsule with 

UMN scores, and B) indnc values in the internal capsule and BPF. Information for each of these 

correlations is listed in Table 9. 

6.3.4. ROC Analysis 

 The results of the ROC analysis showed that all of the features examined were able to 

significantly differentiate between patients and controls once corrected for age and site. All 

features differentiated at p<0.0001. These results are summarised in Table 10 and Figure 18.  
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Table 10. Significant results in ROC analysis. 

Feature ROI Subjects (n) AUC p-value Sensitivity  Specificity 

autoc Internal capsule 112 0.840 <0.0001 78.12 79.17 

contr Internal capsule 112 0.772 <0.0001 71.87 77.08 

corrp Internal capsule 112 0.719 <0.0001 62.50 79.17 

cprom Internal capsule 112 0.720 <0.0001 65.62 79.17 

cshad Internal capsule 112 0.726 <0.0001 68.75 72.92 

energ Internal capsule 112 0.800 <0.0001 57.81 91.67 

indnc Internal capsule 112 0.789 <0.0001 75.00 75.00 
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Figure 18. ROC curves for all calculated texture features. All results were significant at p<0.0001. A) 

Feature autoc. B) Feature contr. C) Feature corrp. D) Feature cprom. E) Feature cshad. F) Feature energ. 

G) Feature indnc. Results are summarised in Table 10. 
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6.4. Discussion 

 The results of the pooled voxel-wise analysis are exciting in that they do, in fact, detect 

texture abnormalities in pathologically relevant areas of the brain. The results for features autoc 

and energ were particularly interesting in that they detected slightly different areas of 

involvement when controlling for BPF compared to when not controlling for it. The significance 

in this, it could be argued, is that texture is able to detect different types of pathological change 

in the brain. When carrying out an analysis which does not account for BPF, the changes 

detected can be partially attributed to atrophic change in the brain. However, when BPF is used 

as a covariate, it was thought that pathological changes that are primarily atrophic in nature 

would be controlled for and eliminated from the results. What is left are texture abnormalities in 

ALS patients which are not entirely atrophic in nature and can be attributed – at least in part – to 

some other form of pathology. It is possible though that these differences between the two 

analyses could be attributable to some other confounding factor. Furthermore, texture changes 

which disappear when controlling for BPF may correlate with but still be unrelated to global 

atrophy. Even so, texture may be detecting different forms of pathological change in the brain. 

Due to the fact that texture is a measure of voxel intensity patterns, detected texture change could 

be due to any number of mechanisms which would slightly alter the relative intensities of the 

imaged tissue. As was discussed in the sections surrounding pathogenesis and pathology, there 

are several potential processes in ALS which could be contributing to texture changes. Apart 

from a general loss of neuronal and glial cells, some possibilities are the presence of intracellular 

and cytoplasmic inclusions such as C9orf72, FUS, TDP-43, and SOD1 aggregations. 

Additionally, other pathological changes such as vacuolisation, or spongiosis of neuronal and 

surrounding cells, and reactive astrogliosis in areas of neuronal loss could be responsible [Saberi, 
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2015; van Es, 2017; Chio, 2014]. With no correction for BPF, autoc detects texture abnormalities 

in the internal capsule, the corpus callosum, the middle frontal gyrus and Brodmann Area 28. 

However, when corrected for BPF, autoc showed that significant patient control differences 

remained in the internal capsule region of the CST. The internal capsule is frequently reported as 

an area of ALS pathology [Schuster, 2016; Sarica, 2017; Masuda, 2016; Chapman, 2014]. These 

studies reporting pathology in the internal capsule are primarily diffusion imaging studies 

examining changes in measures of FA and RD along the CST [Schuster, 2016; Sarica, 2017; 

Masuda, 2016; Chapman, 2014]. Changes in FA and RD are largely representative of 

microstructural change. Changes in RD are seen as representative of reduced myelin or a change 

in myelin health, whereas FA can be representative of both myelin and axonal degeneration 

[Alexander, 2007; Chapman, 2014]. Given that changes in diffusion metrics are representative of 

microstructure rather than gross atrophy, this supports the claim that texture is able to examine 

various forms of pathology in vivo. In addition to changes in diffusion metrics, Sugiyama et al. 

