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The Nonlinear Evolution of Field Line Resonances 

in the Earth's Magnetosphere 
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Canadian Network for Space Research, University of Albena, Edmonton, Alberta, Canada 

Magnetohydrodynamic, field line resonances in the Earth's magnetosphere can have very large velocity shears 
and field-aligned currents. Auroral radar measurements of high-latitude resonances indicate that the velocities 
associated with the resonances in the E and F regions are often substantially greater than 1 knVs, and that the fre- 
quencies are in the interval from 1 to 4 mHz. Assuming that these resonances are oscillating at the fundamental 
mode frequency, and mapping these velocity fields along magnetic field lines to the equatorial plane shows that 
the velocity shears in the equatorial plane are of the order of 200 km/s over a radial distance of less than 2000 km 
(the amplitude of the velocity fluctuations is 100 knVs). Using a three-dimensional magnetohydrodynamic com- 
puter simulation code, we show that the resonances evolve through the development of Kelvin-Helmholtz insta- 
bilities near the equatorial plane. Within this framework, the instability is taking place on dipole magnetic field 
lines, and the resonances form a standing shear Alfv6n wave field due to the boundary conditions which must be 
satisfied at the polar ionospheres. We find that the nonlinear evolution of the Kelvin-Heimholtz instability leads 
to the propagation of vorticity from the equatorial plane to the polar ionosphere and that the vorticity leads ulti- 
mately to the dissipation of the resonarw•. This occurs within a quarter wave period of the shear Alfv6n field 
associated with the resonances. 

INTRODUCTION 

The coupling of compressional, magnetohydrodynamic (MHD) 
waves to shear Alfv6n waves leads to the formation of field line res- 

onances (FLRs) in the Earth's magnetosphere [Southwoo& 1974, 
Chen and Hasegawa, 1974]. The growth of these resonances and 
the maximum amplitudes of the electric and magnetic fields within 
the resonances are limited by dissipation in the ionosphere [Allan 
and Poulter, 1989] and possibly by linear mode conversion to kinet- 
ic Alfv6n waves or electron inertia waves [Hasegawa, 1976, Go- 
ertz, 1984]. Hollweg and Yang [ 1988] have also suggested that the 
velocity shear in Alfv6n resonances might lead to the formation .of 
Kelvin-Helmholtz instabilities (KHI), giving an effective eddy vis- 
cosity and dissipation of the MHD resonance. Samson et al. [ 1992a] 
have speculated that vortex structures in ionospheric F region flows 
associated with FLRs might he a manifestation of the nonlinear 
evolution of the FLR, leading to the KHI in the equatorial plane. 

Much of the velocity shear in magnetospheric flows comes from 
large-scale magnetospheric convection, for example, within the 
low-latitude boundary layer. There is, however, a second mecha- 
nism for producing regions with strong shear and field aligned cur- 
rents (FACs) in the inner magnetosphere. The coupling of 
compressional MHD wave energy to shear Alfv6n waves in a non- 
uniform magnetoplasma gives oscillating vorticity and FACs within 
the magnetosphere [Southwoo& 1974, Chen and Hasegawa, 1974], 
and forms FLRs on dipolelike field lines.These field line resonances 
are often seen in the high-latitude ionosphere [Walker et al., 1979; 
Ruohoniemi et al., 1991; Samson et al. 1992a]. In the equatorial 
plane of the magnetosphere, the fundamental mode of the FLRs has 
a perturbation magnetic field node and corresponding velocity field 
and electric field antinodes. At the conjugate ionospheres, the ve- 
locity and electric field have nodes and the wave magnetic field has 
an antinode. Thus the largest velocity shears occur on closed mag- 
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netic field lines in the equatorial plane of the magnetosphere. Walk- 
er [ 1980] has shown that the FLRs observed in the high-latitude E 
region of the ionosphere can have equatorial fluid velocities of the 
order of 80 km/s. 

A class of very low frequency FLRs which are seen in the high- 
latitude ionosphere and magnetosphere have quantized frequencies 
of approximately 1.3, 1.9, 2.6, and 3.5 mHz. These resonances are 
thought to originate from the mode conversion of cavity mode com- 
pressional MHD waves. Compressional waves produced by the so- 
lar wind propagate antisunward in an MHD cavity which is 
produced by the waves reflecting from their turning points at the 
magnetopause and on dipole field lines close to the Earth [Samson 
et al., 1992b]. A field line resonance is excited when the compres- 
sional wave couples to a shear Alfv6n wave just Earthward of the 
turning points located on dipolar field lines; see Figure 1. The FLRs 
are seen on the nightside on field lines threading the auroral oval 
[Samson et al., 1992a]. These nightside FLRs often have associated 
with them very strong velocity shears near the ionosphere, typically 
greater than 1 km/s in a 20- to 50-kin latitudinal interval, and rela- 
tively large FAC, near 5gAm -2. The resonances often evolve into 
localized vortices, particularly during substorm intensifications 
[Samson et al., 1992a]. Figure 2 shows observations of a vortex 
structure that grew within or near to a 1.3-mHz FLR situated at 
70.5 ø latitude. On the diagram the velocity vectors are shown with 
the y axis representing magnetic north (latitude), and the x axis 
magnetic east (east magnetic longitude). The velocity map shows 
the view that would he seen in the northern hemisphere looking in 
the direction of the geomagnetic field. Using the FLR model pre- 
sented by Walker [ 1980] we find that the velocity shear in the FLRs 
at the equatorial plane must he on the order of 200 km/s over a m- 
dial distance of less than 2000 kin. These estimates for the velocity 
shear are also in close agreement with those of Mitchell et al. 
[ 1990], who observed FLRs associated with Pc 5 pulsations in data 
obtained during ISEE 1 and 2 satellite trajectories through the outer 
dawn magnetosphere. They located the FLRs at an equatorial radius 
of approximately 10.SR E (consistent with estimates made by Sam- 
son et al. [1992a, b] ) and identified periods for the waves of ap- 
proximately 8 min. The vortices seen in the high-latitude 
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Fig. 1. The MHD waveguide in the equatorial plane of the Earth's magneto- 
sphere. Mode convsion of compressional MHD waves to shear Alfv6n 
waves couples energy to field line resonances at the positions indicated. The 
n=l, 2, 3 modes have frequencies of 1.3 mHz, 1.9 mHz and 2.6 mHz, re- 
spectively. 

ionosphere may indicate that the FLRs are nonlinearly unstable. 
Possibilities include the nonlinear KHI [Hollweg and Yang, 1988] 
due to velocity shears near the equatorial plane, and unstable mag- 
netic field shears near the ionosphere [Hallinan, 1976]. 

