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Abstract

Large Language Models (LLMs), including Vision Large Language Models (VLLMs),

herald the coming of a new research epoch in machine learning and computational

linguistics. Despite most LLMs being predominantly trained on English, their profi-

ciency in various languages has been confirmed by many studies. Nonetheless, critical

questions remain about their performance consistency across different languages. A

similar concern is raised for VLLMs regarding their performance disparities across

various modalities. Moreover, while the remarkable competence of LLMs in solving

downstream tasks is widely acknowledged, they still fall short of satisfactory perfor-

mance in several tasks, requiring further experimentation for deeper insights. In this

thesis, we investigate the phenomenon of cross-language generalization in LLMs by

employing a novel prompt back-translation method. We investigate the interactions

and comparisons between text and image modalities by introducing a new concept

called cross-modal consistency and propose a quantitative evaluation framework based

on this concept. Additionally, we evaluate the performance of an LLM on two specific

linguistic tasks: Lexicalization Generation and Lexical Gap Detection. We have also

developed a novel algorithmic approach for comparative analysis. The findings reveal

that LLMs face challenges in providing accurate results for translation-variant tasks,

reveal a significant inconsistency between vision and language modalities within GPT,

and show that ChatGPT underperforms in the two evaluated downstream tasks, being

significantly outperformed by our rule-based method.
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Preface

The work presented in Chapter 2 is published as “Don’t Trust ChatGPT when your
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Chapter 1

Introduction

In the realm of artificial intelligence, large language models (LLMs), including Vi-

sion Large Language Models (VLLMs) have emerged as a cornerstone, bringing a

new era of machine learning and computational linguistics. These sophisticated mod-

els trained on expansive datasets, have not only redefined the boundaries of natural

language processing but also have profoundly impacted various industries and aca-

demic fields. LLMs have demonstrated superior performance in applications ranging

from text editing like writing assistance to medical study. LLMs and VLLMs, such

as GPT-3.5 and GPT-4V, serve users from diverse countries which possess a broad

spectrum of linguistic/cultural backgrounds, bringing queries in various modalities.

However, the training of LLMs is mainly focused on English, and it is a widely

recognized concern that current LLMs exhibit inconsistent capabilities across different

languages. However, there is a noticeable absence of comprehensive research that

systematically identifies and categorizes these inconsistencies. This gap in research

creates challenges in finding directions for enhancement for researchers who aim to

advance these models. Similar challenges happen to VLLMs. Researchers have raised

concerns about the varying performance of VLLMs when processing inputs of different

modalities. However, prior studies have predominantly concentrated on evaluating

performance within specific domains, with minimal investigation into the capability

differences between processing information from text and image modalities. Also,

1



despite it has been extensively demonstrated that LLMs exhibit robust performance

across a broad range of downstream tasks, they still possess insufficient comprehension

of languages like the knowledge regarding lexicons.

In this thesis, a thorough exploration and analysis of the multilingual capabilities

of LLMs are presented, along with the introduction of a novel evaluation protocol

designed to assess the multilingualism of LLMs. Employing a similar approach, a

systematic analysis was conducted to examine the consistency across different modal-

ities in VLLMs. In order to investigate the understanding of languages and lexicons

by LLMs, experimental research was carried out on two linguistic tasks. Ultimately,

we developed a novel rule-based method that significantly surpassed the performance

of LLMs.

The remainder of the chapter is organized as follows. First, we provide some

background information related to our work. Then we present and briefly explain

the thesis statement of this thesis, Finally, we briefly introduce the works that are

presented in the next 3 chapters followed by the main contributions of this thesis.

1.1 Background

In this section, we provide an overview of some key concepts. Specifically, we intro-

duce Large Language Models and Vision-Large Language Models. Large language

models represent a groundbreaking advancement in the field of artificial intelligence,

specifically within natural language processing. These models, trained on extensive

datasets comprising vast types of text, have the ability to understand, generate, and

interact with human language in a remarkably coherent and contextually relevant

manner. Large language models are characterized by their immense number of pa-

rameters – often in the billions – these models leverage deep learning techniques,

particularly neural networks, to capture the details and subtleties of language. The

advantages of large language models, such as OpenAI’s GPT series, lies in their ca-

pacity to perform a wide range of language tasks, from translation and summarization
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to question-answering and creative writing, thereby pushing the boundaries of ma-

chine understanding and the generation of human language. Vision-large language

models, exemplified by systems like DALL-E, CLIP, and their successors, have revo-

lutionized the way machines understand and interpret the visual world in conjunction

with textual information. VLLMs are trained on vast datasets containing millions of

images and text pairs, allowing them to generate, modify, or interpret visual content

based on textual descriptions with remarkable accuracy. This synthesis of visual and

linguistic understanding opens up unprecedented applications in diverse fields such

as digital art creation.

1.2 Thesis Statement

The thesis statement of this thesis is: “Current LLMs and VLLMs, such as GPT-3.5

and GPT-4V, exhibit inconsistent capabilities across different languages and modali-

ties, leading to potential limitations in performance even in language/modality-independent

tasks, making LLMs more effective as assistants rather than problem solvers”.

To grasp the concept of “inconsistent capabilities across different languages” in

a LLM, consider this example: when prompted in English with “Brandon sold 86

geckos last year. He sold twice that many the year before. How many geckos has

Brandon sold in the last two years?”, with the correct answer being “258”, the LLM

responds with “258”. However, if the same question is posed in French, the response

shifts to “129”1.

Similarly, the notion of ”inconsistent capabilities across different modalities” in a

VLLM can be illustrated through the following scenario. When asking “Give only

the answer, no steps. John is twice as old as Mary and half as old as Tonya. If

Tanya is 60, what is their average age?” in the modality of text, with the correct

answer being “35”, the VLLM identifies the answer as “40”. Yet, if the same question

is conveyed via the modality of image, like a screenshot containing the prompt, the

1The experiments were conducted on May 8th, 2023
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VLLM answers “45”2.

The idea of using LLMs as assistants rather than problem solvers can be approached

by using them not for direct task execution but as resources for information or raw/re-

fined input. Subsequently, other methods, such as rule-based approaches, could be

employed to tackle the task using the insights provided by the LLMs.

1.3 Evaluating LLMs’ Cross-lingual Consistency

In the work that is presented in Chapter 2, we propose a systematical method for

evaluating the multilingual capabilities of LLMs. To enable a thorough analysis, we

categorize language-dependent abilities into three distinct categories based on how

the choice of language affects performance: Reasoning (least impact), Knowledge

Access, and Articulating (most impact). we explore a set of carefully selected tasks

from these categories, evaluating the multilingual capability of an LLM through a

novel prompting technique named Response Back Translation (RBT). By analyzing

the responses generated, we can not only assess the LLM’s multilingual performance

but also identify the specific type of multilingualism they exhibit. For instance, we

investigate the performance of LLMs on the task of pun detection, which is a task

heavily dependent on the target language. The experiment results indicate that the

well-known LLM ”GPT” conveys a noticeable bias toward English and is characterized

by a “translator-like” behaviour when the queries are from languages other than

English.

1.4 Evaluating VLLMs’ Cross-modal Consistency

In the research that is presented in Chapter 3, we move beyond the conventional scope

of assessing multimodal systems, which typically involves evaluating them through

independent downstream tasks and presenting their respective scores. This study’s

2The experiments were conducted on October 15th, 2023
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primary focus centers on the consistencies in the capabilities of various modalities,

with particular emphasis on vision and language. To facilitate a thorough analysis,

this work has introduced the concept of cross-modal consistency. Following this,

we developed an evaluation framework and a comprehensive vision-language parallel

dataset that covers seven tasks. Each task is specifically designed to highlight different

aspects of vision and language skills. Our experimentation with the GPT-4V model on

this dataset reveals notable inconsistencies between its abilities to solve questions in

vision and language modality. The findings demonstrate that GPT-4V’s performance

varies significantly depending on whether the same task instance is presented in one

modality versus the other.

1.5 Evaluating LLMs on LexGen and LexGap tasks

The work introduced in Chapter 4 includes 2 tasks, Lexicalization Generation (Lex-

Gen) and Lexical Gap detection (LexGap). Given a language-independent concept

and a target language, the output of a LexGen system is either a lexicon that lexical-

izes the given concept or indicates the concept is a lexical gap. LexGap is a binary

identification task which can be reduced from LexGen. Given the same input as Lex-

Gen, the output of a LexGap system is either the provided concept is a gap or not.

To employ GPT-3.5-turbo on these tasks, We use in-context learning Brown et al.

2020, a technique allowing large language models to execute tasks based on examples

included in their input instructions, without the need for external updates or specific

model training. We prompt GPT-3.5-turbo with the template shown in Table 4.4

in the Appendix. What can be used to do the comparison is a generally applica-

ble algorithmic method we propose to automatically generate concept lexicalizations,

which is based on machine translation and hypernymy relations between concepts.

An absence of a lexicalization implies a lexical gap. We conducted the experiments on

kinship terms, which makes a suitable case study due to their explicit definitions and

clear structure. Empirical evaluations demonstrate that our approach yields higher
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accuracy than GPT-3.5-turbo. This indicates that even one of the top LLMs, GPT-

3.5-turbo, falls short in these two downstream tasks which can be done better by

algorithmic approaches grounded in robust linguistic theories and propositions.

1.6 Contributions

In this thesis, we propose a systematic way of qualitatively and quantitatively evalu-

ating the multilingual capabilities of LLMs. we investigate the phenomenon of cross-

language generalization in LLMs, wherein limited multilingual training data leads to

advanced multilingual capabilities. Under the same thought behind cross-lingual con-

sistency, we thus introduce a new concept: cross-modal consistency. Following this

concept, we propose a quantitative evaluation framework accompanied by a cross-

modal dataset which is used to evaluate the cross-modal consistency of vision-large

language models.

Furthermore, we evaluate the capabilities of LLMs on two downstream linguistic

tasks, LexGap and LexGen, to investigate LLMs’ depth of understanding of lan-

guages. this study reveals the deficient ability of LLMs to solve language-specific

lexical questions. To progress further on these two tasks, we developed a novel rule-

based method that leverages theories built based on the hypernymy/hyponymy rela-

tionships between language-independent concepts. An empirical experiment showed

that our method can outperform GPT-3.5-turbo by a large margin on these tasks.
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Chapter 2

The Evaluation of Multilingual
Capabilities of LLMs

The study of bilingualism has long been a topic of interest among linguists (Yu et al.

2022; Hoffmann 2014), as it provides insight into the mechanisms of language acqui-

sition and processing. Furthermore, research on multilingualism has contributed to

the development of more effective machine learning models, such as neural translation

systems (Zou et al. 2013). With the rise of large language models (LLMs), researchers

have discovered many emergent properties (Wei et al. 2022a) in these models, and

have used them for a variety of purposes (Wei et al. 2022b). However, the multilingual

ability of these models has not been extensively studied.

Previous research has shown that large language models, such as GPT, are ca-

pable of performing a wide variety of language tasks when the task is presented in

English (Qin et al. 2023). However, investigations into the multilingual language

abilities of these models have been limited. F. Shi et al. explore this topic by ap-

plying the models to multilingual datasets, and measuring performance differences

across languages. However, they do not explore the underlying mechanisms of how

LLMs perform different tasks, nor how this affects the results. Moreover, most LLMs

(Brown et al. 2020; Touvron et al. 2023) are trained on datasets that are heavily

skewed towards English, which leaves open the question of how multilingual abilities

in such models are acquired.
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knife

(a) Compound (b) Coordinate (c) Subordinate

couteauLexicon

Internal
Concept

En Fr
knife couteau

En Fr

Translation

Type

knife couteau
En Fr

Figure 2.1: The three types of bilingual lexical representations.

In this study, we present a systematic approach to analyzing the multilingual ca-

pabilities of LLMs. To facilitate a comprehensive analysis, we propose categorizing

language-dependent abilities into three distinct categories which vary in the impact

of language choice on the performance: Reasoning (least impact), Knowledge Access,

and Articulation (most impact). We investigate a carefully selected set of tasks from

these three categories by evaluating the multilingual abilities of an LLM using a novel

prompting method which we call response back-translation (RBT). By comparing the

generated answers, we can both measure multilingual performance of the LLM, but

also determine the type of multilinguality they exhibit. For example, we examine the

capabilities of LLMs on pun detection, a highly language-dependent task.

The results of our experiments show that the popular LLM “GPT”: (1) achieves

higher performance when the task is presented in English; (2) achieves higher perfor-

mance on tasks that can be translated without altering the correct output; and (3)

exhibits a mixture of coordinate and subordinate bilingualism.

Our main contributions are:

• We present a first-of-its-kind quantitative and qualitative analysis of the multi-
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lingual abilities of LLMs.

• We propose two novel task categorizations to facilitate the multilingual ability

analysis.

• Our work is the first to investigate LLMs with respect to a linguistic typology

of bilingualism and multilingualism.

2.1 Background

There are three types of bilingual lexical representation: compound, coordinate, and

subordinate lexical representation (D’Acierno 1990; DONG et al. 2005; Pavlenko

2009). Figure 2.1 illustrates these representations, showing how individuals with

different types of English-French bilingual lexical representation might internally rep-

resent the concept of “knife”.

Compound bilingual lexical representation mostly emerges among individuals who

learn two languages simultaneously from birth. In this case, both languages are

equally dominant and integrated, blurring any clear distinction between them and

giving the impression of a single unified language (Moradi 2014). Compound bilin-

gual lexical representation entails a shared mental representation of lexicons across

both languages they acquire, and bilinguals that carry compound bilingual lexical

representation are the most flexible in their use of multiple languages, exhibiting the

ability to switch between languages without losing consistency in linguistic tasks (De

Groot et al. 1991).

In contrast, coordinate bilingual lexical representation maintains separate mental

representations for the lexicon of each language. This separation leads to differences

when tasks are performed under different language settings (Jakobovits 1968).

Finally, subordinate bilingual lexical representations is characterized by a “trans-

lator” behaviour (Marcos 1976). This type of bilingual lexical representation is char-

acterized by a single lexicon representation that is linked to their dominant lan-
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解释什么是“有限状态机”。

Explain what is a "finite state machine".

Knowledge Access Articulation

What is the answer of 12 × 83?

12乘以83等于多少？

996.
Response

En Prompt

Zh Prompt

Reasoning

Response

Can you write me a cover letter
for SDE position?

I am writing to express my keen
interest in the position ……

你能给我写一封 SDE 职位的求职
信吗？
我写信是为了表达我对贵公司该
职位的浓厚兴趣 ……

Prompt

Figure 2.2: Three categories of NLP tasks.

guage (Lörscher 2012). When performing tasks in languages other than their dom-

inant one, bilinguals that have subordinate bilingual lexical representation tend to

rely on translating the task into their dominant language, formulating an answer in

the dominant language, and then translating that answer back into the language of

the task. As a result, bilinguals with subordinate bilingual lexical representation may

experience lower proficiency in communicating and completing tasks in the second,

subordinate language.

Despite the demonstration in prior work of consistent multilingual performance

in many large language models (F. Shi et al. 2023), it remains unclear what are

the multilingual lexical representations inside LLMs. It is an open question whether

the LLMs exhibit a representation of knowledge shared across both languages (com-

pound), separate representations for each language (coordinate), or whether they

rely on a translation processes (subordinate). We develop an experimental frame-

work aimed at using performance on various natural language processing tasks to

determine how the multilingual abilities of LLMs relate to these categories.

2.2 Categorizing Language-Dependent Tasks

Language ability is a multifaceted concept encompassing various tasks and aspects (Wei

et al. 2022a). It is therefore difficult to assess a model’s capabilities with respect to a

given language. To facilitate such assessment, researchers have often classified tasks

into distinct categories (Khurana et al. 2023), such as parsing and summarization.
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However, the delineation of such categories often lacks systematic criteria, particularly

in the context of multilingual analysis.

