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Abstract

In this dissertation we focus on numerical models of rotating anelastic convection, in

particular the entropy boundary condition, with application to the giant planets. The

first chapter details atmospheric features of giant planets and the numerical formulation

of anelastic convection. The second chapter details entropy gradient boundary conditions

compared to constant entropy boundary conditions used in previous studies. The third

chapter considers a Gaussian perturbation on the lower boundary condition to examine

surface effects of a plume from the deep interior. The fourth chapter considers high reso-

lution simulations that are closer to a planetary parameter space.

Most previous works on models of anelastic convection use a constant entropy difference

boundary condition. For a strongly stratified system this requires a large entropy gradient

near the surface to maintain the difference. This makes for strong convection at the outer

boundary that disrupts coherent vortices. We use constant entropy gradient boundary

conditions with entropy sinks so that the convection is strongest at the inner boundary

and grades into neutral buoyancy at the outer boundary.

A thermal plume from the deep interior is modelled using a Gaussian perturbation

on the lower boundary. The parametrization of the plume is examined considering its

amplitude, width, the latitudinal offset, and the background convective state. The flow

produced at the surface typically includes a constant cyclonic vortex at the pole and short

lived anticyclones at a lower latitude.

Lowering the Ekman number allows for models that are less viscous and more repre-

sentative of planets. These models have relaxation oscilations that are relatively quiet at

the minimum and produce strong storms at the peak. We use these models to study the

quasiperiodic Great White Spot storms that are observed on Saturn with a periodicity of

about 1 Saturnian year.
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Chapter 1

Introduction

This dissertation will focus on numerical models of rotating anelastic convection with

application to the Giant planets and in particular Jupiter and Saturn. In section 1.1

we describe the models of the planetary interiors and several features observed on Jupiter

or Saturn that may be explained with our model. The Boussinesq approximation was the

basis for previous planetary models and it is described in section 1.2 in its dimensional and

nondimensional form. The equations for the anelastic model of convection used for this

study are detailed in section 1.3. The simulation code used here, MagIC, and the numerical

methods used to solve the equations of anelastic convection are detailed in section 1.4.

1.1 Jupiter and Saturn Observations & Interior Models

Of the planets in our solar system the gas giants, Jupiter and Saturn, stand out for their

sheer mass. Between the two of them they contain over 90 % of the planetary mass in the

solar system (Fortney and Nettelmann, 2010). The first direct observation of Jupiter from

spacecraft came from the flyby of Pioneer 10 in 1973. The Galileo spacecraft arrived at

Jupiter in 1995 and provided observations until it was deorbited in 2003. Pioneer 11 flew
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by Saturn in 1989 and provided measurements of its ionosphere and its atmosphere (Kliore

et al., 1980).

The first direct measurement of the magnetic field and magnetosphere of Jupiter came

from the Pioneer 10 flyby. The field was observed to be dipolar with a tilt of between 8°and

15°. The magnetosphere is modelled as a annular current sheet to first order, however it is

warped near the equator (Smith et al., 1974). This produces a time dependent behaviour

that can be used to infer the rotation of the deep interior. The three pre-Cassini flybys

measured the magnetic field of Saturn to be dipolar and closely aligned with the axis of

rotation. The Saturn Kilometric radiation was measured to have a period of 10 hours,

39 minutes by Voyager and has been associated with the deep interior (Desch and Kaiser,

1981). However observations from Cassini show that the period varies by 1% and is now

8 minutes longer than the Voyager measurements. This variation is larger than any real

variation in the rotation of the interior (Del Genio et al., 2009).

Models of the interior structure and composition of Jupiter and Saturn are uncertain

and dependent on a number of constraints. The gravitational and magnetic field mor-

phologies, expressed as spherical harmonic coefficients, the rate of rotation, luminosity,

polar radius, and equatorial radius are observational constraints. The abundance of hy-

drogen, helium, and other heavy elements in the interior and their equation of state are

constraints that are not directly observable. The presence of a magnetic field implies that

there is dynamo action in the deep interior driven by a conductive fluid. The three-layer

model is commonly applied to the giant planets and divides them into: (i) a poorly con-

ductive molecular envelope that includes the atmosphere, (ii) a deeper metallic hydrogen

layer that drives the dynamo, and (iii) an inner core of unknown higher density elements

(Guillot et al., 2004). For Jupiter the molecular envelope extends to a depth of about 2

Mbar and the helium mass mixing ratio is Y ' 0.23. The deep atmosphere with metallic
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hydrogen has a helium mass mixing ratio of Y ' 0.27 to match the protosolar H/He ratio

(Guillot and Gautier, 2015). Jupiter may or may not have a core. For Saturn the molecular

envelope has a helium mass mixing ratio estimation of Y ' 0.20 and a depth of 2 Mbar.

This is deeper compared to Jupiter because Saturn is less massive. The metallic hydrogen

layer has a helium mass mixing ratio estimation of Y ' 0.30 (Guillot and Gautier, 2015).

Saturn has a core of uncertain mass.

Empirical models of the interior can be constructed using the observational constraints.

Helled et al. (2009) constructed an empirical model of Saturn’s density matching the grav-

itational harmonic coefficients and the atmospheric boundary conditions. The empirical

model is compared to an equation of state (EOS) of a hydrogen and helium mixture to

interpret the abundance of helium and heavier elements in the interior. The boundary

between layers (i) and (ii) is determined by the EOS and electrical conductivity of hy-

drogen at depth. As the conductivity increases the Ohmic dissipation becomes significant

and slows the fluid relative to the molecular envelope. The transition of hydrogen from a

molecular to a metallic state has been observed in shock experiments (Nellis et al., 1995)

to be continuous, which implies that there is not a sharp transition at the boundary. The

material properties of hydrogen and helium at high temperature and pressure can also be

explored numerically with ab-initio simulations. French et al. (2012) model the EOS of

Jupiter as a linear combination of hydrogen, helium, and water to represent heavier ele-

ments. This model predicts a rapid radial decrease in electrical conductivity, starting at

a radius of 0.9RJ that sets a lower limit of 0.8RJ for the full ionization of hydrogen. The

depth of the transition for deep models of zonal flow can also be constrained by limiting

the depth of Ohmic dissipation such that it does not exceed the luminosity of the planet.

This approach sets the depth at 0.96RJ and 0.86RS respectively for Jupiter and Saturn

(Liu et al., 2008).
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There is some debate over the mechanisms that drive jets and storms in the atmosphere

of Jupiter and Saturn. Large scale zonal flow is produced by the cascade from small scale

turbulence to larger scales in rotating spherical flow (Rhines, 1975). There are two models

for atmospheric flow differing on how deep into the interior the jets exist. Shallow models

suggests that the flow is quasi-barotropic such that it does not depend on the vertical

structure and is confined to a two dimensional weather layer (Williams, 1978). These

models have been successful in reproducing latitudinal jets, however they typically produce

a retrograde equatorial jet rather then the observed prograde equatorial jet for Jupiter and

Saturn. More recent models have been able to achieve a prograde equatorial jet with

additional forcing and dissipation (Scott and Polvani, 2008).

In deep models the jets are forced by thermal convection in the interior and are the

surface manifestation of Taylor columns that extend axially across both hemispheres out-

side of the tangent cylinder determined by the transition of molecular to metallic hydrogen

(Busse, 1976). Heimpel et al (2005) extend Busse’s model to include the transition from

the molecular layer into the metallic interior, truncating the Busse columns inside of the

tangent cylinder.

The tangent cylinder is the imaginary cylinder that is tangent to the inner boundary

at the equatorial plane and has an axis of symmetry parallel to the axis of rotation. This

divides the flow into three distinct regions: the northern region inside the tangent cylinder,

the equatorial region outside the cylinder, and the southern region inside of the tangent

cylinder. The radius ratio η sets the location of the tangent cylinder and is representative of

the depth of the molecular envelope. In the equatorial region outside the tangent cylinder

a strong prograde jet develops. Inside the tangent cylinder at higher latitudes multiple

alternating jets are developed.

More recent studies use the anelastic approximation to incorporate density stratification
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(Gastine and Wicht, 2012) and have been able to model storms (Heimpel et al., 2016). The

descent of the Galileo probe into the atmosphere of Jupiter measured the zonal wind speed

to be increasing to a depth of 4 bars and relatively constant afterwards until the link

to the probe was lost at 21 bars, approximately 150km below the cloud tops (Atkinson

et al., 1998). The axisymmetric zonal gravitational coefficients may be able to determine

the depth of the flow. The jets are not latitudinally symmetric across the equator and

therefore the odd degree gravitational zonal harmonics should be nonzero if the flow is

deep. However measuring these harmonic coefficients requires a polar orbit. Future gravity

measurements from Juno and the final Cassini mission may be precise enough to estimate

the wind depth (Galanti and Kaspi, 2015).

The Cassini spacecraft has been orbiting Saturn since mid 2004 and providing obser-

vations of its atmosphere, rings, satellites, and magnetosphere. Atmospheric observations

include the zonal flow of the planet’s jets, the hexagon at the North pole, and the large

convective storm of 2010 (Rojas et al., 2000; Baines et al., 2009; Sayanagi et al., 2013).

The hexagon structure at the North pole of Saturn was an unexpected discovery by

the Voyager probes (Godfrey, 1988). The flow of clouds in this latitude is of the order

100 m/s however the hexagon appears stationary in the frame of the radio rotation period

(Godfrey, 1988). Images taken from Cassini show that this feature remains 28 years later

after nearly a Saturnian year (Baines et al., 2009). There are several possible mechanisms

for the formation of the hexagon. Allison et. al. (1990) suggest that it is a stationary

Rossby wave jet that is perturbed by an anticyclonic vortex to the south. Another theory

is that the hexagon results from barotropic instability of the high latitude retrograde jets.

Analysis of the stability of an idealized zonal jet shows that the prograde eastward jets

are more stable than the retrograde westward jets (Howard and Drazin, 1964). Laboratory

models of barotropic instability have been able to reproduce a hexagon and other polygonal
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shapes using differential rotation (Aguiar et al., 2010) or by pumping fluid at the lower

boundary (Sommeria et al., 1991). In the mid-northern latitude of Saturn there is a

”ribbon” wave that has been observed by the Voyager probes that was still visible 14 years

later (Sanchez-Lavega, 2002). It is suggested that this feature is also a result of barotropic

instability (Godfrey and Moore, 1986).

Saturn experiences quasi-periodic giant storms known as the Great White Spots (GWS).