(2013) note that tissue samples from the internal capsule show astrogliosis, accumulation of 

macrophages, and an abnormal pallor to the myelin. Some of the other detected abnormalities by 

autoc including the cluster in the middle frontal gyrus are known pathology in ALS. In fact, the 

middle frontal gyrus is recognised as an area of both atrophy and TDP-43 pathology 

[Brettschneider, 2012; Brettschneider, 2013]. This co-occurrence of both atrophic and protein 

pathology supports the idea that significant clusters disappearing when controlling for BPF may 

be attributable to multiple pathologies. Feature energ showed similar results in which case there 

were texture abnormalities present in the left internal capsule, corpus callosum, and the 

cerebellum without BPF correction, but the corpus callosum differences disappeared when 

corrected for BPF. Other features such as contr and cprom detected only changes which were 
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present in both corrected and uncorrected analyses. These significant differences occurred in the 

internal capsule and the anterior cingulate cortex. While it has been found that the anterior 

cingulate cortex can be a region of GM volume reduction in ALS, studies have also found 

changes in diffusion metrics and TDP-43 inclusions [Menke, 2018; Tan, 2017]. These studies 

provide further support for TA’s ability to detect various pathological processes. This is of 

importance as these particular areas could be points of interest in future studies looking to 

examine points of major pathology in ALS patients. Only one feature that detected texture 

abnormalities without BPF correction did not detect changes when it was corrected. This feature 

was indnc, which showed only significant differences in Brodmann Area 28 (entorhinal cortex) – 

similar to those detected by an uncorrected autoc. This feature lends further support to the 

changes detected in this particular brain region. It also suggests that this instance of texture 

change in patients may be atrophic or more overt in nature, rather than a microscopic change 

such as inclusions. Takeda et al. (2007) explain that degeneration of the entorhinal cortex in ALS 

patients has been well observed. This degeneration is particularly common in ALS patients with 

FTLD or dementia, and it can also involve the presence of ubiquitin-positive inclusions [Takeda, 

2007]. It is also worth note that the two features in the current analysis which showed no 

significant differences between ALS patients and healthy controls were demonstrated to have 

poor reproducibility between sites of acquisition (Experiment 1). This may be a contributing 

factor to their inability to detect cerebral degeneration, especially given the heterogeneous nature 

of the disease in question. 

 While these results do suggest a detection of pathology, future studies should look to 

expand on this in a multimodal analysis of the types of pathology present. It will be important to 

establish a more concrete meaning behind what exactly these texture value changes represent in 
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vivo. One potential for analysis of specific pathology would be using DTI in order to examine 

WM microstructural changes in conjunction with texture changes. Another potential option for 

this type of study would be to use PET imaging as a comparison for disease severity and 

pathology present.  Techniques such as FDG-PET have been used as a measure of glucose 

metabolism in ALS, and by extension a measure of neuronal health. Furthermore, ex vivo 

analyses of subject brain tissue with H&E and LFB stains might provide insight to the presence 

of different pathological processes linked to changes detected by each texture feature. This could 

be elaborated upon by studying texture abnormalities longitudinally in which the expected 

observation would be a linear change in texture values as time progresses. In fact, the framework 

for CALSNIC includes a longitudinal collection of data which carries through to post-mortem, 

should the patients consent to this portion of the study. Future implementation of post-mortem 

scans and sections will help to establish a link between the neuroimaging analysis and the 

pathology present in our study sample. This is of particular importance in that pathological 

heterogeneity for ALS patients does not just mean between patients, but also that individuals 

might have different types of pathology which affect different areas of the brain. An example 

might be that the disease could develop in a patient as a degeneration of axonal and myelin cells 

in the CST, but only present with TDP-43 inclusions in the anterior cingulate cortex. 

Nonetheless, TA detects some differences in the pathologies present in the brain based on the 

feature in question. Therefore, a multimodal analysis involving TA would be a novel method of 

examining pathology in ALS.  

 The analysis of individual sites adds another layer to the study in that it provides an 

examination of the heterogeneity between sites. It was hypothesised at the beginning of the study 

that each site of acquisition would present with similar areas of texture abnormalities. This was 
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to represent both similar pathology between samples and TA’s robustness against using different 

scanners for image acquisition. The results of the study showed that this hypothesis was not the 

reality of the situation. However, based on several factors of the analysis it might be suggested 

that these differences in texture are due to the composition of the samples rather than the 

technique itself. Firstly, the acquisition protocol for CALSNIC is harmonised. The protocol was 

developed with target spatial parameters for scans to be identical in addition to image quality 

with regard to SNR and CNR. Acquisition parameters were adjusted slightly based on the make 

and model of the machines to accommodate their specific limitations and ensure a similarity of 

the images. However, previous literature has demonstrated that differences in scanner hardware 

can be in part responsible for variation [Takao, 2013; Kruggel, 2010]. A VBM-based study by 

