
Modular Tracking Framework: A Unified Approach to
Registration based Tracking

by

Abhineet Singh

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

©Abhineet Singh, 2017



Abstract

This thesis presents a new way to conceptualize and study image registration based

visual trackers by decomposing them into three constituent sub modules - search

method, appearance model and state space model. It shows how this approach can

be used to break down existing trackers and thus unify the myriad of contributions

that have been made in this domain in over three decades of its existence.

Further, a modular framework for registration based tracking is introduced to

provide practical validity to this formulation. It provides highly efficient C++ im-

plementations for a large subset of trackers introduced in literature to date and is

designed to be easily extensible with additional methods. It follows this decompo-

sition closely through extensive use of generic programming to provide a convenient

interface to plug in a new method for any sub module and test it against all possible

combinations of methods for the others. This can not only help to evaluate the new

method in a more comprehensive manner but also make it immediately available for

deployment in any project that uses the framework.

Finally, three existing image similarity measures are adapted for high precision

tracking and a new one is introduced to serve as case studies for the proposed approach

of analyzing registration based tracking. Experiments are conducted using synthetic

data as well as four large publicly available datasets with over 100000 frames in all

to ensure the statistical validity of the results.
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A.3 Effect of maximum iterations on FCLK and ICLK. Dashed, solid, and

dotted lines respectively show 10, 30 and 100 iterations. . . . . . . . . 198

A.4 Effect of sampling resolution on FCLK and ICLK. Solid, dashed and

dotted lines respectively represent 25 × 25, 50 × 50 and 100 × 100

resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.5 Effect of pyramidal tracking on AMs with FCLK . . . . . . . . . . . 202

A.6 Effect of (a) index types and (b) number of samples on NN. . . . . . 203

A.7 Speeds and initialization times of NN index types. Only mean values

are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.8 Performance of NN with single and mixture distributions. . . . . . . . 206

A.9 Effect of number of layers on NN and NNIC. NN3 and NN5 respectively

refer to 3 and 5 layers while NN3IC refers to a 4 layer cascade tracker

with NN3 + ICLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.10 Comparing Homography and SL3 samplers with PF and PFFC . . . . 209

A.11 Effect of different variables on the performance of PF: (a) number of

particles (b) homography distributions (Table 8.2) (c) SL3 distribu-

tions (Table 8.3) (d) optimum estimation method. All results were

generated without subsequences. . . . . . . . . . . . . . . . . . . . . . 211

A.12 Effect of number of layers on PF. PF3 refers to a 3 layer cascade. . . 212

A.13 Effect of auto reinitialization (Sec. 4.3) on NNIC and PFFC . . . . . 213

A.14 Effect of (a) grid resolution, (b) sub patch size, (c) search method and

(d) number of iterations on LMS . . . . . . . . . . . . . . . . . . . . 214

A.15 Impact of failure detection with forward backward error on LMS and

LMES. SSD-CV results are shown for both 10 × 10 and 20 × 20 grid

resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

A.16 Effect of (a) failure detection using LMES and (b) SPI using LMS with

SSD-CV in the first layer and various SMs/AMs in the second layer. . 218

A.17 Effect of likelihood α on the performance of NCC and SCV with PF

using both homography and SL3 samplers. All results have been gen-

erated without subsequences. . . . . . . . . . . . . . . . . . . . . . . 219

xiv



A.18 Effect of likelihood α on the performance of AMs with PF. The additive

factor β is 0 for all AMs except CCRE and NGF where it is 1. All

results have been generated without subsequences. . . . . . . . . . . . 220

A.19 Lf with optimal α plotted against x and y translations . . . . . . . . 221

A.20 Impact of the number of histogram bins on the performance of SCV

with FCLK and NN. All results were generated without subsequences. 221

A.21 Impact of the number of histogram bins on the performance of MI and

CCRE with various SMs. All results were generated without subse-

quences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A.22 Performance of AMs using RGB images with (a) ESM (b) ICLK (c)

NN and (d) NNIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

A.23 Performance of AMs using RGB images with (a) LMS and (b) LMES. 225

B.1 Performance of different AMs with LM formulation of FCLK on indi-

vidual datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

B.2 Performance of different AMs with LM formulation of ICLK on indi-

vidual datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

B.3 Performance of LM formulation of ESM over individual datasets . . . 229

B.4 Performance of IALK with LM Hessian on different datasets . . . . . 231

B.5 Performance of AMs with NN on individual datasets . . . . . . . . . 232

B.6 Performance of AMs with NNIC on individual datasets . . . . . . . . 233

B.7 Performance of AMs with PF on individual datasets . . . . . . . . . . 235

B.8 Performance of AMs with PFFC on individual datasets . . . . . . . . 236

B.9 Performance of AMs with LMS on individual datasets. . . . . . . . . 237

B.10 Performance of AMs with LMES on individual datasets. . . . . . . . 239

B.11 Performance of ILMs on individual datasets . . . . . . . . . . . . . . 240

xv



List of Abbreviations

RBT Registration based tracking/tracker

OLT Online learning and detection based tracking/tracker

DOF Degrees of Freedom

LK Lucas Kanade

SM Search Method

AM Appearance Model

SSM State Space Model

SSIM Structural Similarity

RIU Ratio Image Uniformity

NGF Normalized Gradient Fields

MTF Modular Tracking Framework

ViSP Visual Servoing Platform

DSST Discriminative Scale Space Tracking

KCF Kernelized Correlation Filter

CMT Clustering of Static-Adaptive Correspondences for Deformable

Object Tracking

Struck Structured Output Tracking with Kernels

MIL Multiple Instance Learning

TLD Tracking-Learning-Detection

FragTrack Fragments based Tracking

xvi



GOTURN Generic Object Tracking Using Regression Networks

SSD Sum of Squared Differences

NCC Normalized Cross Correlation

MI Mutual Information

ILM Illumination Model

GD Gradient Descent

GN Gauss Newton

LM Levenberg Marquardt

FCLK Forward Compositional Lucas Kanade

ICLK Inverse Compositional Lucas Kanade

FALK Forward Additive Lucas Kanade

IALK Inverse Additive Lucas Kanade

FCSD Forward Compositional Steepest Descent

ESM Efficient Second order Minimization

AESM Additive Efficient Second order Minimization

NN Nearest neighbor

FLANN Fast Library for Approximate Nearest Neighbors

KDT KD Tree search

HKMT Hierarchical K-Means Tree search

GNN Graph based Nearest Neighbor

FGNN FLANN based GNN

PF Particle Filter

SMC Sequential Monte Carlo

RANSAC Random Sample Consensus

LMS Least Median of Squares

xvii



SPI Selective Pixel Integration

PCA Principal Components Analysis

DFM Deep Feature Map

KLD Kullback-Leibler Divergence

SCV Sum of Conditional Variance

RSCV Reversed Sum of Conditional Variance

LSCV Localized Sum of Conditional Variance

ZNCC Zero mean Normalized Cross Correlation

CCRE Cross Cumulative Residual Entropy

SPSS Sum of Pixelwise Structural Similarity

GB Gain & Bias

PGB Piecewise Gain & Bias

RBF Radial Basis Function

IST Isotropic Scaling and Translation

AST Anisotropic Scaling and Translation

TPS Thin Plate Splines

DLT Direct Linear Transform

CBH Corner Based Homography

SR Success Rate

FR Failure Rate

FPS Frames Per Second

xviii



Chapter 1

Introduction

1.1 Motivation

Visual tracking is an important field in computer vision with diverse application do-

mains including robotics, surveillance, targeting systems, medical imaging and aug-

mented reality. Registration based tracking (RBT), also known as direct visual

tracking in literature [2, 3, 4, 5], is an important sub field thereof that considers the

tracking problem as one of image registration where the object is tracked by warping

each image in a sequence to align the object patch with the template. Trackers of

this type are especially suited to robotics and augmented reality (AR) applications

like visual servoing, autonomous navigation and pose estimation where fast and high

precision tracking is required.

In recent years, online learning and detection based trackers (OLTs) have become

more popular [6, 7, 8, 9] due to their robustness to changes in the object’s appearance

which makes them better suited to long term tracking. Even so, these are often

unsuitable for robotics applications for the following two reasons:

• They are too slow [10] to allow real time execution of tasks where multiple

trackers have to be run simultaneously or tracking is only a small part of a

larger system with more computationally intensive modules that use its result

to make higher level deductions about the environment.

• They are not precise enough [10] to provide the exact object pose with sub pixel

alignment required for the success of these tasks, being usually limited to the

estimation of simple transformations of the target patch like translation and

scaling.
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RBTs are thus a better match for these applications as being several times faster

and also capable of estimating higher degrees-of-freedom (DOF) transformations like

affine and homography. The advantages of greater speed and precision are not without

downsides, however, as RBTs cannot employ computationally expensive algorithms

to update their model of the object’s appearance while also having to deal with higher

dimensional search space that makes it easier to get stuck in local optima. As a result,

they are prone to failure when the object undergoes significant appearance changes

due to factors like occlusions and lighting variations or when completely novel views

of the object are presented by deformations or large pose changes.

These limitations have contributed to the greater popularity of OLTs which in

turn has made them the subject of several recent studies [7, 11, 12, 8, 13]. Though

useful for obtaining a general idea of the state of progress in this field, such studies

rarely provide any feedback that may help to improve these trackers. This is because

their scope is restricted to finding the trackers that work best under a variety of

challenging conditions by testing them on representative sequences and little to no

analysis is conducted regarding why specific trackers work better than others for given

challenges. This is understandable since such trackers differ widely in design and

have little in common that may be used to relate them to each other and perform

comparative analysis from a design perspective. A relatively recent work [14] has

indeed attempted a systematic breakdown of OLTs into five modules, much like the

current work. As expected, however, only a relatively small subset of trackers could

be fitted into the framework proposed there. Even so, the module level analysis

performed on those few trackers did present some unexpected findings which indicates

the general usefulness of this strategy.

This thesis will show that RBTs are fortunately not subject to this drawback and

can be decomposed into three sub modules - search method (SM) (chapter 4), ap-

pearance model (AM) (chapter 5) and state space model (SSM) (chapter 6) - that

makes their systematic analysis feasible. Though this decomposition is somewhat

obvious and indeed has been noted before [15, 4], it has never been explored system-

atically or used to improve the study of this paradigm of tracking. It is the intent

of this work to fill this gap by using such a decomposition to unify the multitude of

contributions that have been made in this field since the original Lucas Kanade (LK)

tracker was introduced thirty five years ago [16].

When a new tracker is introduced in this field, it usually contributes to only one

or two of these sub modules while using existing methods for the rest (Sec. 2.2.1).
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Since these are often selected arbitrarily by the authors, they may not be optimal for

the new method. The potential downsides of such limited testing are twofold. Firstly,

it may give false indications about a method’s capability and prevent it from achiev-

ing its full potential. For instance, an AM that outperforms others with a given SM

might not do so with other SMs and an SM may perform better with an AM other

than the one it is tested with. Secondly, with different contributions not being well

related to each other, the overall progress in this field has become somewhat frag-

mented, making it difficult to gain a high level idea of where it stands. The proposed

breakdown can not only reduce this fragmentation but also help to experimentally

find the best combination of methods for these sub modules while providing a model

within which the contributions of any new tracker can be clearly demarcated and thus

studied better [10, 17]. The practical applicability of this approach is demonstrated

by comparing several existing methods for these sub modules not only with each other

but also with three new AMs - structural similarity (SSIM) (Sec. 5.2.4), ratio image

uniformity (RIU) (Sec. 5.2.6) and normalized gradient fields (NGF) (Sec. 5.2.7) -

that are introduced here and fit within this framework. Several new and interesting

insights about the behaviors and properties of these methods are obtained by such

comprehensive testing (Chapter 9).

Besides these theoretical concerns, this thesis also intends to address a more prac-

tical need that has emerged in recent years. Though several major advances have

been made in this domain since the introduction of the LK tracker [16], yet efficient

open source implementations of recent trackers are surprisingly difficult to find. In

fact, the only such tracker offered by the popular OpenCV library [18], uses a pyra-

midal implementation of the original algorithm [19]. Similarly, the ROS library [20],

widely used by the robotics community, currently does not have any package that

implements a modern RBT. The XVision system [21] did introduce a full tracking

framework including a video pipeline. However, it implements several variants of the

same algorithm [22] that only gives reasonable tracking performance with low DOF

motion. In addition, it is not well documented and has not been updated for a long

time which makes it quite difficult to install on modern systems due to many obsolete

dependencies. Even the fairly recent MRPT library [23] includes only a version of the

original LK tracker, much like OpenCV, apart from a low DOF particle filter based

tracker which is too imprecise and slow to be considered relevant for our target appli-

cations. An existing system that makes an attempt to follow the proposed framework

is the template tracker module of the Visual Servoing Platform (ViSP) library [24]
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but it has several shortcomings that are enumerated later (Sec. 7.6).

In the absence of good open source implementations of modern trackers, most

robotics and AR research groups either use these out dated methods or implement

their own custom trackers. These, in turn, are often not made publicly available or

are tailored to suit very specific needs and so require significant reprogramming to

be useful for an unrelated project. Further, many new methods are implemented

by the authors in scripting languages like MATLAB and Python due to the ease of

prototyping these offer compared to compiled languages like C and C++. However,

unless fast implementations of these methods exist, they are unlikely to find wider

applicability in actual projects where speed is crucial. The result is again that older

methods are employed even though better alternatives exist simply because a good

implementation is readily available for the former.

To address this need for a fast tracking library targeted specifically at robotics

and AR applications, this thesis introduces Modular Tracking Framework (MTF)1 -

a generic system for RBT that provides highly efficient implementations for a large

subset of trackers introduced in literature to date and is designed to be easily exten-

sible with additional methods. MTF conceptualizes an RBT as being composed of

the three aforementioned sub modules. These are designed to be semi independent

with SM being treated as a way to use the functionality in AM and SSM - through a

well defined interface - to solve the tracking problem. By following the decomposition

closely through extensive use of generic programming, MTF provides a convenient

interface to plug in a new method for any sub module and test it against existing

methods for the other two. This will not only help to compare the new method against

existing ones in a more comprehensive way but also make it immediately available

to any project that uses MTF. This latter is particularly significant since, once the

contribution of a new tracker has been identified to be in a specific sub module, it

is much easier to add a new method for that sub module than to implement the

complete tracker from scratch.

1.2 Contributions

To summarize, following are the main contributions of this work:

• Present a unifying formulation for RBT that decomposes it into three sub mod-

1available at http://webdocs.cs.ualberta.ca/~vis/mtf/
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ules - SM, AM and SSM. This can be seen as an extension of the seminal

work of Baker & Matthews [25] to account for several advancements since its

publication.

• Show how existing trackers can be broken down using this approach and related

to each other in a better way to counter the fragmentation that ails this field.

• Combine several combinations of existing methods for these sub modules with

each other and perform comparative analysis to show what new insights that

were missing from their original papers can be thus obtained and also achieve

a new state of the art in high precision tracking.

• Adapt three image similarity measures - SSIM, RIU and NGF - for high precision

RBT and introduce a simpler but faster version of SSIM called SPSS.

• Evaluate these models comprehensively using the proposed approach to demon-

strate its merits for testing new methods in this domain. Experiments are

performed using 4 large and challenging datasets with over 100,000 frames in

all to ensure statistical significance of the results.

• Compare RBTs against state of the art OLTs to validate the suitability of the

former for precise tracking applications.

• Introduce a highly efficient and extensible open source tracking framework called

MTF that follows this decomposition closely and is targeted at robotics and AR

applications. All results are generated using it and so are easily reproducible.

1.3 Thesis Outline

A brief review of existing literature relevant to this work is presented in chapter

2 followed by details of the proposed formulation in chapters 3 through 6. More

specifically, notations and a broad overview of the decomposition are provided in

chapter 3 with detailed descriptions of SM, AM and SSM following in chapters 4, 5

and 6 respectively. Chanter 7 presents details of MTF system design including several

use cases and comparisons with existing systems. This is followed by a description

of the datasets and evaluation metrics used and the actual results and analysis in

chapters 8 and 9 respectively. Finally, chapter 10 concludes with a summary of this

work along with suggestions regarding directions for its future extensions.
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Chapter 2

Background

Visual tracking has been a well researched field in computer vision due to its manifold

applications. There have been many surveys and reviews of visual tracking in recent

times [6, 7, 11, 12, 9, 13] though, as mentioned before, they have largely focused on

OLTs which indeed make up a vast majority of trackers in the literature. Several

different ways have been proposed to classify these trackers, with the most high level

one being the twofold division into generative and discriminative trackers [6, 12, 11].

The former are those that generate a set of candidate bounding boxes and find the

one that best matches their model of the object’s appearance while the latter use

machine learning to train a binary classifier to distinguish between the object and

the background. Liu et. al [12] further subdivided both classes into three categories

corresponding to the use of templates, subspace analysis and spare representations

in the former and to feature selection, classifier update and metric learning in the

latter. As another example of such classification, Wu wt. al [7] categorized trackers

on the basis of the target representation method, search mechanism, model update

strategy and utilization of contextual information. Similarly, Yang et. al [6] proposed

a classification based on the type of features used by the tracker - gradient, color,

texture and spatio-temporal features as well as those that utilize a fusion of multiple

features. Yilmaz et. al [26] presented a complete hierarchical taxonomy of tracking

methods though it is rather outdated now. Three categories were proposed at the

top level based on the object representation type - point, kernel and silhouette. Each

of these were divided into two subcategories - point tracking into deterministic and

probabilistic methods, kernel tracking into multi view and template based trackers

and silhouette tracking into contour evolution and shape matching based approaches.

Several of these were further divided into a third and even fourth level.
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None of these attempts to classify OLTs have, however, been widely adopted so

far nor do they provide any significant insights into the workings of OLTs due to the

large variations that are inherent in the techniques adopted by such trackers. As a

result, this chapter will only consider two categories of trackers that are of relevance

to this study - OLTs and RBTs.

2.1 Online Learning & Detection based Tracking

Since a detailed review of OLTs is not relevant to this work, the coverage of this

domain will be limited to brief descriptions of the state of the art OLTs that have

been compared with low DOF RBTs (Sec. 9.3) to demonstrate their unsuitability

for fast and high precision tracking applications. These trackers can be regarded as

a fairly good representative sample of the techniques typically adopted in this field.

2.1.1 Discriminative Scale Space Tracking (DSST)

DSST was introduced by Danelljan et. al [27] as an extension of the minimum output

sum of squared error or MOSSE correlation filter based tracker [28] for estimating

scale in addition to translation. They first considered learning a single 3D correlation

filter for joint translation and scale estimation which, however, proved to be too

computationally expensive for real time tracking. Therefore, they proposed a faster

version where two different correlation filters are learned - a 2D filter for translation

and a separate 1D filter for scaling. The former is formulated exactly as in [28]. The

latter is trained by extracting features from a set of patches of different sizes centered

at the target location and performing the same non linear least squares optimization

in Fourier domain as the translational filter. During tracking, the translation filter is

first used to estimate the location of the object center, then the scaling filter is applied

at this location to estimate the scale factor. The two filter approach was found to

be both more accurate and faster than the single 3D filter method. The PCA-HOG

features [29] used there for image representation were also shown to perform better

than raw intensity values as used, for instance, in the original MOSSE tracker [28].

2.1.2 Kernelized Correlation Filter (KCF) Tracking

KCF tracker was introduced by Henriques et. al [30, 31]. Similar to DSST, KCF too

uses discriminative correlation filters though, unlike DSST, it does not perform scale
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estimation. KCF can be seen as extending the MOSSE tracker [28] with kernels,

though the underlying idea is more general and can be applied to any regularized

least squares classifier. This idea is based on the observation that a great deal of

redundancy exists in the sampled patches extracted from around the target patch

that serve as negative samples for training the classifier in discriminative tracking. It

was further noted that, if dense sampling is used, i.e. all possible translated patches

are extracted by performing cyclic shifts of the base sample, the training matrix

generated by stacking the samples in rows has a circulant structure which greatly

speeds up many operations involving it. Finally, kernel functions that satisfy certain

conditions were proven to preserve the circulant structure of matrices when used

to transform these to carry out non linear regression through the kernel trick. As

a result, kernelized non linear regression was shown to be achievable at the same

computational cost as linear regression. The speed up results from the fact that all

circulant matrices, irrespective of the base sample, are diagonalized by the discrete

Fourier transform which allows otherwise costly operations like matrix inversion to be

performed on the diagonal elements. In its initial version [30], KCF was formulated

for single channel features and only raw pixel intensities were used. The later version

[31], however, extended it for multi channel features and was shown to offer significant

performance improvement with HOG features.

2.1.3 Clustering of Static-Adaptive Correspondences for De-
formable Object Tracking (CMT)

CMT was introduced by Nebehay & Pugfelder [32] and uses a part based approach

that somewhat resembles that of RKLT [33]. The overall tracker is made up of a

static and an adaptive component. The former establishes correspondence between

the initial set of key points detected in the first frame and those in the current frame

using a global search process [34]. The latter only estimates the current positions

of the key points from the previous frame by computing their sparse optical flow

[16] while using the forward-backward error criterion [35] to exclude potentially in-

correct correspondences. The combined correspondences from both components are

then clustered using a pairwise geometric dissimilarity measure to perform agglom-

erative clustering. This measure is based on the ”geometric compatibility” between

the two correspondences that is defined as the difference in the Euclidean distances

between the initial and transformed positions of the key points generated by applying
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a consistent similitude transformation estimated from the combined correspondences.

The largest cluster thus created is taken to contain key points on the object while

all remaining ones are relegated to the background. Finally, this set is augmented

by candidate correspondences whose geometric dissimilarity from it is less than a

threshold. The augmented set is used for computing a similitude transform that,

when applied to the initial bounding box, gives the current tracker location.

2.1.4 Structured Output Tracking with Kernels (Struck)

Struck was introduced by Hare et. al [36, 37]. It uses a modified tracking-by-detection

framework where a multi class structured output SVM classifier [38] is trained to

directly provide the geometric transformation between consecutive frames so that it

acts like a prediction function instead. This is opposed to the usual approach of

training a binary classifier with positive and negative samples, evaluating it on a set

of candidate patches and choosing the one with the maximum response. The tracker

can thus dispense with the generation of labels for training samples which is often

responsible for poorly trained classifiers since no principled way exists to perform the

labeling and heuristics have to be used instead. The classifier is also provided with

direct access to the transformations so these can be incorporated into the learning

algorithm to improve it further.

A disadvantage of the change in search space is that the process of training the

SVM now involves solving a large quadratic program with many constraints. Struck

handles this optimization in real time by using the LaRank solver of Bordes et al

[39], based on sequential minimal optimization, which enables the large quadratic

program to be broken down into a set of smaller programs that can each be solved

analytically. Struck also adopts a budgeting mechanism to further facilitate the real

time evaluation of the SVM by compensating for the curse of kernelisation that causes

the number of support vectors and thus the evaluation time to grow in an unbounded

manner as more training samples are added. After a certain limit is reached, the

addition of a new support vector causes an existing one, selected heuristically, to be

removed and the coefficients of remaining support vectors to be adjusted accordingly.

The original version of Struck [36] could only handle translation but was extended in

[37] to estimate scale too.
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2.1.5 Multiple Instance Learning (MIL) Tracking

MIL tracker was introduced by Babenko et. al [40, 41] and is also based on the

tracking-by-detection framework like Struck but uses an MIL classifier [42] instead of

SVM. MIL too tries to solve the problem of the inherent ambiguity in the labeling

of samples but, unlike Struck that did away with labeling altogether, it uses a weak

form of labeling where the classifier is presented with a set of patches and a label is

provided for the entire set (known as a ”bag”) rather than each individual sample.

A bag is labeled as positive if it contains at least one positive sample and negative

otherwise. This classifier was adapted for online learning using a boosting based

approach similar to the MILBoost [43] and online AdaBoost [43, 44] algorithms.

Boosting works by combining the outputs from a set of weak classifiers to produce

an additive strong classifier. During tracking, first the strong classifier trained in the

last frame is used to update the tracker location by evaluating its response within a

search radius s and choosing the location with the maximum response. Next, positive

samples are extracted from a radius r < s around this location and negative samples

from the annular region with radius > r and < β where β > r. All positive samples

are placed in one bag while each negative sample goes into a separate bag. These are

used for training the boosting classifier by maximizing the log likelihood of bags where

the probability of a bag being positive is estimated in terms of that of its instances

using the Noisy-OR model. Finally, the response of each weak classifier is taken to

be the log of odds ratio produced using a Haar like feature and a couple of Gaussian

distributions that are learned online.

2.1.6 Tracking-Learning-Detection (TLD)

TLD was introduced by Kalal et. al [45] as a long term tracker capable of detecting

when the object is no longer present in the scene as well as of reinitializing itself when

needed. As its name suggests, TLD involves running three components simultaneously

- a tracking component that uses the median flow tracker [35] to track the object

between consecutive frames, a detection component that searches the entire image for

possible matches of the object appearance learned so far and a learning component

that consolidates the outputs of the other two components to estimate their failures

and improve future detections. The latter uses P-N learning to generate positive and

negative training samples for the classifier used by the detector module.

P-N learning uses a labeled and an unlabeled set of samples as inputs to train
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the classifier through a form of iterative bootstrapping. The trained classifier from

the previous iteration is first used to classify the unlabeled samples. These are then

analyzed by two kinds of ”experts” - a P-expert and an N-expert that respectively

estimate the false negatives and false positives and add them to the labeled training

set relabeled as positive and negative samples respectively. The P-expert exploits

temporal structure in the video by relabeling negative detections corresponding to

the tracker location as positive. This improves the classifier’s generalization ability

by providing positive training examples containing new object appearances. The N-

expert exploits spatial structure by relabeling positive detections far away from the

tracker location as negative which helps to improve the classifier’s discriminative abil-

ity by adding novel background patches to the negative training set. Both experts also

make mistakes like the detector but their independence allows these to compensate

each other.

2.1.7 Realtime Compressive Tracking (RCT)

RCT was introduced by Zhang et. al [46] and uses principles from compressive sensing

theory [47] to represent the object patch with very sparse features in the compressed

domain. A set of rectangle filters are first used to extract Haar like features [48] at

multiple scales which are concatenated into a very high dimensional feature vector.

The dimensionality of this vector is then reduced by applying random projection

through a very sparse Gaussian matrix containing only 4 non zero entries in each

row. This matrix is computed off line and remains fixed during tracking so the

computational load of the dimensionality reduction step is very small. The tracker

itself works within the standard tracking-by-detection framework where nearby and

far away samples from the target location are extracted in each frame and used

respectively as positive and negative training examples for a naive Bayes classifier.

This classifier is then evaluated in a small search window to find the patch with the

maximum response as the target location in the next frame. The main advantage of

this tracker lies in its ability to utilize almost all the information from the very high

dimensional multi scale features without suffering from the curse of dimensionality.

2.1.8 Fragments based Tracking (FragTrack)

FragTrack was introduced by Adam et. al [49] and is the oldest tracker considered

in this section. This is also the only one that does not have an online learning
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component. FragTrack uses a histogram based similarity measure to detect the object

in each frame. In order to overcome the problem of spatial information loss that such

measures typically present, the template is divided into a number of fragments or sub

patches and a histogram is computed for each sub patch. Unlike conventional parts

based methods, these fragments are selected arbitrarily and not based on a model of

the object. To locate the object in the current frame, a number of candidate patches

in a search radius around the last known location are considered. Each of these is

also divided into sub patches similar to the template and histograms are computed

for all the sub patches. The overall similarity score for a candidate patch is then

obtained by computing the dissimilarity between the histograms of corresponding

sub patches in the template and in that patch, arranging the dissimilarity scores in

increasing order and choosing the score corresponding to the 25th percentile. This

method of combining the dissimilarity scores was inspired by the least median of

squares robust estimation method [50] and was chosen over simpler approaches like

the sum of scores in order to minimize the impact of outliers. The Earth Mover’s

Distance [51] is used as the histogram similarity measure. Since this tracker involves

computing a very large number of histograms, its real time operation is only possible

due to the integral histogram approach [52] that converts the computation of the

histogram of any rectangular subregion in an image into a constant time operation

once the integral image has been computed for each bin.

2.1.9 Generic Object Tracking Using Regression Networks
(GOTURN)

GOTURN was introduced by Held et. al [53] and is the only OLT here that uses deep

learning. This trains a deep convolutional neural network (CNN) to learn generic

relationships between the change in object appearance and the motion it undergoes

between consecutive frames so that it can directly regress on the object location by

comparing patches extracted from the previous and current frames in the tracking

sequence. The network architecture consists of two branches with each having 5 pre-

trained convolutional layers from CaffeNet [54] that were trained on the ImageNet

dataset [55]. The outputs of both branches are feature vectors corresponding to their

input patches. These are concatenated into a single vector used as input for three

fully connected layers that are trained entirely off line using both labeled videos and

still images. The output layer has 4 nodes that produce the coordinates of the top left

12



and bottom right corners of the bounding box corresponding to the tracker location.

Each training instance consists of a pair of image patches - one centered on the

object and one where the object has been translated and scaled. For videos, these

patches are generated from consecutive frames by taking the object centered patch

from the first frame and several random crops from the second. For still images, both

patches are generated from the same image but using the same process as for videos.

Training on videos helps to make the network invariant to challenges like background

clutter, illumination variations, pose changes and occlusions while training on still

images of a large variety of objects helps to prevent over fitting on the relatively

limited selection of objects in the videos. This enables the network to generalize

well to completely novel objects not seen during training. The network is trained to

favor smoother motions by generating the random crops for training using Laplace

distributions that were found to represent the changes in object location and size

between consecutive frames in real videos better than Gaussian distributions. At

runtime, the patch corresponding to the tracker location in the previous frame along

with a crop of the search region in the current image are used as inputs to the two

convolutional branches of the network and its output is the predicted location of the

object relative to this crop.

2.2 Registration based Tracking

This sub field of tracking is widely regarded as having been pioneered by Lucas &

Kanade in 1981 [16] after whom the LK tracker is named. The formulation introduced

there was the so called forward additive variant (FALK) of this tracker where the

search for the warp is carried out in the current image and incremental updates

to the warping parameters are added to their old values to obtain the new ones.

This remained the only formulation for over 15 years during which tracking of point

features, also known as optical flow estimation, seemed to have been popular and

many methods were suggested for selecting the most suitable points for tracking

[56, 57, 58, 59] along with the use of coarse to fine tracking approach [60, 61, 19, 62]

to handle large motions better. A related SM called difference decomposition [63]

was also introduced as a generalization of FALK.

The next major advance in this field was in the work of Hager & Belheumer [64, 22]

who proposed a way to do away with having to compute the image gradient in each

frame by approximating it with the gradient of the first image. This approach has
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since been dubbed the inverse additive formulation of LK (IALK). This was also one

of the first applications of photometric parameter estimation to make the tracking

more illumination invariant. This latter aspect was further extended in [65]. A

generalization of IALK, somewhat analogous to the one for FALK [63], was also

proposed in the form of the hyperplane approximation technique [66].

IALK was followed by the compositional variant of the forward algorithm (FCLK)

applied to image mosaicing [61]. FCLK was shown to offer the advantage of requiring

the gradients of the warping function to be computed at the identity element which

significantly simplified the corresponding expressions. The inverse variant of this

algorithm (ICLK) was introduced soon thereafter by Baker & Matthews [67, 25]

who showed that even further computations savings can be obtained by searching

the initial image for the warp rather than the current one as this meant that the

image gradient and the Hessian of the objective function needed to be computed

only once. They also unified all other variants of LK within a common framework

and showed these to be equivalent both experimentally and theoretically to first

order approximations. This work was followed by a series of technical reports [68,

69, 70, 71, 72] where these algorithms were examined in detail along with several

variations on the search methods [68], error metric [69], illumination models [70], use

of priors [71] and extension to 3D tracking [72]. The contents of these reports were

somewhat similar to the current work though significantly more limited in scope as

they considered only different types of gradient descent SMs and many variants and

extensions of the same underlying sum of squared difference (SSD) AM.

The only newer LK variant introduced since has been the efficient second order

minimization (ESM) approach of Benhimane & Malis [73]. This combined the forward

and inverse compositional methods by using the gradient information from both the

current and initial images. This combination was shown to provide a second order

convergence as opposed to the first order convergence of all previous variants. There

have since been many different applications and extensions of this method without

any change to the core algorithm. These include applications in visual servoing [74,

75, 76, 77, 78], SLAM [79, 80], augmented reality [81], 3D reconstruction [82] and

camera pose estimation [83] along with extensions for coarse to fine estimation [75],

illumination models [84, 85] and use with multi channel [77, 85], catadioptric [86]

and omni directional [78] imagery. There have also been several relatively minor

improvements to handle specific challenges like motion blur [87, 81] and effective

resolution degradation [88]. ESM has further been shown to be the middle point of
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a continuum of methods that estimate the warp simultaneously from both the initial

and current images [89], of which ICLK and FCLK are the two extremes.

Apart from these, the main developments in this field in the last two decades

have been the adaptation of several new AMs and stochastic SMs for RBT. The AMs

include mutual information (MI) [90, 91, 92, 93, 94], normalized cross correlation

(NCC) [3], cross cumulative residual entropy (CCRE) [4] and sum of conditional

variance (SCV) [95, 96, 97] along with its reversed (RSCV) [98] and localized (LSCV)

[5] variants. The stochastic SMs include nearest neighbor search (NN) [98], particle

filters (PF) [99, 100, 101, 102, 103, 104, 105, 106, 1] and RANSAC [33]. Many of

the PF based trackers also incorporated online learning in the AM, for instance, by

applying PCA [99] on a dynamically adapted set of basis images. There have also been

several AMs introduced in medical image registration that have not yet been applied

for high DOF RBT. These include ratio image uniformity (RIU) [107, 108, 109, 110],

partitioned intensity uniformity (PlU) [110, 108] and normalized gradient fields (NGF)

[111, 112, 113, 114]. Another measure called structural similarity (SSIM) [115], that

has been popular for evaluating the quality of image compression algorithms [116],

has been applied for low DOF tracking [117, 118, 119, 120, 121] but not for RBT.

As the so called robust models [4] - those that cannot be expressed as some vari-

ation of SSD - have become more widely used, generalizations have been proposed

for ICLK [122] and ESM [123] to handle these. Other advances in RBT in recent

years include extensions like the ability to use feature histograms instead of pixels

[124], estimate 3D object pose by enforcing planar constraints [125], handle images in

the Fourier domain [126] or those containing radial distortion from wide field of view

cameras [127], detect and remove false features at low computational cost [128], per-

form higher order approximation of the Taylor expansion [129], deal with deformable

objects through active appearance models [130, 131] and incorporate maximum like-

lihood classifiers [132], known camera parameters [133], sparse representation [134]

or subspace constraints [135] to improve tracking performance. There has also been

some progress in obtaining a better theoretical understanding of the different variants

of LK [136].

2.2.1 Fragmentation

Though a lot of contributions have been made in this domain, the ideas in different

works have not been well connected or related to each other so that the overall
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progress in the field has become somewhat fragmented. The proposed decomposition

of RBTs into three sub modules can help to solve this problem. Many of the above

mentioned works have presented novel ideas for only one of these submodules while

using existing methods, often selected arbitrarily, for the rest. For instance, Hager

& Belheumer [22], Shum & Szeliski [137], Baker & Matthews [67] and Benhimane &

Malis [73] all introduced new variants of FALK [16] but only tested these with SSD

AM. Similarly, Dick et. al [98], Zhang et. al [33] and Kwon et. al [1] combined their

respective stochastic SMs with only a single AM - RSCV, SSD and NCC respectively

- though the latter also performed online learning through PCA.

Conversely, Richa et. al [95], Scandaroli et. al [3] and Dame et. al [92] introduced

SCV, MI and NCC as AMs but combined these only with a single SM - ESM in the

first one and ICLK in the other two. Even more recent works that use illumination

models (ILMs) (Sec. 5.3), including Bartoli [138, 139], Silvera & Malis [84, 77, 85]

and Silvera [140], have combined their respective ILMs with only a single SM in each

case - ICLK in the first one and ESM in all others. Finally, most combinations of SMs

and AMs have been tested with only one SSM - either homography [73, 76, 92] or

affine [67, 99]. In fact, Benhimane & Malis [73] mentioned that their SM only works

with SL3 SSM (Sec. 6.6) though experiments conducted in this work have shown

(Sec. 9.3) that it performs equally well with others.

2.3 Summary

This chapter presented brief descriptions of the OLTs tested in Sec. 9.3 along with

a summary of the diverse contributions made to RBT in the last three and a half

decades. It also exemplified the resultant fragmentation in this field that the proposed

formulation aims to resolve.
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Chapter 3

Registration based Tracking

RBT is a type of visual tracking where the object is located in each image in a

sequence by finding the warp or geometrical transformation that, when applied to

the object patch within the image, will align or register it with the template or the

target patch (Fig. 3.1). The latter is typically extracted from the first image when the

tracker is initialized though it can also be updated as tracking progresses to account

for changes in the object’s appearance. The task of image alignment or registration

is equivalent to getting the warped patch to appear as similar as possible to the

target patch which in turn is accomplished by maximizing some measure of similarity

between the patches.

Before casting this as an optimization problem where the proposed decomposition

can be applied, relevant notation is introduced that will be used in the rest of this

work.

3.1 Notations

Let It : R2 →→ R refer to an image captured at time t so that a video stream is modeled

as a sequence of images {It|t ≥ 0} and the tracker is initialized by selecting the target

object’s location in I0. It is treated as a smooth function of real values using sub

pixel interpolation [93] for non integral locations. The image patch containing N

pixels corresponding to the tracked object’s location in It is denoted by It(xt) =

[I1t, I2t, ..., INt]
T ∈ RN where xt = [x1t, ...,xNt] ∈ R2×N with xkt = [xkt, ykt]

T ∈ R2

being the Cartesian coordinates of the kth point in image space and Ikt = It(xkt, ykt)

the corresponding pixel value.

Note that N = Nx × Ny where Nx and Ny are the sampling resolutions in the
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Figure 3.1: Two frames from a sequence showing the different components of registra-
tion based tracking. The grid of points x where pixel values are extracted are shown
in red and the corresponding patches are in the top left corners. For better visibility,
the grid is sampled at 25× 25 though higher resolutions may be used in practice.

horizontal and vertical directions respectively and can be chosen independently of

the actual size of the image patch in pixels. Alternatively, xkt can be seen as the

intersection locations of a regularly spaced grid of points that is superimposed over

the actual object patch (Fig. 3.1). It is assumed that xt contains points from this

2D grid in row major order so that k = kx + (ky − 1)Nx for 1 ≤ kx ≤ Nx and

1 ≤ ky ≤ Ny. Using higher values of Nx, Ny typically leads to a smoother and easier

to optimize objective function at the cost of higher computational complexity. In

practice, a resolution of 50 × 50 provides a good compromise between accuracy and

speed (Sec. A.1.3).