Observations of Saturn have recorded instance of the GWS occurring in 1903, 1933, and

1960 (Sánchez-Lavega and Battaner, 1986). The storms alternate between mid-latitude and

equatorial regions and are observed with a period of roughly 30 years, which corresponds

to one year of Saturn. In 1990 the GWS erupted near the equator and was observed

in detail by the Hubble Space Telescope(Sánchez-Lavega et al., 1991). It was initially

observed as a bright spot located in the interface between the equatorial zone and the

north equatorial belt. There was counterdirectional zonal expansion at the northeast and

southern extremities produced by zonal wind shear. The initial spot continued to grow

and developed a distinct double nucleus. Over time the two cloud fronts expanded in

opposite direction and covered most of the northern equatorial belt eventually merging.

Nearly a month later dark spots were observed in regular intervals at 18°N, bright spots

were observed to the south at 10.5°N, and more dark spots were observed at 5.5°N.

In December 2010 a planet-encircling convective storm was observed at mid latitude

from the orbit of Saturn by the spacecraft Cassini (Sayanagi et al., 2013). Prior to the start

of the storm a feature known as the String of Pearls was observed at latitudes between

32.5°N and 34.5°N. The pearls can be seen as a band of dark spots in the visible band

and bright spots in the infrared spectrum. They are interpreted to be holes in the cloud

layer from which thermal radiation from the interior is released. After the storm erupted it

was characterized by three distinct parts. The westernmost bright cloud is the head of the
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storm and is trailed to the east by a large anticyclonic vortex (AV). Further to the east of

the AV is the tail of the storm where the clouds are turbulent without well defined edges.

The head of the storm drifted to the west of the AV and eventually collided with it after

circling the planet.

1.2 Equations of Boussinesq Convection

Thermal convection describes the flow of fluid that is heated at the bottom and cooled

at the top. This can be a good approximation for the flow of fluid in planets and stars.

The fluid motion is described by a self consistent set of equations given by conservation

laws. The conservation of momentum, energy, and mass form a complete set of equations

with a unique solution when the boundary conditions are specified. The velocity boundary

conditions are impenetrable across the boundary and the tangent flow boundary condition

may be no-slip or free-slip. The thermal boundary condition may be constant temperature

or constant temperature gradient across the boundaries.

The Boussinesq approximation assumes that the density variations in a fluid are neg-

ligible except in the buoyancy term. This approximation is commonly used for modelling

convection in Earth’s liquid core and for dynamo models of terrestrial planets (Christensen

and Wicht, 2007) and for models of deep convection in planets (Christensen, 2001; Heimpel

and Aurnou, 2012; Heimpel and Gómez Pérez, 2011). The equations of convection describe

the flow of a fluid in a spherical shell of inner radius ri and outer radius ro that is rotating

in the ẑ direction with rotation rate Ω. The spherical geometry of the model is shown

in figure 1.1. The spherical coordinate convention used here is azimuthal direction φ̂, co-

latitude θ̂, and radial direction r̂. The tangent cylinder is the imaginary surface that is

tangent to the inner boundary at the equatorial plane and has an axis of symmetry parallel

to the axis of rotation. The conservation of mass for a fluid with density ρ and a velocity
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u is given by the continuity equation:

∂ρ

∂t
+∇ · ρu = 0 (1.1)

Under the Boussinesq approximation ρ is a constant background density, thus this

reduces to the flow being divergence free,

∇ · u = 0. (1.2)

The conservation of momentum is given by the Navier-Stokes equation in a rotating

reference frame with radial gravity:

∂u

∂t
+ u · ∇u = −1

ρ
∇p− 2Ω× u+ αgT + ν∇2u, (1.3)

Where p is the pressure, ν is the kinematic viscosity, α is the coefficient of thermal

expansivity, and g is gravity. The conservation of energy is given by:

∂T

∂t
+ u · ∇T = κ∇2T, (1.4)

Were κ is the thermal diffusivity and T is the variable temperature.

1.2.1 Non-dimensionalized Equations

The system of equations (1.2 - 1.4) can be nondimensionalized by characteristic scales to

help understand the relative importance of the differing terms.

The characteristic length scale d is taken to be the radial distance across the spherical

shell ro − ri, the time scale is taken to be the thermal diffusion time d2/κ, the reference

velocity is therefore κ/d, and the reference temperature is scaled according to the difference
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across the shell ∆T . The relations between dimensional and nondimensional (starred)

parameters are given by:

x = x∗d t = t∗
d2

κ
u = u∗

κ

d
T = T ∗∆T p = p∗

ρνκ

d2
(1.5)

Where starred parameters are nondimensional. Substituting the nondimensional vari-

ables into the momentum equation gives

κ2

d3

(
∂u∗

∂t∗
+ u∗ · ∇u∗

)
=

1

ρ

ρνκ

d2
∇p∗ − 2Ωκ

d
(ẑ× u∗) + αg∆TT ∗ +

νκ

d3
∇2u∗. (1.6)

We then divide through by κν/d3 to get

κ

ν

(
∂u∗

∂t∗
+ u∗ · ∇u∗

)
= ∇p∗ − 2

d2Ω

ν
(ẑ× u∗) +

αg∆Td3

κν
T ∗ +∇2u∗ (1.7)

from here we can define three nondimensional parameters: the Rayleigh Number Ra

which is the ratio of buoyancy to diffusivity, the Ekman Number E which is the ratio of

viscous diffusion to rotation, and the Prandtl Number Pr which is the ratio of viscous to

thermal diffusivity.

Ra =
αg∆Td3

νκ
(1.8)

E =
ν

Ωd2
(1.9)

Pr =
ν

κ
(1.10)
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this gives the nondimensional form of the momentum equation as

1

Pr

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= ∇p∗ − 2

E
(ẑ× u∗) +RaT ∗ +∇2u∗. (1.11)

Substituting the nondimensional variables into the temperature equation gives

κ∆T

d2

(
∂T ∗

∂t∗
+ u∗ · ∇T ∗

)
=
κ∆T

d2
∇2T ∗, (1.12)

divide through by κ∆T/d2 to get

∂T ∗

∂t∗
+ u∗ · ∇T ∗ = ∇2T ∗. (1.13)

The conservation of mass equation remains unchanged,

∇ · u∗ = 0. (1.14)

For subsequent nondimensional equations we drop the star notation.

1.3 Equations of Anelastic Convection

The Boussinesq approximation assumes that density variations are negligible except in the

buoyancy term while a fully compressible model would require a small enough timestep to

resolve sound waves. Between these two models is the anelastic approximation which allows

for a background density contrast while filtering out sound waves. In this formulation the

time dependence of the thermodynamic variables is eliminated, except for entropy (Lantz

and Fan, 1999). This simplifies the equations and reduces the computational workload.

The anelastic approximation holds provided the velocity of the flow is not comparable to

the speed of sound.
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We derive our anelastic formulation following Jones et al. (2011) and Gastine & Wicht

(2012). The anelastic approximation expands thermodynamic properties temperature T ,

density ρ, and pressure p as the sum of a adiabatic background (bar) and a perturbation

(primed).

T = T̄ + T ′, ρ = ρ̄+ ρ′, p = p̄+ p′. (1.15)

Mass is assumed to be concentrated inside the interior such that g ∝ 1
r2

in the molecular

shell. The background state for the temperature and pressure is given by

T̄ (r) =
c0

(1 + η)r
+ 1− c0 and ρ̄ = T̄m, (1.16)

with

c0 =
η

1− η

(
exp

Nρ

m
− 1

)
. (1.17)

With radius ratio is η = ri/r0 and polytropic index m. Following Gastine and Wicht

(2012) we use m = 2. This choice of polytropic index generates a density-temperature

relation that approximates giant planet interior models. In a dimensional formulation

the polytropic index m is related to the ratio of specific heat capacities γ = cp/cv by

γ = (n+ 1)/n . The density stratification is given by

Nρ = ln(ρ̄(ri)/ρ̄(ro)), (1.18)

where Nρ is the number of density scale heights between ri and ro.

The equations are formulated in nondimensional form with a length scale set by the

shell thickness d = ro − ri, a time scale set by the viscous diffusion time d2/ν, and an

entropy scale set by the difference ∆s across the boundaries. Temperature, density, and
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gravity are scaled according to their value at the outer boundary. The energy equation is

formulated so that the entropy s is the thermodynamic variable rather than the temperature

T used in the Boussinesq approximation. In atmospheric convention it is common to use

potential temperature θ as an thermodynamic variable which is related to entropy through

s = cp ln θ.

The equations for conservation of momentum, energy, and mass for the anelastic ap-

proximation are given by:

E

(
∂u

∂t
+ u · ∇u

)
+ 2ẑ× u = −∇p

′

ρ̄
+
RaE

Pr

r2
o

r2
sr̂ +

E

ρ̄
∇ · S, (1.19)

ρ̄T̄

(
∂s

∂t
+ u · ∇s

)
=

1

Pr
(∇ · (ρ̄T̄∇s) +Hρ̄T̄ ) +Diρ̄S2, (1.20)

∇ · (ρ̄u) = 0. (1.21)

Where H is a constant entropy source or sink, and S is the traceless rate-of-strain tensor

given by

Sij = 2ρ̄

(
∂ui
∂xj

+
∂uj
∂xi

+
2

3
δij∇ · u

)
(1.22)

and Di is the dissipation parameter given by

Di =
ηPr(eNρ/m − 1)

Ra
. (1.23)

In addition to Nρ and η, the system is governed by three nondimensional parameters:

the Rayleigh number Ra, the Ekman number E, and the Prandtl number Pr. In the

anelastic formulation the Rayleigh number is :
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Ra =
g0d

3∆s

cpνκ
(1.24)

where cp is the specific heat capacity and g0 is the gravity at the inner boundary. The

Rayleigh number relates the ratio of buoyancy to dissipation and is a measure of how con-

vective the system is. If Ra < Rac, the critical Rayleigh number heat transport is primarily

through conduction, if Ra > Rac heat transport is primarily through convection. For our

models we use constant entropy gradient boundary conditions. Note that in dimensional

form the entropy gradient contributions to the heat flux is given by Qs = −κρ̄T̄∇(s̄+ s).

We define a flux based Rayleigh Number that is scaled based on the inner boundary

entropy gradient rather than the difference in entropy across the shell:

Raf =
g0d

4|βi|
cpνκ

, (1.25)

where βi is the entropy gradient at the inner boundary. In systems with strong rotation

and low viscosity it is useful to consider a modified Rayleigh number Ra∗ that relates

buoyancy to rotation:

Ra∗ =
g0∆s

cpΩd
. (1.26)

This definition is slightly different from the Boussinesq case because the energy equa-

tion is formulated in terms of the entropy instead of the temperature. The flux based

counterpart for the modified Rayleigh number is given by:

Ra∗f =
g0|βi|
cpΩ

. (1.27)

The Ekman number E and the Prandtl number Pr have the same definition as in the
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Boussinesq case. The modified Rayleigh number can be related to the standard Rayleigh

number with the relation

Ra∗ = RaE2Pr−1. (1.28)

This expression also holds for the flux based Rayleigh number.