One aspect of auroral dynamics that the studies of these FLRs 
might help to clarify, concerns the vortex structures that are seen in 
plasma flows in the auroral regions and in auroral emissions. The 
auroral magnetosphere and ionosphere often have plasma flows in 
which strong shears and vorticity are present. These flows can lead 
to the dynamical evolution of vortex structures and localized vortex 
cells. For example, the vortex cell shown in Figure 2 was associated 
with a substorm intensification and the formation of an auroral 

surge [Samson et al., 1992a, b]. This figure shows the evolution of 
E region flows as measured by the Canadian Bistatic Auroral Radar 
[Samson et al., 1992b] just after the initiation of a substorm inten- 
siftcation. A 1.3-mHz FLR was situated at 70.5 degrees PACE lat- 
itude just prior to the breakup. The vortex cell in this example was 
observed to evolve out of the velocity fields associated with the 
FLR. Vortex structures are also seen in the form of curls, folds, and 

spirals in the ionospheric auroral forms produced by precipitating 
energetic electrons. Hallinan and Davis [ 1970] and Davis and Hal- 
linan [1976] classified small-scale (order of 1 km) structures as 
curls, and large-scale structures (100 km or more) as spirals. Halli- 
nan [1976] has suggested that curls may be formed in the velocity 
shears associated with auroral arcs, whereas •pirals might be due to 
instabilities in current sheets. Seyler [1990] has considered the ef- 
fects of finite electron inertia in the evolution of small-scale auroral 

structures and has concluded that collisionless tearing and recon- 
nection of magnetic field lines might play a role in the evolution of 
these structures. A number of other plasma configurations can also 
lead to the nonlinear evolution of localized vortex structures. For 

example, Shukla et al. [1985] have shown that drift and shear 
Alfv6n waves are coupled in a nonuniform magnetoplasma and that 
the nonlinear equations describing the coupling contain solitary 
vortex solutions. 
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Fig. 2. E region drift velocities measured by the Canadian Bistatic Auroral Radar on December 8, 1989. The coordinates on the map 
are PACE geomagnetic coordinates [Baker and Wing, 1989]. (a) 0650:30 UT, (b) 0651:00 tiT, and (c) 0651:30 tiT. 
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In the present article, our primary objective is to determine 
whether FLRs with the observed velocity fields and azimuthal scale 
lengths might be no. nlinearly unstable to the KHI in the equatorial 
plane of the magnetosphere.The formation of KH instabilities could 
play a role in dissipating the energy in FLRs and in the evolution of 
some of the vortex cells seen in the high-latitude electric fields, par- 
ticularly the vortex structures seen during intervals with substorm 
intensifications [Samson et al., 1992a]. There are other possible 
nonlinear effects which might play a role in the evolution of FLRs, 
including large FACs near the ionosphere, ponderomotive forces 
[Allan et al., 1991], and the alpha-effect electromotive force [Nami- 
kawa and Hamabata, 1988]. These latter three nonlinear effects 
should not be present in our computational model. 

In order to study nonlinear KHIs associated with FLRs, we have 
set up a computer simulation which uses a three-dimensional MHD 
code to follow the evolution and propagation of vorticity, from its 
source near the equatorial plane of the magnetosphere, to the region 
in the high-latitude ionosphere where it is observed. Our results in- 
dicate that the nonlinear KHI near the equatorial plane is likely the 
dominant mechanism leading to vortex structures in the resonances. 
We expect the instability to be localized to the equatorial plane for 
two reasons. First, the velocity shear is always a maximum there, 
and second, the wave magnetic field associated with the FLR is al- 
ways a minimum in the equatorial plane. In the two directions per- 
pendicular to the equatorial plane, the magnetic field of the Affvtn 
.resonance will always have a stabilizing effect on the instability. We 
do not expect the KHI to grow near to the polar ionosphere. Instead, 
the vorticity generated by the instability in the equatorial plane will 
propagate to the ionosphere in the form of shear Alfvtn waves. The 
FLRs we are interested in have wave periods of roughly a thousand 
seconds, and thus the propagation time to the ionosphere is of the 
order of a few hundred seconds. We shall show that the KHI evolves 

on a time scale significantly shorter than this, and consequently the 
ionosphere should play little role during the evolution of the insta- 
bility. 

A MODEL FOR NONLINEAR FIELD LINE RESONANCES 

The nonlinear evolution of field line resonances can be investi- 

gated within the framework of the one fluid MHD equations de- 
scribed below, 

•p 
+V. (pv) = 0 (1) 

•)t 

pv+V* (pvv)+V P+4x x(Vx B) = 0 (2) 

c3B Vx IvxB •Vx B 1 0 (3) •}t 

•_:p. E+ PVo v + Vo (pEr) + q j2 = 0 
ot 

(4) 

to eliminate the internal energy per unit mass in favor of the pres- 
sure P. The following evolution equation for the pressure then 
results, 

-- +3,V. (Pv)-(3,-1) .V P- (Vx B) = 0 
•)t 16x2 

(6) 

The system of equations (1)-(3), and (6) consist of eight nonlinear 

coupled partial differential equations for the unknowns p, p v, B, 
and P. They are solved numerically using techniques to be 
described below. 

In order to gain an understanding of the structure of the FLR, as 
well as the starting point for the numerical solution of equations (1) 
through (6), we consider first of all the linearized form of the equa- 
tions. Assuming that the plasma is inhomogeneous in the x direc- 
tion, and that the ambient flow and resistivity are zero, we can 
derive from equations (1)-(6) the following vector wave equation 
for the perturbed velocity u, 

po•)7 - V (3,PoV* u + u * V Po ) 
1 

+•-•(Vx (UXBo))XVxB o 
1 B +4•: oXVX(Vx (UXBo)) =0 (7) 

In deriving the above equation, pressure balance has been as- 
sumed in equation (2), and quantifies with subscript zero refer to 
unperturbed values. Equation (7) can be solved assuming uniform 
magnetic field lines along z, with perfectly reflecting boundaries 
(i.e., conducting ionospheres) at z = :I:L z. The boundary conditions 
at the ionospheres imply that the solutions will be composed of 
standing modes along z with wavenumber kz=mrd2L z, for 
m=0,1,2 ..... etc. The symmetry about the z=0 plane permits' asym- 
metric and symmetric solutions. Since the difference between these 
solutions lies only in the location of the nodes and antinodes along 
z, we choose to consider the symmetric solutions, for which u x has 
an antinode at z=0. The linearized version of equations (1), (3), arid 
(6) imply that we can use a Fourier cosine series along z for p, p, Ux, 
uy, and b z, and a Fourier sine series for u z, bx, and by (for asymmet- 
ric modes the order would be reversed). Fourier transforming equa- 
tion (7) in time and in the homogeneous spatial dimension y, and 
substitution of the appropriate Fourier series in z reduces the vector 
wave equation to a scalar equation in the Fourier amplitude u x 
[Chen and Hasegawa, 1974], 

These equations describe conservation of mass p, momentum pv, 
magnetic induction B, and internal energy per unit mass E, respec- 
tively. Equation 4 can be rewritten in terms of P and B by using 
Ampere's law to eliminate the current density J, and the ideal gas 
equation of state, 

P 
pE - (5) 

7-1 

k 2 2 _ v•) u x = 0 -Po z (Vp (8) 

where c s and v a are the sound speed and the Alfvtn speed respec- 
2 '2__2 

tively, v_=•o/k z is the phase speed along z, and cr=CsV•/ 
(cs • + VA •) . The y and z components of u, and the magnetic field 

perturbations b are also expressible in terms of ux: 
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i ky (c s + du x L p-C T) 

Uy= (Cs2+VA2)(v2 C2T ) :7-•:(Vp2 2 •-• p- - L p-VA) -Cs)k 

( c s -c2 (v2- vA 2) lUUx s p z 

+VA 2)( p- T' - ' p- A • -Cs)k 

b x = -io• -1 kzBoU x 

by = -io• -1 kzBoU y 
F 2 2 2 2 • (W- VA) (W- %) .uxdSo 

= .... '•---2-.'-•--•-. Uy-t---- 

(9) 

(10) 

In the vicinity of the field line resonance at x = x o (where 
2 2 2 . 

