
University of Alberta

Design and Implementation of an Incentive-Aware Peer-to-Peer System for
Live Streaming

by

Tianhao Qiu f '"

A thesis submitted to the Faculty o f Graduate Studies and Research
in partial fulfillment o f the requirements for the degree of

M aster o f Science

Department o f Computing Science

Edmonton, Alberta
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-30006-0
Our file Notre reference
ISBN: 978-0-494-30006-0

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In this work, we present a peer-to-peer (P2P) multicast system for broadcast

ing high bandwidth streams to large numbers of heterogeneous and transient

users. A scalable swarm-based P2P scheme is introduced, which does not

maintain a rigid logical topology. Instead peers self-organize into an un

structured overlay in an ad-hoc fashion. A credit-based incentive mechanism

is proposed to encourage peers to contribute their upload capacity. The

proposed scheme is evaluated through simulations in a dynamic and het

erogeneous environment. We find that it is able to operate under resource-

constrained conditions where traditional tree-based approaches typically fail.

At the end, we demonstrate the feasibility of our design by implementing an

operational P2P prototype system for live streaming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 In troduction ... 1
1.2 C o n tribu tions.. 2
1.3 Organization .. 3

2 R elated W ork 4
2.1 Why not W ire le ss? .. 4

. 2.2 Peer-to-Peer N e tw o rk s 8
2.2.1 P2P Live Streaming .. 9

2.3 Tree-Based System s.. 10
2.3.1 Single-Tree Approaches... 10
2.3.2 Multiple-Tree A p p ro ach es ... 11

2.4 Unstructured Systems ... 11
2.5 Other System s... 12
2.6 C onclusions... 13

3 The Case A gainst Tree-Based Overlay M ulticast System s 14
3.1 Resource I n d e x .. 15
3.2 The Impact of Resource Im b a la n c e .. 16
3.3 W hat about Preemption? 17

4 D esign of A Swarm -Based P 2 P Live Stream ing System 19
4.1 P2P Swarming .. 19
4.2 Membership Management ... 21
4.3 Buffering... 22
4.4 Credit-Based Incentive Scheme ... 23
4.5 Informed Push-Based Scheduling Assisted by Feedback 26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Evaluation 28
5.1 Experimental S e tu p ... 28

5.1.1 The Network .. 28
5.1.2 Peer Membership D y n am ics .. 29
5.1.3 Streaming Media M o d e l ... 29
5.1.4 Bimodal Configuration of Upload C apacity 30
5.1.5 A Tree-Based P ro to c o l.. 30

5.2 Simulation R e s u l t s ... 30
5.2.1 Performance of the Tree-Based Protocol31
5.2.2 Performance of the Swarm-Based P ro to c o l.......................... 33
5.2.3 Scalability of the Swarm-Based P ro to c o l............................36
5.2.4 Providing Incentives ... 37
5.2.5 Effect of Startup D e lay .. 38

6 Im plem entation 40
6.1 System O verv iew .. 40
6.2 Publishing and Joining a Broadcast Session 42
6.3 Peer-to-Peer P ro toco l.. 43
6.4 Buffer Management and Synchronization...43
6.5 Media Player In te rfa c e .. 44
6.6 NATs and Firew alls.. 44
6.7 Deployment and E x p e rim en ts ... 44

7 C onclusions 46
7.1 Open Issues and Future W o r k .. 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

2.1 P2P file sharing vs. s tream in g ... 9
2.2 General comparison of various P2P live streaming systems . . 13

5.1 Default simulation p a ram ete rs .. 31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Performance of different policies... 5
2.2 Cooperative policy overhead.. 6
2.3 Cooperation does not pay off.. 7

3.1 A well-balanced tree .. 16
3.2 An unbalanced t r e e ... 16
3.3 Premature sa tu ra tio n .. 17
3.4 Preemption avoids premature s a tu r a t io n 17

4.1 Swarming: Peers form a random o v e r la y ...20
4.2 A peer’s buffer is controlled by a sliding window. A is the

index number of the latest data unit at the source. 23

5.1 Cumulative distribution of session le n g th 29
5.2 Tree’s performance as a function of a under different source

c a p a c ity .. 32
5.3 Less resources cause more instabilities in the t r e e32
5.4 Resource underutilization in the tree (a = 0.25). Note that

the throughput curve in Figure 5.3 closely follows the tree’s
capacity in this figure, indicating that our tree-based protocol
is efficient in locating unsaturated nodes... 34

5.5 Cumulative distribution of disruption periods in the tree . . . 34
5.6 Swarm’s performance as a function of a under different source

c a p a c i ty .. 35
5.7 More resources bring higher throughput and better stability

to the swarm ... 36
5.8 Swarm shows good scalability to network size (a = 0.25) . . . 37
5.9 Resource-rich peers receive better stream quality under con

strained bandwidth cond itions... 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.10 Resource-rich peers are placed closer to the so u rce 39
5.11 Data loss rate during startup period ... 39

6.1 System overview ... 41
6.2 Diagram of the P2P software architecture. Arrows indicate

data flow..42
6.3 User interface including the publishing dialog 43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 In troduction
Live media streaming over the Internet has gained significant popularity in
recent years due to the continuous increase in network access speed of the end-
users. Most today’s Internet broadcast systems are based on the traditional
client-server model, which leads to limitations on the achievable performance.
The streaming server becomes the bottleneck since the bandwidth required
for serving many clients at once is huge and very costly for the broadcasting
entity.

Technically speaking, IP multicast [2] is the most efficient approach to
support scalable live media streaming. However, the deployment of IP mul
ticast has been slow for a variety of reasons [3]. Application Level Multicast
(ALM) [4] has been proposed as an alternative to IP multicast. ALM builds
an overlay network via unicast connections between end hosts. Along this
direction, many P2P live streaming systems have been developed in recent
studies [5, 6, 7].

The end hosts in a P2P streaming system contribute their upload band
width to spread streaming media to other peers. The bandwidth require
ments are now being shared by the source and participating peers, providing
a potentially scalable solution. However, there arises a few practical chal
lenges when we shift the multicast functionality from highly available and
dedicated routers to autonomous and vulnerable end-hosts.

• Live streaming usually requires high bandwidth and has rigorous con
tinuity demands. Dynamic changes in network conditions ((available

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bandwidth and latency), which tend to be more frequent in a P2P
environment, can greatly affect the playback quality.

• Extreme peer transience: The measurement study performed in [8,
9] found that a significant number of live streaming users have very
short sessions. The average lifetime is only in the order of minutes.
Such observation implies that a successful P2P streaming system has
to be able to handle a very high rate of failures and dynamics of peer
participation (churn).

• Heterogeneity in upload capacity: In P2P streaming, the bottleneck
resources can easily be identified as the overall upload capacity in the
system. However peers are heterogeneous in how much bandwidth they
can contribute. In the current Internet environment, a large percentage
of peers rely on asymmetric connections with high receiving capacity
and low forwarding capacity. They are likely to consume more and
contribute less. Such inherent unfairness requires incentives for other
more resourceful peers to donate more bandwidth.

We argue that to address these issues, the design of a successful P2P live
streaming system needs the following characteristics: (a) it should maintain a
flexible structure to withstand peer transiency; and (b) instead of relying on
altruism it should provide incentives to encourage capable peers to contribute
their resources.

1.2 C ontributions
Our major contributions in this work are three-fold. First, we identify two in
herent problems of the traditional tree-based P2P overlay multicast, namely
resource underutilization and premature saturation. We argue that prema
ture saturation undermines the sustainability of a tree under constrained
bandwidth conditions. To this end we propose a P2P live streaming system
based on an unstructured swarm overlay, where each node is connected to
a random subset of peers. To fully utilize upload capacities smaller than
the stream bitrate, the stream data are divided into small data unit frag
ments. Peers transact on the basis of concurrent uploads and downloads of
unit fragments. In addition, an “informed” push-based scheduling strategy

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is introduced which helps propagate data efficiently while reducing duplicate
transfers.

Second, we propose a credit-based incentive mechanism that is designed
to accommodate a certain degree of “unfairness” naturally arising in a het
erogeneous environment. Rather than ensuring everyone contributes the
same amount of bandwidth, and turning away resource-constrained users,
it encourages resource-rich nodes to donate more uplink bandwidth to sub
sidize resource-constrained peers. Simulation results show that our incentive
scheme can motivate capable nodes to upload more because it provides them
with better stream quality as well as a higher probability of being placed
closer to the source.

Third, to demonstrate that our swarm-based scheme is a feasible archi
tecture for P2P live streaming, a substantial part of our work is devoted to
design, implement, and deploy a prototype system based on this architecture.
We believe our experience offers a good starting point for others to design
and deploy future P2P live streaming systems.

1.3 O rganization
The rest of the dissertation is organized as follows: In Chapter 2 we present
the background of our research, followed by a brief history of peer-to-peer
live streaming techniques. The most relevant systems are categorized based
on the architectural models they use. We compare the characteristics of var
ious proposals, focusing on their strengths and weaknesses. In Chapter 3,
we concentrate our analysis on the traditional tree-based overlay multicast
systems, and further explain its two inherent problems. We then detail the
design of a swarm-based P2P live streaming system in Chapter 4. We de
scribe our experimental setup and evaluate the simulation results in Chapter
5. In Chapter 6, we demonstrate the feasibility of our design by implement
ing an operational prototype system. We describe the aspects that were not
addressed in the design phase, and present the modifications to make the
system work in a real world environment. Finally, in Chapter 7 we sum up
the open problems not covered by this work.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

R elated Work

2.1 W h y not W ireless?
The seminal work by Gupta and Kumar [1] has seriously put into ques
tion the ability of mobile ad-hoc networks to scale to a level applicable for
“large” deployment. In simple terms, what [1] demonstrated is that the po
tential of nodes to communicate with far away nodes cancels performance
dividends stemming from spatial reuse. Certain “data diversity” approaches
[40, 41] have been proposed as the means to avoid the aforementioned lack of
scalability by injecting data traffic only within a restricted number of hops.
However, exploiting data diversity requires the development of particular
protocols that incite the cooperation of nodes.