1.4 Numerical Simulations

The numerical simulations are solved using the anelastic and nonmagnetic mode of the

magnetohydrodynamic code MagIC. MagIC is free software licensed under the GPLv3 and

is available at https://github.com/magic-sph/magic. The code originates in Glatzmaier’s

stellar dynamo code (Glatzmaier, 1984). Johannes Wicht modified it to include the pres-

ence of an inner core (Wicht, 2002) and Gastine implemented the anelastic approximation

(Gastine and Wicht, 2012). The latest version of the code implements the SHTns library

for spherical harmonic transforms (Schaeffer, 2013). MagIC has been benchmarked against

other dynamo codes (Jones et al., 2011; Christensen et al., 2001; Breuer et al., 2010). The

following descriptions of the numerical method employed are based on the MagIC docu-

mentation.

1.4.1 Poloidal and Toroidal Decomposition

Magic is a pseudospectral code that operates in both spectral space and in grid space.

A vector field that has no divergence is called a solenoidal field and can be decomposed

into a toroidal and a poloidal potential. In the anelastic approximation the mass flux is

decomposed into a poloidal potential W and a toroidal potential Z giving:
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ρ̄u = ∇× (∇×Wer) +∇× Zer. (1.29)

This decomposition has the advantage of automatically satisfying the continuity equa-

tion reducing the system from three to two equations.

The horizontal component of the spherical Laplacian ∆H is given by

∆H =
1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂2φ
, (1.30)

and the horizontal component of the divergence operator ∇H is given by

∇H = rsin
∂(sinθ)

∂θ
eθ + rsin

∂

∂φ
eφ. (1.31)

Using these the expression for the mass flux ρ̄u in terms of the poloidal and toroidal

potential becomes

ρ̄u = −∆HerW +∇H
∂

∂r
W +∇H × erZ. (1.32)

The expression for the curl of the mass flux is also useful and is given by:

∇× ρ̄u = −∆HerZ +∇H
∂

∂r
Z +∇H ×∆HerW. (1.33)

1.4.2 Spherical Harmonic Representation

The spherical harmonic functions Y m
l form an orthogonal basis on the surface of a sphere

and are the natural choice for the horizontal expansion in colatitude θ and longitude φ and

are given by:
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Y m
l (θ, φ) = Pml (cos θ)eimφ. (1.34)

Where l and m are the spherical harmonic degree and order respectively and Pml is the

associated Legendre function. There are several conventions for normalization of the spher-

ical harmonic functions. MagIC adopts a complete normalization with the orthogonality

given by

∫ 2π

0

∫ π

0
Y m
l (θ, φ)Y m′

l′ (θ, φ) = δll′δ
mm′ , (1.35)

where δij is the Kronecker delta.

The fully normalized spherical harmonic functions are given by

Y m
l (θ, φ) =

√
1

2π

(2l + 1)(l − |m|)!
2(l + |m|)!

Pml (cos θ)eimφ(−1)m. (1.36)

For example, the spherical harmonic representation of the poloidal potential W (r, θ, φ)

truncated at degree lmax is given by

W (r, θ, φ) =

lmax∑
l=0

l∑
m=−l

Wlm(r)Y m
l (θ, φ). (1.37)

The transformation from grid space into spherical harmonic space is given in two steps

Wlm(r) =
1

π

∫ π

0
Wm(θ, φ)Pml (cos θ) sin θdθ, (1.38)

Wm(r, θ) =
1

2π

∫ 2π

0
W (r, θ, φ)e−imφ. (1.39)

The potential function W (r, θ, φ) is a real function such that the spherical harmonic
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coefficients are symmetric under conjugation Wlm∗ = Wl,−m, where ∗ denotes complex

conjugation. Therefore only coefficients with m ≥ 0 need to be considered. In general, all of

the potential fields calculated are real so that this symmetry applies to them all. The inverse

spherical harmonic transformation from spectral space to grid space (r, l,m)→ (r, θ, φ) is

given by equation (1.38). The forward transformation from grid space to spectral space

(r, θ, φ)→ (r, l,m) is defined in two steps by equation (1.39) and (1.40). In the longitudinal

direction a fast-Fourier transform is employed, requiring a minimum of Nφ = 2lmax + 1

evenly spaced grid points in φ. In the latitudinal direction the integral (1.39) is solved

using Gauss-Legendre quadrature

Wlm(r) =
1

Nθ

Nθ∑
j=1

wjWm(r, θj)P
m
l (cos θj), (1.40)

where θj are the Nθ Gaussian quadrature points with weight wj that define the latitudinal

grid. Aliasing errors can be avoided by taking the maximum degree of expansion lmax+1 =

Nφ/3. The spherical harmonic functions have several recurrence relations that are used to

compute the Coriolis force and derivatives of advection.

1.4.3 Radial Representation

The radially dependent components of the flow are expanded in terms of Chebyshev poly-

nomials C(x). The polynomials of degree n are defined by

Cn(x) = cos[n arccos(x)], −1 ≤ x ≤ 1. (1.41)

The radial expansion of the poloidal component of the mass flux W , truncated to degree

N is:
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Wlm(r) =
N∑
n=0

WlmnCn(r). (1.42)

The forward transform from grid space to spectral space is given by

Wlmn =
2− δn0

π

∫ 1

−1

Wlm(r(x))Cn(x)dx√
1− x2

. (1.43)

The Chebyshev space (−1 ≤ x ≤ 1) is linearly mapped onto the radius range (ri ≤ r ≤

ro) using

x(r) = 2
r − ri
ro − ri

− 1. (1.44)

The radial grid points can also be mapped nonlinearly to provide a greater density

towards the boundaries. The Nr extrema of CNr−1 are take as the radial grid points,

xk = cos

(
π

(k − 1)

Nr − 1

)
, k = 1, 2, . . . , Nr. (1.45)

this values of the Chebyshev polynomials at these points are given by:

Cnk = Cn(xk) = cos

(
π
n(k − 1)

Nr − 1

)
. (1.46)

This choice has the advantage of more dense grid points near the boundaries to better

resolve thermal and viscous boundary layers and it enables a Fast Fourier Transform be-

tween grid space and Chebyshev spectral space. Choosing the number of radial grid points

Nr > N avoids aliasing in the radial direction.

18



1.4.4 Timestepping

The time integration scheme employed is a mixed implicit/explicit algorithm. Implicit

timestepping methods offer more stability and allow for larger timesteps however treating

the nonlinear terms implicitly couples all spherical harmonic modes and results in a very

large matrix inversion. The Coriolis force similarly couples the poloidal and toroidal poten-

tials and some of the spherical harmonic modes. The nonlinear terms and the Coriolis force

are treated explicitly and the other terms are treated implicitly. The general differentiation

in time can be written as

∂

∂t
+ I(x, t) = E(x, t), (1.47)

where the implicit terms are denoted by I and the explicit terms are denoted by E.

The implicit time step discretization is given by

(
x(t+ δt)− x(t)

δt

)
I

= −αI(x, t+ δt)− (1− α)I(x, t), (1.48)

where α is the weight of the new timestep. The explicit time step uses a second order

Adams-Bashforth scheme

(
x(t+ δt)− x(t)

δt

)
E

=
3

2
E(x, t)− 1

2
E(x, t− δt). (1.49)

For the first time step this reduces to a Euler order method which is not as accurate.

Combining both steps gives

x(t+ δt)

δt
+ αI(x, t+ δt) =

x(t)

δt
− (1− α)I(x, t) +

3

2
E(x, t)− 1

2
E(x, t− δt). (1.50)
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1.4.5 Other Numerical Considerations

For high resolution runs spherical symmetry in the spherical harmonic coefficients may be

employed to improve runtime (for example 2-fold or 4-fold). This is done by calculating

only the spherical harmonic order m that are multiples of the symmetry factor. This is

equivalent of solving the equations on a fraction of the sphere (for example a hemisphere

or quartersphere.) This may effect the flow at high latitudes and cause it to be more

axisymmetric. If the flow is dominated by smaller scale longitudinal structure as typical

for anelastic convection this assumption should not have a large effect on the solution

(Gastine et al., 2013). Spherical symmetry is not used in models that are examining effects

at the pole where it would disrupt large scale features (e.g. a polar vortex or polygonal

zonal flow).

For strongly convecting low Ekman number simulations sometimes hyperdiffusion is

required to ensure convergence of the solution. The diffusive terms in equations (1.5) and

(1.6) are operated by an operator of the form

d(l) =

(
1 + α

[
l − 1

lmax − 1

]β)
(1.51)

where d(l) is the hyperdiffusivity of spherical harmonic degree l. The amplitude of the

hyperdiffusivity is given by α, the hyperdiffusivity exponent is β, and lmax is the maxi-

mum degree of spherical harmonic expansion. Hyperdiffusivity acts only on the horizontal

components and may cause anisotropy with the radial components, and artificial viscous

heating. If the amplitude of the hyperdiffusion is small it mainly acts as a low pass filter on

the small scale structures. This can be checked by progressively decreasing the amplitude

of the hyperdiffusivity after a solution has reached a steady state (Heimpel and Aurnou,

2012).
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The convective system is initialized from a conductive state by a random entropy pertur-

bation. For systems that are strongly convecting it is more numerically stable to initialize

the system from a previous run that has reached a steady state at a lower Rayleigh number.

1.4.6 Diagnostics & Output

The overall strength of the convection can be determined by examining the kinetic energy

timeseries. If the system is subcritical and not convecting the initial energy of the pertur-

bation will decay exponentially. The kinetic energy is divided into the poloidal and the

toroidal components of the flow. This is useful because the poloidal component of the flow

measures the strength of convection and the toroidal component of the flow will show the

development of zonal jets. The background state for the entropy, gravity, and density are

useful for understanding the flow near the onset of convection. The full 3d field for the

entropy and velocity of the flow can printed however this is often constrained by storage

space. For examining the flow temporally it is more practical to save only constant sur-

faces of interest over time. For large scale features that are independent of the azimuthal

direction it is often useful to examine the azimuthal average to smooth out smaller scale

features. The velocities in MagIC are typically scaled by the Reynolds number Re which

is the ratio of inertial forces to viscous forces. It is often convenient to scale the velocities

according to the Rossby number Ro which is the ratio of inertial forces to Coriolis forces.