Re.al t0o -kzv A (Xo)) = 0, we approximate 2 2 -•xVA (xo) (x- x o + iõ) and note that (vp- v A) as 
iky (c2+ VA 2) (v 2- C2T ) s p 1 

t• (11) 2 VA 2)(vp2 C2T )_(vp2_vA 2)(v2_ 2 k2 (Cs + - p Cs) z Y 

and thus equation (8) reduces to 

d•x-XO+ iS)d__•_• d•[ ,_--2' - (x- x 0 + i8) u x = 0 ky 
(12) 

Using the above expansions in equations (9)-(10), we find that in 
the vicinity of the FLR the velocity components in equation (9) be- 
have as 

UxR-ln(x-Xo+iS) +C 
1 i 

-Uy R ky X - X o + i õ 
(13) 

2 2 •XX]x = U zR " (Cs 2 + V2A ) ( V A -C T) x 0 
and the magnetic perturbations in'equation (10) behave as 

bxR - -io• -1 kzB o (ln (x- x o + iõ) + C) 
k 

byR_ta_l B z 1 økyX-Xo+ iõ 
c0-1B v 2 c 2,,2 [- o ( A- s' tCz dV.A2• bzn- ' ' -2--' 

Ly(c,+vA) (VA-Cr) Jx__Xo 
(In (x- x o + i$) + C) dB o 

-i 
{o dx 

(14) 

where R subscripts refer to the shear Alfvtn waves of the resonance, 
C is a constant independent of x,/5 is a parameter defined by the ex- 
pression, 

_ 2 O}rO} i I 8 = ,•-:-• (15) 
[Zx(VA ) x=x ø 

and in equation (15) o• r = kzV A and o•: is a small parameter 
which has been introduced in order to •emove the singularity 
which occurs at x=x o [Chen and Hasegawa, 1974; Southwood, 
1974]. 

In Figure 3 we have plotted the real parts of equations (13) and 
(14) assuming vA-ldvA/dX = Bo-ldBo/dx= -0.8 RE 4 and cs/v A = 2:25. 
The parameter õ in equation (15) results in a finite width for the 
FLR and is chosen such that the spatial envelope of the velocity 
shear is of the order of 1 R E. This is consistent with the results of 
Mitchell et al. [1990]. The parallel component b z is relatively large 
(compared to b x and by) for these parameters (v A > u o, where u o is 
the maximum shear velocity across the FLR), but remains a fraction 
of B o. The finite compressibility of the plasma produces a nonzero 
component of velocity, u z, along the field lines. However, near to 
the resonance duz/drd}, and it is expected that u z will play only a 
minor role in the dynamics of any shear instability. which develops 
from the FLR. We observe that in the vicinity of the resonance (x = 
Xo) there is a strong shear in both Uy and by. As a function of z, the 
velocity Uy, and the shear in uy in the x direction, are maximized in 
the equatorial plane z--0. We also note that the corresponding solu- 
tion for by vanishes at z=0 (recall that the solution for by is a Fourier 
sine series along z, while for uy it is a cosine series).. In the absence 
of a component of the wave magnetic field in the y direction, we ex- 
pect the flows in the equatorial plane to be KH unstable. Out of the 
equatorial plane, by is nonzero and thus produces a stabilizing effect 
which is strongest at the ionospheres. The interaction between the 
regions of stability (towards the polar ionospheres) and the regions 
of instability (near to the equatorial plane) is the major focus of the 
present study. 

In a three-dimensional configuration, FLRs can be unstable to the 
KHI and to current sheet or tearing mode (when finite electron in- 
ertia is included) instabilities. The nonlinear effects giving rise to 
each of these processes can be identified using the MHD equations 
(1)-(6). The convective nonlinear term V ß (pvv) plays a role in 
the evolution of the KHI, whereas the nonlinear term Vx (v x B) 
plays a role in the formation of sheet current instabilities. In the lin- 
ear analysis of the FLR we have assumed that the ambient flow ve- 
locity Vo= 0, and thus the nonlinear convection terms associated 
with the growth of the KHI, namelyV ß (pvv)in equation (2), 
have been eliminated through the process of linearization. We have, 
however, included the effect of a growing wave source by including 
a nonzero0o.throughout' the analysis, i.e., the term /5 defined by 
equation (13• and used to obtain Figure 3. In equation (3), the non- 
linear term Vx (v x B) can be expressed as 
(B ß V v-BVß v-v ß V B). When the field-aligned current 

and shear of the wave magnetic field are large,. the last term in this 
identity can contribute to sausage and kink instabilities (this com- 
ponent is also not part of the linear analysis). In a magnetospheric 
context, the nature of the fundamental mode shear Alfv6n standing 
wave implies that the convective nonlinear terms should be most 
important near to the equatorial region, and the current sheet non- 
linear terms should be most important near to the ionosphere (non- 
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Fig. 3. Velocity profiles and magnetic field components corresponding to the 
FLR plotted as a function of radial position in the equatorial plane. The ve- 
locity and the magnetic field are out of phase by g/2 in time. 

ideal MHD effects such as collisionless tearing may be important 
here as well [Seyler, 1988]). These features are shown schematical- 
ly in Figure 4. The numerical treatment of the full set of equations 
ouQined in the next section includes the effects of both nonlinear 

terms. However, in the absence of a large resistivity at the iono- 
sphere, this model, which uses a Cartesian geometry, produces cur- 
rents within the resonances that are not large enough to cause 
nonlinear effects. In the actual magnetosphere, however, the geom- 
etry associated with dipole field lines is likely to lead to large FACs 
in the FLRs near to the ionosphere. 

The formation of the KHI in the equatorial plane of a FLR should 
produce large-scale vortex structures which propagate to the iono- 
sphere as shear Alfv6n waves. In our computer models we will 
show that the growth times of the nonlinear KHI are significantly 
shorter than the Alfv6n propagation time to the ionosphere and 
back. Consequently, "line tying effects" due to a conducting iono- 
sphere are not important during the initial evolution of the KHI. In 
order to determine the feasibility of our KHI scenario, we can esti- 
mate the growth rates and scale sizes of the instability by using the 
measured velocity fields in the ionosphere [Samson et al., 1992a] 
and mapping these fields to the equator. We can then use these ve- 
locity fields, and the growth rates computed using linearized MHD 
equations, to make a rough estimate of the growth rate [Hollweg 
and Yang, 1988] for the KHI associated with the FLR. The KHI has 
a maximum growth rate at an azimuthal wavenumber ky given by 
k A- 0.6, where 2A is the radial thickness of the velocity shear 
YassYociated with the FLR in the equatorial plane of the magneto- 

