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Abstract

Machine learning (ML) and the Internet of Things (IoT) have many promises but

also raise many concerns and challenges. In particular, when several users collaborate

in training an ML model, preserving the privacy of their data is quite challenging.

Federated learning (FL), as an ML technique based on distributed computing, has

been proposed to address this and other challenges of collaborative ML training.

While FL has gained vast popularity in both academia and industry, its deployment

in practice, especially in time-sensitive and energy-limited wireless applications, is

challenging. Moreover, scarce communication resources such as bandwidth must be

efficiently utilized.

In wireless FL systems, bandwidth allocation plays a crucial role in determin-

ing the overall performance, including training latency, model accuracy, and energy

consumption. The limited availability of bandwidth, coupled with the need for syn-

chronized communication among FL clients, makes bandwidth allocation a complex

optimization problem.

Hence, in this work, we explore the problem of minimizing the total bandwidth

usage in a wireless FL system under time and energy constraints. We formulate

this problem as a non-convex optimization problem that aims to minimize the total

bandwidth usage of the system while respecting the mentioned practical constraints.

By decomposing the problem into two subproblems, we show that it can be solved

efficiently using convex optimization and iterative search techniques. Our proposed

algorithm finds the optimal solution while enjoying low complexity, making it suitable

for real-world implementations. Through comprehensive simulations, we demonstrate
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the efficiency of our approach and analyze different aspects of the problem.

This work contributes to the ongoing research efforts in optimizing FL for wireless

networks, addressing the critical challenges of bandwidth allocation along with cost

constraints. The insights gained from this study can help in developing more robust

and efficient FL systems for a wide range of time-sensitive and energy-constrained

wireless applications.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Machine learning (ML) has become an integral part of modern technology, driving

advancements across various industries by enabling systems to learn from data and

make informed decisions. Traditionally, ML involves the centralization of data from

multiple sources onto a single server or data center, where a model is trained on

this aggregated dataset. This centralized approach has been the backbone of many

successful applications, from image recognition and natural language processing to

predictive analytics and autonomous systems. By leveraging large datasets, powerful

computational resources, and sophisticated algorithms, traditional ML has achieved

remarkable accuracy and efficiency in a wide range of tasks.

However, this centralized model of learning is not without its limitations. One

significant challenge is the issue of data privacy and security. As more sensitive and

personal data is generated by users and devices, the risks associated with centraliz-

ing this data—such as breaches, unauthorized access, and compliance with privacy

regulations have become more pronounced. Additionally, the sheer volume of data

generated at the edge, by devices such as smartphones, sensors, and autonomous

vehicles, creates logistical challenges in terms of data transfer, storage, and process-

ing. The need to move large datasets to a central server can result in significant

communication overhead, latency, and energy consumption, making centralized ML
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impractical for certain applications.

To address these challenges, federated learning (FL) has emerged as a decentralized

alternative to traditional ML [1–3]. FL enables multiple devices, often referred to as

clients, to collaboratively train a shared global model without exchanging their local

data. Instead of centralizing the data, FL keeps it localized on edge devices, with each

device performing local training on its own dataset. Periodically, these devices send

updates, typically in the form of model parameters or gradients, to a central server.

The server aggregates these updates to improve the global model, which is then sent

back to the devices for further local training. This process iteratively continues until

the model converges to the desired level of accuracy.

FL offers several key advantages over traditional ML. By keeping data localized,

FL significantly enhances data privacy and security, reducing the risks associated with

data breaches and unauthorized access. It also reduces the communication overhead

associated with transferring large datasets, as only the model updates are transmitted

between devices and the server. This makes FL particularly well-suited for scenarios

where data is generated and stored on edge devices, such as in healthcare [4, 5],

finance [6], smart cities [7] and many IoT applications [8]. Moreover, FL enables the

utilization of the computational resources available on edge devices, distributing the

training workload and reducing the reliance on centralized data centers.

The rise of edge computing and the proliferation of devices such as smartphones,

IoT sensors, and autonomous vehicles have positioned FL as a key technology for fu-

ture AI systems. These devices continuously generate vast amounts of data that can

be harnessed to improve machine learning models. However, the challenge lies in the

effective utilization of resources—both computational and communication—available

in these devices. FL promises to leverage the collective intelligence of these devices

without overwhelming them or the network with excessive computational or commu-

nication demands, which is critical in ensuring the sustainability of such systems.

In a typical FL process, each participating device performs local training on its
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dataset and periodically sends updates, usually in the form of model parameters or

gradients, to a central server. The server then aggregates these updates to improve

the global model, which is subsequently sent back to the devices for further local train-

ing. This iterative process continues until the model converges to a desired level of

accuracy. However, the communication overhead associated with transmitting model

updates can be substantial, particularly in wireless environments where bandwidth is

limited and costly. This overhead not only strains the network but can also lead to

increased latency, which is detrimental to time-sensitive applications of FL.

The integration of FL with wireless environments introduces new complexities and

challenges. Wireless networks, by their nature, are characterized by variable band-

width, latency, and reliability. Unlike wired networks, where resources can be more

easily managed and scaled, wireless networks must contend with factors such as signal

interference, channel fading, and congestion. These factors can significantly impact

the performance and efficiency of FL systems, particularly when dealing with large-

scale deployments or environments with fluctuating network conditions.

In wireless FL, the communication between edge devices and the central server typ-

ically occurs over shared wireless channels. The bandwidth of these channels is often

a limited resource, especially in scenarios involving large numbers of devices, such as

smart cities, autonomous vehicle fleets, or widespread IoT deployments. Efficiently

managing this bandwidth is critical for ensuring that the FL process remains scalable

and responsive, particularly as the number of participating devices increases. With-

out careful management, the cumulative demand for bandwidth can lead to network

congestion, which can severely degrade the performance of the FL process.

Moreover, edge devices in wireless environments are often constrained by limited

computational resources and energy supplies. These devices, such as smartphones or

IoT sensors, typically operate on battery power and have limited processing capa-

bilities. Therefore, the computational burden of local training and the energy costs

associated with communication must be carefully balanced. Excessive computational
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demands can drain the device’s battery, while frequent communication can consume

significant amounts of bandwidth and energy, leading to increased latency and po-

tential model degradation. This balancing act is crucial in ensuring that FL can be

sustainably deployed in real-world environments.

The primary motivation for this work stems from the need to optimize the use

of communication resources, particularly channel bandwidth, in wireless FL environ-

ments. Bandwidth is arguably the most valuable and constrained resource in such

settings, as it directly influences the scalability, efficiency, and feasibility of deploy-

ing FL on a large scale. In scenarios where many devices are participating in the

FL process, the cumulative demand for bandwidth can lead to network congestion,

increased latency, and higher operational costs. Therefore, efficient bandwidth al-

location is crucial for sustaining the performance of FL systems, especially as these

systems scale to include more devices and handle more complex models.

The optimization framework we propose has broad applications across various in-

dustries where FL is poised to play a transformative role. One of the most immediate

applications is in the telecommunications industry. Telecom companies are increas-

ingly exploring FL as a way to leverage data generated by users’ devices without

violating privacy. However, the efficiency of these deployments hinges on the effec-

tive use of bandwidth, a resource that telecom operators must manage meticulously

to ensure service quality and cost-effectiveness. Our framework provides a tool for

telecom companies to optimize bandwidth allocation in FL systems, allowing them to

maximize the number of devices that can participate in the learning process without

overwhelming the network or compromising the quality of the service provided.

Another key application is in autonomous systems, such as fleets of self-driving

cars. These vehicles generate and process massive amounts of data in real-time, and

FL can be used to enable them to learn collaboratively from each other’s experiences.

In such a scenario, the efficient use of wireless communication channels is critical to

ensuring that vehicles can quickly and reliably exchange model updates without sac-
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rificing safety or performance. Our optimization approach ensures that bandwidth is

used efficiently, allowing for faster and more reliable communication between vehicles,

which is essential for the real-time decision-making required in autonomous systems.

In the healthcare sector, FL offers a way to train models on decentralized medical

data, enabling hospitals and other healthcare providers to collaborate on machine

learning projects without sharing sensitive patient data. However, healthcare data

is often large and complex, making bandwidth a significant concern. Our framework

can help healthcare providers implement FL systems that are both privacy-preserving

and efficient, ensuring that medical data can be used to its fullest potential without

overburdening the network or compromising patient privacy. This is particularly

important in healthcare, where timely and accurate model updates can be crucial for

patient outcomes.

The concept of smart cities involves the integration of technology to manage urban

resources more efficiently. FL can be used in smart cities to enable devices such as

traffic cameras, environmental sensors, and public transportation systems to learn

from each other and improve their operations. In such environments, bandwidth is a

shared resource that must be managed carefully to avoid congestion and ensure that

all devices can communicate effectively. Our optimization framework can be applied

to manage bandwidth in smart cities, ensuring that FL processes are both effective

and sustainable, which is essential for the long-term success of smart city initiatives.

The primary contribution of this work is the development of an optimization frame-

work that minimizes total bandwidth usage in wireless FL environments. This frame-

work is designed to balance the competing demands of communication and computa-

tion resources while maintaining model accuracy and adhering to latency and energy

constraints. Our approach is novel in its focus on bandwidth optimization as the

central objective, setting it apart from existing techniques that primarily address

overhead reduction.

This work represents a significant step forward in the optimization of resource-
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constrained FL systems, offering a novel approach to managing the most critical re-

source in wireless networks—bandwidth. By addressing the unique challenges posed

by wireless FL environments, our framework has the potential to enable more efficient

and scalable deployments of FL across a wide range of applications, from telecom-

munications to healthcare, autonomous systems, and beyond. This approach not

only enhances the practicality of FL in real-world settings but also opens up new

possibilities for its application in increasingly complex and demanding environments.

1.2 Thesis Objectives

This study stands at the intersection of federated learning systems and wireless com-

munication, two rapidly evolving fields that promise to reshape the landscape of

distributed computing. Considering the discussed significance of channel bandwidth

as the most valuable communication resource, we aim to use it in the most efficient

manner in wireless federated learning systems. The study delves into the problem

of optimizing computation resources, accuracy, and bandwidth allocation in order to

reach minimal bandwidth usage. This involves formulating an optimization problem

that models the wireless federated learning system while considering constraints on

energy consumption and time limit, which are critical factors in real-world applica-

tions such as mobile edge computing and IoT networks.

The goal is to handle the complexities inherent in this problem by converting non-

convex optimization aspects of the problem into manageable convex formulations,

which are more tractable and can be solved efficiently using standard optimization

techniques. By doing so, the research attempts to achieve optimal solutions that

deliver our objective of bandwidth usage minimization. The outcomes of this study

could have significant implications for the design of future wireless federated learning

systems, potentially enabling more scalable and robust deployments in a variety of

environments, from urban centers with high network congestion to remote areas with

limited connectivity.
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1.3 Thesis Organization

The following chapters from this thesis are organized as follows. First, in Chapter

2, we delve into the background behind this work. We will review the literature and

provide an overview of related works in the field. Subsequently, we will provide some

base knowledge on the concepts and techniques used in this work.

In Chapter 3, we will first explain the system model to our work. Then, we will

formulate a standard optimization problem based on our model. After analyzing

the problem, we will propose a solution along with step-by-step proofs. This will

be followed by a numerical results section to examine the proposed solution in a

comprehensive manner. Finally, we will go through the same process for an extended

version of the problem, which we call the Dual Accuracy form.

Chapter 4 will include a conclusion to this thesis, explaining a gist of the method-

ology, the contributions and possible applications of our work. It is finished by pre-

senting some possible future research directions that can be built on this research to

make further advancements in the domain.
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Chapter 2

Background

2.1 Literature Review

Since the emergence of federated learning as a new approach to replace the classic,

centralized way of machine learning, numerous publications have explored different

aspects of wireless federated learning systems. In this section, we will review some of

the most influential works, while categorizing them based on various criteria. These

criteria include objective functions, wireless setups, and applications of the works

published in the field. We also inspect some works that are merely focused on math-

ematical analysis of FL frameworks.