Takao et al. (2013) showed that even using two scanners of the exact same model for a 

“longitudinal” study of healthy controls can yield a significant longitudinal “change” in the brain 

which is more severe than atrophic changes seen in Alzheimer’s disease. This was in comparison 

to subjects scanned longitudinally on the same scanner who demonstrated little to no significant 

changes between scans. In addition to this, scanner software upgrades were a major source of 

inconsistency for scan-rescan reliability [Takao, 2013]. The data acquired for the CALSNIC 

study was tested for reliability and reproducibility both within and between sites of acquisition. 

The results of this study indicated that five of the seven texture features used in the analysis were 

highly reliable and reproducible both within and between sites (Experiment 1). In addition to the 

protocol itself, an effort was made to ensure no software upgrades were done in the duration of 

the present study. With the careful collection of harmonised data, effects of hardware and 

software on the scans have been mitigated as much as possible. A potential source of 

inconsistency between sites in the cross-sectional analysis is the small size of each sample. This 
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is for a couple of reasons. Firstly, with small samples it is more difficult to derive a 

representative statistical sign of pathology without seeing noise which would typically be washed 

away with more subjects. Another reason is the heterogeneity of ALS pathology itself which 

exacerbates the statistical model’s issues. With ALS presenting with such diversity between 

individuals, there is a high chance that this variability would come through in group comparisons 

using different samples. This is supported by a significant difference in ALSFRS-R scores and 

symptom duration between sites despite no significant difference in patient ages. Patients from 

Edmonton and Montreal had higher ALSFRS-R scores and a shorter symptom duration, 

indicating that these patients generally have less advanced pathology than the other two sites. 

This is not represented in any obvious way in the voxel-wise results, but it is something that 

should be investigated in future analyses. With each site having different samples and sample 

sizes, it is reasonable to expect that each site would detect different texture abnormalities. For 

these reasons, it seems reasonable to assume that this variability is not something to attribute to 

TA itself. In fact, the pooled full factorial model demonstrated that there was little effect caused 

by interaction between site and diagnosis. This effect was particularly minimal for some features 

such as autoc which demonstrated no interaction at all. This is in line with autoc being rather 

consistent compared to some of the other features examined in the individual-sites analysis. 

Despite this variability, some of the texture abnormalities occurred in pathologically relevant 

areas of the brain including the precentral gyrus and the CST. Furthermore, some areas of change 

occurred in less frequently cited areas of ALS pathology such as the cerebellum and the thalamus 

[Kim, 2016; de Albuquerque, 2016]. It is important to be cautious of these significant clusters 

given that some clusters appear in areas of the brain which are not relevant to the pathology. 

However, it is promising to see some more subtle changes which have been previously detected 



78 
 

in ALS-related literature [de Albuquerque, 2016; Lillo, 2012; Masuda, 2016; Kim, 2016; Kim, 

2017]. 

 Correlations between significant abnormalities in texture values and clinical measures of 

disease severity are another metric which is important for the validation of TA. Total UMN score 

did correlate significantly with autoc in the internal capsule. The significant correlation here is 

important as this aligns variation in TA values and the degeneration of UMN through clinical 

signs. It provides evidence that TA is acting as an objective measure of UMN degeneration. This 

is exciting because in clinic there are no truly objective measures of UMN disease burden. As is 

measured by the UMN burden scale that was created for this study, neurologists would typically 

look for the presence or absence of symptoms such as hyperreflexia and spasticity. However, 

with texture values being tied significantly to this type of pathology it is promising that there 

may be less reliance on the subjective measures in this complicated diagnostic process. Other 

clinical measures tested did not correlate. Finger and foot tapping scores were expected to 

correlate since they are also taken to be representative of UMN burden. However, tapping scores 

can be complicated by differences in counting between people administering. Of course, there is 

a hope of consistency based on a standard method of administration, but this is not always the 

case. Variation is particularly prominent in the case of finger tapping, as it is done more quickly 

and is therefore more difficult to count accurately. One possible solution for this inconsistency 

would be the use of counting apps. These apps can count the number of taps on a screen in a 

certain allotted time and would eliminate any variability between individuals counting taps. I 

would suggest that this method of administration be standard in future studies. However, tapping 

scores are further confounded by the presence of LMN degeneration in patients. While tapping is 

primarily measuring disease burden by UMN degeneration, weakness and atrophy of muscles 
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due to LMN pathology can significantly reduce one’s ability to tap either fingers or feet. This is 

further complicated by decisions of who we should or shouldn’t exclude for this measure. Since 