Further, w(x,ps) : R2×N×RS →→ R2×N denotes a warping function of S parameters

ps = [p1s, ..., pSs] that represents the set of allowable image motions of the tracked

object by specifying the deformations that can be applied to x0 to align It(w(x0,ps))

with I0(x0). It can be noted that S is equivalent to the DOF of image motion. The

ps that corresponds to the optimal warp found by the tracker for It will be referred to

as pst with xt = w(x0,pst). An estimate for pst for which an incremental update is

sought by the tracker, typically ps(t−1), will be referred to as p̂st and the corresponding
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x as x̂t. Where clear from context, I0(x0) and It(x̂t) might also be referred to simply

as I0 and It respectively.

It is theoretically possible to estimate the x, y translations for each element xkt

of xt so that S = 2 × N and the DOF are thus limited only by the sampling res-

olution. The resultant process is known as optical flow estimation [141, 142, 143]

when performed independently for each xkt using pixels from a small patch around it

and non parametric warping [144] when done simultaneously for all components of xt

using It(xt). The former is not the subject of this work while the latter is usually not

tenable in practice due to the number of unknowns (2 × N) exceeding the available

equations (N). As a result, this work focuses only on parametric warping functions,

common examples of which include homography (S = 8), affine (S = 6), similitude

(S = 4), isometry (S = 3) and translation (S = 2) [15].

Finally f(I∗, Ic,pa) : RN × RN × RA →→ R refers to a function of A parameters

that measures the similarity between two patches - the reference or template patch I∗,

typically extracted from I0, and a candidate patch Ic extracted from It. RBT works

on the assumption that the similarity between two patches bears a positive correlation

with the likelihood of them corresponding to different poses of the same object so that

maximizing f is synonymous to finding the object patch. Popular examples of f with

A = 0 include sum of squared differences (SSD) [22], normalized cross correlation

(NCC) [3] and mutual information (MI) [93]. So far, the only examples with A ̸= 0,

to the best of the author’s knowledge, are those with an illumination model (ILM)

[65, 70, 84, 139] where f is expressed as f(I∗,g(Ic,pa)) with g : RN × RA →→ RN

accounting for differences in lighting conditions under which I0 and It were captured.

As for ps, pat and p̂at respectively refer to the optimal pa for It and its estimate. It

should be noted that vectors and matrices, including functions that output these, are

denoted with bold fonts and scalars with standard ones.

Before concluding this section, some notational clarity is provided regarding mixed

expressions containing linear combinations of matrices, vectors and scalars, many of

which will be needed to succinctly express the derivatives of f and w in chapters 5

and 6. Any binary operation - addition, subtraction, multiplication or division - in-

volving a scalar as one operand and a vector or matrix as the other indicates that the

operation is performed between the scalar and each element of that vector/matrix.

Similar rule applies with assignments - a scalar being assigned to a vector/matrix

will result in each element of that vector/matrix being set equal to that scalar. The

convention of denoting the said scalar with bold font will also be omitted to main-
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Figure 3.2: Decomposition of registration based tracking showing the interaction
between the resultant sub modules

tain consistency with other binary operations. Further, an expression involving the

division of a vector/matrix by another indicates element-wise division and the two

operands will therefore always have the same dimensions. Finally, the addition or

subtraction between a vector and a matrix, unless otherwise indicated, denotes row-

wise operation on the matrix, i.e. the operation is performed element-wise between

the vector and each row of the matrix.

3.2 Decomposition

Using the above notation, RBT can be formulated (Eq. 3.1) as a search problem where

the goal is to find the optimal parameters pt = [pst,pat] ∈ RS+A that maximize the

similarity, measured by f , between the target patch I∗ = I0(x0) and the warped

image patch Ic = It(w(x0,pst)), that is,

pt = argmax
ps,pa

f(I0(x0), It(w(x0,ps)),pa) (3.1)

As has been observed before [15, 4], this formulation gives rise to an intuitive

way to decompose the tracking task into three modules - the similarity metric f , the

warping function w and the optimization approach. These can be designed to be

semi independent in the sense that any given optimizer can be applied unchanged to

several combinations of methods for the other two sub modules which in turn interact

only through a well defined and consistent interface. In this work, these sub modules

are respectively referred to as appearance model (AM), state space model (SSM) and
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search method (SM).

Fig. 3.2 shows the effective flow of information between the three sub modules

though in practice SM serves as the interface between AM and SSM which do not

interact directly. For each new frame It:

1. SM computes the optimum parameters for w and f and passes these respectively

to the SSM and AM.

2. SSM then warps the initial grid points x0 using these parameters and passes

the resultant points w(x0,pst) to the AM

3. AM extracts the pixel values at these points and computes the similarity of the

resultant patch with the template using pat which it then passes back to the

SM.

4. SM uses this similarity to find the parameters pt+1 that maximize it for the

next frame It+1.

It should be noted that the proposed decomposition does not imply that all meth-

ods for any two of these sub modules can be combined with each other in a meaningful

way. For instance, there are SMs like difference decomposition [63] and hyperplane

approximation [66] that only make sense with a specific AM - SSD (Sec. 5.1.1) in

both these cases. Similarly, there are many AMs, especially those that employ online

learning [145, 99, 146, 147, 101, 100, 148], that are not differentiable and so cannot

be used with the gradient based SMs (Sec. 4.1) that are the most popular ones in

the literature. The scope of this current work is limited to only those SMs and AMs

that make sense when combined with each other and more general formulations are

deferred to future extensions.

3.3 Summary

This chapter provided details of the algebraic notation used in the remainder of

this thesis along with an overview of the proposed decomposition of RBT and the

interaction between the resultant sub modules. More detailed descriptions of the

three sub modules along with examples follow in the next three chapters.
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Chapter 4

Search Methods

SM is the optimization procedure that searches for the warped patch in It that best

matches the template I∗. Many different types of SMs have been used in engineering

and statistical applications [149, 150] including methods for both local and global op-

timization. Local optimization is often carried out using gradient based methods like

steepest descent, conjugate gradient, Newton’s method and quasi Newton methods.

Global optimization, on the other hand, fares better with stochastic methods that in-

clude simulated annealing, particle swarm optimization and evolutionary techniques

like genetic algorithms. Due to the real time nature of visual tracking, however, most

of these latter are too slow to be applied here though they have been used success-

fully for offline image registration [151]. Even amongst the former, only the faster

methods can be used. This also rules out constrained optimization techniques like

regularization though these too have been shown to make image registration more

stable and robust [144].

The SMs considered here can be divided into three main categories including the

two mentioned above - gradient descent and stochastic search - as well as composite

SMs that include elements from both.

4.1 Gradient Descent (GD) Search

This category comprises SMs where the first and second order derivatives of f with

respect to p are used to determine a search direction in which iterative steps are

taken till convergence occurs. This approach has been the most popular one for RBT

in literature due to its speed and simplicity and forms the basis of the classic LK

tracker [16]. As shown by Baker & Matthews [25], this algorithm can be formulated
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in four different ways depending on which image is searched for the warped patch - It

or I0 - and how the parameters of the warping function are updated in each iteration

- additive or compositional. The four resulting variants are called forward additive

(FALK) [16], inverse additive (IALK) [22], forward compositional (FCLK) [15]

and inverse compositional (ICLK) [67]. These were analyzed both theoretically and

experimentally and shown to be equivalent to first order terms while also exhibiting

similar convergence behavior in static tests. Baker & Matthews [25] also tested several

approximations to the Newton’s method including Gauss Newton (GN), Levenberg

Marquardt (LM), steepest descent and diagonal Hessian. Of these, GN and LM

were found to perform similarly and also better than the rest including even the true

Newton’s method. Hence, these are the only formulations tested here. A forward

compositional variant of the steepest descent algorithm (FCSD) described in [25,

Section 4.3] was also implemented in MTF and tested but performed very poorly

with all but 2 DOF SSM and so has not been considered here.

A more recent update to this approach was in the form of the efficient second order

minimization (ESM) [73] technique that attempted to make the best of both inverse

and forward formulations by using the mean of the Jacobians computed from I0 and

It. In addition to RBT, ESM has also found successful application in visual servoing

[76, 77, 78] and SLAM [79, 80]. It has since been shown [89, 152] that ESM is in fact

the middle point of a continuum of methods - of which ICLK and FCLK are the two

ends - where I0 and It are warped simultaneously to find the optimal p. This latter

generalization has given rise to additional variants of LK like symmetric gradient and

bidirectional gradient methods. Though these can be regarded as distinct SMs within

the proposed framework, they are not considered here to keep the scope of this study

manageable.

In addition to these relatively significant strides in the field of GD based SMs,

several extensions have also been proposed to these SMs to handle specific challenges

like motion blur [87], effective resolution degradation [88], better Taylor series approx-

imation [129] and selection of optimal features [57, 58, 59] or patch subsets [153, 154].

These too can be fit within the framework, either as distinct SMs or as variants

thereof, but are not considered here for the same reason.

Finally, it may be noted that, in analogy with the forward and inverse formulations

of LK, ESM too can have an additive variant along with the compositional one that

has been used in literature. Though this has been implemented in MTF as Additive

ESM or AESM, it was not found to perform as well as ESM and, not having furnished
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any useful insights about this SM, has been excluded from this study.

The varied approaches adopted by the five SMs in this category have one thing in

common - they solve Eq. 3.1 iteratively by estimating an incremental update ∆pt to

the optimal parameters pt−1 at time t−1 using some variant of the Newton’s method

as:

∆pt = −Ĥ−1ĴT (4.1)

where Ĵ and Ĥ respectively are estimates for the Jacobian J = ∂f/∂p and the Hessian

H = ∂2f/∂p2 of f w.r.t. p. For any formulation that seeks to decompose this class

of trackers (among others) in the manner described in the previous chapter, the chain

rule for first and second order derivatives is indispensable and relevant expressions

will be introduced next to make the subsequent descriptions easier. For the sake of

simplicity, it has been assumed that A = 0 (or p = ps) in expressions that follow in

the remainder of this section though extensions for A ̸= 0 are straightforward. The

Jacobian can be decomposed as:

J =
∂f(I(w(p)))

∂p
=
∂f

∂I
∇I∂w

∂p
(4.2)

where
∂f

∂I
is the 1×N Jacobian of f w.r.t. I, ∇I is the N×2 spatial gradient of I and

∂w

∂p
is the 2×S×N Jacobian of the x w.r.t. p. Note that the multiplication between

the last two terms in Eq. 4.2 is carried out on a per pixel basis by multiplying each

row of ∇I with the corresponding 2×S block of the tensor
∂w

∂p
and stacking the

results into the rows of an N×S matrix
∂I

∂p
. This detail is assumed implicit in the

notation for brevity.

The generic decomposition for the Hessian is given as:

H =
∂I

∂p

T ∂2f

∂I2
∂I

∂p
+
∂f

∂I

∂2I

∂p2
=
∂w

∂p

T

∇IT ∂
2f

∂I2
∇I∂w

∂p
+
∂f

∂I


∇2I

∂w

∂p
+∇I∂

2w

∂p2


(4.3)

It follows from these expressions that a reasonable way to divide the computation

of Ĵ and Ĥ between AM and SSM is to have the former compute terms involving

I and f (∇I, ∇2I, ∂f/∂I and ∂2f/∂I2 ) while the latter computes those with w

(∂w/∂p, ∂2w/∂p2). Further, these generic expressions do not give the whole scope

of the decompositions since the exact forms of Ĵ and Ĥ as well as the way these are

split vary for different variants of LK. Since f is a function of two patches, J and H
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depend on which of the two corresponding images is being searched for pt as only

the patch corresponding to this image can be regarded as a function of p and this in

turn is the one to be regarded as the variable while differentiating f , i.e. I = I∗ if I0

is being searched and Ic otherwise. Also, due to the way the Taylor series expansion

is formulated, the exact forms of the image derivatives
∂I

∂p
and

∂2I

∂p2
too depend on

whether additive or compositional updates are used. The reader is referred to Baker

& Matthews [25] for more details though formulations relevant to the functions in

MTF (Tables 7.1 and 7.3), including several extensions to [25], are also presented

next.

4.1.1 Jacobian

Denoting w(x,ps) with w(p) for conciseness (A = 0 and x is constant in this context),

the formulations for Ĵ used by FALK and FCLK are given as:

Ĵfa =
∂f

∂Ic


Ic=It(w(p̂t))

∇It|x=w(p̂t)

∂w

∂p


p=p̂t

(4.4)

Ĵfc =
∂f

∂Ic


Ic=It(w(p̂t))

∇It(w)|x=x0

∂w

∂p


p=p0

(4.5)

where ∇It(w) in Eq. 4.5 refers to the gradient of It warped using p̂t, i.e. It is first

warped back to the coordinate frame of I0 using w(p̂t) to obtain It(w) whose gradient

is then evaluated at x = x0. It can be further expanded [25] as:

∇It(w)|x=x0
= ∇It|x=w(p̂t)

∂w

∂x


p=p̂t

(4.6)

where
∂w

∂x
is the 2×N × 2×N derivative of w w.r.t. x. The multiplication in Eq.

4.6 can be quite complex and computationally expensive to perform in the general

case where the warped location of each point in x depends on one or more of the

remaining points. However, for SSMs that perform rigid transformations, including

all SSMs considered in this work, this can be computed point wise by multiplying

each row of ∇It with the corresponding 2× 2 derivative
∂w(xk,p)

∂xk

and stacking the

resultant 1× 2 vectors in rows.

Since ∇It is usually the most computationally expensive part of Jfc and Jfa, the

so called inverse methods - ICLK and IALK - replace this with the gradient of ∇I0
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for efficiency as the latter only needs to be computed once. The specific expressions

for these methods are:

Ĵic =
∂f

∂I∗


I∗=I0(x0)

∇I0|x=x0

∂w

∂p


p=p0

(4.7)

Ĵia =
∂f

∂Ic


Ic=It(w(p̂t))

∇I0|x=x0

∂w

∂x

−1

p=p̂t

∂w

∂p


p=p̂t

(4.8)

where the middle two terms in Eq. 4.8 are derived from Eqs. 4.4 and 4.6 by assuming

[22] that w(p̂t) perfectly aligns It with I0, i.e. It(w) = I0 so that

∇It(w) = ∇I0 (4.9)

In its original paper [76], ESM was formulated as using a modified form of Eq. 4.5

to compute Ĵ where ∇It(w) was replaced by the mean of ∇I0 and ∇It(w). Since

this formulation is only applicable to SSD, however, a generalized version [123, 3] is

considered here that uses the difference between FCLK and ICLK Jacobians:

Ĵesm = Ĵfc − Ĵic (4.10)

4.1.2 Hessian

For clarity and brevity, evaluation points for the various terms have been omitted in

the equations that follow as being obvious from analogy with the previous section.

It is generally assumed [25, 76] that the second term of Eq. 4.3 is too costly to

compute and too small near convergence to matter and so is omitted to give the so

called Gauss Newton (GN) Hessian:

Hgn =
∂I

∂p

T ∂2f

∂I2
∂I

∂p
(4.11)

Though Hgn works very well for SSD (and in fact even better than H [25, 93]), it is

well known [93, 3] to not work well with other AMs like MI and NCC for which an

approximation to the Hessian after convergence has to be used by assuming perfect

alignment or It(w(p̂t)) = I0(x0). The resultant approximation is here referred to as

the Self Hessian or Hself and, as this substitution can be made by setting either

Ic = I0(x0) or I∗ = It(w(p̂t)), two forms for Hself are obtained which are respectively

deemed to be the Hessians for ICLK and FCLK:

Ĥic = H∗
self =

∂I0
∂p

T ∂2f(I0, I0)

∂I2
∂I0
∂p

+
∂f(I0, I0)

∂I

∂2I0
∂p2

(4.12)
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Ĥfc = Hc
self =

∂It
∂p

T ∂2f(It, It)

∂I2
∂It
∂p

+
∂f(It, It)

∂I

∂2It
∂p2

(4.13)

It is interesting to note that Hgn has the exact same form as Hself for SSD (since
∂fssd(I0, I0)

∂I
=
∂fssd(It, It)

∂I
= 0 (Sec. 5.1.1)) so it seems that interpreting Eq. 4.11

as the first order approximation of Eq. 4.3, as in [25, 93], is incorrect and it should

instead be seen as a special case of Hself .

Ĥfa differs from Ĥfc only in the way
∂2It
∂p2

and
∂It
∂p

are computed for the two, as

given in Eqs. 4.14 and 4.15 respectively:

∂2It
∂p2

(fa) =
∂w

∂p

T

∇2It
∂w

∂p
+∇It

∂2w

∂p2
(4.14)

∂2It
∂p2

(fc) =
∂w

∂p

T

∇2It(w)
∂w

∂p
+∇It(w)

∂2w

∂p2
(4.15)

where ∇2It(w) can be expanded by differentiating Eq. 4.6 as:

∇2It(w) =
∂w

∂x

T

∇2It
∂w

∂x
+∇It

∂2w

∂x2
(4.16)

Ĥia is identical to Ĥfa except that ∇I0 and ∇2I0 are used to approximate ∇It and

∇2It. The expression for the former is in Eq. 4.8 while that for the latter can be

derived by differentiating both sides of Eq. 4.6 after substituting Eq. 4.9:

∇2I0 =
∂w

∂x

T

∇2It
∂w

∂x
+∇It

∂2w

∂x2

which gives:

∇2It(ia) =


∂w

∂x

−1T 
∇2I0 −∇It

∂2w

∂x2


∂w

∂x

−1

=


∂w

∂x

−1T 
∇2I0 −


∇I0

∂w

∂x

−1 ∂2w

∂x2


∂w

∂x

−1

(4.17)

where the second equality again follows from Eqs. 4.6 and 4.9. Finally, the ESM

Hessian corresponding to the Jacobian in Eq. 4.10 is the sum of FCLK and ICLK

Hessians:

Ĥesm = Ĥfc + Ĥic (4.18)
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4.1.2.1 Levenberg Marquardt (LM)

All of the aforementioned forms of Ĥ can be modified for using the LM method instead

of the generalized GN formulation described above by replacing Ĥ with Ĥ+δdiag(Ĥ)

where diag(Ĥ) refers to a diagonal matrix populated with the entries in the principal

diagonal of Ĥ and δ is a non-negative adaptive weight factor. δ is updated at each

iteration depending on the performance of its existing value. Let δk refer to the value

of δ in the kth iteration and δ̃ > 1 to an update factor. If the ∆p computed using δk

causes f to increase, then δk+1 = δkδ̃. Conversely, if f decreases, then δk+1 = δk/δ̃ and

the application of ∆p to update p is also undone. This algorithm is taken unchanged

from Baker & Matthews [25] and the reader is referred thence for more details.

4.1.3 Parameter Update

In addition to the forms of Ĵ and Ĥ, these SMs also differ in the way they apply the

estimated incremental update ∆pt to pt−1 to obtain pt. The two additive formula-

tions - FALK and IALK - apply it by direct addition, i.e. pt = pt−1 + ∆pt. FCLK

and ESM, on the other hand, do so by composition:

pt = pt−1 ◦∆pt (4.19)

where ◦ denotes the composition operator which is defined as w(x,pt−1 ◦∆pt) =

w(w(x,∆pt),pt−1). ICLK uses composition too but it first inverts ∆pt:

pt = pt−1 ◦∆p−1
t (4.20)

where the inversion operator p−1
t−1 is defined by the equality w(w(x,p−1),p) = x.

4.2 Stochastic Search

A significant limitation of GD SMs, in common with most iterative non linear opti-

mization methods [155], is that they are prone to getting stuck in local maxima of

f , which, as mentioned before, makes such SMs more suited to local search. This

leads to tracking failures when changes in the object’s appearance due to factors like

occlusions, motion blur and illumination variations introduce false maxima in the

functional surface of f in addition to the desired global maximum. An alternative

approach that avoids this problem is stochastic search where random samples for ∆p

are generated according to some distribution, usually Gaussian, and the optimal warp
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is deduced from the fitness of these samples. Random sampling can help to cover a

larger portion of the search space of p rather than being constrained to follow the

local gradient direction. This work considers four SMs in this category which can be

further divided into two subcategories on the basis of how the sample generation and

fitness evaluation are accomplished.

4.2.1 Direct Sampling

SMs in this subcategory generate samples by directly drawing them from a suitable

S+A dimensional probability distribution and consider the fitness of each to be pro-

portional to the similarity f of the corresponding warped patch with the template.

Their performance thus depends heavily on the number and quality of stochastic sam-

ples used. While the former is limited only by the available computational resources,

the latter is a bit harder to guarantee for a general SSM/AM. For methods that draw

samples from a Gaussian distribution, the quality thereof is determined by the co-

variance matrix used and, to the best of the author’s knowledge, no widely accepted

method exists to estimate this in the general case. Most works in literature have

either used heuristics or performed extensive hand tuning to get acceptable results,

sometimes even using different values for each tested sequence [1].

Given this, a reasonable way to decompose these SMs to fit the proposed frame-

work is to delegate the responsibility of generating the set of samples and estimating

its mean entirely to the SSM (for ps) and AM (for pa) while letting the latter evaluate

the suitability of each sample by providing the likelihood of the corresponding patch.

Since the definition of what constitutes a good sample and how the mean of a sample

set is to be evaluated depends on the SSM/AM, as do any heuristics for generat-

ing these samples (like the variance for each component of p), such a decomposition

ensures both theoretical validity and good performance in practice.

There are two SMs in this category that differ in the image - I0 or It - from where

the patches corresponding to their samples are extracted. These are respectively

nearest neighbor search and particle filter and are described next.

4.2.1.1 Nearest Neighbor Search (NN)

NN has recently been used for RBT [98] thanks to the Fast Library for Approximate

Nearest Neighbors (FLANN) [156] that makes real time search feasible; its previous

applications had been limited to OLT [157]. This SM generates samples from I0 during
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tracker initialization by applying a set of random perturbations {∆pi|1 ≤ i ≤ K}
to the initial grid points x0, where K is the number of samples. The corresponding

warped patches I0(w(x0,∆pi)) are used to build an index which is then searched

to find the nearest neighbor to the patch extracted from It at the tracker’s location

in It−1, i.e. It(w(x0,pt−1)). Finally, the perturbation ∆pnn corresponding to this

nearest neighbor is inverted and applied to pt−1 to obtain pt:

pt = pt−1 ◦∆p−1
nn (4.21)

Building the index is a very time consuming process (Fig. A.7) and so cannot be

done on line during tracking. This constrains NN to use samples only from I0. FLANN

does allow more samples to be added to the index after it has been built without

having to rebuild it. However, this functionality seems a bit buggy at present and

leads to frequent crashes. The index also becomes unbalanced after a few additions

which necessitates its rebuilding. This possibility has therefore been excluded in this

work but might be considered in a future extension once these issues are resolved.

It can be seen that Eq. 4.21 is quite similar to Eq. 4.20 and indeed NN is closely

analogous to ICLK as they both find the warp that aligns I0 with It(xt−1) and use

its inverse to update pt−1. There is an underlying assumption in this approach that,

if a warp applied to I0 causes it to match a slightly warped version of It(xt) (which

It(xt−1) is considered to be), then the inverse of this warp can be applied to the latter

for the resultant patch to match I0 and thus be a good guess for It(xt) itself. As

this assumption is only valid when the appearance of It(xt) is similar to I0, these

SMs tend to fail when the object’s appearance undergoes change due to factors like

occlusion, motion blur or lighting variations. This is the price these SMs pay for the

speed advantage they gain by avoiding online computations - re-extracting patches

in case of NN and re-computing the gradient in case of ICLK.

There are several methods for looking up the best matching sample in the index.

FLANN [156] offers two main methods - randomized kd tree search (KDT) [158, 159,

160] and hierarchical k-means tree search [161, 162, 163] (HKMT). KDT constructs

a set of trees by splitting the data in half at each level along one of the dimensions

chosen randomly from the 5 dimensions with the greatest variance. At search time, all

the trees are traversed in parallel, with a common priority queue keeping track of the

closest neighbor found so far. To ensure that the search is fast, only a fixed number

of leaf nodes are examined in each tree to find an approximate nearest neighbor that

is good enough to satisfy the required precision. Though this method is the fastest

30



one in practice, it has an important limitation in only being compatible with AMs

where the distance measure (−f) can be considered as a valid vector space distance

since it needs to perform dimension wise splitting. This requirement is only satisfied

by pixel wise measures like SSD (Sec. 5.1.1) and SPSS (Sec. 5.2.5) as well as by NCC

(Sec. 5.2.1) with careful formulation of the distance vector (Sec. A.2.1.1).

HKMT, on the other hand, works with all AMs as it only requires its distance

measure to be a metric distance, though this flexibility does come at the cost of

slower performance than KDT, both while building and searching the index. Here,

the tree is constructed by recursively splitting the data points at each level into k non

overlapping regions using k-means clustering. While searching, this tree is traversed

by choosing the branch in each level whose center is closest to the query point. Like

KDT, HKMT too examines only as many leaf nodes as needed to achieve the specified

precision.

There is another more recent method that uses graph search [164] instead of tree

traversal. This is here referred to as graph based nearest neighbor search (GNN).

This is not present in FLANN but has been adapted for tracking within MTF from the

original source code provided by its authors. The graph is constructed by connecting

each node - corresponding to one sample - to its k nearest neighbors in the dataset,

where k is the user specified graph connectivity. The search is started from a random

node in the graph and follows a greedy hill climbing procedure where the search moves

to the neighbor with the smallest distance from the query in each step. The search

stops either after a fixed number of steps or when the distance of the query from the

current node becomes smaller than that from any of its neighbors in the graph. To

benefit from the temporal coherence in a tracked image sequence, which ensures high

correlation between nearby frames, this method is adapted for tracking by starting

each search at the node corresponding to the nearest neighbor found in the previous

search instead of using a random node each time. This facilitates faster convergence

since the current query point is likely to be very similar to the previous one due to

the aforementioned coherence.

Though GNN compares favorably against KDT and HKMT due to this tracking

specific adaptation (Sec. A.2.1.1), it has the limitation of taking significantly longer

to initialize since the graph requires several of the true nearest neighbors to be found

for each of the samples in the set which can only be guaranteed using slow brute force

search. A simple approach to alleviate this issue is to use the approximate nearest

neighbors, provided by a fast FLANN search, for building the graph too. This method
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is termed FLANN based GNN (FGNN) and has been found (Sec. A.2.1.1) to perform

similar to GNN while being faster to initialize.

As will be seen in the next section, one of the main issues with direct sampling

based stochastic SMs is that there exists no general method for estimating a distri-

bution that can generate good samples. A solution proposed there is to use multiple

distributions simultaneously and dynamically select the most appropriate one by its

performance in recent frames. However, this approach is not as effective with NN

since its samples are generated only once so there is no way to decide the proportion

of samples to draw from each distribution. In the absence of prior information about

expected motion, the most reasonable approach is to draw equal number of samples

from each distribution but this was not found to be a significantly improvement over

just using one distribution (Fig. A.8). Another method for combining multiple dis-

tributions is to use them in cascade to carry out a coarse to fine search [98]. In this

arrangement, each layer in the cascade has an NN based tracker that uses a finer

distribution - one that generates less perturbed samples - than the one before it. The

output of each layer is then used as the starting point for the next one so that each

layer successively refines the estimate. Cascades with 3 and 5 layers were tested in

this work and found to be significantly better than single layer NN (Fig. A.6).

4.2.1.2 Particle Filter (PF)

PF is a sequential Monte Carlo (SMC) sampling method [165] that has been widely

used for tracking especially since the condensation algorithm of Isard & Blake [166].

It uses sequential importance sampling to estimate and propagate a conditional prob-

ability distribution for the tracker state given the images as observations. This distri-

bution is represented by a set of weighted samples or particles where each particle is

a randomly generated candidate for the tracker state - typically drawn from a Gaus-

sian distribution - and its weight is indicative of the likelihood of this being the true

state. Within the proposed framework, the tracker state is represented by p while

the likelihood is considered to be some increasing function of the similarity f of the

corresponding patch with the template. Since, PF does not require f to be differen-

tiable, it has been the SM of choice for several AMs that incorporate online learning

of the template [145, 99, 146, 147, 101, 100, 148]. It has conventionally been used for

low DOF tracking [166, 167, 168, 169, 170, 171] but there have been several instances

of affine [99, 100, 101, 102, 103, 104, 105, 106] and, more recently, homography [1]

based trackers too.
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Unlike NN, PF generates new samples in each frame It rather than just once in I0.

This has the disadvantage of making it significantly slower and thus restricted to using

fewer samples. On the other hand, it also allows PF to generate better samples by

adapting them to reflect the actual motion of the tracked object in recent frames, thus

taking advantage of the temporal coherence of this motion. One approach is to use an

autoregressive dynamic model [172] instead of simple random walk used by NN. Other

possibilities include simultaneous estimation of optimal sampling parameters along

with p [173, 174, 106] or using the gradient of f to improve the estimation [105, 1].

However, each of these methods has its own limitations and, to the best of the author’s

knowledge, no sufficiently general method has yet been developed for generating good

samples for p, especially for high DOF SSMs. As mentioned earlier, most works use

extensive hand tuning with a trial-and-error approach to get their PF based trackers

to perform well with a given set of test sequences, often using different parameters for

each sequence to help their tracker compare more favorably against the competition.

This approach does not work in real tracking applications as it is usually impossible

to predict the object motion there. Further, as the optimal sampling parameters

depend strongly on the actual motion of the object in the sequence, any single set of

these parameters is unlikely to work for all scenarios.

A possible solution to this problem attempted in this work is to use multiple

Gaussian distributions for generating the samples instead of just one and dynami-

cally adjust the proportion of total particles drawn from each distribution according

to the performance of its samples in the recent past. This is accomplished by choosing

the probability of drawing a particle from a specific distribution to be proportional to

the average weight of all the particles generated by that distribution in the previous

n frames (only n = 1 has been tested here). This probability is subject to a mini-

mum threshold so that all distributions have a non zero chance of contributing some

particles to the pool. This approach allows the tracker to take advantage of several

distributions - each representing a specific kind of motion - to effectively draw samples

from a Gaussian mixture model [175] that can hopefully represent real motion better

than any of its constituent distributions. This can reduce the need to fine tune the

sampler for each sequence and also perform better in the absence of prior informa-

tion about the kind of motion the tracked object will undergo. A somewhat similar

approach was also employed in [176]. It was found to work quite well with both the

8 DOF samplers used in this work. (Sec. A.2.2.1) and was also slightly better in

general than the coarse to fine cascade approach mentioned in the last section (Sec.
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A.2.2.5).

Apart from the sampling method, there are several other variables that affect

the performance too. One of these is the method used for resampling the particles

to avoid the degeneracy problem [166]. Several methods have been proposed for

this crucial process [177, 178, 179]. Experiments conducted in the course of this

study indicated that binary multinomial resampling offers a good compromise between

speed and accuracy so this was used for all experiments. Another factor that affects

the performance is the approach adopted for combining the resampled particles to

estimate the optimal value of p. The conventional approach used in SMC methods is

to take the mean of these particles though this is rather tricky for high DOF SSMs

like homography since these often do not have a well defined mean except in specific

cases [180]. A simpler alternative is to consider the state corresponding to the highest

weighted particle as the optimal p in each frame. This relatively trivial approach was

found to perform quite well (Sec. A.2.2.4) when compared with the mean estimation

method for SL(3) parameterization of homography used by Kwon et al.[1].

Another factor that appears to have a significant impact on the performance of PF

is the measurement function used for converting f to the likelihood Lf which, when

normalized, becomes the particle weight. Since, it measures probability, 0 ≤ Lf ≤ 1

and thus the following expression has been used in this work:

Lf = exp


−α

f ∗ + β

f
− 1

2


(4.22)

where f ∗ = f(I0, I0) is the maximum value of f while α and β are parameters that

depend on the numerical range of f . These were tuned for each AM to provide optimal

performance (Sec. A.3.1).

4.2.2 Indirect Sampling

SMs in this category are also known as robust regression methods in literature [181].

They generate samples for p indirectly by estimating these from two sets of corre-

sponding points (i.e. image locations) produced by tracking each point between two

consecutive frames in the sequence. This estimation is a form of model fitting that

tries to find the p that can best explain the geometric transformation of points from

the first to the second set. Though any tracker can be used for generating this point

correspondence, simple 2 DOF LK type trackers are used in practice [33], so that the

process becomes identical to gradient based optical flow estimation. There are three
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main reasons for this. Firstly, these are some of the fastest trackers available and so

better suited to tracking a large number of points in real time. Secondly, these track-

ers are not required to be very robust as the estimation process can simultaneously

detect failed trackers as outliers while estimating the best fit samples. Finally, more

robust OLTs are not suited for this task as frame-to-frame tracking does not benefit

from model learning. Nevertheless, feature detection and matching has been used for

offline applications of image registration like mosaicing [182].

Two popular methods in this category have been considered here - random sam-

ple consensus (RANSAC) [183] and least median of squares (LMS) [50]. These

methods were chosen mainly due to the availability of their efficient implementations

in OpenCV [18]. In both methods, a sample is generated by first choosing a ran-

dom subset of the corresponding point pairs and then finding the warp which can be

applied to the first of the point pairs to minimize the distance, in the least squares

sense, of the resultant warped points from the second of the pairs. For all SSMs whose

transformation can be expressed by a matrix multiplication, this is usually done using

the direct linear transform (DLT) algorithm [184]. The warp thus generated is then

applied to all of the points in the first set and the number of inliers is counted by

comparing the warped points with their correspondences in the second set. A large

number of such samples are generated, with the precise count being controlled either

by a user specified maximum or till a good enough sample is obtained. The minimum

number of point pairs needed for each subset depends on the DOF of the SSM - 1,

2,3 and 4 respectively for translation, similitude, affine and homography. Tests were

conducted with up to 4 more points than the minimum for each SSM but showed

that the subset size makes no difference to tracking performance.

RANSAC and LMS differ in the way they define the best fitting sample. RANSAC

considers this to be the sample that maximizes the number of inliers. An inlier is

defined here as a point pair where the distance, usually measured by the Euclidean

norm, of the second point in the pair from the warped location of the first point is

less than a user defined threshold. LMS, on the other hand, looks for the sample

that minimizes the median of this distance over all point pairs. This gives LMS the

advantage of not requiring a threshold to determine inliers. However, this comes at

the cost of LMS working correctly only when at least half the points are inliers while

RANSAC can handle any ratio of inliers even if its estimation does get less accurate

as this ratio falls.
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4.3 Composite Search

As mentioned before, both GD and stochastic SMs have their own strengths and

weaknesses. The former are often more precise while being more prone to failure in

the presence of false maxima due to appearance changes or when the starting point of

search is outside the basin of convergence due to fast motion. The latter, though less

prone to getting stuck in local maxima, depend largely on the number and quality

of random samples for their performance since these determine the available search

space. This, combined with the limited number of samples that can be used while

maintaining real time speeds as well as the difficulty of generating good samples,

causes these SMs to produce comparatively jittery and unstable results. A simple

approach to simultaneously obtain better precision and robustness is to combine the

best of both types of SMs by running a stochastic SM in cascade with a GD SM

[98, 33] such that results from the former are used as starting search points for the

latter. Results from the latter are in turn fed back to the former to provide it with

a more precise starting location for the next frame. Three such combinations have

been considered in this work as examples of hybrid or composite SMs - NN+ICLK

(NNIC), PF+FCLK (PFFC) and LMS+ESM (LMES).

In addition to providing better starting points for the two layers, this cascade

arrangement can also provide a useful cue to automatically detect tracking failure.

This is based on the observation that when the composite tracker works correctly, the

output of the GD method does not vary too much from that of the stochastic one since

GD methods only converge correctly within a relatively narrow basin of convergence.

This is why the GD step can be considered as performing a further refinement of

the already approximately correct location found by the stochastic step. Therefore,

a significant difference in the locations found by the two SMs - if the alignment error

(Sec. 8.2) between them exceeds a threshold for instance - almost always indicates

failure of the composite SM. The tracker can take advantage of this in two ways.

Firstly, it can assume that the stochastic SM is more robust and the failure was due

to the GD step, thus rejecting the output of the latter and considering that of the

former as the correct one for this frame. This method was used in [33]. Secondly, it

can maintain a buffer of last n frames along with the corresponding object locations

so as to reinitialize itself n frames before the one where failure is detected, under the

assumption that it was still working then. This way, if the tracker failed due to a

change in the object’s appearance, the updated template might help it to avoid failing
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again after the reinitialization.

Finally, indirect sampling methods have yet another advantage in this context

provided that the resolution of the grid whose intersection points form the corre-

sponding point pairs (used as input to the robust estimation step) is same as the

sampling resolution used by the GD method. In this case, a one-to-one correspon-

dence exists between the point pairs and the pixel locations where the latter samples

the patch. The optimal warp estimated by the robust method can then be used to

generate a mask of inliers corresponding to this warp and passed to the GD method so

the latter can use it to perform selective pixel integration (SPI) [153] by considering

pixel values at only those sampled points that correspond to inliers. This is based on

the assumption that outliers represent failures of the optical flow estimation process

and the corresponding pixel values probably do not match the template well. Thus,

rejecting these pixels while computing f and its derivatives in the GD step might

provide better convergence [33].

4.4 Summary

This chapter described the various SMs considered in this thesis. These were divided

into three main categories. The first category of methods was based on gradient de-

scent search and included the four variants of the LK tracker - FCLK, ICLK, FALK

and IALK - in addition to the newer ESM method. The second category was of

stochastic search methods and was further divided into to sub categories based on

the sampling approach adopted. There were two SMs in each subcategory - methods

that perform direct sampling included NN and PF while those with indirect sam-

pling comprised RANSAC and LMS. Finally, several composite SMs were proposed

to combine both GD and stochastic methods in cascade and get the best of both

worlds.
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Chapter 5

Appearance Models

AM is the image similarity measure defined by f (Eq. 3.1) that the SM uses to

determine if a candidate patch Ic is a good match for the template I∗. These two

patches are typically extracted from It and I0 respectively, though the reverse is also

possible as in NN (Sec. 4.2.1.1) and ICLK (Sec. 4.1). Also, the template I∗ need

not be fixed during tracking but can incorporate online learning [145, 146, 146] to

adapt to more recent object appearance. Further, I∗ is not constrained by definition

to represent a single image patch in the conventional sense. It can be any suitable

representation for the object including, for instance, the eigenbasis constructed using

several tracked patches between I0 and It [99, 185] or statistical models of its shape

and appearance [186, 187]. Finally, f can be parameterized in any arbitrary manner,

in which case the SM optimizes its parameters (pa) too along with those of the SSM.

In order to work well in practice, f must bear a strong positive correlation with the

probability of the two image patches being compared belonging to the same object, i.e.

it must increase when this probability is higher and vice versa. Due to the large variety

of changes that the image patch corresponding to an object can undergo in real world

sequences, there is still no single AM that can work well under all scenarios. Several

attempts have, however, been made to deal with specific challenges like illumination

changes [84], motion blur [87], shadows, reflections [5] and occlusions [101].