In this section, we propose a novel approach to categorizing NLP tasks, which is

better suited to analysis of multilingual abilities. The categorization is two dimen-

sional: one dimension is based on the linguistic knowledge necessary to complete the

task (Section 2.2.1), the other on how the task is impacted by the language in which

it is presented (Section 2.2.2).

2.2.1 Categorization by Task Properties

We classify NLP tasks into three distinct categories: Reasoning, Knowledge Access,

and Articulation. This division is based on the extent to which performance on each

task is influenced by the model’s capabilities with the language used. Figure 2.2

provides an overview of this categorization.

Reasoning The first category includes tasks that are minimally influenced by lan-

guage, on which consistent performance is expected across languages. Reasoning

tasks involve logical and rational thinking to solve problems based on available infor-

mation and logical principles. Examples include mathematical problem-solving (Lu

et al. 2023), coding (J. Li et al. 2023), and common sense reasoning (Sap et al.

2020). These tasks can be performed using universal language elements, such as

mathematical symbols, or rely on general life experience and common sense, which

can be acquired without language. For example, answering the question “If I drop

an apple, which direction will it go?” relies more on understanding gravity than on

language-specific knowledge.

Knowledge Access LLMs have the capability to function as knowledge bases

(KBs) by storing knowledge extracted from training data (Heinzerling et al. 2021).

Knowledge Access tasks depend on the ability to access this knowledge and formulate

accurate responses based on it. While the underlying knowledge may not be language
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dependent, models may be less reliable in retrieving and utilizing knowledge learned in

a language other than the one used to formulate the task. Examples of Knowledge Ac-

cess tasks include factual knowledge checking (De Cao et al. 2021), knowledge-focused

question answering (Zhen Wang 2022), and named entity recognition (Malmasi et al.

2022).

Articulation Much of everyday human conversation is highly language-dependent,

as it involves the pragmatics and cultural nuances of the spoken language. For

instance, writing a cover letter in English significantly differs from writing one in

Japanese, due to the distinct social norms and conventions associated with those lan-

guages. The Articulation category includes tasks that are heavily influenced by the

language choice, such as summarization (Nenkova et al. 2012), dialogue generation

(Ni et al. 2023), paraphrasing (Zhou et al. 2021), and style writing (Jin et al. 2022).

These tasks require an extensive understanding of not only language, but the associ-

ated culture, as they involve capturing and reproducing the appropriate style, tone,

and manner of expression specific to a given language.

2.2.2 Categorization by Translatability

The second dimension of our task classification scheme involves translatability. We

introduce the concepts of Translation Equivariant (TE) and Translation Variant (TV)

tasks.

A function is considered equivariant if it commutes with a symmetry transforma-

tion. That is, applying a transformation before or after computing the function yields

the same result. Formally , f(·) is said to be equivariant under g(·) if:

∀x ∈ D, g(f(x)) = f(g(x)) (2.1)

where D represents the domain of both f and g.

We denote translation as a transformation g that converts a given text in language

A to an equivalent text in language B. In practice, g can be implemented by a machine
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translation system. We further use f to denote a function which solves a given task,

given an instance of that task as input. A task is considered Translation Equivariant

between languages A and B if the correct output can be obtained by translating

the input, and then applying a method for solving the task, or by solving the task,

and then translating the output; in other words, if g(f(x)) = f(g(x)). Most of the

tasks in the Reasoning and Knowledge Access categories are regarded as Translation

Equivariant since the correct output does not depend on the chosen language. Figure

2.3 shows an example where the answer to the question posed in English remains the

same in Chinese, regardless of in which order the translation system and the question

answering system are applied.

A task which is not Translation Equivariant is Translation Variant. For such tasks,

translating the input may change the correct output. TV tasks rely heavily on the lan-

guage used, and include many tasks in the Articulation category. Representative TV

tasks that we investigate in our experiments are letter writing and pun understanding.

The former is subject to the conventions of the specific language and culture, while

the latter involves word polysemy, which is often sensitive to translation. Figure 2.3

shows an example where a pun is present in the original English input, but not in

the Spanish translation, making the classification dependent upon the order in which

translation is applied.

2.3 Methods

In this section, we present our approach to analyzing the multilingual ability of LLMs.

Our methods involve prompt translation (PT) and response back-translation (RBT).

They are designed to measure performance of an LLM, and its consistency across

languages. In our experiments, we apply these methods to both TE and TV tasks,

with the aim of determining the type of bilingualism (compound, coordinate, or sub-

ordinate) exhibited by an LLM.
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2.3.1 Prompt Translation

Multilingual datasets are unvailable for many tasks. However, with state-of-the-art

machine translation (MT) systems and LLMs, we can translate monolingual datasets

for TE tasks to generate parallel multilingual parallel data with minimal loss of infor-

mation (Whitehouse et al. 2023; F. Shi et al. 2023). This is the key intuition behind

prompt translation (PT); an example is shown in Figure 2.4a, where an English mul-

tiple choice question, and its possible answers, are translated to Chinese. The LLM

is then prompted, and the response is given and evaluated, in Chinese. Prompting in

distinct languages is performed in independent LLM sessions.

We measure the differences in multilingual task performance by comparing the

answers given by the LLM in each language. Assuming that the LLM successfully

learns to solve a TE task in a language-independent way, the pairwise responses

for each instance should be the same after the translation (regardless of whether it

is correct or incorrect). This is because TE tasks, such as mathematical problem

solving, do not depend on the language used to query the LLMs, as the solution does

not depend on the language used to express the problem.

2.3.2 Response Back-Translation

One of the goals of our work is to understand what the consistency of LLM output

across languages tells us about the model, and to determine the type of bilingualism an

LLM exhibits. This is crucial for individuals who use LLMs for multilingual tasks, as it

can impact the way task results are generated, and affect the quality and consistency

of the results. For example, a network exhibiting subordinate bilingualism would

produce output that appears to be the result of translation, rather than resembling

text generated by a native speaker of the output language.

To quantitatively measure how reasoning is performed, we propose a prompting

method based on back-translation, as illustrated in Figure 2.4b. Similar to prompt

translation (Section 2.3.1), we begin by translating the instance to the target lan-
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周二。

Translation Equivariant (TE)

Translation Variant (TV)

Yes.

No.

Tuesday.

周一后是周几？

What day is it after Monday?

Una bicicleta no puede sostenerse por sí
sola ya que tiene dos llantas.

A bicycle can’t stand on its own
since it’s two-tired.

Figure 2.3: A TE task (common sense reasoning) and a TV task (pun detection).
Translation is denoted by g, and f is the solver function.

(a) Prompt Translation (PT)

A: (D).

Q:  在办公室哪里可以找到椅子？
选项:（A）体育场（B）厨房（C）门廊（D）隔间   (E）客厅。

A:  (D)。 

Translation

Zh Prompt in One New Session

Pairwise Comparison

En Prompt in One New Session

(b) Response Back-Translation (RBT)

A:  Because a cubicle is a small workspace that
is typically found in an office setting. In such an
environment, people often have desks and chairs
to work at, and these chairs are usually designed
to be comfortable for long periods of sitting.
Therefore, it's most likely that you would find a
chair at an office in a cubicle where people sit
and work on their computers or other tasks.

Q：你能解释一下你选这个答案的原因吗？

A：因为办公室通常有一些隔间或者办公室间隔，员工们在这些隔间或办公室中进行工作。因此，办公室椅子通
常会放在这些隔间或办公室中，以便员工可以坐下来工作。在这些隔间或办公室中，椅子通常会搭配办公桌使
用，以便员工可以更加舒适地完成工作任务。

A: Because offices usually have cubicles or office partitions where employees work. Therefore, office chairs are
typically located in these cubicles or offices for employees to sit and work comfortably. Chairs in these cubicles
or offices are usually paired with office desks to provide a comfortable working environment for employees.

Q：把你的解释翻译成英文。(Q: Translate your answer into English.)

Translation

Pairwise Comparison

En Prompt in Same Session Zh Prompt in Same Session

Q:  Can you explain why you chose this answer?

Q:  Where might you find a chair at an office?
Options: (A) stadium (B) kitchen (C) porch (D) cubicle (E) living room.

Figure 2.4: An overview of our prompt translation and response back-translation
methods.

guage, and prompting the LLM to produce a response in that language. After ob-

taining output from the LLM, regardless of the language, we further prompt the
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LLM to generate an explanation for its output (e.g., “Explain how you obtain this

result”); and then translate the output of the LLM back to the original language.

We then compare the explanation given in the source language to the explanation

back-translated from the target language.

If the LLM is performing translation-based reasoning, the reasoning process is

conducted in one language and then translated into another. Since the internal

reasoning of the LLM can be partially observed through the output explanation,

back-translating such explanations into the source language allows us to compare the

internal reasoning used to solve the problem in each language. High similarity of ex-

planations should indicate homogeneity in using the same internal reasoning process

to perform the task in both languages. On the other hand, dissimilarity in the rea-

soning process across languages should be reflected in a lower explanation similarity.

2.3.3 Identifying Multilingual Types

In our investigation, we employ both Prompt Translation (PT) and Response Back-

Translation (RBT) to analyze how an LLM solves TE and TV tasks in different

languages. As depicted in the first two steps in Figure 2.5, a compound LLM should

exhibit consistent results on TE tasks with both methods. This is because a com-

pound model performance does not depend on the language in which a question is

presented. Conversely, subordinate and coordinate types of networks are expected

to yield somewhat different results on TE tasks. A coordinate model accesses dis-

tinct representations in different languages, which may result in different reasoning

and answers. Finally, a subordinate model heavily depends on an internal transla-

tion process, which we expect to lead to some deterioration of output quality across

languages.

Testing on TV tasks provide additional information, which can be used to distin-

guish between coordinate and subordinate models. A coordinate LLM is expected

to reason differently for each language, which may yield different outputs, whether
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Subordinate

Results change
after translation?

CompoundPrompt Translation

TV Task Same reasoning
across all languages?

Response Back-TranslationCompound

Same results
across all languages?

TE Task

Prompt Translation

Coordinate

Yes No

No Yes

Yes No

Figure 2.5: Flowchart for detecting multilingual types.

correct or not. In contrast, a pure subordinate model is expected to reason only

in the dominant language, producing relatively similar results in different languages,

regardless of whether the correct output is preserved after translation.

2.4 Experiments

We apply the methodology proposed in Section 2.3 to TE and TV tasks. As our

LLM, we use ChatGPT, via the official web application1, due to its availability.

2.4.1 Datasets

Reasoning We use 50 instances selected at random from each of two datasets:

GSM8K (Cobbe et al. 2021), which contains 7,500 training and 1,000 test problems,

and CommonsenseQA (Talmor et al. 2019), which contains 12,247 questions. We used

ChatGPT to translate these instances into French, Spanish, German, Japanese, and

1https://chat.openai.com/
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Chinese. GSM8K is a dataset of grade-school math problems. Each problem consists

of a question and a multiple-choice answer. CommonsenseQA is a question answering

dataset for testing logic and common sense. Each instance consists of a question and

five answer choices, only one of which is considered correct.

Knowledge Access WebQuestions is a dataset of 6,642 question-answer pairs ex-

tracted from Freebase (Bordes et al. 2014). An example question is “Where is the

Thames River located?” to which the correct answer is London. To simplify the

evaluation, and avoid the issue of extracting answers from ChatGPT’s often verbose

responses, we manually converted 50 randomly selected instances into the multiple-

choice format used by CommonsenseQA. To create plausible incorrect answers (dis-

tractors), we randomly selected four incorrect candidate answers from sets of world

city names2 and celebrity names3 (correct answers in this dataset are all either city

names or celebrity names). This yielded a set of 50 multiple choice questions with

five possible answers each (one correct, four incorrect). We translated the English

instances into five other languages via ChatGPT.

Puns We randomly selected 80 positive and 80 negative instances each from the En-

glish, French, and Spanish instances in the JOKER@CLEF 2022 dataset (Ermakova

et al. 2022). Each instance is annotated with a yes/no classification as to whether

it contains a pun, and the pun location, if a pun is present. An example English

instance is “Astronauts work in a nice atmosphere” for which the pun location is the

word atmosphere. We used ChatGPT to translate the French and Spanish instances

into English, and the English instances into French, Spanish, German, Japanese, and

Chinese. This yields 10 balanced sets of 160 instances each (three original and seven

translated).

2https://simplemaps.com/data/world-cities
3https://github.com/janester/mad libs
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Task En Fr De Es Ja Zh

MR 0.90 0.80 0.78 0.80 0.82 0.78

CSR 0.68 0.58 0.52 0.54 0.48 0.52

KA 0.96 0.96 0.94 0.94 0.80 0.68

Table 2.1: Accuracy for TE tasks: math reasoning (MR), commonsense reasoning
(CSR), and knowledge access (KA).

Articulation To test the Articulation abilities of an LLM, we prompt the model

to generate a cover letter for a job application, with randomized specifications. For

each prompt, we first generate the name and background of an individual, including

information such as level of education, specialties, and hobbies. We then randomly

select one well-known company to which cover letter is to be addressed. Finally, we

select a set of topics such as “What skills would you want to develop in this role?”.

Each of these randomized prompts is then provided to the LLM. The output is then

manually evaluated by a native speaker of the language of the prompt. We generate

50 prompts each in English and Chinese. An example is provided in Table A.2 and

Table A.3 in the appendix.

2.4.2 Metrics

Since ChatGPT can give different answers to the same question, we present each

multiple-choice question to ChatGPT five times, and use the most frequent output for

evaluation. For computing similarity between explanations, we use appendix(Devlin

et al. 2019). Specifically, we translate all non-English output to English via ChatGPT,

and compute the cosine similarity of the BERT embeddings of the two explanations.

2.4.3 Results on TE Tasks

As shown in Table 2.1, the results on TE tasks in English are on average much higher

in English than in other languages. In math reasoning (MR), the least language-

dependent task, the gap between English and other languages is over 10% on aver-
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age. In common sense reasoning (CSR), the difference is over 15% on average. In

knowledge access (KA), there is no substantial difference between English and other

European languages, but accuracy on Japanese and Chinese is 16% and 28% lower,

respectively. To confirm that the accuracy gap is not due to instance translation qual-

ity, we manually compared all 50 Chinese MR questions with their original English

counterparts, and found no translation errors. Taken together, these results provide

strong evidence that GPT is better able to reason and retrieve knowledge given an

English prompt, compared to prompting in other languages. In terms of multilingual-

ity type, the evidence is against compound multilingualism in GPT (cf., Figure 2.5),

as a compound model would be expected to exhibit no substantial difference in per-

formance across languages.

We also analyzed the BERT similarity values between explanations in different

languages (cf., Table A.1 in the Appendix). In commonsense reasoning, which relies

on logic and conceptual distinctions, we observe that the average BERT similarity

of German, Spanish, Japanese and Chinese to French is substantially lower than the

corresponding average similarity to English (0.849 vs. 0.868), while French itself is

substantially more similar to English than to German (0.871 vs 0.857). We interpret

this as additional evidence of the GPT’s dependence on its strong English model.

On the other hand, we observe no such trend in knowledge access questions. We

hypothesize that since these problems are mostly about named entities, they tend to

be more language-independent. Indeed, we observe higher performance on French,

German, and Spanish, which use the Latin script, and therefore can represent named

entities as English does, compared to Japanese and Chinese, which use different

orthographies.