In our work presented in [39], we re-examine [41] from the viewpoint of
more realistic assumptions. In [41], a single data item is of interest to all
the nodes in the system. Instead we assume different per-node interest and a
large population of data items (files) with a popularity that follows a Zipf-like
distribution. The particular shape of the popularity distribution has been
identified in wired P2P networks [42]. To capture the shared nature of local
wireless channel, we apply a simplified max-min fair bandwidth allocation
algorithm. We also consider dynamic environments where, over time, new
nodes join the network and some old ones depart.

Our approach exposes additional issues not originally studied, such as the
throughput under different node interests in terms of the files available, or the
need for nodes to possess a “healthy” fraction of the total population of files
in order for the throughput to be maintained at high levels. As a second step,

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44
Cooperative. —

Semi-cooperative 1.
Semi-cooperative 2. - "B42

40

38

36

34

32

30

28
0 20 40

Portion o f cooperative nodes (%).
60 80 100

Figure 2.1: Performance of different policies.

we revisit the lessons from [40] and observe the fact that in an environment
with restricted levels of mobility, the time horizon over which reception of a
desired file can take place may be unreasonably long. We therefore propose
how to leverage the design rule (limit the distance in terms of number of
hops between communicating/exchanging nodes) but not interpreted at its
extreme (exchanges only between adjacent nodes) that [41] assumes. We
thus introduce a tradeoff whereby less throughput (due to paths limited to
a few hops “congesting” locally the network) comes at the benefit of better
delay for obtaining a file. However, before one can reasonably expect nodes
to implement such limited-length paths, we need to answer the question of
what is the incentive for a node that is not the endpoint of an exchange to
participate in such exchange. We attem pt to find whether a simple policy
can provide the incentive necessary so that nodes participate as intermediate
hops.

In the end, three different cooperative policies are studied. A node with
the cooperative policy is willing to contribute its resources for any file it
doesn’t have. A node acting semi-cooperative is only willing to route traf
fic carrying one of its desired files. The difference between the two semi
cooperative policies is in the way of forwarding the file exchange query.

As shown in Figure 2.1, we find out semi-cooperative nodes do not help at
all. During the simulation, most traffic is still direct transactions via one-hop
path. When a semi-cooperative node tries to serve as an intermediate node

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

80

70
Files transmitted.

60

50

40
Files received.

30

20
0 20 40

Portion o f cooperative nodes (%).
60 80 100

Figure 2.2: Cooperative policy overhead.

by relaying a file exchange request, it will modify the information included
in the request according to its own target file list resulting in an even more
rigid query. Thus few next-hop nodes can fulfill the more restricted query
and initiate a multi-hop file exchange. Since the semi-cooperative schemes
are under-performing in a two hop maximum case, they will be performing
even worse in multiple hop cases since the query becomes more and more
specific to few (and possibly even down to zero) items. Certainly, if the set
of files requested in common by all intermediate nodes is the empty set, the
query is abandoned (dropped), and no exchange takes place. In environments
with immense file populations, and few desired files for each node (compared
to the total population of files), the semi-cooperative policies simply make
no sense.

Although Figure 2.1 shows promising performance for the cooperative
policy, further study shows that this performance increase comes at a price
of higher power usage. In Figure 2.2, the number of desired files acquired
per node is compared to the number of files transm itted per node. The gap
between the two curves represents the overhead introduced by cooperative
node behavior. When all nodes in the network are cooperative, the number of
files transmitted by a node is almost twice as the number of its desired files.
This is not particularly surprising because in addition to one-hop exchanges
(that are guaranteed to be relevant to the desired files of the communicating
nodes), the nodes are also forwarding traffic for nodes two hops apart. If we

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4
Non-cooperative.

Cooperative.
Cooperative (desired subset).1.2

1

0.8

0.6

0.4

0.2

0 0 20 40 60 80 100 120 140 160 180 200
Time.

Figure 2.3: Cooperation does not pay off.

allow for longer paths, more of the node’s capacity is devoted to forwarding
than to data items it desires. Therefore, the gap evidenced in Figure 2.2
could increase even further if longer paths are introduced.

To clarify the last point we will look in more detail into the throughput of
a single node, instead of the throughput of the system as a whole. We track
the average per-node throughput during the simulation to see if cooperative
nodes can enjoy better performance than non-cooperative nodes. 50 cooper
ative nodes and 50 non-cooperative nodes are placed into the network. Per-
node throughput is plotted against time in Figure 2.3. The per-node through
put is expressed as average throughput (counted in units of file blocks) over
a period of five successive time units. As shown in Figure 2.3, cooperative
nodes have a higher per-node throughput than non-cooperative nodes. But
if we only count the part of the throughput that carries desired files, the per-
node throughput is indistinguishable to tha t of the non-cooperative nodes.
Hence, the cooperative nodes receive the same “essential” throughput as non-
cooperative ones but at the cost of having expended more energy forwarding
traffic on behalf of others. This is the disadvantage of cooperation, and raises
the question of whether we can seriously use any form of multi-hop routing
in mobile environments without coming up with a better incentive scheme
for nodes to participate in the exchanges of other nodes.

We note that our work in [39] essentially defines some form of peer-to-
peer protocols between adjacent nodes in wireless environments . The rather

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pessimistic results of our experiments motivate us to look back into wired
networks instead. In a wired system, a data item can be “discovered” and
obtained however far away and however few nodes possess it. Hence, the
performance of peer-to-peer protocols in wired environments is no longer so
much dependent on user population and data diversity. The simplest case
is to assume a single data item is of interest to all the nodes in the system
(extending naturally to multiple items of interest to all nodes), where the
criteria of success becomes how fast the data are being distributed, namely
the system throughput and transmission delay. In the end peer-to-peer live
streaming systems stand out as a perfect example for our study since users
in live streaming systems naturally share common interest in the data being
broadcasted, and the most important measurements in those systems are the
average throughput and delay.

In the rest of this chapter we will give a brief discussion of the most
relevant peer-to-peer based techniques that have been proposed and deployed
in the area of live media streaming.

2.2 P eer-to -P eer N etw orks
The term “peer-to-peer” (P2P) refers to a class of systems and applications
that employ distributed resources to perform a function in a decentralized
manner. W ith the pervasive deployment of computers, P2P is increasingly
receiving attention in research, product development, and investment circles.
Some of the benefits of a P2P approach include: improving scalability by
avoiding dependency on centralized points; eliminating the need for costly
infrastructure by enabling direct communication among clients; and enabling
resource aggregation [10]. The first popular P2P system was Napster [11]
which allowed users to share MP3-files with each other. Since then, the main
application for P2P networks has been file sharing, in which users make some
files available on their computers and others can download these files.

Although there have been significant research efforts in peer-to-peer sys
tems during the last years, one category of P2P systems has received less
attention until recently: the P2P media streaming system [12]. These sys
tems are different in the data sharing mode among peers, because media
streaming systems use the “play-while-downloading” mode. In file-sharing
systems, a client first downloads the entire file before using it. There are no

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2.1: P2P file sharing vs. streaming

P2P File Sharing P2P Streaming
Mode Open-after-downloading Play-while-downloading
Download Order Our of order In order
Download Speed
Requirement

Only average download speed
matters

Require relatively steady
download speed

Current Status Widely deployed and accepted Not widely accepted yet

timing constraints on downloading the fragments of the file; rather the total
download time is more important. However, in media streaming systems, a
client overlaps downloading with the consumption of the file. It uses one part
while downloading another to be used in the immediate future. Timing con
straints are crucial, since a packet arriving after its scheduled play back time
is useless and considered lost. Some key diffences between P2P file sharing
and media streaming are listed in Table 2.1.

2.2 .1 P 2 P L ive S tream in g

Live streaming refers to the synchronized distribution of streaming media
content to one or more clients. The content itself may either be truly live
or pre-recorded. A live stream has the important property of being history-
agnostic: the group-member is only interested in the stream from the instant
of its subscription onwards [13].

The first attem pts to apply P2P systems for distributing live media date
back to 2000 with the proposal of the Overcast [14] and Scattercast [15]
architectures. They both employ a two-tiered infrastructure (the P2P part
of the network is just the core, end-users don’t take an active role in the
content distribution) to spread the load from a single server to a large pool
of supporting nodes.

In the following years (2001 to the present), the research started focus
ing on completely distributed systems for media broadcast. Many P2P live
streaming systems have been proposed. They can be classified in three main
categories based on their overlay architecture:

• Tree-based overlay approaches. In these systems peers are hierarchi-

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cally organized in a single-tree or multiple-tree overlay, and data are
forwarded from the source to peers along the tree(s).

• Unstructured overlay approaches. The content is divided into pieces
that are spread in the network by the source without following a pre
defined structure. Peers establish relationships among themselves to
retrieve missing pieces.

• Others. Some systems [18] use a hybrid approach that exploits both
previous techniques.

In the following sections we are going to describe these three categories
by presenting one or two examples for each of them .

2.3 T ree-B ased S ystem s
In these systems peers are organized in a fairly static structure upon which
the stream is spread. This structure is a hierarchical (single or multiple) tree,
with the source as root, where every node receives the whole data content
from its parents and transmit it to its children.

2.3 .1 S ingle-T ree A pp roaches

The single-tree model is by far the most common approach to build a P2P
live streaming system due to its simplicity. It reproduces the IP multicast
structure as peers are organized into a source-rooted spanning tree across uni
cast connections between them. Many P2P live streaming systems (Spreadlt
[5], ESM [4]) have been proposed to create and maintain an efficient tree
overlay. Differences between these systems mainly concern the way peers are
organized and the algorithms used to create, to maintain and to repair the
tree structure.

