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ABSTRACT 1 
We explore the application of count models to represent the relationship between flight 2 

disruptions and weather. Throughout the world, flights are regularly disrupted by delays at 3 
airports and in the terminal airspace, and less frequently by diversions and cancelations. Many 4 
delay studies have been conducted for large American and European airports, in part due to the 5 
availability of high-quality data. However, such high-quality data is not as readily available for 6 
other airports throughout the world. In this study, we build excess-zero count models using a 7 

publicly available dataset for Iqaluit Airport in Northern Canada, to determine the influence of 8 
different weather components on disruption counts. Visibility and crosswind speeds are shown to 9 
have the largest influence on flight disruptions. We also applied the models using ASPM flight 10 

data for Anchorage Airport; we systematically degraded the data to match completeness of the 11 
Iqaluit data to test the models. Our results verify that an excess-zero model using incomplete data 12 
yields results similar to that of a count model with complete data, demonstrating that an excess-13 
zero model can overcome data incompleteness to yield acceptable results. Although count 14 
models have been applied extensively in the transportation literature, we believe this to be the 15 

first application to flight disruptions, and the first quantitative model of operations at a northern 16 

Canadian airport. We demonstrate that challenges in data availability, the case for most airports 17 
throughout the world, can be addressed with novel statistical modeling applications, and thus, 18 
delay studies can be conducted for almost any airport. 19 

 20 

Keywords: Excess zero models, Weather-related flight disruptions, Airport infrastructure, 21 
Northern Canada, Iqaluit Airport, Anchorage Airport   22 
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INTRODUCTION 1 
Disruptions, including diversions, cancelations and particularly delays, have become an 2 

almost expected experience in air travel worldwide, with potentially enormous costs to society 3 
(1–3). Researchers have built empirical models, using statistical analysis and machine learning, 4 
to better understand the key determinants and features (temporal and geographic scope) of these 5 
delays for many major American and European airports and airspace (4, 5), for which high 6 
quality operations data has been available. There has been less data availability for other markets 7 

throughout the world, and thus, there exist few quantitative studies of these markets (6).  8 
 9 
Airports in Northern Canada are small, with limited infrastructure and relatively minor 10 

flight demands. Despite this, airports like Iqaluit Airport (YFB) in the territory of Nunavut 11 
provide critical access and serve as a hub connecting small, highly remote communities 12 
throughout a vast geographic region. In fact, air transport is the only year-round mode of 13 
transport in Nunavut for resupply of food, fuel, medical, and other necessary goods, and the only 14 
mode in winter given that there are no overland connections between Nunavut and the rest of 15 

Canada. Hence, flight disruptions can have extreme social and economic impacts on the 16 

communities they serve (7). Targeted infrastructure improvements can reduce the operational 17 
impacts of inclement weather at these airports, but the availability of high-quality data and public 18 
funding are limited to support such improvements. A 2017 report by Canada’s Office of the 19 

Auditor General confirmed that many northern airports had deficient and outdated infrastructure, 20 

and that improvements were required, but that there was no empirical evidence to support the 21 
allocation of limited funds (7). 22 

 23 

Thus, the objective of this study is to explore the use of count models to quantitatively 24 
map the impacts of weather on flight disruptions. We investigate how these models are able to 25 

further illuminate the extent of the relationship between flight disruptions and weather 26 
conditions, using datasets that are available to the public online, but may not necessarily be 27 
complete or of the quality available from the FAA’s Aviation System Performance Metrics 28 

(ASPM) database. Count models have been useful in the face of data limitations in other areas of 29 
transportation engineering (8–12); we are interested in how model results may inform 30 

infrastructure investment decisions at airports like Iqaluit. Specifically, we build a simple 31 

negative binomial count model as well as excess-zero (zero-inflated/hurdle) count models of 32 
disruptions using FlightStats data from Iqaluit Airport. We also apply the same models to 33 

Anchorage Airport, to test model quality using both complete and (artificially constructed) 34 
incomplete ASPM datasets. Our results verify that an excess-zero model using incomplete data 35 
yields results similar to that of a count model with complete data, showing that an excess-zero 36 
model can overcome data incompleteness to yield acceptable results. This further demonstrates 37 
that delay studies can be conducted for almost any airport throughout the world using such 38 

models. 39 
 40 
Although count models have been applied extensively in the transportation literature 41 

(traffic safety), we believe this to be the first documented application to airport disruptions, and 42 
is the first step in the further model building with this dataset, including a multivariate model of 43 
disruptions, network analysis, and data science applications.  44 
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LITERATURE REVIEW 1 
There is extensive existing literature on assessing and modeling flight delays and 2 

cancelations at airports, the majority of which focuses on large airports in the U.S. and Europe 3 
(4, 5). Researchers have developed models of delay propagation within an airline (13, 14) and 4 
throughout networks (15–19) and models of how changing airport delays are attributed to 5 
changing demand and throughput (20). Rebollo and Balakrishnan used random forest algorithms 6 
to predict short term departure delays over the U.S. air network (21).  7 

 8 
Weather conditions have been clearly identified as a primary driver of flight disruptions 9 

(22, 23). A study of several Brazilian airports showed a 216% increase in delays in extreme 10 

weather conditions (6). Weather variables like wind speed, temperature, and thunderstorms were 11 
used in regression models of delays at Heathrow Airport (24) and estimate airfield capacity at 12 
Newark Liberty International Airport and San Diego International Airport (25). A study of 13 
Frankfurt Airport showed that an average of 740 minutes of flight delays could be attributed to a 14 
single thunderstorm (26). Low visibility and ceilings due to the morning marine strata frequently 15 

cause Ground Delay Programs at San Francisco International Airport, whereas wind is the 16 

dominant cause of operational degradations at Portland International Airport (27). Various 17 
models of flight cancelations (and of both cancelations and delays) have also been developed 18 
(28–32).  19 