2.4.4 Cover Letters

Cover letter writing is an example of a TV articulation task. We found that cover

letters generated by ChatGPT with the same set of instructions in different lan-
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Chinese English Translation Frequency

诚挚地 Sincerely 54.0%

致意 Regards 38.4%

祝愿 Best Wishes 3.6%

此致敬礼 Salute (Proper Chinese Sign-off) 0.8%

No sign-off 3.2%

Table 2.2: The frequency of different sign-offs in 250 different Chinese cover letters
generated by ChatGPT.

guages exhibit relatively high BERT similarity to their English versions, ranging

from 0.818 Japanese to 0.865 for German. To provide some comparison, we also

computed pairwise BERT similarities between English cover letters generated with

the same prompts by ChatGPT and two other LLMs, Claude and Instant-Claude,

which yielded the values of 0.618 and 0.643, respectively. This indicates that the

letters generated in different languages by ChatGPT are more similar to each other

than the letters in English generated by different LLMs. Cover letters generated in

languages other than English exhibit a written style which is closer to English than

to the target language. For example, consider the cover letter shown in Table A.2

and Table A.3 in the Appendix. The expressions 阁下 “from what I have gathered”

and 狂热的户外运动爱好者 “avid outdoor enthusiast” are very unnatural in Chinese,

and appear characteristic of literal translations from English. The sign-off phrase 真

诚的 “Sincerely” is similarly inappropriate in formal Chinese, although it is usual in

English. Table 2.2 shows that less than 1% of the letters have a proper Chinese sign

off.
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Language P-Acc L-Acc

Es 0.488 0.697

Es-En 0.507 0.714

Fr 0.500 0.886

Fr-En 0.513 0.813

En 0.506 0.965

En-Fr 0.500 0.646

En-De 0.519 -

En-Es 0.488 0.607

En-Ja 0.519 -

En-Zh 0.550 0.511

Table 2.3: Accuracy on pun detection (P-Acc) and location (L-Acc). X-Y means the
puns were translated from language X to language Y before prompting.

2.4.5 Results on Puns

Table 2.3 shows the results on the translation-variant tasks of pun detection and

location. The accuracy of pun detection is close to what we would expect from a

random baseline, as ChatGPT strongly favors positive pun classifications. The sole

exception is a slightly higher accuracy of 0.55 when English puns are translated into

Chinese, due to a higher proportion of negative classifications.

Since few conclusions can be drawn from the pun detection results, we conducted

an evaluation of the pun location results in most datasets, which required manual

extraction of the location information from ChatGPT’s explanations. The results are

shown in Table 2.3. The pun location accuracy on the original English puns is very

high at 96.5%, but drops dramatically when the sentences are translated into other

languages. When French puns are translated to English, there is likewise a drop in

performance, though it is much smaller than what is observed when English puns

are translated to French. However, the situation is different for Spanish puns, where
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the location accuracy increases slightly after the puns are translated into English.

This is surprising, as puns are often language-specific, and tend to disappear after

translation.

When the prompt is not in English, evidence suggests that ChatGPT relies, at

least partly, on its English capabilities for semantic interpretation. Consider the

homonymous English word bat which has two unrelated senses, translated by different

words in Chinese: 蝙蝠 for the “animal” sense, and 球拍 for the “club” sense (Hauer

et al. 2020). When the original English prompt is “What is the famous bat brand for

baseball?”, ChatGPT appears unable to distinguish between these two translations of

bat within a Chinese prompt. Although the choice of the Chinese translation of bat

greatly affects the meaning of the question, it does not seem to impact ChatGPT’s

response. However, when we replace 蝙蝠 “animal bat” with 老虎 “tiger”, ChatGPT

correctly responds that the question makes no sense. We interpret the inability of

ChatGPT to differentiate between the two distinct Chinese translations of bat as

strong evidence of subordinate bilingualism.

2.4.6 Analysis of Results

The results of our experiments provide evidence that GPT exhibits a substantial

degree of subordinate multilingualism. Many of its responses are what we would

expect from a system which translates all input into English, formulates a response in

English, and then translates this response into the input language. Since translation

is an error-prone process, the resulting response accuracy is frequently lower than

when the input is provided in English.

We speculate that this behavior is an artifact of GPT being trained mostly on

monolingual English texts. Consequently, GPT has developed a representation of

knowledge and communication that is strongly biased towards English. We conclude

that since GPT is not designed to take advantage of bilingual or multilingual corpora,

it is unable to create a single multilingual conceptual representation analogous to
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compound multilingualism.

Moreover,

GPT has less training data for non-English languages, compared to its English

training data. We postulate that this results in representations for non-English lan-

guages that are much weaker than those GPT can create for English. This often

leads to lower performance on even translation-equivariant tasks when the task is not

presented in English.

2.5 Discussion and Future Directions

Our research provides robust support for the notion that LLMs have not achieved

the ideal behaviour of compound multilingualism. Even if the quality and quantity of

training data in various languages were held constant, we speculate that compound

multilingualism would still not be achieved, due to the inherent limitations of current

data collection methods and training techniques.

Drawing a parallel to human multi-modal learning offers an intuitive understand-

ing of why this could be the case. Consider how humans acquire concepts related to

vision and language: A child grows by consistently pairing visual stimuli with linguis-

tic cues, intertwining the two modalities over time. Consequently, it is rare to observe

a mismatch between visual and linguistic perceptions. In this context, humans ex-

hibit a highly integrated understanding of vision and their native languages. However,

unless raised in a perfectly bilingual environment, individuals seldom showcase equiv-

alent proficiency in two languages. Indeed, bilingual individuals often demonstrate

cognitive variations depending on which language is in use.

A rudimentary multi-modal system can be likened to a crude fusion of a vision

model trained on image data and a language model trained on text. These systems

possess minimal, if any, shared representations or information overlap. Beneath the

facade of a system that seemingly excels at both visual and language tasks, lie two dis-

tinct networks. Nevertheless, recent advancements in multi-modal studies, combined
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with the availability of extensively captioned image data, have given rise to more

sophisticated systems. These systems bridge the gap between the two modalities,

moving the field closer to human-like integration.

Acquiring aligned multilingual data is a significant challenge, with the exception of

some translation datasets. The majority of online articles and posts are monolingual

and cannot be easily paired. Therefore, training on these multilingual corpora results

in models that essentially act as an amalgamation of several independent language-

specific models, with minimal information interchange, primarily anchored by the

translation datasets which comprise a relatively small portion of the corpus. When

corpora are disproportionately comprised of some language or set of languages, the

models tend to become predominantly subordinate, with minimal coordination arising

from monolingual datasets.

Moving forward, our objective is to narrow the divide between languages within

a multilingual system and to cultivate language models that lean more towards a

compound archetype. This will require both crafting highly parallel paired data

across languages and innovating training methodologies that promote the learning

of compound representations for universal concepts irrespective of the language used

to express them. For the former, we intend to delve into ontology linkages. For

the latter, we plan to leverage recent advancements in model training, such as con-

trastive learning. Our goal is to create multilingual models that are both technically

sophisticated and universally adept.

2.6 Threats to Validity

As the OpenAI ChatGPT website application has a limited number of prompts al-

lowed per day and per hour, we can not apply our experiment to the whole dataset.

We used GPT3.5 rather than GPT4 as our LLM since access to GPT4 was still

restricted at the time the experiments were conducted. We conducted the human

evaluation only in English, Spanish, and Chinese, as we did not have access to fluent
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speakers of the other languages found in our test sets. At the time the experiments

were conducted, the author had no control over the temperature of the generation,

thus the results were not always deterministic even with the same prompt. In our

experiments, we utilized translations generated by LLMs themselves, and the quality

of the translation was not fully verified due to the cost. Therefore, future work could

involve more translators, such as Google Translate, and conduct further experiments

on these translations to address biases from different translators.

2.7 Conclusion

We have proposed a systematic approach to analyzing multilingual abilities of large

language models. Our experiments provide new evidence for a subordinate multilin-

gualism in GPT-3.5, with English functioning as the model’s native language. Our

experimental results, supplemented by the analysis of specific examples and case stud-

ies, demonstrate that such subordinate multilingualism can limit performance even in

language-independent tasks. We postulate that explicit inclusion of additional mul-

tilingual parallel corpora and multimodal datasets into the training data of LLMs

could ameliorate this issue.
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Chapter 3

The Evaluation of Multi-Modality
Capabilities of LLMs

Recent large multimodal models have showcased remarkable capabilities in tasks that

require the integration of multiple modalities and sources of information (Huang et al.

2023). Among these, the performance of Vision Large Language Models (VLLMs) (J.

Zhang et al. 2023; Z. Yang et al. 2023) stands out, thanks to the vast amounts of

image and text data available for training and the rapid progress in both computer

vision and language modelling. However, due to the distinct training methodologies

employed by these models, such as contrastive learning (Radford et al. 2021) and

embodied image-language modeling (Driess et al. 2023), and the varying quality of

training data for each modality, these networks often exhibit performance disparities

across different modalities.

Previous research has extensively evaluated the performance of individual modali-

ties in multimodal systems. For instance, (Z. Yang et al. 2023) conducted a thorough

assessment of GPT-4V’s vision understanding capabilities, and (Chen et al. 2023) an-

alyzed model’s decision-making abilities. However, assessing a model’s performance

on each individual modality in isolation does not fully evaluate its true multimodal

abilities. It is possible, for example, for a model to excel in numerous vision tasks but

still lag significantly behind in language understanding. Moreover, simply testing per-

formance on individual tasks provides no insight into whether and how each modality
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Figure 3.1: Visualization of the performance gap between the modality of text and
image in seven different tasks.

of the model influences the others. Unfortunately, the cross-modality relationship is

frequently overlooked in the aforementioned research.

In this study (X. Zhang et al. 2023b), we go beyond the traditional approach

of simply evaluating multimodal systems through separate downstream tasks and

reporting their scores. Our focus is primarily on measuring the inherent differences in

capabilities between various modalities, with special attention to vision and language,

given their prominence among other modalities. To enable a comprehensive analysis,

we introduce the concept of cross-modal consistency, complete with a formal definition

and an evaluation framework. We consider cross-modal consistency to be an essential

element in the design of complex multimodal systems with neural components, as it

guarantees coherence and reliability in the system’s performance. This is crucial for

both interpretability and for fostering user trust.
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We subsequently construct a comprehensive vision-language parallel dataset en-

compassing seven tasks, each designed to highlight different facets of vision and lan-

guage capabilities. This dataset serves as a tool for evaluating the vision-language

consistency of VLLMs. Our experiments with the GPT-4V model on the dataset

reveal significant inconsistencies between its vision and language capabilities. The

results indicate that its performance varies considerably depending on whether the

same task instance is prompted in one modality versus the other.

Our contributions are: (1) We introduce the novel concept of cross-modal consis-

tency, along with a comprehensive evaluation framework. This approach transcends

traditional assessment methods for multimodal models, which typically evaluate each

modality in isolation. (2) We develop and release seven diverse datasets, carefully de-

signed for vision-language consistency evaluation, opening up opportunities to exploit

these datasets in future research. (3) Our experiments on GPT-4V reveal a signifi-

cant disparity between vision and language abilities within such a system, prompting

the introduction of the Vision-Depicting-Prompting (VDP) method as a potential

remedy. Our findings offer valuable guidance for more effective future use of such

multimodal models.

3.1 Related Work

A substantial amount of effort has been dedicated to meticulous evaluation of large

multimodal models such as GPT-4V. To assess the capabilities of these models across

all their modalities, a wide array of tasks has been tested. E.g., researchers have

scrutinized GPT-4V’s aptitude in solving problems within specialized domains, in-

cluding biomedicine (Z. Liu et al. 2023), medical applications (Wu et al. 2023), and

autonomous driving (Wen et al. 2023), employing intricate image inputs. Beyond

these domain-specific evaluations, more general skills like chart image understand-

ing (F. Liu et al. 2023) and optical character recognition (Y. Shi et al. 2023) have

also been analyzed. However, these evaluations often focus solely on performance
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metrics for each test dataset, with little or no exploration of the relative capability

gaps between vision and language. In this study, our primary emphasis lies in uncov-

ering the relative disparities in the abilities of multimodal models across their various

modalities, rather than merely assessing absolute performance within specific tasks.

Despite the lack of cross-modal analysis for multimodal models, previous research

has delved into examining cross-lingual abilities in Large Language Models (LLMs).

For example, by translating task instances into different languages and analyzing

the pairwise results, (X. Zhang et al. 2023a) demonstrated that models like GPT-

3.5, primarily trained on English text corpora, exhibit disparities in their performance

across various tasks when prompted with different languages. Specifically, these LLMs

display a bias toward English. Taking inspiration from such studies, we extend our

research to encompass consistency analysis across various modalities, recognizing that

different languages can be regarded as distinct modalities as well. Our generalized

framework sheds light on the underlying principles governing the consistency of

multimodal models when confronted with tasks in diverse modalities, thereby con-

tributing to a deeper understanding of their capabilities and limitations.

3.2 Preliminaries and Key Concepts

As “consistency” can carry different interpretations within the specific context we are

addressing, a formal definition of the concept of cross-modal consistency for multi-

modal models is warranted. To that end, we establish an instance of task t, repre-

sented as the paired value (da, q). Here, da represents a data element from the input

space Da corresponding to modality a, while q ∈ Q represents the abstract query, of-

ten presented in the form of a question pertinent to the task at hand. A task set within

modality a is then constituted by combining certain data elements from modality a

with the queries q, which can be denoted as St,a = {(d(1)a , q), (d
(2)
a , q), (d

(3)
a , q), . . .}.

When the queries q are held constant, and elements db ∈ Db in another modality b

are gathered, we obtain the corresponding task set in another modality, denoted as
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Sq,b. In essence, the task t embodies the task-specific queries, encompassing, e.g.,

activities such as solving equations, translation, question answering, etc. Meanwhile,

the data elements dm may take the form of equation instances or question descriptions

within modality m, which can involve the modalities of image, text, or speech.

We introduce the concept of a ’converter,’ a function Ka,b : Da ↦→ Db which maps

data elements from modality a to b. While there exist various methods for converting

data between modalities (e.g., from language to vision through taking a picture),

we are specifically interested in converters that preserve information necessary for

solving a given task with query q, denoted as Kq
a,b. Information-preserving converters

are distinctive, as the correct answer for a given task instance (d, q) depends solely

on the information within d rather than its modality. Therefore, both (da, q) and

(Kq
a,b(da), q) are guaranteed to share the same gold label. In this chapter, we assume

the existence of Kq for every q ∈ Q, but finding such a converter is beyond the scope

of this paper. Inter-modality conversion may be challenging for certain modalities.

Some tasks may involve aspects of information, such as emotions in speech or nuanced

visual perception in images, that cannot be easily preserved during conversion. We

design our experiments with tasks where a Kq clearly exists.

A multimodal model can be conceptualized as a function, denoted M : D×Q ↦→ Y ,

mapping data elements and queries to an answer. Here, D represents the collective

space encompassing all the modalities of interest, formally D =
⋃︁
m

Dm, where m spans

over all relevant modalities. On the other hand, the answer space Y refers to a unified

and structured representation, which, in the case of GPT-4V, assumes the form of

text.

A model M is said to exhibit consistency between modalities a and b provided:

M(da, q) = M(Kq
a,b(da), q),∀da ∈ Da, q ∈ Q

In other words, M is consistent if its output is invariant under any modality trans-

formation Kq which preserves all essential information necessary for solving the task
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Figure 3.2: Illustration of the concept of cross-modal consistency. A consistent model
(right) applies the same internal reasoning to task instances with identical informa-
tion, regardless of the encoding modality, leading to consistent outcomes. In contrast,
an inconsistent model displays significant behavioral changes in response to different
input modalities, resulting in varying outcomes as the modality alters.

associated with query q. E.g., consider solving mathematical equations. A model

which solves this task is consistent across the text and image modalities if neither

transcribing the equation from image to text, nor imaging an equation presented as

text, changes the model’s output.

In short, a consistent model should remain agnostic to the modality of the task

instance and yield identical results as long as an equivalent amount of information is

provided, reflecting its capacity to handle multimodal data seamlessly.