Spreadlt [5] is among the earliest attempts for streaming live media over
a P2P network. It consists of a lightweight peering layer that runs between
the application and transport layers on each peer, which maintains the con
nectivity to the rest of the network under arbitrary joins, leaves, and failures
of peers in the network. A simple redirect mechanism is used to provide
hints to a requesting node and guide it to an unsaturated peer in the net
work. Each join request starts by contacting the source, and then goes down

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(redirection after redirection) along the tree until a node offers to accept the
newcomer. Redirections are done following deterministic policies or at ran
dom. When an internal node wants to leave the tree, all its descendants have
to be reattached in a new position. Prior to leaving, the node sends redirect
messages to its children to gracefully hand them over to other nodes known
to have free resources. In case of node failures, the recovery phase is more
difficult: first the failure has to be detected (through heartbeat mechanisms,
like periodic pings), then all the descendant nodes of the failed parent have
to restart a join attempt.

2.3 .2 M u ltip le-T ree A pp roaches

One of the main issues of the single-tree approach is that the load of dis
tributing the content is supported by a relatively small number of interior
nodes while most nodes are leaves and do not share their upload bandwidth.
This unfairness issue also leads to the error propagation problem that data
loss near the root affects a large population of downstream nodes.

The multiple-tree architecture has been proposed to address these issues
by building N different trees, sharing the same source, among peers. One
example of the multiple-tree approaches is the SplitStream system [6] from
Microsoft Research. In SplitStream, the stream is divided into N disjoint
sections called stripes, each being didtributed by one tree. To receive the
full stream, a node must join every tree. To ensure fairness, the trees are
built such that every node is an interior node in precisely one tree. Since all
peers are involved in the data distribution, the load is now spread among all
nodes. Also a node failure only causes the loss of one stripe, which improves
robustness.

A drawback of these systems is the higher control overhead with respect
to the single-tree approach, due to the fact that there are now N trees to
build and maintain. Another problem of multiple-tree systems is that they
are usually tightly coupled with advanced coding techniques like Multiple
Description Coding (MDC) [16], which are not widely available yet.

2.4 U n stru ctu red System s

In these systems peers are no longer organized in a hierarchical structure
where the stream is forwarded as a continuous flow of data. Instead the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

source splits the stream into a series of pieces (often called chunks). There
is not a predefined data path since every chunk follows a different route to
arrive at peers. The connections established among nodes are “data driven”
in the sense that a peer connects to potential providers in order to obtain
missing pieces. As a consequence, it is not possible establish a precise time
bound for packet reception. It is thus necessary to adjust the stream play
out time according to the download rate. This is not a trivial task since the
download rate can fluctuate during time. On the other hand, unstructured
systems offer good performance in terms of robustness since peers naturally
adjust their position in the overlay according to the network changes.

One example of unstructured P2P live streaming systems is CoolStream-
ing/DONet [17]. In DONet, a gossip membership protocol is used to dis
tribute the knowledge of other nodes in the network. When a node receives a
membership message, it will update/create the entry in its membership list.
Then it forwards the message to another randomly selected peer to spread
the message. A node maintains connections to M partners selected from the
peers present in its membership list. Data are exchanged among partners
only. Information about what data chunks a peer has is spread among part
ners using a bitmap. DONet assumes a cooperative environment where nodes
upload willingly. Thus no incentives are provided to justify contributions.

2.5 O ther System s
There are some P2P live streaming systems that can not be easily classified in
the previously discussed categories because they employ hybrid approaches.
These system try to exploit the positive features of both structured and
unstructured approaches while mitigating their drawbacks. For example,
Bullet [18] combines a standard single-tree structure with an overlay mesh
layered on on top of the tree. Bullet nodes begin by self-organizing into an
overlay tree, which is used to convey control messages and most data packets.
A highly variable mesh structure is then constructed among peers via random
connections that are orthogonal to the tree. The mesh overlay enables nodes
to quickly locate multiple peers and retrieve missing data items from them
in parallel. Thus Bullet is able to avoid bandwidth bottlenecks in the tree
by allowing leaf nodes to forward data as well. However since it still relies
on the tree to disseminate most data, Bullet does not completely address
the inherent issues in the single-tree structure. Namely a node’s position

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2.2: General comparison of various P2P live streaming systems

Transmission
Delay

Robustness /
Adaptiveness

Fairness Control
Overhead

Structured Low Bad Bad -
Fair

Low -
Medium

Unstructured Variable Good Good Medium
- High

Hybrid Medium Fair Bad High

in the tree still determines the bandwidth it is likely to give back and the
performances it can obtain. Also there are no incentives for Bullet nodes to
contribute their resources.

2.6 C onclusions
In the previous sections we briefly discussed the most relevant results in the
area of peer-to-peer live media streaming. It is not easy to make a com
parison among them since the evaluation results would depend a lot on the
assumptions, which include (but not limited to): peer behavioral model, net
work topology, availability of upload bandwidth, nature of the media stream,
and the application environment (i.e. small-scale, intra-company, large-scale,
etc.).

In Table 2.2 we make a rough comparison between those different ap
proaches. Structured systems are able to achieve optimal performance with
respect to the transmission delay, but they suffer badly in the presence of peer
transiency. Unstructured systems show a better resilience to peer transience.
However the transmission delay is unpredictable due to the dynamic overlay.
Hybrid systems seem like an overall balanced solution. However they require
higher control overhead and higher management complexity since they have
to maintain both a tree structure and a mesh overlay.

There is not a “best” approach. Every solution has its advantages and its
drawbacks. An approach may thus be suitable or not depending on the goals
the system needs to achieve and the environment where it will be deployed.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The Case Against Tree-Based
Overlay M ulticast System s

We have seen that a tree-based application level overlay is by far the most
popular, obvious and intuitive structure in P2P live streaming systems. In
this chapter, we will analyze the tree structure in detail and identify two in
herent problems of the tree-based overlay multicast systems, namely resource
underutilization and premature saturation.

As a rigid structure, a tree is inherently vulnerable to network dynam
ics. Unlike IP multicast, the non-leaf nodes in the tree are autonomous end
hosts, which can crash or leave at will. When a non-leaf node leaves the mul
ticast tree, its descendants, possibly a significant number of nodes, will suffer
stream discontinuity until they find new parents. In addition, the bandwidth
available to any host is limited by the bandwidth available from that node’s
parent in the tree. As a result, any data loss or bandwidth fluctuation at a
node near the root may affect a large population of downstream nodes.

Another difficulty with trees is that only the interior nodes are responsible
for forwarding traffic, while the leaf nodes do not upload at all. This unfair
sharing of load can cause a lack of incentives for interior nodes to contribute.
Moreover, if a peer’s upload capacity is below the stream bitrate, it can only
join the tree as a leaf node. For high bandwidth streams where only a small
percentage of peers can forward the stream at full rate, the tree may easily
become saturated.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 R esource Index
Here we introduce a metric called resource index that measures the service
capacity of the system. The resource index R I is defined in [19] as the
ratio of the aggregate supply of upload bandwidth (from the source and
peers) to the total demand for bandwidth in the system, which is the number
of peers times the stream bitrate. R I captures the theoretically available
resources the system can offer to participating peers. However in a single-tree
structure, the amount of bandwidth that can be utilized not only depends on
the capacity of hosts, but also is related to the stream bitrate. For example,
if the stream is encoded at 512kbps, a host with a upload capacity lower
than 512kbps cannot contribute any resources. On the other hand, if a host
has an upload capacity of 768kbps, this host can support at most one child,
which leaves a residual capacity of 256kbps unusable. To reflect this resource
underutilization of tree structure, we define another resource index R I tree
by only considering the upload bandwidth usable to construct a tree for a
particular stream bitrate. Evidently, R I tree is always smaller than R I .

To calculate the value of RItree-, we need to model the distribution of
upload capacity of Internet end hosts. To simplify our analysis without
loss of generality, in this work we divide hosts into two categories based on
their upload capacity: resource-rich and resource-poor. Resource-rich hosts
have a upload capacity exceeding the stream bitrate, representing users in
academic institutions and large corporate entities. Resource-poor hosts have
a upload capacity lower than the stream bitrate, mostly home users using
ADSL or cable modems. Under this bimodal distribution of upload capacity,
if each resource-rich host, including the source, is able to support d children
on average, then a tree’s resource index RItree = d x a, where a is the
percentage of resource-rich hosts.

RItree plays an important part in determining a tree’s scalability and
stability. When R I tree is well above 1, there are plenty of idle resources
available in the system to support newcoming participants. Furthermore,
after an internal node leaves the tree, its descendants can quickly find new
parents and recover from disruption. As RItree drops closer to 1, the system
becomes more resource-constrained. As a result, the tree has to grow deeper
to accommodate the same number of nodes. The average recovery time for
a disconnected node also increases. If RItree is smaller than 1, there are not
enough resources in the system to support the current number of participants.
New join requests will be blocked and the descendants of a failed node may

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.1: A well-balanced tree Figure 3.2: An unbalanced tree

not be able to reconnect to the already saturated tree.

3.2 T he Im pact o f R esource Im balance
A favourable tree-overlay should be balanced to minimize the path length
from the root to leaf nodes because a longer path is more prone to failure
and congestion. Another benefit of a balanced structure is that each node
departure affects a smaller number of descendants on average. However it
is not easy to maintain an efficient tree structure due to the existence of
resource-poor hosts.

Figure 3.1 shows a well-balanced tree structure, where shaded circles rep
resent resource-rich hosts (note d = 2 and RItree > 1)- Figure 3.2 shows an
unbalanced tree structure with the same set of hosts. We notice the tree be
comes unbalanced in Figure 3.2 because there are a few resource-poor hosts
(node 6 and 8) connected at higher levels of the tree. As a result, other
resource-rich hosts near the root (node 1 and 2) become critical points in
the tree as their descendants consist of most of the population. For example,
when node 1 leaves, 8 nodes will be disconnected in Figure 3.2, while only 4
affected in Figure 3.1.