 20 

While much of the literature on weather-driven operational degradation focuses on large 21 
airports and in air networks exacerbated by demands that exceed capacities, there are no readily 22 
available flight disruption statistics for Canada, particularly the northern regions where airports 23 

are small, with limited infrastructure, and relatively minor flight demands. Despite this, extreme 24 
weather in the northern regions of Canada is a pervasive factor in the flight delays that 25 

significantly affect the local communities that rely on the air transport.  A comprehensive report 26 
on the weather and geography of the Canadian territories suggests that weather causes 75% of 27 
flight delays (33); however, no studies have been performed using an air operations analysis 28 

approach in Northern Canada. Infrastructure improvements can reduce the operational impacts of 29 
inclement weather, but decision-makers need high quality supporting evidence to allocate limited 30 

resources. Empirically-based flight operations models can help in this regard; count models are 31 

particularly useful in the face of data limitations. Count models have been applied in many areas, 32 
including medicine (34), political science (35), ecology (36), agricultural science (37) and 33 

transportation engineering (8–12, 38). In transportation, count models have been applied to 34 
estimate trip frequency (11, 12), traffic collisions, and crash frequency (8–10, 38). We recognize 35 
that flight disruptions, as a physical process of random discrete events, are analogous to roadway 36 
collisions. Thus, we have applied this modelling approach. 37 

 38 

In this study, we applied disruption count models at two airports. We first apply our 39 
models using readily available but incomplete FlightStats data at Iqaluit Airport (YFB) in 40 
Nunavut, a northern territory of Canada. We then apply the models using ASPM data at 41 

Anchorage Airport (ANC) in Alaska, to verify model quality and applicability. 42 
 43 

METHODOLOGY – COUNT MODELS 44 
A flight disruption can be a random, discrete, and non-negative event. The negative 45 

binomial (NB) distribution can be used to represent flight disruption counts and is more 46 
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appropriate than Poisson (P) for over- or under-dispersed data. The deterministic generalized 1 

linear regression model for expected flight disruption count per time period 𝑡 at airport a (𝜇𝑎,𝑡) 2 

with log link is: 3 
 4 

𝑙𝑛(𝜇𝑎,𝑡) = 𝛼𝑎,𝑡 + ∑ 𝛽𝑎,𝑡,𝑗𝑋𝑎,𝑡,𝑗

𝑘

𝑗=1

       (1) 

 5 

where 𝛼𝑎,𝑡 and 𝛽𝑎,𝑡,𝑗 are estimated coefficients on the independent variables, for the time 6 

period t,  and 𝑋𝑎,𝑡,𝑗 are independent variables (𝑗 = 1 … 𝑘), and 𝜇𝑎,𝑡 is the dependent variable (the 7 

expected daily count of disrupted flights). 8 
 9 

The probability of observing a non-negative flight disruption count on a given time t is 10 
expressed as: 11 

 12 

𝑃: 𝑓(𝑦𝑎,𝑡) = 𝑃(𝑦𝑎,𝑡) =
exp(−𝜇𝑎,𝑡)𝜇𝑎,𝑡

𝑦𝑎,𝑡

𝑦𝑎,𝑡!
 (2) 

𝑁𝐵: 𝑓(𝑦𝑎,𝑡) = 𝑃(𝑦𝑎,𝑡) =
𝛤(𝑦𝑎,𝑡 + 𝜃𝑎

−1)

𝛤(𝜃𝑎
−1)𝑦𝑎,𝑡!

(
1

1 + 𝜃𝑎𝜇𝑎,𝑡
)

𝜃𝑎
−1

(
𝜃𝑎𝜇𝑎,𝑡

1 + 𝜃𝑎𝜇𝑎,𝑡
)

𝑦𝑎,𝑡

 (3) 

  

 13 

where 𝑓(𝑦𝑎,𝑡) is the probability of observing a day 𝑡 with a flight disruption(s), 𝑦𝑎,𝑡, 𝜃𝑎 is 14 

the dispersion parameter, 𝜇𝑎,𝑡 is the dependent variable (expected daily count of disrupted 15 

flights), and 𝛤(⋅) is the gamma function. 16 

 17 
In our dataset, zero counts can arise from two situations i) having a day with no flight 18 

disruptions or ii) having a day with no delay records (which are converted to zero). Both zero-19 

truncated hurdle models and zero-inflated (ZI) count models account for excess zeros in a dataset 20 
(36–38); each model has two components (count component with log link and excess-zero 21 

component with logit link) to do so.  22 

 23 
The hurdle model assumes that excess zeros are generated in a different process than non-24 

zero counts, and these zeros can be modeled independently of the count values. Therefore, the 25 
“zero” state includes situations in which a zero is recorded (true-zero state) as well as those 26 
where the observation is missing (excess-zero state). Non-zero observations follow a Poisson or 27 

negative binomial distribution. Equation 4 shows the probability of observing a zero or non-zero 28 
flight disruption count, according to the hurdle model: 29 

 30 

𝑃(𝑦𝑎,𝑡 ) = {
g1(𝑦𝑎,𝑡)                                                                    𝑦𝑎,𝑡 = 0

(1 − g1(𝑦𝑎,𝑡)) ⋅ g2(𝑦𝑎,𝑡)                                      𝑦𝑎,𝑡 > 0 
    (4) 