Fig. 4. A schematic of the FLR indicating positions where nonlinear pro- 
cesses are important. At the equator the nonlinearity is due to convection as- 
sociated with the velocity field of the wave. At the ionosphere the dominant 
nonlincarity is due to the FAC and magnetic shear of the wave. The FLR is 
a standing wave with an electric and velocity field antinode at the equator 
and a corresponding wave magnetic field node. 

sphere [Walker, 1981]. The measured values of the latitudinal 
widths of the FLRs in the ionosphere are often 40 km or less [Sam- 
son et al., 1992a; Walker et al., 1992], and the region of velocity 
shear might be of the order of 20 km. Using these values• we esti- 
mate that the azimuthal wavelength of the KHI should be appr0xi- 
mately 15-20 ø. The maximum growth rate of the KHI occurs at a 
wavelength that is roughly 10 times the thickness of the FLR, and 
consequently we can make a rough estimate of the growth rate us- 
ing the expression for a discontinuous change in velocity, namely, 

P 1 P2 (B 1 ß k) 2 + (B2. k) 2 
c0. 2 = [k. (v2-v 1)]2- 
t (Pl +P2 )2 4;• (Pl +p2) 

(16) 

where p is the density, and v is the fluid velocity. In the present 
case, subscript 1 indicates the earthward side of the resonance, and 
subscript 2 indicates the antiearthward side. The maximum growth 
rate occurs for k perpendicular to B and parallel or antiparallel to v, 
or in the azimuthal direction in the equatorial plane. Since the per- 
pendicular magnetic field of the FLR is zero at the equatorial plane 
(z---0), then B l = B 2 ~ B o, and assuming that ambient convection is 
small we have v = -v 2. Assuming also that there is little change 1 
in density across the resonance gives the following expression for 
the growth rate: •Oi 2 --- ky2v2-kz2vA 2 ,where v = Ivll= Iv21. In the ion- 
osphere, the resonances have a velocity of lkm/s or so and a con- 
servative mapping to the equatorial plane gives a flow velocity 
exceeding 80 km/s. At the estimated position of the resonances (on 
the magnetic shell L--9), our previous estimate for the azimuthal 
wavenumber ky~m/r, with m=360ø/20ø/•.=18 and r=9 R E, corre- 
sponds to an equivalent ky of approximately 2 RE '•. The length cor- 
responding to L--9 dipole field lines is 22.8 R E, which implies that 
the fundamental mode should have a k z of approximately 0.14R• • . 
At an Alfvtn speed of 1000 kin/s, for example, the threshold for in- 
stability in this region should therefore occur at a velocity v~70 km/ 
s. Assuming that the flow velocity is 80 km/s gives a growth rate 
(0; '•~ 80 s. Note that in the warm central plasma sheet, the thresh-' 
old for instability is expected to be considerably lower than our es- 
timate above, due to compressibility effects (see, for example, 
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Figure 2 of Walker [ 1981 ]). Although the above calculations are ap- 
proximate, the important point here is that the estimated growth 
times are much less than the observed periods of the resonances 
(typically 500-1000 s) [Samson et al., 1992a]. 

COMPUTATIONAL MODEL AND [NrrlALIZATION 

We have investigated the nonlinear evolution of a model field line 
resonance using a Cartesian, fully three-dimensional resistive mag- 
netohydrodynamic computer simulation code. A three-dimensional 
code, describing variations in the radial, azimuthal and field- 
aligned directions, is necessary since nonlinear effects require azi- 
muthal variation. We shall describe the model in detail, since it is 
our intention to use it as a platform for future investigative studies 
of MHD processes in the Earth's magnetosphere. First of all, we de- 
scribe the basic equations which are solved and summarize the nu- 
merical methods, boundary conditions and initialization which are 
used in the investigation of the model problem to be discussed be- 
low. As mentioned above, for the class of problems we shall be con- 
cerned with, the nonlinear terms in the equations must be retained, 
and so we adopt a numerical approach in our search for solutions. 

We solve the nonlinear equations using a Newton Raphson itera- 
tion scheme and a time splitting algorithm called the Douglas-Gunn 
alternating direction implicit (ADI) method [Douglas and Gunn, 
1964]. Equations (1)-(3) and (6) are first expressed in finite differ- 
ence form on a three-dimensional Cartesian grid. Given initial con- 
ditions at time t=-0, the algorithm proceeds by advancing the 
unknowns implicitly from time level n to time level n+ 1. The im- 
plicit time advancement means that large (i.e., exceeding the Cou- 
rant limit) time steps can be taken, since all points on the grid are 
synchronized in time. This can be particularly important when large 
gradients in the Alfvtn velocity are present, or when resistive time 
scales are to be resolved. The ADI method is second-order accurate 

in both space and time and accomplishes its overall time advance- 
ment in three basic steps. The first step advances the solution in 
time with respect to the x coordinate direction only. That is to say, 
the advanced time level is assigned only to those derivative terms 
which contain x as their dependent variable. After the solution in 
the x direction has been completed, the state vector U= [B, @, v, P] 
is advanced in time with respect to the y direction, and finally with 
respect to the z direction. The advantage of this approach is that the 
solution method proceeds as a series of one-dimensional updates to 
the state vector U, and thus places modest demands on computer 
memory resources and cpu time. One complication arises due to the 
presence of mixed derivative terms in the equations. These terms, 
caused by the plasma resistivity, couple adjacent coordinate sweep 
directions on the mesh. We deal with this problem by treating these 
terms explicitly, i.e., they are assigned time level n. This sets a Cou- 
rant condition for the mixed derivative terms, but this is not normal- 
ly of significance, and does not limit the algorithm severely. The 
reader is referred to the articles by Briley and MacDonald [1977], 
and by Finan and Killeen [ 1981] for the relevant details. 

From a computational point of view, it is worth pointing out that 
the ADI method, as described above, multitasks very well. We 
have implemented the algorithm on a four-processor Stardent 3040 
computer, and on a Myrias SPS-3 computer (44 processors), and 
have obtained near perfect parallelism. One disadvantage of the 
implicit method is that block tridiagonal systems of equations must 
be solved for each sweep direction on the mesh. This is the most 
time-consuming part of the calculation, since the standard Gauss- 
ian elimination method of solution does not easily vectorize or par- 
allelize. This is a standard problem in numerical work, and there is 
currently much interest in finding algorithms which make efficient 

use of modern computer architectures. One such approach is block 
cyclic reduction, as outlined in the paper by Anderson et al. 
[ 1987]. We hope to investigate this and other methods in the future. 

Our computational grid uses a Cartesian geometry, with x repre- 
senting the radial direction, y the azimuthal direction, and z the 
direction of the geomagnetic field. The system is periodic in the y 
direction and has reflecting boundaries in the x direction. The sys- 
tem is approximately 2 R E in width in the x direction and 1 RE.in 
width in the y direction (corresponding to the anticipated wave- 
length for maximum growth of the KHI). We consider the iono- 
spheres to be perfect conductors and use boundary conditions 
appropriate to a standing Alfvtn wave. Specifically, the boundary 
conditions are that the tangential electric field and the normal 
velocity component should vanish. Although in reality the iono- 
sphere is not a perfect conductor, and in fact can have substantial 
gradients in conductivity, these effects are not important during the 
relatively long time interval over which vorticity is expected to 
propagate from the equatorial plane to the polar ionosphere. Of 
course, they will become important after the vocalcity reflects off of 
the ionosphere. We leave this more difficult situation open for 
future study. 