Based on Optimization Goals

State-of-the-art works have been published that have focused their goal on optimizing

wireless FL for efficient use of resources such as reducing the energy consumption or

latencies in the FL process. In some cases, objective functions also consider other

factors such as packet error rate [9], or data size [10, 11]. The most popular approaches

towards these goals are client selection and bandwidth allocation. However, in most

works, other optimization parameters exist along with these two.

The authors in [12] have considered a hierarchical FL system. They have defined

a cost function that consists of a weighted sum of the energy consumption and the

latency. The authors propose different algorithms to find the optimal radio resource
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allocation, computation resource allocation, and local accuracy in order to minimize

the mentioned cost function. In [13], the authors minimize the total energy con-

sumption of the users under a latency constraint, over variables including (but not

limited to) bandwidth, local accuracy, and CPU-cycle frequency. Also, [14] pro-

poses maximizing the number of participating clients in each FL global iteration and

minimizing the bandwidth allocated to the selected clients. However, the proposed

discrete water-filling method for bandwidth allocation distributes the communication

resource blocks subject to only a latency constraint.

The study in [15], focused on vehicular edge computing (VEC), addresses two key

challenges: selecting suitable vehicles for participating in the FL process and op-

timizing the allocation of computational and communication resources to minimize

training time and energy consumption. By formulating the problem as a joint opti-

mization of vehicle selection, resource allocation, and FL model training, the paper

proposes strategies that balance these factors, leading to more effective and scalable

VEC systems.

The paper [16] tackles the critical trade-offs between computation and commu-

nication latencies and their impact on federated learning time and user equipment

(UE) energy consumption. The authors address this by formulating an optimiza-

tion problem which captures these trade-offs. Although the formulated problem is

inherently non-convex, the authors decompose it into three convex sub-problems and

derive closed-form solutions for each, leading to a globally optimal solution. These

solutions provide key insights into optimizing learning time, accuracy, and energy cost

in FL over wireless networks. This work is among the most reputable state-of-the-art

works in the field of wireless FL.

The paper [10] focuses on optimizing federated learning in wireless networks by

addressing client selection and bandwidth allocation. The optimization problem is

framed as a mixed-integer problem aimed at minimizing the defined cost function,

which consists of latency and accuracy, while adhering to long-term energy constraints
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across all training rounds. The approach involves an online optimization strategy to

balance these factors effectively.

There are more examples of works that have focused on either minimizing the

energy consumption [17–20], training time [21, 22], or a joint cost function of both

[23, 24].

Based on Wireless Setups

In the sense of wireless setups, Various works with FL frameworks in simple to more

complicated wireless system models, such as reconfigurable intelligent surfaces (RIS),

mmWave, HetNets, interference, Non-orthogonal multiple access (NOMA), Multiple

Input Multiple Output (MIMO), were investigated in the literature [19, 21, 25–29].

For example, authors in [21] work on a framework to reach minimal training time

in FL over a cell-free massive multiple-input multiple-output (MIMO) network, with

the total allocated bandwidth to the system as a given constant.

In [25] and [26], authors investigate FL in different wireless environments, i.e.

an mm-wave massive MIMO network with hybrid beamforming and an RIS-assisted

massive MIMO, and compare the performance, the transmission overhead, and the

tolerance to corruptions in channel data in them against centralized learning.

The proposed FL scheme in [27] considers an RIS-assisted mmWave communication

system, and works on maximizing the achievable rate of the received signal, with a

given total system bandwidth. However, unlike our work, it does not include the

energy consumption of participating users and a target accuracy for local users or the

global model in its system model.

The work in [28], proposing a wireless FL system model with limited resource

blocks (RBs) and multiple users with interference, performs user selection and re-

source allocation to minimize the total time it takes to complete the FL training

process. This work, too, does not include an adjustable local accuracy and considers

a constant number of iterations T that is large enough to guarantee the convergence
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of FL. It also does not model or limit the energy consumption of local users.

Authors in [29] aim to minimize the total energy consumption in hierarchical FL

over heterogeneous networks (HetNets), considering a constant bandwidth. This work

has no constraint on the completion time of users at each global iteration or the whole

FL process. In [19], the total energy consumption of users is minimized considering a

given bandwidth allocation in a multi-tier NOMA-enabled HetNet FL environment.

Based on Applications

From an application point of view, numerous applications of FL in different areas have

been explored in the literature. In healthcare, FL has been used to improve predictive

models for patient outcomes by training on sensitive medical data from multiple

hospitals without centralizing the information, thus preserving patient privacy [4, 5,

30].

In finance, FL can enable multiple financial institutions to collaboratively train

machine learning models without directly sharing their sensitive data. This applica-

tion of FL is relevant for scenarios like fraud detection, credit scoring, and financial

risk analysis, where institutions can benefit from shared insights while adhering to

strict privacy regulations [6, 31].

In autonomous driving, FL facilitates the development of robust vehicle perception

systems by leveraging data from a fleet of vehicles to improve object detection and

navigation algorithms in a privacy-preserving manner [15, 32].

In agriculture, FL supports precision farming by combining data from various farms

to optimize crop management and yield predictions while maintaining the privacy of

proprietary farming techniques [33].

In smart homes, FL improves the functionality of devices like thermostats and se-

curity cameras by learning from user behavior across multiple homes, thus enhancing

personalization while keeping user data decentralized [34, 35].

Additionally, smart keyboard applications use FL to enhance text prediction and
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auto-correction by training language models on users’ typing data while keeping the

data on their devices, thus providing more accurate suggestions without compromising

privacy [36, 37].

In smart cities, FL is utilized for numerous purposes as well. Federated learning

enhances traffic management by optimizing signal control, congestion prediction, and

route planning through decentralized model training. It improves public safety with

real-time surveillance and anomaly detection while preserving privacy. Environmental

monitoring benefits from FL through collaborative air quality prediction and pollution

control. For energy management, FL predicts demand and efficiently manages smart

grids without sharing sensitive data. [7, 38]. These diverse applications highlight

the versatility of FL in solving complex, privacy-sensitive problems across a range of

industries [8].

Fundamental Works

Finally, some works are solely dedicated to proposing fundamental algorithms and

frameworks for FL or analyzing them regarding convergence rate, accuracy, and com-

munication or computation efficiency.

The original work in [1] is one of these works, introducing federated learning as

a decentralized approach that allows training deep networks while keeping data on

users’ devices to enhance privacy. The authors propose the FederatedAveraging (Fe-

dAvg) algorithm, which iteratively averages locally computed updates, significantly

reducing communication rounds compared to traditional methods. This approach

effectively addresses the challenges of unbalanced and non-IID data distributions,

enabling efficient training on decentralized data.

The paper [2] by Konečný et al. introduces federated optimization as a framework

for training machine learning models across numerous devices while keeping data

localized to preserve privacy. It emphasizes the need for communication efficiency and

proposes a new algorithm tailored for sparse convex problems, addressing the unique
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challenges of distributed learning in scenarios where data is unevenly distributed

across many devices. This work lays the groundwork for future research in privacy-

preserving distributed learning techniques, particularly in mobile and edge computing

contexts.

In [39], authors propose a communication-efficient framework, namely COCOA,

that uses local computation in a primal-dual setting to dramatically reduce the

amount of necessary communication. They provide a strong convergence rate analysis

for this class of algorithms, as well as experiments on real-world distributed datasets

with implementations in Spark.

Ma et al., in their widely adopted work ”Distributed Optimization with Arbitrary

Local Solvers” [40], propose a flexible framework that allows for the use of any local

solver on individual machines while still achieving competitive performance in a dis-

tributed setting. The authors provide strong primal-dual convergence guarantees for

their approach and demonstrate through theoretical analysis and experiments that it

can outperform specialized distributed methods by leveraging well-tuned local solvers.

The papers ”Semi-Stochastic Coordinate Descent” [41] and ”Semi-Stochastic Gra-

dient Descent Methods” [42] introduce novel optimization techniques that combine

deterministic and stochastic steps for minimizing strongly convex functions. The

Semi-Stochastic Coordinate Descent (S2CD) method alternates between full gradient

computations and stochastic coordinate updates, using non-uniform distributions to

select both the function and coordinate to update. Similarly, the Semi-Stochastic

Gradient Descent (S2GD) method alternates between full gradient evaluations and

multiple stochastic gradient steps. Both methods aim to achieve faster convergence

rates than traditional stochastic methods, offering a balance between the computa-

tional efficiency of stochastic approaches and the stability of deterministic methods.

These approaches represent significant advancements in optimization techniques for

large-scale machine learning problems, providing improved efficiency and theoreti-

cal guarantees without the need for parameter tuning typically required in purely
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stochastic methods.

2.2 Gap in Research

While existing research has made strides in reducing communication costs in FL,

most efforts have focused on techniques that reduce the size of the transmitted data,

such as quantization [43–45], and compression [46–48]. These techniques primarily

aim to decrease the overhead associated with each communication round by reducing

the amount of data that needs to be transmitted. However, they do not address the

broader issue of minimizing the total bandwidth usage across all FL users. To the best

of our knowledge, the specific problem of minimizing total bandwidth consumption,

while also considering computational resources, model accuracy, latency, and energy

constraints, has not been thoroughly investigated in the literature of wireless FL.

This work aims to fill this gap by formulating the problem of minimizing total

bandwidth usage in a wireless FL setup as a non-convex optimization problem. The

proposed approach considers the interplay between communication and computation

resources, and accuracy ensuring that the optimization process balances these de-

mands while maintaining the accuracy of the learning model. By decomposing the

problem and applying convex optimization techniques, we are able to derive a solu-

tion that effectively optimizes bandwidth usage, thereby enhancing the efficiency and

scalability of FL in wireless environments.

2.3 Background Information

2.3.1 Optimization

Mathematical optimization [49] is a fundamental area of mathematics and applied

sciences that deals with the problem of finding the best solution from a set of fea-

sible solutions. The essence of optimization is to make decisions that maximize or

minimize an objective function—often representing cost, profit, efficiency, or some
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other measure of interest—subject to a set of constraints. These constraints define

the conditions that any feasible solution must satisfy.

At its core, an optimization problem is composed of three key elements:

1. Objective Function: This is the function that needs to be optimized—either

maximized or minimized. For example, in a business context, the objective might be

to minimize costs or maximize profits.

2. Decision Variables: These are the variables that can be controlled or adjusted

to optimize the objective function. For example, these could be the quantities of

different products to manufacture or the amount of resources to allocate.

3. Constraints: These are the conditions or restrictions placed on the decision

variables. They define the feasible region within which the solution must lie. Con-

straints could be physical limits, resource capacities, or specific requirements that

must be met.

Mathematical optimization is a powerful tool used in various fields such as en-

gineering, economics, finance, logistics, and machine learning, to name a few. By

formulating problems as optimization problems, one can apply a wide range of math-

ematical techniques to find optimal or near-optimal solutions.

Categorization of Optimization Problems

Optimization problems can be broadly categorized based on several criteria. Under-

standing these categories helps in choosing the appropriate methods and tools for

solving specific problems. Below is a structured, top-down categorization of opti-

mization problems.

• Based on the Objective Function

– Linear Optimization:

∗ In linear optimization, the objective function and constraints are linear

functions of the decision variables. Linear optimization problems are
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relatively well understood and can often be solved efficiently.

∗ Example: Linear Programming (LP).

– Nonlinear Optimization:

∗ In nonlinear optimization, at least one of the objective functions or

constraints is nonlinear. Nonlinear optimization problems can be more

challenging to solve due to the complexity of the objective function and

constraints.

∗ Nonlinear optimization can be further divided into:

· Convex Optimization: Where the objective function is convex,

and the feasible region is a convex set. These problems have a

single global optimum.