ALS is a disease of both types of pathology, it might be argued that all patients should be 

included regardless of their LMN involvement. It is difficult to exclude based on reduced scores 

as there is no specific threshold at which a line can be drawn for those whose scores are 

primarily being affected by UMN or LMN degeneration. Another clinical measure that did not 

correlate with texture values was ALSFRS-R scores. While there is a hope that all clinical 

measures of disease severity correlate with TA, it is not altogether surprising that the functional 

rating scale did not. This is because the scale is more so a measure of LMN degeneration than it 

is for UMN burden. Most of the questions in the ALSFRS-R examine patients’ ongoing ability to 

perform activities of daily living – some examples being writing, climbing stairs, walking, and 

dressing. While these activities may be affected to some degree by UMN dysfunction, they are 

primarily hindered by muscle atrophy caused by LMN involvement. In contrast, TA performed 

in the brain is taken to be primarily a measure of UMN involvement, so it is reasonable to expect 

that there is not a complete overlap or correlation between the two measures. ALS disease 

involvement is complicated, and we know that patients experience variable levels of UMN and 

LMN pathology depending on the individual in question. For that reason, a lack of correlation 

here is disappointing but not shocking or alarming.  

 A final correlation that was performed was that between texture values and BPF. As 

described previously, BPF is a measure of global brain atrophy. The objective motivating this 

experiment was to examine whether a region of focal degeneration in the brain might be 

representative of the amount of atrophy throughout the entire brain. If so, this focal region might 

represent an area of initial pathology, the severity of which could be associated with the amount 
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of global change seen in that individual. Interestingly, BPF did correlate significantly with 

texture values for three different features in the internal capsule. This further supports the 

internal capsule being a major area of interest in ALS pathology. Based on the present study, as 

well as previous ALS literature demonstrating internal capsule degeneration [Schuster, 2016; 

Sarica, 2017; Masuda, 2016; Chapman, 2014], it might be suggested that the internal capsule be 

a point of focus in future studies for the detection of diseases on the ALS spectrum. The internal 

capsule in this case, as shown by autoc and energ might not represent entirely atrophic change 

itself but may represent a point of origin which is integral to the process of atrophy in ALS. Two 

main hypotheses for the spreading pattern of ALS pathology are the dying-forward hypothesis 

and the dying-back hypothesis [Korner, 2011; Iyer, 2018]. The dying-forward hypothesis 

suggests that ALS pathology originates in the motor neurons of the central nervous system, and 

the dying-back hypothesis suggests that pathology starts at the neuromuscular junction [Iyer, 

2018]. However, it may be the case that neither of these are true per se. ALS symptom onset is 

typically focal and spreads to other areas of the body [Korner, 2011; Turner, 2015]. It may be the 

case that ALS pathology has a number of focal points of origin which act as triggers to the 

spread of pathology in the brain. In fact, a VBM study by Bede et al. (2013) found that focal 

degeneration in the motor cortex of ALS patients corresponded with the areas of symptom onset 

for these individuals. While the motor cortex may be one of these areas, the internal capsule 

might be another area of major pathology or onset. Given that the internal capsule demonstrated 

some of the most significant degeneration as measured by texture and this also correlated with 

clinical UMN signs and BPF, the internal capsule should be investigated as a focal region of 

differentiation in the diagnostic process. To further bolster this claim, an ROC analysis was done 

which examined discrimination of ALS patients and healthy controls using texture values from 
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the internal capsule. This model, once corrected for age and site of acquisition, was statistically 

significant for each of the features in question. The ROCs consistently reported relatively high 

sensitivity and specificity (Table 10). These values were rather strong in contrast to patient-

control differentiation typically reported from studies of conventional MRI including visual 

assessment of T1 images [Gupta, 2014; Grosskreutz, 2008; Kalra and Arnold, 2003; Kassubek, 