Though the definition of AM is flexible enough to incorporate online learning and

non-pixel based models of object appearance [99, 185, 186], such AMs are not com-

patible with all SMs considered in this study, mainly as not being differentiable, and

so have not been included here. In fact, two such AMs - called Principal Components

Analysis (PCA) and Deep Feature Maps (DFM) - have already been implemented

within MTF at the time of this writing. The former uses online learning by con-
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structing an eigenbasis from several tracked patches [99] while the latter employs

offline learning by using a pre-trained deep convolutional neural network [188] to ap-

ply a feature transform to both It and I0. Both AMs are excluded, however, for the

reason mentioned above. The scope of this work is restricted to AMs and SMs that

can all be combined with each other and more specialized models have been deferred

to future extensions. Another AM excluded here for a slightly different reason is

Kullback-Leibler divergence (KLD). Though theoretically compatible with all SMs

and SSMs, this was not found to perform well with higher DOF SSMs, even when

computed over several corresponding sub patches to compensate for the lack of spatial

information [49]. Finally, as mentioned in Sec. 3.1, the exploration of parameteriza-

tion of f is restricted to ILMs [139, 84], where Ic is replaced with g(Ic,pa) to account

for differences in illumination between I0 and It.

The various non-parameterized AMs included in this study are described next

along with expressions for ∂f/∂I and ∂2f/∂I2 that are needed for Eqs. 4.2 and 4.3.

Detailed derivations for these expressions are only provided for AMs that, to the

best of the author’s knowledge, have not been used with GD based SMs elsewhere in

literature. The AMs are divided into two categories - those where f can be expressed

as the squared ℓ2 norm of the element wise difference between two vectors and those

where this is not true. The former are termed as L2 models and the latter as robust

models after [4]. Parameterization of AMs, as represented by ILMs, is described in a

separate section that follows that of these aforementioned AMs.

In each of the following sections, function plots for the respective AMs are also

shown to visually demonstrate their characteristics like radius of convergence and

degree of illumination invariance. These were generated by applying horizontal and

vertical translations in the range of [−20, 20] pixels to the ground truth locations of

specific frames in six sequences and evaluating f by using the translated patch as It.

The template I0 was extracted from the first frame in each sequence. Fig. 5.1 shows

the frames that have been used. These were chosen from the four datasets (Sec. 8.1)

to incorporate common tracking challenges like motion blur, occlusion and lighting

changes. These plots have not been analyzed here since such a small sample is not

enough to draw meaningful conclusions based on the shapes of these plots alone.

These have instead been used as supporting evidence for the analysis in chapter 9

and the two appendices.
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Figure 5.1: Frames used for generating the function plots for AMs. First
and fourth rows show I0 where the template is extracted while the second and
fourth rows show It. Challenge present here - localized illumination change
(cat cylinder, bear), global illumination change (paris dynamic lighting), mo-
tion blur(mission motion9, nl cereal s5) and occlusion (nl bookIII s3)
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5.1 L2 models

This category includes AMs that can be defined according to the following expression:

fL2 = −1

2
∥Ît − Î0∥2 (5.1)

where Ît, Î0 ∈ RN are derived from I0 and It. The minus sign is added to convert the

distance measure to one for similarity (which f is defined to be) and the multiplicative
1

2
to avoid multiplication by 2 in the derivatives of fL2.

The first and second order derivatives of fL2 w.r.t. Ît, are given as:

∂fL2

∂Ît
= Î0 − Ît (5.2)

∂2fL2

∂Î2t
= −IN (5.3)

where IN denotes the N × N identity matrix. To be accurate, the corresponding

derivatives of fL2 w.r.t. It should employ chain rule as
∂fL2
∂It

=
∂fL2

∂Ît

∂Ît
∂It

and
∂2fL2

∂It
2 =

∂Ît
∂It

T
∂2fL2

∂Î2t

∂Ît
∂It

+
∂fL2

∂Ît

∂2Ît

∂It
2 . However, in practice, these are often approximated using

Eqs. 5.2 and 5.3 respectively either because the relation between Ît and It is not

differentiable (Sec. 5.1.2 - 5.1.4) or the derivatives are too costly to compute in real

time compared to the resultant gain in accuracy (Sec. 5.1.5).

5.1.1 Sum of Squared Differences (SSD)

SSD is the simplest and most commonly used AM in literature [16, 22, 137, 25, 76]

where Î0 = I0 and Ît = It so that Eqs. 5.2 and 5.3 provide accurate expressions

for
∂fssd
∂It

and
∂2fssd

∂It
2 . SSD is especially popular with SMs based on GD due to

its relatively wide radius of convergence (Fig. 5.2) and the ease of computing its

derivatives. However, its simplicity also makes it vulnerable to providing false matches

when the object’s appearance undergoes changes. This has led to the development of

several improved AMs, some of which follow here.
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Figure 5.2: fssd plotted against x and y translation.

5.1.2 Sum of Conditional Variance (SCV)

SCV was originally introduced for multi modal medical image registration [189] but

was adapted for RBT by Richa et al. [95] as an improvement to SSD for better

handling of illumination changes without using ILMs. It has since been used for

visual servoing [97] and non rigid object tracking [96] too. SCV uses Ît = It and

computes Î0 using the following expression:

Î0 = E(It|I0) (5.4)

where E is the expectation operator which is defined as:

Î0(xk0) = E(Ikt|Ik0 = j) =

L−1
i i · Pt0(i, Ik0)L−1
i Pt0(i, Ik0)

(5.5)

∀ 1 ≤ k ≤ N . Here, L denotes the number of gray levels in the images (typically

L = 256) and j ∈ [0, L− 1]. It should be recalled from Sec. 3.1 that Ikt = It(x̂kt) =
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Figure 5.3: fscv plotted against x and y translation.

It(x̂kt, ŷkt) and Ik0 = I0(xk0) = I0(xk0, yk0) are the kth pixel values in It and I0

respectively. Further, P ∈ RL×L is the joint intensity distribution between It and I0,

each of whose entries Pt0(i, j) is the probability of co-occurrence of It = i and I0 = j.

This is approximated using the normalized joint histogram which is computed as:

Pt0(i, j) =
1

N

N
k=1

ψ(i− Ikt)ψ(j − Ik0) (5.6)

where ψ is the histogram window or membership function which determines the con-

tribution of each pixel to each bin in the histogram. In its simplest form, ψ is the

Kronecker delta function given by

ψkronecker(s) =


1 if s = 0

0 otherwise
(5.7)

In order to allow for non integral values in I0/It, a slightly modified version of

ψkronecker is used here where each pixel contributes only to the bin that is nearest
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Figure 5.4: frscv plotted against x and y translation.

to its value:

ψnearest(s) =


1 if − 0.5 < s ≤ 0.5

0 otherwise
(5.8)

With this formulation, ψ, as a piecewise function, is not differentiable w.r.t. pixel

values in I0 and It and therefore nor are Pt0 and E. Though ψ can be made differ-

entiable by using Parzen density estimation with ψ as a smooth B-Spline function

[190, 191, 92], but differentiating such functions is too computationally expensive to

be applied here. SCV thus uses the approximate expressions in Eqs. 5.2 and 5.3 for

computing
∂fscv
∂It

and
∂2fscv

∂It
2 respectively.

5.1.3 Reversed Sum of Conditional Variance (RSCV)

This was introduced by Dick et al. [98] as an adaptation for SCV for its efficient use

with inverse SMs like NN whre candidate patches are extracted from I0 rather than

44



−20 −15 −10 −5 0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0x 106 LSCV cat_cylinder frame 1

tx / ty

f ls
cv

 

 

tx
ty

−20 −10 0 10 20
−5.4

−5.2

−5

−4.8

−4.6

−4.4

−4.2

−4x 106 LSCV cat_cylinder frame 150

tx / ty

f ls
cv

 

 

tx
ty

−20 −10 0 10 20
−5.5

−5

−4.5

−4

−3.5

−3

−2.5x 106 LSCV bear frame 583

tx / ty

f ls
cv

 

 

tx
ty

−20 −10 0 10 20
−3

−2.5

−2

−1.5

−1

−0.5x 106 LSCV paris_dynamic_lighting frame 100

tx / ty

f ls
cv

 

 

tx
ty

−20 −10 0 10 20
−16

−14

−12

−10

−8

−6

−4

−2x 105 LSCV mission_motion9 frame 13

tx / ty

f ls
cv

 

 

tx
ty

−20 −15 −10 −5 0 5 10 15 20
−3.5

−3

−2.5

−2

−1.5

−1x 106 LSCV nl_cereal_s5 frame 172

tx / ty

f ls
cv

 

 

tx
ty

−20 −10 0 10 20
−3.8

−3.7

−3.6

−3.5

−3.4

−3.3x 106 LSCV nl_bookIII_s3 frame 362

tx / ty
f ls

cv

 

 

tx
ty

Figure 5.5: flscv plotted against x and y translation.

It. It only differs from SCV in using Î0 = I0 and computing Ît as:

Ît = E(I0|It) (5.9)

with

E(Ik0|Ikt = i) =

L−1
j j · Pt0(Ikt, j)L−1
j Pt0(Ikt, j)

(5.10)

The derivatives
∂frscv
∂It

and
∂2frscv

∂It
2 are computed using Eqs. 5.2 and 5.3 as for SCV.

5.1.4 Localized Sum of Conditional Variance (LSCV)

This was introduced in [5] as an extension to SCV for improved handling of localized

illumination variations including reflections. LSCV creates K joint histograms Pt0(u,v)

from corresponding sub regions in I0 and It. Here, u ∈ [1, Ku], v ∈ [1, Kv] with Ku
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and Kv being the number of possibly overlapping horizontal and vertical sub regions

so that K = Ku ×Kv. Each of these histograms is then used to generate a different

mapped template Î0(u,v) using Eqs. 5.4 and 5.5. Each pixel in the final mapped

template Î0 is computed as a weighted average of the corresponding pixels in these

templates such that the weight is inversely proportional to the distance of that point

from the center of the sub region, that is,

Î0(xk0) =
Ku
1

Kv
1

Î0(u,v)(xk0)

∥xk0 − c(u,v)∥
(5.11)

where c(u,v) is the center of the subregion (u, v).

Another difference in LSCV compared to SCV is that it uses global affine mapping

(Eqs. 5.12, 5.13), instead of the pixel wise mapping in Eq. 5.4, in order to add

constraints to this process to avoid the permutation invariance property of the latter

[5] that reduces the radius of convergence:

Î0(u,v) = a∗It + b∗ (5.12)

with a∗, b∗ estimated using least squares optimization as

a∗, b∗ = argmin
a,b

N
k=1

∥Pt0(u,v)(i, Ikt)− (aIkt + b)∥ (5.13)

A reversed version of LSCV, analogous to RSCV, is also present in MTF but is not

included in this study as it does not add anything useful to the analysis.

5.1.5 Zero mean Normalized Cross Correlation (ZNCC)

This AM is inspired from the work of Ruthotto [192] which showed that maximizing

the NCC (Sec. 5.2.1) between I0 and It is equivalent to minimizing the SSD between

the z-score [193] normalized versions of these patches. Each of these normalized

patches is computed by subtracting the mean of the respective patch from the original

pixel values in the patch followed by dividing its standard deviation. Therefore, Î0

and Ît are given as:

Î0 =
I0 − µ0

σ0
(5.14)

Ît =
It − µt

σt
(5.15)
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Figure 5.6: fzncc plotted against x and y translation.

where µt and σt are the mean and standard deviation of It given as:

µt =
1

N

N
k=1

Ikt (5.16)

σt =

 1

N

N
k=1

(Ikt − µt)2 (5.17)

and likewise for I0. Similar to the previous L2 AMs, this one too uses Eqs. 5.2 and

5.3 as approximations to
∂fzncc
∂It

and
∂2fzncc

∂It
2 respectively.

5.2 Robust Models

This category includes all AMs that do not fit into the previous one. Most of these

were introduced [4] as more robust alternatives to SSD for dealing with appearance
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Figure 5.7: fncc plotted against x and y translation.

variations and hence are so named.

5.2.1 Normalized Cross Correlation (NCC)

NCC is another classical image similarity measure like SSD that has been extensively

used for image matching [194, 195, 196] and registration [197, 192] as well as for

visual tracking [198, 199, 200]. It has only been applied for RBT relatively recently

though [3, 4, 1]. The main advantage of NCC over SSD is that it is invariant to affine

illumination changes. Its formulation is similar to ZNCC except that it maximizes

the inner product between the two normalized patches rather than minimizing the

squared difference between them. It is thus defined as:

fncc =
I0 − µ0

σ0
· It − µt

σt
=

Ī0
∥Ī0∥

· Īt
∥Īt∥

(5.18)

where µt and σt are the mean and standard deviation of It, as given in Eqs. 5.14 and

5.15, while Īt = It − µt denotes the mean centered version of It. The Jacobian and
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Figure 5.8: fmi plotted against x and y translation.

Hessian for NCC are given as [3]:

∂fncc
∂It

=
1

∥Īt∥


Ī0
∥Ī0∥

− fncc
Īt
∥Īt∥


(5.19)

∂2fncc

∂It
2 = − 1

∥Īt∥2


fncc +

Ī0Ī
T
t

∥Ī0∥∥Īt∥
+

ĪtĪ
T
0

∥Īt∥∥Ī0∥
− 3

ĪtĪ
T
t

∥Īt∥2


(5.20)

For Ĥself (Eqs. 4.13, 4.12), the expression in Eq. 5.20 simplifies to:

∂2fncc(It, It)

∂It
2 =

1

∥Īt∥2


ĪtĪ

T
t

∥Īt∥2
− 1


(5.21)

5.2.2 Mutual Information (MI)

MI is an information theoretic similarity metric that has been widely used for med-

ical image registration [190, 191, 201, 202], especially when multi modal images are
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involved [203, 204], since it is invariant to changes of modality. Inspired by its success

in this context, it has also been applied for RBT [90, 92, 4], mainly using ICLK SM

due to its computationally expensive derivatives, though formulations for other GD

SMs have been introduced too [93]. MI is defined as:

fmi =
L−1
i=0

L−1
j=0

Pt0(i, j) log


Pt0(i, j)

Pt(i)P0(j)


(5.22)

where Pt0 is the joint histogram of It and I0, defined as in Eq. 5.6, and L is the

number of bins. Pt and P0 are the respective marginal histograms that are given as:

Pt(i) =
L−1
j=0

Pt0(i, j) (5.23)

P0(j) =
L−1
i=0

Pt0(i, j) (5.24)

for i, j ∈ [0, L−1]. A significant difference in the computation of Pt0 for MI, compared

to SCV and its variants, is that ψ here is a smooth cubic B-Spline function (Eq. 5.25)

so that fmi is differentiable w.r.t. It and I0.

ψbspline(s) =



1
6
(2 + s)3 if − 2 ≤ s ≤ −1

1
6
(4− 6s2 − 3s3) if − 1 < s ≤ 0

1
6
(4− 6s2 + 3s3) if 0 < s ≤ 1

1
6
(2− s)3 if 1 < s ≤ 2

0 otherwise

(5.25)

Through a process known as Parzen density estimation [205], this function is used to

approximate a Gaussian distribution so the contribution of each pixel can be smoothly

distributed to four neighboring bins. Another difference here is that L is typically

much smaller than 256 and the pixel values in the patches are scaled accordingly.

L = 8 is most commonly used though results presented later (Sec. A.3.2) will show

that higher values up to 24 can perform better with specific SMs.

The Jacobian of MI is given as [93]:

∂fmi

∂It
=

L−1
i=0

L−1
j=0

∂Pt0(i, j)

∂It


1 + log

Pt0(i, j)

Pt(i)


(5.26)
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where
∂Pt0(i, j)

∂It
is the 1×N derivative of Pt0(i, j) w.r.t. It whose kth entry is given

as:

∂Pt0(i, j)

∂Ikt
=

1

N

∂ψ(i− Ikt)
∂Ikt

ψ(j − Ik0) (5.27)

with:

∂ψ(s)

∂s
=
∂ψbspline(s)

∂s
=



1
2
(2 + s)2 if − 2 ≤ s ≤ −1

1
6
(4− 12s− 9s2) if − 1 < s ≤ 0

1
6
(4− 12s+ 9s2) if 0 < s ≤ 1

1
2
(2− s)2 if 1 < s ≤ 2

0 otherwise

(5.28)

MI Hessian is given as [93]:

∂2fmi

∂It
2 =

L−1
i=0

L−1
j=0


∂Pt0(i, j)

∂It

T ∂Pt0(i, j)

∂It


1

Pt0(i, j)
− 1

Pt(i)


+
∂2Pt0(i, j)

∂It
2


1 + log

Pt0(i, j)

Pt(i)


(5.29)

where the N × N Hessian
∂2Pt0(i, j)

∂It
2 is a diagonal matrix whose kth diagonal entry

is given as:

∂2Pt0(i, j)

∂I2kt
=

1

N

∂2ψ(i− Ikt)
∂I2kt

ψ(j − Ik0) (5.30)

with:

∂2ψ(s)

∂s2
=
∂2ψbspline(s)

∂s2
=



2 + s if − 2 ≤ s ≤ −1

−2− 3s if − 1 < s ≤ 0

3s− 2 if 0 < s ≤ 1

2− s if 1 < s ≤ 2

0 otherwise

(5.31)

The expression for
∂2fmi(It, It)

∂It
2 needed for Ĥself is identical to Eq. 5.29 except that

the various histograms and their derivatives are computed by setting I0 = It.

∂2fmi(It, It)

∂It
2 =

L−1
i=0

L−1
j=0


∂Ptt(i, j)

∂It

T ∂Ptt(i, j)

∂It


1

Ptt(i, j)
− 1

Pt(i)


+
∂2Ptt(i, j)

∂It
2


1 + log

Pt0(i, j)

Pt(i)


(5.32)
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Figure 5.9: fccre plotted against x and y translation.

with

Ptt(i, j) =
1

N

N
k=1

ψ(i− Ikt)ψ(j − Ikt) (5.33)

∂Ptt(i, j)

∂Ikt
=

1

N

N
k=1

∂ψ(i− Ikt)
∂Ikt

ψ(j − Ikt) (5.34)

∂2Ptt(i, j)

∂I2kt
=

1

N

N
k=1

∂2ψ(i− Ikt)
∂I2kt

ψ(j − Ikt) (5.35)

5.2.3 Cross Cumulative Residual Entropy (CCRE)

CCRE [206, 207] is another AM based on information theory and is very similar to

MI - the only difference between the two is that CCRE uses cumulative joint and
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marginal histograms instead of Pt0 and Pt. CCRE has been shown to offer several

advantages over MI [208] including a larger convergence region, smoother function

surface and higher range of values which should all allow for more numerically stable

optimization. It has been used successfully for image registration [208, 209, 210], but,

to the best of the author’s knowledge, has never been applied for RBT even though

the relevant formulations for GD based SMs have been reported [4].

CCRE is formulated as:

fccre =
L−1
i=0

L−1
j=0

P ∗
t0(i, j) log


P ∗
t0(i, j)

P ∗
t (i)P0(j)


(5.36)

where the cumulative joint and marginal histograms P ∗
t0, P

∗
t are given as [208]:

P ∗
t0(i, j) =

L−1
i=0

Pt0(i, j) =
1

N

N
k=1

ψ∗(i− Ikt)ψ(j − Ik0) (5.37)

and

P ∗
t (i) =

L−1
j=0

P ∗
t0(i, j) (5.38)

with ψ∗(s) denoting the cumulative cubic B-Spline function that is identical to the

quintic B-Spline:

ψ∗(s) =

 ∞

z

ψ(z)dz =



1 if s < −2

1− (2+s)4

24
if − 2 ≤ s ≤ −1

1
2
− 2s

3
+ s3

3
+ s4

8
if − 1 < s ≤ 0

1
2
− 2s

3
+ s3

3
−+ s4

8
if 0 < s ≤ 1

(s−2)4

24
if 1 < s < 2

0 otherwise

(5.39)

Further, the Jacobian of CCRE is given as [208, 4]:

∂fccre
∂It

=
L−1
i=0

L−1
j=0


∂P ∗

t0(i, j)

∂It
log


P ∗
t0(i, j)

P ∗
t (i)P0(j)


(5.40)

where the kth element of
∂P ∗

t0(i, j)

∂It
is computed as:

∂P ∗
t0(i, j)

∂Ikt
=

1

N

∂ψ∗(i− Ikt)
∂Ikt

ψ(j − Ik0) (5.41)
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with
∂ψ∗(i− Ikt)

∂Ikt
= −ψ(i− Ikt).

Finally, the (k, l)th element of the CCRE Hessian is given as [4]:

∂2fccre
∂Ikt∂Ilt

=
L−1
i=0

L−1
j=0


∂2P ∗

t0(i, j)

∂Ikt∂Ilt
log


P ∗
t0(i, j)

P ∗
t (i)P0(j)



+
1

P ∗
t0(i, j)

∂P ∗
t0(i, j)

∂Ikt

∂P ∗
t0(i, j)

∂Ilt
− 1

P ∗
t (i)

∂P ∗
t0(i, j)

∂Ilt

L−1
m=0


∂P ∗

t0(i,m)

∂Ikt


(5.42)

where

∂2P ∗
t0(i, j)

∂Ikt∂Ilt
=

1

N

∂2ψ∗(i− Ikt)
∂Ikt∂Ilt

ψ(j − Ik0) (5.43)

with
∂2ψ∗(i− Ikt)

∂I2kt
=
∂ψ(i− Ikt)

∂Ikt
and

∂2ψ∗(i− Ikt)
∂Ikt∂Ilt

= 0 for k ̸= l. As for MI, the self

Hessian
∂2fccre(It, It)

∂It
2 is formulated as in Eq. 5.42 except that the various histograms

and their derivatives are computed after substituting I0 = It.

5.2.3.1 Inverse Derivatives

It can be noted from Eq. 5.36 that, unlike MI, CCRE is not a symmetrical measure,

i.e. fccre(I0, It) ̸= fccre(It, I0). This has important implications for computing the

inverse derivatives
∂fccre
∂I0

and
∂2fccre

∂I0
2 needed by ICLK and ESM (Sec. 4.1) since

these cannot be obtained by simply switching the roles of I0 and It in Eqs. 5.40 and

5.42. One solution is to change the form of Eq. 5.36 itself by interchanging the roles

of I0 and It and the resultant form is termed as inverse CCRE (ICCRE):

ficcre =

i,j

P ∗
0t(i, j) log


P ∗
0t(i, j)

P ∗
0 (i)Pt(j)


(5.44)

with

P ∗
0t(i, j) =

L−1
i=0

P0t(i, j) =
1

N

N
k=1

ψ∗(i− Ik0)ψ(j − Ikt) (5.45)

and

P ∗
0 (i) =

L−1
j=0

P ∗
0t(i, j) (5.46)
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Though this formulation allows Eqs. 5.40 and 5.42 to be used for computing the

inverse derivatives and also makes more sense from the perspective of searching I0 for

the optimal warp, experiments indicated that ICLK and ESM do not work as well

with it as the one in Eq. 5.36. A similar approach was proposed in [207] where the

mean of fccre and ficcre was taken to obtain a symmetrical version of CCRE. This

latter was not explored in the current work both due to the poor performance of ficcre

and the significantly more computational load involved in using it. As a result, fccre

was used for ICLK and ESM too and its derivatives w.r.t. I0 are presented next.

∂fccre
∂I0

=
L−1
i=0

L−1
j=0


∂P ∗

t0(i, j)

∂I0
log


P ∗
t0(i, j)

P ∗
t (i)P0(j)



+ P ∗
t0(i, j)

P ∗
t (i)P0(j)

P ∗
t0(i, j)

1

P ∗
t (i)P0(j)


∂P ∗

t0(i, j)

∂I0
− P ∗

t0(i, j)

P ∗
t (i)P0(j)

∂P0(j)

∂I0
P ∗
t (i)



=
L−1
i=0

L−1
j=0


∂P ∗

t0(i, j)

∂I0


1 + log


P ∗
t0(i, j)

P ∗
t (i)P0(j)


− P ∗

t0(i, j)

P0(j)

∂P0(j)

∂I0


(5.47)

∂2fccre

∂I0
2 =

L−1
i=0

L−1
j=0


∂2P ∗

t0(i, j)

∂I0
2


log


P ∗
t0(i, j)

P ∗
t (i)P0(j)


+ 1


+
∂P ∗

t0(i, j)

∂I0


∂P ∗

t0(i,j)

∂I0

P ∗
t0(i, j)

−
∂P0(j)
∂I0

P0(j)



−


∂P ∗

t0(i, j)

∂I0

∂P0(j)
∂I0

P0(j)
+ P ∗

t0(i, j)

 ∂2P0(j)

∂I0
2

P0(j)
−


∂P0(j)
∂I0

P0(j)

2


=
L−1
i=0

L−1
j=0


∂2P ∗

t0(i, j)

∂I0
2


log


P ∗
t0(i, j)

P ∗
t (i)P0(j)


+ 1


+
∂P ∗

t0(i, j)

∂I0


∂P ∗

t0(i,j)

∂I0

P ∗
t0(i, j)

−
2∂P0(j)

∂I0

P0(j)



− P ∗
t0(i, j)

 ∂2P0(j)

∂I0
2

P0(j)
−


∂P0(j)
∂I0

P0(j)

2
 (5.48)

5.2.4 Structural Similarity (SSIM)

SSIM [116] is a popular image quality measure for evaluating the loss in fidelity

incurred by image compression algorithms like JPEG by comparing the compressed

image with the original one. It has been very popular in this domain since it closely

mirrors the approach adopted by the human visual system to subjectively evaluate the

quality of an image. Since it measures the information loss in the compressed image

- essentially a slightly distorted or damaged version of the original - it also makes a
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Figure 5.10: fssim plotted against x and y translation.

suitable metric for comparing candidate warped patches with the template to find the

one with the minimum loss and thus most likely to represent the same object. Further,

it has been designed to capture the perceptual similarity of images and is known to

be robust to illumination and contrast changes [116]. It is reasonable, therefore, to

expect it to perform well for tracking under challenging conditions. As such, it has

indeed been used for tracking before with particle filters [117, 121], gradient ascent

[119] and hybrid methods [118]. All of these have been imprecise trackers, however,

estimating low DOF motion limited to translation and scaling of the target patch. To

the best of the author’s knowledge, no attempt has thus far been made to use SSIM

for high DOF RBT within the LK framework [16].

SSIM is defined as a product of 3 components:

fssim =


2µtµ0 + C1

µ2
t + µ2

0 + C1

α
2σtσ0 + C2

σ2
t + σ2

0 + C2

β 
σt0 + C3

σtσ0 + C3

γ

(5.49)

where µt is the mean and σt is the sample standard deviation of It while σt0 is the
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sample covariance between It and I0. The three components of fssim from left to right

are respectively used for luminance, contrast and structure comparison between the

two patches. The positive constants α, β, γ are used to assign relative weights to these

components while C1, C2, C3 are added to ensure their numerical stability with small

denominators. Here, as in most practical implementations [116, 117, 118, 119, 121],

it is assumed that α = β = γ = 1 and C3 =
C2

2
so that Eq. 5.49 simplifies to:

fssim =
(2µtµ0 + C1) (2σt0 + C2)

(µ2
t + µ2

0 + C1) (σ2
t + σ2

0 + C2)
(5.50)

For clarity and brevity in the subsequent expressions, SSIM is expressed in a

simplified form as:

fssim =
ab

cd
(5.51)

with a = 2µtµ0 +C1, b = 2σt0 +C2, c = µ2
t + µ2

0 +C1 and d = σ2
t + σ2

0 +C2. Further,

as in Eq. 5.18, Īt refers to a mean normalized version of It so that Īt = It − µt and

Īkt = Īt(x̂kt) = Īt(x̂kt)− µt with
N
k=1

Īkt = 0. Differentiating Eq. 5.51 w.r.t. It gives:

∂fssim
∂It

=
1

cd
[(a′b+ b′a)− fssim(c′d+ d′c)] (5.52)

with

a′ =
∂a

∂It
=

2µ0

N

∂
N
k=1

Ikt

∂It
=

2µ0

N
(5.53)

b′ =
∂b

∂It
=

2

N − 1

∂
N
i=1

ĪktĪk0

∂It
=

2Ī0
N − 1

(5.54)

c′ =
∂c

∂It
=

2µt

N

∂
N
k=1

Ikt

∂It
=

2µt

N
(5.55)

d′ =
∂d

∂It
=

1

N − 1

∂
N
k=1

(Īkt)
2

∂It
=

2Īt
N − 1

(5.56)

The last equality in Eq. 5.54 follows since ∀j ∈ {1..N},
∂

N
k=1

ĪktĪk0

∂Ijt
= Īj0−

1

N

N
i=1

Īkt =

Īj0. Similar reasoning holds for Eq. 5.56 too. Substituting Eqs. 5.53 - 5.56 in Eq.

57



5.52 gives:

∂fssim
∂It

=
2

cd


µ0b

N
+

aĪ0
N − 1


− fssim


µtd

N
+

c̄It
N − 1


(5.57)

Referring to fssim as f and
∂fssim
∂It

as f ′ for brevity and letting f ′
A =

bµ0 − fdµt

N
,

f ′B =
aĪ0 − f c̄It
N − 1

and f ′
C =

cd

2
, Eq. 5.57 can be rewritten as:

f ′ =
f ′
A + f ′B
f ′
C

(5.58)

Differentiating Eq. 5.58 w.r.t. It gives:

∂2fssim

∂It
2 =

1

f ′
C


∂f ′

A

∂It
+
∂f ′B
∂It
− f ′

T ∂f
′
C

∂It


(5.59)

with

∂f ′
A

∂It
=

1

N


µ0b

′ − µt(df
′ + fd′)− fd

N


(5.60)

∂f ′B
∂It

=
1

N − 1

̄
I0a

′ − Īt(cf
′ + fc′)− fcIN


(5.61)

∂f ′
C

∂It
=
dc′ + cd′

2
=

1

2


µtd

N
+

c̄It
N − 1


(5.62)

where IN is the N ×N identity matrix and it may be recalled from Sec. 3.1 that the

addition of the 1 × N vector
∂f ′

A

∂It
with the N × N matrix

∂f ′B
∂It

is to be performed

row-wise.

Substituting Eqs. 5.60, 5.61, 5.62 in Eq. 5.59 and simplifying gives:

∂2fssim

∂It
2 =

2

cd


1

N


4

µ0Ī0 − µtf Īt


N − 1

− 3µtd

2
f ′ − fd

N


− c

N − 1


3

2
f ′

T
Īt + fIN


(5.63)

Setting I0 = It for computing Ĥself makes µt = µ0, a
′ = c′, b′ = d′, f = 1 and

f ′ = 0 so that Eq. 5.63 simplifies to:

∂2fssim(It, It)

∂It
2 =

−2

cselfdself


dself
N2

+
cself
N − 1

IN


(5.64)

with cself = 2µ2
t + C1 and dself = 2σ2

t + C2.
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Figure 5.11: fspss plotted against x and y translation.

5.2.5 Sum of Pixelwise Structural Similarity (SPSS)

In the formulation described so far, SSIM has been computed over the entire patch -

i.e. µt, σt and σt0 have been computed over all N pixels in It and I0. In its original

form [116], however, the expression in Eq. 5.50 was applied to several corresponding

sub windows within the two patches - for instance 8 × 8 or 11 × 11 sub windows

that are moved pixel-by-pixel over the entire patch - and the mean of all resultant

scores was taken as the overall similarity measure. For tracking applications, such an

approach is not only impracticable from speed perspective, it presents another issue

for GD based SMs - presence of insufficient texture in these small sub windows may

cause Eq. 4.1 to become ill posed if J and H are computed for each sub window and

then averaged.

As a result, the previous section considered only one end of the spectrum of

variation in the size and number of sub windows - a single sub window of the same
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size as the patch. Now, if the other end of the spectrum is considered - N sub

windows of size 1× 1 each - then a different AM is obtained that may provide some

idea about the effect of window wise operations while also being much simpler and

possibly faster. The resultant model is termed as Sum of Pixelwise Structural

Similarity or SPSS. When considered pixel wise, σt and σt0 become null while µt

becomes equal to the pixel value itself so that Eq. 5.50 simplifies to:

fspss =
N
k=1

2IktIk0 + C1

I2kt + I2k0 + C1

(5.65)

Similar to SSD, contributions from different pixels to fspss are independent of each

other so that each entry of ∂fspss/∂It has contribution only from the corresponding

pixel. This also holds true for each entry of the principal diagonal of ∂2fspss/∂It
2

(which is a diagonal matrix). Denoting the contributions of the kth pixel to fspss,

∂fspss/∂It and principal diagonal of ∂2fspss/∂It
2 respectively as fk, f ′

k and f ′′
k , gives:

f ′
k =

∂fspss
∂Ikt

=
2(Ik0 − Iktfk)

I2kt + I2k0 + C1

(5.66)

f ′′
k =

∂2fspss
∂I2kt

=
−2(fk + 3Iktf

′
k)

I2kt + I20t + C1

(5.67)

f ′′
k (It, It) =

∂2fspss(It, It)

∂I2kt
=

−2

2I2kt + C1

(5.68)

5.2.6 Ratio Image Uniformity (RIU)

RIU was originally introduced [107] for registration of PET images though it has

also been widely used [110] for MR images [108, 109]. To the best of the author’s

knowledge, however, it has never been used for RBT. Also known as the variance of

intensity ratios (VIR), it defines the similarity between two images as the uniformity

of the image constructed by taking the pixel wise ratio between them, which is max-

imized by minimizing the variance of this image. An extended version of RIU, called

Partitioned Intensity Uniformity (PlU) in [110], has also been proposed [108] but has

not been considered here as it is much more involved and computationally expensive

to obtain its derivatives.

RIU is formulated as:

friu = −∥Rt0 − R̄t0∥2

R̄t0

= −
N

k=1(Rkt0 − R̄t0)
2

R̄t0

(5.69)
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Figure 5.12: friu plotted against x and y translation.

where

Rt0 =
It + C

I0 + C
(5.70)

is the ratio patch, Rkt0 =
Ikt + C

Ik0 + C
is its kth element, R̄t0 =

N
k=1Rkt0, is its mean

and C is a scalar constant added to provide numerical stability with small values in

I0. Assuming C = 1 and differentiating Eq. 5.69 w.r.t. It gives:

∂friu
∂It

=
∂friu
∂Rt0

∂Rt0

∂It
(5.71)

with

∂Rt0

∂It
= diag


1

I0 + 1


(5.72)
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and the kth element of
∂friu
∂Rt0

given as:

∂friu
∂Rkt0

= − 1

NR̄t0


∂

∂Rkt0


N
k=1

(Rkt0 − R̄t0)
2


− friu

∂R̄t0

∂Rkt0



= − 1

NR̄t0


2(Rkt0 − R̄t0)


1− 1

N


− 1

N

N
j=1,j ̸=k

(Rjt0 − R̄t0)−
friu
N



= − 1

NR̄t0


2(Rkt0 − R̄t0)−

1

N

N
j=1

(Rjt0 − R̄t0)−
friu
N



=
1

NR̄t0


friu
N
− 2(Rkt0 − R̄t0)


=

1

N


friu
NR̄t0

− 2


Rkt0

R̄t0

− 1


(5.73)

where diag(K) refers to a diagonal matrix with K as the principal diagonal.

Substituting Eqs. 5.72 and 5.73 in Eq. 5.71 gives the kth element of
∂friu
∂It

as:

∂friu
∂Ikt

=
1

NR̄t0(Ik0 + 1)


friu
N
− 2(Rkt0 − R̄t0)


(5.74)

Differentiating Eq. 5.71 w.r.t. It gives:

∂2friu

∂It
2 =

∂Rt0

∂It

T ∂2friu

∂Rt0
2

∂Rt0

∂It
+
∂friu
∂Rt0

∂2Rt0

∂It
2 =

∂Rt0

∂It

T ∂2friu

∂Rt0
2

∂Rt0

∂It
(5.75)

since
∂2Rt0

∂It
2 is null. It follows from Eq. 5.73 that:

∂friu
∂Rt0

=
1

N


friu
NR̄t0

− 2


Rt0

R̄t0

− 1


(5.76)

Differentiating Eq. 5.76 w.r.t. Rt0 gives:

∂2friu

∂Rt0
2 =

1

N


1

N

∂

∂Rt0


friu
R̄t0


− 2

∂

∂Rt0


Rt0

R̄t0


(5.77)

Here,

∂

∂Rt0


friu
R̄t0


=

∂friu
∂Rt0

− friu
NR̄t0

R̄t0

=

friu
NR̄t0


1

N
− 1


− 2

Rt0

NR̄t0

− 2

N

R̄t0

(5.78)
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and

∂

∂Rt0


Rt0

R̄t0


=

IN −
B

N
R̄t0

=
IN −

Rt0

NR̄t0

R̄t0

(5.79)

Substituting Eqs. 5.78 and 5.79 in Eq. 5.77 gives:

∂2friu

∂Rt0
2 =

1

N


friu
NR̄t0


1

N
− 1


− 2

Rt0

NR̄t0

− 2

N

NR̄t0

− 2
IN −

Rt0

NR̄t0

R̄t0


=

1

N2R̄t0


friu
NR̄t0


1

N
− 1


− 2

Rt0

NR̄t0

− 2

N
− 2NIN +

2Rt0

R̄t0


=

1

N2R̄t0


N − 1

NR̄t0


2Rt0 −

friu
N


− 2


NIN +

1

N


(5.80)

Further, substituting Eq. 5.80 in Eq. 5.75 gives:

∂2friu

∂It
2 =

∂Rt0

∂It

T 1

N2R̄t0


N − 1

NR̄t0


2Rt0 −

friu
N


− 2


NIN +

1

N


∂Rt0

∂It
(5.81)

Finally, setting I0 = It for the self Hessian simplifies Eq. 5.81 to:

∂2friu(It, It)

∂It
2 = −∂Rt0

∂It

T 2

N2


NIN −

N − 2

N


∂Rt0

∂It
(5.82)

5.2.6.1 Inverse Derivatives

Similar to CCRE, RIU is not a symmetrical measure and therefore its inverse deriva-

tives are also presented here. Differentiating Eq. 5.69 w.r.t. I0 gives:

∂friu
∂I0

=
∂friu
∂Rt0

∂Rt0

∂I0
(5.83)

with
∂friu
∂Rt0

given by Eq. 5.76 and:

∂Rt0

∂I0
= diag


−Rt0

I0 + 1


(5.84)

Further differentiating Eq. 5.83 w.r.t. I0 gives:

∂2friu

∂I0
2 =

∂Rt0

∂I0

T ∂2friu

∂Rt0
2

∂Rt0

∂I0
+
∂friu
∂Rt0

∂2Rt0

∂I0
2 (5.85)
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Figure 5.13: fngf plotted against x and y translation.

where
∂2friu

∂Rt0
2 is given by Eq. 5.80 and

∂2Rt0

∂I0
2 is a very sparse N ×N ×N tensor with

only N non zero entries on its principal diagonal given as:

∂2Rkt0

∂I2k0
=

2Rkt0

(1 + Ik0)2
(5.86)

It follows that the second term in Eq. 5.85 is a diagonal matrix whose main diagonal

is given by the element wise or Hadamard product of the two 1 × N vectors
∂friu
∂Rt0

and
2Rt0

(1 + I0)2
.

