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ABSTRACT 

Open-pit mining is widely used to extract natural resources. Low cut-off grades and large 

operations can make open-pit mining profitable. An important challenge is to determine 

the optimum production schedule. Usually the goal is to maximize the net present value 

of the project while delivering ore to the plant at full capacity. The best production plan 

would require complete knowledge of the orebody and all other engineering and 

economic parameters. An estimated block model is often used to determine the 

production schedule. Uncertainty is inevitable with widely spaced drill holes. The open-

pit production schedule based on estimated models may be suboptimal and affected 

dramatically by grade uncertainty. The research documented herein develops, implements 

and verifies four mixed integer optimization frameworks for long-term production 

scheduling in the presence of grade uncertainty. The main contributions of this research 

are (1) consideration of cost of grade uncertainty to influence the production plan, (2) 

accounting for the linear and nonlinear effects of the grade uncertainty on the long-term 

mine planning, (3) development of a mixed integer linear programming model that 

maximizes NPV and minimizes the cost of the grade uncertainty by considering a 

stockpile, and finally (4) implementation of a quadratic optimization model accounts for 

grade uncertainty in the long-term production plan. 
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( ),ôp RHc t   Adjusted cost of unit tonne of over production ore in present of stockpile 

in period t 

( )opc t   Average cost of over production in period t over all L realizations 

( )upc t   Average cost of under production in period t over all L realizations 

0C   Nugget effect in the variogram model 



   

 
 

C    Sill of the variogram model 

UserDefinedC  User-defined upper limit for the variance of the NPV 

DEBV(i)  Discounted economic block value of block i . 

( )DCF t   Discounted cash flow for each period t that is calculated by an estimation 

block model 

( )DTP t   Deviation from target production in period t 

( );DTP t l   Deviation from target production for realization number l 

EBV(i)  Economic Block Value of block i  

{ }( ; )E v t i   Expected value or the average of discounted ore value for block i in 

period t 

( )g i
 

Average grade of block i calculated from all L realizations 

g  Grade of ore 

cutg   Cut-off grade  

( )g i   Estimated grade value of the block i   

( )lg t   Allowable lower limit of the head grade in period t 

( )ug t  Allowable upper limit of the head grade in period t 

( )g t
 

Average input grade to the mill in period t. 

{ }1i N∈ L  Index of the block at the block model 

IR   Interest rate of the project or the discounting rate 

{ }1j N∈ L  Index of the block at the block model 

K  Total number of precedence relationships between all the mining cuts 

UserDefinedK   User-defined lower limit the NPV of the project 

L  Total number of conditional realization 

UserDefinedλ  User-define value to control the trade-off between the maximization of 

the NPV and the minimization of the variance of the NPV. 

M  Total number of mining cuts inside the final pit 

( )lm t   Lower limit for mining capacity in period t 

( )um t  Upper limit for mining capacity in period t 

m  Total number of linear constraint in the MILP model in the general form 

N  Total number of blocks inside the final pit 



   

 
 

( )NPV l   NPV of realization l 

esNPV   NPV of the project that is calculated from an estimation block model 

such as OK 

P   Price of commodity per tonne 

( )lp t   Lower limit (target production) for the designed processing plant in 

period t 

( )up t   Upper limit (target production) for the designed processing plant in 

period t 

( )P t   Commodity price per tonne in period t 

( );q i t
 

Cost of mining of block i in period t 

( ; ; )q t i l  Cost of mining of block i in period t at realization l 

mR   Mining recovery 

( )mR t   Mining recovery in period t 

pR   Processing recovery 

( )pR t
 

Processing recovery in period t 

( )uS t
 

Upper limit tonnage of the stockpile in each period and this constraint is 

applied to each realization. 

t  Period in year. 