Resource-poor peers near the root also cause a tendency for the tree to
become prematurely saturated in a dynamic environment. A tree is satu
rated when every node in the tree is unable to accept more children, leaving
some other nodes unable to join the tree. Ideally a tree should only become

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Blocked:

© ©
© © © 0 ©

Figure 3.3: Premature saturation Figure 3.4: Preemption avoids prema-

saturated when R I tree < P when R I tree > 1 all participants should be able
to join the tree. However due to dynamics of peer participation, it is pos
sible for a resourceful tree (R Itree > 1) to become saturated prematurely,
causing a large portion of nodes including some resource-rich hosts discon
nected. Premature saturation happens when some critical resource-rich host
near the source fails and its position is taken over by another resource-poor
host. An example of premature saturation is shown in Figure 3.3, which can
be formed following a link failure between node 1 and node 2 in Figure 3.2.
Premature saturation causes a damaging effect to the tree-based system. It
happens more frequently in a resource-constrained environment where there
are a lot of resource-poor hosts in the system and the tree tends to be more
unbalanced.

3.3 W hat about Preem ption?
An apparent solution to avoid premature saturation is preemption. Preemp
tion allows disconnecting resource-poor hosts from the tree and replacing
them by incoming resource-rich hosts [19]. An example of preemption is
shown in Figure 3.4. W ith preemption, resource-poor peers will eventually
be pushed further away from the source, resulting in a more balanced tree.
Preemption can also serve as an incentive scheme to reward contributing
hosts [20].

However, a practical design of preemption has to be able to prevent cheat
ing when identifying contributing hosts because users tend to deliberately

ture saturation

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

misreport information if there is an incentive to do so [21]. If a node declares
it has more resources than it has and attempts to accept more children than
its capacity allows, it affects not only its own performance, but also its chil
dren’s performance. We may try to measure and verify reported information
from peers, but it requires expensive techniques to automatically estimate
the outgoing bandwidth of hosts. Another question is how to ensure that a
peer actually contributes its promised donations. A peer can cheat by ac
cepting children but sending little data to them. We may catch such cheaters
if children are allowed to audit their parent’s behaviors and complain when
they believe they are being “mistreated” . But this leaves the possibility of
fake complaints and collusion.

In this chapter, we have identified two key issues in a tree-based over
lay. One is whether there are enough resources to sustain a scalable tree
in a heterogeneous environment. Another issue is whether it is feasible to
maintain a stable and connected tree in the presence of peer transience. We
find that a tree-based overlay is susceptible to premature saturation in a
resource-constrained environment. This observation poses serious questions
on whether a tree-based scheme is feasible to support high bandwidth streams
in the current Internet environment. To this end we seek to design a P2P
live streaming system that does not rely on a rigid structure like a tree.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Design of A Swarm-Based P 2P
Live Stream ing System

4.1 P 2 P Sw arm ing
Recently, an unique peer-to-peer content distribution mechanism has become
very popular, which is sometimes called P2P swarming or file swarming. The
technology is most commonly implemented in the Bit Torrent protocol [22],
though other variations have also been proposed [23]. Unlike many peer-to-
peer systems, a P2P swarming system does not maintain a structured overlay.
Instead, nodes self-organize into an unstructured overlay in an ad-hoc fashion
whereby each node is connected to a random subset of neighbors, as shown in
Figure 4.1. A swarm topology resembles a random graph, and thus is robust
against partition even in the presence of high rate of churn [24, 25].

P2P swarming is commonly used for distribution of large static files. The
file to be distributed is broken into small units, usually 256K B to 1 M B in
size. Initial copies of these copies are distributed by the source among ran
domly selected peers. At the same time each peer periodically exchanges unit
availability information with its neighbors, and transacts with them to up
load and download data units in parallel. After all the units are downloaded,
a peer can re-construct the original file.

It has been shown, both in the literature [26] and in real-world appli
cations [27], that P2P swarming content distribution is more efficient than
traditional client-server and CDN approaches with respect to the utilization
of upstream capacity. And we argue that some unique features of swarming

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1: Swarming: Peers form a random overlay

could make it a better live streaming solution than a tree-based one in situ
ations where many hosts have asymmetrical bandwidth and short sessions:

• Splitting content into small units helps to fully utilize small granules
of available service capacity. Resource-poor hosts that cannot support
children in a tree are now able to act as suppliers in a swarm and
contribute their upload bandwidth. In circumstances where there are
barely sufficient resources, especially at the point when R I > 1 >
RItree> a swarm is able to sustain the demands of all participants when
a tree cannot.

• In a tree a peer receives data from one single supplier - its parent. In
comparison, a peer in a swarm downloads from multiple suppliers in
parallel, which enables it to better cope with bandwidth fluctuations
and recover from loss of supplier(s) with less quality degradation.

• The bidirectional property of data transfers in a swarm makes it feasible
to implement a low-cost and robust incentive scheme, as shown by the
effectiveness of the tit-for-tat variant policy used in BitTorrent [22].

However P2P swarming is originally designed for file downloading only.
It is not trivial to extend it to support live streaming because live streaming
has some distinct characteristics that put more stress on the system.

• One of the reasons that swarming achieves high throughput is that data
units are distributed out of order. The most commonly applied algo
rithm is the rarest-first policy [22], where the least duplicated data unit

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

among neighbors is uploaded first in order to improve data diversity .
However, live streaming requires data to be accessed sequentially. If
every peer tries to acquire data in strict streaming order, the overall
performance of the swarm will deteriorate due to overlapping data sets
among peers.

• Compared to file downloading, live streaming is less tolerant toward an
insufficiency of resources. A lower resource index only causes a longer
waiting time in file downloading, but it seriously degrades the playback
quality in streaming. If peers find the stream not watchable, they may
decide to leave.

• Only the average download speed matters in file downloading. But
for streaming, it is also important to receive the data at a relatively
constant rate because the playback quality is subject to oscillations in
download speed. Also to ensure the “liveliness” of the stream playout
(i.e., to keep it as close to the ’’live” transmission instants at the source)
the delay to disseminate a unit to all the peers must be kept relatively
small.

• In file swarming, after the source has distributed a full copy of the
file, it functions as a normal peer and may leave without damaging
the system. For live streaming, the source remains as the only “seed”
in the system throughout the broadcast session. If the source fails to
distribute enough copies of some data units, those units may not be
able to traverse the whole overlay in time.

We now start to present the design of our swarm-based P2P live streaming
system in details. Note that some operations of the protocol are common in
generic file swarming so we describe them concisely.

4.2 M em bership M anagem ent
Like most P2P swarming systems, a peer joins by connecting to a number
of peers that are currently in the swarm. We assume that there is a third-
party membership service that provides random knowledge about current
participants. It helps peers to form a random-graph togology that is robust
against partition even in the presence of high rate of churn [24, 25]. There

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are some existing techniques to implement such a membership service, like
the central tracker used in BitTorrent, or by a distributed mechanism, either
flood-based (like Gnutella) or gossip-based [28]. Upon being queried by a
joining peer, the membership service returns a random subset of m peers
that are currently in the system.

With the help of the membership service, each peer, including the source,
tries to maintain connected to at least m neighbors. The neighbor list is con
tinuously updated during the session to accommodate membership dynamics.
When a peer leaves the system, it will notify the membership service and its
neighbors. When the number of neighbors connected to a peer becomes less
than m due to departures, the peer will query the membership service again
to discover some new neighbors.

4.3 Buffering

The live stream content is broken into fixed size data units at the source.
Each data unit is assigned a zero-based index number according to its position
in the stream. We observe that peers are more interested in what is being
broadcasted “now” , and therefore are loosely synchronized with the source
in a broadcast session. At any time, a peer is only interested in a small
continuous window of the stream depending on the latency between itself
and the source. Thus only a small size buffer is needed to store the data
units that are inside a peer’s current window of interest. As shown in Figure
4.2, a peer’s window of interest scrolls at the same rate of the stream as the
oldest data unit is being removed and later consumed by the media player.
If a data unit is still missing upon its removal, it will cause a discontinuity
at playback.

The size of the buffer determines how long a lag there is between a peer’s
playback and the broadcast time at the source. A smaller buffer size produces
a more “lively” stream but at the risk of causing higher data loss rate. On
the other hand, a bigger buffer size improves the chances of obtaining data in
time thus produces smoother playback. In this paper, we assume that each
peer can tolerate an one-minute lag behind the broadcast time and as such
allocates a corresponding size of buffer.

The availability of data units in the buffer of a peer is represented by a
bitfield along with the index number of the oldest unit in the buffer. When
two peers establish a connection, they exchange their bitfields during the

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ missing unit I

P H downloaded unit

a loss at playback

Sliding W indow o f Interest

A -58 A -59 A -60A—1 A -2

Figure 4.2: A peer’s buffer is controlled by a sliding window. A is the index
number of the latest data unit at the source.

handshaking. Each time a peer obtains a new data unit, it announces the
availability to its neighbors by sending a have message, which includes the
index number of the newly downloaded unit. After receiving a have mes
sage from a neighbor, a peer updates that neighbor’s bitfield accordingly. It
should be noted that the overhead of exchanging have messages is very small.
Assume each data unit contains one second of media data, which implies that
a peer generates have messages at an average rate of one message per second.
Suppose the size of a have message is 40 bytes, the upload/download band
width consumed by have messages is only about 16kbps for a peer connected
to 50 neighbors. Such a small overhead is negligible compared to the stream
bitrate.

The buffer is empty when first allocated. Therefore it is wise for a newly
connected peer to defer playback until its buffer is filled up with contiguous
data units to the average level of its neighbors. We define startup delay as
the delay between the time a peer connects and the time it actually begins
playback.

4.4 C red it-B ased Incentive Schem e

Like many peer-to-peer applications, we allow users to configure how much
upload bandwidth they are willing to contribute. Sometimes limiting the
amount of upload bandwidth to contribute is necessary to avoid impeding
other ongoing activities sharing the same connection. We also assume that
users will not specify values exceeding the upload capability of their network
connections. Note that it is not in a peer’s own interest to set its upload

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bandwidth to the physical capacity because doing so will likely lead to con
gestion on the upstream link, which in turn hurts its download speed.