· Non-convex Optimization: Where the objective function or

feasible region is non-convex, potentially leading to multiple local

optima, making the problem harder to solve.

• Based on the Nature of the Decision Variables

– Continuous Optimization:

∗ Decision variables can take any value within a given range (usually

real numbers).

∗ Example: Minimizing a cost function over a continuous range of in-

puts.

– Discrete Optimization:

∗ Decision variables can only take discrete values, often integers.

∗ Example: Integer Programming (IP), where the decision variables

must be integers.

• Based on the Structure of the Constraints
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– Unconstrained Optimization:

∗ No constraints are imposed on the decision variables.

∗ Example: Finding the minimum of a function over its entire domain.

– Constrained Optimization:

∗ The problem includes equality and/or inequality constraints that re-

strict the feasible region.

∗ Example: Portfolio optimization with budget constraints.

Optimization problems can also be categorized based on their deterministic or

stochastic nature. In deterministic optimization, all parameters in the problem are

known with certainty. On the other hand, stochastic optimization involves uncertainty

in the parameters and is often modelled using random variables.

Convex Optimization

Convex optimization [50] is a fundamental class of optimization problems where the

objective function is convex and the feasible region is defined by convex constraints.

A function f : Rn → R is convex if, for any x1, x2 ∈ Rn and any θ ∈ [0, 1], the

inequality

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

holds. This definition implies that for a convex function, the line segment between any

two points on its graph lies above or on the graph itself. Convex sets and functions are

particularly of significant interest because they guarantee that any local minimum is

also a global minimum, which greatly simplifies the problem-solving process compared

to non-convex cases.

Mathematical Conditions for Convexity

Several mathematical conditions can be used to determine if a function is convex:

- First-Order Condition: A differentiable function f is convex if and only if its
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gradient satisfies the condition:

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ Rn.

This condition means that the function lies above its first-order Taylor expansion at

every point.

- Second-Order Condition: For twice-differentiable functions, convexity can be

determined by the Hessian matrix ∇2f(x). The function f is convex if and only if

the Hessian is positive semidefinite at every point:

∇2f(x) ⪰ 0 for all x ∈ Rn.

A symmetric matrix A ∈ Rn×n is said to be positive semidefinite if, for all non-zero

vectors z ∈ Rn, the quadratic form zTAz ≥ 0. In other words, a matrix A is positive

semidefinite if:

zTAz ≥ 0 for all z ∈ Rn.

The positive semidefiniteness of the Hessian∇2f(x) indicates that the function curves

upwards at every point, which is a key characteristic of convex functions.

- Convexity of Set-Based Functions: If a function f is defined over a convex

set S ⊆ Rn and the function is convex on S, then any minimization of f over S is

guaranteed to have a globally optimal solution.

Key Properties of Convex Optimization Problems

- Global Optimality: The convexity of both the objective function and feasible

region ensures that any local minimum is also a global minimum. This property

eliminates the possibility of suboptimal solutions trapped in local minima.

- Efficient Solvability: Convex optimization problems can often be solved using

efficient algorithms with polynomial-time complexity, such as interior-point meth-

ods, projected gradient descent, and other techniques specifically designed for convex

structures. These algorithms benefit from the problem’s well-behaved geometry, en-

suring reliable convergence even in high-dimensional spaces.
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The Lagrangian and KKT Conditions in Convex Optimization

The Lagrangian is a function that combines the objective function and the con-

straints of an optimization problem into a single expression. For a given optimization

problem:
Minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

the Lagrangian is defined as:

L(x, λ, ν) = f(x) +
m∑︂
i=1

λigi(x) +

p∑︂
j=1

νjhj(x)

where λi and νj are the Lagrange multipliers associated with the inequality and

equality constraints, respectively.

The Karush-Kuhn-Tucker (KKT) conditions are a set of necessary conditions that

a solution must satisfy to be optimal for a constrained optimization problem. When

the optimization problem is convex, these conditions are not only necessary but also

sufficient for optimality.

KKT Conditions

The KKT conditions for this problem are:

1. Primal Feasibility:

gi(x
∗) ≤ 0, i = 1, . . . ,m

hj(x
∗) = 0, j = 1, . . . , p

Ensures the optimal solution (x∗) satisfies the constraints.

2. Dual Feasibility:

λi ≥ 0, i = 1, . . . ,m

Where λi are the Lagrange multipliers associated with the inequality constraints.

3. Stationarity:

∇f(x∗) +
m∑︂
i=1

λi∇gi(x∗) +

p∑︂
j=1

νj∇hj(x
∗) = 0
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The gradient of the Lagrangian must vanish at x∗.

4. Complementary Slackness:

λigi(x
∗) = 0, i = 1, . . . ,m

Ensures that either a constraint is active or its corresponding Lagrange multiplier is

zero.

Application in This Work

In this work, we apply the KKT conditions to solve a convex optimization problem,

focusing on optimizing bandwidth usage in a wireless federated learning system. This

involves minimizing a convex objective function subject to constraints such as time

and energy limits, which are critical for time-sensitive applications. The KKT con-

ditions help us systematically derive the optimal solution, ensuring that it satisfies

all constraints while minimizing the objective function, which in this case is band-

width usage. This approach is significant because channel bandwidth is often the

most expensive communication resource in wireless systems, making efficient use of

it crucial.

2.3.2 Log-Distance Path Loss Model

The Log-Distance Path Loss Model is a widely used empirical model in wireless

communication to predict the path loss of a signal over a distance [51]. It is particu-

larly useful in environments where the exact propagation characteristics are complex

and not easily modeled analytically. This model helps in understanding how signal

strength diminishes with distance and is crucial for designing and optimizing wireless

communication systems.

Path loss refers to the reduction in power density of an electromagnetic wave as

it propagates through space. It is influenced by various factors including distance,

frequency, and the environment (e.g., urban, rural, indoor). Path loss is a critical
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parameter in the design of wireless networks because it impacts the coverage area

and the quality of service.

The Log-Distance Path Loss Model generalizes the Free Space Path Loss model by

incorporating a path loss exponent, which accounts for the environment’s impact on

signal attenuation. The basic form of the path loss model can be expressed both in

dB (logarithmic scale) and non-dB (linear scale) as follows:

• dB Form:

PL(d) = PL(d0) + 10n log10

(︃
d

d0

)︃
• Linear Scale Form:

L(d) = L(d0)

(︃
d

d0

)︃n

where:

• PL(d) (in dB) and L(d) (unitless) represent the path loss at distance d,

• PL(d0) (in dB) and L(d0) (unitless) represent the path loss at a reference dis-

tance d0,

• n is the path loss exponent (unitless),

• d is the distance between the transmitter and receiver (in meters, m),

• d0 is the reference distance (in meters, m).

The reference path loss PL(d0) can be determined through empirical measurements

or calculated using the Free Space Path Loss formula:

PL(d0) = 20 log10

(︃
4πd0f

c

)︃
where:

• f is the frequency of the signal (in Hertz, Hz),
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• c is the speed of light (approximately 3× 108m/s).

The path loss exponent n characterizes the rate at which the path loss increases

with distance. Its value depends on the specific propagation environment:

• In free space, n = 2.

• In urban area cellular radio, n typically ranges from 2.7 to 3.5.

• In shadowed urban cellular radio, n can range from 3 to 5.

• In building line-of-sight environments, n can range from 1.6 to 1.8.

• In obstructed in-building environments, n can range from 4 to 6.

• In obstructed in factories environments, n can range from 2 to 3.

The received power Pr(d) at distance d can be expressed based on the received

power at a reference distance d0 using the following relationship:

Pr(d) = Pr(d0) ·
(︃
d0
d

)︃n

where:

• Pr(d) is the received power at distance d (in watts, W ),

• Pr(d0) is the received power at reference distance d0 (in watts, W ).

The Log-Distance Path Loss Model is used in various applications such as:

• Cellular Network Planning: Helps in determining cell coverage areas and plan-

ning base station placements.

• Wireless Sensor Networks: Assists in estimating communication range and net-

work connectivity.

22



• Indoor Positioning Systems: Used to model signal strength for location estima-

tion.

• Link Budget Analysis: Aids in calculating the link budget for ensuring reliable

communication links.

The Log-Distance Path Loss Model is a practical tool for predicting path loss in var-

ious wireless communication environments. By incorporating the path loss exponent

and, optionally, the shadowing effect, it provides a more realistic representation of

signal attenuation compared to the Free Space Path Loss model. Understanding this

model is essential for the effective design and optimization of wireless communication

systems.

2.3.3 Federated Learning

Federated learning is a decentralized approach to machine learning where multiple

clients collaboratively train a global model without directly sharing their data. Unlike

traditional centralized machine learning, where all data is aggregated and processed

in a central server, FL allows model training to occur locally on devices, transmit-

ting only model updates instead of raw data. This decentralized strategy addresses

concerns related to data privacy, bandwidth, and scalability.

With the rise of privacy regulations, such as the General Data Protection Regula-

tion (GDPR) and the expansion of edge devices (e.g., smartphones, IoT sensors), the

need to train models on distributed, sensitive, and heterogeneous data has increased.

FL provides a solution by enabling collaborative learning across these decentralized

data sources without the need to centralize the data itself. This leads to significant

benefits in terms of privacy preservation, reduced communication costs, and scalabil-

ity.
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Federated Learning Workflow

The FL process involves a series of key steps that allow for training a global model

using distributed data while preserving data privacy. The standard workflow is as

follows:

1. Local Training: Each client n starts by downloading the current global model

parameters w(t) from the central server. With these parameters, each client

trains its local model using its own dataset Dn. The local loss function for

client n is defined as:

Fn(w) =
1

Dn

∑︂
(xi,yi)∈Dn

fn(w, xi, yi),

Here, Dn denotes the number of data samples at client n.

where fn(w, xi, yi) represents the loss function for client n. This could be any

suitable loss function depending on the local solver used. The local training

process updates the model parameters to minimize this loss function over the

client’s local data.

2. Model Update: After completing local training, each client n sends its up-

dated model parameters w
(t+1)
n to the central server. This transmission includes

the new parameters and possibly additional metadata, such as the number of

data samples used in training.

3. Global Aggregation: The server aggregates the received model updates to

form a new global model. The aggregation process is typically done by comput-

ing a weighted average of the received model parameters, based on the amount

of data each client contributed. The updated global model w(t+1) is computed

as:

24



w(t+1) =

∑︁N
n=1Dnw

(t+1)
n∑︁N

n=1Dn

.

4. Iteration: The process repeats by distributing the updated global model w(t+1)

back to the clients for the next round of training. This iterative process con-

tinues until the model converges to a satisfactory level of performance. Conver-

gence is measured based on the global model’s accuracy or loss, with the goal

being to achieve a global model that performs well across all clients.

The number of global iterations needed to achieve convergence depends on var-

ious factors, including the local and global accuracy and efficiency of the local

training procedures. For example, if local training involves iterative optimiza-

tion algorithms, the number of iterations required to reach local accuracy θ can

impact the overall number of global iterations needed for convergence.

The convergence of the global model is typically assessed by monitoring the

changes in model accuracy or loss across iterations. The exact number of itera-

tions required is influenced by the performance of both the global aggregation

process and the local training algorithms used by the clients.

Key Concepts in Federated Learning

FL introduces several challenges compared to traditional centralized training, partic-

ularly in the context of data heterogeneity, communication efficiency, and privacy.

Data Heterogeneity (Non-IID Data)

One of the main challenges in FL is the non-IID (non-Independent and Identically

Distributed) nature of the data across clients. Since clients typically generate and

store data in specific contexts, their data distributions can be highly skewed. For

instance, user behavior on mobile devices may vary greatly across users, leading to

significant differences in local data distributions.