T  Total number of period or the mine life 

pT   Total number of production years 

( )T i   Tonnage of the block i 

( ; )upT t l
 

Tonnage of under produced ore for realization l in each period t 

( ; )opT t l
 

Tonnage of over produced ore for realization l in each period t 

( )tT t   Tonnage of the target production in period t 

( );v i t    Ore value of block i in period t  

( ; ; )v t i l   Ore value of block i in period t at realization l 

{ }Var NPV   Variance of NPV calculated from all conditional realizations 



   

 
 

( ){ }Var g i   Or
 

( )2
g iσ ; Variance of grade for the block i calculated from all 

conditional realizations 

( ; )w t i   Binary decision variable indicates if block i is extracted in period t or not 

X  Coordinate of the blocks in x-axes 

x  Vector of the decision variables of the MILP model including binary and 

continues variable 

Lx   Lower limit of the decision variables for a general form of MILP 

Ux  Upper limit of the decision variables for a general form of MILP 

( );y t i   Continues decision variables indicates the portion of extraction for block 

i in period t 

Y  Coordinate of the blocks in y-axes 

( );z t i   Continues decision variables indicates the portion of processing for block 

i in period t 

Z  Coordinate of the blocks in z-axes 



 

1 
 

Chapter 1 Introduction 

Mine planning is reviewed in Section  1.1.  The challenge of mine planning in presence of 

grade uncertainty is presented in Section  1.2. The objective of this thesis is described in 

Section  1.3.  Section  1.4 describes additional background and the relevant literature. The 

algorithms used to determine optimal pit limits are explained first; then the methods of 

long-term mine planning with and without uncertainty are reviewed. Shortcomings of the 

currently available mine planning methods in presence of grade uncertainty are described 

to motivate the research. Finally, Section  1.6 presents an outline of the thesis.  

1.1 Introduction 

Mine planning defines the source, destination and sequence of extraction of ore and waste 

over the mine life. The result of mine planning is a production schedule that defines the 

tonnage of ore and waste and the input grade to the plant in each period of time. This 

production schedule has a significant influence on the economics of the mine. Improving 

production scheduling is essential as the mining industry considers more marginal 

resources. The natural complexity of mineral deposits makes mine planning more 

difficult. Moreover, the production schedule must follow physical constraints and meet 

the target capacity of the processing plant. 

The typical mine life is usually between 20 to 30 years. There are often three time ranges 

for production scheduling: long-term, medium-term and short-term. Long-term will be 

for the full life of mine. This period is broken into several medium-term periods between 

1 and 5 years. Medium-term schedules provide more detailed information that allows for 

a more accurate design of ore extraction. The short-term schedule is also broken down 

into short weekly or even daily plans for detailed scheduling (Osanloo et al., 2008). 

Optimization algorithms are starting to be used in mine planning to maximize the overall 

profit of the project and minimize deviation from target production. In traditional long-

term mine planning a geological block model is used as the main input to maximize the 

net present value (NPV) of the project. The geological block model is a quantitative 

definition of the available resource. Data from drillholes are used to construct the block 

model using geostatistical techniques.  
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Uncertainty in the block model is inevitable with relatively widely spaced drillholes. The 

optimality of the open-pit production schedule will be affected by this uncertainty. 

Recent research initiatives have attempted to consider the effect of grade uncertainty on 

production schedules. Another major challenge in open-pit production scheduling is the 

size of the optimization problem. The mathematical programming formulation of realistic 

long-term open-pit production schedules often exceeds the capacity of current hardware 

and optimization software.  

In this thesis, the geological uncertainty is taken into account in the long-term production 

scheduling. The main focus of this thesis is on long-term mine planning in presence of 

grade uncertainty. Therefore, instead of using only one block model, a number of 

simulated realizations, that are representative of grade uncertainty, are used in the 

optimization process. In addition to maximization of the NPV of the project, a second 

objective is to minimize the negative impact of grade uncertainty.  

1.2 Statement of the Problem 

Numerical modeling is a robust method to quantify geological complexity (Hustrulid and 

Kuchta, 1995). A limited number of samples are collected and used to build numerical 

models. These samples are considered to be at the point scale. There may be some 

additional secondary information such as geophysical data at a larger scale.  