5.2.7 Normalized Gradient Fields (NGF)

NGF was introduced by Haber & Modersitzki [111, 112] as an alternative to MI for

registration of multi modal images. It is based on the observation that, irrespective

of differences in their modality or the illumination conditions under which they were
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captured, registered images of the same object will have edges in similar spatial lo-

cations. Therefore, a gradient based similarity metric would be more robust to these

differences than pixel based measures like SSD. Though MI is also known to be very

effective for multi modal registration, NGF offers several advantages including a sim-

pler and easier to interpret formulation and a wider basin of convergence. It has been

widely used for image registration in both medical imaging [113, 144] and airborne

surveillance [211] applications and its popularity has led to the development of sev-

eral efficient and parallel implementations [212, 114, 213, 214] to offset its relatively

computationally expensive formulation.

Since edges are marked by rapid changes in intensity levels, spatial gradients

can be used as simple and fairly reliable indicators for the location and orientation

of edges. However, gradients also measure the magnitude of intensity change, or

equivalently the strength of these edges, which can be misleading when there exist

differences of modality or illumination conditions between the two patches being

compared. A simple approach to avoid this undesirable information is to divide the

spatial gradients by their magnitude to normalize them. As a result, NGF measures

the similarity between two patches by the pixel wise alignment between the 2D unit

vectors corresponding to the horizontal and vertical spatial gradients of the patches.

Two vectors can be aligned by minimizing the angle between them. This in turn

can be achieved by either minimizing the sine or maximizing the cosine of this angle,

corresponding respectively to the cross and dot product between the vectors. Since

the former is more costly to compute, it is the latter that is usually used in practice

[144, 212, 114, 214], including the current work.

NGF is thus formulated as:

fngf =
N
k=1

∥∇̂I0(xk0) · ∇̂It(xkt)∥2

(∥∇̂I0(xk0)∥2 + η2)(∥∇̂It(xkt)∥2 + η2)
(5.87)

where the scalar η is used to reduce the impact of noise by considering only those

intensity changes as edges where ∥∇̂I(xk)∥ > η. This work uses η = 100 after [144],

from whose accompanying C code the implementation of NGF in MTF has been

adapted. The estimated gradient ∇̂I used here is computed in a slightly different

way than the gradient ∇I used in Sec. 4.1 (e.g. Eqs. 4.2 and 4.3) so that fngf is

differentiable w.r.t. I0 and It. Recalling from Sec. 3.1 that xt is populated in row

65



major order, the kth element of ∇̂It is computed as:

∇̂It(xkt) = ∇̂Ikt = [∇̂xIkt, ∇̂yIkt] =


It(xu+t)− It(xu−t)

2
,
It(xv+t)− It(xv−t)

2


(5.88)

with

(u+, u−) =


(k + 1, k) if kx = 1

(k, k − 1) if kx = Nx

(k + 1, k − 1) otherwise

(5.89)

and

(v+, v−) =


(k +Nx, k) if ky = 1

(k, k −Nx) if ky = Ny

(k +Nx, k −Nx) otherwise

(5.90)

for 1 ≤ k = kx + (ky − 1)Nx ≤ N , 1 ≤ kx ≤ Nx and 1 ≤ ky ≤ Ny.

The expression in Eq. 5.87 can be rewritten as the squared ℓ2 norm of a residual

that measures the degree of alignment between the gradients of the two patches:

fngf = ∥r∥2 = ∥r1 ⊙ r2∥2 (5.91)

where r, r1, r2 ∈ RN with

r1(k) = rk1 = ∇̂Ik0 · ∇̂Ikt (5.92)

r2(k) = rk2 =
1

∥∇̂Ik0∥2 + η2

∥∇̂Ikt∥2 + η2

(5.93)

and ⊙ denoting the Hadamard product so that r(k) = rk = rk1rk2. Further, defining

Fx,Fy ∈ RN as:

Fx(k) = Fkx =
rk2
2


∇̂xIk0 −

rk1∇̂xIkt

∥∇̂Ikt∥2 + η2


(5.94)

Fy(k) = Fky =
rk2
2


∇̂yIk0 −

rk1∇̂yIkt

∥∇̂Ikt∥2 + η2


(5.95)
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the kth element of
∂fngf
∂It

is given as:

∂fngf
∂Ikt

=


m1 − rk+NxF(k+Nx)y if ky = 1

m2 + rk−NxF(k−Nx)y if ky = Ny

m3 + rk−NxF(k−Nx)y − rk+NxF(k+Nx)y otherwise

(5.96)

with

m1 =


−rk(Fkx + Fky)− rk+1F(k+1)x if kx = 1

rk(Fkx − Fky) + rk−1F(k−1)x if kx = Nx

rk−1F(k−1)x − rkFky − rk+1F(k+1)x otherwise

(5.97)

m2 =


−rk(Fkx + Fky)− rk+1F(k+1)x if kx = 1

rk(Fkx + Fky) + rk−1F(k−1)x if kx = Nx

rk−1F(k−1)x + rkFky − rk+1F(k+1)x otherwise

(5.98)

m3 =


−rkFkx − rk+1F(k+1)x if kx = 1

rk−1F(k−1)x + rkFkx if kx = Nx

rk−1F(k−1)x − rk+1F(k+1)x otherwise

(5.99)

It can be seen from Eqs. 5.94 - 5.99 that
∂fngf
∂It

has a complex piecewise form and

it follows that
∂2fngf

∂It
2 is even more cumbersome to compute. Since this is not used

for any GD method anyway, its formulations are omitted here and only that for the

self Hessian is reported. Following Modersitzki [144], from where all of the above as

well as the following expressions are adapted, the self Hessian is approximated by

neglecting the second order derivative of the residual r similar to the GN Hessian

(Eq. 4.11). As mentioned before, Hgn is identical to Hself for SSD and it is assumed

here, as in [144], that the SSD like formulation of Eq. 5.91 will ensure that this

approximation is good enough in practice:

∂2fngf (It, It)

∂It
2 ≈ − ∂r

∂It

T ∂r

∂It
(5.100)

with
∂r

∂It
being a very sparse N×N matrix where the values and locations of non zero

elements in the kth column depend on kx and ky and are deducible from Eqs. 5.96
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- 5.99. It can be observed that each term in Eq. 5.96, after substituting m1,m2,m3

from Eqs. 5.97 - 5.99, can be expressed as a sum of products of one element from r

and one from Fx/Fy (or a sum thereof). For each case of kx, ky in these equations,

the kth column of
∂r

∂It
contains non zero entries at all indices where elements from r

are present in the corresponding term while the values of these entries are equal to

the elements from Fx/Fy that these are multiplied with. For example, if kx = Nx

and ky = 1,
∂fngf
∂Ikt

= rk(Fkx − Fky) + rk−1F(k−1)x − rk+NxF(k+Nx)y. Therefore, the kth

column of
∂r

∂It
, with k = kx + (ky − 1)Nx, contains Fkx − Fky, F(k−1)x and −F(k+Nx)y

in rows k, k − 1 and k +Nx respectively.

5.3 Illumination Models

ILMs are used to account for changes in illumination conditions between the capture

times of I0 and It by replacing It in f with g(It,pa) : RN × RA →→ RN . In order

to register It with I0, the SM will then optimize over the A photometric parameters

pa along with the S warping parameters ps so that the search space becomes S + A

dimensional. Though this optimization can be performed both simultaneously and

piecewise, only the former case is considered here as the latter was shown to perform

worse in [70].

Most physical models of illumination represent the overall pixel intensity at each

image location as being the result of diffuse, specular and ambient reflections [84, 85]:

It(xk) = Idt(xk) + Ist(xk) + Iat (5.101)

As indicated in Eq. 5.101, Idt and Ist vary over the image while Ia can be assumed to

be constant. The differences in intensity between It and I0 due to lighting changes

can thus be captured as:

It(xk) = αkId0(xk) + ηkIs0(xk) + β (5.102)

where α,η ∈ RN respectively measure the difference in diffuse and specular conditions

while β accounts for ambient or global changes. Since estimating all 2N unknowns in

α,η will lead to an overdetermined system, all ILMs in literature make the further

assumption that the surface being imaged is perfectly Lambertian so that η = 0 and

Id0 = I0. It may be mentioned here that a slightly different approach to modeling
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illumination changes was proposed in [22]. A set of training images of the object

taken under varying lighting conditions were first used to compute an eigenbasis B.

Differences in illumination between I0 and It were then compensated for by adding

a linear combination of the basis vectors to It, i.e. g(It,pa) = It + pa ⊙ B where

each element of pa is multiplied with the basis vector in the corresponding row of B

followed by element wise summation of the resulting scaled vectors. B also included

It along with a vector of all ones to account for simple affine illumination changes as

in GB ILM (Sec. 5.3.1) so that this method can be regarded as a generalization of

the latter. As it requires an off line training stage to compute B, however, it has not

been considered here. An on line variant of this approach can also be formulated by

constructing B incrementally from tracked patches [99] but this has been deferred to

future extensions of this work.

Within the framework proposed in this thesis, ILM is posited as a specific case of a

parameterized AM though this also happens to be the only form of parameterization

in literature that the author is aware of. As a result, the presence of ILM within the

AM is completely transparent to the SM. Further, since the replacement of It with

g is equally applicable to all AMs, ILM is conceptualized as an independent module

that can be combined with any AM, though this study only considers combinations

with SSD as these are the only ones implemented in MTF yet. As mentioned in

Sec. 4.1, the breakdown of GD based trackers into the 3 modules using chain rule

requires the AM to compute terms involving f and It like ∂f/∂It and ∂2f/∂It
2 which

in turn are used to compute ∂f/∂p and ∂2f/∂p2, also within the AM. When the AM

contains an ILM, these terms can be broken down further using chain rule as:

∂f

∂It
=
∂f

∂g

∂g

∂It
(5.103)

∂2f

∂It
2 =

∂g

∂It

T ∂2f

∂g2

∂g

∂It
+
∂f

∂g

∂2g

∂It
2 (5.104)

∂f

∂pa

=
∂f

∂g

∂g

∂pa

(5.105)

∂2f

∂pa
2

=
∂g

∂pa

T ∂2f

∂g2

∂g

∂pa

+
∂f

∂g

∂2g

∂pa
2

(5.106)
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In addition to these expressions, the joint optimization of pa and ps also requires
∂2f

∂ps∂pa

to be computed as part of the (S +A)× (S +A) Hessian
∂2f

∂p2
. This is given

as:

∂2f

∂pa∂ps

=
∂

∂ps


∂f

∂pa


=

∂2f

∂It∂pa

∂It
∂ps

(5.107)

with

∂2f

∂It∂pa

=
∂g

∂It

T ∂2f

∂g2

∂g

∂pa

+
∂f

∂g

∂2g

∂It∂pa

(5.108)

The terms in Eqs. 5.103 - 5.106 and 5.108 involving g and pa are computed by the

ILM within the proposed framework and the relevant expressions for the three ILMs

considered in this work are thus presented next. It may be mentioned here that

the second terms in Eqs. 5.104, 5.106 and 5.108 need to be discarded to use these

derivatives with Ĥself .

5.3.1 Gain & Bias (GB)

This is the simplest ILM [65, 70, 138, 139, 215] that, in addition to considering the

surface as perfectly Lambertian, makes the further assumption that the entire surface

has constant reflectance so that αk = α ∀k. As a result, pa = [α, β] and A = 2 for

this ILM. The multiplicative factor α is called gain and the additive factor β is the

bias. GB is thus formulated as:

ggb = (1 + α)It + β (5.109)

Due to its simple formulation, derivatives of ggb w.r.t. pa and It are straightforward

to compute and given as:

∂ggb

∂It
= (1 + α)IN (5.110)

∂ggb

∂α
= It,

∂ggb

∂β
= 1 (5.111)

∂2ggb

∂It
2 = 0 (5.112)

∂2ggb

∂pa
2

= 0 (5.113)

∂2g

∂It∂α
= IN ,

∂2g

∂It∂β
= 0 (5.114)
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5.3.2 Piecewise Gain & Bias (PGB)

This was introduced [84] as an improvement over GB based on the observation that

the constant reflectance assumption made in the latter rarely holds true in practice

over the entire object surface though it is approximately valid over local subregions

of sufficiently small sizes. Therefore, a better approximation to Eq. 5.102 would be

to have piecewise constant gain, i.e. the tracked region is divided into a set of non

overlapping sub regions and a constant gain is used for each. The bias remains fixed

for the entire region. Extensions to PGB for use with color images [77, 85] and omni

directional cameras [140] have also been reported in literature though not considered

here.

The size of pa here depends on the number of subregions used. For instance, if a

3× 3 grid of subregions is used then A = 32 + 1 = 10. Similarly, A = 26 for a 5× 5

grid of subregions. More sub regions than the latter are typically not used in practice

as this would require too many parameters to be estimated and a 5 × 5 grid is also

enough to give sufficiently small sub regions of size 10× 10 with the commonly used

sampling resolution of 50× 50.

Assuming an Rx × Ry grid of subregions, pa = [α1, ..., αR, β] ∈ RR+1 with R =

RxRy. The size of each subregion is denoted as ∆u×∆v =
Nx

Rx

× Ny

Ry

. PGB is then

given as:

gpgb = (1 + Ĩα)⊙ It + β (5.115)

where Ĩα ∈ RN and its kth element is given as:

Ĩkα = αj (5.116)

if jth subregion is the one that contains xkt, that is,

(jx − 1)∆u < kx ≤ jx∆u (5.117)

and

(jy − 1)∆v < ky ≤ jy∆v (5.118)

with 1 ≤ j = jx + (jy − 1)Rx ≤ R, 1 ≤ jx ≤ Rx, 1 ≤ jy ≤ Ry and k = kx + (ky − 1)Nx

as in Eq. 5.90.
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The derivatives of gpgb are similar to those for ggb except that the terms involving

α = [α1, ..., αR] have to be computed in a piecewise manner by applying Eqs. 5.110

- 5.113 separately for each subregion. For instance, the kth element of
∂gpgb

∂αj

, ∀j ∈

[1, R], is given as:

∂gpgb(k)

∂αj

=


Ikt if xkt ∈ jth subregion

0 otherwise
(5.119)

∂2gpgb

∂It
2 and

∂2gpgb

∂pa
2

are null too while the kth elements of the principal diagonals of

∂gpgb

∂It
and

∂2g

∂It∂αj

are respectively given as:

∂gpgb(k)

∂Ikt
= 1 + Ĩkα (5.120)

and

∂2gpgb

∂Ikt∂αj

=


1 if xkt ∈ jth subregion

0 otherwise
(5.121)

5.3.3 Radial Basis Function (RBF)

This was introduced along with PGB [84] and has been mentioned in all subsequent

works [77, 85, 140] where the latter has been applied. It has, however, not been used

for any experimental tests since PGB has sparse derivatives that are computationally

less expensive to compute. RBF represents the variation of gain over the patch

by a smooth surface rather than a set of discrete values. It can alternatively be

seen as an extension of PGB where interpolation is used to vary the gain smoothly

between subregions rather than changing it abruptly at their boundaries. In its

original formulation, the RBF surface [216] was approximated by a thin plate spline

(TPS) function with a grid of control points corresponding to the sub regions of PGB.

In this work, a slightly simplified version of this has been used where the gain at

each pixel in the patch is computed as a weighted average of the gains at the control

points that are chosen to be the centroids of the respective subregions. The weight

assigned to the pixel for each control point is inversely proportional to the distance

of the pixel from that point. Assuming that (cjx, cjy) denotes the jth control point

(or equivalently the centroid of the jth subregion) with cjx =
(2jx − 1)∆u+ 1

2
and
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cjy =
(2jy − 1)∆v + 1

2
, the weight of the kth pixel w.r.t. the jth control point is given

as:

Wjk =
1

1 + (kx − cjx)2 + (ky − cjy)2
(5.122)

and the overall gain at this pixel is computed as:

Ĩkα =

R
j=1WjkαjR
j=1Wjk

(5.123)

RBF is then formulated similar to PGB as:

grbf = (1 + Ĩα)⊙ It + β (5.124)

The derivatives of RBF are similar to PGB too except that the gain now varies

smoothly rather than in a piecewise manner.

∂grbf (k)

∂αj

= WjkIkt (5.125)

∂grbf (k)

∂Ikt
= 1 + Ĩkα (5.126)

∂2grbf

∂Ikt∂αj

= Wjk (5.127)

with
∂2grbf

∂It
2 and

∂2grbf

∂pa
2

being null too.

5.4 Summary

This chapter presented details of the various AMs considered in this study. These were

divided into two categories - L2 and robust models. The former category included 5

AMs - SSD, SCV, RSCV, LSCV and ZNCC while the latter comprised 7 AMs - NCC,

MI, CCRE, SSIM, SPSS, RIU and NGF. Expressions for the first and second order

derivatives of these AMs were presented with detailed derivations provided where

these have not been published elsewhere in literature. In addition, the concept of

ILM was introduced as a simple way to add parameterization to these AMs to make

them more robust to lighting variations, reflections and shadows. Three ILMs were

described - GB, PGB and RBF.
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Chapter 6

State Space Models

SSM is the warping function w that represents the deformations that the tracked

patch can undergo. It therefore defines the set of allowable image motions of the

corresponding object and can be used to place constraints on the search space of ps

to make the optimization more robust or efficient. Besides the DOF of allowed motion,

SSM also includes the actual parameterization of w. For instance, homography using

SL(3) [76, 1] Lie group parameterization is considered as a different SSM from the

more conventional variant [16, 25] that uses actual entries of the corresponding matrix.

This work considers seven different SSMs, out of which five are from the standard

hierarchy of geometrical transformations [184, 15] - translation, isometry, similitude,

affine and homography and thus differ in their DOF. The remaining two SSMs, how-

ever, are alternative parameterizations of homography - SL(3) [76, 1] and corner based

(using x,y coordinates of the bounding box corners) - and so have identical DOF. A

related 3 DOF SSM with isotropic scaling and translation (IST) that is commonly

used with OLTs is implemented in MTF too but not tested here due to the difficulty

of generating reliable low DOF ground truth for this SSM (Fig. 6.1). A 4 DOF

variant of IST with anisotropic scaling and translation (AST) has not been tested

for the same reason. More complex SSMs have also been proposed in literature to

handle non rigid or deformable objects including thin plate splines (TPS) [217, 96],

basis splines [218] and quadric surfaces [219] of which the first two have already been

partially implemented within MTF. However, these are not tested here either, both

to limit the scope of this study and because the datasets used here only feature rigid

object motion and so are ill suited to evaluate such SSMs.. Several extensions to

w proposed in literature like incorporation of 3D pose [125] and camera parameters

[133] are likewise excluded.
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(a)

(b)

Figure 6.1: Two frames from a sequence in LinTrack dataset (Sec. 8.1) demonstrating
the difference in the accuracy with which different SSMs can track an object under-
going complex deformations. Bounding boxes represent the low DOF ground truth
generated for each SSM using least squares optimization (Sec. 9.3). Their corners are
numbered clockwise from the top left to demonstrate rotation better. (a) Frame 1
showing the initial location where a tracker is initialized (b) Frame 2303 showing sig-
nificant change in scale along with in-plane and out-of-plane rotations of the object.
It can be seen that higher DOF SSMs can track the object pose more precisely. The
issue encountered while generating low DOF ground truth for IST in the presence of
in-plane rotation is also evident - scaling down the bounding box to an unreasonable
extent corresponds to the least squares solution when the object undergoes significant
rotation.
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The main reason for using an SSM with higher DOF is to achieve more precise

alignment with the target patch so that complex motions of the object like out of plane

rotations can be tracked accurately. This follows from the fact that transforms that

are higher up in the hierarchy [184, sec. 2.4] can better approximate the projective

transformation process that captures the relative motion between the camera and the

object in the 3D world into the 2D images. However, there are several issues with

having to estimate more parameters:

• The search process becomes more likely to either diverge or end up in a local

optimum, causing the tracker to be less stable and more likely to lose track.

This is a well known phenomenon with GD based SMs [62] whose higher DOF

variants are usually less robust.

• Iterative SMs take longer to converge, thus making the tracker slower. For GD

based SMs, this is exacerbated by the usually higher cost of computing the

gradients of w.

• Generating good samples for stochastic SMs becomes more challenging due to

complex dependencies between the different elements of ps. Also, more samples

are needed to cover the search space.

It may be noted that this sub module differs from the other two in that it does not

admit new methods in the conventional sense and may even be viewed as a part of the

SM since the two are often closely intertwined in practical implementations. However,

though the SSMs used in this work are limited to the standard hierarchy of geometric

transformations, more complex models also exist even if their application domain

is somewhat limited. It is also theoretically possible to impose novel constraints

on the search space that can significantly decrease the convergence time while still

producing sufficiently accurate results. The fact that such a constraint will be an

important contribution in its own right justifies the use of SSM as a separate sub

module within the proposed framework to motivate further research in this direction.

Brief descriptions for the SSMs considered here will be provided next with expres-

sions for w and its first and second order derivatives that are needed for GD methods

(Sec. 4.1). Before proceeding with these, however, some notation is introduced to

make the subsequent formulations easier.

In its general form, w takes all N points in the sampling grid x as input and

outputs the warped location of the entire grid, i.e. w : R2×N × RS →→ R2×N . This
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implies that the warped location of any given grid point might depend on the locations

of other points. However, all SSMs considered here are rigid transformations so that

the geometric transform defined by w is identical for each point in x and independent

of all other points. It follows that w and its derivatives can be completely specified

by expressing these for a single point and w can thus be treated as a function of this

point as its input and its warped location as its output, i.e. w : R2×1 × RS →→ R2×1.

As this assumption greatly simplifies the relevant formulations, it is adopted in

the following sections where expressions are provided for a single point xk = [xk, yk]T .

with the corresponding warped location also denoted as x′
k = [x′k, y

′
k]T for brevity.

Further, all of these transformations can be produced by multiplying xk, written

in homogeneous coordinates [184], with a 3 × 3 matrix. This matrix is denoted as

G : RS →→ R3×3 so that w(xk,ps) ≡ h−1(G(ps)h(xk)) where h : R2×1 →→ R3×1 and

h−1 : R3×1 →→ R2×1 map a pixel location from standard to homogeneous coordinates

and vice versa :

h([x, y]T ) = [x, y, 1]T (6.1)

h−1([x, y, z]T ) = [x/z, y/z]T (6.2)

For brevity, the verbose expression h−1(G(ps)h(xk)) will be replaced with Gxk to

denote multiplication in homogeneous space when such notation does not create any

semantic ambiguity. This notation will also be extended to deal with the entire grid

x rather than a single point, i.e. Gx with x ∈ R2×N will produce a 2 × N warped

grid where homogeneous multiplication has been performed for each point.

6.1 Translation

This is the simplest SSM that can only track 2 DOF motion of the image patch.

Assuming ps = [tx, ty], it is given as:

wtrans(xk,ps) =


xk + tx
yk + ty


(6.3)

and

Gtrans(ps) =

1 0 tx
0 1 ty
0 0 1

 (6.4)
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so that tx and ty are the translations in the x and y direction. Due to its simple

formulation, its derivatives are straightforward to compute:

∂wtrans

∂ps

=
∂wtrans

∂xk

= I2 (6.5)

∂2wtrans

∂ps
2

=
∂2wtrans

∂x2
k

= 0 (6.6)

6.2 Isometry

Also known as Euclidean or rigid transformation, isometry is a 3 DOF SSM that

includes rotation in addition to translation. Denoting the angle of rotation in radians

as θ, ps = [tx, ty, θ] and isometry transform is given as:

wiso(xk,ps) =


xk cos θ − yk sin θ + tx
xk sin θ + yk cos θ + ty


(6.7)

and

Giso(ps) =

cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 (6.8)

Its derivatives are computed as:

∂wiso

∂ps

=


1 0 −xk sin θ − yk cos θ
0 1 xk cos θ − yk sin θ


(6.9)

∂wiso

∂xk

=


cos θ − sin θ
sin θ cos θ


(6.10)

∂2wiso

∂t2x
=
∂2wiso

∂t2y
= 0,

∂2wiso

∂θ2
=


0 0 −xk cos θ + yk sin θ
0 0 −xk sin θ + yk cos θ


(6.11)

∂2wsim

∂x2
k

= 0 (6.12)

78



6.3 Similitude

This SSM extends isometry by providing isotropic scaling in addition to translation

and rotation, thus being able to track 4 DOF motion. Though this can be parame-

terized using the rotation angle and the scaling factor directly, such parameterization

would lead to more computationally expensive derivatives, similar to isometry, due

to the non linearity of sine and cosine functions. Therefore, as in [15], the terms

involving rotation and scaling are instead combined to express similitude as a linear

function of xk and ps = [tx, ty, a, b]:

wsim(xk,ps) =


xk(1 + a)− ykb+ tx
xkb+ yk(1 + a) + ty


(6.13)

and

Gsim(ps) =

1 + a −b tx
b 1 + a ty
0 0 1

 (6.14)

Its derivatives are given as:

∂wsim

∂ps

=


1 0 xk −yk
0 1 yk xk


(6.15)

∂wsim

∂xk

=


1 + a −b
b 1 + a


(6.16)

∂2wsim

∂ps
2

=
∂2wsim

∂x2
k

= 0 (6.17)

6.4 Affine

This extends similitude further by adding two more DOFs - one is for anisotropic

scaling and the other can either be seen as a skewing/shearing factor [62] or as the

direction along which the scaling is carried out [184]. The latter parameterization has

been popular for PF based affine trackers [147, 101, 100, 148] due to the relative ease

of estimating the standard deviations required for the Gaussian samples to represent

the expected object motion. In this work, however, only the direct parameterization

of affine using actual entries of G is considered so that w is linear in xk and ps and its
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derivatives are consequently easier to compute. Incidentally, affine is also the highest

DOF SSM that can be expressed as a linear function of xk and ps.

With ps = [tx, ty, a00, a01, a10, a11], affine transformation is given as:

waff (xk,ps) =


xk(1 + a00) + yka01 + tx
xka10 + yk(1 + a11) + ty


(6.18)

and

Gaff (ps) =

1 + a00 a01 tx
a10 1 + a11 ty
0 0 1

 (6.19)

Differentiating waff w.r.t. ps and xk gives:

∂waff

∂ps

=


1 0 xk yk 0 0
0 1 0 0 xk yk


(6.20)

∂waff

∂xk

=


1 + a00 a01
a10 1 + a11


(6.21)

∂2waff

∂ps
2

=
∂2waff

∂x2
k

= 0 (6.22)

6.5 Homography

This is the full 8 DOF SSM that can accurately represent the deformations produced

in the image patch corresponding to a planar object by relative motion between the

object and the camera. Since a camera uses the perspective projection process to

represent the 3D world in 2D images, this SSM is also known in literature as planar

projective transformation [15, 184]. As mentioned before, there are several ways to

parameterize this SSM but this section considers the simplest one where actual entries

of G are used. Two other parameterizations are dealt with in the subsequent sections.

Homography is a linear mapping in homogeneous coordinates but not so in stan-

dard ones since the conversion from the former to the latter (Eq. 6.2) is non linear.

Assuming ps = [p1, p2, ..., p8] and D = p7xk + p8yk + 1, this transformation is given

as:

whom(xk,ps) =
1

D


(1 + p1)xk + p2yk + p3
p4xk + (1 + p5)yk + p6


(6.23)
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and

Ghom(ps) =

1 + p1 p2 p3
p4 1 + p5 p6
p7 p8 1

 (6.24)

First and second order derivatives of whom are computed as:

∂whom

∂ps

=
1

D


xk yk 1 0 0 0 −x′kxk −x′kyk
0 0 0 xk yk 1 −y′kxk −y′kyk


(6.25)

∂whom

∂xk

=
1

D


1 + p1 − p7x′k p2 − p8x′k
p4 − p7x′y 1 + p5 − p8x′y


(6.26)

∂2whom(1)

∂ps
2

=
1

D2



0 0 0 0 0 0 −x2k −xkyk
0 0 0 0 0 0 −xkyk −y2k
0 0 0 0 0 0 −xk −yk
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−x2k −xkyk −xk 0 0 0 2x′kx

2
k 2x′kxkyk

−xkyk −y2k −yk 0 0 0 2x′kxkyk 2x′ky
2
k



∂2whom(2)

∂ps
2

=
1

D2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −x2k −xkyk
0 0 0 0 0 0 −xkyk −y2k
0 0 0 0 0 0 −xk −yk
0 0 0 −x2k −xkyk −xk 2y′kx

2
k 2y′kxkyk

0 0 0 −xkyk −y2k −yk 2y′kxkyk 2y′ky
2
k


(6.27)

∂2whom(1)

∂x2
k

= − 1

D2


2p7(1 + p1 − p7x′k) p8(1 + p1 − p7x′k) + p7(p2 − p8x′k)

p8(1 + p1 − p7x′k) + p7(p2 − p8x′k) 2p8(p2 − p8x′k)


∂2whom(2)

∂x2
k

= − 1

D2


2p7(p4 − p7y′k) p8(p4 − p7y′k) + p7(1 + p5 − p8y′k)

p8(p4 − p7y′k) + p7(1 + p5 − p8y′k) 2p8(1 + p5 − p8y′k)


(6.28)

where it may be recalled that whom(xk,ps) is denoted as x′
k = [x′k, y

′
k]T for brevity.
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Figure 6.2: Producing perturbed samples for homography

6.5.1 Stochastic Sample Generation

As mentioned before, the author is not aware of any general method for estimating the

Gaussian distribution needed to generate stochastic samples for high DOF SSMs that

can represent any given kind of motion well. The matrix based parameterization used

by this SSM makes this task even more challenging due to the large differences in the

amount of warping - as measured by the Euclidean distance between the corners of the

original and warped bounding boxes - produced by similar numerical perturbations

in different components of ps. There also exist complex interdependencies between

these components so that the perturbation in any given component needed to produce

a certain degree of change in the bounding box depends on the actual values of the

remaining components.

A simple way to circumvent this issue is to perturb the bounding box itself and

then estimate the warp matrix Ghom (and thus the corresponding ps) needed to

produce this warped bounding box using the direct linear transform (DLT) algorithm

[184, sec. 4.1]. This is the method that has been adopted in this work to generate

samples for this SSM with both NN and PF. Let ct denote the bounding box corners

corresponding to xt. Since the range of values in ct may vary widely depending

on the size and location of the object patch, the perturbation is instead applied

to the normalized unit square centered at the origin, denoted as cnorm. That is,
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cnorm =


−0.5 0.5 0.5 −0.5
−0.5 −0.5 0.5 0.5


.

The perturbation of cnorm is carried out in two steps. First, the x,y coordinates

of all its corners are perturbed independently using 8 values drawn from a single

Gaussian distribution with standard deviation σd. Second, two more values are drawn

from another distribution with standard deviation σt and added to the coordinates

of all the corners to produce a consistent translation of the entire box. This second

step is needed to better represent realistic scenarios where translation is the most

common type of motion that the image patch undergoes. Denoting the corners thus

produced as c′norm and letting Gt be the warp matrix, computed using DLT, that can

transform cnorm to ct, the perturbed version of ct is given as:

ct
′ = Gtc

′
norm (6.29)

Fig. 6.2 gives a pictorial representation of this sampling process. Applying the

perturbation to cnorm rather than ct allows the same pair of distributions to produce

more consistent warped samples with widely varying object sizes and locations, thus

reducing the need to fine tune these for each tracking scenario. Some adjustments

may still help, of course, if prior information is available about the expected motion.

6.6 SL3

This SSM utilizes an alternative parameterization of homography by choosing its

transformation matrix G to belong to the special linear group of degree 3 or SL(3)

[1, 73]. This is a Lie group [220] that includes all 3 × 3 matrices with unit determi-

nant. Placing this constraint on G is one way of limiting its DOF to 8 - a necessary

restriction since it is only defined up to a scaling factor and one that was imposed

in the previous section by fixing its bottom right element to 1. Both resultant sets

of matrices can represent all projective transformations and are in fact equivalent in

the sense that a bijective mapping exists between the two. Any matrix in the latter

set can be converted to the former by dividing it by the cube root of its determinant

while the reverse mapping can be carried out by dividing the SL(3) matrix by its

bottom right element.

Each Lie group has an associated Lie algebra [221, 220] that corresponds to the

differential or tangential space at its identity element. Elements belonging to the

Lie algebra can be mapped to the associated Lie group using the matrix exponential
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transform (Eq. 6.30) while the reverse mapping can be performed using the matrix

logarithm (Eq. 6.31).

exp(X) =
∞

m=0

Xm

m!
(6.30)

log(X) =
∞

m=1

(−1)m+1 (X− I)m

m
(6.31)

The Lie algebra that corresponds to SL(3) is called sl(3) and is composed of all

3× 3 matrices with null trace. Any matrix in sl(3) can be represented by the linear

combination of matrices in its basis set. As a result, SL3 parameterizes a projective

transformation by the coefficients of these basis matrices that will produce the sl(3)

matrix corresponding to G that represents this transformation. Denoting these basis

matrices as B = [B1,B2, ...,B8] and assuming ps = [p1, ..., p8], the transformation

matrix is thus given as:

Gsl3(ps) =

g00 g01 g02
g10 g11 g12
g20 g21 g22

 = exp


8

j=1

pjBj


(6.32)

and the corresponding warping function becomes:

wsl3(xk,ps) = Gsl3xk =
1

D


g00xk + g01yk + g02
g10xk + g11yk + g12


(6.33)

where D = g20xk + g21yk + g22. Following are the basis matrices used here [1]:

B1 =

1 0 0
0 −1 0
0 0 0

 ,B2 =

0 0 0
0 −1 0
0 0 1

 ,B3 =

0 −1 0
1 0 0
0 0 0

 ,B4 =

0 1 0
1 0 0
0 0 0


B5 =

0 0 1
0 0 0
0 0 0

 ,B6 =

0 0 0
0 0 1
0 0 0

 ,B7 =

0 0 0
0 0 0
1 0 0

 ,B8 =

0 0 0
0 0 0
0 1 0

 (6.34)

This is the only SSM that has been used with ESM in literature [73, 76] since

the special properties of the exponential map are needed to theoretically justify the

second order convergence of this SM. It has also been used for PF [1] since, unlike

the parameterization in the previous section, individual elements of ps here can be

84



B1 B2 B3 B4

B5 B6 B7 B8

Figure 6.3: Transformations produced by SL3 corresponding to different sl(3) basis
matrices. The original bounding box is in black while the warped boxes produced
by small positive and negative coefficients applied to the basis matrix are in red and
green respectively. This figure is adapted from [1].

associated with specific deformations of the patch (Fig. 6.3). This in turn makes it

easier to estimate Gaussian parameters needed to generate random samples that can

represent the expected motion well. In addition, the distribution of SL3 parameters

corresponding to projective transformations generated by random camera placements

is much closer to the expected normal distribution [222] than that of the direct ho-

mography used in the previous section. As a result, direct perturbations to ps using

Gaussian parameters provided in [1] have also been used in this work to generate 8

DOF samples for PF as an alternative to corner based sampling described in Sec.

6.5.1. This method could not be used for NN, however, as the parameters in [1] are

fine tuned for first order auto regression dynamic model that can only be applied to

PF.

The first order derivatives of wsl3 are given as:

∂wsl3

∂ps

=
∂wsl3

∂Gsl3

∂Gsl3

∂ps

(6.35)

where, after rearranging Gsl3 into a 9× 1 vector by flattening it in row major order,

∂wsl3

∂Gsl3

=
1

D


xk yk 1 0 0 0 −x′kxk −x′kyk −x′k
0 0 0 xk yk 1 −y′kxk −y′kyk −y′k


(6.36)
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and

∂Gsl3

∂ps

=
∂exp(X)

∂X

∂X

∂ps

(6.37)

where X =
8

j=1(pjBj) ∈ sl(3),
∂X

∂ps

is a 9 × 8 matrix whose jth column is formed

by flattening Bj in row major order and
∂exp(X)

∂X
is the derivative of the exponential

map given as [223]:

∂exp(X)

∂X
= exp(X)


I− exp(−adX)

adX


= exp(X)


∞
j=0

(−1)j

(j + 1)!
(adX)j


(6.38)

where adX is the adjoint action of the Lie algebra on itself. It is worth noting that,

when evaluated at ps = 0, as needed for the compositional formulations of LK (Sec.

4.1), X becomes null and Eq. 6.38 evaluates to identity, thus eliminating the signifi-

cant computational expense of evaluating it explicitly. This makes SL3 more suited

to compositional formulations. It is also evident from Eqs. 6.37 and 6.38 that the

second order derivative of wsl3 w.r.t. ps will be very complex to express and com-

pute and would involve evaluating the Hessian of the exponential map for which the

author has been unable to find any expression in literature. It is therefore omitted

here especially as it is not needed for computing Ĥself for most of the AMs.

The derivatives of wsl3 w.r.t. xk, on the other hand, are much simpler to compute

as they can be expressed directly in terms of the entries of Gsl3 and thus follow

trivially from Eqs. 6.26 and 6.28:

∂wsl3

∂xk

=
1

D


g00 − g20x′k g01 − g21x′k
g10 − g20x′y g11 − g21x′y


(6.39)

∂2wsl3(1)

∂x2
k

= − 1

D2


2g20(g00 − g20x′k) g21(g00 − g20x′k) + g20(g01 − g21x′k)

g21(g00 − g20x′k) + g20(g01 − g21x′k) 2g21(p2 − g21x′k)


∂2wsl3(2)

∂x2
k

= − 1

D2


2g20(g10 − g20y′k) g21(g10 − g20y′k) + g20(g11 − g21y′k)

g21(g10 − g20y′k) + g20(g11 − g21y′k) 2g21(g11 − g21y′k)


(6.40)

6.7 Corner Based Homography (CBH)

This SSM parameterizes homography through displacements in the x, y coordinates

of the four corners of the bounding box of x. Let these corners be denoted as c =
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[c1, c2, c3, c4] ∈ R2×4 and a change therein as ∆c = [∆c1,∆c2,∆c3,∆c4] ∈ R2×4 with

cj = [cjx, cjy]
T and ∆cj = [∆cjx,∆cjy]

T . Further, let Gdlt(cin, cout) : R2×4 × R2×4 →→
R3×3 refer to a function that uses least squares optimization to produce a 3 × 3

warp matrix that can be multiplied to corners cin to generate warped corners whose

Euclidean distance from cout is minimized.