 31 

where g1(𝑦𝑎,𝑡) is the probability of being in the zero state (both true-zero and excess 32 

zero) and g2(𝑦𝑎,𝑡) the probability of being in the truncated positive count state. 33 
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The probability of the count being zero g1(𝑦𝑎,𝑡) over non-zero is expressed with the 1 

following generalized linear regression model with a logit link.  2 
 3 

logit (g1(𝑦𝑎,𝑡))  = 𝑙𝑛 (
g1(𝑦𝑎,𝑡) 

1 − g1(𝑦𝑎,𝑡)
) = 𝛾𝑎,𝑡 + ∑ 𝛿𝑎,𝑡,𝑗𝑍𝑎,𝑡,𝑗

𝑘

𝑗=1

  (5) 

 4 

where 𝛾𝑎,𝑡 and 𝛿𝑎,𝑡,𝑗 are estimated coefficients, and 𝑍𝑎,𝑡,𝑗 are independent variables (may 5 

or may not be same as 𝑋𝑎,𝑡,𝑗).  6 

 7 
The zero-inflated (ZI) model is a modified hurdle model where all observed counts, zero 8 

or greater, are generated by one process (that, again, follows a Poisson or negative binomial 9 

distribution) and the no-count state by another: 10 
 11 

𝑃(𝑦𝑎,𝑡) = {
g3(𝑦𝑎,𝑡) + (1 − g3(𝑦𝑎,𝑡)) ⋅ 𝑓(𝑦𝑎,𝑡 = 0)               𝑦𝑎,𝑡 = 0

(1 − g3(𝑦𝑎,𝑡)) ⋅ 𝑓(𝑦𝑎,𝑡)                                             𝑦𝑎,𝑡 > 0 
  (6) 

 12 

where 𝑔3(𝑦𝑎,𝑡) is the probability of being in a excess-zero state and 𝑓(𝑦𝑎,𝑡) is the 13 

probability of being in the count state (true-zero and positive count) from Equation 2 and 14 
Equation 3. 15 

 16 
A large number of zeros in a dataset does not automatically justify the use of an excess-17 

zero count model over a simple count model. Vuong’s test (Equation 7) is used to determine 18 
whether the presence of excess zeros is statistically significant at airport a (39–41).  19 

 20 

𝑉𝑎 =
√𝑛𝑎 [

1
𝑛𝑎

∑ 𝑚𝑎,𝑡
𝑛𝑎
𝑡=1 ]

√
1

𝑛𝑎
∑ (𝑚𝑎,𝑡 − 𝑚𝑎̅̅ ̅̅ )

2𝑛𝑎
𝑡=1

=
√𝑛𝑎 ⋅ 𝑚𝑎̅̅ ̅̅

𝑆𝑚,𝑎
 (7) 

 21 

where 𝑛𝑎 is sample size for airport a with a mean 𝑚𝑎̅̅ ̅̅  and standard deviation 𝑆𝑚𝑎
. 𝑚𝑎,𝑡 22 

can be expressed as: 23 
 24 

𝑚𝑎,𝑡 = 𝑙𝑛 [
𝑓1(𝑦𝑎,𝑡)

𝑓2(𝑦𝑎,𝑡)
] (8) 

 25 

where 𝑓1(𝑦𝑎,𝑡) is the probability density function of excess-zero count model (Equation 26 

4 or Equation 6) and 𝑓2(𝑦𝑎,𝑡) is the probability density function of simple count model 27 

(Equation 2 or Equation 3). An excess-zero count model is considered to be a better fit than a 28 

simple count model with similar distribution (Poisson or negative binomial) when 𝑉𝑎 > 𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. 29 

𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is 1.96 at a 95% confidence interval (41). The model selection process is summarized in 30 
Figure 1. 31 

 32 
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 1 
 2 
Figure 1 How to select an appropriate count model 3 

 4 
DATA AND ANALYSIS 5 

Iqaluit Airport (YFB) serves the capital city of the Canadian territory of Nunavut. Iqaluit 6 
is the only territorial or provincial capital city in Canada without overland access to other 7 

communities or the rest of the country. This coastal airport has only one runway (paved) aligned 8 
into a valley with approach and threshold lighting, 24-hour METAR and TAF operation, ILS 9 
with RVR 1200 (1/4sm), and precision approach path indicators for aircraft with eye-to-wheel 10 
height up to 45' (42). There is a long history of flight delays and cancelations due to weather and 11 
infrastructure issues, like thawing permafrost, ILS failure, and poor visibility. With nearly 12 

19,000 aircraft movements (43) serving 156,641 passengers (44), YFB has the highest passenger 13 
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per capita ratio in Canada (45) and serves as a hub connecting smaller remote communities 1 
throughout the territory; thus, it is an important airport for many Nunavummiut, disruptions have 2 

had significant social consequences (46, 47). 3 
 4 
Anchorage Airport (ANC) in Alaska is a mid-sized American airport with high cargo 5 

volumes. It has three runways serving over five million passengers and approximately three 6 
million metric tons of cargo annually (48). In 2015, 17.2% of flights were delayed, 0.9% were 7 

canceled, and 0.2% diverted (3). We chose to model ANC due to its northern coastal location 8 
similar to YFB. 9 