A geological block model is obtained by dividing the deposit into a three-dimensional 

grid at the block scale. The block model may have tens of millions of blocks sometimes 

referred to as grid nodes or cells. The recommended size for each block is about 1/3 the 

anticipated blast-hole spacing and the bench height for short-term mine planning 

(Leuangthong et al., 2004). The block dimensions for long-term mine planning are 

selected according to the exploration drilling pattern, geology of the ore-body, mine 

equipment and anticipated operating conditions. The size of the blocks used in long-term 

mine planning is a function of the selective mining unit (SMU). Leuangthong et al. 

(2004) are defined as the SMU size, that is, “the block model size that would correctly 

predict the tonnes of ore, tonnes of waste, and diluted head grade that the mill will 

receive with the anticipated grade control practice”. This SMU block size is relatively 

large with the vertical size equal to the bench height and the horizontal size between 10 to 

20m. 
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The basic problem in mine planning is to find a sequence of ore and waste blocks to mine 

so that the NPV of the operation is maximized. The production schedule is subject to a 

variety of constraints including overall pit slopes, mining, milling, and refining 

capacities, blending requirements, minimum mining width and the number of active 

mining benches in each production period.  A cut-off grade is often defined and used to 

distinguish between ore and waste blocks based on some economical parameters such as 

price of commodity and the costs of processing and mining and technical parameters such 

as processing techniques that are going to be used. 

There are two kinds of geological uncertainties that are numerically modeled using 

geostatistical simulation: rock type uncertainty and grade uncertainty inside each rock 

type. The main focus of this thesis is on grade uncertainty and how that uncertainty is 

handled in mine planning. 

As shown in Figure  1-1, in traditional mine planning methods, a grade is assigned to each 

block using estimation techniques. Kriging (Deutsch and Journel, 1998; Goovaerts, 1997) 

is a common estimation method. however, kriging does not capture uncertainty and it 

creates estimates that are too smooth leading to systematically biased reserve estimates 

(McLennan and Deutsch, 2004).  

Geostatistical simulation algorithms help quantify and assess grade uncertainty. The 

generated realizations represent plausible geological outcomes and quantify the 

uncertainty. The problem presented in this thesis involves scheduling of N different ore 

and waste blocks within the final pit outline over T different periods of extraction in the 

presence of grade uncertainty.  
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Figure  1-1: Traditional mine planning stages. 

1.3 Objectives of the Study 

The main scope of this thesis relates to long-term open-pit extraction scheduling using 

optimization methods and geological realizations. The objective is to account the grade 

uncertainty in the optimization model such that the expected NPV is maximized and the 

risk of grade uncertainty is minimized. A new term called the cost of grade uncertainty is 

introduced. The simulated realizations are used to calculate expected NPV, expected 

deviation from target production at each time period, the cost of the grade uncertainty and 

the variance of NPV. These parameters are used to assess the uncertainty and the quality 

of the generated schedule in the presence of grade uncertainty. 

The basic assumption is that operating projects will be risk averse, that is, among options 

with the same expected profit, the one with the least uncertainty is preferred. Higher 

uncertainty may be chosen if the expected profit is sufficiently higher. The challenging 

question is how to quantify and choose the trade-off point between NPV and the risk 

incurred by grade uncertainty. 

The goal of this research is to develop, implement and verify a theoretical framework 

based on optimization methods to address the long-term production plan (LTPP) problem 

in the presence of grade uncertainty.  The generated schedule will be less sensitive to the 

grade uncertainty in early years of production. Additional information obtained from 

infill drill holes and blast holes will reduce the uncertainty in later years. 

Point scale samples
(primary information)

Large scale samples
(secondary information)

Data analysis

Validation – Transformation - Variography

Geo-Modeling

Estimate (Kriging)

Mine Planning with single block model
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1.4 Background and Literature Review 

Surface mining is a method of extraction where the operations are open to the surface 

during the mine life (Askari-Nasab, 2006). Non-valuable surface material that covers the 

deposit (called overburden) as well as waste rock within the deposit must be removed to 

gain access to the mineralized ore.  