Gdlt(cin, cout) = argmin
G
∥Gcin − cout∥2 (6.41)

The parameter vector then becomes ps = [∆c1x,∆c1y, ...,∆c4x,∆c4y] and the corre-

sponding transformation matrix is given as:

Gcbh(ps) =

g00 g01 g02
g10 g11 g12
g20 g21 g22

 = Gdlt(c, c + ∆c) (6.42)

The warping function, as in the previous section, becomes:

wcbh(xk,ps) = Gcbhxk =
1

D


g00xk + g01yk + g02
g10xk + g11yk + g12


(6.43)

where D = g20xk + g21yk + g22. The least squares problem in Eq. 6.41 is solved

using the DLT algorithm [184, sec. 4.1] which involves performing the singular value

decomposition of an 8 × 9 matrix constructed from cin and cout. Since this pro-

cess is not differentiable, the derivative of wcbh w.r.t. ps has to be computed nu-

merically. Let c(i,j)+ and c(i,j)− denote slightly displaced versions of c, where the

(i, j)th element thereof, for 1 ≤ i ≤ 2, 1 ≤ j ≤ 4, has a small positive and nega-

tive displacement ϵ respectively. For instance, c(1,2)+ =


c1x c2x + ϵ c3x c4x
c1y c2y c3y c4y


and

c(2,3)− =


c1x c2x c3x c4x
c1y c2y c3y − ϵ c4y


. Then, for r = 2(p − 1) + q and t = 2(u − 1) + v,

with 1 ≤ r, t ≤ 8, 1 ≤ p, u ≤ 2, 1 ≤ q, v ≤ 4, the central finite difference method [149,

sec. 8.1] gives:

∂wcbh

∂prs
=

Gdlt(c, c
(p,q)+)xk −Gdlt(c, c

(p,q)−)xk

2ϵ
(6.44)

∂2wcbh

∂pts∂prs
=

1

4ϵ2


Gdlt((c

(i,j)+)(u,v)+)xk + Gdlt((c
(i,j)−)(u,v)−)xk


−

Gdlt((c

(i,j)+)(u,v)−)xk + Gdlt((c
(i,j)−)(u,v)+)xk


(6.45)
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where Gdlt(c, c
(i,j)+) has been denoted as Gdlt(c

(i,j)+) for brevity.

As for SL3, the derivatives w.r.t. xk can be expressed directly in terms of the

entries in Gcbh:

∂wcbh

∂xk

=
1

D


g00 − g20x′k g01 − g21x′k
g10 − g20x′y g11 − g21x′y


(6.46)

∂2wcbh(1)

∂x2
k

= − 1

D2


2g20(g00 − g20x′k) g21(g00 − g20x′k) + g20(g01 − g21x′k)

g21(g00 − g20x′k) + g20(g01 − g21x′k) 2g21(p2 − g21x′k)


∂2wcbh(2)

∂x2
k

= − 1

D2


2g20(g10 − g20y′k) g21(g10 − g20y′k) + g20(g11 − g21y′k)

g21(g10 − g20y′k) + g20(g11 − g21y′k) 2g21(g11 − g21y′k)


(6.47)

6.8 Summary

This chapter presented details of the seven SSMs considered in this study. Five of

these were subsets of the projective transformation - translation, isometry, similitude,

affine and homography. The remaining two - SL3 and CHB - were alternative pa-

rameterizations of homography. Expressions were provided for first and second order

derivatives of the warping functions of these SSMs w.r.t. both ps and x.
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Chapter 7

System Design

This chapter presents details about the system design of MTF. A broad overview

of how the different modules in MTF are organized and connected to each other is

provided in Sec. 7.1. This is followed by descriptions of the two abstract classes cor-

responding to AM and SSM in Sec. 7.2 and 7.3 respectively. Sec. 7.4 presents pseudo

codes for implementing several SMs as instances of using the functionality provided

by these two classes to perform the optimization in different ways. Finally, Sec. 7.6

compares MTF with another existing system for RBT to motivate its suitability from

a practical standpoint.

7.1 Overview

As shown in the class diagram in Fig. 7.1, MTF closely follows the decomposition

described in the previous chapters and has three abstract base classes corresponding

to the three sub modules - SearchMethod, AppearanceModel and StateSpaceModel.

For brevity, these will henceforth be referred to as SM, AM and SSM respectively, with

the font serving to distinguish the classes from the corresponding concepts. The

component class IlluminationModel of AM will likewise be referred to as ILM. Of the

three main classes, only SM is a generic class that is templated on specializations of

the other two classes. A concrete tracker, defined as a particular combination of the

three sub modules, thus corresponds to a subclass of SM that has been instantiated

with subclasses of AM and SSM, with the former optionally parameterized through a

subclass of ILM for improved handling of lighting changes.

It may be noted that SM itself derives from a non generic base class called TrackerBase

for convenient creation and interfacing of objects corresponding to heterogeneous

89



AppearanceModel TrackerBaseSearchMethod

StateSpaceModel

ImageBase

ProjectiveBase

SSDBaseMI

CCRE

SSD

SPSS

SSIM

NCC

ZNCC

RSCV SCV

NSSD

LRSCVLSCV

IALKFALK

ESM

PF

FCLK ICLK NN

AESM

CBH

Similitude

SL3 AST

IsometryTranslation

Homography

Affine

StochasticSampler

PyramidalTrackerParallelTracker

GridTracker

CascadeTracker

RKLT

CompositeBase

NGF

Spline TPS

PCADFM

1

1

1

1

1

1

1

*

1

1

IlluminationModel

KLD

1

1

RBF GB PGB

1

1

FCSD

LineTracker

IST

Figure 7.1: MTF Class Diagram showing all models currently implemented. Pure
and partially abstract classes are respectively shown in red and green while concrete
classes are in black. Classes that are sub parts of AM and SSM are in yellow. It may
be noted that, though not shown here, most AMs also have separate multi channel
variants that take RGB rather than gray scale images as input. Their names are
formed by prefixing MC to those of their single channel counterparts - for example
MCSSD, MCMI and MCNCC.

trackers, including those external to MTF, so that they can be run simultaneously

and their results combined to create a tracker that is more robust than any of its

components. Allowing a diverse variety of trackers to integrate seamlessly is one of

the core design objectives of MTF and this is emphasized by having such trackers de-

rive from a separate base class called CompositeBase that contains several instances

of TrackerBase while also deriving from it. Since individual RBTs are well known

to be prone to failures and more than three decades of research has failed to make

significant improvements in this regard, the composite approach seems to be one of

the more promising ones [33]. MTF has thus been designed to facilitate work in this

direction. Five trackers have currently been implemented in this category:

• GridTracker: This corresponds to the stochastic SMs based on indirect sam-
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pling described in Sec. 4.2.2. It uses a grid of (typically low DOF) trackers such

that each tracks a different sub patch within the tracked object. An example

is shown in Fig. 7.2 with a 5× 5 grid of trackers. The results of these trackers

are then combined by a robust estimator provided by the SSM to estimate the

best fit warp that gives the overall location of the patch.

• LineTracker: This identifies straight lines in the object of interest and uses 2

DOF trackers to track multiple points on each line. The outputs of these trackers

are then used to estimate the best fit line assuming that linearity of points is

invariant under the warp that the object patch has undergone. Constraints

between different lines, such as parallelism, can also be enforced to improve

this estimation further. By resetting the trackers to their expected positions on

these lines, any drift can be compensated for. This tracker does not work well

yet and needs more work including better estimation method for best fit lines

and improved constraints between different lines.

• ParallelTracker: This one runs multiple trackers in parallel to track the same

patch and then combines their outputs to produce a more robust estimate of

the tracked object’s location. Many methods may be used to combine the

locations produced by the different trackers, with a simple example being to

take the mean of the bounding box corners. As mentioned in Sec. 4.3, these

outputs can also be used to detect tracking failure by imposing a threshold

on the amount by which the different locations might differ for tracking to be

considered successful.

• PyramidalTracker: This one builds a Gaussian image pyramid [19] and then

tracks each level of the pyramid through different instance of (usually) the same

tracker such that the output of the tracker at level n, after appropriate scaling,

is used as starting point for the one at level n+ 1 .

• CascadeTracker: This corresponds to the cascaded composite SMs described

in Sec. 4.3. Similar to ParallelTracker, this too tracks the same patch using

multiple trackers but here the output of the tracker at each layer of the cascade

is used as the starting point for the tracker at the next layer with the last layer

output fed back to the first one to make a closed loop system.

A particular SM in the proposed formulation is defined only by its objective - to

find the p that maximizes the similarity measure defined by the AM. Thus, different
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Figure 7.2: Two frames from beat sequence of PAMI dataset showing GridTracker

with a 5× 5 grid of trackers with each tracking 50× 50 sub patch within the object
of size 371× 260. The red sub patch in the right frame shows an outlier detected by
the robust estimation procedure while green ones are all inliers.

implementations of SM can cover a potentially wide range of methods that have little

in common. As a result, SM is the least specific of the three main classes and only

provides functions to initialize, update and reset the tracker along with accessors to

obtain its current state. In fact, an SM is regarded in this framework simply as one

way to use the methods provided by the other two sub modules to accomplish the

above objective. The main idea behind this is to abstract out as much computation

as possible from the SM to the AM and SSM so as to make for a general purpose

tracker while also allowing aspects of the resultant functionality to be used by other

SMs too. This design further encourages the conceptualization of an SM (or a tracker

in general) in terms of what it has in common with and how it differs from other

SMs (or trackers) as only the part unique to it needs to be implemented within the

corresponding module in MTF. Therefore, this chapter describes only AM and SSM in

detail while some specializations of SM currently available in MTF are presented as

pseudo codes to exemplify the usage of the functionality described there to carry out

the search in different ways.

Another consequence of this conceptual impreciseness of SM is that a specific SM

may utilize only a small subset of the functionality provided by AM/SSM. For instance,

GD type SMs do not use the random sampling functions of SSM and conversely,

stochastic SMs do not use the differential functions required by the former. This has

two further implications. Firstly, the functionality set out in AM and SSM is not fixed

92



but can change depending on the requirements of an SM, i.e. if a new SM is to be

implemented that requires some functionality not present in the current specifications,

the respective class can be extended to support it as long as such an extension makes

logical sense within the definition of the corresponding sub module. Secondly, it is

not necessary for all combinations of AMs and SSMs to support all SMs. For instance

a similarity measure does not need to be differentiable to be a valid AM as long as it

is understood that it cannot be used with SMs that require derivatives.

In the broadest sense, the division of functionality between AM and SSM described

next can be understood as AM being responsible for everything to do with the image

I, the sampled patch I(x) and the similarity f computed using it while SSM handles

the actual points x at which the patch is sampled along with the warping function w

that defines it in terms of the state parameters ps.

7.2 AppearanceModel

This class can be divided into three main parts where each is defined as a set of vari-

ables dependent on I0 and It with a corresponding initialize and update function

for each. The division is mainly conceptual and methods in different parts are free to

interact with each other in practice. Table 7.1 presents a brief specification of some

important methods in AM.

7.2.1 Image Operations

This part, abstracted into a separate class called ImageBase, handles all pixel level

operations on the image I like extracting the patch I(x) and computing its numerical

gradient ∇I and Hessian ∇2I using sub pixel interpolation to handle non integral

pixel locations. Currently, functions are implemented for bilinear, bicubic [224] and

cubic BSpline [191, 225] interpolation along with the simple nearest neighbor method

that may be used when speed is more important than accuracy.

Though AM bears a composition or ”has a” relationship with ImageBase, in practice

the latter is actually implemented as a base class of the former to maintain simplicity

of the interface and allow a specializing class to efficiently override functions in both

classes. Moreover, having a separate class for pixel related operations means that L2

models like SCV, RSCV and ZNCC (Sec. 5.1) that differ from SSD only in using a

modified version of I0 or It - thus deriving from a common base class called SSDBase
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Table 7.1: Specifications for important methods in AM

Function Inputs Output/Variable updated
updatePixVals x̂t It(x̂t)
updatePixGrad x̂t ∇It(x̂t)
updatePixHess x̂t ∇2It(x̂t)
updateModel xt I∗

updateSimilarity None f(I0, It)

updateInitGrad None
∂f(I0, It)

∂I0
(Eq. 4.7)

updateCurrGrad None
∂f(I0, It)

∂It
(Eq. 4.5)

cmptInitJacobian
∂I0

∂ps

∂f(I0(p), It)

∂p
(Eq. 4.7)

cmptCurrJacobian
∂It

∂ps

∂f(I0, It(p))

∂p
(Eqs. 4.4, 4.5)

cmptDifferenceOfJacobians
∂I0

∂ps
,
∂It

∂ps

∂f(I0, It(p))

∂p
−

∂f(I0(p), It)

∂p
(Eq. 4.10)

cmptInitHessian*
∂I0

∂ps
,
∂2I0

∂ps
2

∂2f(I0(p), It)

∂p2
(Eq. 4.12)

cmptCurrHessian*
∂It

∂ps
,
∂2It

∂ps
2

∂2f(I0, It(p))

∂p2
(Eq. 4.13)

cmptSelfHessian*
∂It

∂ps
,
∂2It

∂ps
2

∂2f(It, It(p))

∂p2
(Eqs. 4.12, 4.13)

cmptSumOfHessians*
∂I0

∂ps
,
∂2I0

∂ps
2
,
∂It

∂ps
,
∂2It

∂ps
2

∂2f(I0(p), It)

∂p2
+

∂2f(I0, It(p))

∂p2
(Eq. 4.18)

* All Hessian functions have overloaded variants that omit the second term in Eq. 4.3, as in Eq. 4.11,

and so do not require
∂2I

∂ps
2

as input

- can implement the corresponding mapping entirely within the functions defined in

ImageBase and so be combined easily with other AMs besides SSD. For instance, it is

trivial to combine SCV with SSIM by simply replacing the initializePixVals and

updatePixVals functions in the latter with those in the former.

7.2.2 Similarity Function

This is the core of AM and handles the computation of the similarity measure f(I∗, Ic,pa)

and its derivatives ∂f/∂I and ∂2f/∂I2 w.r.t. both I∗ and Ic. It also provides inter-

facing functions to use inputs from SSM to compute the derivatives of f w.r.t. SSM

parameters using the chain rule. As a notational convention, all interfacing functions,

including those in SSM, are prefixed with cmpt.

The functionality specific to pa is abstracted into the separate class ILM so it can

be combined with any AM to add support for photometric parameters to it. This

class provides functions to compute g(I,pa) and its derivatives including ∂g/∂pa,

∂2g/∂pa
2, ∂g/∂I, ∂2g/∂I2 and ∂2g/∂I∂pa. These are called from within AM to com-

pute the respective derivatives w.r.t. f so that the concept of ILM is transparent to
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the SM. Specifications for the various functions in this class are provided in Table

7.2. It should be noted that AM is designed to support f with arbitrary pa and ILM is

a only a special case of this. AM also supports online learning to update the object’s

appearance, as present, for instance, in PCA [99] and provides a dedicated function

named updateModel that can be called by the SM once per frame with the final

estimate of the tracked object’s location in that frame.

Since several of the functions in this part of AM involve common computations,

there exist transitive dependency relationships between them, as depicted in Fig. 7.3,

to avoid repeating these computations when multiple quantities are needed by the

SM. What this means is that a function lower down in the dependency hierarchy may

delegate part of its computations to any function higher up in the hierarchy so that

the latter must be called before calling the former if correct results are to be expected.

To further reduce unnecessary computations, an additional flag can be provided to

updateSimilarity to specify that only that component of f that is needed by the

derivative functions lower down in the dependence hierarchy is to be computed. This

can be useful for GD based SMs that do not actually need f except when the LM

formulation of Ĥself is used.

7.2.3 Distance Feature

This part is designed specifically to enable integration with the FLANN library [156]

that is used by the NN based SM for all index types except GNN. It provides two

main functions:

1. A feature transform D(I∗) : RN →→ RK that maps the pixel values extracted from

a patch I∗ into a feature vector that contains the results of all computations in

f(I∗, Ic) that depend only on I∗ and likewise for Ic. This transform is applied to

all sampled patches during tracker initialization and only the resultant feature

vectors are stored in the index. At runtime, it is applied to Ic and the feature

vector is passed to the distance functor.

2. A highly optimized distance functor fD(D(I∗),D(Ic)) : RK × RK →→ R that

computes a measure of the distance or dissimilarity between I∗ and Ic (typically

the negative of f(I∗, Ic)) given the distance features D(I∗) and D(Ic) as inputs.

The main idea behind the design of these two components is to place as much com-

putational load as possible on D so that the runtime speed of fD is maximized, with
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initializePixVals

initializeSimilarity

updateSimilarity

initializeDistFeat

initializeHess

initializeGrad

cmptDifferenceOfJacobians

updateInitGrad

cmptInitJacobian

cmptCurrJacobian

updateCurrGrad

cmptCurrHessian

cmptInitHessian

cmptSumOfHessianscmptSelfHessian

updateDistFeat

getDistFeat

initializePixGradinitializePixHess

updatePixVals updatePixGrad

getCurrPixGrad

getCurrGrad
getInitGrad

updatePixHess

getCurrPixHess
getCurrPixVals

getInitPixValsgetInitPixHess getInitPixGrad

getSimilarity
getLikelihood

Figure 7.3: Dependency relationships between various functions in AM: an arrow point-
ing from A to B means that A depends on B. Color of a function box denotes its type
- green: initializing; red: updating; blue: interfacing and yellow: accessor function.
Shape of a function box represents the part of AM it belongs to - rectangle: Image
Operations; rounded rectangle: Similarity Functions; ellipse: Distance Feature.

the premise that the former is called mostly during initialization when the sample

dataset is to be built while the latter is called online to find the best matches for a

candidate patch in the dataset. An optimal design may involve a trade off between

the size K of the feature vector and the amount of computation performed in fD.

For non symmetrical AMs, i.e. where f(I∗, Ic) ̸= f(Ic, I∗) (e.g. CCRE, RIU and

SCV), the feature vector may also include an indicator flag so that fD can determine

which of its arguments corresponds to the D(I∗) and which to D(Ic). This is needed

because FLANN does not specify the order in which the arguments will be passed to

fD and examination of its code showed that this order varies for each index type as

well as for different calls to fD within the same index.

7.3 StateSpaceModel

This class has a simpler internal state than AM and can be described by only three

main variables at any time t - sampled grid points xt, corresponding corners ct and
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Table 7.2: Specifications for important methods in ILM.

Function Inputs Output
update pa,∆pa p′

a | g(g(It,pa),∆pa) = g(It,p′
a)

apply It,pa g(I,pa)
invert pa p′

a | g(g(It,pa),p′
a) = It

cmptParamJacobian
∂f

∂g
, It,pa

∂f

∂pa
(Eq. 5.105)

cmptPixJacobian
∂f

∂g
, It,pa

∂f

∂It
(Eq. 5.103)

cmptParamHessian*
∂2f

∂g2
,
∂f

∂g
, It,pa

∂2f

∂pa
2

(Eq. 5.106)

cmptPixHessian*
∂2f

∂g2
,
∂f

∂g
, It,pa

∂2f

∂It
2

(Eq. 5.104)

cmptCrossHessian*
∂2f

∂g2
,
∂f

∂g
, It,pa

∂2f

∂It∂pa
(Eq. 5.108)

* All Hessian functions have overloaded variants that omit the second terms

in respective expressions and so do not require
∂f

∂g
as input

state parameters pst. It may be noted (Fig. 7.1) that, though SSM is designed

to support any arbitrary w, most SSMs currently implemented are subsets of the

planar projective transform and so derive from ProjectiveBase that abstracts out

the functionality common to such transforms. Functions in SSM can be divided into

two categories:

7.3.1 Warping Functions

This is the core of SSM and provides a function w to transform a regularly spaced

grid of points x0 representing the target patch into a warped patch xt = w(x0,pst)

that captures the tracked object’s motion/deformation in image space. It also allows

for the compositional inverse of w to be computed (invertState) to support inverse

SMs. Further, there are functions to compute the derivatives of w w.r.t. both x and

ps but, unlike AM, SSM does not store these as state variables; rather, their computation

is implicit in the interfacing functions that compute ∂I/∂ps and ∂2I/∂ps
2 using chain

rule. This design decision was made for reasons of efficiency since ∂w/∂ps and ∂w/∂x

are large and often very sparse tensors and computing these separately not only wastes

a lot of memory but is also very computationally inefficient.

Finally, there are four ways to update the internal state: incrementally using addi-

tive (additiveUpdate) or compositional (compositionalUpdate) formulations (Sec.

4.1.3), or outright by providing either the state vector (setState) or the correspond-

ing corners (setCorners) that define the current location of the patch. There are no

complex dependencies in SSM - the correct performance of interfacing functions and
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Table 7.3: Specifications for important methods in SSM.

Function Inputs Output/Result
compositionalUpdate ∆ps pst = ps

′ | w(x,ps
′) = w(w(x,∆ps),pst)

additiveUpdate ∆ps pst = pst +∆ps

invertState ps p′
s | w(w(x,ps),p′

s) = x

cmptPixJacobian ∇It
∂It

∂ps


ps=pst

(Eq. 4.4)

cmptWarpedPixJacobian ∇It
∂It(w)

∂ps


ps=ps0

(Eq. 4.5, 4.6)

cmptApproxPixJacobian ∇I0
∂It

∂pst
(approx) (Eq. 4.8, 4.9)

cmptPixHessian ∇It,∇2It
∂2It

∂ps
2


ps=pst

(Eq. 4.14)

cmptWarpedPixHessian ∇It,∇2It
∂2It(w)

∂ps
2


ps=ps0

(Eq. 4.15, 4.16)

cmptApproxPixHessian ∇I0,∇2I0
∂2It

∂pst
2

(approx) (Eq. 4.17)

applyWarpToPts x,ps w(x,ps)

composeWarps ps1,ps2 ps12 | w(x,ps12) = w(w(x,ps1),ps2)

getIdentityWarp None psI | w(x,psI) = x

accessors depends only on one of the update functions being called at every iteration.

A separate dependency diagram is thus omitted here.

In addition to these state related functions, this part of SSM also provides sev-

eral general utility functions that can be used independently of the SSM’s current

state. These include applyWarpToCorners and applyWarpToPts which can be used

for transforming the provided grid points or its bounding corners according to the

given warp, composeWarps that returns a single warp whose warping action is same

as the composite action of the two provided warps and getIdentityWarp that returns

the ps corresponding to the identity transform. Table 7.3 lists the functional specifi-

cations for some important methods in this part.

7.3.2 Stochastic Sampler

This part is provided to support stochastic SMs and offers following functionality to

this end:

1. generate small random incremental updates to ps (generatePerturbation) by

drawing these from a zero mean normal distribution with either user provided

or heuristically estimated (estimateStateSigma) variance.
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2. generate stochastic state samples using the given state transition model - cur-

rently random walk (additiveRandomWalk) and first order auto regression

(additiveAutoRegression1) are supported. There are also compositional

variants of these functions.

3. estimate the mean of a set of samples of ps (estimateMeanOfSamples) where

the definition of mean is dependent on the SSM itself.

4. estimate the best fit ps from a set of original and warped point pairs

(estimateWarpFromPts) using a robust method. Both methods described in

Sec. 4.2.2 - RANSAC [33] and LMS [226] - are supported. Their imple-

mentations have been adapted for all the SSMs from the one for homogra-

phy available in findHomography function of OpenCV. A simpler version called

estimateWarpFromCorners is also provided to estimate the warp from a pair of

corresponding corners - this is currently implemented using the DLT algorithm

for all subclasses of ProjectiveBase.

7.4 Examples of Search Methods

This section presents pseudo codes for several SMs currently implemented in MTF

to exemplify the usage of functions described in the previous sections. Following are

some points and conventions to be noted:

• am and ssm respectively refer to instances of AM and SSM (or rather of special-

izations thereof)

• am has direct access to the latest image in the sequence so it is not passed

explicitly in function calls - this is one of the design features of AM to avoid the

overhead of passing the image repeatedly.

• several special cases like the optional use of the first order Hessian (Eq. 4.11),

parameterization and online learning of AM and iterative form of the update

function are demonstrated only for ICLK but should be obvious by analogy for

other SMs too.

• v.head(h) and v.tail(t) in ICLK respectively refer to the first h and last t ele-

ments in the h + t length vector v.
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Algorithm 1 ICLK

1: function initialize(corners)
2: ssm.initialize(corners)
3: am.initializePixVals(ssm.getPts())
4: am.initializePixGrad(ssm.getPts())
5: am.initializeSimilarity()
6: am.initializeGrad()
7: am.initializeHess()
8: dI0 dps← ssm.cmptWarpedPixJacobian(am.getInitPixGrad())
9: if use first order hessian then
10: d2f dp2← am.cmptSelfHessian(dI0 dps)
11: else
12: am.initializePixHess(ssm.getPts())
13: d2I0 dps2← ssm.cmptInitPixHessian(

am.getInitPixHess(), am.getInitPixGrad())
14: d2f dp2 ← am.cmptSelfHessian(dI0 dps, d2I0 dps2)
15: end if
16: end function
17: function update
18: for i← 1,max iters do
19: am.updatePixVals(ssm.getPts())
20: am.updateSimilarity()
21: am.updateInitGrad()
22: df dp ← am.cmptInitJacobian(dI0 dps)
23: delta p ← −d2f dp2.inverse()∗df dp
24: delta ps ← delta p.head(ssm.getStateSize())
25: delta pa ← delta p.tail(am.getStateSize())
26: inv delta ps ←ssm.invertState(delta ps)
27: inv delta pa ←am.invertState(delta pa)
28: prev corners←ssm.getCorners()
29: ssm.compositionalUpdate(inv delta ps)
30: am.update(inv delta pa)
31: if ∥prev corners− ssm.getCorners()∥2 < ϵ then
32: break
33: end if
34: end for
35: am.updateModel(ssm.getPts())
36: return ssm.getCorners()
37: end function
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Algorithm 2 FCLK

1: function initialize(corners)
2: lines 2-7 of Alg. 1
3: am.initializePixHess(ssm.getPts())
4: end function
5: function update
6: lines 19-20 of Alg. 1
7: am.updateCurrGrad()
8: am.updatePixGrad(ssm.getPts())
9: am.updatePixHess(ssm.getPts())
10: dIt dps ← ssm.cmptWarpedPixJacobian(am.getCurrPixGrad())
11: d2It dps2 ← ssm.cmptWarpedPixHessian(

am.getCurrPixHess(), am.getCurrPixGrad())
12: df dp ←am.cmptCurrJacobian(dIt dps)
13: d2f dp2 ←am.cmptSelfHessian(dIt dps, d2It dps2 )
14: delta p ← −d2f dp2.inverse()∗df dp
15: ssm.compositionalUpdate(delta p)
16: return ssm.getCorners()
17: end function

• different algorithms make extensive references to portions of each other not only

to save space by avoiding redundancy but also to emphasize the parts they have

in common.

• flann in NN is an instance of FLANN library [156] that can build an index from

a set of samples and search it for a new candidate.

• variables used to store the results of computations are not described explicitly

but their meanings should be clear from their names and context. For instance,

sample dataset and ssm perturbations used in NN respectively refer to n×K
and n×S matrices, each of whose rows contains the distance feature D (Sec.

7.2.3) and the SSM state ps corresponding to one sample so that n = number

of samples.

• only one state transition model is shown for PF though several others are avail-

able too (Sec. 7.3.2).

• Alg. 8 only shows the GridTracker component of LMS and RANSAC and

the actual robust estimation using one of these algorithms is carried out in

estimateWarpFromPts function of SSM (Sec. 7.3.2).
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Algorithm 3 ESM

1: function initialize(corners)
2: lines 2-3 of Alg. 2
3: dI0 dps← ssm.cmptWarpedPixJacobian(am.getInitPixGrad())
4: d2f dp2 0 ← am.cmptSelfHessian(dI0 dps, d2I0 dps2 )
5: end function
6: function update
7: lines 6-11 of Alg. 2
8: am.updateInitGrad()
9: df dp←am.cmptDifferenceOfJacobians(dI0 dps, dIt dps)
10: d2f dp2 t ←am.cmptSelfHessian(dIt dps, d2It dps2 )
11: d2f dp2 ←d2f dp2 0 + d2f dp2 t
12: lines 14-16 of Alg. 2
13: end function

Algorithm 4 IALK

1: function initialize(corners)
2: same as Alg. 2
3: end function
4: function update
5: lines 6-7 of Alg. 2
6: dIt dps← ssm.cmptApproxPixJacobian(am.getInitPixGrad())
7: d2It dps2← ssm.cmptApproxPixHessian(am.getInitPixHess(),

am.getInitPixGrad())
8: lines 12-14 of Alg. 2
9: ssm.additiveUpdate(delta p)
10: return ssm.getCorners()
11: end function

Algorithm 5 FALK

1: function initialize(corners)
2: same as Alg. 2
3: end function
4: function update
5: lines 6-9 of Alg. 2
6: dIt dps← ssm.cmptPixJacobian(am.getCurrPixGrad())
7: d2It dps2← ssm.cmptPixHessian(am.getCurrPixHess(),

am.getCurrPixGrad())
8: lines 8-10 of Alg. 4
9: end function

• sampling resolution of ssm in Alg. 8 is set to be same as the grid resolution
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Algorithm 6 NN

1: function initialize(corners)
2: lines 2-3 of Alg. 1
3: state sigma← ssm.estimateStateSigma()
4: ssm.initializeSampler(state sigma)
5: am.initializeDistFeat()
6: for sample id ← 1, no of samples do
7: ssm updates.row(sample id) ← ssm.generatePerturbation()
8: inv update ←ssm.invertState(ssm updates.row(sample id))
9: ssm.compositionalUpdate(inv update)
10: am.updatePixVals(ssm.getPts())
11: am.updateDistFeat()
12: sample dataset.row(sample id) ← am.getDistFeat()
13: ssm.compositionalUpdate(ssm updates.row(sample id))
14: end for
15: flann.buildIndex(sample dataset)
16: end function
17: function update
18: am.updatePixVals(ssm.getPts())
19: am.updateDistFeat()
20: nn sample id ← flann.searchIndex(am.getDistFeat())
21: ssm.compositionalUpdate(ssm updates.row(nn sample id))
22: return ssm.getCorners()
23: end function

and the function getRegion(c, s) in line 6 returns the corners of a rectangular

region of size s with centroid c.

7.5 Use Cases

This section presents following use cases for MTF in C++ style pseudo code:

• Track an object in an image sequence using a simple (Alg. 9) and a composite

(Alg. 10) tracker.

• Estimate the trajectory of a UAV within a large satellite image of an area from

images it took while flying over that area (Alg. 11). Fig. 7.4 shows an example.

• Create an image mosaic in real time from a video sequence captured by a camera

moving over different parts of the planar scene to be stitched (Alg. 12). Fig.
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Algorithm 7 PF

1: function initialize(corners)
2: lines 2-4 of Alg. 6
3: am.initializeSimilarity()
4: for particle id ← 1, no of particles do
5: particles [particle id ].state ← ssm.getState()
6: particles [particle id ].weight ← 1/no of particles
7: end for
8: end function
9: function update
10: for particle id ← 1, no of particles do
11: particles [particle id ].state ← ssm.compositionalRandomWalk(
12: particles [particle id ].state)
13: ssm.setState(particles [particle id ].state)
14: am.updatePixVals(ssm.getPts())
15: am.updateSimilarity()
16: particles [particle id ].weight ←am.getLikelihood()
17: end for
18: normalize weights and resample the particles
19: mean state ← ssm.estimateMeanOfSamples(particles);
20: ssm.setState(mean state)
21: return ssm.getCorners()
22: end function

7.5 shows an example.

Following are some supplementary details regarding variables and functions used in

these algorithms that may assist the reader in understanding them better:

• MTF comes with an input module with wrappers for the image capturing func-

tions in OpenCV, ViSP and XVision. Represented by the variable input, it is

assumed to have been initialized with the appropriate source.

• Raw images acquired by the input module can optionally be passed to the

preprocessing module that provides wrappers for OpenCV image filtering and

conversion functions. GaussianSmoothing in Alg. 9 is an example.

• Though only five combinations of SM, AM and SSM are shown here, these can

be replaced by virtually any combination of methods in Fig. 7.1.

• MTF also has a set of general utility functions for image and warping related

operations, following of which have been used in Alg. 11 and 12:
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Algorithm 8 LMS/RANSAC

1: function initialize(corners)
2: sub trackers ← vector of 2 DOF sub patch trackers
3: ssm.initialize(corners)
4: curr pts ← ssm.getPts()
5: for pt id ← 1, no of pts do
6: sub patch corners ← getRegion(curr pts [pt id ], sub patch size)
7: sub trackers [pt id ].initialize(sub patch corners)
8: end for
9: end function
10: function update
11: prev pts ← curr pts
12: for pt id ← 1, no of pts do
13: sub trackers [pt id ].update()
14: curr pts [pt id ] ← getCentroid(sub trackers [pt id ].getRegion())
15: end for
16: opt warp ← ssm.estimateWarpFromPts(prev pts, curr pts)
17: warped corners ← ssm.applyWarpToCorners(ssm.getCorners(), opt warp)
18: ssm.setCorners(warped corners)
19: lines 4-8 of Alg. 8
20: return ssm.getCorners()
21: end function

– getFrameCorners(image) returns a 2× 4 matrix containing the corners of

image and is thus used when the entire image is to be considered as the

tracked region.

– writePixelsToImage(patch, corners, size) writes the pixel values in patch

to an image with dimensions size within the region bounded by corners.

• init mos location in Alg. 12 is the user specified location of the first frame in the

sequence within the mosaic image of size mos size. This is typically the center

of the mosaic though can be elsewhere depending on the actual sequence.

7.6 Performance

An existing system that is somewhat similar to MTF in functionality is the template

tracker module of the Visual Servoing Platform (ViSP) library [24] that includes 4

SMs, 3 AMs and 6 SSMs though not all combinations work. While being functionally
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Figure 7.4: Sample screen shot taken while running the UAV trajectory estimation
application. The large window on the left shows the satellite image scaled down to fit
the screen. The trajectory estimated so far is marked in greenand the bounding box
corresponding to the current tracker location shown in red. The top window on the
right shows the current image from the sequence captured by the UAV while flying
over the area in the satellite image. The bottom window shows the patch extracted
from this image at the current tracker location. It is assumed here that the size of
the UAV images is approximately same as that of the corresponding region in the
satellite image. It can be seen that the two images, though of the same region, differ
markedly in appearance as one was captured by the UAV camera and the other by
the satellite. This is an example of multi modality tracking scenario that AMs like
MI and NCC can handle well.
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Algorithm 9 Object Tracking - Simple

1: using namespace mtf;
2: ICLK<SSD, Homography> tracker ;
3: GaussianSmoothing pre proc(input.getFrame(), tracker.inputType());
4: tracker.initialize(pre proc.getFrame(), init location);
5: while input.update() do
6: pre proc.update(input.getFrame());
7: tracker.update(pre proc.getFrame());
8: new location ← tracker.getRegion();
9: end while

Algorithm 10 Object Tracking - Composite

1: PF<ZNCC, Affine> tracker1 ;
2: FCLK<SSIM, SL3> tracker2 ;
3: vector<TrackerBase*> trackers = {&tracker1, &tracker2};
4: CascadeTracker tracker(trackers);
5: lines 3-9 of Alg. 9

Algorithm 11 UAV Trajectory Estimation in Satellite Image

1: ESM<MI, Similitude> tracker ;
2: uav img corners←getFrameCorners(input.getFrame());
3: tracker.initialize(satellite img, init uav location);
4: curr uav location←tracker.getRegion();
5: while input.update() do
6: tracker.initialize(input.getFrame(), uav img corners);
7: tracker.setRegion(curr uav location);
8: tracker.update(satellite img);
9: curr uav location←tracker.getRegion();
10: end while

Algorithm 12 Online Image Mosaicing

1: FALK<MCNCC, Isometry> tracker ;
2: mos img ← writePixelsToImage(input.getFrame(), init mos location, mos size);
3: mos location ← init mos location;
4: while input.update() do
5: temp img ← writePixelsToImage(input.getFrame(), mos location, mos size);
6: tracker.initialize(temp img, mos location);
7: tracker.update(mos img);
8: mos location ← tracker.getRegion();
9: mos img ← writePixelsToImage(input.getFrame(), mos location, mos size);
10: end while
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Figure 7.5: Sample screen shot taken while running the online mosaicing application.
The large window on the left shows the mosaic constructed so far with the location of
the current image shown in green. The window on the right shows the current image.

similar, at least for the methods present in ViSP, MTF offers several advantages

over it. Firstly, SMs and AMs in ViSP are not implemented as independent modules,

rather each combination of methods has its own separate class. This makes it difficult

to add a new method for either of these sub modules and combine it with existing

methods for the others. Secondly, MTF has several more AMs, one more GD based

SM (IALK) as well as four stochastic SMs (Sec. 4.2). It also allows multiple SMs to

be combined effortlessly to create novel composite SMs (Sec. 4.3). Similarly, MTF

makes it equally easy to combine multiple AMs to create new composite AMs though

these are outside the scope of this study

Lastly, and perhaps most importantly from a practical standpoint, MTF is signif-

icantly faster than ViSP. As shown in Fig. 7.6, MTF is usually more than an order of

magnitude faster, with its speed being over 20 times higher than ViSP on average for

all SSMs except affine where it is slightly lower at around 14 but still enough to make
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Figure 7.6: ViSP vs MTF average tracker speeds in FPS for all combinations of SMs
and AMs supported by ViSP with 4 different SSMs. MTF and ViSP results are shown
in solid and dotted lines respectively. Note that logarithmic scaling has been
used on the x axis for better visibility of ViSP bars though the actual figures are also
shown for additional clarity. Speedup provided by MTF - as measured by the ratio
of MTF to ViSP speed - is shown in the legends. All results were generated on a 4
GHz Intel Core i7-4790K machine with 32 GB of RAM.

a significant impact in practice. This is mainly because it uses the Eigen library [227]

for all mathematical computations and this is known to be one of the fastest [228].

It may be noted that MTF has not been carefully optimized and parallelized yet and

the speed gain is likely to increase further once this is completed. Unlike systems

like ViSP and XVision that use their own linear algebra subsystems, being based on

a fast and open source library that is under active development affords MTF with

the further advantage of automatically improving in speed and reliability whenever

improvements are made to this library. This speed advantage is particularly signif-

icant in applications like visual servoing and SLAM where several different regions

in the same video stream often need to be tracked simultaneously. In addition to

109



allowing them to run in real time, MTF offers another benefit for such multi tracking

applications. For each feature or region of the scene, the tracker best matching the

characteristics of that region needs to be selected for optimal performance since differ-

ent combinations of methods are best suited for distinct scenarios [10]. This is much

easier to accomplish using MTF than it would be by combining different executables,

if any, published by the authors of the respective methods.