 10 

Data Description 11 
Historical flight operations data for YFB was purchased from FlightStats (www.flightstats.com), 12 
a flight data services company. The FlightStats (FS) dataset contains records for scheduled 13 
flights as well as (a relatively small number of) charter flights that file flight plans (i.e., IFR 14 
flights). We used the data attributes ‘departure_airport_iata_code,’ ‘arrival_airport_iata_code,’ 15 

and ‘diverted_airport_iata_code’ to filter for departure, arrival and diverted flights at YFB; this 16 

yielded us 20,050 flights operating at YFB from October 1, 2015, through October 31, 2017. A 17 
quick check of the FlightStats dataset for another (smaller) territorial airport, against flight data 18 
provided by an airline for that same airport, showed the exact same number of flights. This gave 19 

us confidence that there is unlikely to be missing flight records in the YFB FlightStats data. We 20 

referred to fields ‘actual_runway_departure’ and ‘actual_runway_arrival’ to identify flight 21 
departure and arrival times respectively. When data for these fields were missing, we replaced 22 
them with ‘est_runway_departure’ and ‘est_runway_arrival’. We obtained flight and weather 23 

data for ANC from the FAA’s Aviation System Performance Metrics (ASPM) database.  24 
 25 

We obtained publicly available historical weather data from Environment Canada, 26 
gathered from meteorological stations managed by both NAV Canada (NAVCAN) and 27 
Environment Canada for 2015-2017. The weather data for YFB includes hourly records of 28 

ceiling, visibility, dew point, wind speed and direction, station pressure, and dry bulb 29 
temperature as well as daily recordings of total rainfall, total snowfall, total precipitation, and 30 

snow on the ground. To create our daily dataset, we included the minimum, maximum, average, 31 

and median of each hourly weather variable identified above. 32 
 33 

Operation and weather data for ANC were obtained from ASPM using the 34 
“Download/Airport” Section (https://aspm.faa.gov/). The data contains quarter-hourly airport 35 
operations and weather data from 2012 to 2018. Among the 72 operational fields in the data, we 36 
used counts of arrival and departure flights for efficiency computation (‘EFFARR’ and 37 
‘EFFDEP’) and counts of the Official Airline Guide (OAG)-based airport arrival and departure 38 

delay ≥ 15 minutes (‘DLAARR15’ and ‘DLAOFF15’). We used the weather variables of 39 
visibility, temperature, wind speed, and wind angle. 40 
 41 

Data Processing 42 
YFB  43 
The 25-months of FlightStats data for YFB includes 10,194 arrivals, with 146 of these consisting 44 
of flights diverted to YFB, and 9,856 departures, including 10 diverted back to YFB (due to 45 

problems en route or at the destination airport). Of the flights scheduled to arrive at YFB, 51 46 

http://www.flightstats.com/
https://aspm.faa.gov/
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were diverted to other airports. There was an average of 26 flight operations (arrivals and 1 
departures) per day and records showed only large aircrafts (according to FAA definition) 2 

operated at the airport. We observed some inconsistencies in recorded flight status and diversion 3 
airports, as well as some missing values. Thus, we developed a decision process (Figure 2) to 4 
address the above discrepancies and missing data, and ultimately identify a flight’s status as 5 
disrupted or not disrupted. A flight disruption is attributed to an airport when (1) an arriving or 6 
departing flight is canceled, (2) an arriving or departing flight is delayed for 15 minutes or more, 7 

or (3) a flight scheduled to arrive is diverted to an alternate airport. 8 
 9 

  10 
 11 

Figure 2 Flowchart for determining flight disruption of FlightStats data 12 
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Delayed flights are the primary contributor to flight disruption counts at YFB, with 1 
35.7% of departure flights and 16.2% of arrivals delayed (≥15 minutes) during the study period. 2 

The lower number of disrupted arrivals is the result of prioritizing arrivals over departures, as 3 
flights are inherently safer on the ground than in the air due to a number of conditions, including 4 
fuel capacity (49). Flight cancelations are the second highest contributor to disruptions, making 5 
up 13% and 10% of arrival and departure flights, respectively. Figure 3 shows a histogram of the 6 
daily disruptions counts. 7 

 8 

  9 
 10 
Figure 3 Histogram of daily flight disruptions at YFB 11 

 12 
The daily flight disruptions count is overdispersed, with variance greatly exceeding the 13 

mean. Hence, the negative binomial distribution is likely to be a better fit for this data compared 14 

with the Poisson distribution. The overdispersion and zeros due to different causes indicate that 15 
an excess-zero negative binomial model might be appropriate. 16 

 17 
Christmas Day (December 25) of 2015 and 2016 were the only days in the 762-day study 18 

period with no flights at YFB. We removed these two days from our dataset. The final dataset 19 

contained 20,050 flight records over 760 days; of these 20,050 flights, 1,764 had missing arrival 20 

and/or departure times.  21 
 22 

ANC 23 
The ASPM data for ANC contained 245,472 quarter-hourly records of 1,210,734 flights from 24 
2012 to 2018. Recall that the quarter hourly ASPM data does not contain canceled flights nor 25 

identify diverted flights, and thus we can only count delayed flights (which we will refer to as 26 
disruptions herein for ease). The average daily flight count for ANC was 473 flights/day while 27 
YFB’s was 26 flights/day. If we looked at daily disruptions for ANC, as we did for YFB, we 28 
would be highly unlikely to observe a day at ANC without flight delays (i.e. we would be 29 

unlikely to observe a true zero count). On the other hand, if we were to look at hourly disruptions 30 
for both, we would run into a problem with YFB insofar as hours with disruption counts would 31 
be very rare. As a result, we chose to model hourly disruption flight counts at ANC, and daily for 32 

YFB. There is no night flight curfew at ANC, with the airport authority instead using its ‘Noise 33 
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Compatibility Program’ to reduce noise impacts (50). Serving an average of 20 flights per hour, 1 
delay counts at ANC are also overdispersed. 2 