While the velocity shear in the solution of the linear equations 
(8)-(10) is a consequence of the inhomogeneoug Alfvtn velocity 
profile, the subsequent nonlinear development of the shear instabil- 
ity is not expected to be critically dependent on the nonuniformity 
of the system. This is because the KHI arises in systems of uniform 
and nonuniform densities (and/or magnetic fields). Thus once the 
shear has been established, the instability can grow regardless of 
nonuniformities. For the sake of simplicity, we therefore take as our 
starting point a finite amplitude Alfvtn wave with the structure of 
an Alfvtn resonance in a uniform system. This choice considerably 
simplifies the analysis of the three-dimensional data sets generated 
by the MHD code, and in particular it requires substantially less cpu 
time. We have simulated the two-dimensional KHI at the equatorial 
plane including the effect of nonuniformities and have obtained 
qualitatively very similar results. Specifically, we initialize the 
computational model with uniform ambient plasma density and 
magnetic fields, through which propagates (1) a shear Alfvtn wave 
with a specified wave period and (2) a significantly smaller ampli- 
tude shorter scale length transverse velocity perturbation which acts 
as a seed for the KHI. The scale lengths and amplitudes of the 
Alfv•n wave and the perturbation are selected so as to be consistent 
with the FLR structure shown in Figure 3. The ambient plasma con- 
ditions correspond to Bo= B o ez, with Bo--4x10 -4 G, va=280 kin/s, 
and To=2 keV, where B o represents the geomagnetic field, v a is the 
average Alfv6n velocity, and To is the average plasma temperature, 
respectively. The shear Alfv6n waves propagate between perfect 
conducting ionospheres at z = +gl2kz, where kz is the z component 
wavenumber corresponding to the Alfv6n wave resonance. 

The shear Alfv6n wave resonance magnetic field may be ex- 
pressed as b=bxnex+byne >, with corresponding velocity components 
vxn and Vyn. The length scale and amplitude of the Alfv6n wave ve- 
locity shear in the equatorial plane of the magnetosphere are based 
on the experimentally obtained data, as explained in the discussion 
leading to Figure 3. The velocity shears in the ionosphere are typi- 
cally 1 km/s in a 20- to 50-kin latitudinal interval. Mapping these 
estimates to the equatorial plane indicates that velocity jumps of 
200 km/s across the FLR should be possible. As mentioned above, 
we add a transverse velocity perturbation (of amplitude • ) to seed 
the KHI. This perturbation has a Gaussian spatial dependence in the 
x direction and is localized within the velocity shear region. The ini- 
tial spatial profiles of v and B, corresponding to the shear Affv6n 
wave and the perturbation, are indicated below 
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-x 2 / A 2 
v x = VOe [ cos (kzZ) cos (kyRY) +ecos (kzZ) cos '(kyy) ] 

(17) 

Vo 2x -x2/A 2 

Vy = Aky R A e cos (tCzZ) sin (yRY) (18) 

v 0 _x2/A 2 
bxR = -BO•AAe sin (kzZ) cos (kyRY) (19) 

v0 2x 1 -x2/A 2 

bY R = -Bo•, A A Aky-• e sin (kzZ) sin (kyRY) (20) 

In the above expressions, the z coordinate is measured with re- 
spect to the equatorial plane, v A is the Alfv•n velocity, v o is the peak 
flow velocity in the y direction associated with the model FLR, 2A 
is the localization width of the resonance, and all quantities have an 
assumed harmonic time dependence. The analytic profiles above (in 
basic agreement with the relevant parameters of Figure 3) are con- 
sistent with a standing shear Alfvtn wave with a node in by n at the 
equator, and antinodes in vyn and vxR, respectively. Note that in the 
above expressions the kyn and ky dependences are associated with 
shear Alfvtn waves and KHI excited waves, respectively. We as- 
sume that small-scale turbulence (with ky>>kyn) in the plasma sheet 
seeds the instability, so that the variation with respect to ky n does 
not play a strong role in the evolution of the dynamics and can 
therefore be neglected (this is in agreement with the observations). 
However, the approximate x/2 phase difference between vxn and 
vyn indicates that different longitudinal positions y will be more or 
less unstable. We choose a longitudinal position for which vyn is a 
maximum. This position corresponds to a maximum in the growth 
rate for the instability. A normal mode analysis of the two-dimen- 
sional problem (k z = 0), with a hyperbolic tangent region of velocity 
shear, indicates that the most unstable wavenumber of the KHI oc- 

curs for ky - 0.6/A [Walker, 1981]. However, for the FLR problem 
a normal mode analysis of the linear equations (computed numeri- 
cally) shows that the additional shear zones push the maximum 
growth rates to higher wavenumbers: ky~ 1.2/A >> kyR. The three-di- 
mensional instability must also satisfy toi>>to R (where to i is the 
growth rate of the instability and toR is the frequency of the shear 
Alfvtn wave) for there to be appreciable growth of the instability 
before the Alfv•n fields change sign. Shorter scale perturbations 
would not have time to grow within the time period of the oscillat- 
ing Alfvtn wave field. The above choice for ky then determines the 
periodicity length of the computational grid in the y direction. We 
also set the resistivity term rl to a small value since it is not impor- 
tant for the evolution of the KHI at the equatorial plane, and in fact 
is not known in practice. The value selected ensures that our numer- 
ical scheme is stable to numerical noise. 

In summary form, the wave parameters corresponding to the FLR 
are as follows: kyR---0.3 Rœ -•, ky=6.8 Rœ -•, kz---0.1 Rff •, v,•=280 km/s, 

d•vo/el/2kynA = 90km/s A = 0.18R E, e = 0.02, shearAlfvtn 
wave period x = 1380s; satisfying ky>>kytt and k•y->constant (x/ 

2). The latter approximation implies that the v x velocity component 
is then entirely due to the KHI. Note that we have used.a longer 
wave time period (smaller value of v A) than is typically observed 
(1000 s) in order to identify clearly effects associated with the prop- 
agation of the instability to the ionosphere. There is evidence in the 
data presented by Mitchell et al. [ 1990] that the oscillation peri.od 
of waves in FLRs at 10.5 Rœ are consistent with higher particle den- 
sities (smaller vA) than might be anticipated (1 per centimeter 
cubed). However, our choice of wave period is principally a matter 
of convenience. 