Communication Efficiency
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Since model updates are exchanged frequently between the server and clients, com-

munication efficiency is a primary concern in FL. Techniques to improve communica-

tion efficiency include:

• Compression: Techniques such as quantization and sparsification reduce the

size of transmitted model updates [43–48].

• Partial Model Updates: Transmitting only significant or selected portions

of the model.

• Client Sampling: In each round, only a subset of clients is selected to partic-

ipate, reducing the total communication overhead [10].

Privacy and Security

FL inherently preserves privacy by keeping raw data on devices, but additional

techniques are often needed to enhance privacy and security further:

• Differential Privacy: Adds noise to model updates before sharing to prevent

individual data points from being inferred.

• Secure Aggregation: Cryptographic techniques like homomorphic encryp-

tion or multi-party computation enable the server to aggregate model updates

without accessing individual updates.

Core Algorithms in Federated Learning

Several algorithms have been developed to address the unique challenges in FL, fo-

cusing on aspects such as non-IID data handling, efficient communication, and stable

optimization. Below are some key algorithms:

Federated Averaging (FedAvg)

FedAvg is one of the most widely used algorithms in federated learning. It was also

among the very first FL algorithms introduced. It combines local stochastic gradient
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descent (SGD) with global model averaging. The algorithm begins with the server

initializing the global model with parameters w(0). At each training round t, a subset

St of clients is selected to participate. Each selected client n ∈ St then downloads the

global model w(t) and performs local training, updating its model according to the

rule w
(t+1)
n = w(t)−η∇Fn(w

(t)), where η is the learning rate and Fn(w) represents the

local loss function for client n. After local training, the server aggregates the updated

models from all clients using a weighted average formula: w(t+1) =
∑︁N

n=1 Dnw
(t+1)
n∑︁N

n=1 Dn
,

where Dn represents the number of data samples held by client n. This process of

client selection, local training, and global aggregation is repeated iteratively until the

model converges. While FedAvg is highly effective in scenarios with IID (independent

and identically distributed) data, its performance can degrade in non-IID settings due

to the variance in local models across clients.

Federated Proximal (FedProx)

FedProx is a variant of FedAvg that introduces a proximal term in the local ob-

jective function, which helps stabilize training in the presence of non-IID data. The

modified objective for each client is:

min
w

Fn(w) +
µ

2
∥w − w(t)∥2,

where µ is a regularization parameter controlling the deviation from the global

model w(t). By restricting the local models from drifting too far, FedProx improves

robustness in heterogeneous data environments.

DANE (Distributed Approximate Newton Method)

DANE is a distributed optimization algorithm designed to handle the heterogeneity

of data by combining local quadratic approximations with global consensus updates.

Unlike FedAvg, which simply averages local updates, DANE aligns local updates more

closely with the global objective using a quadratic approximation.

Each client solves the following local subproblem:
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min
w

[︂
Ln(w) +

ρ

2
∥w − w(t)∥2

]︂
,

where ρ is a parameter controlling the strength of regularization. DANE’s quadratic

regularization allows it to be more resilient to non-IID data distributions by better

balancing local and global objectives.

COCOA (Communication-Efficient Distributed Dual Coordinate Ascent)

COCOA is a communication-efficient distributed optimization algorithm that fo-

cuses on solving convex optimization problems in the dual space. Unlike FedAvg,

which works in the primal space, COCOA leverages dual coordinate ascent, leading

to better performance and faster convergence in some scenarios.

COCOA optimizes the dual objective:

min
α

N∑︂
n=1

gn(αn) +
λ

2
∥

N∑︂
n=1

αn∥2,

where αn represents the dual variables for client n, and gn(αn) is the dual objective

specific to each client. COCOA allows clients to perform multiple local updates before

transmitting compressed dual updates, which reduces communication overhead while

maintaining good model performance.

Semi-Stochastic Coordinate Descent (S2CD)

Key ideas:

• Random coordinate selection: A subset of coordinates is selected randomly

at each iteration.

• Exact gradient updates: The selected coordinates are updated using the

exact gradient information.

• Local accuracy: A parameter controls the level of accuracy required for the

updates of the selected coordinates.
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Bound on local iterations: Let us denote:

• f as the objective function to be minimized.

• x ∈ Rn as the optimization variable.

• St as the random subset of coordinates selected at iteration t.

• θ as the desired level of accuracy.

The S2CD algorithm updates the selected coordinates xSt using the following rule:

xSt := xSt − αt∇Stf(x)

where αt is the step size at iteration t and ∇Stf(x) is the gradient of f with respect

to the coordinates in St.

The bound on local iterations for S2CD is typically derived using techniques from

optimization theory, such as the Polyak-Ribière conjugate gradient method. The

exact bound depends on the properties of the objective function and the desired level

of accuracy. However, a common result is that the number of local iterations required

to achieve θ-accuracy is proportional to log(1/θ).

Semi-Stochastic Gradient Descent (S2GD)

Key ideas:

• Random coordinate selection: A subset of coordinates is selected randomly

at each iteration.

• Stochastic gradient updates: The selected coordinates are updated using

stochastic gradient estimates.

• Local accuracy: A parameter controls the level of accuracy required for the

updates of the selected coordinates.
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Bound on local iterations: The bound on local iterations in S2GD is similar to

that of S2CD, but it may be slightly looser due to the use of stochastic gradient esti-

mates. The exact bound depends on the variance of the stochastic gradient estimates

and the desired level of accuracy.

However, a common result is that the number of local iterations required to achieve

θ-accuracy is proportional to log(1/θ), with a constant factor that depends on the

variance of the stochastic gradient estimates.

Comparison of S2CD and S2GD

• Convergence rate: Both S2CD and S2GD can achieve faster convergence

rates than full CD or SGD, especially for large-scale problems.

• Accuracy: S2CD generally provides higher accuracy than S2GD due to the

use of exact gradients.

• Computational efficiency: S2GD can be more computationally efficient than

S2CD for large-scale problems where computing exact gradients is expensive.

• Generalization performance: Both S2CD and S2GD can achieve good gen-

eralization performance, especially when combined with techniques like regu-

larization.

Distributed Optimization with Arbitrary Local Solvers

The “Distributed Optimization with Arbitrary Local Solvers” [40] proposes a frame-

work that generalizes many FL algorithms by providing a flexible approach to how

local models are updated. Instead of prescribing a specific algorithm like FedAvg or

COCOA, this framework allows clients to use any local solver for optimization. The

key idea is to decouple the local updates from the global consensus step, enabling

more efficient and diverse optimization strategies across clients.

Mathematically, the framework involves clients optimizing their local models ac-

cording to their preferred method and then sending updates to the server, which
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aggregates them using an appropriate consensus mechanism. The global update is

typically expressed as:

w(t+1) = w(t) + γ

N∑︂
n=1

Dn∑︁N
n=1 Dn

(w(t+1)
n − w(t)),

where γ is a step-size parameter controlling the contribution of local updates to

the global model.

This framework is especially useful when clients have different computational re-

sources or prefer different optimization techniques, allowing for a more adaptive and

scalable FL system.

Application in This Work

As discussed, there have been lots of theoretical state-of-the-art works advancing the

field of federated learning and forming fundamental grounds for future studies to

build on [16, 39–42]. In this work, we utilize some of the most significant results of

these studies, which are hereby explained.

1. The upper bound on the number of local iterations required to solve the local

problem for a wide range of iterative algorithms is O(log(1/θ)), where 0 ≤ θ ≤ 1

represents the desired local accuracy with which the local problem needs to be

solved. Here, θ = 0 means optimal solving of the local problem is required and

θ = 1 means no progress in solving the local problem. [16, 41, 42].

2. the number of global iterations required for the global model to converge with

respect to global accuracy 0 ≤ ε ≤ 1 and local accuracy θ is shown to be [16,

40]:

K(ε, θ) =
O(log(1/ε))

1− θ
. (2.1)

These results hold for a µ-strongly convex loss function, which is a common as-

sumption in the literature. A function f(x) is called µ-strongly convex if, for some

µ > 0, it satisfies the following condition for all x, y in its domain:
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f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥y − x∥2

This condition implies that the function is not only convex but has a certain level

of curvature controlled by µ, which ensures faster convergence in optimization.

We will follow a similar system model and assumptions in this work and utilize

these results in our problem formulation.

2.3.4 Differential Evolution

Differential Evolution (DE) [52] is a population-based optimization algorithm used

to solve complex, non-linear, and multi-dimensional problems. As a meta-heuristic,

DE operates by evolving a population of candidate solutions over generations to find

the optimal solution. The algorithm starts by randomly initializing a population of

vectors, each representing a potential solution. At each iteration, three key steps

occur: mutation, crossover, and selection. In the mutation step, a donor vector is

generated by combining the differences between randomly selected population mem-

bers. This donor vector is then combined with the current vector in the crossover

step to produce a trial vector. The trial vector is compared with the current vector,

and if it performs better, it replaces the current vector in the next generation. This

process allows the population to progressively converge toward the optimal solution.

The strength of DE lies in its simplicity and its ability to handle complex, noisy,

or non-differentiable objective functions. It is robust against getting stuck in lo-

cal optima, making it particularly powerful for problems where traditional methods

struggle. Compared to other meta-heuristic algorithms, such as Genetic Algorithms

and Particle Swarm Optimization, DE typically requires fewer parameters to be fine-

tuned, which can simplify its implementation. However, DE also excels in maintaining

diversity within the population, which enhances exploration while balancing the ex-

ploitation of known good solutions. DE is widely used in various applications, such

as engineering design (e.g., optimizing structures or systems), control systems, and
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machine learning for hyperparameter tuning. Its ability to efficiently explore large,

complex spaces and find global solutions makes it an attractive choice for a wide range

of optimization tasks. We will use DE in this work as a benchmark for comparison

to our results.
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Chapter 3

Optimal Algorithm on Bandwidth
Minimization in Wireless
Federated Learning

In this chapter, we will explain the system model and the problems in our work. Then,

we provide the details of our solution to these problems. Finally, we will explore the

numerical results in various scenarios.

3.1 System Model

We consider a wireless FL system consisting of a BS equipped with an edge server

and N learning users. Let N = {1, 2, · · · , N} denote the set of FL users and Dn =

{(xi, yi)}Dn

i=1, denote the local dataset of user n. An illustration of the system is

shown in Figure 3.1. For data sample i, let xi and yi denote the input data and its

corresponding output, respectively. Also, Dn = |Dn| indicates the number of samples

in the n-th local dataset.

3.1.1 Federated Learning Process

Each user n, training a local model, has a local loss function Fn(w) over its dataset

Dn, which is obtained as:

Fn(w) =
1

Dn

∑︂
(xi,yi)∈Dn

fn (w, xi, yi) . (3.1)
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Figure 3.1: System Model

In (3.1), fn (w, xi, yi) is a loss function such as fn (w, xi, yi) =
1
2
(xT

i w − yi)
2, yi ∈ R

for linear regression, or fn (w, xi, yi) = max{0, 1 − yix
T
i w}, yi ∈ {−1, 1} for support

vector machine. In an FL system, the objective is to find the optimal training model

parameter w∗, which minimizes the loss function

F (w) ≜

∑︁N
n=1 DnFn(w)∑︁N

n=1Dn

. (3.2)

Each round of the FL process, i.e. a global iteration, includes the following steps:

1. Global Model Broadcast: The edge server sends the latest global model param-

eters to all users. In this paper, we ignore the downlink time due to the high

BS power and high downlink bandwidth compared to uplink[12].

2. Local Model Computation: Using the received global model parameters, each

user trains its model on its local dataset iteratively to achieve a model update

35



with a local accuracy 0 ≤ θ ≤ 1, i.e., ∥∇Fn

(︂
w

(r)
n

)︂
∥ ≤ θ∥∇Fn

(︂
w

(r−1)
n

)︂
∥ [16].

Here, ∇Fn and w
(r)
n denote the gradient of the local loss function and the model

parameter of user n at local iteration r, respectively.