 3 
With the same reasoning for removing Christmas Day at YFB, we removed 18 hours with 4 

no flights at ANC and were left with 61,350 hours of data.  Figure 4 shows a histogram of the 5 
hourly disruptions counts. 6 

 7 

 8 
 9 

Figure 4 Histogram of hourly flight disruptions at ANC  10 
 11 

Modeling Approach 12 
Flight disruption counts at an airport (per day at YFB; per hour at ANC) are modeled as discrete, 13 
non-negative and random events using the count models introduced earlier. A flight record falls 14 

into one of the following categories: 15 
 16 

1) Disrupted (non-zero count-state), 17 
2) Not disrupted, or on-schedule (true-zero state), and 18 

3) Missing information, and thus, converted to zero (excess zero states). 19 

 20 
Of arrival and departure flights at YFB, 55% and 51% were on-schedule, respectively, 21 

falling into category (2) above. Additional zeros due to (3) would contribute to the impression of 22 
a higher number of on-schedule flights (YFB arrival and departure flight records in categories (2) 23 
and (3) number 70% and 54%, respectively). The ANC dataset has no missing information – 24 

there is nothing in category (3). 25 
 26 

The non-zero count-state of the YFB disruption count data likely follows a negative 27 
binomial distribution as it is overdispersed. Nonetheless, we developed a Poisson model and 28 
tested for dispersion. Both the hurdle (Equation 4) and zero-inflated (Equation 6) models are 29 

appropriate to model disruption counts, especially because we have missing observations in our 30 
dataset. This is equivalent to applying count models to traffic crash data with missing 31 

observations (i.e., situation (3) above). We tested both models as discussed in the following 32 
section, developing them using different combinations of dependent variables. Table 1 provides 33 
a list of the candidate variables tested. Data preparation, data analysis, and modeling were 34 
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performed using the free statistical software RStudio; the “pscl”, “MASS”, and “stats” packages 1 
in RStudio were used to estimate the count models (51).  2 

 3 

TABLE 1 Candidate Explanatory Variables 4 

Category Primary variable Candidate variables 

Operations Flight Arrivals, departures, total (arr+dep) 

Flight distance % long (> 4000km), % medium (1500km-4000km),  

% short (< 1500km) 

Aircraft type % heavy, % large, % medium, % small 

Seasonality Month, season 

Weather Visibility Min, max, average, median (daily & hour of operation) 

Wind speed Min, max, average, median (daily & hour of operation) 

Crosswind speed Min, max, average, median (daily & hour of operation) 

Head/tailwind speed Min, max, average, median (daily & hour of operation) 

Temperature Min, max, average, median (daily & hour of operation) 

Station pressure Min, max, average, median (daily & hour of operation) 

Dewpoint Min, max, average, median (daily & hour of operation) 

Precipitation Total rain, total snow, total precipitation (rain+snow), 

snow cover 

 5 

As we aggregated the YFB data over a day, we could represent the weather conditions 6 
(visibility, temperature, etc.) for the day, and thus their impact on daily disruption counts, using 7 

different representations of the data like daily average, average over operating hours, daily 8 
minimum, daily maximum, standard deviation, etc. Thus, we started with an exhaustive list of 9 
nearly 290 candidate variables in order to understand which of the above quantities would be 10 

significant to disruptions. We applied correlation and multicollinearity tests followed by the 11 
backward stepwise selection method (52) to reduce the candidate variables set, as is standard 12 

practice in regression analysis. One operations-related and three weather-related variables were 13 
finally chosen for inclusion in the count models. The selected operations variable is the total 14 
flight count. With more scheduled flights, a higher likelihood of disruption is anticipated for two 15 

reasons. First, more scheduled flights mean there are simply more flights “available” to disrupt. 16 

Second, flight demands that approach or exceed an airport’s capacity lead to disruptions (i.e., 17 

congestion), consistent with observations at high demand airports (20). The three weather 18 
variables include 1) minimum visibility during operating hours (0700-2300), 2) maximum 19 

crosswind speed during operating hours, and 3) total daily precipitation. 20 
 21 

For ANC, we used total flights per hour (summation of ‘EFFARR’ and ‘EFFDEP’), 22 

minimum hourly visibility, maximum hourly crosswind speed, and minimum hourly temperature 23 

as independent variables. ASPM does not contain precipitation records. Also, as it provides 24 

complete operational data, zero inflation is not expected in the dataset. For comparability, we 25 

induced excess-zeros in the ASPM data maintaining the similar pattern of missing zeros in FS 26 

data for YFB. We have achieved this by randomly converting delay records for 9% of total 27 

flights of ANC (108,966 flights) to zero (category 3 in Modeling Approach) and distributing 28 

them in a manner ensuring over 90% of the aggregated study period (55215 hours) contained 29 

excess-zero.   30 
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RESULT AND DISCUSSION 1 
We first estimated the simple Poisson count model (generalized linear model (GLM) with 2 

log link) on total daily flight disruptions at YFB, to perform a dispersion test given that Figure 3 3 
indicated overdispersion. The test determined a dispersion value of 1.70 and confirmed that the 4 
disruption count data were overdispersed at a 99% significance level. Therefore, we developed a 5 
simple negative binomial count model (SNB). As there was more than one source of zero counts 6 
in the data, we estimated both a zero-truncated negative binomial hurdle (NBH) (Equation 4) 7 

and a zero-inflated negative binomial (ZINB) (Equation 6) with explanatory variables of total 8 
flights, visibility, crosswind speed, and daily precipitation.  9 