The main goal of a mining operation is to extract and process the ore with minimum cost 

and maximum profit. To achieve this goal, it is required to have and follow a schedule of 

extraction considering a number of economic and technical parameters including: 

• Input block model of grades for the entire deposit. 

• A cut-off grade that distinguishes ore blocks from waste blocks (Osanloo et al., 

2008). 

• Mining capacity: the nominal rate limit that a mine can extract and haul ore and 

waste from the mine. 

• Processing capacity: the nominal rate limit of the processing plant where ore is 

upgraded to the final product. 

• Type of excavators and hauling system that controls the mining selectivity and 

minimum mining width.  

• Wall slopes: the angle of the walls in an open-pit mine which is determined based 

on rock mechanics, geological characteristics and some safety factors. 

• The preferred direction of mining. 

• Interest rate or discount factor to calculate the present value and costs in a long-

term project. 

A surface mine is designed by considering these parameters. The selection of these 

parameters and the schedule of extraction of ore and waste material are complex 

engineering decisions that have economic significance (Askari-Nasab, 2006).  

Whittle (1989) defined open-pit mine planning as “specifying the sequence of blocks 

extraction from the mine to give the highest NPV, subject to a variety of production, 

grade blending and pit slope constraints”. The goal is to find an optimal schedule that 

satisfies all technical and physical constraints. One of the first steps in mine planning is to 

find the ultimate pit limit. The heuristic floating cone technique (Pana and Davey, 1965) 

is sometimes used. The method is simple and fast but it may not find the optimum 

solution for the final pit (Huttagosol and Cameron, 1992). Lerchs and Grossman (1965) 
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presented two methods to determine ultimate pit limits: (1) a 2D algorithm based on 

dynamic programming and (2) a 3D algorithm that uses graph theory. The graph theory 

approach is widely accepted and used throughout the mining industry. Other methods 

have been presented such as maximum network flow algorithm (Johnson, 1968) and 

transportation algorithm (Huttagosol and Cameron, 1992). Within the ultimate pit, push-

backs or stages are designed. Often, elevated selling prices are used to find the initial pit. 

These push-backs are used as a large scale guide for the detailed production schedule. 

There are two general classes of methods to solve the LTPP problem: (1) deterministic 

methods that assume the input values and parameters are known and fixed, and (2) 

uncertainty based methods that consider some input parameters as uncertain.  

1.4.1 Deterministic Approach for LTPP 

In medium-term and short-term production scheduling, the main goal is to find an 

optimum plant feed schedule (Chanda and Dagdelen, 1995; Dowd and Elvan, 1987; 

Huang, 1993; Zhang et al., 1993).  In long-term production planning, the goal is to find 

the sequence of extraction such that the future cash flow is maximized subject to 

economic, technical and environmental constraints (Askari-Nasab and Awuah-Offei, 

2009). In long-term production planning, it is common to consider yearly production 

volumes.  An interest rate is used to calculate discounted economical values such as 

revenue and mining cost of each block at any given period. Askari-Nasab and Awuah-

Offei (2009) reported three general categories of long-term mine planning methods: (1) 

heuristic methods, (2) application of artificial intelligence techniques and (3) operations 

research (OR) methods. Some of these algorithms are embedded into commercial 

software packages. XPAC AutoScheduler (Runge Limited, 1996-2009) is a commercial 

software that uses the heuristic method proposed by Gershon (1987). In this method, an 

upward cone close to the shape of the pit is generated for each block. A factor called 

positional weight is calculated for each block based on whether it is more desirable to be 

extracted in the present time or not. These weights are used to determine the removal 

sequence. Steps of this approach are as follows:  

1. Determine the set of blocks currently available for mining, 

2. Calculate a positional weight for each of those blocks, 

3. Use positional weight to decide which blocks to be mined and return to step 1. 
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Whittle (Gemcom Software International, 1998-2008) and NPV Scheduler (Datamine 

Corporate Limited, 2008)  are popular software packages which are also based on 

heuristic algorithms. They apply the parametric analysis method introduced by Lerchs 

and Grossmann (1965) to generate a series of nested pits using different revenue factors. 