3. Local Model Transmission: At this stage, users upload their model parameters

updates to the BS, and the server aggregates them to update the global model.

These steps are repeated until the loss function converges to a global accuracy 0 ≤

ε ≤ 1, i.e., ∥∇F
(︁
w(m)

)︁
∥ ≤ ε∥∇F

(︁
w(m−1)

)︁
∥, where w(m) denotes the global model

parameters at round m. To achieve this objective, the number of global iterations

required with respect to global accuracy ε and local accuracy θ is shown to be [16]:

K(ε, θ) =
O(log(1/ε))

1− θ
. (3.3)

Assuming that the global accuracy is fixed, O(log(1/ε)) can be normalized to 1 for

ease of presentation to get K(θ) = 1
1−θ

. In addition, the number of local iterations

also depends on the local accuracy θ. The number of local iterations required to

achieve accuracy θ is shown to be log(1/θ) [12, 13, 16, 24]. As can be observed, the

number of both global and local iterations is affected by the local accuracy. Thus, it

is important to involve the local accuracy of an FL system in any efficient design.

3.1.2 Computation Model

For any FL user n, let Cn denote the number of required CPU cycles to process a

data sample for training. Assuming all data samples are of the same size, the total

number of required CPU cycles for the user to perform one local iteration would be

CnDn. Therefore, the total time for a single local iteration at device n can be defined

as[12, 16]

T cmp
n =

CnDn

fn
, (3.4)

where fn is the CPU-cycle frequency of user n. Furthermore, we can model the energy

consumption of one local iteration at device n as [10, 12]

Ecmp
n = knCnDnf

2
n, (3.5)
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where kn denotes the effective switched capacitance for user n, a quantity that depends

on the CPU architecture[13].

3.1.3 Communication Model

In this subsection, we will model the latency and the energy consumption of the FL

steps. We will later use these models to consider practical constraints for our problem.

After each user has completed the local model training and has model updates

ready to be shared, it transmits the new parameter to the BS. Let Sn denote the size

of the updated local model parameter, i.e. wn, that needs to be sent to the edge server

at the end of each global iteration. Then, for uploading local parameters to the server,

the total transmission time and the total energy consumed for the transmission can

be respectively expressed as follows [12]:

T com
n =

Sn

rn
, (3.6)

Ecom
n = pnT

com
n = pn

Sn

rn
. (3.7)

In (3.7), pn is the transmit power of user n, and rn denotes the transmit rate of the

n-th user and is given by [13]

rn = bn log2

(︃
1 +

hnpn
bnN0

)︃
, ∀n ∈ N , (3.8)

where bn is the channel bandwidth allocated to user n, hn is the channel gain between

user n and the BS, and N0 is the power spectral density of the Gaussian noise. Hence,

the total training and uploading time for user n in round m equals [12]:

T (m)
n = log(1/θ)T cmp

n + T com
n . (3.9)

Finally, the total energy consumed by each user for roundm and for the whole process,

respectively, can be written as[13]:

Etotal
n =

1

1− θ
E(m)

n =
1

1− θ
(log(1/θ)Ecmp

n + Ecom
n ). (3.10)
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Many applications of FL are time-sensitive and the participating devices are energy-

limited. Given this, it is desirable to limit the user’s completion time in each global

iteration, consisting of local model computation and local model transmission, as well

as its total energy consumption across all global iterations of the FL process. This

observation is reflected in our work as constraints in the formulated problem.

3.2 Problem Formulation

As previously discussed, efficient utilization of the channel bandwidth, as an ex-

tremely valuable communication resource, is significantly important. Hence, we aim

to minimize the total bandwidth usage of the wireless FL system described in Section

3.1. To this end, we define the objective function of our problem to be the sum of

the channel bandwidths allocated to all the users. We set our optimization variables

to be the local accuracy θ, the set of CPU cycle frequencies f = {fn}, n ∈ N , and

the set of channel bandwidths b = {bn}, n ∈ N . We also consider constraints on the

user’s completion time in each global iteration m, and the total energy consumption

of each user across all global iterations. These two values are expressed as T
(m)
n in

(3.9) and Etotal
n in (3.10), respectively. Thus, to limit the maximum energy consumed

by a user, we substitute (3.5) and (3.7) in (3.10). Then, we set the result to be at

most γE. We also derive the constraint on the user’s completion time by substituting

(3.4) and (3.6) in (3.9). The corresponding maximum value for T
(m)
n is γT . We can
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then formulate the optimization problem as follows:

min
θ,b,f

N∑︂
n=1

bn (3.11a)

s.t. 0 ≤ fn ≤ fmax
n ,∀n, (3.11b)

log(1/θ)
CnDn

fn
+

Sn

rn
≤ γT ,∀n (3.11c)

0 ≤ bn ≤ Bmax, ∀n, (3.11d)

1

1− θ
(log(1/θ)knCnDnf

2
n + pn

Sn

rn
) ≤ γE,∀n (3.11e)

0 ≤ θ ≤ 1. (3.11f)

In this problem, constraint (3.11b) determines the feasible range of CPU-cycle fre-

quency of the participating users. For each user n, (3.11c) indicates that the total

time for computing and uploading the results cannot exceed γT . Constraint (3.11d)

limits the bandwidth allocated to each user to Bmax. In (3.11e), we limit the maxi-

mum total energy consumption of each user across the entire global iterations of the

FL process to γE. The feasible range of the local accuracy is given by (3.11f).

3.3 Solution

The proposed problem in (3.11) is not a convex optimization problem with respect

to θ, f , and b. However, we realize that the parameter causing this non-convexity

is the local accuracy θ. That means assuming θ is fixed, (3.11) turns into a convex

optimization problem with respect to b and f . We take advantage of this fact and

decompose the problem into two sub-problems. First, assuming θ is a fixed given

value θc, we obtain f and b in terms of θc. Then, we find the optimal value for θc

which minimizes the total bandwidth usage. In the first step, we reformulate the
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non-convex problem in (3.11) into the following optimization problem

SUB1:min
b,f

N∑︂
n=1

bn (3.12a)

s.t. 0 ≤ fn ≤ fmax
n ,∀n, (3.12b)

log(1/θc)
CnDn

fn
+

Sn

rn
≤ γT ,∀n (3.12c)

0 ≤ bn ≤ Bmax,∀n, (3.12d)

1

1− θc
(log(1/θc)knCnDnf

2
n + pn

Sn

rn
) ≤ γE, ∀n, (3.12e)

where θ is a given constant 0 ≤ θc ≤ 1. We then solve (3.12) to obtain fn,θc and

bn,θc in terms of θc. Note that the constraints in SUB1 are the same as the original

problem in (3.11), except (3.11f) which is omitted because θ is not a parameter in this

case and is assumed a given constant. Here, we assume that substituting the given

θc in fn,θc and bn,θc , does not violate constraints (3.12b) to (3.12e). We later include

these constraints in our next sub-problem to ensure this assumption is fulfilled.

After solving the first sub-problem in (3.12), we obtain the optimal bandwidths and

CPU-cycle frequencies for a given constant local accuracy θc. However, the optimal

solution to the problem in (3.12) still relies on θc. Hence, we then need to find the

optimal answer to θc, denoted by θ∗, that minimizes the total bandwidth usage. To

this end, we formulate a second sub-problem as follows:

SUB2:min
θc

N∑︂
n=1

bn,θc (3.13a)

s.t. 0 ≤ fn,θc ≤ fmax
n ,∀n, (3.13b)

log(1/θc)
CnDn

fn,θc
+

Sn

rn,θc
≤ γT ,∀n (3.13c)

0 ≤ bn,θc ≤ Bmax,∀n, (3.13d)

1

1− θc
(log(1/θc)knCnDnf

2
n,θc + pn

Sn

rn,θc
) ≤ γE,∀n (3.13e)

0 ≤ θc ≤ 1, (3.13f)

where we aim at obtaining θ∗.

40



To demonstrate the optimality of the solution (b∗, f ∗, θ∗) obtained through this

approach, we use proof by contradiction. Assume that (b∗, f ∗, θ∗) is not the optimal

solution to the original problem. This assumption implies that there exists another

set of parameters (b′, f ′, θ′) such that the objective function value at (b′, f ′, θ′) is less

than the value at (b∗, f ∗, θ∗). We show the contradiction of this assumption in the

cases where θ′ = θ∗ and where θ′ ̸= θ∗ in the next two paragraphs, respectively.

Firstly, note that for each fixed value of θc, the parameters fn,θc and bn,θc are

optimized to minimize the objective function by solving the sub-problem in (11).

Therefore, for the specific value θ′, the values fn,θ′ and bn,θ′ are chosen such that they

yield the lowest possible objective function value given θ′. Hence, if θ′ = θ∗, b′ and f ′

cannot provide a better objective function value than b(θ′) and f(θ′), i.e. the set of

fn,θ′ and bn,θ′ for all N users.

Furthermore, since we perform a comprehensive search over all possible values of

θ in Algorithm 1, the value θ∗ is selected because it results in the global minimum

of the objective function across all θ. Thus, (b∗, f ∗, θ∗) represents the combination of

parameters that achieves the lowest objective function value over all possible values

of θ, including θ′. Hence, if θ′ had yielded a lower value for the objective function, it

would have been chosen instead of θ∗ during our iterative search.

Therefore, our initial assumption that (b∗, f ∗, θ∗) is not optimal must be false, as

it contradicts the fact that for any given θ, the parameters b and f are optimally

chosen, and θ∗ is the value that minimizes the objective function globally between all

possible values of θ. Thus, the solution (b∗, f ∗, θ∗) is indeed the optimal solution to

the original problem.

In the next subsections, we provide the solutions to the sub-problems (3.12) and

(3.13).
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Ht =

⎛⎜⎝ 2h2p2S log(2)

b5N2
0R

2 log3(R)
+ h2p2S log(2)

b5N2
0R

2 log2(R)
− 4hpS log(2)

b4N0R log2(R)
+ 2S log(2)

b3 log(R)
0

0
2CD log

(︂
1
θc

)︂
f3 log(2)

⎞⎟⎠ (3.14a)

R = 1 +
hp

bN0
(3.14b)

3.3.1 Proof of Convexity of SUB1

We mainly focus on proving the convexity for constraints (3.12c) and (3.12e), since

the convexity of the objective function and other constraints are evident. To this

end, we will use the second-order condition of convexity, i.e. function f : Rn → R

is convex if and only if ∇2f(x) ⪰ 0 for all x ∈ dom(f). In this statement, ∇2f(x)

represents the Hessian matrix of the function f(x), ⪰ 0 denotes that the Hessian

matrix is positive semi-definite, and dom(f) is the domain of the function f(x).

We will start the proof for (3.12c) by deriving its Hessian matrix Ht. For the sake

of simplicity and without loss of generality, we omit the parameters bm and fm where

m ̸= n in the Hessian matrices and the rest of the proof, since they all turn into zero

elements. We also avoid repeating the n indices in the equations. The Hessian matrix

of log(1/θc)
CnDn

fn
+ Sn

rn
with respect to bn and fn is shown in (3.14).

We know matrix Ht is positive semi-definite if and only if its eigenvalues are non-

negative. The eigenvalues of a diagonal matrix are the elements on its main diagonal.