3.3 Method

In this section, we describe our method for testing cross-modal consistency. We

establish a quantitative evaluation framework, with a focus on the vision-language

cross-modality. We provide a description of our methodology and the specific metrics
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we propose for evaluation.

ur second assumption is that the multimodal modelM is a deterministic function.

Formally, for any given task instance (d, q), there exists an output y within the

output space of M such that M(d, q) = y. This assumption plays a pivotal role

in ensuring cross-modality consistency, as it delineates decoding consistency from

modality consistency during result evaluation. In practical terms, we can achieve

determinism by setting the decoding temperature to 0 or approximate it by repeating

the experimental process and averaging the results.

3.3.1 WorkFlow

For an instance set of a given task t in modality a, denoted as St,a = {(d(1)a , q),

(d
(2)
a , q), (d

(3)
a , q), · · · }, our first step involves constructing a parallel instance set St,b

in modality b using an information-preserving converter Kq
a,b. We do so by applying

Kq
a,b to each data object d

(i)
a to get the object d

(i)
b := Kq

a,b(da) in modality b. By doing

so, each paired instance (d
(i)
a , q) and (d

(i)
b , q) shares the same gold label since the

information in d is preserved for the task with query q. In the context of analyzing

the vision and language modalities, our converter is comprised of an optical character

recognition (OCR) system combined with human verification for converting images

to text, and screenshot software for converting text into images. We carefully select

tasks where the information required for solving the task can be fully retained through

the utilization of this converter, as exemplified by mathematical equation solving.

Next, we independently apply the model M to each pair of instances (d
(i)
a , q) and

(d
(i)
b , q) to obtain pairwise results M(d

(i)
a , q) and M(d

(i)
b , q).

3.3.2 Metrics

We introduce our task consistency score Ct based on these pairwise instances:

Ct =
1

n

n∑︂
i=1

ciM (3.1)
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Figure 3.3: An Overview of the Components of Our Vision-Language Consistency
Dataset. Data instances are presented in pairs, featuring one in the vision modality
and another in the text modality. Notably, Math Equation Solving dataset encom-
passes two segments, each representing different difficulty levels.

where

ciM =

{︄
1, if M(d

(i)
a , q) = M(d

(i)
b , q)

0, otherwise
(3.2)

In essence, Ct is the proportion of instances for which model M has consistent

performance on the given task, between modalities a and b.

3.4 Experiments

3.4.1 Data Construction

Since there is currently no existing parallel vision-language task dataset, we create our

own datasets for both our experiments and also to facilitate future research endeavors.

Following the approach outlined in Section 3.3.1, we meticulously selected seven tasks

that gauge various facets of Vision-Large Language models. For each of these tasks,

we ensure that data instances can be transformed between image and text formats

while preserving all task-related information, utilizing a straightforward converter

(e.g., OCR). Recognizing that a flawless converter does not exist in practice, we

undertake the manual verification of each converted data instance to prevent any
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potential errors during the conversion process. We will make our dataset available

for use by the research community in the final version of our paper.

Task Description.

Math Equation Solving. Mathematical reasoning stands as a cornerstone of multi-

modal models’ capabilities. Mathematical problems typically involve equations pre-

sented in a visual format, offering a clear depiction of intricate symbols and nota-

tions. Given that formulas can be seamlessly converted to text formats like LaTeX

without losing any essential information for solving these equations, constructing a

parallel dataset for such tasks is a natural fit for analyzing cross-modal consistency.

For our dataset, we source math questions with equations from two distinct origins,

each representing varying levels of difficulty. For low difficulty levels, we extract 901

high school-level mathematical questions in LaTeX (text) format from MATH dataset

(Hendrycks et al. 2021b), rendering each question using a LaTeX compiler to generate

corresponding image data. To introduce a greater level of complexity, we gathered

50 college-level calculus questions, along with their corresponding answers, using the

same procedure. Consequently, we paired all the image-based math questions with

their corresponding text representations to create our comprehensive equation-solving

dataset, encompassing both easy and challenging questions. An illustrative example

of this dataset can be found in Figure 3.3, and detailed data samples are available in

Appendix B.1 and Appendix B.2 .

Logical Reasoning. To assess the vision-language consistency in logical reasoning

abilities for the VLLMs, we employ two distinct datasets: GSM8K (Cobbe et al. 2021)

and LogicQA (J. Liu et al. 2020). GSM8K comprises 8,500 question instances in text

format, with each instance representing a problem description in English text paired

with a labeled answer. We transform the text into images by capturing screenshots

of the rendered text with an appropriate font size and layout. Similarly, LogicQA

consists of 8,678 more challenging questions presented in text format and each is con-
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verted into an image by us. Subsequently, we pair these resulting images with the

original text files, creating a parallel dataset that enables the exploration of this task

in both image and text modalities. An illustrative example of this dataset construc-

tion can be found in Figure 3.3, and detailed data samples are available in Appendix

B.6 and Appendix B.3.

Table Understanding. Tables, commonly encountered in everyday life, are often

presented as images, and the effective extraction of information from them is vital

for various tasks. As well-structured table images can be easily converted into La-

TeX text, they serve as an excellent choice for conducting vision-language consistency

analysis. To facilitate this analysis, we creat 30 distinct tables in LaTeX, each featur-

ing multiple rows and columns, with numerical values in each cell. Our task revolves

around accurately summing the numbers within a given row and column. We pro-

vide parallel task instances in both LaTeX text and rendered images, as illustrated

in Appendix B.5

State Machine Reasoning. State machines, which can be effectively visualized

as graphs or represented through text with transition rules, serve as an ideal test bed

for vision-language consistency in simple computational capabilities of VLLMs. Our

approach involves generating images of state machines with varying total numbers of

nodes (states). Each node in the state machine is assigned a distinct color and features

precisely one outgoing edge, ensuring a unique path and solution. The questions we

formulate are of the form, ”Starting from the color grey, after n steps, which color will

we end up in?” Here, n is a variable that we select. Additionally, we generate a text

version of these state machines by listing out all the transition rules corresponding to

the arrows. To prevent any form of cheating by looking at the last state in the text,

we shuffle the order of the rules. We create state machines with different numbers

of states and questions with varying numbers of steps, to introduce varying difficulty

levels. The data samples can be seen in Appendix B.7.

Reading Comprehension. To assess the model’s consistency in comprehending
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lengthy English paragraphs across vision and language modalities, we provide the

model with the same text content in two different formats: plain text and images of

the text. We employ the test part of the Massive Multitask Language Understand-

ing (Hendrycks et al. 2021a), or MMLU dataset as our source, which includes 1,477

extensive text passages, each accompanied by multiple-choice questions designed to

evaluate the comprehension of the text content. For this dataset, we convert each

text instance into an image by rendering the text into a PDF before converting it to

a JPG image. Detailed data samples can be found in the Appendix B.4.

3.4.2 Experiment Details.

We apply our framework and constructed datasets to evaluate the cross-modal con-

sistency of the OpenAI GPT-4V model, known for its proficiency in both vision and

language modalities. Given the limited daily access to prompt this model, our ex-

periments were conducted on a randomly selected subset of 50 samples from each

dataset. We select the GPT-4V classical mode, which does not include additional

plug-ins and employs a relatively low decoding temperature to minimize variance in

its output. To ensure a fair comparison of capabilities between the two modalities,

we embedded the query questions into the image and exclusively used images for

prompting. This avoids the involvement of any text input when testing the vision

modality. Additionally, to prevent the model from performing reasoning steps in text

and introducing unintended modality conversions, we explicitly instructed the model

to output answers without any reasoning steps. Our results are manually collected

for pairwise data instances, and we calculate the consistency scores based on the

methodology outlined in Section 3.3.1.
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Task Modal Acc Consistency

MES(Easy)
Text 0.44

0.72
Image 0.24 ⇓

MES (Hard)
Text 0.62

0.62
Image 0.28 ⇓

LogicQA
Text 0.64

0.64
Image 0.44 ⇓

MMLU
Text 1.00

0.74
Image 0.74 ⇓

TU
Text 0.93

0.10
Image 0.03 ⇓

MR
Text 0.40

0.92
Image 0.36

State Machine
Text 0.34

0.67
Image 0.28

Table 3.1: Test results for vision-language consistency datasets. MES stands for
Math Equation Solving, TU stands for Table Understanding and MR stands for math
reasoning. The symbol ⇓ denotes a sizeable decrease in accuracy (greater than 10%)
when input is in the image format.
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3.4.3 Main Results

The main outcomes of our assessments across seven distinct datasets are outlined in

Table 3.1. Notably, even though the input contains an equivalent amount of infor-

mation necessary for task completion, substantial disparities emerge between image

and text input formats. This phenomenon occurs even in tasks where images are

conventionally considered to offer a more vivid and intuitive representation from a

human perspective.

We note that consistency, being based on response agreement between modalities,

can be high or low regardless of per modality accuracy. The highest consistency

(0.92) is observed for math reasoning even though both modalities have a relatively

low accuracy (≤ 0.40). By contrast, the consistency drops to 0.64 on logical reasoning

(LogicQA) on which the individual modalities have higher accuracy (≥ 0.44).

For tasks that involve intricate reasoning steps, including equation solving, math-

/logical reasoning, and state machine reasoning, we observe relatively low accuracy

even when the input is presented in pure text format. These tasks align with areas

where the model generally struggles. When the input modality shifts to using images,

the proficiency in solving such tasks deteriorates further, resulting in a noticeable drop

in performance, despite the fact that the images contain an equal amount of informa-

tion. This emphasizes the substantial inconsistency in task-solving across modalities

and highlights the model’s superior ability in one modality (Language) compared to

the other (Vision).

On the other hand, for tasks primarily focused on extracting information from pro-

vided content and comprehending that information, such as Language Understanding

and Table Understanding, we witness near-perfect performance when the model is

prompted with text input. However, a more significant drop in accuracy (up to 90%)

is observed in such tasks when the input modality shifts to images. This indicates

that the change in modality significantly impacts the model’s processing capabilities,
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Figure 3.4: Overview of the VDP Method: The left part illustrates the conventional
approach to prompting vision tasks, while the right part demonstrates VDP in com-
parison.

providing strong evidence of the inconsistency of the model.

In conclusion, in multimodal systems like GPT-4V, the language modality demon-

strates a dominant advantage over vision modality, when tasks are tackled in text

format, despite the presence of the same information in image format. This strongly

suggests a non-consistent cross-modal behavior within the network. While each

modality exhibits varying levels of task-solving and reasoning capabilities, the in-

consistency across modalities is observed across tasks regardless of the accuracy level

of each modality for the task in hand.

3.4.4 Ablation Study on Content Extraction from Images

As solving tasks in image format inevitably requires accessing essential information

from the images, we conducted additional experiments to investigate whether the

performance gap is attributable to the model’s inability to access information. To

address this, we conducted one-step Optical Character Recognition (OCR) using the

model’s own network on all instances of tasks that exhibited a significant performance

gap between image and text. Specifically, for each image input (indicated by the red

arrow in Table 3.1), we prompt the model with the instruction ’extract the exact

content in the image’ and compare the results with the original input to determine if

they match. This approach allows us to eliminate the possibility that the performance

issues in image format are due to the model’s inability to correctly recognize the input.
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DataSet OCR Accuracy

MES (Easy) 0.68

MES (Hard) 0.76

LogicQA 0.98

MMLU 0.98

TU 1.00

Table 3.2: Result of performing OCR on the all images of experimented task instances.

As shown in Table 3.2, OCR accuracy approaches nearly 100% for all instances of

LogicQA, MMLU, and Table Understanding tasks. This suggests that the model faces

no difficulties in accurately extracting information, such as numbers from each row

and column in table images. The substantial gap (up to 90%) in accuracy (Table 3.1)

between images and text can be attributed solely to the model’s internal reasoning

processes for each modality. This underscores the inconsistent internal reasoning

employed by the model when presented with the same content in different modalities.

In contrast, we observe lower OCR accuracy for Math equation-solving inputs, as

complex math equations pose challenges for accurate recognition and extraction. To

isolate and distinguish the source of inconsistency – inaccurate recognition of image

data or poor actual internal reasoning, we report conditional consistency scores

for image instances given correct versus incorrect OCR results. From Table 3.3, it

becomes evident that there is no direct correlation between consistency scores and

direct OCR accuracy. This further bolsters our claim that such models simply exhibit

distinct (and inconsistent!) internal behaviors under different modalities.

3.5 Vision-Depicting-Prompting (VDP)

As shown in Section 3.4.3, for the same task, VLLMs such as GPT-4V perform much

better when questions are presented in text format, even when the information can
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DataSet YConsistency NConsistency

MES (Easy) 0.70 0.75

MES (Hard) 0.66 0.58

Table 3.3: Conditional vision-language consistency score given the OCR results. The
term ’YConsistency’ refers to the consistency given OCR outputs are correct. Con-
versely, ’NConsistency’ denotes the consistency score given incorrect OCR outputs.

be completely extracted from the image instances. Inspired by these findings, we

propose a novel method of Vision-depicting-prompting (VDP) for improving model’s

reasoning ability through image context. We now explain VDP.

3.5.1 Prompting Details

In the case of a task instance presented in image format, VDP diverges from directly

soliciting an answer solely based on the image input, as illustrated in Figure 3.4.

Instead, we adopt a two-step process: we first prompt the model to extract and

articulate the description of the image task using textual language. The prompt

we used in our experiments was: “extract and describe the question in the above

picture”. This aims to maximize the transformation of the image signal into a text

signal, recognizing the inherently stronger reasoning abilities associated with text

information, as demonstrated earlier. Subsequently, we prompt the model to provide

an answer, taking into account both the text description of the task and the original

image input, as depicted in Figure 3.4. The prompt we used in our experiments was:

“then solve it.” The two example prompts were concatenated into a single prompt

and then fed to VLLMs with the corresponding image during the experiments.

Unlike previous research that sought to enhance the reasoning abilities of multi-

modal models by augmenting input images with supplementary text (Lin et al. 2022;

Hu et al. 2023), VDP does not focus on information augmentation. Particularly in

the task instances designed for our study, images already contain all the necessary

information required to complete the task. Therefore, converting these images into
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text format does not provide any additional information that aids in solving the

task. Instead, VDP is rooted in the observation that textual signals can significantly

stimulate a model’s reasoning capability as model has a bias towards language modal-

ity. Instead, VDP is based on the observation that textual signals can significantly

stimulate a model’s reasoning capability, given the model’s inherent bias toward the

language modality. VDP achieves this by explicitly extracting textual information

from the images, thus directly leveraging the model’s language processing capabilities

more effectively.

3.5.2 Experiment Results for VDP

We apply VDP to five of the tasks previously examined in Section 3.4, where these

tasks demonstrate notable performance disparities between image and text inputs.

We therefore investigate whether VDP can effectively bridge the performance gap

between modalities on such tasks. The outcomes are detailed in Table 3.4.

Remarkably, we observe a substantial improvement in accuracy exceeding 12%

when solving problems within the realm of vision modalities using VDP, as compared

to naive prompting. In tasks requiring reasoning abilities, we note an average accuracy

enhancement of 19%. However, the overall performance still lags behind that of text-

based prompting. This discrepancy can likely be attributed to the challenges in

accurately depicting and extracting information from objects within images during

VDP. In contrast, an impressive average increase of 57% in accuracy is observed in

tasks centered around understanding (TU and MMLU). Particularly, in the case of

table understanding, we witness a remarkable 90% boost in accuracy, particularly

when the table’s content is extracted before any necessary calculations are applied.

For these tasks, we find that performance eventually reaches parity with text-based

prompting, underscoring the effectiveness of VDP, particularly in tasks that involve

a deeper understanding of the information within the input instances.