Realizing that peers are heterogeneous in their upload capacity, we do
not require everyone to contribute a minimum amount of bandwidth to be
admissible into the system. Instead, we aim to design an incentive scheme
that encourages resource-rich peers to contribute more upload bandwidth and
subsidize resource-poor peers. Ideally, resource-poor peers are to be served
normally as long as there are sufficient resources available. But once resources
become critical, the incentive scheme should allow peers that contribute more
upload bandwidth to receive better playback quality in order to encourage
them to continue their contribution.

A candidate solution is apparently the tit-for-tat upload algorithm de
scribed in [22], which has been proven to work pretty well in real-world
networks as shown by the success of BitTorrent. The algorithm works in a
fully distributed way by letting each peer work independently to maximize
its own download rate. A peer selects a fixed number of neighbors to upload
while “choking” others. It decides which neighbors to upload strictly based
on the current download rates it receives. As a result, peers that upload
more tend to have higher download rates as well. Once a peer has finished
downloading the whole file, depending on its level of altruism it either leaves
or becomes a “seed” to continue uploading.

The above incentive scheme has the important property of being history-
independent. When a peer determines which neighbors to reciprocate, it does
not consider history transactions or long-term transfer rate. Instead only
the instantaneous transfer rate is taken into account in order to maximize
the download throughput. However, in live streaming the average download
rate a peer can achieve is restricted by the stream bitrate. Once a peer
has obtained all the data units currently available in the system, it stops
downloading until it slides its window of interest to accommodate a new data
unit generated at the source. W ith a history-independent incentive scheme,
an adversarial move during such transient periods is to stop uploading as
well because there is no direct reciprocity to continue uploading. Such selfish
moves could cause underutilization of resources and fluctuations in download
rates.

In order to encourage “seeding” behaviors from (potentially adversar
ial1) peers, we introduce a credit-based incentive that is designed to be more

1 “Adversarial” in this context means a peer with selfish behavior tries to maximize

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

history-dependent. A peer assigns a credit (CR) to each neighbor to guide
future reciprocation decisions. A neighbor’s credit is continuously updated
solely based on the net amount of data the peer has received from that neigh
bor. When a peer receives a data unit from neighbor i successfully (before
playback), it increments neighbor Vs credit accordingly: C R % = CRi + 1.

With a history-dependent credit in effect, an adversarial peer cannot ex
pect immediate rewards from short-term cooperative behaviours. Therefore
it is encouraged to continue uploading to accumulate its credits regardless
of the progress of its downloading. However, an ever increasing credit could
bring another problem to the incentive scheme. Having uploaded a certain
amount of data to a neighbor, an adversarial peer may decide not to upload
anymore data to that neighbor because it has accumulated enough credits to
secure reciprocations from that neighbor. Also in a dynamic environment,
newly connected peers will find themselves in an adverse position to compete
with peers that have been around for a while. Thus we introduce an aging
factor (3 into credit computation to reduce old credits in the process. Each
peer periodically (default is once every second) updates its neighbor’s credit
by: CRi = (3 x CRi, 0 < (3 < 1.

Each newly connected neighbor receives an initial credit e > 0. The value
of e determines the competitiveness of a new neighbor. Note that a big e
can undermine the effectiveness of the incentive scheme. In particular, if e
is higher than its current credit, an adversarial peer is tempted to whitewash
itself [29] by acquiring a new identity to avoid the penalty on free-riding. In
this paper, new neighbors receive an initial credit e = 0 to impose a penalty
on newcomers and discourage whitewashing.

In summary, the algorithm to calculate neighbor z’s credit can be de
scribed as following:

• CRi — 0 (initially);

• CRi — CRi + 1, when successfully receives a data unit from z;

• CRi = (3 x CRi, 0 < (3 < 1 (periodically).

Note that our incentive scheme is immune to cheating and collusion as
peers make decisions strictly by observing the behaviors of their neighbors.
As a result, malicious peers can not benefit from colluding because the in
centive scheme only relies on local states.

its gains while still playing according to the rules of the P2P protocol, i.e., by exploiting
weaknesses of the protocol.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Inform ed P u sh -B ased Scheduling A ssisted
by Feedback

A common feature of many multicast systems is that data delivery is sched
uled in a push-based fashion: Data are forwarded without explicit requests
from the receivers in order to reduce overhead and accelerate the propagation
of delay-sensitive data. Therefore a push-based scheduling is more desirable
for broadcasting live stream to a large set of dispersed nodes in a short time
limit.

However, there are a few disadvantages to a purely push-based scheduling.
It is difficult to recover from data loss if the receiver is unable to ask for
retransmission of lost data. The reason we would prefer retransimission in
a live streaming environment is due to the one-minute buffer size, which
gives us enough time to benefit from retransimission. Another disadvantage
of push-based scheduling happens when there are multiple suppliers for a
given receiver. Uninformed push may create duplicate transfers, which is
particularly undesirable in a resource-constrained environment.

We devise an informed push-based scheduling strategy assisted by feed
back from receivers, which works as follows. A peer always uploads to a
fixed number of neighbors depending on its upload capacity. 2 When it
finishes uploading a complete data unit, it selects the next recipient based
on its neighbors’ credit rating: the neighbor having the highest credit will
be chosen. Once a peer chooses a neighbor to reciprocate, it compares its
own bitfield with the neighbor’s bitfield to determine a subset of data units
it is able to offer. The particular unit to be uploaded is then selected from
the subset in a random fashion. Note that we do not employ a rarest-first
selection policy because a rarest first policy tends to postpone transferring
units imminent to playback since those units are usually more common in
the system. This can cause unnecessary playback discontinuity. On the other
hand, always selecting units imminent to playback might yield better play
back continuity, but doing so can undermine data diversity in the system,
resulting in a lower throughput because the performance of a swarm-based
system is directly subject to data diversity. We find that simply selecting

2 We assume that the underlying transport protocol is able to saturate the upload
capacity and control congestion as the same time. In practice, a variant of TCP Friendly
Rate Control (TFRC) protocol [30] may be used instead of TCP to avoid the abrupt
changes of the sending rate, which are unfavorable in a streaming application.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unit at random is a good compromise between data diversity and playback
continuity.

W ith informed push, recovering from data loss caused by node failures is
an automatic process. However there is still a possibility that a peer receives
duplicate data from multiple suppliers, especially when only a few data units
are still missing from its buffer. When a duplicate transfer happens, the re
ceiver intervenes by sending back a feedback message, instructing the supplier
to stop and instead send another data unit suggested in the feedback.

Because the source receives no upload, all its neighbors have a zero credit.
To ensure fairness the source uploads to its neighbors in a round-robin fash
ion. Also the source always pushes out the latest data units with higher
priority. This is done to facilitate in-time data delivery and avoid late data
loss.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Evaluation

5.1 E xperim ental Setup
We developed a flow-level, discrete-event simulator to simulate the P2P live
streaming network. The simulator models the pairwise latency between peers
and it does not model packet losses and cross traffic for simplification. W ith
out considering a physical network topology, we assume all nodes reside at
the edge of the network and no bottleneck links exist in the core of the net
work. This simplification implies that congestion only happens at the access
links to the network [31]. In a P2P streaming system, the bottleneck re
sources are indeed the limited upload capacity of end hosts. Therefore our
simulator only models congestion at those outbound links, which is done by
fairly divide available bandwidth between concurrent flows leaving a node.

5.1 .1 T h e N etw ork

The simulated network consists of 1740 nodes, with a pairwise latency matrix
derived from measuring the inter-node latencies of 1740 DNS servers using the
King method [32]. For simulations involving larger networks we assign each
node a random pair of coordinates on a two-dimensional Euclidean space and
derive the network delay between a pair of nodes from their corresponding
Euclidean distance. The average and maximum round-trip delay between
node pairs in both the King data set and the Euclidean plane is about 180
ms and 800 ms respectively.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

eo
Average session length = 15 minutes0.7(Jca

G
5 0.5
u
1 0.4

I 0.3

M edian session length = 5.5 minutes

3u
0.2

0.1

500 1000 1500 2000 2500 3000 3500
Session length (seconds)

Figure 5.1: Cumulative distribution of session length

5.1 .2 P eer M em b ersh ip D yn am ics

Based on the measurement’study of live streaming workloads in [8, 9], we
model the interarrivals of newly joined peers by an exponential distribution.
The average arrival rate is represented by A. After a peer joins the broadcast,
it stays in the system for a random period of time before it leaves. Such
period of time is defined as the session length, which follows a log normal
distribution shown in Figure 5.1. Note there are a significant number of very
short sessions and the median length is only about 5 minutes. However the
mean length is around 15 minutes. This implies a heavy tail where a few
peers tune into the broadcast for much longer periods of time.

5 .1 .3 S tream in g M ed ia M od el

We assume the source is broadcasting a constant bitrate stream encoded at
512kbps. The stream consists of a sequence of media packets. Each packet
contains the compressed media data spanning across a short time period,
which is assumed to be one second in simulations. The loss of a single packet
causes the media of that second alone to be not decodable, thus incurs an one-
second playback discontinuity. Note that the media packet is interchangeable
with the data unit defined in Chapter 4.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 .4 B im o d a l C onfiguration o f U p load C ap acity

We divide peers into two categories according to their upstream bandwidth:
(a) resource-rich peers have an upstream bandwidth of 2048kbps, which is
four times the bitrate; (b) resource-poor peers have a constrained upstream
bandwidth of 25Qkbps, half the bitrate. Since we only consider congestion at
upstream links, peers are assumed to have unlimited downstream capacity.
The percentage of resource-rich peers a controls the resource index R I and
RItree in the system as: R I = 3.5a + 0.5 and RItree = 4a.