The conversion between the Reynolds number velocity Re and the Rossby number velocity

Ro is given by Ro = ReEk(1− η).
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Figure 1.1: Spherical geometry for anelastic simulations. The inner boundary ri is shown
as a red sphere and the outer boundary ro is shown as blue sphere. The tangent cylinder
is shown in yellow and the axis of rotation is marked with a black line. The radius ratio
here is for illustrative purposes and not typical for simulations of the molecular envelopes
of giant planets.
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Chapter 2

Neutral buoyancy surface

boundary condition

Compared to the Boussinesq approximation, the anelastic approximation allows for mod-

eling of the density stratification in the giant planets. However the constant entropy

boundary conditions with no internal entropy source or sink require a large entropy gra-

dient towards the outer boundary to maintain a constant difference and to balance total

heat flux into and out of the sphere. Entropy gradient boundary conditions can be used

to reduce or remove the buoyancy from the outer boundary. Here the outer boundary is

heated and we use an entropy sink prevent the model from heating over time. This allows

for neutral buoyancy or stable stratification near the outer boundary that grades into a

convective interior (Heimpel et al., 2016). The buoyant stability of Jupiter was observed

by the Galileo probe as it descended into the atmosphere to a depth of 22 bar (Magalhães

et al., 2002). The density stratification of Saturn has not been measured directly by a de-

scending probe. However the stability can be constrained by models of vortices (Del Genio

et al., 2009).
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Near the onset of convection the Rayleigh number is slightly greater than critical. Under

the Boussinesq approximation the fluid flows in linear convection cells attached to the inner

boundary. To maintain a constant temperature difference across a spherical shell a larger

heat flux is required near the inner boundary. This is because the inner boundary has less

surface area than the outer boundary in a spherical shell system.

Under the anelastic approximation the entropy gradient required to maintain a constant

difference in entropy is inversely proportional to the density of the fluid. For a fluid with a

relatively weak density stratification the effects of the spherical geometry dominate and the

onset of convection is maintained on the inner boundary. For a fluid with a strong density

contrast the effect of the density stratification is significant and the onset of convection

begins at the outer boundary.

The strength of convection and the buoyant stability of the flow are controlled by the

entropy gradient. When the entropy gradient is positive the system is convective and the

strength of convection is proportional to it. When the entropy gradient is negative there

is an inversion of the entropy difference and the system is buoyantly stable. A fluid that is

stable can produce internal gravity waves. Buoyant stability helps to maintain storms or

vortices that would otherwise be dispersed by convection. In numerical models the stability

can be controlled by introducing entropy sources and sinks.

In this chapter we present a study of anelastic convection simulations with zero entropy

gradient (neutral buoyancy) at the outer boundaries over a range of density stratifications.

This allows us to examine the development of zonal flow with neutral buoyancy compared

to a previous study with constant entropy boundaries (Gastine and Wicht, 2012). The

near onset of convection is examined to show the large difference in the background con-

ductive state. The convective regimes of the system are detailed and compared to previous

anelastic and Boussinesq models. The development of zonal jets with increasing density
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stratification, and the dynamic buoyant stability of the system over time are also studied.

2.1 Simulation Parameters

The simulations of anelastic convection are dependent on several nondimensional parame-

ters, variables related to the equation of state, and the boundary conditions. The nondi-

mensional parameters are the modified Rayleigh number Ra∗, which measures the strength

of thermal convection relative to rotation, the Prandtl number Pr, which measures the ra-

tio of thermal to viscous diffusion, and the Ekman E, which measures the ratio of viscous

forces to rotational forces. The equation of state is determined by the polytropic index m

which determines the relation between density and temperature, the radius ratio η = ri/ro

which measures the relative geometry of the spherical shell, and the density stratification

Nρ which determines the density contrast across the shell. The thermal boundary condi-

tions allow for constant entropy or constant entropy gradient conditions and the mechanical

boundary conditions can be no-slip or free-slip.

The physical parameters of the giant planets are often on a scale that is not resolvable

with current or foreseeable computational resources. The giant planets are rapidly rotating

and have low viscosity with an estimated Ekman number of E =∼ 10−16 based on the

molecular viscosity (Gastine et al., 2014). An estimate for the Ekman number based

on turbulent viscosity gives E =∼ 10−9 (Jones, 2007). This is much smaller than the

lowest E = 3 × 10−6 used in high resolution studies (Heimpel et al., 2016) and E = 10−4

used in this study. Lower Ekman numbers are increasingly difficult to resolve. This is

because the resolution required to resolve the thickness of the Ekman boundary layer is

proportional to the square root of the Ekman number. The modest Ekman number used

in this study also allows us to explore a range of other parameters. The larger viscosity

relative to the viscosity of a planet requires a larger Ra to force the convection to a state
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of nonlinear saturation. The Prandtl number Pr = 1 is of similar order to estimates for

the giant planets and matches previous research (Gastine and Wicht, 2012; Gastine et al.,

2014). The polytropic index m = 2 gives a temperature structure that is comparable to

planets. The radius ratio for a planet is determined by the depth of the molecular layer

below which the flow is slowed down by magnetic breaking from the Lorentz force. This

depth has been estimated to be 0.96RJ and 0.86RS for Jupiter and Saturn respectively by

matching the Ohmic dissipation to the planets luminosity (Liu et al., 2008). The radius

ratio η = 0.60 is used in this study to avoid numerical difficulties associated with thin

shells and to match previous anelastic studies (Gastine and Wicht, 2012), which we use

for a basis of comparison. (We note that in a spherical shell, because the length scale

is nondimensionalized according to the shell thickness d = ro − ri = 1, a shell with a

larger radius ratio ri/ro has a larger volume and therefore requires higher resolution). The

expected density stratification from a radius of r = 0.95RJ to the 1 bar level is Nρ = 7.1 for

Jupiter (Nettelmann et al., 2008), similar to the largest Nρ = 7 used in this study, however

over a different radius ratio. The density contrast from ri = 0.60RJ to the 1 bar pressure

level would require Nρ = 9.48 which is higher than numerically feasible. However the

density changes rapidly towards the outer boundary and our largest density stratification

covers more than 99% of the molecular shell.

The mechanical boundary conditions employed are free-slip for both the inner and

outer boundaries. This is realistic for the outer boundary of a planet which would be a free

surface. However for the inner boundary Lorentz forces would slow the flow making no slip

boundary conditions more physical. We use a free-slip inner boundary because a no-slip

inner boundary retards the generation of zonal jets (Aurnou and Olson, 2001; Aurnou and

Heimpel, 2004). Constant entropy gradient boundary conditions are used over constant

entropy difference because they allow for the conductive background to grade into neutral
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buoyancy. To improve the computational running time some of the simulations with a large

Rayleigh number employ two-fold or four-fold symmetry in the azimuthal direction. This

may affect the solution at higher latitudes and cause the flow to be more axisymmetric.

2.2 Onset of convection

The Rayleigh number Ra determines if the flow of heat is dominated by convection (Ra >

Rac) or if it is dominated by conduction (Ra < Rac). Below the critical Rayleigh number

fluid motion is damped for all modes. The critical Rayleigh number Rac is the Ra above

which the first mode becomes unstable and grows. This creates linear convection cells with

the same wavenumber as the mode. For anelastic simulations the wavenumber and location

of the first mode changes dramatically with increasing density stratification. It is useful to

consider a depth dependent Rayleigh number for these cases:

R(r) =
g(r)β(r)

goβi
Ra∗. (2.1)

where β(r) = dsc/dr is the background conductive entropy gradient with sc obtained

from the conductive solution of the energy equation (1.20):

∇ · (ρ̄T̄∇sc) = −Hρ̄T̄ . (2.2)

For constant entropy boundary conditions we use H = 0. For entropy gradient bound-

ary conditions H is set to balance the entropy flux such that the model does not heat up

over time.

The radial dependence of R is shown in figure 2.1 over a range of density stratifications

for the two types of boundary conditions. The top shows the background state for constant

entropy boundary conditions used in earlier anelastic studies (Gastine and Wicht, 2012).
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In the near Boussisnesq state the onset of convection starts at the inner boundary where R

is the largest. Increasing to moderate density stratification the onset of convection moves

towards the outer boundary where the fluid is the least dense. There is an exponential

increase in R as the density stratification is increased because dsc/dr is inversely propor-

tional to ρ̄T̄ andρ̄ decreases exponentially with radius Gastine and Wicht (2012). This

makes for the convection to be the strongest where the density is the lowest which is very

difficult to resolve. The dashed line shows the background for Nρ = 7 that was not explored

in the previous studies for reasons of resolution. The bottom shows the background state

for constant entropy gradient boundary conditions with heat sinks to balance the entropy

gradient. The entropy gradient is scaled according to the lower boundary and is set to be

neutral on the surface. For all of the cases of increasing density stratification the maxi-

mum of R is maintained on the inner boundary and consequentially convection is forced

the strongest there. The outer boundary is forced weakly where the density stratification

is the strongest which allows for a larger density contrast to be resolved.

The critical Rayleigh number Rac and the wavenumber of convection cells near onset

are shown in table 2.1 for both boundary conditions over a range of density stratifications.

The critical Rayleigh number and near onset wavenumber were found by trial and error.

Analytic results are available for a full sphere in the Boussinesq case (Busse, 1970), but none

are available for the compressible spherical shell case . For the constant entropy boundary

conditions there is a increase in the wavenumber of the convection cells with increasing

density stratification. This corresponds to migration of the onset of convection from the

inner to the outer boundary and from larger scale to smaller scale flow structures. For

the constant entropy gradient boundary conditions with heat sinks there is an increase in

near onset wavenumber with density stratification. However, it does not increase as rapidly

when the convection is confined to the inner boundary. Increasing the density stratification
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Nρ Racrit mcrit

Constant Entropy Gradient Boundary

10−2 3.266× 105 20
3 8.692× 105 42
5 1.098× 106 46
7 1.195× 106 47

Constant Entropy Boundary

10−2 1.739× 105 21
1 5.175× 105 34
2 1.141× 106 53
3 1.529× 106 72
4 1.852× 106 83
5 2.341× 106 93

Table 2.1: Critical Rayleigh number and near onset wavenumber for increasing density
stratification. The constant entropy gradient boundary conditions use heat sinks to bal-
ance the flux and prevent the system from heating up over time. Constant entropy values
are from Gastine and Wicht (2012). The entropy gradient boundary conditions maintain
a similar number of convection cells for strongly stratified systems. The number of convec-
tion cells increases rapidly with density stratification for the constant entropy boundary
conditions.

further does not change the critical Rayleigh number or the wavenumber drastically and

they may become independent of further density stratification.