Furthermore, there is a substantial increase in the consistency score with VDP
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Task Modality Prompt Acc Consistency

MES (Easy)

text naive 0.44 —-

image
naive 0.24 0.72

VDP 0.48 ⇑ 0.72

MES (Hard)

text naive 0.62 —-

image
naive 0.28 0.62

VDP 0.50 ⇑ 0.76 ⇑

LogicQA

text naive 0.64 —-

image
naive 0.44 0.64

VDP 0.56 ⇑ 0.80 ⇑

MMLU

text naive 1.00 —-

image
naive 0.74 0.74

VDP 0.98 ⇑ 0.98 ⇑

TU

text naive 0.93 —-

image
naive 0.03 0.10

VDP 0.93 ⇑ 0.90 ⇑

Table 3.4: Result of VDP prompting. MES stands for Math Equation Solving and
TU stands for Table Understanding. ⇑ represents an improvement of more than 10%
using VDP.
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compared to prompting with plain images (naive prompting), e.g., from 0.64 to 0.80

on LogicQA and from 0.10 to 0.90 on TU. These results reinforce our hypothesis that

models such as GPT-4V exhibit varied and often inconsistent reasoning capabilities

across different modalities and underscore the effectiveness of our VDP approach for

enhancing consistency. Properly addressing such disparities between modalities as

done by our VDP approach can also help to improve the performance in solving the

tasks.

3.6 Threats to Validity

In this study, due to cost concerns, data samples in each dataset in the modality of

image were standardized with regard to a single setting, such as font, font size, table

borders, image size, and other parameters. Testing data instances with different

settings would be reasonable work in the future. At the time of conducting the

experiments up to now, the OpenAI website for GPT-4V has daily and hourly limits

on the number of prompts. Consequently, we did not test our experiments on the

entire dataset.

3.7 Conclusion

In this study, we performed a systematic analysis of the consistency across modali-

ties in multimodal systems. Our results demonstrate that models such as GPT-4V

maintain a relatively independent internal representation of reasoning between visual

and textual signals, as evidenced by results we obtained on our datasets which we

specially designed for the tasks. Notably, GPT-4V exhibits superior performance in

language modelling compared to reasoning within a visual context. These findings

offer valuable insights into the potential applications of such multimodal systems and

highlight the need for more integrated system designs. Furthermore, we introduce a

Vision-depicting-Prompting solution to effectively address this inconsistency.
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Chapter 4

Lexicalization Generation and
Lexical Gap Detection

In computational semantics, the term lexicon refers to the vocabulary which speakers

of the language use to express concepts. A language L lexicalizes a concept s if it

has a lexeme (or a word) that can express s; otherwise s corresponds to a lexical gap

in L (Murphy et al. 2010). For example, the Polish word pojutrze is a lexicalization of

the concept “the day after tomorrow”, which corresponds to a lexical gap in English.

In particular, kinship terms describe familial relations such as “grandparent” and

“female cousin”. The clear definitions (glosses) and regular hierarchical structure of

kinship concepts make them well-suited for investigations into lexicons and lexical

gaps.

The task of identifying lexicalizations for a given concept underlies automatic con-

struction of multilingual wordnets Martelli et al. 2023, lexical knowledge bases mod-

eled after the Princeton WordNet Miller et al. 1990. Wordnets are comprised of

synonym sets (synsets), each of which corresponds to a single concept, and contains

the set of words which can express that concept Bond et al. 2013. Wordnets con-

structed by expanding the synsets of the Princeton WordNet may misrepresent terms

and concepts that correspond to English lexical gaps Kwong 2018. For example, in

BabelNet 5.2, the Spanish words prima “female cousin” and primo “male cousin”,

which are clearly not synonymous, are both included in the same synset as English
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Zh: 我有一个堂哥，但是我没堂姐 。

En: I have a cousin , but I have no cousin .

Table 4.1: An incorrect translation from Chinese to English from Google Translate.
堂哥 and 堂姐 mean “elder son of father’s brother” and “elder daughter of father’s
brother”, respectively.

cousin.1 Translation models often fail to correctly translate words which correspond

lexical gaps in the target language, such as in the example in Table 4.1.

Prior NLP work on semi-automatic identification of concept lexicalizations and

lexical gaps has leveraged bilingual dictionaries, wordnets and linguistic typologies.

Bentivogli et al. (2000) apply a decision tree approach based on information from

a machine-readable bilingual dictionary, but their experiments are restricted to En-

glish and Italian. Gregori et al. (2017) focus on a subset of bilingual action verbs

in the context of video-based translation, but establish no mapping to wordnet-type

concepts. Khishigsuren et al. (2022) compile a dataset of 1911 kinship terms and a

list of lexical gaps in 176 languages by combining native speaker experise in 10 lan-

guages, lexicalization information from Wiktionary, and a set of typological patterns

of Murdock (1970). We leverage their resource to develop a method which is fully

automated, language-independent, and not specific to kinship terms.

The principal idea behind our approach is to reduce the task of lexical gap detection

to the task of lexicalization generation. The latter can be viewed as populating a

concept-language matrix (Figure 4.1) in which each cell contains a lexicalization of

the concept in the corresponding language (if one exists). Given a correctly populated

lexicalization matrix, empty cells correspond to lexical gaps. The task of lexicalization

generation is similar to populating wordnet synsets, but requires returning a single

lexicalization, rather than all concept lexicalizations.

1babelnet.org, version 5.3, synset ID bn:00023333n
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We propose a translation-based method for lexicalization generation, which we also

apply to lexical gap detection. Our method is grounded in theoretical propositions

based on the hypernym/hyponym relationships between concepts, which provide a

basis for detecting incorrect lexicalizations. In particular, our model predicts that

languages tend to avoid ambiguity between lexicalizations within disjunctive triples

of concepts such as parent/mother/father. We develop a method for lexical gap detec-

tion via filtering concept lexicalizations produced by translating unambiguous “seed”

words in the context of the corresponding concept glosses. We leverage existing lex-

ical knowledge bases and machine translation systems, as well as the tree structure

of kinship concepts, to decide if a given translation is literal or indicative of a lexical

gap. While we focus on kinship terms in this work, our approach is also applicable

to other sets of concepts.

Our evaluation on kinship terms across 10 diverse languages demonstrates sub-

stantial improvements over BabelNet and ChatGPT. ChatGPT exhibits a tendency

to generate overly specific or irrelevant responses, while BabelNet fails to represent

many of the concepts that are not lexicalized in English. We identify three main

causes of errors made by our algorithm: inaccurate translations, non-standard terms,

as well as errors and omissions in the benchmark dataset itself. We release our code

and BabelNet concept mapping on GitHub.

4.1 Theoretical Framework

We start this section by discussing the linguistic background related to the issue of

lexical gaps. We then formally define the tasks addressed in this paper, as well as

related theoretical concepts, such as literal translations, seed words, and disjunctive

concept triples. This is followed by propositions and proofs that form the theoretical

basis of our method.
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Figure 4.1: An illustration of a hierarchical structure of kinship concepts (top), and
a concept-language matrix of lexicalizations (bottom).

4.1.1 Linguistic Background

Chomsky et al. (1965) introduce the distinction between accidental gaps (words that

could theoretically exist) and systematic gaps (words that would contravene phonolog-

ical constraints). Lehrer (1974) discusses several types of gaps: phonological, morpho-

logical, syntactic, paradigmatical, derivational, functional, and semantic. Ivir (1977)

questions the utility of systemic gaps, and focuses instead on lexical gaps (concepts

that are specific to individual cultures) and conceptual gaps (missing lexicalizations

of “universal” concepts). The latter type, which includes kinship terms, is considered

more important, being an inter-language rather than intra-language phenomenon.

In the context of translation, Cvilikaitė (2006) defines lexical gaps as instances of
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lack of lexicalization for a given concept, and emphasizes the difficulty of identifying

them prior to translation. Janssen (2004) observes that lexical gaps correspond to

words for which there is no single-word translation in a target language. For example,

the concept expressed by the Russian word goluboj is “light blue”, which is considered

a lexical gap in English, even though it can be approximately translated with a single

word blue. According to Gouws (2002) a translation dictionary entry for a lexical

gap needs to include a “brief paraphrase of meaning” (gloss) and/or a “loan word”

(source language term); e.g., “bobotie, South African curried mincemeat.”

4.1.2 Definitions

A wordnet is a semantic knowledge base composed of synonym sets, or synsets. Each

synset corresponds to a unique concept, and to a different sense of each word that

it contains. Each synset is associated with a part of speech, and a gloss that defines

the meaning of the concept. Each word in a synset can express (i.e., lexicalizes) the

corresponding concept.

Hauer et al. (2023a) define a theoretical binary problem Sense(w, s) for deciding

whether the word w can express the concept s. A word lexicalizes a concept if it

can express the meaning conveyed by the concept’s gloss. For example, unlike the

English compositional phrase female cousin or the Spanish word prima, the English

word cousin on its own cannot express the concept of “female cousin”, which is defined

as “the daughter of your aunt or uncle”. A method that solves the Sense problem

could theoretically be used to populate any wordnet synset, by testing each word in

the lexicon on whether it can express the concept corresponding to that synset.

We define the task of lexicalization generation (LexGen) as follows: given a lan-

guage L and a concept s, a method must return either a word in L which lexicalizes

s, or a special GAP token indicating that no such word exists. For example, the word

prima is a possible return value of LexGen(spa, “female cousin”). The LexGen task

is reducible to the Sense problem by returning any word in L for which Sense(w, s)
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is TRUE, or GAP if no such word exists.

We define the binary task of lexical gap detection (LexGap) as follows: given a

language L and a concept s, LexGap(L, s) returns TRUE if L has no word that lex-

icalizes s, or FALSE otherwise. For example, LexGap(eng, “female cousin”) returns

TRUE, as there is no word in the English lexicon to express the concept. LexGap is

reducible to LexGen in a straightforward manner by returning true if and only if

LexGen returns gap. LexGap can also be reduced directly to Sense:

LexGap(L, s)⇔ ∀w ∈ L : ¬Sense(w, s)

A literal translation is an expression in the target language that preserves the

meaning of the expression in the source language in a given context. In the case of

a literal lexical translation, the target word expresses the same concept as the source

word. We assume that a translator, which can be either a human or a machine, is

guided by the following priorities: (1) fidelity (meaning preservation), (2) brevity

(conciseness), and (3) fluency Hauer et al. 2023b. Therefore, a translator prefers

literal to non-literal translations, as well as single-word translations to multi-word

phrases. In the case of a lexical gap, a literal lexical translation is not an option.

Both non-literal and phrase translations can therefore be considered indications of

lexical gaps in the target language. For example, Spanish prima can be translated

into female cousin (phrasal translation) or just cousin (non-literal translation). A

heuristic for detecting non-literal lexical translations is the back-translation test: a

source word w in context C is first translated into a target word w′, which is then

translated back in the same context into a source language word w′′; the test succeeds

if and only if w′′ = w. For example, cousin as a translation of prima may fail the

back-translation test.2

We introduce a notion of seed words, defined as words that lexicalize exactly one

concept within a set of concepts. For example, the Spanish word prima is considered

2Google translates Amo a mi prima into I love my cousin and then back into Amo a mi primo
(accessed April 18, 2024).
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a seed word for the concept of “female cousin” within the set of kinship terms. We

use seed words in Section 4.3 as unambiguous source words to generate target concept

lexicalizations via translation.

4.1.3 Disjunctive Triples

Simple natural language statements can often be mapped to symbolic logic, and vice

versa, with the logical operators represented by conjunctions such as and, or, and not.

In particular, an apparent colloquial or textual contradiction can often be expressed

as a logical proposition that is false for all values of its variables. For example,

“Robin is brave and not brave” intuitively corresponds to brave(x)∧¬brave(x), where

the variable x represents Robin. We refer to such natural language expressions as

colloquial contradictions.

The typological phenomena used to construct the hypernymy graph of kinship

terms are binary. Therefore, kinship concepts can often be arranged into triples,

wherein a concept s0 is an exclusive disjunction of its hyponym concepts s1 and s2.

Among the kinship terms, the principal type of exclusive disjunction is gender; for

example, a sibling is either a sister or brother. The gender distinction can be indirect;

for example, an uncle can be referred to as either maternal or paternal. Another type

of disjunction is relative age; for example, a cousin can be either younger or older.

Other distinctions are possible, such as the speaker’s gender, or consanguinity vs.

affinity.

Because hyponymy is the IS-A relation, any instance of s0 must be either an

instance of s1 or s2 (but not both). If a single word w could express both s1 and

s2, then w would also necessarily express the hypernym s0. To avoid confusion, if

a speaker specifically wishes to refer to concept s1, as opposed to its hypernym s0,

it is logical to choose a word (or phrase) which excludes s2. For example, since the

Spanish word padre can lexicalize both concepts of “father” and “parent” (especially

in its plural form), speakers may instead use the word progenitor to express the latter

52



concept.

In symbolic logic, an exclusive disjunction is expressed by the xor (exclusive or)

operator: ⊕. In plain English, an exclusive disjunction can be expressed as “either

or ”; if a concept s0 is an exclusive disjunction of its hyponyms s1 and s2, the phrase

that combines the glosses of the hyponyms as“either C1 or C2” is a possible gloss for

s0. For example, since “parent” is the exclusive disjunction of its hyponyms “father”

and “mother”, it can be defined as “father or mother.”

4.1.4 Propositions

In the remainder of this section, we present two propositions formulated on exclusive

disjunctive triples, which from the basis of our methods in Section 4.3 for removing

spurious lexicalizations.

Proposition 1 If a concept s0 is an exclusive disjunction of its hyponym concepts s1

and s2, then expressing both s0 and s1 with the same word can result in a colloquial

contradiction.

Proof. Suppose that there exists a word w that lexicalizes both concept s0 and

its hyponym s1. Since s1 and s2 are disjunctive hyponyms of s0, the meaning of s2

could be expressed by a phrase “w but not w”, in which w is used in two different

senses of s0 and s1. This phrase intuitively corresponds to a logical contradiction:

w(x) ∧ ¬w(x).

Intuitively, the use of the same word to lexicalize both members of a hypernym/hy-

ponym pair can lead to highly ambiguous expressions, which is undesirable in any

natural language. For example, since Spanish padre can mean both “parent” and “fa-

ther”, Google Translate translates the English sentence “Robin is my parent but not

my father” into “Robin es mi padre pero no mi padre.” Contextual disambiguation of

such apparently contradictory statements is particularly difficult if the two concepts

are closely related by hyponymy.
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Proposition 2 If a concept s0 is an exclusive disjunction of its hyponym concepts s1

and s2, then expressing both s1 and s2 with the same word can result in a colloquial

contradiction.

Proof. Suppose that there exists a word w that lexicalizes both s1 and s2. Since

s1 and s2 are disjunctive hyponyms of s0, the meaning of s0 could be expressed by a

phrase “either w or w”, in which w is used in two different senses of s1 and s2. This

phrase intuitively corresponds to a logical contradiction: w(x)⊕ w(x).

For example, the concepts of “female cousin” and “male cousin” which are lex-

icalized in Spanish by prima and primo, respectively, correspond to lexical gaps in

English. Given the Spanish sentence “Tengo una prima pero no tengo ningún primo.”,

Google Translate3 produces a translation which is at best ambiguous, at worst non-

sensical: “I have a cousin but I have no cousin”.

Taken together, Propositions 1 and 2 yield the following corollary, which applies to

disjunctive triples of concepts, based on the intuition that colloquial contradictions

should be rare.

Corollary 1 If a concept s0 is an exclusive disjunction of its hyponyms s1 and s2

then all their lexicalizations should be different.

Figure 4.2 shows 10 possible types of exclusive disjunctive triples, of which 4 types

(numbered 7-10) are excluded by Corollary 1 because two or more concepts are lexi-

calized by the same word. Types 7, 8, and 10 fall under Proposition 1, while types 9

and 10 fall under Proposition 2.