5.1 .5 A T ree-B ased P ro to co l

To compare the performance of the swarm-based live streaming protocol with
a tree-based one, we implemented a simplified version of the tree overlay pro
tocol borrowed from [19]. Like many existing P2P live streaming approaches,
it builds and maintains a single connected tree rooted at the source. When
a peer needs to connect to the tree, either at its join time or at the time
of a reconnection, it contacts the peer membership service to get a random
subset of m peers that are currently in the system. It will then probe the
m peers to see if they are currently connected to the tree and have enough
capacity to support a new child. If there are multiple positive replies, the
peer selects the parent with the minimum depth. This process is repeated
until the peer is able to find a parent and connect to the tree. Unlike [19], we
do not give higher priority to join requests from potential contributors based
on the reasoning that it is very difficult to realize such a preemption scheme
in real-world networks (see Section 3.3). Therefore there may be cases where
the tree becomes prematurely saturated, leaving some resource-rich peers
unconnected and unable to contribute their upload bandwidth. We also em
ploy a different tree repairing method when an internal node fails: Instead
of having each disconnected descendant look for a new parent independently,
only the children of the failed node try to reconnect while others stay put in
the subtrees. Such graft-like method generates fewer reconnection requests.
It is also supposed to create a more stable tree structure.

5.2 S im ulation R esu lts
Unless otherwise noted, each run of simulation simulates a period of two
hours. To allow the system to reach steady state behavior, we start to collect

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: Default simulation parameters

Number of hosts returned
by the membership service

m = 20

Average arrival rate A = 1 arrival per second
Credit aging factor /? = 0.9 per second
Initial credit e = 0
Startup delay 30 seconds
Size of the sliding window 60 seconds
Source capacity 2560 kbps

statistics after a warm-up period of one hour in simulation time. Default
simulation parameters are listed in Table 5.1.

5.2 .1 P erform an ce o f th e T ree-B ased P ro to co l

We evaluate the performance of the protocols using two important metrics,
average stream quality and aggregate system throughput. Average stream
quality measures the playback continuity received at individual peers, defined
as the number of data units arrived before playback over the total number of
units. Aggregate system throughput measures the performance of the system
as a whole, defined as the aggregate instantaneous download throughput over
the total amount of demands (number of peers times the stream bitrate).

Figure 5.2 plots the average stream quality as a function of a, the per
centage of resource-rich peers. It can be seen that the stream quality remains
very low when there are few resource-rich peers in the system. Only after
a exceeds 0.25, the stream quality begins to improve to an acceptable level.
When half of the participants are resource-rich peers, the tree is able to de
liver a near perfect quality stream to all participating peers. Figure 5.2 also
shows that the source’s capacity is very important in a tree-based proto
col. A small fan-out degree at the source has a big negative impact on the
performance because the tree is more likely to become unbalanced if a few
resource-poor peers happen to be connected near the source.

Figure 5.3 shows the changes in the tree’s aggregate throughput over time
under different resource conditions. We find that lack of resources causes in
stability in the tree. When a = 0.4, the system is able to quickly recover from

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Source capacity (kbps)

2560 —0-
5120 — h

Percentage o f resource-rich peers (%)

Figure 5.2: Tree’s performance as a function of a under different
capacity

i

0.8

0.6

0.4

0.2
(c = 0.360)
(c = 0.082)
(a ■ 0 .008 ;

a = 0.25
a = 0.3

0 —
5600 5700 5800 5900 6000 6100 6200 6300 6400

Time (seconds)

Figure 5.3: Less resources cause more instabilities in the tree

32

source

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node failures. The sample standard deviation a of the system throughput
over the shown time period is negligible, at 0.008. W ith a smaller a = 0.3, the
system becomes more vulnerable to peer transience. Oscillations in through
put occur more frequently and last longer, resulting in a higher standard
deviation of 0.08. When a = 0.25, the tree begins to experience large-scale
and continuous breakdowns. The throughput plunges when a lot of peers are
disconnected due to departures occurring near the source. W hat is worse is
that some breakdowns continue for a long period of time if the tree becomes
prematurely saturated. Such highly fluctuated throughput is destructive to
playback continuity by causing frequent buffer underflows.

Figure 5.4 shows the underutilization of resources in the tree at a = 0.25
over time. Total resources (RI) are the total amount of upload bandwidth
available in the system. Usable resources (RItree) are the amount of upload
bandwidth that can be used to construct the tree. The difference between
R I and RItree demonstrates the inherent underutilization of resources in
the tree-based protocol because resource-poor peers are unable to contribute
their upload bandwidth in the tree. The capacity of the tree is determined by
the amount of upload bandwidth from resource-rich peers that' are currently
in the tree. Apparently the tree’s capacity is maximized and equal to RItree
when all resource-rich peers are connected. However as shown in Figure 5.4,
the tree’s capacity is only maximized in a few cases. Instead it often hap
pens that many resource-rich peers are blocked from joining the prematurely
saturated tree, which exacerbates the underutilization of resources.

To further illustrate the instability of the tree structure, we plot the
cumulative distribution of disruption periods in Figure 5.5. A disruption
period is the interval between the time a peer is disconnected from the tree
and the time it finds a new parent, during which the peer suffers playback
discontinuity. Figure 5.5 confirms that a tree is much more unstable in
a resource-constrained environment. When a = 0.4, most disruptions are
recovered in less than 1 second; but when a drops to 0.25, more than 30 %
of disruptions last longer than 10 seconds .

5.2 .2 P erform ance o f th e Sw arm -B ased P ro to co l

Figure 5.6 and Figure 5.7 show the performance results of the swarm-based
protocol. Comparing Figure 5.6 to Figure 5.2, we find that the swarm-based
protocol is much more resilient to scarcity of resources than the tree-based
protocol. Because a swarm is able to fully utilize all the available resources,

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4

1.2

1

0.8

0.6

0.4

Total resources --------
Usable re so u rces--------0.2

0 —
5600 58005700 5900 6000 6100 6200 6300 6400

Time (seconds)

Figure 5.4: Resource underutilization in the tree (a = 0.25). Note that the
throughput curve in Figure 5.3 closely follows the tree’s capacity in this fig
ure, indicating that our tree-based protocol is efficient in locating unsaturated
nodes.

0.9

0.7

0.5

0.4

0.3
oc =

0.2
100

Disruption period (seconds)

Figure 5.5: Cumulative distribution of disruption periods in the tree

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

3o*
OJto
<L) 40
CD>
<

Source capacity (khps)
201

2560 —6-
5120 —+-

100 5 15 20 25 30 35 40 45 50
Percentage o f resource-rich peers (%)

Figure 5.6: Swarm’s performance as a function of a under different source
capacity

the average stream quality in Figure 5.6 quickly improves as the resource
index increases. At a = 0.2, the swarm-based system is able to deliver a near
perfect stream while the stream in the tree-based system is still unwatchable
(quality <C 50%). We also find that a swarm requires less source capacity
to yield good performance than a tree does. The reason is that the data
forwarding load in a tree is carried by a fraction of internal nodes only, while
in a swarm all the peers are engaged in distributing data. Therefore the
problem of premature saturation, which plagues a tree with limited fan-out
degree at the root, seldom happens in a swarm.

Not only can it produce much better stream quality, a swarm is also more
stable than a tree in the presence of churn. The reason is that a swarm does
not need to maintain a rigid structure. Instead the propagation path of data
units is constantly changing to be adaptive to network dynamics. Figure
5.7 plots the swarm’s aggregate throughput over time. When a = 0.25, the
system throughput remains within a very small range below 1 and the sample
standard deviation is only 0.003. This is in sharp contrast with what we see
in Figure 5.3, where the throughput of a = 0.25 fluctuates intensively in an
unpredictable way, resulting in an extreme standard deviation of 0.36.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

0.4

0.2
(a = 0.032)
(a = 0.014)

a = 0.1
a = 0.15

0 —
5600 5700 5800 5900 6000 6100 6200 6300 6400

Time (seconds)

Figure 5.7: More resources bring higher throughput and better stability to
the swarm

5.2 .3 S ca lab ility o f th e S w arm -B ased P ro to co l

To study the scalability of the swarm-based protocol, we generate different
workloads on the system by increasing the arrival rate A. Figure 5.8 shows
how different network sizes affect the average and the maximum path length
to deliver data units from the source to all participating peers. We find that
the path length grows very slowly as the number of nodes increases. This is
expected because the propagation routes for each particular data unit follow
a spanning tree rooted at the source, whose depth grows logarithmically with
the size of the network. As shown in Figure 5.8, even when there are ten
thousands of nodes in the swarm, the propagation tree still stays within a
practical depth, incurring a maximum end-to-end latency in the order of a
few seconds if we ignore the waiting at each hop.

In the same set of experiments, we also find that the average stream
quality is not affected by the network size in a noticeable way, and we omit
the results for brevity. Moreover, because a peer is connected to a fixed
number of neighbors regardless of the total number of nodes, the overhead
at each peer is also independent of the network size.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

10

9

8

7

6

5

. i .. Average path length
j Maxinyim path length

8000

4

2000 4000 6000 120000 10000 14000
Number o f peers

Figure 5.8: Swarm shows good scalability to network size (a = 0.25)

5 .2 .4 P rov id in g In cen tives

To investigate the effect of the credit-based.incentive scheme, we compare
the average stream quality received by resource-rich and resource-poor peers
in Figure 5.9. As we expected, the incentive scheme works in an adaptive
way, responding differently to different resource conditions in the system.
When the resource index is larger than 1, both resource-rich and resource-
poor peers are able to receive near-perfect stream quality because there are
more than enough resources to sustain the whole population. However once
the resource index drops below 1, the effect of the incentive scheme begins to
show up: the stream quality received by resource-poor peers plunges, while
resource-rich peers are not as remarkably affected. This difference in qual
ity of service becomes more distinguishable if the resource index continues
to drop. Therefore, resource-rich peers are encouraged to contribute larger
amount of uplink bandwidth, because doing so will lead to better playback
quality in the presence of resource variations. Another beneficial effect of
the incentive scheme is when the system is short- of resources, resource-poor
peers are more likely to leave due to poor stream quality, while resource-rich
peers are more likely to stay since they see much less quality degradation. As
a result, the system will be able to self-recover from resource shortage and
restore the average stream quality.