The velocity profiles in the equatorial plane, sketched as a func- 
tion of the x coordinate in Figure 3, clearly show the three regions 
of velocity shear across the FLR. The largest jump in velocity oc- 
curs across the center of the FLR, and it is this region that will be 
the most unstable to the KHI. In order to determine the characteris- 

tic growth time for the instability at the equatorial plane, it is first of 
all worthwhile considering the following two-dimensional simula- 
tion. Consider the situation in which the oscillating Alfvtn wave 
velocity component vy R has reached its peak value. Suppose also 
that the period of the wave is effectively infinite, and that variations 
with respect to the geomagnetic field direction are negligible. The 
KHI, with initial conditions defined by equations (17)-(20), is effec- 
tively an instability in the v x component of velocity. In Figure 5 we 
show the growth in the maximum value of v x as a function of time. 
Figure 6 is a log linear fit to the data displayed in Figure 5 for the 
time interval over which exponential growth is taking place. The 
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Fig. 5. Growth of v x component of velocity, corresponding to the KHI in 
the equatorial plane. The period of the shear Alfvtn standing wave is effec- 
tively infinite, and propagation effects are neglected. 
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Fig. 6. Log linear fit to the data displayed in Figure 5. The computed expo- 
nential growth rate is 0.0333 s '•. 
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computed growth rate is approximately 0.0333 S 'l, corresponding 
to an exponentiation time interval of 30 s. It can be seen that the in- 
stability saturates at •150 s, following which it is observed to de- 
cay and eventually setfie into a series of quasi-steady oscillations 
with an amplitude of roughly 60 percent of the saturation value. 
Saturation occurs because the flow contains a finite amount of vor- 

ficity initially. The small-scale oscillations on the curve in Figure 5 
are caused by compressional Alfv6n waves, which bounce back and 
forth across the numerical grid in the x direction. These waves, 
which are a by-product of the initialization (the velocity field per- 
turbation is not divergence free initially), are always of small am- 
plitude and do not play a role in the evolution of the instability. The 
above results should be kept in mind when considering the three-di- 
mensional simulations to be de:cribed below. 

The three-dimensional simulations produce large quantities of 
data from which only representative results can be shown. As indi- 
cated above, the principal velocity shears are in the x-y plane, and 
therefore we shall examine cuts of the data in this plane. All times 
will be referenced from t•0, which corresponds to the phase of the 
shear Alfv6n wave for which vyn(x,y,z,t•O)=O. Note that the wire 
frame graphics at our disposal require uniformly spaced data val- 
ues. Therefore the results are displayed as interpolated values, re- 
flecfing the fact that the numerical grid is nonuniform in the x 
direction. In reality the grid has approximately twice as many data 
points across the resonance width than the figures indicate. In all 
cases the simulation grid spans 2 R E in the x direction, and 1 R E in 
the y direction. In order to make the plots more visible the grid is 
clipped by 0.4 R E at the maximum and minimum x values, respec- 
tively, so that the center of the velocity shear is at a•0.6 Rœ with re- 
spect to the origin. 

The velocity field in the x-y plane at the equator, showing the 
time development of vortices produced by the KHI, is displayed in 
Figure 7. Figure 7a shows the velocity shears present at •50 s, cor- 
responding to t• growing shear Alfv6n wave field of the FLR. Fig- 
ure 7b shows the KHI which has developed by •217 s. A large- 
scale vortex is in the process of forming in the top half of the figure, 
whereas two smaller scale vortices are evolving on either side of the 
FLR in the lower half of the figure. The smaller scale structures are 
caused by the velocity jumps across the two outside edges of the 
resonance, which are themselves unstable to the KHI. These small- 
scale vortices produce interesting flow patterns. during the temporal 
development of the instability, but do not seem to affect the overall 
dynamics appreciably. Figure 7c shows the instability later in time 
at t=-248 s. At this stage in the dynamics, the instability is well into 
the nonlinear regime even though the peak flow velocities in the 
FLR have not yet been reached. Figure 7 also shows clearly the spa- 
fial distortion of the FLR that is produced by the KHI. The instabil- 
ity grows most rapidly inside the center portion of the resonance 
(since the largest velocity jumps occur there), and the rotational 
motion that subsequenfiy develops is restricted by the relatively un- 
disturbed parallel (i.e., vertical in Figure 7) flows on the velocity 
shear regions on the outside of the FLR. The net effect of this is to 
distort straight stream lines on the outside of the FLR into S-shaped 
streamlines, the eccentricity of which grows with time. By the time 
indicated in Figure 7c, the distortion of the FLR is rather severe. 
The small-scale vortices in Figures 7b,c are corotafing and can lead 
to the formation of very sharp velocity shears in the region where 
they are strongly interacting, particularly at the nonlinear stage. In 
our simulations there is some indication that a cascade of these 

small-scale vortices to shorter wavelengths may result However, 
our numerical grid was not sufficienfiy resolved to investigate this 
effect in detail. 

The centripetal forces associated with the KHI rotational motion 
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Fig. 7. Velocity field in the x-y plane at the equator, showing the evolution 
of the KHI. The center of the FLR is situated at 8-10 R E in the equatorial 
plane. The X coordinate spans 2 R E and the Y coordinate spans 1 RE: (a) 
t=50 s, (b) t=217 s, (c) t=248 s. 
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of the plasma act to produce a density minimum at the center of the 
FLR. Since the plasma is "frozen-in;' the ambient magnetic field is 
carded with the motion and also develops into a local minimum. 
However, the perturbations in the density and in the ambient mag- 
netic field B o, are not noticeable until the nonlinear stage of evolu- 
tion has been reached. For example, the magnetic perturbation b z in 
Figure 8a has not evolved significantly beyond the ambient condi- 
tions in spite of the fact that vortices are well formed by this time, 
i.e., t=-200 s. Figure 8b shows the magnetic perturbation later in 
time, t=-300 s, at a stage where the instability is nonlinear (the peak 
in Figure 8b is inverted and corresponds to a decrease in the mag- 
netic field). The actual fluctuation in the z component of the field is 
still small and amounts to approximately 2.5 percent of the ambient 
magnetic field. There are no field-aligned currents produced in this 
case since we are examining the equatorial plane where by R is zero. 

The circulation patterns associated with the KHI, and its distor- 
tion of the FLR, are clearly visible in the z component of the vortic- 

ity function, which we define here as e z ß (Vx v). This is now the 
preferred form for presentation of the data, particularly since Jz is 
proportional to the cud of B, and has a topologically similar form. 
For example, in Figure 9 we show the development of vorticity in 
the equatorial plane as a function of time. Figure 9a shows the vor- 
ficity in the x-y plane at the equator at time t=-105 s just as the insta- 
bility is starting to form. Figure 9b shows the vorticity at the equator 
later in time, at t=- 172 s, and in Figure 9c, the instability is displayed 
at a stage, t=-217 s, where a closed circulation flow has developed. 
The characteristic "wrapping up" of the vorticity is clearly present 
at this stage, and is more apparent in Figure 9d, which shows the 
vorticity at time t=-248 s. The sharp ridges in the latter figure are 
more defined and are separating due to broadening of the instability 
in the direction transverse to the ambient flow. These "ridges" mark 
points of inflection in the velocity field, and serve to highlight the 
distortion of the resonance by the KHI. In viewing the above re- 
sults, it should be remembered that the system is periodic in the y 
direction. Thus when the flow encounters the system boundary. at 
the • face of the enclosing box in Figure 9d, it is mapped to the 
opposite face at Y=Ymax and therefore the results correspond to a 

train of vortices being produced in the equatorial plane of the actual 
magnetosphere. At the stage in the dynamics indicated in Figure 9d, 
the instability is almost saturated spatially, i.e., it does not broaden 
very significantly with respect to x in the equatorial plane after this 
time (its transverse extent stays more or less confined to the original 
scale size of the resonance). However, the shear Alfv/n wave is still 
cycling towards the peak velocity that it can attain during an oscil- 
lation period, namely its value at t=-350 s. The instability continues 
to be modulated in time over a half wave period due to the basic har- 
monic frequency dependence of the shear Alfv/n wave. At the time 
shown in Figure 9d, the instability is essentially localized to the 
equatorial plane. For example, the ambient vorticity is not affected 
in the z plane situated approximately one quarter of the distance 
from the equator to the ionosphere. The instability has not yet 
reached this part of the magnewsphere because propagation effects 
have not had time to occur. 