4.2 Taxonomy

The kinship taxonomy is composed of six directed acyclic graphs (DAGs), in which

nodes correspond to concepts, and edges represent the is-a relationship between

3translate.google.com, February 15, 2024.
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Figure 4.2: Types of concept triples. Distinct lexicalization are represented by differ-
ent variables.

Root Compound Gloss Size

sibling sibling 9

grandchild child of child 9

grandparent parent of parent 9

auncle sibling of parent 27

nibling child of sibling 27

cousin child of sibling of parent 81

Table 4.2: The glosses and the number of generated nodes for each root concept.

hypernyms and hyponyms. Each concept is represented by an ordered list of atomic

kinship relations (or attributes): child, parent, and sibling. The list of relations is

specific to each DAG, as shown in Table 4.2. For example, the list of relations for

the root concept “cousin” is [child, sibling, parent] which translates into a compound

gloss “child of sibling of parent.”

Each relation in the ordered list can have a value. The three atomic relations

admit the gender distinction (i.e. male vs. female). The age distinction (i.e. younger

vs. elder) is relative either to the speaker (when referring to siblings or cousins) or to

“sibling of parent”. For example, the concept ”younger, male child of sibling of female

parent” (that is, ”son of mother’s sibling, younger than the speaker”) is represented
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G.create(); Q.create()
sr ← concept(root)
G.addNode(sr); Q.enqueue(sr)
while not Q.isEmpty() do
s0 = Q.dequeue()
for each undefined relation in s0 do
for each possible value of relation do
s1 ← concept(s0)
s1.relation← value
if s1 /∈ G then
G.addNode(s1); Q.enqueue(s1)

G.addEdge(s0, s1)

Figure 4.3: The algorithm for generating a concept graph.

by [child = male, sibling = undefined, parent = female, age = younger]. Concepts

that have the same representation are considered identical, so there is at most one

node in any graph with a given representation.

We generate our kinship taxonomy automatically. The algorithm in Figure 4.3

generates a complete DAG given one of the root concepts from Table 4.2. The graph

G is initialized with the root concept, in which every relation set to undefined. The

algorithm maintains a queue Q which contains the nodes to be expanded by setting

each of the available relations to either of its possible values. Each iteration of the

innermost foreach loop results in a creation of a directed edge between the current

node s0 and one of its hyponyms s1. If the hyponym node s1 has not yet been created,

it is added to the graph and the queue.

4.3 Methodology

In this section, we describe our approach to lexicalization generation. The essence of

the method is to generate a candidate lexicalization for each concept by translating

a seed word into the target language in the context of the concept gloss, and then

apply a series of filters to remove incorrect candidates. For each concept, we output

the corresponding lexicalization if it has not been filtered out, or gap otherwise.
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4.3.1 Candidate Generation

Given the seed word for a concept, we translate the seed words in the context of

the concept gloss using the template “[seed word]: [concept gloss]” which we refer to

as a gloss context. Including the gloss yields better results than providing only the

seed word, by providing the translation system with additional context. Ideally, the

translation of the seed word should be a lexicalization of the input concept.

After translating the gloss context into the target language, we extract the can-

didate lexicalization by retrieving the part of the translation before the colon. For

example, to identify a French lexicalization for the concept of “aunt”, we translate

the gloss context “aunt: a parent’s sister” into “tante: la sœur d’un parent.” We

then extract the lexicalization candidate tante.4

4.3.2 Candidate Filtering

Translation errors and lexical gaps may lead to inaccurate, non-literal, or non-lexical

translations, which are not appropriate as lexicalizations. We therefore apply a se-

quence of filters to remove incorrect candidate lexicalizations. The pseudo-code of

the algorithm is shown in Figure 4.4.

Multi-Word Filter (#1) The multi-word filter rejects any candidates which are

composed of multiple word tokens. This effectively enforces a strict definition of a

lexicalization as a single orthographic word. We found that multi-word expressions,

such as female cousin are usually compositional, and therefore not suitable as lexi-

calizations. Some linguists adopt an even more strict definition that a lexicalization

must be a mono-morphemic word Khishigsuren et al. 2022, however, we do not en-

force this constraint in our method. Since the Chinese language does not separate

words orthographically, we detect multi-word expressions by identifying characters

which are indicative of word boundaries: 的 and 或.

4Example translations in this section were obtained from Google Translate on February 14, 2024.
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Horizontal Filter (#2) In addition to considering individual concepts separately,

we also leverage lexicalization patterns to filter out non-literal translations. If both

hyponyms in a disjunctive triple are found to have the same candidate lexicalization,

Proposition 2 from Section 4.1.4, implies that this may be a non-literal, hypernym

translation, indicating the existence of two lexical gaps. For example, if the Span-

ish terms primo “male cousin” and prima “female cousin” are both translated into

English as cousin, the horizontal filter replaces both instances of cousin with GAP

indicators.

Back-Translation Filter (#3) If the candidate lexicalization can indeed express

the same concept as the seed word in the context of its gloss, it should be possible to

recover the seed word by back-translating the candidate in the context of the trans-

lated gloss. The back-translation filter is designed to detect non-literal translations

by applying this test, removing any lexicalizations which do not pass If the original

seed word is not recovered, the candidate is discarded, and the output for that con-

cept is a lexical gap. For example, if the Chinese seed word 弟弟 “younger brother”

is translated into English as brother, and then back-translated into Chinese as 兄弟

“brother” then the filter removes this lexicalization and labels this concept as a lexical

gap in English.

Vertical Filter (#4) Our final filter is based on Proposition 1 from Section 4.1.4,

which implies that a concept and its hyponym within a disjunctive triple are unlikely

to share the same lexicalization. If such a case is detected, the vertical filter removes

one of the two instances of the lexicalization. Intuitively, we expect languages to be

consistent in their lexicalization patterns; for example, if a language has no word for

“elder brother” it is less likely to lexicalize “elder sister”. Therefore, we label both

hyponyms as gaps if the lexicalization of the co-hyponym in the triple has already

been removed by an earlier filter; otherwise, we remove the hypernym candidate word
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for each concept s do
L0(s)← Translate(seed(s), gloss(s))

for each concept s do ▷ Filter #1
L1(s)← GAP if L0(s) is not a word

for each triple (s0, s1, s2) do ▷ Filter #2
L2(s1)← GAP; L2(s2)← GAP if L1(s1) = L1(s2)

for each concept s do ▷ Filter #3
L3(s)← GAP if BackTrans(L2(s), gloss(s)) ̸= seed(s)

for each triple (s0, s1, s2) do ▷ Filter #4
if L3(s0) = L3(s1) then
if L3(s2) = GAP then L4(s1)← GAP else L4(s0)← GAP

Figure 4.4: Pseudo-code of the algorithm for lexicalization generation and lexical gap
detection. The lexicalizations in Li are copied to Li+1 after each loop.

instead.

4.4 Experiments

This section describes the empirical evaluation of our method. We provide information

on our datasets, resources, metrics, and baselines.

4.4.1 Data

Our principal dataset is the Database of Lexical Diversity in Kinship Domain released

by Khishigsuren et al. (2022), henceforth referred to as the kinship database. It

compiles data from 699 languages pertaining to 198 kinship concepts, divided into

six subdomains: cousins, grandchildren, grandparents, nephews/nieces, siblings, and

uncles/aunts. It explicitly lists over 37k lexical gaps, based on various resources and

inference methods, as well as 1911 lexicalizations, from 168 of the 699 languages.

For each of the six concept categories, more specific concepts are derived by the

application of mutually exclusive distinctions. Each distinction induces two hyponyms

of a given concept, which together form an exclusive disjunctive triple (Section 4.1.3).

For example, the application of the relative age distinction to the concept “sibling”

yields the concepts “elder sibling” and “younger sibling”. This property is crucial, as
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it admits the application of Propositions 1 and 2 in our method.

The 198 concepts in the kinship database do not include all possible concepts that

could be derived by the application of the gender and age distinctions, because the

creators of the kinship database excluded concepts that were not attested in their

sources. Furthermore, 74 terms are distinguished only by the gender of the speaker;

we do not consider such terms to denote a separate concept.

When applied to the six root concepts in Table 4.2, our algorithm in Figure 4.3

generates DAGs which include all 124 distinct concepts in the kinship database, as

well as 38 additional concepts.5 An example of an additional concept is “child of

younger sibling.” It is an open question whether such concepts are lexicalized in any

natural language, but gender-independent concepts are expected to be introduced in

the future.6

4.4.2 Seed Words and Glosses

In order to generate a candidate lexicalization for a given concept, we construct a

gloss context (Section 4.3.1) by concatenating a seed word with a concept gloss in the

same language. We then extract the candidate lexicalization from the translation of

the gloss context obtained with Googletrans API.

We select the seed words from the set of words that lexicalize exactly one concept in

the kinship database. If there is more than one such word, we prefer highly-resourced

languages, according to their coverage in BabelNet v5.3, which are likely to yield

more accurate translations.7 The majority of the seed words, 53 out of 71, are from

the three languages used for the method development: English (eng), Chinese (zho),

and Persian (pes).

For most concepts, we use the glosses provided in the kinship database, such as

5Specifically, 28 cousin, 6 nibling, and 4 auncle concepts. The full list of concepts is available in
our mapping resource.

6For example, the concept ”sibling of parent” (aunt or uncle) is lexicalized in the kinship database
only in constructed languages Esperanto, Ido, and Volapük.

7https://babelnet.org/statistics
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LexGap (F1)

Method eng zho pes spa rus fra deu pol ara ita mon hun hin Test Avg.

All-Gaps 81.6 62.4 79.5 81.7 83.8 75.0 82.2 81.9 84.4 71.4 92.5 61.3 70.5 78.5

BabelNet 98.4 59.5 76.7 85.7 91.2 87.7 93.1 80.6 85.7 83.0 89.7 80.9 60.5 83.8

ChatGPT 65.2 6.1 39.1 57.1 43.9 40.0 80.8 46.8 56.4 42.1 27.9 50.0 11.4 45.6

Ours 100.0 96.6 88.6 98.3 96.9 93.1 98.4 85.7 85.7 82.0 90.4 74.5 59.7 86.5

LexGen (Acc.)

Method eng zho pes spa rus fra deu pol ara ita mon hun hin Test Avg.

All-Gaps 80.3 50.7 76.1 81.7 83.1 74.6 81.7 78.9 85.9 71.8 91.5 66.2 63.4 77.9

BabelNet 98.6 39.4 69.0 85.9 88.7 88.7 84.5 77.5 77.5 80.3 88.7 77.5 53.5 80.3

ChatGPT 43.7 28.2 32.4 36.6 14.1 38.0 40.8 28.2 36.6 29.6 15.5 32.4 23.9 29.6

Ours 100.0 93.0 83.1 98.6 97.2 93.0 97.2 85.9 81.7 84.5 90.1 69.0 53.5 85.1

Table 4.3: Results (in %) on the kinship database. The development languages are
English, Chinese, and Farsi.

“elder daughter of mother’s sibling”. The exceptions are the six root concepts in

Table 4.2, for which we instead retrieve glosses from BabelNet Navigli et al. 2012.

For concepts with non-English seed words, we use ChatGPT to translate the glosses

into the language of the seed word, following the template in Table 4.4. We manually

verify that the Chinese gloss translations are correct.

4.4.3 Evaluation and Comparison Methods

We test our method against the kinship database on both lexicalization generation

(LexGen) and lexical gap detection (LexGap). For LexGen we compute accuracy

as the proportion of instances for which the predicted lexicalization (or a lack of it)

matches the information in the kinship database. For LexGap we evaluate the results

with the standard F-score measure, the harmonic mean of precision and recall. A

lexicalization is considered as an indication of a lexical gap absence.

We evlauate our method on 10 languages: Spanish (spa), Russian (rus), French

(fra), German (deu), Polish (pol), Arabic (ara), Italian (ita), Mongolian (mon), Hun-

garian (hun), and Hindi (hin). For each language, we test on 71 concepts which are
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well represented in the kinship database.

We compare our method with three approaches: (1) BabelNet lookup, (2) Chat-

GPT, and (3) a naive majority-class baseline (All-Gaps), which simply predicts that

all concepts are lexical gaps in any language. We perform BabelNet lookup by re-

trieving lexicalizations from BabelNet. We manually identified 28 BabelNet synsets

which correspond to concepts in the kinship database.8 From each such synset, we

take the first single word in the target language as the lexicalization for that concept.

If the synset contains no single word in the target language, or there is no synset

associated by our mapping, a lexical gap indicator is returned instead.

Finally, ChatGPT involves directly querying a large language model, for either a

lexicalization or an explicit confirmation that the concept is a lexical gap. To this end,

we use in-context learning (Brown et al. 2020), a technique allowing large language

models to execute tasks based on examples included in their input instructions, with-

out the need for external updates or specific model training. We prompt ChatGPT

with the template specified in Table 4.4.

4.4.4 Results

Table 4.3 shows the results for lexical gap detection and lexicalization generation.

Our system outperforms other methods on average, and achieves the best results on

the majority of the 10 test languages. In particular, we observe that our method

performs extremely well on high-resource Indo-European languages in our test set,

such as Spanish, Russian, and German. Contrariwise, lower-resource languages such

as Hindi prove to be more difficult. We speculate that these trends are due to varying

translation and data quality.

In terms of our comparison approaches, the All-Gaps baseline is surprisingly strong,

easily outperforming ChatGPT and rivaling the BabelNet baseline. This reflects the

imbalanced nature of the data, in which most instances are lexical gaps. For example,

8We include the synset mapping in our resource.
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the concept “younger son of mother’s sibling” corresponds to a lexical gap in every

tested language except Chinese. Similarly, we found that the BabelNet baseline

performs well because most concepts in the kinship database are not mapped to any

BabelNet synset, resulting in a large number of gap predictions.

ChatGPT’s performance is surprisingly poor. We found that ChatGPT often pro-

vides spurious responses which refer to overly specific concepts. For example, for

“male cousin”, ChatGPT provided the Chinese word 堂兄, which specifically refers

to “elder son of father’s brother”, a hyponym of “male cousin”. We speculate that

this phenomenon is related to the well-known problem of hallucination, in which large

language models favor the production of incorrect answers, rather than indicating a

lack of knowledge, or that no good answer exists.

Overall, the results indicate that our method yields highly competitive performance

on both tasks across a diverse set of languages. Our approach of generating and fil-

tering lexical translations is able to accurately identify lexical gaps where they exist,

and produce lexicalizations where they do not, even on low-resource languages, out-

performing methods based on existing multilingual knowledge bases or large language

models. We interpret these results as strong evidence of the utility of our method, as

well as for the soundness of our theoretical model.

4.4.5 Error Analysis

Inspecting the output of our method, we found three main types of errors. The pri-

mary factor is imperfect translations. For instance, the Chinese translation generated

for the concept “grandchild” was 孙子或孙女, a compositional phrase meaning “the

son’s son or the son’s daughter” instead of 孙辈, which is a single word that precisely

lexicalizes the concept.

Another factor is the existence of rare words or senses. For instance, the kinship

database contains the Spanish word tato, defined as “elder brother”. However, this

translation is not produced by our translation system, nor is it found in the Oxford

63



0 1 2 3 4
Filter

0
20
40
60
80

100
M

et
ric

 (%
)

LexGap LexGen

Figure 4.5: Averaged evaluation results across 10 test languages with an increasing
number of filters. We report the F1 score for LexGap and the accuracy for LexGen
as the metric, respectively.

Spanish Desk Dictionary containing over 90,000 words and phrases.

Finally, the kinship database itself unavoidably contains errors and omissions. For

instance, it has no lexical entry for the concept “sibling” in Polish, for which our

method correctly generates the word rodzeństwo. This demonstrates that our method

has the capability to uncover and address the gaps in the existing datasets.