For matrix Ht, the eigenvalue equal to Ht2,2 , i.e. the entry in the second row and

second column of matrix Ht, obviously cannot be negative in the domain of our

problem, since all the present variables are non-negative and 1 ≤ 1
θc
. With some

mathematical manipulation on Ht1,1 one can simplify it as (3.15). Using the non-

negativity of the present variables in the equation, it can be shown that (3.15) is

also non-negative. The only part in (3.15) that is not evidently contributing to its

non-negativity, is the term inside the parenthesis in the numerator. This term is
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Ht1,1 =
S log(2)

(︁
2(bN0 + hp)2 log2(R)− hp(4bN0 + 3hp) log(R) + 2h2p2

)︁
b3(bN0 + hp)2 log3(R)

(3.15)

He =

⎛⎜⎝
2h2p3S log(2)

b5N2
0R2 log3(R)

+
h2p3S log(2)

b5N2
0R2 log2(R)

− 4hp2S log(2)

b4N0R log2(R)
+

2pS log(2)

b3 log(R)

1−θc
0

0
2CDk log( 1

θc
)

(1−θc) log(2)

⎞⎟⎠ (3.16)

a quadratic of the form ax2 + bx + c, considering log
(︂
1 + hp

bN0

)︂
as x. Calculating

its discriminant ∆ = −h2p2 (8bN0hp+ 7h2p2), we realize the discriminant to this

function is negative in our domain. Hence, since one can see that the equation is

positive for arbitrary values of the variables in the domain of the problem, the function

is positive throughout the domain. Thus, we can prove the positive semi-definiteness

of the Ht matrix and hence the convexity of (3.12c).

Now, we move forward to prove the convexity for constraint (3.12e). Similarly,

we want to obtain its hessian matrix, denoted by He, and prove that it is positive

semi-definite. He is derived and shown in (3.16).

As can be seen, (3.16) is also a diagonal matrix with its eigenvalues on its main

diagonal. It is evident that He2,2 cannot be negative in the domain of our problem,

considering 0 ≤ θc ≤ 1 and the non-negativity of other present variables. It can

also be noted that He2,2 = p
1−θc

Ht2,2 . Thus, as Ht2,2 is non-negative, He2,2 cannot be

negative as well. Hence, the eigenvalues of the hessian matrix for constraint function

in (3.12e) are proven to be non-negative, which proves its convexity.

Therefore, the constraints and the objective function are convex in sub-problem

(3.12), and hence it is a convex optimization problem.

3.3.2 SUB1 Solution

We can observe that the sub-problem in (3.12) is now a convex problem. Therefore,

one can leverage the Karush-Kuhn-Tucker (KKT) conditions analysis to derive the

optimal local CPU-cycle frequencies fn,θc and bandwidth allocations bn,θc [50]. The
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fn,θc =

3

√︃
27C3

nD
3
nk

2
npn log

3
(︂

1
θc

)︂
+A

3 3
√
2CnDnkn log

(︂
1
θc

)︂ −
3
√
2 log3(2)(γT pn + γEθc − γE)

3

√︃
27C3

nD
3
nk

2
npn log

3
(︂

1
θc

)︂
+A

(3.17a)

A =

√︄
729C6

nD
6
nk

4
np

2
n log

6

(︃
1

θc

)︃
+ 108C3

nD
3
nk

3
n log

3

(︃
1

θc

)︃
log3(2)(γT pn + γEθc − γE)3 (3.17b)

bn,θc = −
fnhnpnSn log

2(2)

hnpn

(︂
γTfn log(2)− CnDn log

(︂
1
θc

)︂)︂
W (z) + fnN0Sn log

2(2)
(3.18a)

z = −
fnN0Sn log

2(2) exp

(︃
− fnN0Sn log2(2)

γT fnhnpn log(2)−CnDnhnpn log( 1
θc
)

)︃
γTfnhnpn log(2)− CnDnhnpn log

(︂
1
θc

)︂ (3.18b)

following theorem gives the optimal solution to the sub-problem in (3.12).

Theorem 1 The optimal solution to the problem (3.12), i.e. the local CPU-cycle

frequency and channel bandwidth allocated for n-th user are given in (3.17) and (3.18),

respectively, where W is the Lambert W function [53].

Proof: To begin delving into the KKT conditions, the Lagrangian function of the

problem can be expressed as:

L(f, b, λ) =
∑︂
n

bn +
∑︂
n

λ1,n (fn − fn
max) +

∑︂
n

λ2,n (−fn)

+
∑︂
n

λ3,n

(︃
log(1/θc)

CnDn

fn
+

Sn

rn
− γT

)︃
+
∑︂
n

λ4,n (bn −Bmax) +
∑︂
n

λ5,n (−bn)

+
∑︂
n

λ6,n

(︃
1

1− θc

(︃
log(1/θc)knCnDnf

2
n + pn

Sn

rn

)︃
− γE

)︃
(3.19)

We utilize KKT conditions to analyze the problem and find the solution. Due to

complementary slackness, ∀n ∈ N , we have
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λ1,n (f
∗
n − fn

max) = 0 (3.20a)

λ2,n (−f ∗
n) = 0 (3.20b)

λ3,n

(︃
log(1/θc)

CnDn

f ∗
n

+
Sn

r∗n
− γT

)︃
= 0 (3.20c)

λ4,n (b
∗
n −Bmax) = 0 (3.20d)

λ5,n (−b∗n) = 0 (3.20e)

λ6,n

(︃
1

1− θc

(︃
log(1/θc)knCnDnf

∗2
n + pn

Sn

r∗n

)︃
− γE

)︃
= 0. (3.20f)

Note that rn is marked as r∗n because it includes b∗. Additionally, the gradient of the

Lagrangian function should vanish for f ∗ and b∗, i.e.

∂L(f ∗, b∗, λ∗)

∂fn
= λ1,n (1) + λ2,n (−1)

+ λ3,n

⎛⎝−CD log
(︂

1
θc

)︂
f ∗2 log(2)

⎞⎠+ λ6,n

⎛⎝2kCDf ∗ log
(︂

1
θc

)︂
(1− θc) log(2)

⎞⎠ = 0

(3.21)

∂L(f ∗, b∗, λ∗)

∂bn
= 1 + λ3,n

⎛⎝ hpS log(2)

(b∗)3N0

(︂
1 + hp

b∗N0

)︂
log2

(︂
1 + hp

b∗N0

)︂
− S log(2)

(b∗)2 log
(︂
1 + hp

b∗N0

)︂
⎞⎠+ λ4,n(1) + λ5,n(−1)+

λ6,n

1− θc

⎛⎝ hp2S log(2)

(b∗)3N0

(︂
1 + hp

b∗N0

)︂
log2

(︂
1 + hp

b∗N0

)︂ − pS log(2)

(b∗)2 log
(︂
1 + hp

b∗N0

)︂
⎞⎠ = 0.

(3.22)

We want to prove that the optimal solution is always derived from the case when

λ3,n ̸= 0 and λ6,n ̸= 0, which results in (3.17) and (3.18). Hence, the terms in front

of them in (3.20c) and (3.20f) must be zero, i.e. constraints (3.12c) and (3.12e) are

active. We will do that using proof by contradiction and we show that all the cases

except the mentioned one will lead to contradiction.
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Step 1: λ2 and λ5 must equal zero

If any λ2,n or λ5,n is non-zero, it means fn = 0 or bn = 0, and primal constraint

(3.12c) will not be fulfilled. Hence, due to the primal feasibility condition of the

KKT conditions, λ2,n and λ5,n have to be zero.

Step 2: contradiction of case λ3,n = 0 and λ6,n = 0

As can be noted, assuming λ3,n and λ6,n are both zero, directly leads to the con-

tradiction 1 + λ4,n = 0 in (3.22). Due to KKT conditions, 0 ≤ λi,n for any n ∈ N

and i ∈ {1, 2, 3, 4, 5, 6}. Hence, we proceed with proof by contradiction to show that

all the cases where one of them is zero and one of them is non-zero also lead to

contradiction. Next, we will analyze the 4 possible cases for λ1,n and λ4,n.

Step 3: λ1 cannot be zero

If we consider λ1,n = 0, and assume only one of λ3,n and λ6,n is zero, we face a

contradiction since the numerator that remains in (3.21) cannot be zero in the domain

of our problem. Therefore, we can conclude that λ1,n cannot equal 0.

Step 4: contradiction of case λ3,n = 0 and λ6,n ̸= 0

Subsequently, we can see that if λ3,n = 0 and λ6,n ̸= 0, we reach a contradiction in

(3.21) where one of λ1,n or λ6,n has to be negative. Thus, the remaining cases to be

examined are when λ4,n = 0 (namely case I) and λ4,n ̸= 0 (namely case II), both

assuming λ1,n ̸= 0, λ3,n ̸= 0and λ6,n = 0.

Step 5: contradiction of case λ3,n ̸= 0 and λ6,n = 0

First, we should note that our solution in (3.18) yields the optimal bn,θc with respect

to fn,θc by solving the same case where log(1/θc)
CnDn

f∗
n

+ Sn

r∗n
− γT = 0. This is the

same as solving for case I, since in both cases I and II λ3,n ̸= 0. Thus, the closed form

of bn,θc remains the same, but in cases I, II the fn,θc must be fmax
n due to λ1,n ̸= 0.
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If cases I or II yield the same bn,θc numerically, we can conclude that their fn,θc is

also equal, since a closed form solution for bn,θc with respect to fn,θc is derived. Also,

that means our proposed solution is still providing us with the optimal answer. For

case I or II to be the solution while our proposed solution is not, it means that

at least one smaller bn,θc exists in those cases. Since both solutions are satisfying

log(1/θc)
CnDn

f∗
n

+ Sn

r∗n
− γT = 0, then our proposed fn,θc must be smaller. We also note

that in our proposed solution, λ6,n ̸= 0, meaning constraint (3.12e) is active. Hence,

we can conclude that cases I or II with a smaller bn,θc and a larger fn,θc , will have a

larger result for 1
1−θc

(︂
log(1/θc)knCnDnf

∗2
n + pn

Sn

r∗n

)︂
− γE than ours, which is 0. This

violates the primal feasibility of the problem for constraint (3.12e). Thus, these cases

cannot yield any feasible bandwidth that is lower than our proposed solution.

Hence, we can conclude that if a feasible optimal solution exists, it can be obtained

by solving for λ3,n ̸= 0 and λ6,n ̸= 0. Therefore, the optimal solution to problem (3.12)

can be derived by solving the system of equations consisting of the equality cases of

(3.12c) and (3.12e).

log(1/θc)
CnDn

fn
+

Sn

rn
− γT = 0, (3.23a)

1

1− θc
(log(1/θc)knCnDnf

2
n + pn

Sn

rn
)− γE = 0 (3.23b)

We can derive Sn

rn
from (3.23a) as

γTfn log(2)− CnDn log
(︂

1
θc

)︂
f log(2)

. (3.24)

Then, we can substitute (3.24) in (3.23b). By solving the obtained equation, we arrive

at optimal fn,θc as (3.17). Once we have the fn,θc , we can substitute it in (3.23a) or

(3.23b) to obtain bn,θc . From (3.23a) we have

bn log2

(︃
1 +

hnpn
bnN0

)︃
=

γT − log(1/θc)
CnDn

fn

Sn

. (3.25)

By further mathematical manipulation, this yields bn,θc as shown in (3.18).

□
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Algorithm 1 Iterative Local Accuracy Optimization Algorithm

Input: The constraint tolerance δ, the precision ϵ,
Output: θ∗, f ∗, b∗

1: Initialize θtemp ← 0, btemp ← [],ftemp ← [],
bmin
sum ← +∞

2: for i← 0 to 1
ϵ
do

3: θtemp ← 0 + i ∗ ϵ
4: ftemp ← list of calculated f ∗

ns based on (3.17) using θtemp

5: btemp ← list of calculated b∗ns based on (3.18) using θtemp and ftemp

6: if ftemp,btemp, and θtemp pass the constraints (3.13b) - (3.13f) considering given
tolerance δ then

7: if sum(btemp) < bmin
sum then

8: θ∗ ← θtemp, b
∗ ← btemp, f

∗ ← ftemp

9: end if
10: end if
11: end for

Having solved SUB1, we can use (3.17) and (3.18) to address the second sub-

problem and obtain θ∗, which minimizes the overall bandwidth usage.