As remarked earlier, the v x component of velocity acts as a sig- 
nature for the KHI. We show in Figure 10 the growth of the maxi- 
mum value of vx in the equatorial plane as a function of time. The 
points marked a, b, c, and d correspond to the times indicated in 
Figure 9, and the evolution is shown over a time interval in excess 
of the half wave period of the shear Alfv/n waves, i.e., 900 s. It is 
clear that the instability is saturated spafially on a time scale which 
is significantly shorter than the period of the FLR. The computed 
growth time for e folding the amplitude by a factor of 10 is found 
to be approximately 200 s. If we assume that the average growth 
time for the instability scales linearly with v o, then the timescale for 
a tenfold increase lengthens to 600 s for a flow velocity of 30 km/s 
at the equator. However, it is almost certainly true in the magneto- 
sphere that the levels of noise present exceed the 2 percent values 
that are used here. More likely, the source of noise is broadband and 
typically at a level approaching 10 percent during active periods. It 
may not require a significant exponentiation of the disturbances in 
order to produce vortex structures at the equator. We have also sim- 
ulated model FLRs having a peak flow velocity less than is neces- 
sary for growth of the KHI within a half wave period. We find that 
under these circumstances the oscillations of the FLR destroy the 
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Fig. 8. Magnetic perturbation b z (in arbitrary units) associated with the KIH in the equatorial plane: (a) t=200 s, (b) t=300 s. The 
peak in Figure 8b corresponds to a magnetic field minimum. The maximum fluctuation is approximately 2.5 percent of B 0. The X 
coordinate simulation grid is 2 R E across and has been cropped to emphasize the FLR. 
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Fig. 9. Vorticity •_ (in arbitrary units) associated with the three-dimensional KHI in the equatorial plane. The center of the FLR is 
situated at 8-10 R E m the equatorial plane. Times are referenced lrom the point dunng the cycle of the shear Alfv6n standing wave 
for which Vyn--O: (a) t=105 s, (b) t=172 s, (c) t=217 s, and (d) t=248 s. 
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Fig. 10. Growth of the v x component of the three-dimensional KHI in the 
equatorial plane. The time interval on the curve corresponds to a half wave 
period of the shear Alfv6n standing wave. 

conditions for growth, i.e., there is no time-averaged growth of the 
instability. Figure 11 shows the growth of the x component of ve- 
locity near to the ionosphere. In viewing this figure, it should be 
noted that vortex structures from a KHI at the equator would not be 
expected to reach the ionosphere until a quarter wave period after 
the onset of the instability. In the simulations, we observe signifi- 
cant increases in v x at the equator at a time between t=-50 s and t=-75 
s. Propagation effects would then produce vorficity at the iono- 
sphere at a time between t--400 s and t=-425 s. This coincides with 
the sharp increase in v x which can be seen in Figure 11. Note also 
in Figure 11 that noise is present in v x until propagation effects have 
had time to occur. 

The increase in v x near to the ionosphere does not by itself imply 
that vorticity is present. Figure 12 shows the vorticity which devel- 
ops near to the ionosphere after propagation effects have had time 
to occur. In Figure 12a, the vorticity at t--400 s coincides with the 
arrival of shear Alfv6n waves from the equatorial plane. It should 
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Fig. 11. Growth of the v x component of the three-dimensional KHI near to 
the ionosphere. 

be remembered that close to the ionosphere the FLR has a velocity 
node, so that the ambient vorticity present in Figure 12 is small. The 
vorticity present at t--475 s, and at t=-600 s is shown in Figures 12b 
and 12c, respectively. The wrapping up of the vorticity is now visi- 
ble but is spatially more broad than in Figure 9, in accordance with 
the fact that before propagation effects can occur at the equator, the 
instability there is very nonlinear and consequently is also spatially 
broadened. It should also be remembered that the magnetic field by R 
associated with the FLR is zero at the equator and is a maximum at 
the ionosphere. Furthermore, by R and vyR are out of phase by x/2 in 
time. Thus in the time it takes vorticity to propagate from the equa- 
torial plane to the ionosphere, the magnetic field of the shear Alfv6n 
wave has decreased from its maximum value, changed sign, and is 
cycling towards its minimum value. This can lead to some rather 
complicated flow patterns during the temporal evolution of the vor- 
ticity at the ionosphere. However, we can still identify characteristic 
features associated with the KHI. For example, the magnetic fluctu- 
ation b z which develops near to the ionosphere at times coincident 
with those in Figures 12a and 12c, is plotted in Figure 13. Figures 
13a and 13b indicate that there is no significant component of b z be- 
fore propagation effects have had time to occur. Furthermore, since 
perturbations in b z are generally only visible during the nonlinear 
stages of the instability, it can be inferred, from the topological sim- 
ilarity between Figure 13b and Figure 8b, that the nonlinear KI-I dis- 
turbances produced at the equatorial plane are readily mapped 
along the geomagnetic field lines to the ionospheric plane. 

The propagation effects associated with the KI-II at the equatorial 
plane also modify strongly the field-aligned currents associated 
with the FLR (at all spatial positions along geomagnetic field lines 
in the vicinity of the FLR). The maximum modulus of the field 
aligned current density in the z plane near to the ionosphere is plot- 
ted as a function of time in Figure 14. A maximum in the current 
density occurs at the ionosphere due to the antinode in by R. In Fig- 
ure 14 the current density is significantly reduced during the second 
quarter cycle of the shear Alfv6n wave due to nonlinear effects as- 
sociated with the propagation of the instability to the ionosphere. 
This can also be seen in Figure 15, which shows a time sequence of 
the evolution of the field-aligned current density in the x-y plane 
near to the ionosphere. In the absence of the instability, Jz consists 
of current sheets (extending along the geomagnetic field lines) cor- 
responding to the magnetic shear in by R associated with the FLR. As 
shown in Figure 15, the vorticity associated with the propagation of 
the instability from the equatorial plane to the ionosphere distorts 
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Fig. 12. Vorticity gl, (in arbitrary units) near the ionosphere, correspond- 
ing to propagation effects associated with the three-dimensional KHI at the 
equatorial plane. The center of the FLR is situated at 8-10 R E in the equato- 
rial plane: (a) t=400 s, (b) t=475 s, and (c) t=600 s. 
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Fig. 13. Magnetic perturbation b z (in arbitrary units) associated with the propagation of vorticity from the equatorial plane to the 
ionosphere: (a) t---400 s and (b) t=600 s.The maximum fluctuation is approximately 2.0 percent of B 0. 