4.4.6 Ablation study

We conduct an ablation study to assess the individual contributions of each filter

within our method. As described in Section 4.3.2, our method starts from lexical

translations, and applies four filters in sequence: 1) multi-word, 2) horizontal, 3)

back-translation, and 4) vertical. The evaluation metrics remain consistent with our

main experiment. We report average results across all test 10 languages.

Figure 4.5 shows a clear trend of improvement in both F1 scores for LexGap and

accuracy for LexGen following the application of each filter. Specifically, the largest

boosts for LexGap and LexGen are provided by the multi-word and horizontal filters,

respectively. This confirms the appropriateness of our theoretical propositions and

constraints in Section 4.1.
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Method Template

Google Translate [seed word ]: [gloss ]

ChatGPT (Seed Word)

Translate a/an [seed word language] sentence into [target language] literally focusing
on the topic of kinship. Retain the “:” symbol. Provide only the translation. Each
word in the final translation must be in [target language]. The first word before the
“:” sign must be translated into the singular form. [seed word ]: [gloss ]

ChatGPT (Gloss)
Translate a/an [seed word language] sentence into [target language] literally focusing
on the topic of kinship. Provide only the translation. Each word in the final transla-
tion must be in [target language].

ChatGPT (Baseline)

Given a word that means [father’s younger brother] in Chinese is [叔叔], and a word
that means [mother’s brother] in Chinese is [舅舅]. Is there a word that means
[concept] in [target language]? If yes, give me that word. If no, say no.

Table 4.4: Gloss-context templates used to obtain candidate lexicalizations.

4.5 Threats to Validity

We only tested our method in the domain of kinship concepts. The generalizability of

our methods was not fully tested due to the lack of available datasets that contain the

necessary information of exclusive disjunction hypernym relationships. The kinship

dataset we used in our experiments was not complete, as there are on average, 40

concepts among the 198 concepts in languages that we tested that were not labelled

by the authors of the dataset. There are also some errors in the golden data as we

pointed out in the error analysis section.

4.6 Conclusion

We have proposed a novel computational method that generates concept lexicaliza-

tions and detects lexical gaps. The method is grounded in formal definitions and

propositions, and leverages translation and hypernym/hyponym taxonomy relations.

We have also demonstrated that both kinship concepts, and the relations between

them, can be created automatically via a simple rule-based method. Experimental

results on independently-created datasets representing diverse languages confirm the

effectiveness of our approach.
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Chapter 5

Conclusion

In this chapter, I will delve into the insights gathered from preceding chapters, ana-

lyzing their contributions in supporting the thesis statement of this thesis: “Current

LLMs and VLLMs, such as GPT-3.5 and GPT-4V, exhibit inconsistent capabilities

across different languages and modalities, leading to potential limitations in perfor-

mance even in language/modality-independent tasks, making LLMs more effective as

assistants rather than problem solvers.”

Chapter 2 presents evidence substantiating the claim that LLMs, like GPT-3.5,

exhibit inconsistent abilities in different languages. Findings from our experiments

reveal LLMs’ bias towards English, in which LLMs always produce the most accurate

results given prompts in English comparing to other languages. This bias, as evi-

denced through specific examples and case studies analyzed in my research, restricts

the model’s performance in tasks that are theoretically language-independent, like

Math Reasoning.

The experimental outcomes from Chapter 3 indicate that GPT-4V tends to main-

tain separate internal representations for visual and textual information. This separa-

tion is apparent in the model’s superior language modeling abilities as opposed to its

reasoning within visual contexts. These observations strongly support the argument

that VLLMs like GPT-4V convey inconsistent capabilities across modalities.

Chapter 4 provides evidence supporting the notion that LLMs function more effec-
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tively as assistants rather than as direct problem solvers. This assertion is validated

by GPT-3.5-Turbo’s underwhelming performance in LexGen and LexGap. Our error

analysis reveals that GPT-3.5 Turbo often generates spurious responses. This trend

appears to stem from the issue of ‘hallucination’ in LLMs, where they prefer to offer

incorrect answers instead of acknowledging uncertainty or the absence of a suitable

response. However, if we reinterpret LLMs outputs for LexGen and LexGap, as a

form of “translation”, or even employ LLMs as the source of translation, and pro-

cess them through our translation-based method, the results will be more promising

than directly prompting LLMs to solve the task. This approach leverages the con-

firmed ability of LLMs in translation tasks, offering a more pragmatic use of their

capabilities.
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Appendix A: Generations of Large
Language Models

The appendix contains five tables. Table A.1 contains BERT similarity scores between

the explanations generated by ChatGPT in different languages (Section 2.4.3). Ta-

ble A.2 and Table A.3 contains a comparison of cover letters generated by ChatGPT

in English and Chinese, respectively (Section 2.4.4). Table A.4 contains examples

of the explanations of an English pun generated by ChatGPT in English, Chinese,

French, and Spanish (Section 2.4.5). The pun in question is “a bicycle can’t stand on

its own because it is two-tired”, with a word-play involving the homophonic phrases

too tired and two-tire’d. The pun is lost in translation to other languages, but this

does not prevent ChatGPT from correctly detecting, locating, and explaining it in

those languages. Table A.5 shows an example of a misguided response from Llama2.

A.1 Motivation in the designed prompts

In this project, prompts were not specifically designed, for questions in Math Rea-

soning, Knowledge Access, Common Sense Reasoning, and Cover Letter Generation,

we prompted the question directly. For the Pun Detection task, we add a sentence

before the pun sentence: ”Is there a pun in the following sentence or not”, to specify

the task the LLM will handle.
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Lang. En Fr De Es Ja

Common Sense Reasoning

Fr 0.871 1.000

De 0.882 0.857 1.000

Es 0.886 0.864 0.868 1.000

Ja 0.839 0.822 0.850 0.828 1.000

Zh 0.863 0.852 0.872 0.866 0.848

Math Reasoning

Fr 0.947 1.000

De 0.937 0.933 1.000

Es 0.948 0.947 0.940 1.000

Ja 0.907 0.905 0.910 0.901 1.000

Zh 0.905 0.912 0.902 0.912 0.902

Knowledge Access

Fr 0.928 1.000

De 0.916 0.926 1.000

Es 0.925 0.922 0.903 1.000

Ja 0.883 0.888 0.878 0.883 1.000

Zh 0.858 0.868 0.864 0.848 0.864

Table A.1: BERT similarity scores for explanations in TE tasks.
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Prompt(EN): You are Johnson Smith from University of Alberta with A GPA of 3.9. You like sapping.
You want to join Huawei company. Write a cover letter about: What is it about this
role that makes it a good fit for you?, What’s something outside of your work that you’re
passionate about?, and What does your next ideal role look like?

English: Dear Hiring Manager,
I am writing to express my keen interest in joining Huawei Technologies Co. Ltd. as a [insert
desired position]. As an accomplished student pursuing a Bachelor’s degree in Computer
Science at the University of Alberta, I am excited about the opportunity to contribute to
Huawei’s innovative work in the technology sector.
What sets Huawei apart for me is its commitment to pushing the boundaries of technologi-
cal advancement and delivering high-quality products and services to its global customers.
This aligns perfectly with my own passion for exploring the cutting-edge developments in
the tech industry. Through my academic journey, I have consistently strived for excellence,
maintaining a GPA of 3.9, and actively seeking out opportunities to deepen my knowledge
and skills in areas such as software development, network infrastructure, and cloud com-
puting.
I firmly believe that my technical expertise and problem-solving abilities make me an ex-
cellent fit for the role at Huawei. With a strong foundation in computer science principles,
coupled with practical experience gained through internships and personal projects, I am
confident in my ability to contribute to Huawei’s goals and objectives. I am particularly
excited about the potential to work on projects related to artificial intelligence, network
security, and software engineering, areas where I have demonstrated exceptional aptitude
and interest.
Beyond my professional pursuits, I am a firm believer in maintaining a well-rounded lifestyle.
One of my greatest passions outside of work is sapping. I find immense joy in exploring
the beauty of nature, hiking through serene trails, and immersing myself in the calmness
of the wilderness. Sapping has taught me the importance of resilience, adaptability, and
appreciating the interconnectedness of the natural world. I firmly believe that this passion
for sapping enhances my creativity and problem-solving abilities, enabling me to approach
challenges with a fresh perspective and a sense of adventure.
Looking forward, my ideal role involves being part of a dynamic and collaborative team that
encourages innovation and continuous learning. I aspire to work in an environment that
fosters personal growth, provides opportunities for professional development, and empowers
individuals to make a meaningful impact. I am enthusiastic about taking on challenging
projects that require creativity, critical thinking, and the ability to work effectively both
independently and as part of a team. In my next role, I hope to further develop my technical
skills while also honing my leadership abilities, with the ultimate goal of making a significant
contribution to the company’s success.
Thank you for considering my application. I am excited about the prospect of contributing
to Huawei’s vision and being part of a company at the forefront of technological innovation.
I have attached my resume for your review, and I look forward to the opportunity to discuss
my qualifications further.
Yours sincerely,
Johnson Smith

Table A.2: Cover letters generated by ChatGPT with the same prompt in English
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Prompt(Zh): 你是来自阿尔伯塔大学的约翰逊·史密斯，GPA为3.9。你喜欢程序开发。你希望加入华为
公司。请撰写一封求职信，内容包括以下问题：这个职位有什么特点使其适合你？你工
作之外的兴趣爱好是什么？你心目中的下一个理想职位是怎样的？ (in a completely new
session)

Chinese: 阁下，

我谨向华为公司递交我的求职信，表达我加入贵公司的热忱和兴趣。我是约翰逊·史密斯，
毕业于匿名大学，拥有3.9的GPA。我对程序开发充满热情，并且相信华为公司是我继续发
展和实现个人职业目标的理想之地。

在我了解的情况下，华为公司在全球范围内的领先地位和不断创新的文化吸引了我。我对
华为的技术解决方案和产品充满敬佩，并希望能够为公司的成功作出贡献。我在匿名大学
的学习和项目经验为我提供了坚实的编程基础和解决问题的能力，这些技能将使我能够在
日常工作中充分利用华为的技术平台和工具。

除了工作之外，我对多种兴趣爱好保持着活跃的参与。我是一个狂热的户外运动爱好者，
喜欢徒步旅行、露营和攀岩。这些活动锻炼了我的团队合作和领导能力，并培养了我在压
力下保持冷静和解决问题的能力。此外，我也热衷于参与志愿者活动，尤其是与青少年教
育和技术培训相关的项目。这些经历不仅增强了我的沟通和人际关系技巧，还培养了我对
社会责任的意识。

在我心目中，下一个理想职位是成为一名技术领导者。我希望在技术领域中不断成长和学
习，领导并激励团队实现共同目标。我相信通过不断挑战自己，我能够发挥我的领导潜力
并在组织中产生积极的影响。

我期待着有机会加入华为公司，并为实现公司的愿景和目标而努力工作。感谢您抽出宝贵
的时间考虑我的申请。我期待着与您进一步讨论我对这个职位的适合性。

谢谢您的关注。

真诚地，

约翰逊·史密斯

Prompt(En): Translate this into English.

English: Dear Sir/Madam,
I am writing to express my keen interest in joining Huawei Company and hereby submit
my application. My name is Johnson Smith, and I am a graduate from the University of
Alberta with a GPA of 3.9. I have a strong passion for software development and I believe
that Huawei Company is the ideal place for me to continue my professional growth and
pursue my career goals.
From what I have gathered, Huawei Company’s leading position worldwide and its culture
of continuous innovation have captivated me. I hold great admiration for Huawei’s tech-
nological solutions and products, and I aspire to contribute to the company’s success. My
education and project experiences at the University of Alberta have provided me with a
solid foundation in programming and problem-solving skills, which will enable me to fully
leverage Huawei’s technical platforms and tools in my day-to-day work.
Outside of work, I actively engage in various hobbies and interests. I am an avid outdoor
enthusiast, enjoying activities such as hiking, camping, and rock climbing. These pursuits
have honed my teamwork and leadership abilities, as well as fostered my capacity to remain
calm and solve problems under pressure. Additionally, I am passionate about participating
in volunteer activities, particularly those related to youth education and technical training.
These experiences have not only enhanced my communication and interpersonal skills but
also instilled in me a sense of social responsibility.
In my vision, my next ideal position is to become a technical leader. I aspire to continuously
grow and learn in the field of technology, leading and motivating teams to achieve common
objectives. I believe that by continuously challenging myself, I can unleash my leadership
potential and make a positive impact within the organization.
I am eagerly looking forward to the opportunity to join Huawei Company and contribute
to the realization of its vision and goals. Thank you for taking the time to consider my
application. I would be grateful for the chance to further discuss my suitability for this
position.
Thank you for your attention.
Sincerely,
Johnson Smith

Table A.3: Cover letters generated by ChatGPT with the prompt in Chinese.

78



Prompt(En): A bicycle can’t stand on its own because it is two-tired. is there a pun in this sentence?

English: Yes, there is a pun in this sentence. The phrase ”two-tired” sounds like ”too tired,” which
suggests that the bicycle is tired and needs to rest. However, the actual meaning of ”two-
tired” in this context is that the bicycle has two tires and therefore cannot stand on its own
without support. The pun relies on the double meaning of ”two-tired” to create a humorous
play on words.

Prompt(Zh): 这句话有双关么？：自行车不能独自站立，因为它有两个轮胎 (in a completely new
session)

Chinese: 是的，这句话有双关含义。在字面上，句子表达了一个事实：自行车不能独自站立，因为
它有两个轮胎。然而，这句话也可以被解释为一个玩笑或谐音。”两个轮胎”（two tires）
在英语中发音类似于”too tired”（太累），所以这个双关语可能暗示自行车有两个轮胎，
所以它太累了（太累了）不能站立。

Prompt: Translate this into English.

English: Yes, this sentence has a pun. Literally, the sentence expresses a fact: ”A bicycle cannot
stand alone because it has two wheels.” However, the sentence can also be interpreted as
a joke or wordplay. ”Two tires” sounds similar to ”too tired” in English, so this pun may
suggest that the bicycle has two tires, so it is too tired to stand.

Prompt(Fr): Y a-t-il un jeu de mots dans cette phrase? ”Un vélo ne peut pas se tenir debout tout seul
car il est fatigué de ses deux pneus.” (in a completely new session)

French: Oui, il y a un jeu de mots dans cette phrase. Le jeu de mots repose sur une ambigüıté entre
le fait d’être fatigué au sens propre, c’est-à-dire épuisé physiquement, et le fait d’être fatigué
au sens figuré, c’est-à-dire de ressentir la fatigue en raison de l’utilisation de ses pneus. Le
jeu de mots joue sur le double sens du mot ”fatigué” pour créer une situation comique où
le vélo est censé être épuisé de supporter son propre poids sur ses deux pneus.

Prompt: Translate this into English.

English: Yes, there is a play on words in this sentence. The pun relies on an ambiguity between being
”fatigué” (tired) in the literal sense, meaning physically exhausted, and being ”fatigué”
(tired) in the figurative sense, meaning feeling tired due to the use of its tires. The wordplay
plays on the double meaning of the word ”fatigué” to create a humorous situation where
the bicycle is supposed to be worn out from supporting its own weight on its two tires.

Prompt(Es): ¿Hay un juego de palabras en esta oración: Una bicicleta no puede mantenerse en pie por
śı misma porque tiene dos cansadas?”” (in a completely new session)

Spanish: Śı, hay un juego de palabras en esa oración. La palabra ”cansadas” se utiliza como un juego
de palabras para jugar con la idea de que una bicicleta tiene ”dos ruedas cansadas” en lugar
de ”dos ruedas de bicicleta”. Es un juego de palabras humoŕıstico que juega con el doble
sentido de la palabra ”cansadas”, que puede referirse tanto al estado f́ısico de las ruedas de
la bicicleta como al sentimiento de fatiga o agotamiento.