3.3.3 SUB 2 Solution

So far, we have derived fn,θc and bn,θc which are functions of θc. To solve the problem

(3.13), we need to obtain the optimal value of θc that minimizes the total bandwidth

usage while satisfying (3.13b) to (3.13f). Hence, we propose an algorithm that iterates

over θc in the feasible range in (3.13f) to find the optimal local accuracy θ∗. In each

iteration, the algorithm examines if for a given θc, constraints (3.13b) to (3.13f) are

satisfied. Finally, among all feasible values of θc, we choose the one that minimizes the

total bandwidth usage. The details of the proposed solution are shown in Algorithm

1. In Algorithm 1, the loop needs to iterate 1
ϵ
times over different values of θ. In each

iteration, bn and fn need to be calculated for the N users. Thus, it can be realized

that it has the computational complexity of O(1
ϵ
N).

48



Table 3.1: Parameter Values

Parameter Value

Maximum CPU-cycle frequency, fmax
n 2 GHz

Maximum user bandwidth, Bmax 0.5 MHz

Processing density, Cn 273.5 cycle/bit

Noise power density, N0 −174 dBm/Hz

Training data size, Dn 40 KB

Local model parameters size, Sn 4 KB

Tolerable maximum delay, γT 2 s

Tolerable maximum energy consumption, γE 2 J

Effective switched capacitance k 10−27

3.4 Numerical Results

3.4.1 Simulation Setup

Unless otherwise mentioned, we consider an FL system with N = 4 participating

users, randomly distributed within a 1000 m radius of the BS. We use the log-distance

path loss model to model large-scale fading [51]. Thus, the channel gain of user n is

calculated as follows:

hn = h0(dn/d0)
−α (3.26)

where α = 4 is the path loss exponent, and h0 = −40 dB is the channel power at

reference distance point of d0 = 1 m [16]. The distance between the BS and user n is

denoted by dn. We set the transmit power of each user n to pn = 2 W, ∀n ∈ N . The

values of other parameters are summarized in Table 3.1 [17]. The setups and results

are independent of other FL metrics since the bound on the iterations is a general

bound in FL literature for arbitrary local solvers [40]. For simplicity and without loss

of generality, fmax
n , Sn, Cn, and Dn are considered to be the same among all users.
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Results are averaged over 103 Monte Carlo realizations.

3.4.2 Performance Evaluation

Here, various numerical results are presented to demonstrate the performance of the

proposed algorithm.
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Figure 3.2: Impact of distance on total bandwidth usage.

The impact of the distance between users and the BS on total bandwidth usage

is investigated in Fig. 3.2. To examine this, we partitioned the total coverage area

into {(0, 100) , (100, 200) . . . (900, 1000)}, picked one range and positioned all users

randomly inside this range. In addition to the proposed algorithm, a global opti-

mization meta-heuristic called Differential Evolution was used for comparison [52].

One can observe our algorithm performs slightly better than DE. However, unlike

DE which searches the input space, our proposed algorithm utilizes (3.17) and (3.18)

to calculate the optimal solution, which makes it more precise. As expected, one

can observe a non-linear gradual increase in the bandwidth usage as users are being
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positioned further from the BS. The intuition behind that is based on (3.26), (3.11c)

and (3.11e), where increasing distance decreases channel gain hn and transmit rate

rn. Hence, more bandwidth is needed to account for the rate loss and to keep the

constraints satisfied.
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Figure 3.3: Impact of transmit power on the average frequency of each user.

The impact of transmit power on the average CPU-cycle frequency for a user is

shown in Fig. 3.3. In this experiment, six different ranges of transmit power are set

{(1, 1.5), (1.5, 2), (2, 2.5), (2.5, 3), (3, 3.5), (3.5, 4)} Watts. Each time, all users

were assigned a random transmit power from a single range. Other parameters are

set as mentioned in Subsection (3.4.1). Our algorithm’s optimal solution can result

in significant power savings (e.g., about 20% saving around 3 Watts transmit power)

compared to DE which also suffers from higher complexity.

The impact of the number of users on the total bandwidth usage is investigated

in Fig. 3.4. We have applied our proposed algorithm and DE to {5, 10, 30, 50, 75,
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Figure 3.4: Impact of number of users on total bandwidth usage.

100} users and measured the average total bandwidth in each case. One can notice

that the average optimal bandwidth usage increases linearly with the number of

participating users. As seen, DE does not always find the optimal answer. Moreover,

the search space of DE grows exponentially with the number of users resulting in

degraded performance and prolonged execution times [54]. In this experiment, in

addition to DE’s weaker performance, it took on average 7.8 to 46 times longer than

our algorithm to execute. Hence, DE cannot be used in time-sensitive applications

with a large number of users.

Fig. 3.5 demonstrates the impact of the number of users on the execution time of

our proposed algorithm as well as DE. As shown, experimental results confirm that DE

suffers from exponential growth in time complexity when increasing the dimensions

of the problem, i.e. the number of participating FL users. On the other hand, our

proposed algorithm enjoys a linear increase in its execution time with respect to the
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Figure 3.5: Impact of number of users on execution time.

number of users, as expected. This is in addition to its weaker performance shown

in Fig. 3.4. Hence, the proposed algorithm not only outperforms DE in terms of

complexity but also provides consistently optimal performance. It should be noted

that wireless FL systems usually have a large number of participating users [55].

Hence, most FL systems in practice work in the region where the performance gap in

Fig. 3.4 and Fig. 3.5 is significant.

In Fig. 3.6, the effect of the transmit power of FL users on the solution of minimum

bandwidth usage is investigated. One can observe that increasing the transmit power

results in higher bandwidth usage. Although this may seem counter-intuitive at first,

it happens as a result of the pn coefficient in (3.11e). This essentially means that

by increasing transmit power, users are consuming more energy for the same time

frame. Hence, they need to decrease their transmission time by using more channel

bandwidth, to satisfy the energy consumption constraint. Note that the pn in the
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Figure 3.6: Impact of transmit power on total bandwidth usage.

transmit rate (3.8) is much less influential in the total calculated energy consumption

than the one in (3.7). It can also be noted that despite running this simulation for

a limited number of users, there still exists a gap in performance that shows our

proposed algorithm is outperforming DE.
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3.5 Solving the Problem in Dual Accuracy Form

In the previous sections, we discussed the problem with the assumption of a fixed

global accuracy. While this assumption is true in many real-world applications in

practice, there may be cases where the global accuracy of an FL system can be

chosen with flexibility to optimize the usage of other resources such as time, energy,

or bandwidth. In this case, we can consider both local accuracy and global accuracy to

be variables of our problem of minimizing bandwidth usage. Hence, in this section, we

will reformulate the optimization problem to a new form that includes both of them.

We will create it by turning the previous problem into a multi-objective optimization

problem, where the cost function consists of a trade-off between bandwidth usage and

global accuracy. Then, we will offer the optimal solution for the dual-accuracy form

of the problem. Finally, we will run experiments and demonstrate the results of the

proposed algorithms.

3.5.1 Problem Formulation

In this part, we will rewrite the optimization problem in the aforementioned new

form, i.e. the dual accuracy form. Before doing that, we should update our model of

the total energy consumption from (3.10). Since in this section, the global accuracy

is not fixed, the bound on the total number of global iterations can be normalized to

log(1/ε)
1−θ

. Thus, the equation for the total energy consumption of a user will be

Etotal,dual
n =

log(1/ε)

1− θ
E(m)

n =
log(1/ε)

1− θ
(log(1/θ)Ecmp

n + Ecom
n ). (3.27)

Now, using (3.27) and adding global accuracy, we formulate our optimization prob-

lem as follows.
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min
ε,θ,b,f

N∑︂
n=1

bn + κε (3.28a)

s.t. 0 ≤ fn ≤ fmax
n ,∀n, (3.28b)

log(1/θ)
CnDn

fn
+

Sn

rn
≤ γT , ∀n (3.28c)

0 ≤ bn ≤ Bmax,∀n, (3.28d)

log(1/ε)

1− θ
(log(1/θ)knCnDnf

2
n + pn

Sn

rn
) ≤ γE,∀n (3.28e)

0 ≤ θ ≤ 1 (3.28f)

0 ≤ ε ≤ εmax. (3.28g)

In (3.28), κ is the trade-off parameter that captures the penalty for compromising

global accuracy. One can adjust their tolerance or willingness to compromise the

accuracy by adjusting this coefficient accordingly. Constraint (3.28g) sets the bounds

on the global accuracy. While the domain is between 0 to 1, one can set a lower εmax,

to meet their minimum accuracy requirements. This problem, compared to (3.11),

has the extra decision variable of global accuracy ε. and the extra constraint on its

bounds, in addition to the change made to the energy consumption constraint and the

objective function. Other elements of the problem are similar to what was explained

for (3.11). Next, we will analyze the problem and discuss the optimal solution.

3.5.2 Solution

Similar to before, the optimization problem in (3.28) is non-convex in its original

formulated form. Hence, we will once again perform a decomposition of the problem

into two subproblems, namely SUB1 and SUB2. First, assuming θ and ε are given

constant values θc and εc, we formulate SUB1, and by solving it we obtain f and b in

terms of those values. Then, we find the optimal values for θc and εc which minimize

the total cost by solving SUB2. SUB1 and SUB2 are shown in (3.29) and (3.30),

respectively. Please refer to page 32 for a similar justification of why this approach

yields the optimal global solution.
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SUB1:min
b,f

N∑︂
n=1

bn + κεc (3.29a)

s.t. 0 ≤ fn ≤ fmax
n ,∀n, (3.29b)

log(1/θc)
CnDn

fn
+

Sn

rn
≤ γT ,∀n (3.29c)

0 ≤ bn ≤ Bmax,∀n, (3.29d)

log(1/εc)

1− θc
(log(1/θc)knCnDnf

2
n + pn

Sn

rn
) ≤ γE,∀n, (3.29e)

SUB2:min
εc,θc

N∑︂
n=1

bn,θc,εc (3.30a)

s.t. 0 ≤ fn,θc,εc ≤ fmax
n ,∀n, (3.30b)

log(1/θc)
CnDn

fn,θc,εc
+

Sn

rn,θc,εc
≤ γT , ∀n (3.30c)

0 ≤ bn,θc,εc ≤ Bmax,∀n, (3.30d)

log(1/εc)

1− θc
(log(1/θc)knCnDnf

2
n,θc,εc + pn

Sn

rn,θc,εc
) ≤ γE,∀n (3.30e)

0 ≤ θc ≤ 1 (3.30f)

0 ≤ εc ≤ εmax (3.30g)

We can solve subproblem (3.29) by transforming it into the subproblem in (3.12).

Given that κ and εc are constants in this subproblem, they do not affect the objective

function’s solution {f ∗, b∗}. Hence, this is the same as minimizing
∑︁N

n=1 bn, which is

the objective function in (3.12). The other difference of these subproblems is between

(3.12e) and (3.29e). To transform (3.29d), we move log(1/εc) to the right-hand side

of the inequality. Thus, the subproblem in (3.29) is reduced to the subproblem in

(3.12), with γE
log(1/εc)

replacing γE in (3.12e). Therefore, we can reuse the solutions

obtained in Theorem 1.

After solving SUB1, we can use (3.17) and (3.18) to find the optimal solution θ∗

and ε∗ for SUB2. Note that as pointed out above, we have to replace γE in those

equations with γE
log(1/εc)

. Having done that that, we have derived fn,θc,εc and bn,θc,εc ,
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which are functions of θc and , εc. To solve the problem (3.30), we need to find the

optimal value of local accuracy θc and global accuracy , εc that minimizes the cost

function while satisfying the constraints. Therefore, we propose an algorithm that

iterates over θc and , εc within their feasible ranges specified in (3.30g) and (3.30f),

and with the provided precisions, to find their optimal values. In each iteration, the

algorithm checks whether for a given θc and , εc, constraints (3.30b) to (3.30g) are

satisfied. Finally, among all feasible values for θc and , εc, the algorithm selects the

one that minimizes the total cost function as output. The details of the proposed

solution are presented in Algorithm 2. In Algorithm 2, the loop iterates 1
ϵ1∗ϵ2 times

over different values of , ε and θ. In each iteration, bn and fn need to be calculated

for the N users. Hence, the computational complexity is O
(︂

1
ϵ1∗ϵ2N

)︂
.