 10 

Vuong’s test (Equation 7) was used to determine whether the excess-zero models (ZINB 11 
and NBH) were superior to the simple count model in fit (Figure 1). Vuong’s z-statistics were 12 
1.44 and 1.39 for NHB and ZINB respectively, indicating that both these excess-zero models are 13 
favorable over the simple negative binomial (SNB) model at a 90% confidence level. The shape 14 
parameter, θ, is also significant (95% confidence) for both models, again confirming data 15 

overdispersion. According to both the Akaike Information Criterion (AICc) and log-likelihood 16 

values, both excess-zero models have similar goodness-of-fit. The results are shown in Table 2.  17 
 18 

TABLE 2 Results of YFB Daily Disruption Count Models  19 

 SNB NBH ZINB 

 Coefficient z-value Coefficient z-value Coefficient z-value 

Count model 

(Intercept) -2.097 -8.522 -1.980 -8.000 -1.965 -7.977 

ln(#Flight) 1.351 18.331 1.313 17.733 1.309 17.757 

Min Visibility (mile) -0.020 -10.377 -0.019 -10.043 -0.019 -10.045 

Max Crosswind (knot) 0.019 4.952 0.020 5.163 0.020 5.126 

Precipitation (mm) 0.013 2.873 0.013 2.921 0.013 2.935 

ln(𝜃)  2.63 7.610 2.708 19.713 2.709 19.736 

Excess-zero model 

(Intercept) - - 0.147+ 0.130 -0.916+ -0.580 

Min Visibility (mile) - - -0.130 -3.096 0.137* 2.537 

#Flight - - 0.273 4.482 -0.256 -3.167 

Model parameters 

𝜃  13.85 14.99 15.012 

Log-likelihood -2120.87 -2114.68 -2114.98 

AICc 4253.8 4247.6 4248.2 

* Significant at 95% confidence level; all others are significant at 99%.  
+ Intercepts of excess-zero model component are not significant. 

 20 
In the NBH model, the zero-truncation component uses binomial logit to represent 21 

whether a positive count (distributed negative binomial – GLM with log link) has occurred or 22 

not. All estimated parameters have expected signs, and all but the intercept in the excess-zero 23 
model are statistically significant at 95% confidence level. The excess-zero model component 24 

results of the NBH model indicate that a one-mile increase in the daily minimum visibility leads 25 

to a 12.2% decrease in the odd ratio Pr (𝑦 > 0)/Pr (𝑦 = 0). This means that when comparing 26 
flight disruption between two days, the day that experiences the lower minimum visibility is 27 
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more likely to have a disruption, given all other variables remain constant. Similarly, the odd 1 
ratio of observing flight disruptions in a given day increases 31% with higher flight volumes. 2 

When all explanatory variables are zero (or nearly zero, for instance, #flights = 1), the daily 3 

expected disruption count is nearly zero as well (𝑒−1.98+1.313∗ln (1) = 0.14). However, with 10 4 

scheduled flights, the expected daily flight disruption count increases to 2.8; with 20 scheduled 5 
flights, the expected disruption count is 7.1. If we increase visibility by one mile, then we can 6 
expect a 1.9% decrease in daily disruptions. Similarly, increasing crosswind speed and 7 
precipitation by one unit each increase expected daily disruption count by 2% and 1.3% 8 
respectively. These (statistically significant) models’ estimates for weather variables on 9 

disruption count appear small. This could be attributed to the fact that very extreme weather 10 

events (i.e. very low visibilities, very high crosswinds and heavy rain/snow) are also infrequent. 11 

As a result, the effects of these extreme events may be “washed out”; an analysis targeted at 12 
these events may be more insightful given the extreme consequences of such events. Despite 13 
that, seemingly small decreases in operational capacity can have significant impacts on airport 14 
efficiency as the impacts of disruptions grow non-linearly (32). Besides, the operational impacts 15 

of many adverse weather conditions can be lessened with improved maintenance (i.e., snow 16 
clearing), navaids, and lighting, which can be poor to non-existent at many airports throughout 17 

northern Canada.   18 
 19 
In ZINB, the GLM (with log link and negative binomial count model) is applied to 20 

represent both true zero and positive disruption counts. The signs on all coefficients are intuitive 21 
and similar to those of the NBH model. The sign on the ZINB excess-zero component is opposite 22 

that of the excess-zero component of NBH; this is because the ZINB excess-zero component 23 
finds the probability of excess zeros versus true zeros and positive counts, whereas the NBH 24 

hurdle component finds the probability of positive counts versus excess zeros and true zeros. The 25 
ZINB model results indicate that the probability of observing excess zeros in the data increases 26 
by 15% with a one-mile visibility increase, suggesting that the dataset contains more missing 27 

entries during better weather conditions. This would be a curious result except that, during data 28 
cleaning, we observed that good weather days also tended to have flights with more fields 29 

missing in the original FlightStats dataset. Also, the probability of observing excess zero from 30 
missing records (odd ratio) is low at busier airports as it decreases by 29% with one unit increase 31 

of flight volume.  However, the NBH model provides the best fit and results as we are interested 32 
in understanding the impacts of the different variables on daily total disruption counts, 33 
particularly focusing on when disruptions occurred.  34 
 35 

For ANC, we also applied different delay count models to the hourly aggregated data. 36 

The data also indicated overdispersion, with dispersion value 1.49 for complete data and 2.2 for 37 
zero-induced data respectively at a 99% significant level. Thus, we proceeded with the negative 38 
binomial count models (simple, hurdle and zero-inflated). Insignificant odd ratio supports the 39 
inapplicability of ZINB/NBH model to complete ASPM data whereas Vuong’s test result 40 
suggests that for incomplete ASPM data ZINB/NBH is preferred over SNB. The results are 41 

shown in Table 3.   42 
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TABLE 3 Results of ANC Hourly Delay Count Models (With Complete and Incomplete ASPM) 1 