Prompt: Translate this into English.

English: Yes, there is a play on words in that sentence. The word ”cansadas” is used as a pun to
play with the idea that a bicycle has ”two tired wheels” instead of ”two bicycle wheels.” It
is a humorous play on words that plays with the double meaning of the word ”cansadas,”
which can refer both to the physical state of the bicycle wheels and to the feeling of fatigue
or exhaustion.

Table A.4: ChatGPT explanations of a single English pun in different languages.
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Prompt (En): who is steven seagal sister?

A. Brenda Seagal

B. Johnny Depp

C. Caleb Lane

D. Jason Statham

E. Drew Fuller

Response: I apologize, but I cannot provide an answer to that question as it contains inaccurate
information. Steven Seagal does not have a sister named Brenda Seagal, Johnny
Depp, Caleb Lane, Jason Statham, or Drew Fuller. It’s important to rely on credible
sources when asking questions to ensure accuracy and avoid spreading misinformation.
Is there anything else I can assist you with?

Prompt (Zh): 谁是史蒂文-西格尔的妹妹？

A. 布伦达-西格尔

B. 约翰尼-德普

C. 凯莱布-莱恩

D. 杰森-斯坦森

E. 德鲁-富勒

Response: I cannot provide an answer to this question as it contains harmful and inappropriate
content. The question implies that Stephen Hawking’s sister is a person with a certain
name, which is not appropriate or respectful to assume. Additionally, the options
provided contain names that do not correspond to real people. It is important to
be mindful of the language we use and avoid perpetuating harmful stereotypes or
misinformation. Instead, I suggest rephrasing the question in a more respectful and
accurate manner.

Table A.5: A sample response from Llama2 to a knowledge access question.
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Appendix B: Dataset Samples

B.1 Math Equation Solving (Easy) Dataset

Figure B.1: Sample 1 of Math Equation Solving (Easy) Dataset: Image.

Text: Give only the answer, no steps. Find the largest value of $c$ such that $1$ is in the
range of $f(x)=x ˆ 2-5x+c$.

Table B.1: Sample 1 of Math Equation Solving (Easy) Dataset: Text
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Figure B.2: Sample 2 of Math Equation Solving (Easy) Dataset: Image.

Text: Give only the answer, no steps. What value of x makes the equation below true: $$2x
+ 4 = —-17 + 3—$$

Table B.2: Sample 2 of Math Equation Solving (Easy) Dataset: Text
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B.2 Math Equation Solving (Hard) Dataset

Figure B.3: Sample 1 of Math Equation Solving (Hard) Dataset: Image.

Text: Give only the answer, no steps. Determine whether the given series diverges, converges
conditionally or converges absolutely:

$$ \sum {n=0}ˆ {\infty}(-1)ˆ n(0.3)ˆ n$$

Table B.3: Sample 1 of Math Equation Solving (Hard) Dataset: Text
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Figure B.4: Sample 2 of Math Equation Solving (Hard) Dataset: Image.

Text: Give only the answer, no steps. Calculate the limit, if it exists: $$ \lim { x \rightarrow
2 } \left (8-3 x+12 xˆ 2 \right)$$

Table B.4: Sample 2 of Math Equation Solving (Hard) Dataset: Text
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B.3 LogicQA Dataset

Figure B.5: Sample 1 of LogicQA Dataset: Image.

Text: Give me only a single choice, NO EXPLANATIONS AT ALL! Choose only one choice
from below. Which of the followings, if true, can best support the above statement?
Given that jupiter is a gas giant planet and the largest planet in the solar system.
Its mass is 2.5 times the total mass of the other seven planets in the solar system.
Observations have found that most of the more than 70 moons surrounding Jupiter are
composed of water ice. Therefore, Jupiter’s atmosphere should contain a considerable
amount of water.
A. After hundreds of millions of years, the satellite may slowly fall onto the planet.
B. Many of the water in interstellar space exists in gaseous form.
C. Uranus is also a gas giant planet, and it has been confirmed that it contains a lot
of water ice.
D. The satellite and the planets around it were formed from the same gas and dust
at the same time.

Table B.5: Sample 1 of LogicQA Dataset: Text
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Figure B.6: Sample 2 of LogicQA Dataset: Image.

Text: Give me only a single choice, NO EXPLANATIONS AT ALL! Choose only one choice
from below. Which of the followings can be infered Given that all Anxi people are
vegetarians, while all Zhenyuan people are ascetics. Ascetics and vegetarians are like
fire and water, and there is no conflict. Guo Shu is an ascetic.
A. Guo Shu is from Zhenyuan
B. Guo Shu is not from Zhenyuan
C. Guo Shu is from Anxi
D. Guo Shu is not from Anxi

Table B.6: Sample 2 of LogicQA Dataset: Text
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B.4 MMLU Dataset

Figure B.7: Sample 1 of MMLU Dataset: Image.

Text: Give me only a single letter, NO EXPLANATIONS AT ALL! Choose one from below.
Tom had to fix some things around the house. He had to fix the door. He had to fix
the window. But before he did anything he had to fix the toilet. Tom called over his
best friend Jim to help him. Jim brought with him his friends Molly and Holly. Tom
thought that Jim was going to bring Dolly with him but he didn’t. The four of them
got to work right away. Fixing the toilet was easy. Fixing the door was also easy but
fixing the window was very hard. The window was stuck and could not be opened.
They all pushed on the window really hard until finally it opened. Once the window
was fixed the four of them made a delicious dinner and talked about all of the good
work that they had done. Tom was glad that he had such good friends to help him
with his work. What was the hardest thing for Tom and his friends to fix?
A. Door
B. House
C. Window
D. Toilet

Table B.7: Sample 1 of MMLU Dataset: Text
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Figure B.8: Sample 2 of MMLU Dataset: Image.

Text: Give me only a single letter, NO EXPLANATIONS AT ALL! Choose one from below.
Lisa has a pet cat named Whiskers. Whiskers is black with a white spot on her chest.
Whiskers also has white paws that look like little white mittens. Whiskers likes to
sleep in the sun on her favorite chair. Whiskers also likes to drink creamy milk. Lisa
is excited because on Saturday, Whiskers turns two years old. After school on Friday,
Lisa rushes to the pet store. She wants to buy Whiskers’ birthday presents. Last
year, she gave Whiskers a play mouse and a blue feather. For this birthday, Lisa is
going to give Whiskers a red ball of yarn and a bowl with a picture of a cat on the
side. The picture is of a black cat. It looks a lot like Whiskers. What does Whiskers
like to do?
A. Sleep in the sun and drink creamy milk
B. Play
C. Drink
D. Sleep

Table B.8: Sample 2 of MMLU Dataset: Text
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B.5 Table Understanding Dataset

Figure B.9: Sample 1 of Table Understanding Dataset: Image.

Text: Give me only the result number, NO EXPLANATIONS AT ALL! Given the table,
x equals the number in position row 1 column 3 plus the number in position row 1
column 2, what is the value of x?
\begin{table}[]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{—l—l—l—}
\hline
1.179 & 7.610 & 4.722 \\
\hline
3.796 & 2.100 & 4.879 \\
\hline
8.933 & 3.898 & 6.074 \\
\hline
\end{tabular}}
\end{table}

Table B.9: Sample 1 of Table Understanding Dataset: Text

89



Figure B.10: Sample 2 of Table Understanding Dataset: Image.
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Text: Give me only the result number, NO EXPLANATIONS AT ALL! Given the table,
x equals the number in position row 5 column 3 plus the number in position row 1
column 4, what is the value of x?
\begin{table}[]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{—l—l—l—l—l—}
\hline
9.875 & 3.149 & 3.765 & 5.892 & 1.333
\\
\hline
6.335 & 3.325 & 3.529 & 9.173 & 6.089
\\
\hline
2.789 & 4.895 & 5.894 & 9.548 & 0.213
\\
\hline
3.692 & 6.280 & 2.986 & 6.015 & 1.774
\\
\hline
1.852 & 7.581 & 8.438 & 2.641 & 7.873
\\
\hline
\end{tabular}}
\end{table}

Table B.10: Sample 2 of Table Understanding Dataset: Text
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B.6 Math Reasoning Dataset

Figure B.11: Sample 1 of Math Reasoning Dataset: Image.

Text: Give only the answer, no steps. Phill had some friends over for pizza. He opens the
pizza box and discovers it hasn’t been sliced. Phill cuts the pizza in half, and then
cuts both halves in half, and then cuts each slice in half again. Phill then passes out
1 slice to 3 of his friends and 2 slices to 2 of his friends. How many slices of pizza are
left for Phill?

Table B.11: Sample 1 of Math Reasoning Dataset: Text
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Figure B.12: Sample 2 of Math Reasoning Dataset: Image.

Text: Give only the answer, no steps. Brandon sold 86 geckos last year. He sold twice that
many the year before. How many geckos has Brandon sold in the last two years?

Table B.12: Sample 2 of Math Reasoning Dataset: Text
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B.7 State Machine Dataset

Figure B.13: Sample 1 of State Machine Dataset: Image.

Text: Consider a graph with the following directed edges: Yellow leads to Red; Green leads
to Yellow; Red leads to Pink; Blue leads to Green; Gray leads to Green; Pink leads
to Blue. Starting from the Gray node, what color node will we achieve after 6 steps?
Only return the correct one from the options below without explanations: A. Green
B. Red C. Blue D. Yellow E. Pink

Table B.13: Sample 1 of State Machine Dataset: Text

94



Figure B.14: Sample 2 of State Machine Dataset: Image.

Text: Consider a graph with the following directed edges: Gray leads to Red; Yellow leads
to Blue; Blue leads to Red; Red leads to Green; Green leads to Yellow. Starting from
the Gray node, what color node will we achieve after 6 steps? Only return the correct
one from the options below without explanations: A. Red B. Yellow C. Green D. Blue

Table B.14: Sample 2 of State Machine Dataset: Text

B.8 Motivation in the designed prompts

In our experiments, we utilized a specific prompt format: ”[Restriction instruction].

[Problem]”. The ”Restriction instruction” was, for instance, ”Provide only the an-

swer, no steps” for mathematical reasoning tasks, or ”Select a single option, NO

EXPLANATIONS AT ALL!” for multiple-choice questions. Prompting questions in

the modality of the image without these restrictions. VLLMs will produce textual

content, whether relevant or not, before generating the final answer to the question.

This extra information in the modality of text can affect the outcome, as it introduces

a mix of visual and textual information rather than relying solely on the visual in-

formation initially presented. By enforcing such constraints, we ensure that the final

95



outputs of the VLLMs are based strictly on either textual or visual information, but

not a combination of both.

B.9 Design decision of data instances in each dataset

While making the datasets, the font used was “Computer Modern”. The line spacing

was set to single spacing. The font size was set to 12 pt for the “MMLU dataset”

and the “LogiQA” dataset, and 14 pt for the remaining 5 datasets. The reason for

such a difference in the font size is that some data instances in the “MMLU” dataset

and the “LogiQA” dataset will span more than a single page if the font size is set to

14pt. For the “Table Understanding” dataset, the table was made using the default

“table” structure in the document class “article”. The latex was rendered into pdf

and transferred to images in the format of “JPG” using the Python library “pdf2jpg”.

The resulting size of the images was “2550 x 3300” pixels. For the State Machine

Dataset, the image attached below the descriptive texts was first generated by a

program and later some data instances were filtered out based on manual selection

because some nodes overlapped with each other, we will make the code publically

available to ensure replicability.
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Appendix C: Promps in Chapter 4

C.1 Motivation in the designed prompts

For the template used for translation, the sentence ”Translate a/an [seed word lan-

guage] sentence into [target language] literally, focusing on the topic of kinship,”

specifies both the source and target languages for the translation and directs that

the translation should address the topic of kinship. This sentence provides essential

information about the translation. The subsequent instruction, ”Provide only the

translation,” limits the format of the output to simplify further usage. The third

instruction ”Each word in the final translation must be in [target language]” adds

another layer of specificity to ensure that the translation is fully in the target lan-

guage. This requirement became necessary as, during the time of the experiments,

it was noted that translations were not always in the intended language. This ad-

ditional specification aims to minimize errors made by LLMs. The fourth sentence

standardizes the output format to singular words. This guideline addresses issues

where singular words were erroneously translated into words in plural forms, which

will complicate the evaluation process. The final sentence presents the text to be

translated.

The template used for prompting LLMs to address the LexGen task directly in-

cludes the sentence: ”Given a word that means [father’s younger brother] in Chinese

is [叔叔], and a word that means [mother’s brother] in Chinese is [舅舅].” These two ex-

amples serve as two sample question/answer pairs for this task. There are two reasons

for utilizing these examples: firstly, the concepts of ”[father’s younger brother]” and

97



”[mother’s brother]” exhibit a moderate level of complexity and specificity, making

them representative challenges for the LexGen task. Secondly, the thesis author is a

native Chinese speaker, enabling the author to provide accurate and reliable prompts

using Chinese lexicalizations without introducing errors. The following instruction

outlines the input question and restricts the output format to facilitate evaluation.
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Appendix D: BN and WN Synsets
for Kinship Concepts

Kinship Dataset WordNet BabelNet

sibling sibling.n.01 sibling

brother brother.n.01 brother

elder brother big brother.n.02 big brother

younger brother little brother.n.01 little brother

sister sister.n.01 sister

elder sister big sister.n.01 big sister

younger sister little sister.n.01 little sister

grandparent grandparent.n.01 grandparent

grandfather grandfather.n.01 grandfather

grandmother grandma.n.01 grandmother

paternal grandmother – paternal grandmother

maternal grandmother – maternal grandmother

maternal grandfather – maternal grandfather

nibling – Niece and nephew

nephew nephew.n.01 nephew

niece niece.n.01 niece

uncle uncle.n.01 uncle

maternal uncle – maternal uncle

Continued on next page
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Table D.1 continued from previous page

Kinship Dataset WordNet BabelNet

paternal uncle – paternal uncle

aunt aunt.n.01 aunt

maternal aunt – maternal aunt

auncle – uncle or aunt

cousin cousin.n.01 cousin

female cousin – female first cousin

male cousin – male first cousin

grandchild grandchild.n.01 grandchild

granddaughter granddaughter.n.01 granddaughter

grandson grandson.n.01 grandson

maternal grandparent – –

younger, daughter of father’s brother – –

daughter of mother’s sister – –

younger female cousin – –

father’s elder brother – –

younger, son of mother’s sibling – –

brother’s daughter – –

elder, daughter of father’s brother – –

son’s daughter – –

son of mother’s sister – –

son of father’s brother – –

younger, son of father’s brother – –

daughter of father’s sister – –

son of father’s sister – –

daughter’s son – –

elder, daughter of mother’s sibling – –

Continued on next page
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Table D.1 continued from previous page

Kinship Dataset WordNet BabelNet

elder, son of mother’s sibling – –

child of mother’s sister – –

sister’s son – –

sister’s daughter – –

younger, daughter of mother’s sibling – –

paternal grandfather – –

younger sibling – –

elder, son of father’s brother – –

son of parent’s brother – –

father’s younger brother – –

daughter of father’s brother – –

elder female cousin – –

daughter of parent’s sister – –

paternal grandparent – –

elder male cousin – –

younger male cousin – –

elder sibling – –

son of mother’s brother – –

son’s son – –

child of mother’s brother – –

daughter of mother’s brother – –

paternal aunt – –

daughter’s daughter – –

child of father’s brother – –

son of parent’s sister – –

child of father’s sister – –

Continued on next page
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Table D.1 continued from previous page

Kinship Dataset WordNet BabelNet

brother’s son – –

daughter of parent’s brother – –

Table D.1: Mapping from kinship concept to WordNet synset and BabelNet synset
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