Figure 5.10 plots the average path length of resource-rich and resource-
poor peers as a function of a. It is desirable to receive data across shorter

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120
Resource index —0-

Resource-rich quality — H

100

cr
e
03<Uts

<5
>
<

105 15 20
Percentage o f resource-rich peers (%)

25 30

Figure 5.9: Resource-rich peers receive better stream quality under con
strained bandwidth conditions

paths, since it reduces the propagation delay and the probability of service
disruption. We find that there is a clear correlation between the path length
of a peer and the amount of its contributions. Resource-rich peers receive
data in fewer hops, which serves as another incentive for them to contribute
more uplink bandwidth. This is a natural consequence of the credit-based
incentive scheme that favors peers with higher credits. A resource-rich peer
accumulate more credits at its neighbors by uploading more. Therefore it is
able to preempt other resource-poor peers in the contention for upload slots.
Since resource-rich peers have higher out-degree, placing them closer to the
source also reduces the depth of the spanning tree.

5.2 .5 E ffect o f S tartu p D ela y

When a peer joins the system, it has an empty buffer and no credit as e = 0.
Therefore the data loss rate is likely to be very high before the peer can
obtain a few data units and accumulate some credits. Figure 5.11 shows the
average data loss rate during a peer’s startup time under different resource
conditions. With a reasonable resource index (a — 0.25), a newly connected
peer can expect its buffer to be filled up to the average level in less than
30 seconds by its neighbors. From that point on, the peer is able to receive
the stream with nearly no data loss. Therefore a 30-second startup delay is

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5
Resource-rich —O-

Resource-poor — b

5.5

g 4.5
<C

3.5
5 10 15 20 25 30 35 40 45 50

Percentage o f resource-rich peers (%)

Figure 5.10: Resource-rich peers are placed closer to the source

enough for a new peer to start smooth playback. However we also find that a
much longer startup delay is necessary if the resource index geijS lower. Such
a penalty on newcomers can be partly lifted with a higher initial credit e.

a = 0.250.9

0.7

0.6

I 05
" 0.4a

0.3

0.2

0.1

100
Time since jo in (second)

Figure 5.11: Data loss rate during startup period

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Im plem entation

In this chapter, we proceed to implement a real-world P2P live streaming
system based on the proposed design in Chapter 4. Many challenges involved
in developing a deployable and operational system are not considered in the
design phase. For example, our system needs to support users behind network
address translators (NATs) and firewalls, which consist of a large percentage
of Internet users nowadays. The system also has to cope with a variety of
popular media player and encoder softwares in order to import media data
from encoders and provide them for playback in media players. In engineering
our system, we have adopted some simple or existing solutions to accelerate
the development. As a result, some compromises have been made to use
suboptimal approaches with the hope that they can be revisted later. But
still significant efforts have been invested to make the system robust and easy
to use to meet the requirements of public release.

6.1 S ystem O verview
Figure 6.1 gives a high-level overview of the live streaming system. The
encoder converts the raw audio/video data generated by the camera into a
compressed media stream, and sends it to the source peer. The source peer
cuts the media stream into pieces of fixed size, typically each piece contains
roughly one-second of media data. It should be noted that data integrity
is not verified in the current implementation. The source peer and receiver
peers run the same swarm-based P2P live streaming protocol to disseminate
the stream data in the units of pieces along the overlay. Each receiver peer

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Video Cam era Encoder Source P ee r_ ^ \

Ov/* Peer

■ »■;

—>

Peer

Tracker

Peer Peer

Figure 6.1: System overview

then forwards received data to the media player usually running on the same
machine for playback.

The tracker is responsible to maintain a constantly updated list of peers
currently in the session. A peer joins the broadcast session by contacting
the tracker. The tracker responds with a list of contact information of peers
randomly selected from the pool. W ith the help of the tracker, a random
overlay among peers is maintained for each broadcast session. This technique
is based on the existing BitTorrent specifications. In fact, an open-source
implementation of BitTorrent tracker [33] is used as the codebase to develop
our tracker software. In addition to help peers find each other, the tracker
is also responsible to gather statistics from peers for both online and offline
analyses. Currently, the data being collected include each peer’s IP address,
upload/download rate, lifetime and average playback quality.

The architecture of our P2P software is depicted in Figure 6.2. The
modules inside the broken line are the function blocks of a single peer node.
Other than the media import and player service modules, the source peer and
receiver peers share the same design and implementation, which simplifies
the development and deployment. Each of these modules will be discussed
in detail in the rest of this chapter.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Prerecorded Files

Peer

PeerT racker

Peer Connection

M edia P layer

P layer Service

B uffer M anager

Peer C onnection
Peer M anager

M edia Encoder

<N

Figure 6.2: Diagram of the P2P software architecture. Arrows indicate data
flow.

6.2 P u b lish in g and Join ing a B roadcast Ses
sion

To start a broadcast session, the source peer (publisher) first needs to define
the content to be broadcasted. The content can either be a live event cap
tured by Windows Media Encoder [34], or a list of prerecorded media files.
Currently only the ASF file format [35] is supported. The publisher then an
nounces the content by sending a HTTP POST request to the tracker. Upon
receiving the POST request, the tracker assigns a program URL to identify
the content, which includes essential information like an unique program id,
average bitrate reported by the publisher, and some optional parameters like
the name and description of the content. The program URL can either be
distributed by the publisher to potential viewers separately, or be announced
by the tracker to peers upon query.

To join the broadcast session, a user simply clicks the program URL and
the installed P2P software will be invoked with appropriate configurations.
The peer first sends a HTTP GET request to the tracker via its peer manager
module. The parameters in the GET request include the requested program’s
program id, the peer’s peer id, the port number that the peer is listening on
for incoming connections, etc. Once receiving a random list of peers from the
tracker, the P2P engine module will start to make connections to and accept
connections from other peers in the same broadcast session. Note that all
connections between peers can transfer in both directions, and are used to

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I Program Name
; My program

Average Bitrate s' Viewers :A y e ra ^ Quai|ty I
230 Kbps 21 00%

I - - —
I;Got announce response from tracker: http://68,149.198.149:8080/
| http://68.149.198.149:8080/
a tracker announce
|G ot announce response from tracker: http://68.149.198.149:8080/
| http://68,149.198.149:8080/
1 tracker announce
|G ot announce response from tracker: http://68.149.198.149:8080/

The URL of Windows Media Encoder:

P rogram Inform ation

Created by:

■ T racker In fo rm ation n

■ Tracker URL:- 'N ':" C

Figure 6.3: User interface including the publishing dialog

forward and receive stream data at the same time.

6.3 P eer-to -P eer P rotoco l
Peers exchange state information and data pieces via the peer-to-peer pro-
toocl, implemented by the peer connection module. In order to have a work
ing prototype as soon as possible, we select TCP as the transport protocol
because it is widely available and its congestion control algorithm has been
well-tested. We are aware that TCP is not an ideal protocol for real-time
streaming media due to late retransmissions and excessive rate oscillations.
In the future, we plan to incorporate TFRC [30] into the system, which is a
UDP-based congestion control protocol optimized for streaming media.

6.4 Buffer M anagem ent and Synchronization
Due to the nature of live streaming, received data quickly become obsolete
after being sent to media player while new data are being generated at the
source. Therefore a ring buffer is used to store the data pieces that are
inside a peer’s current window of interest, which constantly moves itself by
removing the oldest piece to make space for the newly generated one.

Buffer management is quite straightforward for the source peer, where the
buffer manager retrieves pieces from the media import module in a sequential

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://68,149.198.149:8080/
http://68.149.198.149:8080/
http://68.149.198.149:8080/
http://68,149.198.149:8080/
http://68.149.198.149:8080/

order, and informs the P2P engine module to announce new pieces to its
connected peers. At a receiver peer, the buffer manager is also responsible to
keep its buffer semi-synchronized with the source peer. This is achieved by
monitoring have messages the peer receives, and moving its buffer accordingly
once an out-of-boundary piece has been announced. If a peer is not connected
to the source peer directly, the movement of its buffer tends to fall behind
the source peer’s schedule. This is actually desirable since a peer only needs
to move its buffer when a new piece is available among its neighbors.

6.5 M edia P layer Interface
We use Windows Media Player as the default media player in our system
because of its dominant presence on Windows platforms. For other operat
ing systems including Linux and Mac, we support the VLC media player,
available at http://www.videolan.org/vlc/. The media player is directed to a
fixed mms://localhost:port URL served by the player service module, which
acts as a unicast streaming media server and reconstructs the original media
stream with data pulled from the buffer manager module.

6.6 N A T s and Firew alls
NATs and firewalls impose fundamental restrictions on pair-wise connectivity
of peers in the overlay. For two peers to setup a connection, at least one of
them must be able to accept incoming TCP connections. In most cases, it is
not possible for peers both behind NATs or firewalls to communicate directly
with one another. To improve overlay connectivity without sacrificing the
benefits of TCP, we have included support for the UPnP Internet Gateway
Device (IGD) protocol [36] that makes it possible for our application to
automatically configure NAT traversal. We also plan to incorporate the
STUNT protocol [37] to traverse NATs and firewalls that do not support
UPnP.