The radial component of the velocity in an equatorial cross section is shown in figure 2.2

for several different cases. As the density stratification is increased from the Boussinesq

case the convection cells become narrower and the wavenumber increases. The radial

velocity increases with the density stratification however the radial extent of the convection

cells remains relatively constant. For the constant entropy boundary conditions case the

wavenumber and velocity scale increase dramatically with density stratification. As the

density stratification is increased the convection cells migrate from the inner boundary to

the outer boundary.
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Nρ Ra Ra/Racrit Resolution Symmetry

10−2 3.430× 105 1.05 49x128 1
10−2 3.590× 105 1.10 49x128 1
10−2 4.083× 105 1.25 49x128 1
10−2 4.899× 105 1.50 49x128 1
10−2 5.716× 105 1.75 49x128 1
10−2 6.532× 105 2.00 49x128 1
10−2 1.306× 106 4.00 49x128 1
10−2 2.613× 106 8.00 49x256 1
10−2 5.226× 106 16.00 97x256 1
10−2 1.045× 107 32.00 97x256 1

3 9.130× 105 1.05 49x192 1
3 9.560× 105 1.10 49x192 1
3 1.087× 106 1.25 97x192 1
3 1.304× 106 1.50 97x192 1
3 1.521× 106 1.75 97x192 1
3 1.738× 106 2.00 97x192 1
3 3.477× 106 4.00 97x192 1
3 6.954× 106 8.00 97x256 1
3 1.391× 107 16.00 97x256 1
3 2.781× 107 32.00 97x256 1

5 1.150× 106 1.05 49x192 1
5 1.210× 106 1.10 49x192 1
5 1.373× 106 1.25 97x256 1
5 1.674× 106 1.50 97x256 1
5 1.922× 106 1.75 97x256 1
5 2.196× 106 2.00 97x256 1
5 4.392× 106 4.00 97x256 1
5 6.588× 106 6.00 145x384 2
5 8.784× 106 8.00 145x384 2
5 1.757× 107 16.00 193x384 4
5 3.514× 107 32.00 193x384 4

7 1.255× 106 1.05 145x256 1
7 1.315× 106 1.10 145x256 1
7 1.494× 106 1.25 145x256 2
7 1.793× 106 1.50 145x256 2
7 2.091× 106 1.75 145x256 2
7 3.000× 106 2.51 145x256 2
7 6.000× 106 5.02 193x256 2
7 1.200× 107 10.04 385x384 2
7 1.800× 107 15.06 385x384 2
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Nρ Ra Ra/Racrit Resolution Symmetry

7 2.400× 107 20.08 385x512 4
7 3.000× 107 25.10 385x512 4

Constant Entropy Boundary
5 2.580× 106 1.10 97x256 1
5 4.900× 106 2.09 97x256 1
5 9.800× 106 4.19 97x256 1
5 1.470× 107 6.00 145x512 4
5 2.000× 107 8.54 145x512 4
5 4.000× 107 17.09 145x512 4
5 8.000× 107 34.17 145x512 4

Table 2.2: List of numerical simulations examining the ef-
fects of density stratification as the strength of convection is
increased. Resolution is given as Nr x Nθ. Azimuthal grid
points are given by Nφ = 2Nθ/Symmetry and the maximum
degree of spherical harmonic expansion is lmax = 2Nθ/3.

2.3 Convective Regimes

Increasing the Rayleigh number from near critical causes the flow to move from a lin-

ear regime to a more turbulent and time dependent flow. Convective regimes have been

well documented for convection under the Boussinesq approximation (Christensen, 2001)

(Grote and Busse, 2001). For weakly supercritical Rayleigh number the flow is in station-

ary convection cells that drift azimuthally with the zonal flow being weaker or of similar

magnitude to the poloidal flow. Increasing the Rayleigh number further up to 10 - 20 times

critical causes the kinetic energy to be time dependent and dominated by the zonal flow

component. The flow is characterized by quasiperiodic bursts in the poloidal component

of the flow that feeds the zonal flow, which decays exponentially between cycles. In the

third regime the Rayleigh number is more than 20 times critical and the zonal flow is more

dominant. The energy becomes more chaotic in time, however there are still some periodic
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bursts in energy.

The regimes of anelastic convection over a range of density stratifications with increasing

Rayleigh number have also been documented (Gastine and Wicht, 2012). Near the onset

of convection the energy is constant in time and the flow is in linear convection cells.

Increasing the Rayleigh number slightly still close to convection causes the flow to oscillate

regularly in amplitude while maintaining the convective cells. The next regime is chaotic

flow and the energy is dominated by the zonal flow. The following regime is oscillatory

in both poloidal and toroidal energy dominated by the toroidal flow. The final regime

is nonlinear with no sizeable oscillations. In general increasing the density stratification

caused the convective regimes to tighten or even disappear.

Figures 2.3 - 2.6 show the time evolution of the kinetic energy for the poloidal and

toroidal components of the flow for increasing density stratification and Rayleigh number.

Near the onset of convection the kinetic energy becomes independent of time and the flow

is in linear convection cells attached to the inner boundary that are advected azimuthally.

For the near Boussinesq case the toroidal component of the kinetic energy is larger than the

poloidal component near the onset of convection. However, increasing the density strati-

fication causes the poloidal component to dominate initially. As the Rayleigh number is

further increased the toroidal component dominates in all cases and the poloidal component

begins to experience quasi periodic behaviour. In the third regime the the energy becomes

chaotic for both components. In the final regime there are periodic bursts of convection

followed by relaxation in both components of the energy.

The convective regimes for all runs are shown in figure 2.7. The relaxation oscillation

regime was not observed for the near Boussinesq case however it may emerge at higher

Rayleigh numbers. In general the convective regimes tightened as the density stratification

was increased similar to observed for previous research (Gastine and Wicht, 2012).
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The convective regimes observed here were similar to those observed in previous anelas-

tic models however the second chaotic regime was not observed for the strongly convecting

systems. It is suggested that in the previously observed second chaotic regime the flow scale

becomes increasingly small-scale disrupting the convective columns in the axis of rotation

(Gastine and Wicht, 2012). The buoyantly neutral outer boundary reduces the vigor of

convection near the outer boundary, which may explain the missing regime.

2.4 Zonal Flow Development

In deep models of the zonal flow on Jupiter and Saturn the flow is driven by convection in

a spherical shell. In a strongly rotating Boussinesq convective system with low viscosity

the Taylor-Proudman theorem approximately holds. In a system with density stratification

the Taylor-Proudman theorem holds for the azimuthal component of the velocity uφ. How-

ever the other components of the flow and the entropy will not be z-independent (Jones

and Kuzanyan, 2009). The convection cells are organized parallel to the axis of rotation.

However near the boundaries the geometry violates Taylor-Proudman theorem, and a sec-

ondary flow develops. The convection cells are tilted by the boundary curvature causing

a net transport of momentum that feeds the zonal flow. The zonal flow further tilts the

convection cells creating a positive feedback until the internal viscous stresses balance the

Reynolds stresses (Vasavada and Showman, 2005). In a strongly rotating system the effects

of the boundary geometry are quantified by the β-parameter. The scale at which the zonal

flow saturates and the energy cascade ceases is the Rhines length, which is inversely pro-

portional to β (Rhines, 1975). In shallow models the zonal flow is confined to a spherical

surface and βs is proportional to the gradient of the coriolis parameter f = 2Ωsinλ with

latitude λ. For spherical shell models there is a topographical β-parameter βh = 2Ω
h
dh
ds ,

with cylindrical radius s, that is dependent on the gradient of the fluid column height
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(Heimpel and Aurnou, 2007).

The development of zonal flow is shown in figures 2.8 and 2.9 for a range of density

stratifications and Rayleigh numbers for constant entropy gradient boundary conditions

with a neutral outer boundary. The zonal flow initially develops as a prograde equatorial

jet inside the tangent cylinder. The first retrograde jet develops on the border of the tangent

cylinder and is typically weaker then the equatorial jet except in the near Boussinesq case.

At low Rayleigh numbers the flow is fairly axisymmetric as predicted by Taylor-Proudman

theory. As the Rayleigh number is increased the equatorial jet begins to saturate and flow

begins to develop inside of the tangent cylinder. Increasing the density stratification tends

to increase the velocity scale of the flow and causes the first retrograde jet to disconnect

from the tangent cylinder.

The zonal flow development for increasing Rayleigh number at a moderate density

contrast is shown for constant entropy boundaries in figure 2.10. In contrast to cases with

the entropy gradient boundary conditions, the prograde equatorial jet initially develops in a

thin region at the outer boundary. As the strength of convection is increased the equatorial

jet becomes deeper and the first retrograde jet begins to develop. Higher latitudinal jets

start to develop with increasing Ra. However, turbulent structure also develops near the

outer boundary.

The surface zonal flow for a strongly stratified convecting system is shown in figure

2.11 for both boundary conditions. For the constant entropy boundary conditions there is

a strong prograde jet in the equatorial region. At polar latitudes the flow is smaller scale

and there are no well defined jets. The equatorial jet for the entropy gradient boundary

conditions is much more smooth. At polar latitudes there is a well developed retrograde

jet. The flow is larger scale overall because the depth dependent Rayleigh number grades

to buoyantly neutral for this case.
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The radial vorticity at the north pole is shown for the two boundary conditions in figure

2.12. For the case with the constant entropy boundary conditions there is strong vorticity

at the surface. However it is mostly small scale structure and there are not large scale

vortices. For the constant entropy gradient boundary conditions the vorticity scale is near

planetary vorticity ωp = 2Ω. There is strong anticyclonic vorticity that is bordered by thin

cyclonic filaments. Towards the equator the vortices become more elongated.

2.5 Dynamic Stability

The depth dependent Rayleigh number, given by equation (2.1), measures the strength

of convection based on the radial derivative of the conductive entropy. We can consider

the time and space dependence of convective (thermal) stability by considering a variable

stability parameter Υ that is proportional to the radial derivative of the full entropy:

Υ(r, θ, φ, t) =
g(r)

cpΩ2

∂s(r, θ, φ, t)

∂r
. (2.3)

If the radial derivative of the entropy ∂s/∂r is negative the system is convective and Υ

expresses the strength of the convection. If ∂s/∂r is positive the system is thermally stably

stratified. Although the system has neutral thermal stability at the outer boundary in the

conductive background the relaxation oscillations tend to stabilize on average when the

poloidal kinetic energy is at a maximum. Figure 2.14 shows the radial thermal stability

at the minimum and maximum of the poloidal energy component. The time-averaged

thermal stability over several relaxation oscillations is also shown. The outer boundary is

heated by thermal convection which causes a local inversion of the entropy gradient that

creates thermal stability. Constant entropy difference boundary conditions create a thermal

boundary layer near the surface that prevents this kind of inverted entropy gradient. The
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azimuthally averaged stability is shown in figure 2.13 for a strongly convecting stratified

run. Over a time average there is neutral to weak thermal stability mostly near the poles.