 Complete data Zero-induced incomplete data 

 

 

SNB NBH ZINB 

Coefficient z-value Coefficient z-value Coefficient z-value 

Count model 

(Intercept) -0.793 -35.86 -1.237 -29.97 -1.275 -35.54 

ln(#Flight) 0.806 123.58 0.882 70.31 0.893 72.45 

Min Visibility (mile) -0.046 -46.19 -0.052 -35.53 -0.051 -35.72 

Max Crosswind (knot) 0.007 9.21 0.010 9.02 0.010 9.66 

Min Temperature (oC) -0.004 -12.64 -0.005 -9.97 -0.006 -12.15 

ln(𝜃)  1.864 15.80 1.244 49.06 1.243 49.23 

Excess-zero model 

(Intercept) - - -0.358 -8.44 -0.434 -6.31 

Min Visibility (mile) - - -0.085 -24.21 0.067 12.91 

#Flight - - 0.089 77.63 -0.074 -35.49 

Model parameters 

𝜃 6.45 3.47 3.46 

Log-likelihood -125163.1 -106414.4 -106288.3 

AICc 250338 212846.8 212594.7 

All estimates are significant at 99% confidence level 

 2 
The result shows that higher counts of flight delays are correlated to higher (natural log 3 

of) hourly flight volume, higher crosswind speeds, lower visibility, and lower temperature. 4 
Unlike YFB (Table 2), crosswind speed at ANC has a smaller influence on delay than that of 5 

visibility (Table 3). There could be two explanations for this. First, intersecting runways at ANC 6 
would allow for a runway to be used when winds create crosswinds on the other, and vice versa, 7 
thus reducing the impacts of winds. However, with only one runway at YFB, with strong 8 

crosswinds, the airport would not be able to accommodate any operations. Second, with high 9 
cargo volumes, we expect that larger aircraft operate at ANC, which are less susceptible to 10 

crosswinds. However, the purpose of developing the model is not to identify and compare the 11 
influencing factors; rather verify the applicability of excess-zero models (ZINB and NBH) to the 12 

incomplete dataset. A simple exploration of incremental data removal demonstrated that model 13 
parameters did not change significantly when removing up to about 15% of ANC flight data. 14 
Beyond 15%, we started to observe significant changes in coefficient values. Further analysis 15 
was not conducted because only 9% of flights at YFB had missing data, and we induced the 16 
same number of excess zeros into the ANC data. Comparing the result of simple count models 17 

for the complete dataset and excess-zero count models for the incomplete dataset (Table 3), it 18 
can be confirmed that both yield similar results for ANC. This suggests that the data 19 
incompleteness can be address by adopting a ZINB/NBH model over SNB.  20 
 21 

Since we replaced some delayed flight records from ASPM to excess zeros (category 3 in 22 

Modeling Approach) to obtain a similar structure of FS data for YFB. The result from Table 3 23 
supports our hypothesis that the excess-zero count models are handling the missing zeros in the 24 
YFB dataset adequately and providing results (Table 2) that we can confidently say are a true 25 
reflection of YFB operations.  26 
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CONCLUDING REMARKS 1 
This research investigated the novel application of empirical count models to represent 2 

relationships between flight disruptions and weather conditions at airports, using data of varying 3 
completeness and quality. We estimate models for Iqaluit Airport (YFB) in Nunavut, Canada 4 
using publicly available but incomplete data from FlightStats, and for Anchorage Airport (ANC) 5 
in Alaska, United States using high quality data from FAA’s ASPM database. Our work was 6 
motivated by the need quantitatively map the strength of the relationships between flight 7 

disruptions and weather (and infrastructure) at northern Canadian airports, where infrastructure is 8 
deficient and outdated (severely hampering their ability to support reliable air services when 9 
weather conditions deteriorate), data is limited, and the Canadian government has no quantitative 10 

information to guide investment allocation decisions across these airports – yet, air transportation 11 
is an essential service to sustain communities. Furthermore, climate change is opening up 12 
northern Canada and Arctic waters to increased tourism and freight movement, requiring support 13 
via air transport services. At the same time, it created further challenges in providing these 14 
services due to even greater weather volatility, and runway surface degradation from melting 15 

permafrost foundations (leading to higher mitigation and maintenance costs) (53).  16 

 17 
The results from applying a zero-inflated negative binomial model and negative binomial 18 

hurdle model at YFB indicate that flight disruptions are correlated to flight counts, minimum 19 

visibility, maximum crosswind speed, and precipitation. However, due to the incompleteness of 20 

the YFB FlightStats data, we further explored model building with ANC ASPM data. After 21 
systematically degrading the data to match YFB data completeness, we found that the application 22 
of an excess zero model to the incomplete dataset yields similar results as applying simple count 23 

models to complete data, determining that an excess-zero model can overcome data 24 
incompleteness to yield good-quality results. This demonstrates that challenges in data 25 

availability – the typical case for most airports throughout the world – can be addressed with 26 
novel statistical modeling applications. We believe this method can be applied to other airports 27 
throughout Northern Canada and the world, given the availability of weather and airport 28 

infrastructure data.  29 
 30 

The YFB results show that low visibility is an issue with respect to operational 31 

disruptions. If this is to be addressed, installation of improved lighting systems, navaids and/or 32 
landing equipment (a cost borne by the airport authority, NAV Canada, and the federal Airports 33 