The nested pits do not guarantee the global optimum solution. This may cause financial 

losses (Askari-Nasab and Awuah-Offei, 2009). 

There are artificial intelligence techniques applied to the mine scheduling problem. 

Tolwinski and Underwood (1996) proposed a method that is a combination of dynamic 

programming, stochastic optimization and artificial intelligence with heuristic rules. This 

method finds the ultimate pit and generates the production schedule concurrently. Denby 

et al. (1996) proposed a method based on genetic algorithm and simulated annealing. 

This method also generates the ultimate pit limit and production schedule in the same 

time. Askari-Nasab (2006) developed an intelligent agent-based theoretical framework 

for open-pit mine planning. It has a component that simulates push-backs and the 

intelligent agent learns the optimal push-back using a reinforcement learning method. 

There is no guarantee that the results will be close to the theoretical optimum solution. 

Operations Research (OR) methods have been employed in mine production scheduling 

by a variety of authors. Linear programming (LP), integer programming (IP) and mixed 

integer linear programming (MILP) are commonly used in literature for long-term mine 

planning. These methods are exact since they are used to solve convex models. An 

optimization model is called convex if the solution can be proven to be the global 

optimum solution. 

Johnson (1968) used an LP model to maximize NPV of a mining project. His model 

considers discounted values of revenues and costs, different processing types and 

dynamic cut-off grade. To solve this LP model, a large multi-period model should be 

decomposed into sub-model. Each sub-model considers only one period at a time. 

Although the model generates optimum results for each period individually, the results 

are not optimum taken all together. Also, the precedence of block extraction is not 

satisfied. This causes some percentage of the overlaying blocks be suspended in air 

(Figure  1-2). 
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Figure  1-2: Problem of partial block mining of Jonson’s (1968) model (Osanloo et al., 2008). 

Gershon (1983) modified Johnson’s LP model to a general MILP model. A set of binary 

variables was considered to satisfy the precedence of block extraction. The main 

disadvantage of this model is that it is intractable for a real size mine planning project 

because there are too many binary variables. MILP models can handle multiple ore 

processing options and multiple grades. Although the global solution exists and it is 

unique, there is a gap between the numerical results and the theoretical solution. Over 

time, several authors tried to make MILP models tractable for real size mine planning.  

The first attempts were made by using the Lagrangian relaxation approach. Dagdelen and 

Johnson (1986) decomposed a multi-period problem into smaller single-period problems. 

Mining capacity and processing capacity constraints are relaxed into the objective 

function with Lagrange multipliers. In some cases, the multipliers cannot be adjusted to 

get a feasible solution. Therefore, this method may not converge to an optimum solution 

(Osanloo et al., 2008). Akaike and Dagdelen (1999) presented a 4D-network relaxation 

method. A dynamic cut-off grade method is considered and the method can include a 

stockpile.  

Caccetta and Hill (2003) presented a customized branch and cut algorithm to speed up the 

convergence of the MILP model. Some other authors tried to use aggregation methods to 

reduce the number of variables. Ramazan and Dimitrakopoulos (2004) proposed a 

method where the waste blocks are considered as real variables to reduce the size of the 

problem. Ramazan et al. (2007; 2005) employed a fundamental tree algorithm to reduce 

the number of decision variables. They showed a case study for 38,457 blocks. They used 

Whittle software (Gemcom Software International, 1998-2008) to design 4 push-backs 

and within each push-back the fundamental tree method was applied to aggregate. The 

5512 fundamental tress are used in a mixed integer programming to generate a schedule 
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for 8 periods. According to Osanloo et al. (2008) the disadvantages of this method are: 

(1) the large number of trees and number of periods that cannot be handled by current 

commercial MILP solvers, (2) the optimality of the final solution is highly dependent on 

how the push-backs are designed, (3) the MILP problem may need to be solved several 

times to identify the fundamental trees and (4) the method is complex and not very 

popular. 

Boland et al. (2009) used a different approach. They defined two separate real variables 

for the portion of mining and processing. They used aggregated blocks to determine the 

order of extraction and the processing decision variables were applied at the block level. 