The strongest thermal stability occurs near the outer boundary inside the tangent cylinder

when the system is convecting strongly.
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Figure 2.1: Comparison for g|dsc/dr| for density stratifications Nρ = [10−2, 3, 5, 7] for
simulations with constant entropy boundary conditions with no sinks (top) and with con-
stant entropy gradient boundary condition with sinks (bottom). The dashed line shows
the background state for Nρ = 7 that was not explored in previous studies and peaks at
g|dsc/dr| = 37 at the outer boundary. For the strongly stratified flow there is a sharp
increase in the entropy gradient required to maintain the constant difference. The entropy
gradient boundary conditions use a volumetric entropy sink so that the model does not
heat up over time.
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Figure 2.2: Equatorial cross section of radial velocity vr near the onset of convection
Ra ∼ 1.10Rac. top left to middle right: Nρ = 10−2, 3, 5, 7 for entropy gradient boundaries.
Bottom: Nρ = 5 for constant entropy boundaries. Velocities are scaled in terms of the
Reynolds Number. For the constant entropy gradient boundary conditions convection
cells remain attached to the inner boundary and their wavenumber increases with density
stratification (m ∝ Nρ). For strongly stratified constant entropy boundary conditions the
onset of convection moves to the outer boundary.
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Figure 2.3: Kinetic energy time series for runs with density stratification Nρ = 10−2. The
black represents the toroidal component of the flow and the blue represents the poloidal
component of the flow.
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Figure 2.4: Kinetic energy time series for runs with density stratification Nρ = 3. The
black represents the toroidal component of the flow and the blue represents the poloidal
component of the flow.
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Figure 2.5: Kinetic energy time series for runs with density stratification Nρ = 5. The
black represents the toroidal component of the flow and the blue represents the poloidal
component of the flow.
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Figure 2.6: Kinetic energy time series for runs with density stratification Nρ = 7. The
black represents the toroidal component of the flow and the blue represents the poloidal
component of the flow.
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Figure 2.7: Regime diagram for the modes of convection for numerical simulations over a
range of density stratification and increasing Rayleigh number. As the density stratification
is increased the spacing between modes becomes more narrow. The second chaotic regime
observed in previous anelastic studies (Gastine and Wicht, 2012) was not found here.
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Figure 2.8: Azimuthally averaged zonal velocity for models with increasing Rayleigh Num-
ber (left to right) and increasing density stratification (10−2 top, 3 bottom) scaled according
to the Reynolds number.
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Figure 2.9: Azimuthally averaged zonal velocity for models with increasing Rayleigh Num-
ber (left to right) and increasing density stratification (5 top, 3 bottom) scaled according
to the Reynolds number.

Figure 2.10: Azimuthally averaged zonal velocity for strongly stratified constant entropy
boundary conditions. The flow near the outer boundary is increasingly small scale because
the large entropy flux required at the outer boundary to maintain a constant entropy
difference. Velocities are scaled according to the Reynolds number.
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Figure 2.11: Comparison of the azimuthal velocity for a strongly convecting system. Nρ =
5 with constant entropy boundary conditions (left) and Nρ = 7 with constant entropy
gradient boundary conditions (right). Velocities are scaled in terms of the Rossby number.
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Figure 2.12: Comparison of the radial vorticity (north polar view) for a strongly convecting
system. Nρ = 5 with constant entropy boundary conditions (left) and Nρ = 7 with constant
entropy gradient boundary conditions (right).

Figure 2.13: Azimuthally averaged stability Υ for strongly convecting run with Nρ = 5 and
Ra = 32Rac. The stability peaks at a maximum in poloidal energy (left) and is weakest
at a minimum (middle). Time averaged thermal stability is shown to the right.
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Figure 2.14: Radial stability Υ for strongly convecting run with Nρ = 5 and Ra = 32Rac.
Blue shows the stability at a peak of a poloidal kinetic energy. Red shows the stability
when the poloidal kinetic energy is at a minimum. Yellow shows the time averaged thermal
stability over several oscillations.
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Chapter 3

Nonhomogeneous Boundary

Conditions

The effects of a thermal plume from the deep interior on a thin molecular shell can be mod-

elled as an entropy flux perturbation on the lower boundary. There are many parameters

that will affect the solution, such as the amplitude of the perturbation, how narrow or wide

it is, the latitudinal offset of the source, and the strength of the convection of the back-

ground fluid. The system is strongly rotating such that the convection promoted by the

source is constrained along the axis of rotation. The constant entropy gradient boundary

conditions allow for the formation of an entropy hotspot axially above the source. This can

create an inversion of the temperature gradient axially which leads to dynamic convective

stability. This localized region of stability allows for generation of vortices.

3.1 Numerical Modelling

The equations of anelastic convection are solved numerically by the pseudospectral code

MagIC which allows for nonhomogeneous thermal boundary conditions. The boundary
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conditions must be provided in spectral space and therefore a spherical harmonic transfor-

mation must be applied to the function chosen for the boundary. To model a convective

plume from the deep interior we choose a Gaussian shaped perturbation superimposed on

a constant gradient background:

f(θ, φ) = A exp

(
−(θ − θ0)2

2σ2
− (φ− φ0)2

2σ2

)
+B. (3.1)

Where A is the amplitude of the plume, B is the background gradient, θ0 is the latitude

offset, φ0 is the longitudinal offset, and σ is a measure of the standard deviation of the

gaussian function in terms of colatitude. The conversion between σ and the offset in degrees

is shown in table 3.1. This model requires that the plume is sufficiently far away from the

pole or narrow such that the Gaussian function decays away from the pole. For a source

that is placed directly on the pole there is no offset in θ and it becomes a 1d Gaussian

function that is independent of φ:

f(θ, φ) = A exp

(
− θ2

2σ2

)
. (3.2)

The Gaussian shaped perturbations are useful because there are analytic integrals that

can relate the width and amplitude of the anomaly to the flux of entropy emitted

V =

∫ 2π

0

∫ π

0

(
A exp

(
−(θ − θ0)2

2σ2
− (φ− φ0)2

2σ2

)
+B

)
dθdφ = 2πAσ2 + 4π2B. (3.3)

For the polar source because there is no offset in θ it is half of a Gaussian function that

peaks in amplitude at θ = 0. This has an analytic integral given by:
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Figure 3.1: Sample of two different anomalies in spherical coordinate space for the cases
of an anomaly at the north pole and an anomaly offset by 30 degrees. For both of these
cases σ = 0.10. The polar source is modelled using a 1d Gaussian function and the offset
source is modelled using a 2d Gaussian function.

V =

∫ 2π

0

∫ π

0

(
A exp

(
− θ2

2σ2

)
+B

)
dθdφ = π

√
2πAσ + 4π2B. (3.4)

In both of these equations the left term in the right hand side represents the entropy

flux attributed to the source and the right terms represents the entropy flux associated with

the background. In order to apply these functions as the boundary condition we must first

find the spherical harmonic coefficients for them. The spherical harmonic functions and the

forward transform into spherical harmonic coefficients are detailed in section (1.4.2). The

grid space representation for two potential sources is shown in figures 3.1 for a polar source

and a source offset by 30 degrees. This shows the difference in the representation as a 1d
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Width (σ) Width (◦)

0.071 15
0.100 22
0.150 32

Table 3.1: Relation between the Gaussian function standard deviation and the planetary
colatitude after which 99% of the source has decayed.

Gaussian function for a source at the pole compared to a 2d Gaussian function for a source

away from the pole. The amplitude of the spherical harmonic coefficients in spectral space

is shown in figure 3.2 for the two cases up to degree 50. For both cases the amplitude of

the coefficients tend to zero before reaching the maximum degree. This means that enough

coefficients were used to fully resolve the perturbation. The polar source requires far less

coefficients than the offset source because the symmetry requires only zonal harmonics

of the form Y 0
l . In general a narrow source with a high amplitude will require a higher

maximum degree of expansion.

Introducing an entropy flux source on the lower boundary will alter the Rayleigh number

locally near the source. We define a modified Rayleigh number for the source Ra∗s based on

the amplitude of the source scaled by the modified Rayleigh number Ra∗. The background

gradient on the inner boundary is set to -1 so that the flux based Rayleigh number is

identical to the standard Rayleigh number. This gives Ra∗s as

Ra∗s = ARa∗ = A
g0

cpΩ2
. (3.5)

In general the amplitude of the source will be strongly convective relative to the back-

ground Rayleigh number.

While the spherical harmonic functions are natural functions for modeling physical

equations on a sphere the inhomogeneous coverage in the polar region can cause problems
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Figure 3.2: Spherical harmonic coefficients of a polar source (top) and a offset source (bot-
tom) up to a degree 50. The maximum degree should be chosen such that the coefficients
tend to zero to ensure that the source is modelled completely.

when modelling features at the pole. Towards the pole the spherical mesh becomes much

more dense azimuthally while the latitudinal spacing remains constant causing the cells

become highly elongated quadrilaterals. For a full sphere Nφ = 2Nθ so that the resolution

is isotropic in the equatorial region. Other models for geodynamo simulations have solved

the problem of nonhomogeneous grid spacing by employing a yin-yang grid that reuses the

low latitude band to cover the polar region (Kageyama and Yoshida, 2005). This method

resolves the problems in the polar region, however it is not suitable for spectral methods

and requires a finite difference method.
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Case Offset Amplitude Ra/Rac Resolution

3.2.1 0 25 0.50 97x256
3.2.2 0 25 0.80 97x256
3.2.3 0 25 2.00 145x256
3.2.4 0 50 0.50 97x256
3.2.5 0 50 0.80 97x256
3.2.6 0 50 2.00 145x256
3.2.7 45 25 0.50 97x256
3.2.8 45 25 0.80 97x256
3.2.9 45 25 2.00 145x256
3.2.10 45 50 0.50 97x256
3.2.11 45 50 0.80 97x256
3.2.12 45 50 2.00 145x256
3.2.13 90 25 0.50 97x256
3.2.14 90 25 0.80 97x256
3.2.15 90 25 2.00 145x256
3.2.16 90 50 0.50 97x256
3.2.17 90 50 0.80 97x256
3.2.18 90 50 2.00 145x256

Table 3.2: List of numerical simulations exploring non-homogeneous boundary condition
offset-amplitude-background relation. Resolution is given as Nr x Nθ. Azimuthal grid
points are given by Nφ = 2Nθ and the maximum degree of spherical harmonic expansion
is lmax = 2Nθ/3.
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3.2 Effects of source offset and background Rayleigh number

The effects of an entropy flux source at the lower boundary are dependent on the latitudinal

offset of the source, the amplitude of the source, and on the background Rayleigh number.