6.7 D ep loym ent and E xperim ents
After months of design and development, we have finished a working pro
totype system, including the tracker and the P2P client application. It is

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.videolan.org/vlc/

written in C + + and released at [38].
We have conducted some preliminary tests in a lab setting, where nodes

are directly connected over a switched 100Mbit network with negligible delays
and more than sufficient bandwidth. The prototype system works very well
in these small-scale trials with 8-10 nodes involved. Peers are able to play
the stream smoothly with little start-up delay. When the upload bandwidth
of the source is intentionally limited below the system throughput, peers
automatically take over the missing parts and the average playback quality
is not affected.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

In this work we present the design and implementation of an incentive-aware
P2P live streaming system, which does not maintain a rigid structure. In
stead, nodes self-organize in an ad-hoc fashion into a random-graph overlay.
An informed push-based scheduling strategy is employed to propagate data
efficiently without, many duplicate transfers. Our simulation results *show
that the architecture can scale to a large number of nodes and is resilient
to high rate of churn. W ith the help of a credit-based incentive scheme,
our system is able to work in a non-cooperative environments by reward
ing contributors while penalizing non-contributing nodes. The main results
of this study are that the swarm scheme outperforms comparable tree-based
schemes but also provides performance dividends exactly when necessary, i.e.,
when resources are scarce. In fact, it is under resource-scarce conditions that
the incentive scheme provides resource-affluent nodes with a performance
advantage that encourages their continued presence and participation.

7.1 O pen Issues and Future W ork
An important open issue is how to make the swarm topologically aware so
that the data propagation path is efficient in terms of metrics such as link
stress and end-to-end latency. It is also important for recipients to be able to
verify data integrity on the fly during a P2P live streaming session. However
existing protocols to enforce data integrity are either expensive or inapplica
ble to P2P streaming. Among the explored possibilities are reputation-based
schemes, and in general schemes that do not have to rely on pre-existing

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trust relationships.
We intend to investigate the aforementioned issues in our future work.

The work we foresee for this project also consists of improving and fine-tuning
the algorithms by expanding the test environment in real-world conditions.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE
Transactions on Information Theory, vol. IT-46(2), pages 388-404, March
2000 .

[2] S. Deering. Multicast Routing in Internetworks and Extended LANs. In
Proceedings of the ACM SIGCOMM, August 1988.

[3] C. Diot et al. Deployment Issues for the IP Multicast Service and Archi
tecture. IEEE Network, vol. 14(1), 2000.

[4] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A Case for End System
Multicast. IEEE Journal on Selected Areas in Communication (JSAC),
Special Issue on Networking Support for Multicast, Vol. 20, No. 8, 2002.

[5] H. Deshpande, M. Bawa and H. Garcia-Molina. Streaming Live Media
over a Peer-to-Peer Network. Technical Report, Stanford University, April
2001 .

[6] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A.
Singh. Splitstream: High-bandwidth multicast in cooperative environ
ments. In 19th ACM Symposium on Operating Systems Principles, 2003.

[7] P. A. Chou, V. N. Padmanabhan, and H. J. Wang. Resilient peer-to-
peer streaming. Technical Report MSR-TR-2003-11, Microsoft Research,
Redmond, WA, March 2003.

[8] K. Sripanidkulchai, B. Maggs, H. Zhang. An Analysis of Live Streaming
Workloads on the Internet. In Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, Taormina, Sicily, Italy, Oct. 2004.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[9] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin. A Hierarchical
Characterization of a Live Streaming Media Workload. In Proceedings of
Internet Measurement Workshop (IMW), Nov. 2002.

[10] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, B. Richard, S.
Rolling, Z. Xu. Peer-to-Peer Computing. Technical Report HPL-2002-57,
HP Lab, 2002.

[11] Napster Inc. The Napster homepage, http://www.napster.com /, 2001.

[12] D. Xu, M. Hefeeda, S. Hambrusch, B. Bhargava. On Peer-to-Peer Me
dia Streaming. In Proceedings of IEEE-ICDCS’02, Vienna, Austria, July
2002 .

[13] M. Bawa, H. Deshpande, and H. Garcia-Molina. Transience of peers and
streaming media. ACM SIGCOMM Computer Communication Review,
Volume 33, Issue 1, January 2003.

[14] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek and J. W.
O’Toole. Overcast: Reliable Multicasting with an Overlay Network. In
Proceedings of the Fourth Symposium on Operating Systems Design and
Implementation, 2000, pp. 197-212.

[15] Y. Chawathe. Scattercast: An Architecture for Internet Broadcast Dis
tribution as an Infrastructure Service. Ph.D Thesis, University of Cali
fornia, Berkeley, 2000.

[16] V. K. Goyal. Multiple description coding: Compression meets the net
work. IEEE Signal Processing Magazine, pages 74-93, September 2001.

[17] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. DONet/CoolStreaming: A
Data-driven Overlay Network for Live Media Streaming. In Proceedings
of IEEE INFOCOM’05, Miami, FL, USA, March 2005.

[18] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh. In Proceedings
of the 19th ACM Symposium on Operating SystemsPrinciples (SOSP
2003), October 2003.

[19] K. Sripanidkulchai, A. Ganjam, B. Maggs, H. Zhang. The Feasibility
of Supporting Large-Scale Live Streaming Applications with Dynamic

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.napster.com/

Application End-Points. In Proceedings of SIGCOMM 2004, Portland,
Oregon, Aug. 2004.

[20] W. T. Ooi. Dagster: Contributor-Aware End-Host Multicast for Me
dia Streaming in Heterogeneous Environment. In Proceedings of MMCN
2005, San Jose, California, January 2005.

[21] S. Saroiu, P. Krishna Gummadi, and S. D. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems. In Proceedings of Multimedia
Computing and Networking, 2002.

[22] B. Cohen. Incentives build robustness in BitTorrent. In Proceedings of
the First Workshop on the Economics of Peer-to-Peer Systems, Berkeley,
CA, June 2003.

[23] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A Cooperative
Bulk Data Transfer Protocol. In Proceedings of IEEE INFOCOM’04,
Hong Kong, March 2004.

[24] V. Vishnumurthy, P. Francis. On Random Node Selection in P2P and
Overlay Networks. Technical Report, Department of Computer Science,
Cornell University, 2004.

[25] G. Pandurangan, P. Raghavan, and E. Upfal. Building low-diameter p2p
networks. In STOC 2001, Crete, Greece, 2001.

[26] D. Stutzbach, D. Zappala, and R. Rejaie. The Scalability of Swarming
Peer-to-Peer Content Delivery. In Proceedings of 2005 IFIP Networking
Conference, Waterloo, Ontario, Canada, May, 2005.

[27] BitTorrent, Inc. The BitTorrent homepage.
http://w ww .bittorrent.com /, 2002.

[28] A. J. Ganesh, A.-M. Kermarrec, L. Massoulie. Peer-to-Peer Membership
Management for Gossip-Based Protocols. IEEE Transactions on Comput
ers, Vol. 52, No. 2, February 2003.

[29] M. Feldman and C. Papadimitriou and J. Chuang, and I. Stoica. Free-
Riding and Whitewashing in Peer-to-Peer Systems. In Proceedings of
ACM SIGCOMM’04 Workshop on Practice and Theory of Incentives in
Networked Systems (PINS), August 2004.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bittorrent.com/

[30] M. Handley and S. Floyd and J. Pahdye and J. Widmer. TCP Friendly
Rate Control (TFRC): Protocol Specification. RFC 3448, Proposed Stan
dard, January 2003.

[31] Z. Cataltepe, P. Moghe. Characterizing Nature and Location of Conges
tion on the Public Internet. In Proceedings of ISCC’2003, Kemer, An
talya, Turkey, Jun. 2003.

[32] K. Gummadi, S. Saroiu, S. Gribble. King: Estimating Latency between
Arbitrary Internet End Hosts. In Proceedings of SIGCOMM Internet
Measurement Workshop (IMW 2002), Marseille, France, Nov. 2002.

[33] T. Hogan. The BNBT homepage, http://bnbt.depthstrike.com /, 2006.

[34] Microsoft Corporation. Windows Media Encoder.
http: / / www.microsoft.com/windows/windowsmedia/forpros/encoder/default.mspx,
2006.

[35] Microsoft Corporation. Advanced Systems Format (ASF) Specification.
http://go.microsoft.com/fwlink/?LinkId=31334, 2004.

[36] UPnP Forum. Internet Gateway Device (IGD) Standardized Device
Control Protocol V 1.0. http://www.upnp.org/standardizeddcps/igd.asp,
2001 .

[37] S. Guha. STUNT - Simple Traversal of UDP Through NATs and
TCP too. http://nutss.gforge.cis.cornell.edu/pub/draft-guha-STUNT-
OO.txt, December 2004.

[38] SimulTV. http://www.cs.ualberta.ca/ tianhao/sim ultv/, 2006.

[39] T. Qiu and I. Nikolaidis. On the Performance and Policies of Mo
bile Peer-to-Peer Network Protocols. In Proceedings of the 2nd Annual
Communication Networks and Services Research Conference, Frederic
ton, New Brunswick, Canada, May 19-21 2004, pp. 208-217.

[40] M. Grossglauser and D. N. C. Tse. Mobility Increases the Capacity of
Ad Hoc Wireless Networks. IEEE/ACM Transactions on Networking,
Vol. 10, No. 4, August 2002.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://bnbt.depthstrike.com/
http://www.microsoft.com/windows/windowsmedia/forpros/encoder/default.mspx
http://go.microsoft.com/fwlink/?LinkId=31334
http://www.upnp.org/standardizeddcps/igd.asp
http://nutss.gforge.cis.cornell.edu/pub/draft-guha-STUNT-
http://www.cs.ualberta.ca/

[41] W. H. Yuen and R. D. Yates and S.-C. Mau. Exploiting data diversity
and multiuser diversity in noncooperative mobile infostation networks.
In Proceedings of 22nd Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM’03), San Francisco, CA, Mar.
2003.

[42] K. Sripanidkulchai. The popularity of Gnutella queries and its
implications on scalability. In Proceedings of O’Reilly Peer-to-
Peer & Web Services Conference, http://www-2.cs.cmu.edu/ kun-
wadee/research/p2p/gnutella.html, Washington, D.C., Sept. 2001.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-2.cs.cmu.edu/