It may be mentioned here that the template tracking module of ViSP is notably

buggy at present and only managed to complete about 70% of all the sequences

used for testing. The results in Fig. 7.6 were thus produced by averaging over only

these sequences. Also, ViSP does not allow arbitrary sampling resolutions to be

used; instead the user must specify integral sampling ratios for both vertical and

horizontal directions so that the sampling resolution in each dimension can only be

such that the object size in the respective dimension is an integral multiple of the

same. All possibilities for these sampling ratios were tested for each object and those

that resulted in the total number of pixels being closest to 2500 were used to ensure

fair comparison with the fixed 50× 50 resolution used for the MTF trackers.

7.7 Summary

This chapter presented details of the system design used for implementing MTF in

C++. This included an overview of the division of functionality between the three

main abstract classes corresponding to the three modules into which RBT has been

decomposed in this work. This was followed by detailed descriptions of two of these

classes - AM and SSM - that provide well defined interfaces for all concrete classes that

implement these. To account for the far greater variability in the possible approaches

to optimization, SM was treated simply as a way to utilize the functionality in AM and

SSM to search for the optimal warp and was thus described through pseudo codes of

algorithms corresponding to various SMs. This was followed by three practical use

cases for MTF, again in the form of algorithms, and a brief performance comparison

with another popular library in this domain.

110



Chapter 8

Evaluation Methodology

This chapter provides details of the datasets - both real world and synthetic - used

for evaluating the trackers as well as the criteria for assessing their performance. It

also provides a summary of the configuration settings used for the various modules

in the results reported in the next chapter.

8.1 Datasets

Following four publicly available datasets 1 have been used to analyze the trackers:

1. Tracking for Manipulation Tasks (TMT) [229] dataset: This contains videos

of some common manipulation tasks performed at several speeds and under

varying lighting conditions (Fig. 8.1). The tasks are divided into two categories

- single and composite motion tasks. The first includes 8 tasks performed using

4 different objects - book, cereal box, juice carton and mug. Each of these

tasks involves a particular type of motion including, for instance, in plane and

out of plane translations and rotations. To provide varying levels of tracking

difficulty, these tasks are performed under two lighting conditions and at six

different speeds, including one where the speed increases in the course of the

sequence, . Also, some of these are performed by a robotic arm in addition to a

human to better represent the jerky movement associated with the former that

is encountered in visual servoing applications. The second category includes

more general tasks that involve performing multiple types of motion in a single

complex task. Examples of tasks in this category include playing with a toy bus,

reading and highlighting a newspaper and placing a letter in an envelope. All

1available at http://webdocs.cs.ualberta.ca/~vis/mtf/
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sequences have RGB images and feature the eye-to-hand configuration where

the camera is static and the object moves.

2. Visual Tracking Dataset provided by UCSB [230]: This includes 16 different

motion patters including camera rotation, zooming and panning, gradual and

sudden lighting changes, perspective distortion, 9 different speeds of translation

and unconstrained motion. Each type of motion is recorded using 6 different

planar textures for a total of 96 sequences. Unlike TMT, all of these have

been recorded using the eye-in-hand configuration where the object is static

and the camera moves, though, similar to TMT, they have RGB images too.

UCSB is more challenging than TMT but also rather artificial (Fig. 8.3) as its

sequences were created to represent specific challenges rather than realistic sce-

narios. Though this dataset presents a variety of challenges, the one that causes

tracking failures most often is the motion blur induced by fast or abrupt camera

movements in both the translation and the unconstrained motion sequences.

3. LinTrack dataset [231]: This includes 3 long sequences where a range of chal-

lenging unconstrained motions are performed using 3 objects - towel, phone

and mouse pad (Fig. 8.4). Two of these sequences feature eye-to-hand con-

figuration while the remaining one has eye-in-hand. These sequences are more

realistic than those in UCSB but also more difficult to track. They do not fea-

ture any significant occlusions or illumination variations so the main challenges

include extreme perspective distortions, large scale changes and motion blur

caused by sudden movements. As in UCSB, the latter is most often the cause

of tracking failures. The sheer length of these sequences also proved hard to

cope with for most of the tested trackers. Unlike the previous two datasets, this

one features only gray scale images.

4. PAMI dataset: This includes a collection of 28 challenging planar tracking

sequences (Fig. 8.2) from several important works in literature [1, 84, 77, 85,

140, 232, 32]. It has been named after [1] from where several of the sequences

originate. The sequences here vary widely in the level of tracking difficulty

though overall, it seems slightly easier to track than UCSB for most trackers

(appendix B). The main challenges here include localized illumination changes,

significant occlusions and non planarity. This dataset contains both color and

gray scale images and also includes both eye-in-hand and eye-to-hand scenarios.
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Table 8.1: Summary of datasets used for evaluating trackers. Subsequences refer to the
initialization of trackers at 10 different frames in each sequence (Sec. 8.2).

Without Subsequences With Subsequences
Dataset

Sequences Total
Frames

Trackable
Frames1

Sub-
sequences

Total
Frames

Trackable
Frames1

TMT 109 70592 70483 1090 390470 389380
UCSB 96 6889 6793 960 41170 40210
LinTrack 3 12477 12474 30 68700 68670
PAMI 28 16511 16483 280 91400 91120
Total 236 106469 106233 2360 591740 589380
1 The first frame in each sequence/subsequence, where the tracker is initialized, is not

considered for evaluating the tracking performance

All of these datasets except PAMI have full pose (8 DOF) ground truth data made

available by their creators, which makes them suitable for evaluating high precision

trackers that are the principal subjects of this study. For PAMI, this data was gen-

erated using a combination of very high precision tracking and manual refinement

[229]. Table 8.1 provides a summary of the number of sequences and frames in these

datasets.

A popular dataset in this domain that is excluded here is the Metaio dataset [233].

It might have helped to make the results more comprehensive if testing could be done

on this too but the tracker evaluation service is no longer offered by its creators and

attempts to obtain its ground truth from them also proved unsuccessful.

8.1.1 Synthetic Datasets

In addition to the above real world sequences, testing has also been done on syn-

thetic frames generated using the procedure described in [68] and [70] except that

homography has been used instead of affine for warping the frames. Also, rather

than generating all warped frames from a single source image, 25 different images

drawn from the four datasets (Fig. 8.5) have been used so that varying object sizes

and texture types are tested with to rule out any bias with these factors. The ran-

dom homography warps were generated by perturbing the four corners of the original

bounding box and estimating the warp matrix using the DLT algorithm. This is

similar to the first step of the process described in Sec. 6.5.1 except that here the

perturbations were applied to the original corners rather than the normalized ones.
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Figure 8.1: Representative frames from sequences in TMT dataset

Figure 8.2: Representative frames from sequences in PAMI dataset
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Figure 8.3: Representative frames from sequences in UCSB dataset

Figure 8.4: Representative frames from sequences in LinTrack dataset

Each of the 25 source images were used for generating 10 different sequences using

perturbations drawn from zero mean Gaussian distributions with standard deviation

or σsyn varying from 1 to 10. Each such sequence has 400 frames so that there are

10000 frames corresponding to each σsyn.

Two more sets of sequences with higher levels of tracking difficulty were generated

to simulate real world conditions better. First one had additive Gaussian noise with

σnoise = 10 added to each pixel while the second one also had illumination changes

generated using RBF ILM (Sec. 5.3.3) with a 3 × 3 grid of control points and per-

turbations to pa drawn from a zero mean Gaussian distribution with σrbf = 20 (Fig.

8.6) for both gain and bias. Also, all frames were saved using a JPEG quality factor

of 25 (out of 100) so that the resulting compression artifacts can make the sequences
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Figure 8.5: Frames used for generating the synthetic datasets

more realistic.

Finally, in order to test different SSMs, synthetic sequences were also generated

with translation, isometry, similitude and affine warping using the same DLT based

approach as homography but perturbing only 1, 2 or 3 points. The bottom left and

bottom right corners along with the top center point were used for affine [25] and

the top left and bottom right corners for similitude. Isometry warps were generated

by first generating similitude warps and then dropping the scaling factor [15]. For

translation, of course, perturbation was applied directly to the centroid and no DLT

step was needed.

8.2 Performance Metric

Alignment Error (EAL) [98] has been used as the metric to compare tracking result

with the ground truth since it accounts for fine misalignments of pose better than
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Figure 8.6: Representative frames from the three sets of synthetic sequences. Clock-
wise from top left - original frame, warped using σsyn = 10, with additive Gaussian
noise and with noise + illumination change generated by RBF. Note that the geo-
metric warping and noise have been applied to the entire image while illumination
change is restricted to the object of interest.

other measures like center location error and Jaccard index. It is defined as:

EAL =
1

4

4
k=1

∥ck(track) − ck(gt)∥ (8.1)

where c(track) = [c1(track), ..., c4(track)] ∈ R2×4 and c(gt) are the bounding box corners

corresponding to the tracker’s location and the ground truth respectively. The overall

accuracy of a tracker is measured through its success rate (SR) which is defined as

the fraction of total frames where EAL is less than a threshold of tp pixels. Formally,

SR = |S|/|F | where S = {f i ∈ F : Ei
AL < tp}, F is the set of all frames and Ei

AL is

the error in the ith frame f i.
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It is difficult to choose a single error threshold to define tracking success for the

large range of scenarios present in the datasets. The SR is thus evaluated for several

values of tp ranging from 1 to 20 and the resulting SR vs. tp plot is studied to get an

overall idea of how precise and robust a tracker is. Values of tp < 1 are not considered

as they do not add any useful information to the plot but increase the range of y axis

needed to show the curve, thus decreasing the separation between individual curves

and making interpretation more difficult. Further, as there are far too many sequences

to present results for each, an overall summary of performance is reported instead by

averaging the SR over all the sequences in the four datasets. Results for individual

datasets are also provided for some important cases in appendix B.

In order to better utilize frames that follow a tracker’s first failure in any sequence,

trackers are initialized at 10 different evenly spaced frames in each sequence. This

also helps to test trackers with a greater variety of initial object pose and appearance

rather than only those in the first frame in each sequence. As a result, the SR plots

represent accumulated tracking performance over a total of |F | = 589380 frames,

out of which 106233 are unique (Table 8.1). It should be mentioned here that, in

order to process so many frames with the multitude of trackers in limited time, it is

necessary to avoid wasting time in updating a tracker after it has clearly suffered an

unrecoverable failure in a sequence. A heuristic measure has thus been adopted to

detect such failures and stop the tracking once these are encountered. Denoting the

image height and width as h and w respectively, an unrecoverable tracking failure

is assumed to have occurred when EAL exceeds
√
h2 + w2 or the maximum possible

distance between two points in the image.

As an alternative measure for tracking robustness, reinitialization tests similar to

those in the visual object tracking (VOT) challenge toolkit [8, 13] are also conducted.

Here, a tracker is reinitialized after skipping 5 frames every time its EAL exceeds

20 and the number of such failures is counted to get an estimate of the tracker’s

failure rate (FR). Smaller values of FR indicate higher tracking robustness. Unlike

FR, it is not possible to summarize all the information in an SR curve by a single

number since different portions of the curve indicate distinct characteristics about

the tracker’s performance - SR values for smaller tp indicate precision while those for

higher tp incline more towards robustness. However, the area under this curve, which

is equivalent to the average SR for this range of tp [234], can be taken to indicate the

overall ”goodness” of tracking performance that it represents. This value is therefore

shown in the legends of the SR curves and is also used, along with FR, to rank
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different methods in scatter plots (figs. 9.18, 9.25).

Finally, performance over synthetic datasets is measured by plotting the SR com-

puted using tp = 2 for σsyn varying from 1 to 10. This is similar to the method

employed in [25] except that tp = 1 was used there but experiments seemed to sug-

gest that tp = 2 generates more meaningful results so this has been used here instead.

8.3 Configuration

A brief summary of the default settings used for the results reported in the next

chapter now follows. Several variations on specific settings have also been tested

whose details are provided in appendix A.

• A fixed sampling resolution of 50×50 was used irrespective of the tracked ob-

ject’s size. Bilinear interpolation was used for obtaining pixel values at non

integral locations.

• Input images were converted to gray scale and smoothed using a Gaussian filter

with a 5×5 kernel before being fed to the trackers.

• GD based SMs were allowed to perform a maximum of 30 iterations per frame

but only as long as the ℓ2 norm of the change in bounding box corners in each

iteration exceeded 0.0001.

• NN and PF were only allowed a single iteration per frame.

• LM formulation of Ĥself (Sec. 4.1.2.1) was used with GD based SMs for all AMs

except RSCV, which performed better with GN (Fig. A.1) (excepting IALK).

• For stochastic and composite SMs based on indirect sampling like LMS and

LMES (Sec. 4.2.2), a 10×10 grid of sub patches, each 25×25 pixels in size,

was used and each sub patch was tracked by a 2 DOF tracker with a sampling

resolution of 25×25.

• Both LMS and RANSAC were allowed a maximum of 1000 iterations and a

re-projection threshold of 5 pixels was used for the latter to determine outliers.

• Two different stochastic samplers were used to generate 8 DOF samples for

PF - homography sampler with normalized corner perturbations (Sec. 6.5.1)
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Table 8.2: Standard deviation values used for homography sampler with normalized
corner perturbations. Meanings of σd and σt are explained in Sec. 6.5.1.

Distribution σd σt
Nhom(1) 0.01 0.015
Nhom(2) 0.02 0.030
Nhom(3) 0.03 0.045
Nhom(4) 0.04 0.060
Nhom(5) 0.05 0.075

Table 8.3: Standard deviation values used for the SL3 sampler; σk is used for per-
turbing pk as defined in Sec. 6.6

Distribution σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8
Nsl3(1) 0.015 0.015 0.06 0.015 3.5 3.5 0.0003 0.0003
Nsl3(2) 0.015 0.015 0.04 0.015 5 5 0.0002 0.0002
Nsl3(3) 0.015 0.015 0.05 0.015 2.5 2.5 0.0004 0.0004
Nsl3(4) 0.01 0.01 0.04 0.01 2 2 0.0002 0.0002
Nsl3(5) 0.01 0.01 0.03 0.01 10 10 0.0001 0.0001

and SL3 sampler with standard deviations provided in [1]. Five distributions

were considered for both samplers along with the Gaussian mixture approach

described in Sec. 4.2.1.2. Denoted asNhom(k) andNsl3(k) for 1 ≤ k ≤ 5, these are

given in tables 8.2 and 8.3 respectively. Their mixtures are respectively denoted

as Nhom(mix) and Nsl3(mix). The former was used for all results in chapter 9.

• NN was run with 2000 samples generated using Σhom(4). HKMT index type

(Sec. 4.2.1.1) was used for searching as being compatible with all AMs and also

better performing overall (Sec. A.2.1.1). Parameters for HKMT were left to

their default settings in FLANN.

• PF was run with 500 particles using binary multinomial resampling method

[177] and first order compositional auto regression dynamic model.

• Several details of the SL3 stochastic sampler, apart from the Gaussian distribu-

tions, were also taken from [1] including the algorithms for computing the sam-

ple mean and applying first order auto regression. However, some other inno-

vations described there, such as optimal importance sampling and child/parent

particles, were not used.
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Table 8.4: Multiplicative (α) and additive (β) constants used for computing AM
likelihood (Eq. 4.22)

AM α β AM α β AM α β
SSD 5 0 SSIM 100 0 NGF 300 1
SCV 50 0 SPSS 1 0 CCRE 100 1
RSCV 50 0 RIU 1000 0 MI 1 0
LSCV 50 0 NCC 50 0 ZNCC 50 0

Table 8.5: Number of histogram bins used with MI and CCRE

FCLK ICLK ESM FALK IALK NN PF NNIC PFFC
MI 10 10 10 10 10 24 24 12 12
CCRE 16 12 16 16 16 24 16 12 16

• The 3 layer cascaded configurations of NN and PF (NN3 in Fig. A.6 and PF3 in

Fig. A.12) used Nhom(4) , Nhom(2) and Nhom(1) respectively in their first, second

and third layers. 5 layer NN (NN5 in Fig. A.6) used all 5 distributions in the

reverse order, i.e. the first layer had Nhom(5) and the last one Nhom(1).

• The results comparing SSMs with PF and NN (Fig. 9.27) were generated using

the same sampling technique as employed for generating the synthetic datasets

(Sec. 8.1.1) except that, instead of using a single distribution, the Gaussian

mixture technique (Sec. 4.2.1.2) was utilized to combine 5 distributions with σ

varying from 1 to 5.

• Likelihood values for PF were computed using the α and β values given in Table

8.4. These were estimated by evaluating a range of values (Sec. A.3.1) and

choosing the best performing one. Eq. 4.22 was used for computing likelihood

for all AMs except ZNCC where a slightly modified version taken from [99] was

used instead.

• Number of histogram bins for MI and CCRE used with the different SMs are

given in Table 8.5. These were chosen experimentally too (Sec. A.3.2). All

histogram bins were pre-seeded with 10 to avoid empty bins and the resultant

numerical instability [190]. Also, the partition of unity constraint [93] was

enforced by normalizing all pixel values to the range [1, nb − 2] where nb is the

number of bins.
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• SCV, RSCV and LSCV were used with 64 histogram bins instead of the con-

ventional 256 [95, 5] for stochastic SMs where speed is crucial. Experiments

indicated that the two perform similarly (Fig. A.20) with the former being

significantly faster to compute.

• As in [116], SSIM parameters were computed as C1 = (K1L)2 and C2 = (K2L)2

with K1 = 0.01, K2 = 0.03 and L = 255.

• OLTs (Sec. 9.3) were run using default settings provided by the respective

authors in their C/C++ implementations which have been integrated into MTF.

• Speed tests were performed on a 4 GHz Intel Core i7-4790K machine with 32

GB of RAM.

8.4 Summary

This chapter presented details of the real world and synthetic datasets as well as the

performance measures used for evaluating the trackers in this study. It also provided

a summary of the main configuration settings used for the modules that constitute

the trackers.
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Chapter 9

Results and Analysis

The results presented in this chapter are divided into three sections corresponding to

the three sub modules. In each of these sections, results are provided to evaluate the

performance of all methods considered for the respective sub module against several

combinations of methods for one or more of the other sub modules. Specifically,

section 9.1 compares the performance of different AMs with each SM while section

9.2 presents mostly these same results but from the perspective of comparing different

SMs with each AM. Both these sections only consider homography as the SSM since

similar comparative results were obtained with other SSMs too. Section 9.3, on the

other hand, compares different SSMs with each other using several combinations of

AMs and SMs. This is also where 2 DOF RBTs are compared with OLTs.

This chapter only includes results for the optimal configuration of each module

as specified in Sec. 8.3. Comparisons between other parameter settings have been

deferred to appendix A. Results for individual datasets are likewise in appendix B and

only the overall performance with all datasets combined is presented here. The first

two sections in this chapter end with a summary of important results (Sec. 9.1.3

and 9.2.4) so readers not interested in the detailed analysis of individual methods

can directly skip there. A concise summary of results from all three sections is also

included in Sec. 10.1 for readers only interested in the most important conclusions.

9.1 Search Methods

9.1.1 Gradient Descent Search

Fig. 9.1 and 9.2 show the performance of GD SMs over the real world datasets while

figs. 9.3 - 9.7 show it over the synthetic datasets. It may be recalled from Sec. 8.2
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Figure 9.1: Performance of AMs with FCLK, ICLK and ESM

that the values shown in the legend of each SR plot are the areas under the respective

curves.

Following are some observations that can be made from these results:

• FCLK, FALK and ESM perform best with NCC followed by RSCV, SSIM and

ZNCC. The superiority of NCC is worth noting considering that it is a fairly

simple and long known image similarity metric but still manages to outperform

newer, more sophisticated and computationally expensive AMs like MI, CCRE
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Figure 9.2: Performance of AMs with FALK and IALK

and NGF. The near identical performance of NCC and SSIM is probably to be

expected though, as their functional forms too are quite similar.

• CCRE and NGF are the two worst performing AMs with all SMs. CCRE is

slightly better in terms of FR and NGF with SR except with IALK which does

not work at all with this AM. This is rather surprising as these are also some

of the most complex and computationally expensive AMs. This can be best

explained by the relatively narrow basin of convergence that these AMs provide

(Fig. 5.9 and 5.13).

• It is worth noting that NGF was introduced as an improved alternative to MI

that, owing to its squared residual formulation that resembles that of SSD,

did not suffer from the latter’s shortcomings including narrow convergence re-

gion [111]. However, these claims do not seem to hold in practice, at least for

tracking.

• RSCV outperforms LSCV with FCLK, FALK and ESM while SCV does so
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Figure 9.3: Performance of FCLK over synthetic datasets - (a) without noise (b) with
noise and (c) with noise and illumination change

with ICLK and IALK even though LSCV is a newer and improved version that

supposedly handles localized illumination changes better. Also, this observation

holds true for all datasets combined as well as for each individual one (figs. B.1

- B.3) including PAMI that does contain many sequences with such lighting

changes.

• A clear role reversal can be observed between SCV and RSCV in their relative

performance with the forward and inverse SMs - SCV outperforms RSCV with

the inverse SMs by almost the same amount as it is outperformed by RSCV

with the forward SMs. Also, the two AMs perform almost identically with

ESM that combines both the forward and inverse methods (Sec. 4.1) - SCV is

slightly better in SR and RSCV in FR. This can be explained by the fact that

SCV replaces I0 with the expected patch E(It|I0) while RSCV replaces It with

E(I0|It). It can be recalled from Sec. 5.1.2 and 5.1.3 that the Jacobians used

by these AMs are only approximations since the expressions for the expectation
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Figure 9.4: Performance of ICLK over synthetic datasets - (a) without noise (b) with
noise and (c) with noise and illumination change

operator (Eqs. 5.5, 5.10) are not differentiable. Combined with the fact that

the inverse and forward SMs compute the image gradient ∇I from I0 and It

respectively, it seems that approximation in Eq. 5.2 is more accurate when the

expectation operator is applied to the same image from which the gradient is

computed.

• SPSS and SSD perform almost identically and only slightly better than CCRE

and NGF which is to be expected as both are simple pixel wise measures.

• Though ZNCC does perform similarly to NCC, the latter seems to be slightly

better overall, especially with the forward SMs. Assuming that minimizing the

SSD between normalized patches is equivalent to maximizing the dot product

between them [192], the opposite would be expected due to the wider conver-

gence region of ZNCC. It would thus appear that this equivalence does not hold

in practice.

• For synthetic datasets without illumination change (Fig. 9.3 - 9.6 (a),(b)), it
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Figure 9.5: Performance of ESM over synthetic datasets - (a) without noise (b) with
noise and (c) with noise and illumination change

seems that the performance of AMs for all SMs except IALK depends mainly

on their respective radii of convergence. As a result, simpler AMs like SSD and

SPSS perform at par with more sophisticated ones like NCC and SSIM and

the only ones that fare poorly here - MI, CCRE and NGF - are those that are

known to be deficient in this respect (figs. 5.8, 5.9 and 5.13).

• The introduction of noise does not impact the performance of any AM signif-

icantly with any of the SMs, indicating that all of them, even SSD, are well

capable of handling noise in real sequences.

• SCV and RSCV too perform notably worse than other AMs with three of the

SMs - FCLK, FALK and ESM - while LSCV does not. This confirms the

observation made in [5] that the affine mapping in LSCV (Eqs. 5.12, 5.13)

helps to increase the radius of convergence compared to the non linear mapping

in SCV and RSCV.

• The role reversal in the relative performance of SCV and RSCV between the
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Figure 9.6: Performance of FALK over synthetic datasets - (a) without noise (b) with
noise and (c) with noise and illumination change

inverse and forward SMs is present in synthetic tests too.

• IALK seems to favor L2 models over robust ones in these tests (Fig. 9.7 (a),

(b)). This behavior can be observed to a lesser extent in the real world datasets

too as this is the only SM where ZNCC outperforms NCC and other robust AMs

too perform relatively poorly with it. This might be due to the generalization

of Gauss Newton method for robust AMs using Ĥself being less valid with

additive SMs [93] though this explanation is somewhat undermined by the fact

that FALK performs just as well as FCLK with these AMs. It is possible that

the combined effect of the approximation in Eq. 4.9 and the one implicit in

Ĥself is responsible for this poor performance.

• NCC, ZNCC and SSIM prove to be the best equipped AMs to handle synthetic

illumination changes (Fig. 9.3 - 9.7 (c)) with FCLK, FALK and ESM. NGF

is the worst one here too, followed closely by SSD and SPSS. MI and CCRE

outperform the latter but, rather surprisingly, are still notably worse than the
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Figure 9.7: Performance of IALK over synthetic datasets - (a) without noise (b) with
noise and (c) with noise and illumination change

other AMs. For CCRE and NGF, it seems that the somewhat unstable nature

of these AMs prevents them from getting high SR with such a small tp. MI, on

the other hand, shows a sharp decline after σhom exceeds 4 which can probably

be attributed more to its narrow convergence region dominating its illumination

invariance. Finally, LSCV fares slightly worse than SCV and RSCV here even

though these sequences were specifically generated to have smoothly varying

localized illumination changes.

• RIU perform surprisingly well on synthetic datasets - both with and without

illumination changes - for all SMs except ICLK. It even works well with IALK

and is the only robust AM to do so. This is rather at odds with its performance

on real world datasets where it fared only marginally better than SSD.

• Both relative and absolute performance of AMs on synthetic datasets with ESM

(Fig. 9.5) is similar to that with FCLK (Fig. 9.3). This indicates that the higher

convergence rate of ESM that was claimed and theoretically proven to first order

130



0 5 10 15 20
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

Su
cc

es
s R

at
e

 

 

SSIM: 9.022
NCC: 9.172
MI: 9.657
SPSS: 7.819
SSD: 7.980
ZNCC: 8.424

0 5 10 15 20
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

 

 

RIU: 8.622
NGF: 6.070
CCRE: 9.758
SCV: 8.331
RSCV: 7.640
LSCV: 8.208

0

500

1000

1500

2000

2500

N
um

be
r 

of
 F

ai
lu

re
s

 

NN

(a)

0 5 10 15 20
0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

Su
cc

es
s R

at
e

 

 

SSIM:12.667
NCC:12.915
MI:13.728
SPSS:10.957
SSD:11.069
ZNCC:12.672

0 5 10 15 20
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75

Error Threshold
 

 

RIU:12.165
NGF:11.647
CCRE:11.701
SCV:12.784
RSCV:11.977
LSCV:12.546

0

200

400

600

800

1000

1200

N
um

be
r 

of
 F

ai
lu

re
s

 

NNIC

(b)

Figure 9.8: Performance of AMs with NN and NNIC

in [76] does not have much significance in practice even with synthetic data.

9.1.2 Stochastic and Composite Search

This section will present results for both stochastic SMs and composite ones created

by combining these in cascade with GD based SMs (Sec. 4.3). Note that the synthetic

plots for stochastic SMs have been generated using tp = 4 pixels instead of the usual

2 to compensate for the inherently imprecise nature of these SMs.

9.1.2.1 NN

Fig. 9.8 shows the performance of NN and NNIC over the real world datasets while

figs. 9.9 and 9.10 show it for the synthetic datasets. Following are some notable

observations:

• CCRE is the best performing AM with NN followed by MI in real world tests

(Fig. 9.8 (a)). This indicates that the poor performance of CCRE with GD
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Figure 9.9: Performance of AMs using NN over synthetic datasets - (a) without noise
(b) with noise and (c) with noise and illumination change

based SMs is more due to its narrow basin of convergence rather than any

inherent shortcoming in the similarity measure itself. The same applies to MI.

• When used with NNIC (Fig. 9.8 (b)), however, CCRE reverts to being one of

the worst performing AMs. It seems that the radius of convergence of CCRE is

too narrow for ICLK to converge even when a better starting point is provided

by NN.

• MI does not appear to suffer from this drawback and so ends up being the best

performing AM with NNIC and by a significant margin too. This is consistent

with the better performance of MI with ICLK - apparently its radius of con-

vergence is large enough for the coarse location provided by NN to lie within it

more often than not.

• SSIM and NCC perform fairly well here too - being just behind MI and CCRE.

• NGF continues to be the worst performing AM with both NN and NNIC sug-
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Figure 9.10: Performance of AMs using NNIC over synthetic datasets - (a) without
noise (b) with noise and (c) with noise and illumination change

gesting that, unlike MI and CCRE, this measure is intrinsically unsuitable for

tracking applications.

• SCV outperforms RSCV with both NN and NNIC which is consistent with the

observation made in the last section that it works well with SMs that search I0

for the optimal warp.

• Relative performance between AMs in synthetic tests is similar to that on the

real datasets though SSIM and NCC appear to have a slight edge here.

• The jagged nature of the synthetic plots for NN (Fig. 9.9) indicates the draw-

back of using a single distribution with stochastic SMs to track different types

of motion. Since all samples were generated using Nhom(4), these agreed bet-

ter with sequences corresponding to certain σsyn values than others. This in

turn caused NN to provide higher SR with these σsyn even if they are larger in

absolute terms than those that do not fit as well with the samples.
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Figure 9.11: Performance of AMs with PF and PFFC

• NNIC exhibits uneven performance in synthetic tests too (Fig. 9.10) though

the actual SR values are significantly higher here. This is a bit surprising as the

ICLK layer would have been expected to compensate for the dependence of NN

on the agreement between its samples and σsyn. It seems, however, that NN

does have a significant impact on the convergence rate of NNIC in the frame to

frame tracking that was used for synthetic tests. This might partially be due

to NN providing a worse starting point for some σsyn values and thus causing

ICLK to converge to a poorer optimum that it would have otherwise.

9.1.2.2 PF

Fig. 9.11 presents the performance of AMs with PF and PFFC over the real datasets

while figs. 9.12 and 9.13 show it for the synthetic ones. It may be recalled from Sec.

8.3 that the homography sampler with mixture distribution was used for all results.

Following observations can be made from these results:

• RSCV and ZNCC are the best performing AMs with PF (Fig. 9.11 (a)) followed

134



2 4 6 8 10
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Su
cc

es
s R

at
e 

w
ith

 th
re

sh
ol

d 
4.

00

 

 

SSIM: 7.399
NCC: 7.373
MI: 7.329
SPSS: 7.362
SSD: 7.390
ZNCC: 7.396

2 4 6 8 10
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

SSIM: 7.396
NCC: 7.375
MI: 7.349
SPSS: 7.366
SSD: 7.379
ZNCC: 7.393

2 4 6 8 10
0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

 

 

SSIM: 7.306
NCC: 7.319
MI: 7.250
SPSS: 6.221
SSD: 6.591
ZNCC: 7.342

PF − Synthetic
without noise

PF − Synthetic
with noise

PF − Synthetic
with noise and RBF

(a) (b) (c)

2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
uc
ce
ss
 
Ra
te
 
wi
t
h 
t
hr
es
h
ol
d 
4.
00

 

 

RIU: 7.347
NGF: 6.887
CCRE: 6.667
SCV: 7.351
RSCV: 7.377
LSCV: 7.396

2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

σ
syn

 

 

RIU: 7.361
NGF: 6.898
CCRE: 6.685
SCV: 7.336
RSCV: 7.367
LSCV: 7.373

2 4 6 8 10
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

RIU: 7.267
NGF: 6.756
CCRE: 6.432
SCV: 7.229
RSCV: 7.310
LSCV: 7.202

Figure 9.12: Performance of PF over synthetic datasets - (a) without noise (b) with
noise and (c) with noise and illumination change

by MI.

• RSCV continues the trend of performing well with forward SMs just as SCV

had done with NN, thus reaffirming that the two should respectively be used

with forward and inverse SMs.

• MI too continues to perform well with stochastic SMs to add weight to the

hypothesis that its relatively poor performance with GD based SMs is mainly

due to its narrow convergence region and not any inherent shortcoming as a

similarity measure.

• ZNCC may partially owe its good performance to the fine tuned likelihood

function and associated constants that were taken from [99]. As shown in Fig.

A.3.1, these have a very significant impact on the performance of PF and it

is possible that many of the AMs might be gotten to perform better by more

extensive fine tuning.
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Figure 9.13: Performance of PFFC over synthetic datasets - (a) without noise (b)
with noise and (c) with noise and illumination change

• The unexpectedly poor performance of CCRE in particular might be due to

insufficiently optimized likelihood constants though the best ones that could be

obtained given the time constraints were used.

• NGF is the worst performing AM with PF too which reiterates that it is not a

suitable AM for tracking applications.

• NCC and SSIM manage to outperform RSCV and MI with PFFC (Fig. 9.11 (b))

though not by a significant margin, showing, as with NNIC, a slight domination

of the FCLK layer in determining the performance of PFFC.

• CCRE performs even worse than NGF with PFFC which is consistent with its

poorer performance with FCLK too. Since the PF layer does not perform well,

its results provide even worse starting points for FCLK than the locations from

the last frame. As a result CCRE actually performs worse with PFFC than

FCLK (Fig. 9.1 (a)). This is one of the main downsides of cascade tracking -
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poor quality results from the first layer can end up causing the second layer to

perform even worse than it would by itself.

• PF does not exhibit the uneven character of NN in its synthetic results (Fig.

9.12) since the Gaussian mixture distribution Nhom(mix) used by it can generate

good samples for both small and large motions. The use of auto regressive

dynamic model also helps to gradually adapt samples to any given σsyn as more

frames from the corresponding sequence are processed.

• PF synthetic results show significantly smaller variation between AMs than all

SMs considered so far. This is especially true for sequences without illumination

change where NGF and CCRE are the only ones that stand out as being worse

than the rest. This agrees with the hypothesis that the limiting factor in the

performance of PF with many AMs is the likelihood function and the associated

constants (Sec. A.3.1) rather than the AM itself.

• PFFC manages to achieve near constant performance over all σsyn (Fig. 9.13).

Note that the y axes in the first two plots in Fig. 9.13 only extend to 0.95 so that

the decrease in SR with increasing σsyn is much smaller that it appears. Even

CCRE and NGF, though having less SR than others, show relatively constant

plots. This demonstrates the great utility of providing GD based SMs with

good starting points notwithstanding the drawback mentioned earlier.

• The relative performance between AMs on synthetic datasets is roughly the

same as on the real ones except that SPSS appears to be both the best performer

without illumination change and the worst one with it. The performance margin

is very small though, so this disparity is probably not significant.

9.1.2.3 LMS

As seen in Sec. 4.2.2, the two stochastic SMs based on indirect sampling - LMS and

RANSAC - share a significant portion of their approaches. Both methods involve

estimating the corresponding locations of a grid of points between two consecutive

frames by tracking a small sub patch around each, using random subsets of these

points to estimate the best fit warp using DLT and finally retaining the warp that

maximizes some measure of consistency when applied to all the points. They only

differ in the criteria they adopt for evaluating this consistency. Both SMs also be-

have very similar in practice as far as the relative performance of AMs is concerned.
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Figure 9.14: Performance of AMs with LMS and RANSAC

Their results are therefore not presented in separate sections; instead, they are first

compared with each other and only the better one is used for the composite SM.

Further, it turns out that four of the AMs considered in this study - CCRE, MI,

LSCV and NGF- are not suitable for tracking the grid of points, both because they

are far too slow (Fig. 9.19) for a set of these to be run simultaneously in real time and

their formulations do not work well with small sub patches. MI and CCRE need a

large and well textured region to compute reasonably discriminative joint histograms

and LSCV needs a large enough patch to compute multiple joint histograms from

corresponding sub patches. NGF too requires more texture information for its gra-

dient based approach to work. As a result, these AMs are not included here, though

NGF is shown in Fig. 9.14 to demonstrate the poor performance of these AMs.

Finally, two different variants of SSD are considered here - the standard one im-

plemented in MTF and one that is provided by the calcOpticalFlowPyrLK function

of OpenCV [235] and the latter is referred to as SSD-CV. According to its docu-

mentation, this function implements a pyramidal version of the original LK optical

flow algorithm [19] where the gradient is computed from the first image. It should
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Figure 9.15: Performance of AMs with LMES. SSD-CV/SSD and SSD-CV/NCC refer
to LMES trackers with SSD and NCC respectively being the AMs in the second layer
and SSD-CV in the first one.

therefore be identical to a pyramidal MTF tracker that combines ICLK with SSD

and translation. However, for some reason that has not been ascertained yet, the

OpenCV version consistently outperformed this tracker as well as all other AMs com-

bined not only with ICLK but FCLK and ESM (Sec. A.2.3.3). In fact, to the best

of the author’s knowledge, its performance establishes a new state of the art in high

DOF tracking, at least over the tested datasets. It seems that the OpenCV function

contains some optimizations not described in the paper in the way it implements its

pyramidal tracking. However, time constraints, coupled with its very dense imple-

mentation that contains assembly level code in places, have prevented this hypothesis

from being confirmed at the time of this writing.

Fig. 9.14 and 9.15 respectively present the performance LMS/RANSAC and

LMES over the real datasets while figs. 9.16 and 9.17 do so for the synthetic ones.

Following observations can be made therein:

• LMS performs notably better than RANSAC with all AMs in terms of SR. This

agrees with the results obtained in the context of image mosaicing too [182].

LMS has the added advantage of not requiring any parameters to be tuned

unlike RANSAC which needs a threshold to determine inliers. This might also

be one of the reasons behind the latter’s poorer performance as it is unlikely

that a single threshold will be optimal under all scenarios. These results were

generated using a re projection threshold of 5 pixels though experiments with

thresholds up to 50 did not present any significant difference in performance. It

is likely, however, that sequence specific settings will be needed to get optimal

139



2 4 6 8 10
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

Su
cc

es
s R

at
e 

w
ith

 th
re

sh
ol

d 
4.

00

 

 

SSD−CV: 4.212
SSIM: 4.157
ZNCC: 4.134
SSD: 4.166
RIU: 4.126

2 4 6 8 10
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

 

 

SSD−CV: 4.221
SSIM: 4.161
ZNCC: 4.139
SSD: 4.174
RIU: 4.125

2 4 6 8 10
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

 

 

SSD−CV: 2.794
SSIM: 4.042
ZNCC: 4.042
SSD: 2.926
RIU: 3.901

(a) (c)(b)

LMS − Synthetic
with noise and RBF

LMS − Synthetic
with noise

LMS − Synthetic
without noise

2 4 6 8 10
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

S
uc
ce
ss
 
R
at
e 
wi
t
h 
t
hr
es
ho
l
d 
4.
00

 

 

NCC: 4.147
SSS: 4.164
SCV: 4.104
RSCV: 4.106

2 4 6 8 10
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

σ
syn

 

 

NCC: 4.151
SSS: 4.179
SCV: 4.112
RSCV: 4.116

2 4 6 8 10
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

 

 

NCC: 4.064
SSS: 2.703
SCV: 4.037
RSCV: 4.022

Figure 9.16: Performance LMS on synthetic datasets - (a) without noise (b) with
noise and (c) with noise and illumination change

performance from RANSAC.