the current sheets appreciably. In particular, the instability spreads 
and wraps up the current sheets in the transverse direction and re- 
duces their amplitude significantly. Again, this is true not only at the 
ionosphere, but also along the entire length of the geomagnetic field 
lines. The overall situation is therefore one in which a strong local- 
ized source of vorticity develops at the equatorial plane and propa- 
gates with time towards the ionosphere, in the process of which it 
severely distorts the magnetic fields of the resonance. From the ev- 
idence in Figures 14-15, it is clear that the KHI at the equatorial 
plane eventually leads to a significant decay and dissipation of the 
FLR within a fraction of a shear Alfv6n wave period. We have not 
followed the evolution of the instability further than t=900 s be- 
cause a significant reflection of vorficity off of the ionosphere 
would then presumably have occurred. In order to examine this ef- 
fect, a more realistic boundary condition for the ionosphere would 
have to be considered. We hope to address this in the future. It 
should also be pointed out that we have of course neglected to spec- 
ify a driver for the FLR, and in particular we have not taken into ac- 
count the fact that compressional MHD energy is being pumped 
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Fig. 14. Maximum modulus of the field-aligned current density Jz near to 
the ionosphere plotted as a function of time. 

into the resonance. It is possible that this source of energy may off- 
set the dissipation of the FLR by the KHI at the equatorial plane. We 
are currently addressing this problem, which from a computational 
point of view is complicated by the fact that the observed azimuthal 
scale lengths of the excited FLR are considerably larger than the az- 
imuthal wavenumbers corresponding to the KHI. The main purpose 
of the present work has been to point out that the velocity shears 
which are seen in the high-latitude ionosphere have possible sourc- 
es in the equatorial plane of the magnetosphere and that the vortic- 
ity which develops can have a profound effect on the time evolution 
of the FLR. The above results indicate that this is possible. 

CONCLUSION 

The results from our three-dimensional simulations of the non- 

linear evolution of FLRs show that low frequency (less than ap- 
proximately 5 mHz) ULF FLRs, with azimuthal fluid velocities of 
several tens of kilometers per second in the equatorial plane of the 
Earth's magnetosphere, are likely to be nonlinearly unstable to the 
KHI. For such velocity fields, the growth times of the KHI are of 
the order of several tens to hundreds of seconds, which is of the or- 

der of half a wave period or less for the lowest frequency ULF res- 
onances. Observations of the velocity fields of FLRs in the auroral 
E region, and the mapping of these fields to the equatorial plane, in- 
dicate that FLRs can typically have oscillating velocity fields with 
amplitudes near 100 km/s. These high velocities have also been 
observed in low-frequency (less than 4 mHz) FLRs by the ISEE 
spacecraft in the outer dawn magnetosphere [Mitchell et al., 1990]. 
The localized vortex cells which evolve in the equatorial region of 
the FLR propagate to the ionosphere as shear Alfv6n waves, pro- 
ducing vortex cells in the ionosphere even though the FLR is stable 
to the KHI near the ionosphere. The formation of vortex cells leads 
to a substantial spatial broadening of the FLR, suggesting that non- 
linear effects might play an important role in dissipating the reso- 
nance. Consequently, it is important to consider these nonlinear 
effects when evaluating other damping mechanisms such as ab- 
sorption due to finite Pedersen conductivity in the ionosphere, and 
mode conversion to kinetic Alfv6n waves which requires a very nar- 
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Fig. 15. Evolution of the field-aligned current density (in arbitrary units) in the x-y plane near to the ionosphere. The center of the 
FLR is situated at 8-10 R E in the equatorial plane: (a) t---4• s, (b) t--475 s, (c) t=562 s, and (d) t---650 s. 

row resonance structure (comparable to the ion gyroradius). 
The observational evidence for nonlinear effects in FLRs is still 

rather limited. Samson et al. [ 1992b] noted that vortex cells in ion- 
ospheric E region flows can evolve on field lines with existing 
FLRs (see Figure 2 in this paper). The scale size of these vortex 
cells is about 10 degrees in longitude, Figure 2c, corresponding to 
approximately 1 to 2 R E in the equatorial plane. l:urthermore, the 
growth time of the vortex cells is about 100-200 s which is compat- 
ible with the growth times determined by our computer model. 
Note, however, that the vortex cells seen during substorm intensi- 
fications always tend to "wrap up" in the same direction, with east- 
ward flows poleward (westward electrojet) and westward flows 
equatorward (eastward electrojet). This feature is not explained by 
our computer model. The Ps6 geomagnetic pulsations and vortex 
flows seen during the substorm recovery phase [Gustafsson et al., 
1981; Rajaram et al., 1986] may also be candidates for our nonlin- 
ear KHI model. Field lines threading the Ps6 regions in the iono- 
sphere map to radial distances of approximately 7 to 10 R E in the 

equatorial region of the dawn and postmidnight magnetosphere 
[Pulkkinen et al., 1991], which is the region where the low-frequen- 
cy (1-4 mHz) resonances are seen [Mitchell et al., 1990; Ruohoni- 
end et aL, 1991; Samson et al. 1992a, b]. Finally, we note that the 
FLRs studied by Mitchell et al. [1990] have very large velocity 
fields (100 to 200 km/s). At times the amplitude of the radial com- 
ponent of the velocity they observed was comparable to the azi- 
muthal component, indicating that these velocity fields are not 
inconsistent with the possible existence of a nonlinear KHI. 

Our computational model shows that FLRs should be unstable 
to the KHI and presumably gives a masonable approximation of the 
initial evolution of vortex structures and their propagation to the 
ionosphere. A more complete treatment of this problem requires re- 
alistic ionospheric boundary conditions and a compressional MHD 
driver for a FLR evolving in a nonuniform magnetoplasma. The 
coupling of the compressional MHD waves to the shear Alfv{Sn 
waves will compete with the dissipation of the FLRs by the KHI 
vortices. We are examining this problem but a number of computa- 
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tional difficulties arise. In addition to being fully three dimension- 
al, the code and initialization must take into account the differing 
scale sizes of the KHI compared to those of the FLRs. For exam- 
ple, the FLRs have azimuthal wavelengths of the order of 10-20 Rœ, 
whereas the maximum growth rate of the KHI has wavelengths of 
the order of 1-2 Rœ. 

The Cartesian geometry which we are using also does not allow 
the formation of FAC densities which are large enough to produce 
nonlinear effects near the ionosphere. In fact, observations of 
FLRs indicate that current densities of 5 i•A/m '2 can occur close to 
the ionosphere [Walker et al., 1992]. These current densities are 
more than adequate to drive current sheet instabilities or, perhaps, 
tearing mode instabilities [Seyler, 1990]. In our computer models, 
the largest current densities that we observe are of the order of 
0.02 •tA/m '2. Taking into account mapping factors, this corre- 
sponds to a current density greater than 10 •tA Im '2 at the iono- 
sphere, assuming dipolar magnetic field lines at auroral latitudes. 
The geometry of dipolar fields will also lead to larger electric fields 
and flow velocities near to the ionsophere compared to those we 
have calculated. However, these geometric effects should have little 
influence on the overall growth rates of the KHI and morphology of 
the fields of the Alfv6n waves. Taking into account the dipole ge- 
ometry, we find that our results correspond to realistic values for the 
field-aligned currents and velocity fields near to the ionosphere. 
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