The effects of a source in isolation can be considered by setting the background Rayleigh

number Ra to be subcritical such that any convective motion comes from the source. The

locations of the source include a polar source with an offset of φ0 = 0, a mid latitude source

with an offset of φ0 = 45, and an equatorial source with an offset of φ0 = 90. For these

experiments the radius ratio is taken to be η = 0.60 and the Ekman number E = 10−4

to match the previous chapter and the density stratification is taken to be Nρ = 5 for a

moderate contrast that is easily resolvable.

Figure 3.3 shows the kinetic energy timeseries for the toroidal and the poloidal compo-

nents of the flow for runs with an equatorial source. The toroidal component dominates

the energy in all cases and it falls into the nonlinear convective regime. Systems where the

background Rayleigh number was less than the critical Rayleigh number were able to drive

a weak global zonal flow with the forcing of the source. When the Ra∗ > Ra∗c the flow of

the source and the jets developed are stronger. In general the kinetic energy profile of the

flow was similar for the three different locations and is probably independent of the offset.

The stability of the flow above the anomaly is represented by the entropy gradient, as

show in figure 3.4. The anomalies are strongly convective on the inner boundary. However

there is a region of stability near the outer boundary to the north of the source in the ẑ

direction, and in the case of the equatorial anomaly to the south as well. The areas of

dynamic stability come from an inversion on the entropy gradient associated with convec-

tion caused by the source. The surface vorticity associated with the different location of

sources is shown in figure 3.5. At the outer boundary there is a hotspot associated with the

convective plume. In general the source produced anticyclonic vortices shielded by a cy-
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clonic filament produced at the surface. As the storms are advected away from the hotspot

they dissipate viscously, until they vanish. New vortices are constantly generated at the

surface above the plume. The flow is dominated by rotation, and the Taylor-Proudman

theorem approximately holds even for anomalies that are locally much higher than the

critical Rayleigh number (Ra∗s >> Ra∗c). Thermal convection caused by the source is

aligned with the axis of rotation even with an equatorial source source where the buoyancy

is perpendicular to the axis of rotation.

3.3 Effects of source width and amplitude for a polar source

The amplitude and width of the entropy flux perturbations on the lower boundary have a

significant effect on the characteristic of the surface flow. The relative width of the spherical

shell is also important in defining the surface flow. Here we consider a thinner spherical

shell with a radius ratio η = 0.80 that is closer to planetary, which should emphasize the

effects of the source. The density stratification remains at Nρ = 5 and the background

Rayleigh number is chosen to be nonconvective with Ra/Rac = 0.40. All of the sources in

this section are polar.

The overall strength of the source can be quantified by considering the entropy flux

associated with the source. The entropy flux is the integral of the source boundary and

is given by equation (3.4). The time-averaged azimuthal velocity, time-averaged entropy,

time-averaged vorticity, and a vorticity snapshot are shown in figures 3.6 - 3.11 over a

range of increasing source width and amplitude. In general a source can produce 2-3 high

latitudinal jets. In most cases there is a prograde jet at the pole flanked by a retrograde

jet at lower latitude. In cases with a wide anomaly and a low source amplitude there are

typically three jets. A retrograde jet at the pole, a prograde jet at a slightly lower latitude,

and another retrograde jet at low latitude. There is an entropy hotspot at outer boundary
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of the pole that is proportional to the width and amplitude of the perturbation on the lower

boundary. The time-averaged vorticity shows cases where there is a cyclonic or anticyclonic

vortex at the pole. The most narrow cases (3.3.1-3.3.6) produced a cyclonic vortex for all

amplitudes examined and the vortex was generally more smooth than in wider cases. For

the cases with a wider source the polar vorticity was on average anticyclonic for cases

with low to mid amplitude (3.3.7-3.3.10,3.3.12). In the high amplitude case A = 200 there

was a cyclonic polar storm for the range of widths. For the wider cases, (3.3.11,3.3.15),

the cyclonic storm was wider, weaker, and had more small scale features compared to the

narrow source. The vorticity snapshots show transient storms that are constantly generated

by the source. These storms are typically have an anticyclonic core that is shielded with

a cyclonic filament. Generating storms requires a stronger amplitude for the sources that

are wider.

On Saturn a cyclonic vortex has been observed by the Cassini spacecraft at both the

north and the south poles. The south polar vortex was initially observed as a polar hotspot

from an Earth based telescope (Orton and Yanamandra-Fisher, 2005). High-resolution

observations from Cassini showed that the storm has a nearly cloud free eye that is bordered

by two cloud walls with a height of 20-70km (Dyudina et al., 2009). The northern polar

vortex was observed to be similar to the southern vortex with a ring of clouds. However

the northern cyclone shows a discrete cloud feature rather than a clear eye (Baines et al.,

2009).

The narrow source produces a consistent cyclonic vortex similar to that which is ob-

served for Saturn. Our results are consistent with a previous study, which suggested that

the planetary vorticity gradient interacts with storms causing the cyclonic anomalies to mi-

grate poleward and the anticyclonic anomalies to migrate towards the equator, until their

magnitude equals the magnitude of the background vorticity (O’Neill et al., 2015). This
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is apparently the case for the polar vortex shown in figure (3.7). Vorticity at the surface

is being constantly generated by the anomaly and is distributed with cyclonic vorticity at

the pole and anticyclonic vorticity at lower latitudes. Figure (3.12) shows how shielded

anticyclonic vortices tend to migrate from near polar to a lower latitude. There are no

constant anticyclones in the time averaged vorticity because there is a large band where

they exist briefly. The storms tend to saturate with a vorticity that is near planetary. The

wider sources produced anticyclonic vortices at lower latitudes when forced with a large

amplitude. The maximum extent of the storms is comparable to the extent of the entropy

hotspot produced. This would be within the region of stability created by the inversion of

the temperature gradient caused by the hotspot. The anticyclones may be produced when

convective flow from the interior diverges at the surface.
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Case Amplitude σ Flux Resolution

3.3.1 25 0.071 13.98 145x384
3.3.2 50 0.071 27.96 145x384
3.3.3 75 0.071 41.93 145x384
3.3.4 100 0.071 55.91 145x384
3.3.5 150 0.071 83.87 145x384
3.3.6 200 0.071 111.82 145x576

3.3.7 20 0.10 15.75 97x256
3.3.8 50 0.10 39.37 97x256
3.3.9 100 0.10 78.75 97x256
3.3.10 150 0.10 118.12 145x256
3.3.11 200 0.10 157.50 145x384

3.3.12 50 0.15 111.82 145x256
3.3.13 100 0.15 59.06 145x256
3.3.14 150 0.15 117.18 145x384
3.3.15 200 0.15 236.24 145x384

Table 3.3: List of numerical simulations exploring non-homogeneous boundary condition
amplitude-width relation. The entropy flux is the integral over the boundary and is de-
pendent on the amplitude and width and can be used to compare narrow large amplitude
sources to wide low amplitude sources. Resolution is given as Nr x Nθ. Azimuthal grid
points are given by Nφ = 2Nθ and the maximum degree of spherical harmonic expansion
is lmax = 3Nθ/2.
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Figure 3.3: Kinetic energy timeseries for an equatorial source (offset φ0 = 90◦). The energy
is in the chaotic regime observed in the previous chapter. The energy timeseries was similar
for the polar source and the φ0 = 45 source.
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Figure 3.4: Entropy gradient for three sources of differing offset. Polar source, case 3.2.6
(top), equatorial source, case 3.2.18 (left), and 45◦ offset source, case 3.2.12 (right). The
entropy gradient boundary condition allows for the surface to heat up causing a entropy
gradient inversion that results in dynamic buoyant stability.
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Figure 3.5: Surface radial vorticity for three sources of differing offset scaled to the plane-
tary vorticity. Polar source, case 3.2.6 (top left), 45◦ offset source, case 3.2.12 (right), and
equatorial source, case 3.2.18 (bottom). In the northern hemisphere anticyclonic vortices
are produced with a cyclonic filament.
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Figure 3.6: Time-averaged azimuthal velocity (top left), time-averaged entropy (top right),
time-averaged radial vorticity (bottom left), and radial vorticity snapshot (bottom right)
for case 3.3.2 with σ = 0.071, A = 50, V = 27.96.
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Figure 3.7: Time-averaged azimuthal velocity (top left), time-averaged entropy (top right),
time-averaged radial vorticity (bottom left), and radial vorticity snapshot (bottom right)
for case 3.3.6 with σ = 0.071, A = 200, V = 111.82.
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Figure 3.8: Time-averaged azimuthal velocity (top left), time-averaged entropy (top right),
time-averaged radial vorticity (bottom left), and radial vorticity snapshot (bottom right)
for case 3.3.10 with σ = 0.10, A = 150, V = 118.12.
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Figure 3.9: Time-averaged azimuthal velocity (top left), time-averaged entropy (top right),
time-averaged radial vorticity (bottom left), and radial vorticity snapshot (bottom right)
for case 3.3.11 with σ = 0.10, A = 200, V = 157.50.
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Figure 3.10: Time-averaged azimuthal velocity (top left), time-averaged entropy (top
right), time-averaged radial vorticity (bottom left), and radial vorticity snapshot (bottom
right) for case 3.3.12 with σ = 0.15, A = 50, V = 111.82.
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Figure 3.11: Time-averaged azimuthal velocity (top left), time-averaged entropy (top
right), time-averaged radial vorticity (bottom left), and radial vorticity snapshot (bottom
right) for case 3.3.15 with σ = 0.15, A = 200, V = 236.24.
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Figure 3.12: Time evolution of radial vorticity for case 3.3.10. Vorticity is scaled to the
planetary vorticity. Antiyclonic vorticies shielded by cyclonic filiments migrate to lower
latitude.
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Chapter 4

Planetary Applications

In this chapter we examine models that are in a parameter space closer to planetary. Rather

than using an exponential density profile and an ideal gas for the equation of state we use

an polynomial expansion of an empirical model of the interior of Saturn. The empirical

model is constrained to match the first three gravitational coefficients and the assumed

rate of rotation (Helled et al., 2009). For our model the interior is cut so that 99% of

the atmosphere from the molecular envelope up to the 1 bar level is covered. The Ekman

number for these models is E = 10−5; lower than the previous models. This allows for

longer lived vortices zonal flow at higher latitudes. The Rayleigh number is set so that the

system is strongly convecting with Ra∗ = 0.45 and the Prandtl number is set to Pr = 1.