2012]. This helps to solidify TA as an improvement on conventional imaging and suggests that 

analysis of T1 images has a potential use as a diagnostic measure. While a whole brain voxel-

wise analysis may not show significant results for each feature due to a less stark difference 

between groups, the ROC demonstrates that each texture feature’s values can divide the sample 

into groups based on their diagnosis. Obviously, this comparison is simplified compared to a 

clinical examination due to strict inclusion and exclusion criteria. In the process of diagnosis, 

neurologists would have to differentiate between not only ALS and controls, but also any and all 

disease mimics. However, it does provide a promising outlook for future studies and how the 

technique might be applied as part of the diagnostic process for ALS. Furthermore, the use of TA 

in conjunction with other neuroimaging methods may improve sensitivity and specificity in 

diagnostic measures. More research should be done to investigate this. Future research should 

seek to include patients earlier on in the disease process. If possible, the most ideal subjects 

would be people who have not yet been diagnosed. Tracking these patients longitudinally would 

allow an examination of the disease in comparison to other potential mimics to determine 

whether the internal capsule is an effective area of interest for differentiation in the diagnostic 

process. 

 The CALSNIC protocol was created as a multicentre initiative to develop a framework 

for standardised imaging and other analysis methods in ALS research. As was previously 
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mentioned, all aspects of data acquisition in this study were done prospectively to ensure as little 

variation as possible between sites. The goal is that if standard rules or guidelines for data 

acquisition in ALS research are established, then data acquired by future studies by other groups 

might by combined for a collaborative effort. This would be a model similar to the ADNI 

database, but in this case pertaining to ALS rather than Alzheimer’s disease. Larger datasets 

through collaboration and combination in ALS research would allow for larger scale 

examinations and subdivisions of patient groups. This is particularly important in a disease like 

ALS given that the disease itself is so heterogeneous, and large samples are difficult to come by 

in certain centres due to limitations of recruitment and inclusion/exclusion criteria. Collaboration 

with standardised data would sidestep this issue leading to a greater ease in the development of 

new investigative efforts. On a more short-term level, the goals of CALSNIC were to examine 

different MRI analysis tools and modalities to explore cerebral degeneration in ALS. Data is 

being acquired longitudinally with neuropsychometrics done at each MRI visit. The collection of 

data in the CALSNIC was multimodal, but the goal of the present study was to demonstrate the 

efficacy of TA in the context of an analysis focused on comparisons to clinical measures motor 

neuron degeneration. However, future studies have the opportunity to explore more multimodal 

comparisons and tease apart the data with subgroup analyses and post-mortem imaging. As of 

now there are eight sites included in CALSNIC. This existing collaboration between sites as well 

as the potential for more sites to follow suit in the future holds promise for development of this 

framework for the study of ALS and other motor neuron diseases. 

 One limitation of these results was that they are uncorrected for multiple comparisons. In 

whole brain, voxel-wise analyses, it is common practice to correct for false positives that can 

occur when examining such a large number of individual comparisons – one at each voxel. 
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Correction is typically done by way of False Discovery Rate (FDR) correction, or Family-Wise 

Error (FWE) correction. When either of these corrections was applied to the results of the present 

study, they disappear. This introduces a need for caution when interpreting the results, though 

some of this lack of statistical power may be attributable to the small samples seen at each site 

and heterogeneity of the patients in those samples. As stated previously, these small samples 

being made representative of ALS patients at each site can introduce variability in the statistical 

analysis leading to a decrease in statistical power. The results of the between-sites voxel-wise 

analysis demonstrate noticeable variability in texture abnormalities detected between sites. 

However, given that texture was shown to be reliable and reproducible between sites 

(Experiment 1), these results further enforce sample heterogeneity. Thus, future studies should 

look to recruit larger samples to mitigate this effect. Nevertheless, given that many of the texture 

abnormalities detected are present in areas of known ALS pathology, it is reasonable to suggest 

that these changes are not random. In the process of developing the present study some criteria 

may have limited its complexity, but these were made with the goal of ensuring effects seen in 

the results were as much as possible attributed to ALS itself. While the CALSNIC protocol 

allows the recruitment of motor neuron diseases other than ALS such as PLS and PMA, the 

present study excluded any patients who were not specifically ALS. This was done to ensure that 

differences in degeneration for other motor neuron diseases did not skew the results either way. 

However, this of course means that the differentiation between patients and controls is not 

necessarily directly representative of a clinical situation. Inclusion was also held back in part by 

numbers. The total number of other motor neuron disease patients was roughly five participants 

including all sites. Had there been more, it may have easier to justify inclusion as a subgroup. 