• RANSAC compares more favorably with LMS in terms of FR and is even slightly

better with robust AMs as well as with SSD. In practice, this means that

RANSAC gives somewhat less stable results than LMS - it moves around a

bit about the object’s actual location similar to the way direct sampling based

stochastic SMs do - but does not actually lose track completely. LMS, while

being more precise and stable as long as it tracks, is also slightly more prone

to failure. The main reason for this is that RANSAC can work with any ra-

tio of inliers while LMS only works correctly when at least half the points are

inliers. Therefore, when the underlying patch trackers fail in challenging sce-

narios, RANSAC is slower to lose track and so can sometimes avoid complete

failure if the cause of the challenge (occlusion, illumination change, etc.) is

removed and the patch trackers recover before it has drifted off. LMS, on the

other hand, loses track as soon as more than half the patch trackers have failed.
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Figure 9.17: Performance LMES on synthetic datasets - (a) without noise (b) with
noise and (c) with noise and illumination change

The case of SSD-CV is a bit harder to explain and has something to do with the

reason for the superior performance of this AM that is not yet fully understood,

as explained next.

• When used with LMS, SSD-CV is far better than other AMs especially in terms

of robustness, having less than half the FR of the next best AM and significantly

higher SR with larger tp. As mentioned earlier, the reason for this difference

between SSD and SSD-CV is not certain though results on individual datasets

(Fig. B.9) seemed to indicate that the improvement is mainly confined to

UCSB and LinTrack datasets where motion blur due to fast movement is the

main cause of tracking failures. It seems likely therefore that the pyramidal

implementation of SSD-CV is better than that in MTF since using the latter

did not improve results significantly (Fig. A.14 (c)).

• LMS and RANSAC show comparatively little variation between the AMs and

SSD is actually the best performer among the MTF AMs followed by SPSS.
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This suggests that simpler AMs are more suitable for tracking the small sub

patches which also makes more sense from the speed perspective as these are

usually also the fastest. Their superior performance is probably because, when

the tracked regions are so small and only need to be used to estimate 2 DOF

motion between consecutive frames, simple pixel wise measures can make better

use of whatever little texture information in available there and the illumination

invariance of more complex AMs is not much help with such short term tracking.

• ZNCC, though also a pixel wise measure and one of the best performers with

GD based SMs, turns out to be the worst one here after NGF. This reiterates

that illumination invariance in the sub patch trackers does not benefit these

SMs.

• LMES with SSD-CV in the first layer and ESM/NCC in the second one (termed

SSD-CV/NCC in Fig. 9.14 (c)) is the best performing configuration of this SM.

This is also the best performer among all tested trackers in this study in terms of

SR though LMS with SSD-CV has slightly lower FR. It is also worth noting that

replacing NCC with SSD in the second layer (SSD-CV/SSD in Fig. 9.14 (c))

leads to a significant drop in performance so that its SR becomes comparable

to MTF AMs and actually worse than LMS with SSD-CV. There are several

challenging frames with both fast motion and large illumination changes where

LMS manages to find the correct location but ESM with SSD fails even when

provided with this as the starting point. When used with NCC, however, ESM

takes advantage of this AM’s illumination invariance to converge correctly.

• LMS performs surprisingly poorly on synthetic datasets (Fig. 9.16). These

tests were repeated several times but the poor performance remained consistent.

Though the reason for this is not clear, it does point to the limitation of such

tests as predictors of real world tracking performance.

• LMES performs much better than LMS on synthetic datasets (Fig. 9.17) but

still not as good as PFFC. The relative performance of AMs is largely same

as in ESM with the notable difference of SCV being significantly worse than

RSCV - evidently LMES, unlike ESM, behaves more like a forward model than

a mixed one.
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9.1.3 Summary

Fig. 9.18 provides an overall summary of performance for all AMs with each SM so

that the best AMs for each SM can be determined at a glance. As in the previous

subsections, the overall performance of a tracker is measured by two numbers - the

average SR for 1 ≤ tp ≤ 20, which is equivalent to the areas under the respective

SR curves [234], and the number of failures or FR. These quantities are therefore on

the x and y axes of the scatter plots respectively. Since low FR and high SR are

desirable, the best trackers are near the bottom right corners of these plots while the

worst ones are near the top left.

In practice, tracking accuracy and robustness alone are often not sufficient criteria

for choosing the tracker for any given application. The tracker’s speed is also impor-

tant especially if it is to be a relatively small part of a larger system where its results

will be used by higher level modules and its speed will thus be a bottleneck. This is

true of many robotics applications like visual servoing and SLAM. As these are the

principal application domains for RBT, Fig. 9.19 presents the speed results for all

AMs and SMs as the final criterion for choosing the most appropriate tracker. The

mean and standard deviations shown there were computed using the average speeds

over all sequences and subsequences that the trackers were tested in. These speeds

only reflect the time needed for the tracker to process each frame - the time spent in

acquiring the frames and applying Gaussian filtering has been excluded.

It should be noted that the speed of any module is highly implementation de-

pendent and many of the speeds shown there can be increased significantly by more

optimized implementations. However, the relative speeds between different modules

are still largely valid for evaluating their comparative suitability for any application

as they have all been implemented with roughly the same degree of optimization. It

should be kept in mind, however, that some modules like PF, MI, CCRE and NGF

that are relatively slow here, are also more suitable for parallelization and their speeds

can be increased manifold this way.

Following observations can be made from these results, some of them being reit-

erations from the previous subsections:

• NCC is the best performing AM with all GD based SMs except IALK, usually

followed closely by SSIM and ZNCC. Considering that ZNCC is significantly

faster than both NCC and SSIM, it might offer a better compromise between

speed and accuracy than either.
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Figure 9.18: Performance summary for SMs. Best trackers are near the bottom
right corner of each plot.
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Figure 9.19: Speeds of AMs using different SMs with homography. Bars with solid
and dotted outlines respectively show the means and standard deviations of speeds
in frames per second (FPS) processed by the tracker. Legends show the means.
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• It is more difficult to choose a clear winner with IALK as many of the AMs are

clustered together near the bottom right - probably because IALK itself is the

limiting factor here rather than the AMs. ZNCC is one of the best candidates

here too, though, and, combined with the fact that it is also the fastest, this is

perhaps the optimal choice with IALK too.

• CCRE and MI are the best AMs with NN while MI is the best one with NNIC.

In terms of speed, though, ZNCC is by far the fastest, being over 5 times faster

than the next one and almost 200 times over MI/CCRE. Along with SSD, it is

also one of the fastest with NNIC. Since the number of samples has a significant

impact on the performance of NN (Fig. A.6), it might perhaps be a better idea

to use ZNCC with more samples rather than MI/CCRE with less, assuming

that initialization time is not crucial to the application as this increases linearly

with the number of samples.

• RSCV and ZNCC are the best AMs with PF while NCC and SSIM are so with

PFFC while there is not much to choose between them in terms of speed.

• SSD-CV is the best AM, by a large margin, with LMS and LMES while SSD

seems the best overall with RANSAC though NCC and SSIM do have higher

SR. In terms of speed, SSD-CV is by far the fastest due to its highly optimized

and parallelized implementation. It is worth noting that LMES with SSD-CV

is actually faster with NCC in the second layer than SSD, probably due to the

faster convergence of ESM with NCC.

• GD based SMs have much higher standard deviations than stochastic ones due

to their iterative nature since the number of iterations actually run varies widely

between frames.

• PF has the smallest standard deviations and also gives the truest indications of

the respective computational complexities of the AMs with the constraint that

Eigen optimizes certain matrix operations better than others.

• PF and PFFC are the slowest SMs but also highly parallelizable since the weight

of each particle can be computed independently. Efficient parallelization of this

SM is one of the extensions to MTF that are currently under development.
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• SSIM is about as much faster than NCC on average as it is poorer in accuracy

- the two aspects seem to compensate for each other well.

• SPSS is not significantly faster than SSIM with any of the SMs except perhaps

ICLK even though it has lower computational complexity. For PF and GD

based SMs, this is partly due to SSIM finding convergence in fewer iterations

and partly due to the way Eigen optimizes matrix multiplications. Many of

these are used for computing fssim and its derivatives while those of fspss have

to be computed pixel by pixel. The same holds for SSD too. For NN, SSIM

turns out to be amenable to have more of its computations performed within

the distance feature transform (Sec. 7.2.3) so that the functor fD is significantly

faster.

• IALK is not much faster than FALK with any of the AMs and is quite a bit

slower than ICLK. This behavior was shown only by the LM formulation - the

GN variant was significantly faster though still not as fast as ICLK. Also, SSIM

is one of the fastest AMs here, ahead of simpler ones like SSD and ZNCC,

probably because it needs fewer iterations to converge.

9.2 Appearance Models

This section only includes results for real world datasets to save space as the synthetic

results did not offer any new insights not available in the previous section.

9.2.1 L2 Models

Fig. 9.20 and 9.21 present the results comparing all SMs with L2 models. The plots

for SSD also include results for SSD-CV with LMS, RANSAC ad LMES. Following

observations can be made from these results:

• The four variants of LK do not perform identically. Though FCLK and FALK

are indeed evenly matched, both the inverse models are significantly worse than

these and also different from each other - IALK is better with all AMs in terms

of both FR and SR. It should be mentioned here that the situation is reversed

when using the GN formulation (Sec. A.1.1) since IALK improves a lot more

than ICLK on switching from GN to LM. It seems that the approximation of

Eq. 4.9 in practice leads to poor step sizes for updating p and LM compensates
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Figure 9.20: Performance of SMs with (a) SSD and (b) ZNCC

for this very well. This finding contradicts the equivalence between these vari-

ants that was reported in [25] and justified there using both theoretical analysis

and experimental results. The latter, however, were only performed on syn-

thetic images and even the former used several approximations. Therefore, it

is perhaps not surprising that this supposed equivalence does not hold under

real world conditions. A somewhat similar conclusion was also reached in [236]

though in the context of image registration.

• ESM fails to outperform FCLK/FALK for any AM except SCV and even there

it is probably the tendency of SCV to favor inverse models that is the main

reason for ESM being better. This hypothesis is given more weight by the fact

that ESM is just as much worse with RSCV as it is better with SCV. This fact

too emerges in contradiction to the theoretical analysis in [76] where ESM was

shown to have second order convergence and so should be better than first order

methods like FCLK and FALK. It might be argued that the extended version of

ESM [123, 3] used here might not possess the characteristics of the formulation
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Figure 9.21: Performance of SMs with (a) SCV (b) RSCV and (c) LSCV

described in [76] but experiments were conducted with that exact formulation

too and it was not found to perform significantly different from the one used

here.

• The gain in performance with NNIC compared to ICLK is more marked with

respect to FR than SR - the FR has been reduced by around half with all

the AMs. The same holds true to a lesser extent with PFFC and LMES when

compared respectively with FCLK and ESM. This is probably because the main
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Figure 9.22: Performance of SMs with (a) NCC (b) MI and (c) CCRE

advantage of providing a better starting point for GD search is to make the

tracker more robust by avoiding failures in scenarios like fast motion where the

object’s location from the last frame lies outside the region of convergence.

9.2.2 Robust Models

Fig. 9.22 and 9.23 present the results comparing all SMs with robust models. The

plots for NCC also include results for LMES with SSD-CV in the first layer. Following
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Figure 9.23: Performance of SMs with (a) SSIM (b) SPSS (c) RIU and (d) NGF
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Figure 9.24: Performance of ILMs using FCLK, ICLK and ESM

are some observations from these results:

• The first two observations in the previous section - non equivalence of LK vari-

ants and ESM not outperforming FCLK/FALK - are true here too.

• ICLK fares somewhat better against IALK with robust AMs that with L2 ones

- it is much better with CCRE and NGF and slightly better with MI, NCC and

SSIM. RIU is the only AM where it is notably worse for some reason. This is

consistent with the fact that the extension of GN method with Ĥself does not

make as much sense for additive SMs as compositional ones [93].

• The performance improvement provided by PFFC and NNIC over FCLK and

ICLK respectively is more strongly marked here than with L2 models especially

in terms of SR. In fact, PFFC with NCC nearly matches the new state of the

art provided by LMES with SSD-CV and proves to be the second best tracker

tested in this study.

• CCRE and NGF seem to favor inverse models as both ICLK and NN are overall

better than FCLK and PF respectively - a trend that becomes even more no-

ticeable when comparing NNIC with PFFC. This is somewhat surprising since,

being the worst performing AMs and so presumably harder to optimize, these

would be expected to work better with the more sophisticated forward models.

9.2.3 Illumination Models

Fig. 9.24 presents the results comparing all 3 ILMs with SSD using FCLK, ICLK and

ESM. NCC is also shown for comparison as it too provides illumination invariance
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like the ILMs. SSD is the only AM in MTF that currently supports ILMs so testing

is limited to this AM. As the simplest AM, SSD is also likely to be more sensitive

the addition of ILMs and so will demonstrate their impact better. A 3 × 3 grid of

control points was used for RBF and a 3×3 grid of sub patches for PGB. Experiments

conducted with resolutions ranging from 2× 2 to 6× 6 indicated that this works best

though the impact of resolution is not significant. Following points can be observed:

• GB does improve performance over SSD with all three SMs but fails to match

NCC with any of them.

• RBF improves further over GB, at least in terms of SR, and does manage to

perform as well as NCC with both ICLK and ESM. In terms of FR, however,

it outperforms GB only with ESM and has higher FR than both GB and SSD

with the other two SMs. This is probably because the 10 extra parameters that

need to be estimated make the search more likely to get stuck in local maxima,

thus causing the tracker to fail.

• The significantly lower FR of RBF with ESM finally lends some credence to

the supposedly superior convergence properties of this SM. In fact, ESM in

general seems to handle higher DOF ILMs better than FCLK which in turn

improves over ICLK. This seems to indicate that the advantage of using a more

sophisticated SM becomes more prominent as the dimensionality of the search

space increases, thus rendering the search more challenging.

• PGB performs worse than GB in terms of both FR and SR with all of the SMs.

Its poor performance is most notable with ICLK, where it is even worse than

SSD. It seems that the discontinuity between subregions that is inherent to this

ILM does not represent realistic lighting changes well and the disadvantageous

effect of the extra parameters dominates.

9.2.4 Summary

Fig. 9.25 provides an overall summary of performance for all SMs with each AM.

Speed results have been omitted here to save space. Following are some points to be

noted:

• PFFC is the best performing SM with most AMs especially if SSD-CV is ex-

cluded from consideration. There are three exceptions to this - SCV, CCRE and
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Figure 9.25: Performance summary for SMs. Best trackers are near the bottom
right corner of each plot.
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NGF - and they all perform best with NNIC. This is probably not unexpected

as all of these have been observed to favor inverse SMs in general.

• If SSD-CV is included, LMS and LMES are the best performers with SSD and

NCC respectively.

• ICLK, IALK and NN are among the worst performing SMs with most AMs.

The only notable exception is CCRE where PF and PFFC are the worst. This

is probably due to poor likelihood values rather than any flaw in these SMs

though.

• The fact that almost all the best performing SMs are composite ones proves the

efficacy of this approach and suggests that future research efforts be directed

towards improving these. There does not appear to be much scope for improv-

ing individual SMs as evidenced, for instance, by the failure of ESM, widely

considered the state of the art in GD based tracking, to outperform FALK that

was introduced 23 years before it.

• Conversely, the fact that all the worst performing SMs are inverse models, and

thus the fastest ones, confirms that speed comes at the cost of accuracy and

proofs to the contrary [67] do not hold in practice.

9.3 State Space Models

The results presented here follow a slightly different format from the last two sections

due to the difference in the motivations for using a low DOF SSM:

• Estimating lower DOF motion reduces the dimensionality of the search space of

p. This decreases the probability of the search process getting stuck in a local

optimum and thus makes the tracker more robust.

• Lower DOF SSMs tend to be faster with GD based SMs since their Jacobians

are less expensive to compute.

In order to examine the first point more closely, synthetic datasets were generated

with 2, 3, 4 and 6 DOF warping and containing both noise and RBF illumination

changes to make them more challenging. These were used for testing all the SSMs

and the corresponding results are given in Fig. 9.26. Results are only given for NCC
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Figure 9.26: Performance of different SSMs with FCLK and NCC on synthetic
datasets generated using 2, 3, 4 and 6 DOF warping and containing both noise and
illumination change.
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with three SMs - ESM, ICLK and LMES - though several other combinations were

also tested and all of them provided similar results. Following points can be noted:

• As expected, lower DOF SSMs do indeed perform better on all of these datasets

as long as the warp being estimated does not exceed their capabilities. The

best performing SSM on each dataset is thus the one that corresponds to the

DOF of the warping used for generating that dataset and performance decreases

monotonically as DOF of the SSM increases.

• Once the DOF of the dataset exceeds that of the SSM, however, there is a sharp

decrease in its performance, as would also be expected, and the performance

trend also reverses - now it is the higher DOF SSMs that perform better.

• Increasing the sophistication of the SM involved has practically no effect on the

results. This indicates that improved convergence properties or having a better

starting point do not help a tracker with higher DOF SSM work as well as one

with a lower DOF SSM in finding a warp corresponding more closely with the

latter.

• The performance of higher DOF warps actually improves as the DOF of the

synthetic dataset increases. Affine and homography, for instance, work best

with 6 DOF datasets followed by 4, 3 and 2 DOF ones. This is harder to

explain since any low DOF warp is a subset of all higher DOF warps. In other

words, a 2, 3 or 4 DOF warp is also a valid 6 DOF warp so that there seems no

obvious reason why a 6 DOF SSM should work better with the latter. It might,

however, indicate that, for any tracking scenario, using the SSM with the least

DOF that can accurately estimate the warping involved in that scenario, is to

be recommended.

The SSMs were also tested on the real datasets to assess the practical signifi-

cance of the synthetic results. There was an important difference in the evaluation

methodology compared to the last two sections in that lower DOF ground truths were

used for measuring the tracking error in order to make the evaluations fair. These

were generated for each SSM by using least squares optimization to find the warp-

ing parameters that, when applied to the initial object location, produce a warped

location whose alignment error EAL with respect to the full 8 DOF ground truth is

as small as it is possible to achieve given the constraints of that SSM. In most cases,
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Figure 9.27: Performance of SSMs using SSIM with different SMs. Results were
generated using optimized low DOF ground truth for each SSM.
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the ground truth locations thus generated represent the best possible performance

that can theoretically be achieved by any tracker that uses that SSM. In some rare

cases, however, the resulting corners were quite unexpected so they were also visually

inspected and any that appeared unreasonable were manually corrected. Fig. 6.1

shows some examples of low DOF ground truths.

Fig. 9.27 presents the results of these tests for SSIM with 8 SMs. ESM and ICLK

results also include the two alternate parameterizations of homography (Sec. 6.6,

6.7). It should be noted that the results for NN with homography are not the same

as those in the previous sections because a different sampler with mixture distribution

has been used here (Sec. 8.3). Since the performance of NN depends largely on the

quality of samples, the same sampling technique has to be used for all SSMs to ensure

fairness while comparing them. The homography sampler used by NN in the previous

sections (Sec. 6.5.1) cannot be used with lower DOF SSMs due to their inability to

accurately transform the normalized unit square into the object bounding box in

image coordinates. As a result, the sampling technique employed for generating the

synthetic datasets has been used instead, though now in a mixture distribution form.

Following are some interesting observations from these results:

• All three parameterizations of homography have practically identical perfor-

mance with both ESM and ICLK. This indicates that the theoretical justifica-

tion given in [76] for using ESM with SL3 has little practical significance.

• Unlike the synthetic tests, lower DOF SSMs do not perform better with any

GD or composite SM. On the contrary, all of these SMs, except perhaps NNIC,

generally show improvement in performance on increasing the DOF, at least

in terms of SR. The only partial exceptions with GD are affine and similitude

which do outperform homography for higher values of tp.

• Homography is by far the best with NNIC too but the remaining SSMs do not

exhibit any well defined pattern.

• The increased robustness of low DOF SSMs with GD based SMs is at least

partially apparent in the fact that their curves approach those of homography

as tp increases. Thus, though they may not be as precise as homography, they

do tend to be more resistant to complete drift. In fact, a general trend apparent

in the SR plots of high DOF SSMs, not only in Fig. 9.27 but also others seen

earlier, is that their SR does not continue to increase over the entire range of tp
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but flattens out after a certain point (often for tp < 10). Lower DOF SSMs, on

the other hand, tend to have more of an upward slope throughout. This results

from the fact that high DOF trackers follow the object very precisely as long

as they are working but once they fail, they do so quite abruptly rather that

drifting off gradually.

• Stochastic SMs do seem to be more favorable to lower DOF SSMs, particularly

similitude and affine. Both of these outperform homography and the former

is slightly the better one so that the expected behavior of performance im-

provement with decrease in DOF does hold for these 3 SSMs. Translation and

isometry, however, are notably worse than all of these SSMs.

• A clear disparity exists between the behaviors of stochastic SMs, especially PF

and LMS, and the corresponding composite ones, where the latter seem to favor

higher DOF SSMs. It seems that having a better starting point helps the GD

layer more with higher DOF SSMs. In other words, with the starting search

point sufficiently close to the optimum, the advantage of smaller search space

that lower DOF SSMs offer seems to lose its significance.

• Similtiude has the lowest FR as well as the highest SR for larger tp with all

SMs except PFFC and LMES, which, as observed in the last point, seem to

favor higher DOF models. Similitude seems to have just enough DOFs for most

practical scenarios, as exemplified in Fig. 6.1 for instance, while still being

sufficiently constrained to provide significantly more robust performance than

affine and homography.

• LMS shows the least variation between SSMs in terms of both SR and FR.

Isometry is the only SSM that is noticeably worse, especially in FR, possibly

because the DLT algorithm is not exactly valid for it due to its non linear

parameterization. The approximate approach of estimating similitude and then

dropping the scaling factor has to be used to obtain isometry warp using this

method [15].

• The overall conclusion seems to be that constraining the DOF only helps to

improve performance as long as the resulting SSM is flexible enough to provide

a reasonably close approximation of the true warp so that the corresponding

patch resembles the actual object well enough for a clear optimum to exist at
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this approximate location too. If the SSM is too constrained, its patch will either

include too much of the background or too little of the object patch whenever

the object undergoes complex motion. This in turn makes the optimum less

marked and so more difficult to find, especially for GD based SMs that depend

on the existence of a strong slope near the optimum to converge correctly. As

mentioned before, similitude exemplifies this conclusion well and seems like the

recommended SSM to use unless the object is expected to undergo unusually

complex motions like large out of plain rotations.

To examine the second reason for using low DOF SSMs, speed comparisons be-

tween them were also made and the results are shown in Fig. 9.27. Following points

can be noted:

• Significant differences in speed exist only for GD based SMs, especially ESM

and FCLK where the Jacobian has to be recomputed in each frame.

• Isometry has little advantage over similitude and is even slightly slower with

ESM. This is because of its non linear parametrization that needs relatively

costly sine and cosine computations to be performed to obtain both wiso and

its derivatives.

• CBH is predictably slower than standard homography since its gradient has to

be computed using the slow numerical technique (Sec. 6.7). Somewhat surpris-

ingly, however, SL3 is actually slightly faster even though it has to compute

the matrix exponential to update ps in each iteration. The reason for this is

not clear though it might be that SL3 occasionally finds convergence in fewer

iterations.

• Translation is the only SSM that seems notably faster with NN and PF. This

is probably because the DLT algorithm does not need to be run by the sampler

to convert point perturbations into samples of ps.

• LMS provides almost identical speeds with all SSMs indicating that the robust

estimation step is not the dominant factor in determining the speed of this SM.

Before this section is concluded, it is noted that limiting the DOF makes RBTs

directly comparable to OLTs as these too work in low DOF search spaces. As a

result, 2 DOF RBTs were also compared with nine state of the art OLTs described
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Figure 9.28: Speeds of SSMs with SSIM and different SMs.

in Sec. 2.1. The original C++ implementations of these trackers have been used

after fully integrating them into MTF. This not only makes it easy to reproduce the

results presented here and but also makes it reasonable to compare the speeds of these

trackers with RBTs since slower speed is one of the main reasons why OLTs are often

not used in robotics applications.

In addition to the four datasets used so far, the OLTs were also tested on the

VOT 2016 dataset [13] along with the state of the art in 2 DOF RBT as represented

by LMS and LMES. Since the ground truth annotations in this dataset are not very
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Figure 9.29: Comparing OLTs with SMs using translation SSM. SSIM was used as
the AM for all SMs except LMS where SSD-CV was used to demonstrate the state of
the art in 2DOF RBT. OLTs are shown with dotted lines and RBTs with solid ones.
All results were generated using 2 DOF ground truth.
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per second (FPS) processed by the trackers.
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Figure 9.31: Comparing OLTs with state of the art RBTs on VOT 2016 dataset using
Jaccard error

precise - indeed in most sequences it is not even possible to precisely represent the

object pose with a bounding box - the Jaccard error has been used instead of EAL

for measuring the tracking accuracy. This is equivalent to the inverse of the Jaccard

index or region overlap [237] and defined as:

EJAC = 1−
|r(track) ∩ r(gt)|
|r(track) ∪ r(gt)|

(9.1)

where r(track) and r(gt) are the image regions representing the tracker output and

the ground truth respectively. Since EJAC varies only from 0 to 1, a reinitialization

threshold of 0.9 was used for the FR plots.

Fig. 9.29 shows the performance of all SMs with translation compared against the

OLTs while Fig. 9.30 shows the respective speeds. Fig. 9.31 shows the results over

VOT 2016 dataset. Following are some interesting observations from these results:

• As expected, all the OLTs have low SR for smaller tp since they are less precise

in general [8]. What is more interesting, however, is that none of these trackers,

with the exception of Struck and DSST, managed to outperform even the sim-

plest of RBTs like ICLK and NN. Even DSST and Struck fall well behind the

state of the art in 2 DOF RBT as represented by LMS with SSD-CV. These re-

sults clearly demonstrate the unsuitability of OLTs for the kind of tasks present

in these datasets which represent the scenarios involved in robotics applications

like visual servoing fairly well.

• The speed comparisons in Fig. 9.30 show another reason why OLTs are not

suitable for tracking scenarios where speed is crucial - they are 10 to 20 times
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slower than RBTs except PF/PFFC for which an efficient implementation is

not yet available. It may be noted that DSST and KCF have much higher

standard deviations than other trackers since their speeds depend strongly on

the size of the initial bounding box and so varied widely between sequences.

However, the mean figures do provide a good idea of the general performance

that can be expected from these trackers. It is not surprising that tracking based

SLAM systems like SVO [238] use RBTs as they may need to track hundreds to

thousands of patches per frame - a feat that is clearly impossible with all but

the fastest of RBTs.

• The superiority of DSST and Struck over other OLTs is consistent with results

published elsewhere [8].

• GOTURN is by far the worst performer though considered to be the state of

the art in OLT [53]. This points to a fundamental difference in the types of

challenges involved in these two domains of tracking and shows why designing

trackers to perform well in one domain usually ends up compromising their

performance in the other.

• FALK and FCLK give identical performance which is to be expected as the two

formulations are identical for translation.

• LMS is far better than LMES since, as seen while analyzing Fig. 9.27, the GD

layer is likely to fail with lower DOF SSMs like translation even when the first

layer finds the optimal location if the corresponding patch does not represent

the object’s appearance well.

• NNIC and PFFC perform no better than NN and PF respectively. This lack

of difference between stochastic and composite SMs can be attributed to the

former not finding very good locations to begin with.

• LMS and LMES perform surprisingly well on VOT 2016 (Fig. 9.31) - they are

easily comparable to most of the OLTs and are in fact outperformed only by

DSST and Struck for tp < 0.5 which includes most cases where the tracking

result is actually close enough to the object to be useful for many applications.

In terms of FR too, LMS is outperformed only by MIL.
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• In contrast to Fig. 9.29, GOTURN is one of the better trackers here and is

mostly at par with MIL. The latter turns out to be the best tracker in terms of

FR though DSST and Struck are better with SR.

• FragTrack is one of the better performing trackers and easily outperforms several

of the newer and far more sophisticated trackers like KCF, CMT and TLD even

though it does not even employ any online learning.

9.4 Summary

This chapter presented results comparing different methods for implementing each

module in the proposed decomposition with several methods for the other two mod-

ules. Detailed analysis of these results yielded several new insights about these meth-

ods along with discovering a new state of the art in this domain of visual tracking.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

This thesis presented a novel method for decomposing registration based trackers into

three sub modules - SM, AM and SSM - respectively comprising the optimization

method, the similarity metric and the warping function. It also adapted three image

similarity measures - SSIM, RIU and NGF - as new AMs for high DOF tracking. A

simpler and faster variant of SSIM called SPSS was also introduced. These four AMs,

along with eight existing ones - SSD, ZNCC, SCV, RSCV, LSCV, NCC, MI, CCRE

- were tested comprehensively with twelve different SMs.

The SMs were divided into three categories - gradient based SMs including FCLK,

ICLK, ESM, FALK and IALK, stochastic SMs including NN, PF, LMS and RANSAC

and composite SMs created by running a stochastic and a gradient based SM in

cascade. Composite SMs were shown to combine the advantages of both of their

components to create a tracker that is more robust than the gradient based component

while also being more precise than the stochastic one. Three composite SMs were

considered - NNIC, PFFC and LMES created respectively by combining NN with

ICLK, PF wiih FCLK and LMS with ESM. The last two were introduced here for

the first time and shown to provide a new state of the art in high DOF tracking.

These AMs and SMs were combined with seven different SSMs - translation, isome-

try, similitude, affine, homography, SL3 and CHB - though detailed testing was mostly

done using homography since high precision tracking is the main focus of this work.

Nevertheless, the SSMs were also compared with each other as well as with state of

the art online learning and detection based trackers to better understand the impact

of this sub module on tracking robustness and accuracy.
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Trackers were tested using both synthetic sequences and four publicly available real

world datasets called TMT, UCSB, LinTrack and PAMI. These datasets provided over

100000 frames to ensure statistical validity of the results. This was further aided by

tracking each sequence from multiple starting points to fully test against all challenges

it offers, thus effectively increasing the frames to almost 600000. Detailed analysis

of the results was performed to gain several novel and interesting insights about the

strengths and weaknesses of these methods. This included many observation about

existing methods that were missing from their original papers.

Following are some of the more significant findings:

• LMES with SSD-CV in the first layer and NCC in the second is the best per-

forming tracker overall and establishes a new state of the art in high DOF

tracking.

• PFFC is the best SM with most AMs implemented within MTF and is only

slightly worse than the above tracker.

• NNIC is the best SM with three of the AMs - SCV, CCRE and NGF - that

consistently favored inverse SMs over forward ones.

• The fact that all three of the above are composite SMs indicates that this is a

promising direction for future research in this domain.

• The four variants of LK are not equivalent in practice and ESM is not better

than FCLK This shows that the theoretical proofs in [25] and [73] respectively

have little practical significance.

• NCC is the best AM with most SMs though SSIM is usually quite similar and

also much better than SPSS which is only at par with SSD.

• RIU performs fairly well and is comparable to SCV/RSCV on average. It is

particularly well suited to scenarios containing both illumination changes and

fast motion.

• NGF is one of the worst performing AMs and does not stand up to the theo-

retical advantages it supposedly offers over MI [111].

• CCRE and MI perform much better with stochastic SMs than GD ones. This

is most marked with NN and NNIC where these are respectively the best AMs

by large margins.
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• ILMs do improve over SSD but none are significantly better than NCC.

• Low DOF SSMs only outperform higher DOF ones as long as the actual warp

to be estimated does not significantly exceed their capabilities.

• Similitude is the most robust SSM with most SMs as well as the most precise

one with stochastic SMs, thus providing the best compromise between these

two metrics.

• The three parameterizations of homography perform identically with all SMs.

• OLTs track with much lower precision than even 2 DOF RBTs and none can

outperform the best of the RBTs in terms of robustness either. They are also

10-30 times slower than the faster RBTs.

Finally, and most importantly, a modular and highly extensible open source frame-

work for RBT called MTF was introduced to demonstrate the practical viability of the

proposed decomposition. MTF follows this decomposition closely through extensive

use of generic programming to provide a convenient interface where new methods for

any of the sub modules can be plugged in and combined with existing methods with

minimum effort. With its unified architecture, MTF is specifically designed to serve

as a robust experimental platform for combining diverse trackers to create novel com-

posite trackers that can overcome the shortcomings of their constituents. Further, its

highly efficient C++ implementation ensures that it can also be a practical solution

for robotics and augmented reality applications that need fast and precise tracking.

To this end, MTF has been designed to integrate well with popular libraries like ROS,

OpenCV and ViSP so it can be easily used with existing as well as future projects.

Finally, having all trackers tested here, including OLTs, implemented within MTF

makes it easy to reproduce the results.

10.2 Future Work

MTF is still a work in progress and offers several promising avenues of future exten-

sions for each of the sub modules. This includes the creation of novel composite SMs

especially those that, like LMS and RANSAC, run a large number of relatively simple

trackers simultaneously and combine their outputs to deduce the state of the tracked

patch with greater precision and robustness than any single tracker can possibly pro-

vide. A partially implemented work in this direction is the line tracker (Sec. 7.1)
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that does not work well yet and needs improvements including a more robust method

for estimating best fit lines and better constrains between different lines. This is a

simple example of using known geometrical constraints to detect and correct failing

trackers though other more complex ones can also be imagined.

One of the most potentially beneficial ways to improve AMs is the incorporation of

online learning to update the template. As mentioned in Sec. 7.2.2, MTF is designed

to support this and two related modules - DFM [188] and PCA [99] - already exist that

respectively utilize offline and online learning. They are both rather simple and out

dated, however, and more sophisticated learning methods need to be implemented,

especially those utilizing deep neural networks that have become popular in recent

years. Another aspect of AMs that needs work is the extension of ILMs with better

parameterization that can account for other sources of variations in the appearance

of the object patch such as motion blur and occlusion. Further, support for SPI has

only been implemented for SSD and NCC yet and needs to be added to other AMs

too. Finally, the AMs need to be adapted to handle multi channel images since,

as stated in Sec. A.3.3, the variants that exist currently merely concatenate pixels

from all channels into a single vector that is then processed as if originating from a

single channel image. These need to be improved to better utilize channel specific

information. A related extension is the ability to handle depth information from

3D cameras like Kinect whose increasing ubiquity may make this the easiest way to

improve tracking performance.

SSMs can be improved by using motion learning from annotated sequences to

generate better stochastic samples for SSMs. It has been seen in Sec. 9.1.2 that the

performance of stochastic SMs, as well as the corresponding composite ones, depends

largely on the quality of samples so any progress in this direction should definitely be

worthwhile. Addition of non rigid SSMs that can go beyond the basic planar projec-

tive transforms will also a useful extension though its application domain is somewhat

limited. Two such SSMs - Spline and TPS - are already partially implemented so

completing these would be the first step. SSMs that support 3D motion estimation

are also needed to complement the above mentioned extension of AMs with depth

information processing.

Several improvements are also needed in the implementations of existing methods

to make them one practically useful. For instance, slower methods like PF, MI,

CCRE, NGF and the grid tracker need to be efficiently parallelized for both multi

core CPU and GPU configurations.
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Appendix A

Experiments with Parameters

This appendix presents the results of experiments conducted to determine the optimal

parameter values that were used for the results reported in chapter 9.

A.1 Gradient Descent Search

Following parameters have been tested to fine tune the performance of SMs in this

category:

A.1.1 Hessian Type

This section compares the LM formulation of Ĥself (Sec. 4.1.2.1) with the simpler

GN approach. Fig. A.1 presents the results for FCLK and ICLK while Fig. A.2 does

so for IALK. ESM and FALK gave similar results as FCLK and so have been omitted.

Following observations can be made there:

• LM and GN are quite similar for most AMs with FCLK (Fig. A.1 (a), (b))

though LM seems slightly better overall. It is notably better with MI, ZNCC

and NGF while GN is only so with RSCV. This agrees well with the synthetic

results reported in [25] though they were only for SSD.

• This largely holds with ICLK too (Fig. A.1 (c), (d)), though several AMs -

SSD, SPSS, ZNCC and NGF - show more significant improvement here. The

large increase in SR with NGF for smaller tp is particularly noteworthy as being

indicative of the significantly greater stability of this AM with LM due to the

latter helping to compensate for the approximate Ĥself that has been used here

(Sec. 5.2.7). However, LM simultaneously exhibits higher FR as well as lower
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Figure A.1: Comparing GN and LM formulations of Ĥself with FCLK and ICLK
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Figure A.2: Comparing GN and LM formulations of Ĥself with IALK

SR for larger tp, both indicative of a decrease in robustness. This is probably

due to the somewhat high occurrence rate of false maxima in its function surface

(Fig. 5.13) which can guide updates to the LM δ in the wrong direction, thus

leading to failures in challenging scenarios.

• This is probably also the reason why RSCV performs so poorly with LM as its

surface is noticeably craggier (Fig. 5.4) than all other AMs.

• IALK gains a lot more from using LM than all other SMs and actually ends up

outperforming ICLK with most AMs. It would seem that the main reason for

its poor performance with GN is that the approximation in Eq. 4.9 leads to

poor step sizes and this is compensated well by LM.

A.1.2 Maximum Iterations

This is the maximum number of iterations that these SMs were allowed to run per

frame subject to the condition that the L2 norm of the change in tracker location
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Figure A.3: Effect of maximum iterations on FCLK and ICLK. Dashed, solid, and
dotted lines respectively show 10, 30 and 100 iterations.
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between consecutive iterations exceeded 10−4. Fig. A.3 shows the effect of this on

different AMs using FCLK and ICLK. The remaining SMs have been omitted as ESM

and FALK behaved similarly to FCLK while IALK was similar to ICLK. Following

observations can be made:

• FCLK seems to benefit somewhat more than ICLK on increasing the iterations

from 10 to 30 which is rather counter intuitive since ICLK, with it constant

Hessian, would be expected to need more iterations to converge. However, the

absolute performance of FCLK with 10 iterations is better than that of ICLK

with 30, and even 100, so it seems that more iterations do not help ICLK much

with finding convergence.

• Allowing more iterations than 30 only benefit FCLK significantly with MI and

ZNCC as far as the SR is concerned though the FR does decrease with most

AMs. This latter too is most significant for MI whose FR decreases by over

20%.

• Contrary to the first point, ICLK seems to improve more than FCLK on in-

creasing the iterations from 30 to 100. When combined with the earlier point,

this indicates that ICLK does indeed benefit from more iterations, as expected,

but also converges more slowly so that the gain in going from 10 to 30 is less

marked than with FCLK. Also, the decrease in FR is more marked than increase

in SR indicating that more iterations help mainly to improve robustness and

not precision.

• Though not shown here, ESM gave almost identical results as FCLK which

belies its supposedly faster second order convergence.