The radius ratio is set to 0.82, similar to the expected ratio for Saturn. This is based

on the location of Saturn’s first retrograde jet at a latitude of ∼ 35◦ which corresponds

to a tangent cylinder at a radius of r = cos(35◦) = 0.82.This requires a high resolution

with Nr = 193 points in the radial direction, Nθ = 576 points in latitude, and Nφ = 1152

points azimuthally. We are interested in the dynamics at the pole and therefore do not

employ spherical harmonic symmetry. For models such as this with a low Ekman number
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hyperdiffusion is often required to ensure convergence of the solution. The hyperdiffusion

operator is shown in equation (1.51). For this particular case we use an hyperdiffusivity

amplitude α = 60, hyperdiffusivity exponent β = 3. The maximum degree of spherical

harmonic expansion is lmax = 384. The amplitude of the hyperdiffusion scaled by the

Ekman number is shown in figure 4.1 as a function of spherical harmonic degree l. The

high order coefficients are effectively damped to a higher Ekman number while the lower

order coefficients remain unchanged.

4.1 Polygonal Jets

Under some circumstances a high latitudinal zonal jet may be convectively forced into a

polygonal shape. In this particular case our model is kicked by a change in the background

conductive state which provides a initial burst in the poloidal energy. However, in the

long term the kinetic energy is weaker and the burst decays. This kick is not particularly

physical, however we document it because this is a high resolution run that is computa-

tionally expensive and yielded interesting results. The hexagon at the north pole of Saturn

as observed by the Cassini spacecraft is shown in figure 4.9. The azimuthal velocity for a

model forced by an initial kick in energy is shown in figure 4.2. The evolution of the kinetic

energy shortly after the kick is shown in figure 4.9. Shortly after the kick at the peak of

energy the high latitude prograde jet is organized in the shape of a heptagon. The flow

prograde flow near the pole is almost square shaped. As the energy begins to decay the jet

weakens and oscillates about the points of the heptagon. The flow returns to a heptagonal

shape, however the jet is weaker and disjoint. The second jet at lower latitude remains

relatively stable only weakening slightly as the toroidal energy decays. This jet does not

organize into a polygonal shape however sometimes it appears to bend at an angle.

In the long term the high latitude jets are not well maintained and merge such that
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there are no distinct jets. The zonal flow observed for Saturn by the Cassini spacecraft

and the voyager missions is compared to our results in figure 4.8. There are about 17 jets

observed for Saturn that alternate between prograde and retrograde. This is much more

than the 7 jets observed for this model. Previous anelastic models using constant entropy

boundary conditions with a similar radius ratio (0.85) and the same Ekman number (10−5)

have managed to achieve up to 11 jets Gastine et al. (2014). The modified Rayleigh number

used for their results is Ra∗ = 0.18 is much smaller than the Ra∗ = 0.45 we use. It may

be the case that strong convection is required to generate high latitude jets. Although the

modified Rayleigh number they use is smaller than ours the conductive state (figure 2.1)

means it is convecting much more viperously at the surface.

4.2 Relaxation Oscillations

The kinetic energy in the long term after the kick in energy is shown in figure 4.3. There is

initially a sharp decay in the poloidal component of the energy. However shortly after the

perturbation it begins to rise again and begins to exhibit periodic relaxation oscillations.

The toroidal component of the energy decays much slower over the entire duration of the

simulation. There are some small periods when the toroidal energy increases in response

to the increased convection of the relaxation oscillations.

The radial vorticity and azimuthal velocity at the poles over the course of a relaxation

oscillation is shown in figures 4.4-4.6. There is a strong generation of anticyclonic vortices

in the northern hemisphere at the peak of convection shown in figure 4.4. The azimuthal

velocity does not have clearly defined jets at higher latitudes and the flow is generally

prograde over the pole. Compared to the north pole there is little vortex activity at the

south pole for this convective burst. The radial vorticity and zonal flow when the poloidal

kinetic energy is at a minimum is shown in figure 4.5. The azimuthal flow in the polar
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region is smoother compared to the previous figure. There may be a single high latitude

prograde jet that is separated from the pole by a local minimum. The radial vorticity

and azimuthal velocity at the next peak in poloidal energy is shown for the south pole in

figure 4.6. This time most of the convective activity manifests as anticyclonic storms in the

southern hemisphere and the northern hemisphere is comparatively quiet. There is a single

high latitude prograde jet with weak retrograde flow towards the pole. The azimuthal flow

is distinct between the two poles because they are inside the tangent cylinder and are

therefore dynamically disconnected.

The Great White Spot (GWS) storms that are observed on Saturn roughly every Sat-

urnian year are similar to these relaxation oscillations. The 2010 storm on Saturn observed

by the Cassini spacecraft may be a GWS as shown in figure 4.10. The GWS is a large

storm that encircles the planet and disrupts the latitudinal band that it emerges in. At

the peak of a relaxation oscillation there is a latitudinal band that is engulfed by many

smaller storms. These storms alternate between a northern latitude band and a souther

latitudinal band between oscillations. While all of the GWS storms have been observed

in the northern hemisphere they tend to alternate between mid-latitude and equatorial

regions Sanchez-Lavega (1994).

The connection between the anticyclonic storms in the northern hemisphere to convec-

tion in the interior is shown in figure 4.7. Thermal plumes rise from the interior to the

surface where it diverges and forms anticyclonic storms in the northern hemisphere. The

storms exist for the duration of the plume and viscously decay shortly after they discon-

nect. Models that have a lower Ekman number may have storms that can persist for much

longer.
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Figure 4.1: Hyperdiffusion amplitude scaled by the Ekman number as a function of spheri-
cal harmonic degree l. The hyperdiffusion acts to damp the higher order coefficients which
can be interpreted as increasing the Ekman number.
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Figure 4.2: Azimuthal velocity that shows high latitude jet numerically forced into a polyg-
onal shape. The heptagon is not stable in time and decays until the jet is lost.
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Figure 4.3: Kinetic energy timeseries of Saturn model initially kicked numerically as it
decays. The poloidal kinetic energy is shown in blue for the initial kick in energy (top)
and for the long term (bottom). The kinetic energy timeseries for the toroidal component
is shown in black for the initial kick (top) and for the long term (bottom). Red vertical
lines show the position for figures 4.2 and 4.4 - 4.6.
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Figure 4.4: Radial vorticity and azimuthal velocity at the north pole at time t=0.3346.

Figure 4.5: Radial vorticity and azimuthal velocity at the north pole at time t=0.3378.
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Figure 4.6: Radial vorticity and azimuthal velocity at the south pole at time t=0.3412.
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Figure 4.7: Convective cyclonic storms shielded by anticyclonic ring. Entropy isosurface
shows the storms connection to the deep interior. The image is taken at a time t=0.3439
roughly halfway between the relaxation oscillation.
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Figure 4.8: Comparison of the zonal flow observed for Saturn by the Cassini and Voyager
probes to the flow for our model.
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Figure 4.9: Saturn’s north polar hexagon as observed by the Cassini spacecraft.

Figure 4.10: Saturn’s great storm of 2010 as observed by the Cassini spacecraft. The head
of the storm is moving past its tail.
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Chapter 5

Conclusion

In this dissertation we have shown the dependance of the entropy boundary condition for

simulations of rotating anelastic convection.

Constant entropy gradient boundary conditions with heat sinks allow for a depth depen-

dent Rayleigh number that grades into buoyant stability at the outer boundary. Previous

models used constant entropy boundary conditions in which convection is strongest at the

surface. The near onset of convection for entropy gradient boundary conditions is similar

to previous Boussinesq cases where convection cells form at the inner boundary. Increasing

the density stratification increased the number of convection scale but they did not migrate

to the outer boundary as in the constant entropy case. The convective regimes observed

are similar to previous models however the asymptotic regime is the relaxation oscillation

regime rather than a second nonlinear regime. The zonal jets develop is similar for the two

boundaries, however the flow is more smooth for the buoyantly neutral case. The entropy

gradient boundary conditions allow for the formation of hot regions on the outer boundary

that invert the local temperature region and cause regions of dynamic buoyant stability.

These regions promote the development of storms or vortices.
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Nonhomogeneous boundary conditions can be applied to the lower boundary to exam-

ine the potential effects of a thermal plume from the deep interior. A Gaussian shaped

perturbation was chosen to model the source because it is a simple shape with an ana-

lytic integral. There is a large space of parameters that define the perturbations including

offset, amplitude, width, and background Rayleigh number. Regardless of the offset the

source will produce a region of stability at the surface axially above the source. The effects

of the amplitude and the width of a source were examined, in particular the generation

of cyclonic and anticyclonic vortices. It was found that a narrow source with a strong

amplitude produces a strong cyclonic storm at the pole similar to observations of Saturn.

Future models of polar nonhomogeneous boundary conditions should consider adjusting

the number of grid points in theta so that the spacing is more homogeneous at the poles.

This would allow for more efficient use of computational resources. While this may create

a similar problem in the equatorial region, if the background Rayleigh number is non-

convective it would make no difference. It may also be useful to consider introducing an

anomaly into a model with developed zonal jets to see if a jet can be forced locally into a

polygonal shape.

Reducing the Ekman number and increasing the radius ratio allows for models that are

closer to planetary. However these models are difficult to resolve and require hyperdiffusiv-

ity that acts as a low pass filter in the spherical harmonic spectra. High latitude jets can be

forced into polygonal shapes under certain circumstances. It is difficult to maintain high

latitude jets when using the constant entropy gradient boundary conditions compared to

previous models with constant entropy boundary conditions. In the relaxation oscillation

convective regime the flow undergoes cycles of strong vorticity that can engulf an entire

band latitudinally. This may be similar to the Great White Spot storms that are observed

on Saturn with a period of one Saturnian year.
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Future models may be able to maintain the polygonal forced jet with a more physical

forcing by increasing the strength of convection. This would involve increasing Ra∗ so that

the system is forced strongly. However current models are already convecting much stronger

than planetary and this would move further away. The other alternative to increase the

strength of convection while maintaining a smaller Ra∗ would be to lower the Ekman

number. This is computationally difficult however future massively parallel simulations

may allow for a high enough resolution.
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