Algorithm 2 Iterative Dual Accuracy Optimization Algorithm

Input: The constraint tolerance δ, the global accuracy precision ϵ1, the local accuracy
precision ϵ2, trade-off parameter κ
Output: ε∗, θ∗, f ∗, b∗

1: Initialize εtemp ← 0, θtemp ← 0, btemp ← [],ftemp ← [],
costmin ← +∞

2: for i← 0 to ϵmax

ϵ1
do

3: εtemp ← 0 + i ∗ ϵ1
4: for j ← 0 to 1

ϵ2
do

5: θtemp ← 0 + i ∗ ϵ2
6: ftemp ← list of calculated f ∗

ns using θtemp and εtemp

7: btemp ← list of calculated b∗ns using θtemp, εtemp, and ftemp

8: if ftemp,btemp, and θtemp pass the constraints (3.30b) - (3.30g) considering
given tolerance δ then

9: costtemp ←
∑︁

n btemp + κεtemp,
10: if costtemp < costmin then
11: ε∗ ← εtemp, θ

∗ ← θtemp, b
∗ ← btemp, f

∗ ← ftemp

12: end if
13: end if
14: end for
15: end for
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3.5.3 Numerical Results

In this subsection, we present diverse numerical results to demonstrate the perfor-

mance of the proposed algorithm. Compared to the previous problem, this problem

has an extra parameter κ, which is the trade-off parameter of the global accuracy in

the cost function in (3.28). other setup and parameters for the experiments in this

section are exactly as described in subsection 3.4.1 and Table 3.1. We will explore the

numerical results for four different values of κ, i.e. {10000, 60000, 120000, 200000}.

That translates to each 0.01 global accuracy being worth {100, 600, 1200, 2000}Hz of

bandwidth to us, starting from 0. In this sense, we can consider the unit of κ to be

Hz
1
, since ε is unitless.
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(a) κ = 10000
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(b) κ = 60000
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(c) κ = 120000
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(d) κ = 200000

Figure 3.7: Diagrams of the total cost with respect to the average distance from BS
.
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(a) κ = 10000
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(b) κ = 60000
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(c) κ = 120000
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(d) κ = 200000

Figure 3.8: Diagrams of total bandwidth usage with respect to average distance from
BS

.

Impact of Distance

In Figures 3.8 and 3.7, we investigate the impact of users’ distance from the BS on

the results. As shown in 3.7, placing users further from the BS, always results in a

higher cost in general. However, Fig. 3.8 shows that this does not necessarily mean

a constant bandwidth usage. In cases where κ is smaller, it is easier to compromise

accuracy to reduce bandwidth usage. Also, in cases with higher κ, when bandwidth

usage increases past a certain point due to distance from BS, compromising the ac-

curacy yields better solutions from using more bandwidth, in terms of the total cost.

Thus, the bandwidth usage starts to drop again. Fig. 3.8 also compares the results

with the ones from Alg. 1. In Alg. 1, we considered a fixed global accuracy and
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normalized O(log(1/ε)) to 1. It could be translated to the same problem in (3.28),

where log(1/ε) = 1 and κ = 0. Our algorithm is consistently showing better perfor-

mance, although the gap for a small number of users is not large. That will be further

investigated in the subsection on the impact of the number of users.
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(b) κ = 60000
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(c) κ = 120000
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(d) κ = 200000

Figure 3.9: Diagrams of the total cost with respect to the average transmit power
.

Impact of Transmit Power

In Figure 3.11, the impact of users’ transmit powers on the bandwidth usage is ex-

plored. As shown in 3.11, when κ is small, it is possible for us to compromise accuracy

and reduce bandwidth usage. However, increasing κ increases our bandwidth usage

as the accuracy becomes more and more valuable in the cost function. Thus, the

bandwidth usage surges. We can In Fig. 3.9, the resulting cost function values with
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(b) κ = 60000
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(c) κ = 120000
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Figure 3.10: Diagrams of the global accuracy with respect to the average transmit
power

.

respect to the average transmit power are shown. Again, our algorithm is consistently

showing better performance. Figures 3.10a to 3.10d demonstrate the average optimal

global accuracy with respect to the transmit power. It can be seen that our algorithm

is maintaining better accuracy, yielding a better cost result in Fig. 3.9.

Impact of Number of Users

Last but not least, we observe the impact of the number of users on each algorithm’s

performance and execution time. In this part, we have applied our proposed algo-

rithms and the differential evolution to setups with {5, 10, 30, 50, 75, 100} users.

We compare Algorithm 2 which was introduced in this section with Algorithm 1 and

differential evolution.
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(a) κ = 10000
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(b) κ = 60000
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(c) κ = 120000
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(d) κ = 200000

Figure 3.11: Diagrams of the total bandwidth usage with respect to the average
transmit power

.

The impact of the number of users on the total bandwidth usage and the total

cost is investigated in Figures 3.13 and 3.12, respectively. It can be noticed that

for our proposed algorithms, the average optimal bandwidth usage increases linearly

with the number of participating users. As expected, Algorithm 2 can offer lower

bandwidth compared to Algorithm 1, due to the flexibility of compromising accuracy.

The figure also shows that DE does not always find the optimal answer. As the search

space of DE grows exponentially with the number of users, a significantly degraded

performance can be observed in terms of both cost and bandwidth usage. Although

for N = 5 bandwidth usage of Algorithm 2 is slightly more, it still has a lower cost.

Fig. 3.12 shows that Algorithm 2 yields a promising result that is consistently better
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Figure 3.12: Impact of number of users on total cost in dual accuracy form.

than differential evolution.

Fig. 3.5 demonstrates the impact of the number of users on the execution time

of Algorithm 1, differential evolution, and Algorithm 2. As shown, experimental

results confirm that DE suffers from exponential growth in time complexity when

increasing the dimensions of the problem, i.e., the number of participating FL users.

As previously discussed, Algorithm 1, on the other hand, enjoys a linear increase in

its execution time with respect to the number of users. As expected, Algorithm 2 also

exhibits a linear growth pattern similar to Algorithm 1; however, it incurs a higher

execution time than Algorithm 1. That is due to the increase of complexity from

O
(︂

1
ϵ2
N
)︂

to O
(︂

1
ϵ1∗ϵ2N

)︂
. Despite this, Algorithm 2 significantly outperforms DE,

particularly when the number of users increases, which is typical in most practical

scenarios [55]. Hence, both Algorithm 1 and Algorithm 2 not only outperform DE
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Figure 3.13: Impact of number of users on total bandwidth usage in dual accuracy
form.

in terms of complexity but also provide consistently optimal performance. While

Algorithm 1 remains the most time-efficient, Algorithm 2 offers a robust alternative

with superior flexibility.
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Figure 3.14: Impact of number of users on execution time in dual accuracy form.
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Chapter 4

Conclusion and Future Works

4.1 Conclusion

In this paper, we thoroughly explored the problem of minimizing the total bandwidth

usage in a wireless federated learning system, taking into account the critical con-

straints of total energy consumption and the completion time required by users. The

complexity and significance of this problem are underscored by the need to balance

efficient bandwidth usage with the practical limitations of computational resources

and energy availability in wireless environments. The challenge is further heightened

in scenarios where timely communication is essential, making it imperative to devise

solutions that not only minimize resource usage but also ensure that user devices can

complete their tasks within acceptable time frames.

To address these challenges, we formulated the problem as a non-convex optimiza-

tion problem and explored it in two distinct forms. In the first form, the global

accuracy of the FL model was treated as a fixed parameter. This approach is rel-

evant in scenarios where a certain level of model accuracy is mandated, such as in

applications where the performance of the model must meet predefined standards for

deployment. In this case, the optimization focused solely on minimizing the total

bandwidth usage while adhering to the constraints on energy consumption and com-

pletion time, and only using bandwidth, local accuracy, and CPU-cycle frequency as

variables. By treating the global accuracy as a fixed variable, we ensured that the
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resulting solution would be applicable in situations where model performance cannot

be compromised.

In the second form, we expanded the problem by introducing global model accuracy

as an additional decision variable. We formulated the problem as a multi-objective,

non-convex, problem for joint optimization of global accuracy and bandwidth usage.

This approach recognizes that in many real-world applications, there may be some

flexibility in the trade-off between model accuracy and resource usage. By allowing

accuracy to be adjusted within acceptable bounds, we were able to explore more

efficient solutions that dynamically balance the competing demands of accuracy and

bandwidth. This formulation is particularly valuable in scenarios where achieving the

highest possible accuracy is less critical than optimizing resource usage, or where the

available resources fluctuate over time.

For both forms of the problem, we proposed an optimal solution that leverages

convex optimization techniques to navigate the non-convex landscape of the problem.

By decomposing the original problem and applying convex optimization methods, we

derived solutions that efficiently allocate bandwidth while respecting the constraints

of the problem. Our approach ensures that the FL process can be sustained in

resource-constrained environments without sacrificing either the quality of the global

model or the feasibility of real-time deployment.

Extensive simulations and comparisons with existing algorithms demonstrated the

superiority of our proposed solutions. Our algorithm consistently outperformed the

benchmarks in terms of bandwidth efficiency, achieving significant reductions in to-

tal bandwidth usage. This advantage is particularly important in wireless environ-

ments, where bandwidth is a precious and limited resource. Moreover, our solution

maintained a much lower computational complexity, making it more practical for

deployment on devices with limited processing power and energy reserves.

The ability to balance accuracy with resource constraints while minimizing band-

width usage is a key contribution of this work. Our approach offers a flexible frame-
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work that can be tailored to the specific needs of the deployment environment, pro-

viding a robust and scalable solution for a wide range of FL applications in wireless

networks.

In conclusion, this paper not only advances the state of the art in optimizing

bandwidth usage in wireless FL systems but also provides a versatile framework that

can adapt to various deployment scenarios.

4.2 Future Works

While this research provides significant advancements in the optimization of band-

width usage for wireless federated learning systems, there remain multiple areas for

future exploration that could further enhance the applicability and efficiency of FL

in diverse environments [56].

One potential area for future work is the exploration of different, more complex

wireless networks. In real-world deployments, wireless communication can become

more complicated and involve various other factors and elements such as interference

or RIS. Extension of this work to more advanced wireless communication setups

with real-world applications can be a promising direction for future works. This can

also include new communication technologies, such as 5G, 6G, and low Earth orbit

(LEO) satellite networks. Future work could explore how these technologies can be

integrated into the proposed optimization framework to further enhance the efficiency

and reliability of FL in next-generation networks.

The current work focuses primarily on minimizing bandwidth usage while con-

sidering energy consumption and completion time constraints. It also includes a

multi-objective optimization that captures the trade-off between bandwidth usage

and model accuracy. However, many other scenarios may be beneficial that adopt

a multi-objective optimization approach and simultaneously optimize multiple crite-

ria, such as energy efficiency, latency, or computational load along with bandwidth

usage or model accuracy. Future research could explore advanced multi-objective
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optimization techniques to balance these competing demands more effectively, pro-

viding a more comprehensive solution that caters to a broader range of application

requirements.

As FL continues to gain traction in applications involving vast numbers of devices,

such as smart cities or large-scale IoT networks, scalability becomes a critical concern.

Future work could investigate the scalability of the proposed optimization framework

to support thousands or even millions of devices. This may involve hierarchical or

decentralized approaches to FL, where decisions are made at multiple levels of the

network to reduce the computational burden and communication overhead on any

single entity. Various network topologies and their communication can be explored

to form new, efficient FL frameworks.
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