Capital Assistance Program) should be considered to facilitate and/or improve operations in low-34 
visibility conditions. Because ANC has multiple runways, it was found that crosswind speeds are 35 
less disruptive than low visibility on flight delays. However, YFB is highly susceptible to winds, 36 
with only one runway aligned into a valley from the coast. This model offers a method by which 37 
to monitor the impact of crosswinds (a combination of wind speed and angle with runway) on 38 

disruptions, particularly as the effects change over time; the only way to mitigate the effects of 39 
crosswinds is to construct a new runway, and this could be considered by governments 40 
particularly as YFB grows in size and importance (tourism, shipping, etc.). Overall, this model 41 

offers empirical evidence to effectively identify and target the types of infrastructure investments 42 
needed at airports, which will lead to more efficient use of limited funds by both the territorial 43 
and federal governments. 44 

 45 
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Our study was limited by a lack of data on runway configurations used and the 1 
occurrence of other operational issues (snow clearing, lighting outages, staffing shortfalls, etc.). 2 

It would be beneficial, in future studies, to work closely with the airport authority to gain access 3 
to such data if it is collected. Analytic capacities for each of the two runway configurations, in 4 
good and poor visibility, weighted by the probability of use given winds, can be calculated (with 5 
further assumptions). Empirical estimation of capacity would be hindered by the above data 6 
limitations; thus, in this paper, we chose to focus on disruptions as YFB operates well below 7 

capacity in good conditions. We can further build on this research by exploring other data 8 
science applications to further unpack the relationship between highly disrupted days and severe 9 
weather conditions. We continue to work with a northern airline to explore their operational data 10 

to support network-level operational disruptions models. Our larger vision is to develop analysis 11 
tools that can support governments (and operators) in allocating infrastructure improvement 12 
funds in a well-targeted, effective manner while addressing the potential threats from climate 13 
change. 14 
 15 
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Figure 1 How to select an appropriate count model 

Figure 2 Flowchart for determining flight disruption of FlightStats data 

Figure 3 Histogram of daily flight disruptions at YFB 

Figure 4 Histogram of hourly flight disruptions at ANC  
 

TABLE 1 Candidate Explanatory Variables 

Category Primary variable Candidate variables 

Operations Flight Arrivals, departures, total (arr+dep) 

Flight distance % long (> 4000km), % medium (1500km-4000km),  

% short (< 1500km) 

Aircraft type % heavy, % large, % medium, % small 

Seasonality Month, season 

Weather Visibility Min, max, average, median (daily & hour of operation) 

Wind speed Min, max, average, median (daily & hour of operation) 

Crosswind speed Min, max, average, median (daily & hour of operation) 

Head/tailwind speed Min, max, average, median (daily & hour of operation) 

Temperature Min, max, average, median (daily & hour of operation) 

Station pressure Min, max, average, median (daily & hour of operation) 

Dewpoint Min, max, average, median (daily & hour of operation) 

Precipitation Total rain, total snow, total precipitation (rain+snow), 

snow cover 

 

TABLE 2 Results of YFB Daily Disruption Count Models  

 SNB NBH ZINB 

 Coefficient z-value Coefficient z-value Coefficient z-value 

Count model 

(Intercept) -2.097 -8.522 -1.980 -8.000 -1.965 -7.977 

ln(#Flight) 1.351 18.331 1.313 17.733 1.309 17.757 

Min Visibility (mile) -0.020 -10.377 -0.019 -10.043 -0.019 -10.045 

Max Crosswind (knot) 0.019 4.952 0.020 5.163 0.020 5.126 

Precipitation (mm) 0.013 2.873 0.013 2.921 0.013 2.935 

ln(𝜃)  2.63 7.610 2.708 19.713 2.709 19.736 

Excess-zero model 

(Intercept) - - 0.147+ 0.130 -0.916+ -0.580 

Min Visibility (mile) - - -0.130 -3.096 0.137* 2.537 

#Flight - - 0.273 4.482 -0.256 -3.167 

Model parameters 

𝜃  13.85 14.99 15.012 

Log-likelihood -2120.87 -2114.68 -2114.98 

AICc 4253.8 4247.6 4248.2 

* Significant at 95% confidence level; all others are significant at 99%.  
+ Intercepts of excess-zero model component are not significant 
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TABLE 3 Results of ANC Hourly Delay Count Models (With Complete and Incomplete ASPM) 

 Complete data Zero-induced incomplete data 

 

 

SNB NBH ZINB 

Coefficient z-value Coefficient z-value Coefficient z-value 

Count model 

(Intercept) -0.793 -35.86 -1.237 -29.97 -1.275 -35.54 

ln(#Flight) 0.806 123.58 0.882 70.31 0.893 72.45 

Min Visibility (mile) -0.046 -46.19 -0.052 -35.53 -0.051 -35.72 

Max Crosswind (knot) 0.007 9.21 0.010 9.02 0.010 9.66 

Min Temperature (oC) -0.004 -12.64 -0.005 -9.97 -0.006 -12.15 

ln(𝜃)  1.864 15.80 1.244 49.06 1.243 49.23 

Excess-zero model 

(Intercept) - - -0.358 -8.44 -0.434 -6.31 

Min Visibility (mile) - - -0.085 -24.21 0.067 12.91 

#Flight - - 0.089 77.63 -0.074 -35.49 

Model parameters 

𝜃 6.45 3.47 3.46 

Log-likelihood -125163.1 -106414.4 -106288.3 

AICc 250338 212846.8 212594.7 

All estimates are significant at 99% confidence level 

 