Future studies should look to analyse these patients as well. Another limitation of the present 
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study is variation in MRI data between sites of acquisition. As mentioned previously, all data 

was acquired with a standardised protocol, and all comparisons were corrected for differences 

between sites. Yet, we still cannot entirely rule out the possibility of some inter-site variability in 

MRI. This also applies to neurological evaluations including ALSFRS-R and tapping scores. The 

same metrics administered by different physicians and researchers at each site can contribute to 

an overall added variability in the data. Regardless of standard protocol to follow, there is some 

subjectivity in each of these types of analysis which can theoretically be a source of 

heterogeneity in our overall sample. While these measures are corrected for site differences, this 

remains a limitation of this study as it would be a consideration in any multicentre analysis. One 

final limitation of the current study is a limitation of the vast majority of all ALS-related 

literature. However, this limitation is more so an opportunity for future steps. One of the greatest 

difficulties in the diagnostic process of ALS is in early recognition and differentiation of the 

disease from other similar and mimicking disorders, yet typically the patients included in ALS 

research are those who have already been diagnosed with some certainty. In an ideal scenario, 

there would be a greater outreach to family doctors and those seeing patients at their first 

symptom onset. Recruitment and longitudinal analysis of patients prior to diagnosis would be 

extremely useful in studying the way that ALS develops uniquely in the brain compared to other 

conditions that might mimic it. Furthermore, it would allow the application of tools such as TA 

firstly, to determine the differences between those who go on to develop ALS and those who 

don’t, and secondly, to further use these differences to help expediate future diagnoses. Of 

course, there are sure to be challenges in recruiting patients who have not yet been diagnosed, 

but this should be a goal for future analyses.  
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 One of the most important triumphs of the present study is the detection of ALS 

pathology in both GM and WM using only clinical T1-weighted images. This is only bolstered 

by the fact that the cerebral degeneration in ALS patients which was detected appears to be of 

variable pathological classification. A challenge that is often seen in the application of MRI as a 

diagnostic tool is a requirement of a multitude of scan sequences to analyse all bases. For some 

disorders this is not a necessity. MS lesions can be seen as hyperintense areas on a T2-weighted 

image, and Alzheimer’s pathology can be seen as significant atrophic change throughout the 

brain on a T1-weighted image [Jack Jr., 2008; Dustin, 2016; Rashid, 2008]. In the case of ALS, 

we are not so lucky, as there are rarely obvious differences between an ALS patient and a control 

on a structural image. Instead, GM and WM integrity can be examined separately using VBM 

and DTI, or neuronal health can be examined by way of MRS. In contrast, the current study’s 

findings indicate that this may no longer be the case. Given that TA can examine the whole brain 

with only a clinical T1-weighted image, it is a tool that is easily applicable in clinical settings. 

Not only are T1 scans done during the diagnostic process for most ALS patients, but they are 

also relatively quick and easy for patients. The speed at which the scan can be completed is 

particularly important for patients experiencing bulbar dysfunction as they may have difficulty 

with excessive salivation, swallowing, and clearing their throats. If further research demonstrates 

that TA is truly an effective tool, translation to clinical application would be relatively simple. 

Adding a T1-weighted scan to the early diagnostic process would allow for both a whole brain 

and ROI-based analysis of patients to objectively measure disease presence. If patients are 

diagnosed earlier, it allows for these patients to start treatment more quickly, hopefully at a point 

where the pathology can be slowed or even stopped. Even if TA is not proven to be the be-all-

end-all tool for diagnosis, it can at least act as a supplement to diagnosis and a tool used to track 
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progression objectively. This of course allows for a less subjective examination of drug trial 

efficacy and the trajectory of the disease itself rather than relying on reports from patients and 

clinical measures which can be difficult to measure with certainty due to other pathology present.  

 

6.5. Conclusion 

 The results of Experiment 2 have demonstrated that TA is capable of detecting 

pathological changes in the brain due to ALS. These texture abnormalities were present in the 

motor regions of the brain as well as other extra-motor regions. Furthermore, texture 

abnormalities may be attributable to various pathological processes. This should be investigated 

further in future studies which combine the use of TA and post-mortem tissue analysis with the 

goal of linking specific texture changes with specific pathologies in the brain. In addition to these 

results, it was determined that texture values correlated with clinical UMN burden and global 

brain atrophy as measured by BPF. Texture in the internal capsule was also found to be 

predictive of diagnosis between patients and controls. While TA needs to be tested further before 

implementation in clinical settings, it does hold promise as a potential biomarker for ALS 

patients. Given that TA is capable of examining whole-brain degeneration using T1 structural 

images, it presents a relatively simple solution to other diagnostic strategies.  
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