A.1.3 Sampling Resolution

As described in Sec. 3.1, this determines the number of pixels used for sampling

the object patch to be tracked. Increasing the resolution makes the function surface

of f smoother and thus helps these SMs converge better by reducing false maxima

resulting from sampling artifacts.. Fig. A.4 shows the impact of this parameter on

FCLK and ICLK. Remaining SMs have been excluded for the same reason as in the

last section. Following observations can be made:
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(d)

ICLK − Sampling
Resolution

Figure A.4: Effect of sampling resolution on FCLK and ICLK. Solid, dashed and
dotted lines respectively represent 25× 25, 50× 50 and 100× 100 resolutions.
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• CCRE is the only AM that improves significantly on increasing the sampling

resolution from 50×50 to 100×100 and also shows the largest improvement on

going from 25× 25 to 50× 50. It appears that the cumulative joint histograms

used by it benefit from having more pixels to work with. This is also indicated

by the fact that other AMs based on joint histograms - MI, SCV RSCV and

LSCV - show comparatively greater improvement on going from 25 × 25 to

50× 50 than others.

• NGF performs worse, in terms of both SR and FR, with 100 × 100 than both

25 × 25 and 50 × 50 even though denser sampling would be expected to make

the estimated gradients more accurate. It should be noted, however, that the

constant 2 used in the denominator of estimated gradients (Eq. 5.88) implies

that the neighboring sampled points are separated by a 1 pixel gap. This can

make the estimation less accurate when the patch size is less than the sampling

resolution which is true with 100× 100 for many objects in the datasets.

• As with iterations, most AMs show significantly greater improvement on in-

creasing the sampling resolution with ICLK than with FCLK. This probably

indicates a greater dependence of ICLK on the smoothness of f to find conver-

gence.

A.1.4 Pyramidal Tracking

This refers to the use of a Gaussian image pyramid to carry out tracking in a coarse

to fine manner [62] by first estimating a rough location in a downsized and blurred

image and then refining it in successively larger and sharper images. Fig. A.5 shows

the impact of pyramidal tracking on FCLK though other SMs gave similar results so

this can be taken as indicative of its effect in general. These results were generated

using 3 layers of Gaussian pyramid with a scaling factor of 0.5 between consecutive

layers. A sampling resolution of 100× 100 was used in the first layer though scaling

was also applied to this so that the second and third layers used 50× 50 and 25× 25

respectively. Experiments were also conducted using 50 × 50 in the first layer but

worse results were obtained with most AMs probably because the resultant 12 × 12

resolution in the last layer is too low.

It can be seen that pyramidal tracking does not improve SR with any AM except

RSCV and actually causes it to decrease with several of them. However, there does
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(b) FCLK −Pyramidal Tracking

Figure A.5: Effect of pyramidal tracking on AMs with FCLK

seem to be a slight improvement in FR with all but CCRE and NGF. This is rather

surprising as this technique has been widely considered as a good strategy to make

tracking perform better [19, 62, 15, 93].

A.2 Stochastic and Composite Search

A.2.1 NN

Following parameters have been tested for NN:

A.2.1.1 Index type

As described in Sec. 4.2.1.1, NN search can be performed using several index types

including those in FLANN - HKMT and KDT - and those implemented within MTF -

GNN and FGNN. KDT is only compatible with AMs whose distance measure fD can

be computed by accumulating the results of computations performed using individual

elements of the distance feature vector D(I) (Sec. 7.2.3). This is true for pixel wise
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(b) NN − Number of Samples

Figure A.6: Effect of (a) index types and (b) number of samples on NN.

measures including all L2 models and SPSS using D(I) = I. NCC too can be made

compatible by using D(I) =
I− µI

σI
where µI and σI are respectively the mean and

standard deviation of I. Then, fncc(I
∗, Ic) = −D(I∗)·D(Ic) which can be computed by

summing up the negative products of corresponding elements in the feature vectors.

For AMs that support KDT, FGNN too can be formulated using both KDT and

HKMT.

Fig. A.6 (a) presents the results comparing the index types with SSD, SSIM

and NCC. SSD can be taken as representative of L2 models and NCC/SSIM for the

robust ones. Since initialization time and runtime speed are also important criteria

for choosing the index type, these results are also reported in Fig. A.7. Note that

the total initialization time for NN also includes the time needed to build the dataset

of samples which is excluded here as being independent of the index type. Following

observations can be made:

• HKMT is the best performer with all the AMs in terms of both SR and FR

though GNN and FGNN are only slightly worse.
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• GNN and FGNN perform almost identically which indicates that using the exact

nearest neighbors while building the graph is not crucial to its performance and

approximate ones work just as well.

• With SSD, KDT is only marginally worse than the other index types which

might be an acceptable trade off for increase in speed since it is over four times

faster than GNN which in turn is four times faster than HKMT.

• With NCC, however, KDT performs very poorly and does not work at all.

Though not shown here, this behavior also holds with SPSS so it seems that

KDT only works well with L2 models.

• GNN is significantly slower to initialize than both HKMT and KDT which is to

be expected as the graph is very computationally expensive to build. FGNN is

not much faster either except when used with KDT which, as seen above, only

works well with L2 models.

• FGNN is faster than GNN at runtime with both NCC and SSIM - only marginally

with the former but over 3 times faster with the latter. This is unexpected as

FLANN search is only used while building the graph and might indicate that

GNN can actually converge faster when the graph is built using approximate

nearest neighbors. It should be noted, however, that FGNN is slower than GNN

with SSD so this advantage seems limited to robust AMs.

• GNN is over four times faster than HKMT with SSD but nearly as much slower

with NCC and SSIM. Coupled with the previous point, this suggests that graph

search finds convergence much faster with SSD than with the other two AMs.

• HKMT takes over 10 times longer to initialize with SSD than SSIM and NCC

though the absolute times are probably small enough to not matter in practice.

However, when combined with its slower runtime speed, especially as compared

to GNN, this might indicate that HKMT is not as well suited to SSD as SSIM

and NCC.

• To summarize, SSD (and other L2 models) should be used with KDT when

speed or initialization time is crucial and GNN/FGNN when accuracy is more

important. SSIM and NCC (and other robust AMs), on the other hand, work

best with HKMT.
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Figure A.7: Speeds and initialization times of NN index types. Only mean values are
shown.

A.2.1.2 Number of Samples

The performance of stochastic SMs depends largely on the number and quality of

samples used. NN in particular is very sensitive to these two variables since its samples

are generated only once. The quality thereof depends on how well the distribution

matches the actual motion and is hard to improve without prior knowledge of this

motion. The sample count, however, is only limited by the available computational

power and is the simplest way to improve the performance of these SMs. It is therefore

obviously a good idea to use as many samples as possible and not much information

can be obtained by examining the effect of this variable. However, its results are

included here for completeness since it plays such an important role in determining

the performance of this SM.

Fig. A.6 (b) shows the results with 1000, 2000 and 6000 samples. As expected,

all AMs benefit from having more samples in terms of both SR and FR. The degree

of improvement also seems fairly similar for all of them except perhaps SSD which

does not gain much by the increase from 2000 to 6000 samples. This might be due

to the limited discriminative ability of SSD itself forming a bottleneck.

A.2.1.3 Distribution Type

Fig. A.8 presents the results of using the mixture distribution with NN with equal

number of samples dawn from each constituent distribution. It can be seen that the

mixture method works quite well even without the stochastic distribution selection

process of PF. The gain in performance is much less marked here though and mostly

limited to a gain in precision.
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Figure A.8: Performance of NN with single and mixture distributions.

A.2.1.4 Number of Layers

As described in Sec. 4.2.1.1, one way to generate better quality samples is to run

multiple layers of NN in cascade, each with a different distribution, performing a

coarse to fine search. Two such arrangements with 3 and 5 layers were tested, referred

to as NN3 and NN5 respectively. NNIC was also tested with the former. Note that

the total number of samples used for all of these configurations were same as for

NN and were distributed evenly between the layers. Fig. A.9 presents the results of

these tests. Results for NN with 6000 samples are also included to demonstrate the

comparative importance of the number and quality of samples. Following observations

can be made:

• NN3 performs much better than NN with all the AMs. In fact, it performs even

better than single layer NN with 6000 samples even though the latter is 3 times

slower in practice. This proves that the quality of samples is more important

than their number. This makes sense since all samples from a given distribution

tend to cluster together in a small subregion of the search space so that having

more samples merely allows this subregion to be searched better. Samples from

multiple distributions, however, lie in different subregions so that even if each

one is less densely sampled, the overall search space is better represented.

• NN5 does not improve significantly over NN3 with any of the AMs and is even

slightly worse with SPSS and RIU. It may be recalled from Sec. 8.3 that the

overall range of perturbations produced by the distributions in the first and

last layers is similar for NN3 and NN5. The main advantage offered by the

latter is thus in providing a smaller step size in the change of distribution from
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Figure A.9: Effect of number of layers on NN and NNIC. NN3 and NN5 respectively
refer to 3 and 5 layers while NN3IC refers to a 4 layer cascade tracker with NN3 +
ICLK.

207



each layer to the next which should allow the successive refinement process to

be smoother and less likely to end up in false optima. It seems, however, that

the decrease in the number of samples per layer offsets this advantage and the

overall solution found ends up being of similar quality.

• The gain in performance with NN3 is just as strongly marked with 6000 samples

(Fig. A.9 (c)) as with 2000 which indicates that the advantage of covering each

subregion more densely does not diminish when more sub regions are being

covered. This is also suggested by the fact that the improvement in NN3 itself

by going from 2000 to 6000 samples is as large as with NN.

• NNIC hardly benefits from having 3 layers of NN (Fig. A.9 (d)), thus indicating

that the solutions found by NN3 are not significantly better from the perspective

of allowing ICLK to find convergence where it fails to do so with NN.

A.2.2 PF

Following variables have been tested for PF and PFFC:

A.2.2.1 Sampler Type

Two different 8 DOF samplers have been tested in this work (Sec. 8.3) - one for

homography that uses normalized corner based sampling (Sec. 6.5.1) and the other

for SL3 that directly generates samples for ps. The former is inspired from [98] while

the latter is taken unchanged from [1]. The mixture distribution approach has been

used for both samplers and they are thus denoted as Nhom(mix) and Nsl3(mix). Fig.

A.11 presents results comparing these. Following points can be noted:

• For all AMs except CCRE and SCV,Nhom(mix) has higher SR for smaller tp while

Nsl3(mix) is better with larger tp. The latter also has lower FR so this seems to

be the more robust of the two though also less precise. The distributions used

for this sampler were fine tuned for tracking sequences in the LinTrack dataset

as well as several in PAMI and, as a result, this sampler performs much better

on these sequences. As these are also some of the hardest sequences to track

and often lead to tracking failures, the higher robustness of this sampler is to

be expected. None of the distributions were designed for tracking fine motion,

however, which explains its lower precision.
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PFFC − Homography vs SL3
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Figure A.10: Comparing Homography and SL3 samplers with PF and PFFC
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• For CCRE and SCV, Nhom(mix) has much higher SR for all values of tp as well

as significantly lower FR.

• Nhom(mix) was chosen as the default because of its greater consistency as well

for having the higher average SR and fairly similar FR with most AMs.

• Notwithstanding their close performance with PF, Nhom(mix) performs much

better the Nsl3(mix) with PFFC in terms of both SR and FR. It seems that

FCLK values precision more than robustness in the starting points that help it

converge better. This was another reason for choosing Nhom(mix) as the default.

A.2.2.2 Number of Particles

Fig. A.11 (a) presents results for 250, 500 and 1000 particles. As expected, perfor-

mance improves with more particles though the gain seems somewhat less marked

here than with NN. This is partly because of the mixture distribution and partly

because new particles are generated in each frame, both of which can allow more of

the search space to be covered with fewer particles.

A.2.2.3 Distribution Type

This section compares the performance of individual distributions in tables 8.2 and

8.3 with the respective mixture distributions. Fig. A.11 (b) and (c) present the

respective results. It can be seen that the mixture distributions for both samplers

perform roughly as good as the best of their constituents for each value of tp so that

their SR curves almost form an enveloping upper bound for those of the individual

distributions. This proves that the stochastic mixture technique proposed in Sec.

4.2.1.2 is indeed effective in choosing the best distribution for each scenario.

A.2.2.4 Optimum Estimation Method

This refers to the method used for combining the resampled particles to estimate

the optimum state. The iterative mean estimation method for SL3 sampler [1, algo-

rithm 1] is the only one known to the author so this was compared with the simpler

alternative of choosing the state of the particle with the maximum weight as the opti-

mum. Fig. A.11 (d) presents the results. It can be seen that choosing the maximum

weighted particle provides similar performance as the mean estimation method and
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(d)

PF/SL3 − Optimum
Estimation

Figure A.11: Effect of different variables on the performance of PF: (a) number of
particles (b) homography distributions (Table 8.2) (c) SL3 distributions (Table 8.3)
(d) optimum estimation method. All results were generated without subsequences.
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PF − Number of Layers

Figure A.12: Effect of number of layers on PF. PF3 refers to a 3 layer cascade.

is even better with most AMs for larger tp. As this is also faster than the latter, this

seems like the better alternative.

A.2.2.5 Number of Layers

Fig. A.12 presents the results of 3 layer PF with Nhom(4), Nhom(2) and Nhom(1) in

individual layers compared against single layer PF with Nhom(mix). The former does

seem to be more robust, having lower FR as well as higher SR for larger tp though

the difference is much smaller than with NN. Also, its average SR is lower with

four of the AMs and very similar with the remaining two. This, coupled with its

significantly lower precision with 3 of the AMs, rules it out as the clear winner. It

can be concluded that the mixture approach is overall just as effective as the cascade

one, with the former having a slight edge in precision and the latter in robustness.

A.2.2.6 Automatic Reinitialization

This section evaluates the performance of the automatic failure detection and reini-

tialization technique described in Sec. 4.3 as one of the ways to take advantage of

running multiple trackers in cascade. Fig. A.13 presents the results for both PFFC

and NNIC. Following observations can be made:

• The benefit of auto reinitialization is mainly confined to SR which is surprising

since the main idea behind its design is to reduce the number of failures by

automatically detecting them.

• The gain in SR is more strongly marked with NNIC than PFFC. Also, it is the

poorer performing AMs like SSD and SPSS that benefit most with both SMs.
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PFFC − Auto Reinitialization

(b)

Figure A.13: Effect of auto reinitialization (Sec. 4.3) on NNIC and PFFC

In fact, NCC and SSIM actually show a decrease in SR with PFFC. This seems

to indicate that auto reinitialization helps more with less robust trackers which

also makes sense as these are the ones more likely to fail, thus providing the

reinitialization module with more opportunities to detect and correct these.

A.2.3 LMS

Following parameters have been tested here:

A.2.3.1 Grid Resolution

This determines the number of point correspondences used by the robust estimation

step and thus also the number of trackers needed for generating these. It would

intuitively seem that having more point correspondences would help to find a better

solution but, as shown in Fig. A.14 (a), increasing the resolution beyond 10×10 does

not produce any improvements in performance. Results are only shown for SSD and

NCC but also hold for remaining AMs. Since the speed of this SM varies inversely
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(d)

Figure A.14: Effect of (a) grid resolution, (b) sub patch size, (c) search method and
(d) number of iterations on LMS
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Figure A.15: Impact of failure detection with forward backward error on LMS and
LMES. SSD-CV results are shown for both 10× 10 and 20× 20 grid resolutions.

as the square of the grid resolution, the lowest possible value is to be recommended

and thus 10× 10 seems like the best choice.

A.2.3.2 Sub patch Size

This is the size of the sub patch around each point in the grid from where pixels are

used to track that point. In this work, this is also equal to the sampling resolution

used by the corresponding tracker. It was suggested in [19] that this should be larger

than the actual motion of the point between consecutive frames. While a 10 × 10

patch might be enough to satisfy this criterion, it has been seen in Sec. A.1.3 that

GD type SMs do perform better with more pixels. It would therefore be expected

that larger patch sizes should work just as well if not better. As shown in Fig. A.14

(b), this is indeed so with sizes up to 25 × 25 but increasing beyond that leads to a

decrease in performance.

It should be kept in mind that, in smaller objects, portions of the sub patches

lying near the boundaries of the object patch are more likely with larger sub patch
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sizes to extend outside the object into the background and thus be more prone to

failure. In general, larger patch sizes are beneficial as long as the object is large

enough to accommodate them. This happens to be not true for a majority of objects

in the tested datasets, which therefore perform worse with 50× 50.

A.2.3.3 Search Method

This is the SM used by the sub patch trackers and also includes the use of pyramidal

tracking. AMs in MTF were tested with the three compositional SMs, both with

and without pyramidal tracking, while SSD-CV was only tested for the impact of the

latter as it does not provide any way to change the SM. Results of these tests are

given in Fig. A.14 (c). Following observations can be made:

• SSD-CV performs significantly worse without pyramids and is in fact even worse

than SSD. This seems to confirm the hypothesis that the reason for the superior-

ity of SSD-CV over MTF AMs has something to do with the way its pyramidal

tracking is implemented.

• ESM is slightly better than FCLK which in turn outperforms ICLK, though the

difference is much smaller in terms of SR than FR.

• Pyramidal tracking improves performance too but, as with SMs, the improve-

ment is more marked with FR than SR. It is also not as significant as that for

SSD-CV so that none of the MTF trackers manage to match SSD-CV even with

pyramids.

A.2.3.4 Number of Iterations

This is the maximum number of iterations that the robust estimation step is allowed

to perform. Since this decides the number of candidate warps that will be evaluated

to find the one with maximum consistency, it is, in a sense, equivalent the number

of samples/particles used by NN/PF. It would therefore be expected that allowing

more iterations would help to find a better solution with a consequent improvement in

performance. It turns out, however, that in practice the number of iterations actually

used by both LMS and RANSAC rarely exceeds 10 and almost never goes over 100.

The results in Fig. A.14 (d) confirm this as showing marginal improvement from 10

to 100 but none beyond that.
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A.2.3.5 Forward Backward Error

This method was used in the median flow tracker [35] to automatically detect tracking

failures by comparing the trajectories obtained by tracking forwards and backwards

in time. In the present context, this can be used to detect points where the tracking

(or optical flow estimation) has failed before these are passed to the robust estimation

step. The points are first tracked from the previous to the current frame and then,

starting from the resulting locations of this forward tracking, they are tracked back

to the previous frame. If the tracker at a given point succeeded, the final location

of the backwards tracking step would be very similar to the starting location of the

forward step. As a result, all points where the L2 norm of the difference between the

two locations exceeds a threshold can be declared as failures and excluded from the

robust estimation step. This method can serve to complement the outlier detection

provided by the latter.

Fig. A.15 shows the impact of forward backward error estimation with LMS

and LMES. An error threshold of 1 was used for these results but thresholds of 0.5

and 2 were also tested and gave similar results. It can be seen that SSD-CV shows

greater improvement than the MTF AMs which actually show a slight decrease in

performance with LMES - evidently this method works better when the optical flow

estimation itself is more accurate. In challenging situations, this method can lead

to a large fraction of points getting excluded from the robust estimation step. It

would therefore be expected that having more points to begin with might improve

the probability that enough points are left for this step. Results do validate this to a

certain extent as the improvements in SSD-CV are slightly more marked with 20×20

grid than 10×10 especially in terms of SR and more so for LMES than LMS. Though

small, these gains are still significant as improving a tracker that is already the best

one tested in this work.

A.2.3.6 Failure Detection and SPI

As described in Sec. 4.3, these are two further ways to take advantage of cascade

tracking. Failure detection is similar to the one in automatic reinitialization (Sec.

A.2.2.6) except that, instead of reinitializing the tracker, the output of the GD layer

is discarded and that of the LMS layer is used instead under the assumption that it is

more robust. SPI uses the outliers detected by the robust estimator to turn off pixels

in the GD layer, assuming that outliers correspond to difficult to track patches which
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Figure A.16: Effect of (a) failure detection using LMES and (b) SPI using LMS with
SSD-CV in the first layer and various SMs/AMs in the second layer.

would probably cause the GD tracker to fail too. This can only work when the LMS

grid resolution is equal to the sampling resolution of the GD tracker. Since SSD-CV

is the only AM fast enough to run LMS with a 50× 50 grid, SPI has only been tested

with this. All three compositional GD SMs have been tested in the second layer

though only with SSD and NCC as these are the only AMs in MTF that currently

support SPI.

Results for both techniques are in Fig. A.16. It can be seen that failure detection

does not improve performance either in terms of SR or FR. On the contrary, it is

notably worse with most AMs except perhaps SSD and RIU where it has higher SR

for larger tp. SPI too has no significant impact on the performance of any of the

combinations of AMs and SMs.
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Figure A.17: Effect of likelihood α on the performance of NCC and SCV with PF
using both homography and SL3 samplers. All results have been generated without
subsequences.

A.3 Appearance Models

This sections presents results for experiments conducted to determine the optimum

likelihood constants for all AMs as well as the effect of number of histogram bins on

SCV, MI and CCRE. It also shows the benefit of using RGB images.

A.3.1 Likelihood Constants

Fig. A.17 and A.18 present likelihood results for most of the AMs. The α value for

ZNCC was taken from [99] while those for RSCV and LSCV were set to be same as

SCV since they have a similar range of f . Tests were conducted with both homography

and SL3 samplers and, as seen with NCC (Fig. A.18 (a)), SCV (Fig. A.18 (b)) and

NGF (Fig. A.17 (d)), they were found to perform similarly, so results for only one

sampler are given for the remaining AMs. There is not much to be observed from

these plots except the great impact that α can have on the performance of PF. This in
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Figure A.18: Effect of likelihood α on the performance of AMs with PF. The additive
factor β is 0 for all AMs except CCRE and NGF where it is 1. All results have been
generated without subsequences.
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Figure A.19: Lf with optimal α plotted against x and y translations
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Figure A.20: Impact of the number of histogram bins on the performance of SCV
with FCLK and NN. All results were generated without subsequences.

turn suggests that more exhaustive experiments might be able to provide better values

than used here, especially for AMs like CCRE and NGF that performed so poorly

with this SM. Attempts were made to understand the possible theoretical reasons

behind these results by comparing the likelihood function surfaces for different α

values. However, no definite patterns were apparent except that PF seems to prefer

likelihood functions with relatively sharp optima as shown in Fig. A.19.

A.3.2 Number of Histogram Bins

Fig. A.20 and A.21 present the histogram bin results for SCV, MI and CCRE. SMs

excluded here were found to perform similar to one of the included ones from the

same category - for instance FCLK and PF gave similar results with CCRE as ESM
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Figure A.21: Impact of the number of histogram bins on the performance of MI and
CCRE with various SMs. All results were generated without subsequences.
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and NN respectively. Both PF and NN results are given for MI to demonstrate this.

Following observations can be made:

• SCV does not improve significantly on using more than 64 bins (Fig. A.20).

Though FCLK does show a slight decrease in FR with 128 and 256 bins, it is

definitely not worth the significant decrease in speed it leads to, particularly

when 100 of these have to be run simultaneously in LMS.

• MI shows significant difference in behavior between the SMs - FCLK, ICLK

and NN respectively work best using 10, 16 and 24 bins (Fig. A.21 (a)). This

proves that the convention of using 8 bins that is usually adopted in literature

[203, 190, 90, 92] is not justified in practice and only SM specific experiments

can determine the optimal.

• CCRE too exhibits similar behavior as MI and performs best using 16, 12 and

32 bins respectively with ESM, ICLK and NN (Fig. A.21 (a)).

• Performance of NNIC with CCRE seems to be determined mostly by the ICLK

layer as this too works best with 12 bins. Though not shown for MI, a similar

behavior was seen there too.

• The large performance differences produced by varying the bins shows the great

impact that this often neglected parameter can have on both MI and CCRE.

A.3.3 Multi Channel Imagery

This section evaluates the impact of using RGB images instead of gray scale ones. The

support for multi channel images in MTF is currently limited to simple concatenation

of pixel values from all channels into a single vector that represents the patch, i.e. It

has 3 times the number of pixel values with RGB than with gray scale images (e.g.

7500 at a sampling resolution of 50× 50).

Results are presented in figs. A.22 and A.23. LinTtack dataset was not included

for generating these results since it only contains gray scale images (Sec. 8.1). FCLK

and FALK gave similar results as ESM while IALK was similar to ICLK so these

SMs have been excluded. PF and PFFC have also been omitted as the increase in

the size of It also alters the range of values of f for most AMs. This in turn requires

the likelihood constants to be readjusted for optimal performance and makes direct

comparison with the gray scale variant difficult. Following are some observations:
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ESM − RGB vs Grayscale
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(b)

ICLK − RGB vs Grayscale
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(c)

NN − RGB vs Grayscale
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(d)

NNIC − RGB vs Grayscale

Figure A.22: Performance of AMs using RGB images with (a) ESM (b) ICLK (c) NN
and (d) NNIC .
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(a)

LMS − RGB vs Grayscale
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(b)

LMES − RGB vs Grayscale

Figure A.23: Performance of AMs using RGB images with (a) LMS and (b) LMES.

• Most AMs do benefit from the use of RGB images though the improvement is

most strongly marked in AMs that employ joint histograms - MI, CCRE and

SCV. This is consistent with the results in Sec. A.1.3 where these same AMs

benefited most from higher sampling resolutions.

• The improvement cannot be attributed entirely to the extra pixels, hoverer,

since RGB images seem to produce a larger gain than 100 × 100 resolution

even though the latter provides more pixels. This indicates that the extra

discriminative ability afforded by color information does have practical benefits.

• The improvement in CCRE with GD based SMs is particularly noteworthy - it

actually becomes ones of the better AMs and almost at par with MI.

• Decrease in FR is more strongly marked than increase in SR for most SMs

except perhaps NN where the reverse seems to hold. NN is also the SM where

the improvements is most consistent across the AMs.
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Appendix B

Results on Individual Datasets

This appendix presents results for all SMs and ILMs over individual datasets to

highlight the differences in performance ensuing from the varied challenges that these

offer. Results for AMs have been excluded to save space as they did not provide any

insights not present in the SM results.

B.1 Search Methods

Fig. B.1 - B.10 present results for all SMs except FALK that has been excluded as

being very simlar to FCLK. PF results B.7 also include plots for the SL3 sampler

to demonstrate the impact of using fine tuned distributions. Following are some

noteworthy observations from these results:

• All trackers perform best on TMT which is the easiest dataset to track as

offering no significant illumination changes and very few sequences featuring

other challenges like motion blur and occlusion. This is followed by PAMI

and UCSB which are increasingly harder while LinTrack proved most difficult

to track by far. This latter is mainly because of the very long lengths of its

sequences which cause a tracker to be penalized heavily if it loses track near

the beginning at one of the several frames that feature motion blur due to jerky

motion. This is indicated by the comparatively sudden plateauing of the SR

curves of all GD based SMs at around tp ≈ 4 unlike the other datasets where this

process is smoother. This happens when the trackers fail suddenly at a certain

frame rather than drifting off gradually as the sequence gets more challenging.

• RIU is one of the best performers on UCSB with FCLK (Fig. B.1 (b)) and
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(c)

FCLK − LinTrack
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FCLK − PAMI

(d)

Figure B.1: Performance of different AMs with LM formulation of FCLK on individual
datasets
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(a)

ICLK − TMT
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ICLK − LinTrack
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ICLK − PAMI

(d)

Figure B.2: Performance of different AMs with LM formulation of ICLK on individual
datasets
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(a)

ESM − TMT
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Figure B.3: Performance of LM formulation of ESM over individual datasets
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IALK (Fig. B.4 (b)) and one of the better AMs with ICLK and ESM too. Its

relatively wide convergence region and invariance to global illumination changes

(Fig. 5.12) evidently help it with the main challenges in this dataset.

• CCRE and NGF perform much better on TMT with ESM and ICLK than FCLK

though not on the remaining datasets. This may indicate that, like SCV, these

two AMs favor inverse SMs too, though this is less evident with these AMs due

to their significantly poorer performance in general.

• LSCV performs better on PAMI with ESM (Fig. B.3 (d)) than with any other

SM. This might be partially due to the fact that PAMI contains several se-

quences with localized intensity changes of the sort that LSCV was designed to

handle well. Also as several of these sequences were created for testing ESM

with ILMs [84, 77, 85, 140], they may have been chosen by the respective authors

to work well with this SM.

• NGF is one of the best performing AMs on PAMI with NNIC (Fig. B.6 (d)) in

terms of SR though its FR is comparatively higher, as is usual with this AM.

• NN performs better on LinTrack (Fig. B.5 (c)) than all other GD and stochastic

SMs. This is hard to explain as NN is generally the least robust SM against fast

motion which is the primary challenge in this dataset. It is also worth noting

that SSIM and RIU are the best performing AMs here, ahead of both MI and

CCRE that are the best in all remaining datasets.

• NNIC with MI is one of the best performing trackers on LinTrack (Fig. B.6 (b))

along with LMES and PFFC. MI is also much better than all other AMs here.

This serves as a good demonstration of the great and sometimes unexpected

performance improvements that can be achieved by combining diverse trackers

into a composite one. Each of the constituents of this tracker - NN, ICLK

and MI - are susceptible to failure in the presence of fast motion, yet their

combination creates a tracker that excels on sequences offering precisely this

challenge.

• PF performs much better on LinTrack with Nsl3(mix) than Nhom(mix) (Fig. B.7

(c)). This is also true to a lesser extent for UCSB but not for TMT and

PAMI. This shows the great impact that fine tuning the distribution for a

specific sequence can have on the performance of this SM. The SL3 distributions
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IALK − UCSB
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(c)
IALK − LinTrack

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Su
cc

es
s R

at
e

 

 

SSIM: 5.055
NCC: 5.143
MI: 6.171
SPSS: 4.995
SSD: 5.283
ZNCC: 5.845

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Error Threshold

 

 

RIU: 5.189
NGF: 0.636
CCRE: 3.719
SCV: 6.641
RSCV: 5.416
LSCV: 5.911

0

200

400

600

800

1000

1200

N
um

be
r 

of
 F

ai
lu

re
s

 

IALK − PAMI
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Figure B.4: Performance of IALK with LM Hessian on different datasets
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Figure B.5: Performance of AMs with NN on individual datasets
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Figure B.6: Performance of AMs with NNIC on individual datasets
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used here (Table 8.3) were designed specifically for sequences in the LinTrack

dataset [1] among a few others and so have a significant advantage over the

general purpose homography distributions. UCSB too offers many of the same

challenges as LinTrack so these seem to work well there too. As expected,

though, this advantage is non existent in general scenarios as represented by

the other two datasets.

• PFFC works best on UCSB dataset with RIU (Fig. B.8 (b)) which shows

again that RIU has a distinct advantage with scenarios containing both fast

motion and global illumination changes. Further, SSIM is the best AM with

LinTrack and the second best with UCSB showing that this too can outperform

the generally better NCC in challenging scenarios. Finally, MI is the best AM

on PAMI which may be indicative of its ability to handle localized illumination

changes better.

• The advantage of SSD-CV over MTF AMs with LMS is clearly limited only

to UCSB and LinTrack datasets (Fig. B.9 (b, c)). As fast motion is the ma-

jor challenge in both datasets, this adds more weight to the hypothesis that

it is some difference in the implementation of pyramidal tracking that is the

underlying cause of this advantage.

• The nature of the SR curve of LMS/SSD-CV on both these datasets and par-

ticularly LinTrack, where it increases almost linearly with tp, suggests that this

tracker does not actually track the objects precisely at all. It manages to remain

in the vicinity of the object without losing track completely but does not find

the actual pose that is needed for many applications. This is of course a well

known disadvantage of stochastic SMs and serves as a further motivation for

using these as parts of composite SMs rather than by themselves.

• The related fact that LMS performs so poorly on these datasets with all other

AMs indicates the strong dependence of this SM on the performance of the

underlying sub patch trackers. It may also be noted that SSD and SPSS are

actually the most robust among MTF AMs on these datasets. This seems to

indicate that these trackers handle fast motion better with simpler pixel wise

AMs which may partly be due to their wider convergence regions. Also, the

smallness of their patches and the fact that they only track between consecutive

frames means that the illumination invariance properties of more sophisticated
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Figure B.7: Performance of AMs with PF on individual datasets
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Figure B.8: Performance of AMs with PFFC on individual datasets
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Figure B.9: Performance of AMs with LMS on individual datasets.
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AMs are of little help, especially as they come at the cost of reduced convergence

radius.

• Among MTF AMs, SSD is the best performer with LMES on UCSB and Lin-

Track (Fig. B.10 (b), (c)). This is followed by SPSS, at least in terms of

robustness. In conjunction with the superiority of SSD-CV, this confirms the

previous observation regarding the suitability of simpler pixel wise measures for

the sub patch trackers in LMS.

• LMES with SSD-CV works much better on LinTrack and marginally better on

UCSB when NCC is used in the second layer. This indicates that, unlike the

sub patch trackers in LMS, the full patch tracker in this layer does benefit from

NCC even in the absence of significant illumination changes. As NCC is also the

best AM on both TMT and PAMI, its advantage in general tracking scenarios

is evident too.

B.2 Illumination Models

Fig. B.11 presents results comparing ILMs with SSD and NCC over individual

datasets. Following are some observations:

• Relative performance of the ILMs on individual datasets is mostly consistent

with their overall performance (Fig. 9.24) both with respect to each other and

to the two AMs.

• RBF with ESM does manage to outperform NCC on PAMI though only by a

small margin. Considering that PAMI contains a large number of sequences

with localized illumination changes designed specifically for testing ILMs, it

would have been expected to perform better. It seems, however, that NCC can

handle these challenges almost as well as RBF.

• As in the combined results (Fig. 9.24), RBF performs more favorably against

NCC with ESM than FCLK and ICLK on each of the four datasets too. This

strengthens the supposition that ESM can handle higher DOF ILMs better than

the other two SMs.

• RBF appears to outperform NCC on LinTrack but all models perform so poorly

there that such a lead probably is of little significance.

238



0 5 10 15 20
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Su
cc

es
s R

at
e

 

 

SSD−CV/SSD:14.040
SSIM:15.081
ZNCC:15.089
SSD:14.045
RIU:14.634

0 5 10 15 20
0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

 

 

SSD−CV/NCC:15.638
NCC:15.553
SPSS:14.039
SCV:14.989
RSCV:15.352

0

50

100

150

N
um

be
r 

of
 F

ai
lu

re
s

 

LMES − TMT

(a)

0 5 10 15 20
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

Su
cc

es
s R

at
e

 

 

SSD−CV/SSD:12.205
SSIM: 8.730
ZNCC: 8.296
SSD: 9.966
RIU: 9.193

0 5 10 15 20
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

 

 

SSD−CV/NCC:13.272
NCC: 8.551
SPSS: 9.218
SCV: 7.722
RSCV: 8.745

0

50

100

150

200

250

300

N
um

be
r 

of
 F

ai
lu

re
s

 

LMES − UCSB

(b)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Su
cc

es
s R

at
e

 

 

SSD−CV/SSD: 8.856
SSIM: 4.010
ZNCC: 3.934
SSD: 4.208
RIU: 3.897

0 5 10 15 20
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

 

 

SSD−CV/NCC:14.056
NCC: 3.739
SPSS: 3.682
SCV: 3.016
RSCV: 4.127

0

20

40

60

80

100

120

140

160

180

N
um

be
r 

of
 F

ai
lu

re
s

 

LMES − LinTrack

(c)

0 5 10 15 20
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

Su
cc

es
s R

at
e

 

 

SSD−CV/SSD: 7.641
SSIM:11.239
ZNCC:10.488
SSD: 7.520
RIU: 8.895

0 5 10 15 20
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

 

 

Error Threshold

SSD−CV/NCC:10.856
NCC:11.353
SPSS: 7.813
SCV: 8.394
RSCV:10.663

0

50

100

150

200

250

N
um

be
r 

of
 F

ai
lu

re
s

 

(d)

LMES − PAMI

Figure B.10: Performance of AMs with LMES on individual datasets.

239



0 5 10 15 20
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Su
cc

es
s R

at
e

 

 

GB/FCLK:14.810
SSD/FCLK:13.852
NCC/FCLK:15.358
GB/ICLK:13.629
SSD/ICLK:12.542
NCC/ICLK:14.327
GB/ESM:14.865
SSD/ESM:13.791

0 5 10 15 20
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

 

 

RBF/FCLK:14.845
PGB/FCLK:14.562
RBF/ICLK:14.500
PGB/ICLK:12.994
RBF/ESM:15.000
PGB/ESM:14.505
NCC/ESM:15.273

0

50

100

150

200

250

N
um

be
r 

of
 F

ai
lu

re
s

 

Illumination Models − TMT

(a)

0 5 10 15 20
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Su
cc

es
s R

at
e

 

 

GB/FCLK: 7.967
SSD/FCLK: 7.173
NCC/FCLK: 8.316
GB/ICLK: 6.398
SSD/ICLK: 6.695
NCC/ICLK: 7.895
GB/ESM: 8.102
SSD/ESM: 7.965

0 5 10 15 20
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

RBF/FCLK: 7.665
PGB/FCLK: 7.582
RBF/ICLK: 7.069
PGB/ICLK: 5.980
RBF/ESM: 8.544
PGB/ESM: 7.566
NCC/ESM: 8.402

0

50

100

150

200

250

300

350

400

N
um

be
r 

of
 F

ai
lu

re
s

 

Illumination
Models − UCSB

(b)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Su
cc

es
s R

at
e

 

 

GB/FCLK: 3.602
SSD/FCLK: 3.586
NCC/FCLK: 4.128
GB/ICLK: 1.053
SSD/ICLK: 0.638
NCC/ICLK: 1.038
GB/ESM: 2.846
SSD/ESM: 2.646

0 5 10 15 20
0

0.05

0.1

0.15

0.2

 

 

RBF/FCLK: 3.001
PGB/FCLK: 3.001
RBF/ICLK: 0.868
PGB/ICLK: 0.861
RBF/ESM: 3.249
PGB/ESM: 2.250
NCC/ESM: 2.683

0

100

200

300

400

500

600

N
um

be
r 

of
 F

ai
lu

re
s

 

(c)

Illumination
Models − LinTrack

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Su
cc

es
s R

at
e

 

 

GB/FCLK: 7.705
SSD/FCLK: 6.578
NCC/FCLK: 9.380
GB/ICLK: 5.777
SSD/ICLK: 5.087
NCC/ICLK: 6.296
GB/ESM: 7.632
SSD/ESM: 6.264

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Error Threshold
 

 

RBF/FCLK: 8.293
PGB/FCLK: 6.526
RBF/ICLK: 5.585
PGB/ICLK: 4.663
RBF/ESM: 8.813
PGB/ESM: 7.049
NCC/ESM: 8.598

0

50

100

150

200

250

300

350

400

N
um

be
r 

of
 F

ai
lu

re
s

 

(d)

Illumination
Models − PAMI

Figure B.11: Performance of ILMs on individual datasets
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