In their case study, the 96821 blocks were aggregated to 125 units and the problem was 

solved for 25 periods. Considering only 125 units reduces the degrees of freedom of the 

optimization. Therefore, the generated schedule would not be optimum solution 

comparing using all 96821 blocks. Boland et al. (2009) did not present much information 

about the aggregation technique that they have used. 

Askari-Nasab and Awuah-Offei (2009) also reviewed a commercial software package 

called MineMax (1998-2009) that generates schedules by solving a MILP optimization 

problem using ILOG CPLEX (1987-2009) solver. This software uses the parametric 

analysis technique presented by Lerchs and Grossmann (1965) to divide the deposit into 

several nested pits or pit shells. Then, for each pit shell the MILP is solved. The number 

of variables is reduced by only considering the blocks in the pit shell. The result will not 

be the global optimum solution because the pit shells are already defined. Sliding 

windows is another method which uses sub-problems to solve the MILP problem on a 

period by period basis.  

Askari-Nasab et al. (2010; 2011) presented the objective functions of the LP formulations 

that maximize the NPV of the mining operation. Their model was generalized form of an 

earlier model presented by Caccetta and Hill (2003) that is widely accepted. Their model 

is also an MILP optimization problem. TOMLAB (Holmström, 1989-2011) was 

employed to solve the proposed optimization problem. 

1.4.2 Uncertainty Based Approaches for the LTPP Problem 

Dimitrakopoulos (1998) has classified the uncertainties involved in mine planning as: (1) 

orebody model and in situ grade uncertainty and material type distribution; (2) technical 
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mining specification uncertainty such as extraction capacities and slope consideration and 

(3) economic uncertainties including capital and operating costs.  

A solution to the LTPP problem is affected by uncertainties related to the input 

parameters. Osanloo et al. (2008) mentions several authors who consider the uncertainty 

of ore grade in the LTPP problem. They report that grade uncertainty may cause some 

shortfalls at the designed production and discrepancies between planning expectations 

and actual production, especially in early years of production. 

Since the1960’s, different authors have tried to solve the LTPP problem with both 

deterministic and uncertainty based approaches. There are few works on uncertainty 

based approaches. There are some papers that show the effect of grade uncertainty and 

consequently the value of each block in production schedules 

Vallee (2000) reported that 60% of the mines surveyed had 70% less production than 

designed capacity in the early years. Rossi and Parker (1994) reported shortfalls against 

predictions of mine production in later stages of production.  

Dimitrakopoulos et al. (2001) show that there are substantial conceptual and economic 

differences between risk based frameworks and traditional approaches. Dowd (1994) and 

Ravenscroft (1992) used stochastic orebody models sequentially in traditional 

optimization methods. Dowd (1994) proposed a framework for risk integration in surface 

mine planning. Ravenscroft (1992) discussed risk analysis in mine production scheduling. 

He used simulated ore bodies to show the impact of grade uncertainty on production 

scheduling. The geostatistical simulation techniques are used to generate realizations that 

are representative of the grade uncertainty of ore body. Each realization is an alternative 

image of the ore body. Any deterministic method can be used to solve the LTPP problem 

using the realizations one at a time. He concluded that conventional mathematical 

programming models cannot accommodate quantified risk.  

Godoy and Dimitrakopoulos (2003) and Leite and Dimitrakopoulos (2007) presented a 

risk inclusive LTPP approach based on simulated annealing. A multi-stage heuristic 

framework is presented to generate a final schedule, which considers geological 

uncertainty so as to minimize the risk of deviations from production targets. A basic input 

to this framework is a set of realizations. They report significant improvement on NPV in 

presence of uncertainty. This method has the following disadvantages: (1) it does not 

consider grade blending, (2) it does not control the risk distribution for the production 
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target, (3) the optimality of this method cannot be guaranteed and (4) simulated annealing 

requires tuning parameters that make it difficult to apply. 

Figure  1-3 shows the stages of the stochastic production schedule framework presented 

by Leite and Dimitrakopoulos (2007) . For each realization, an optimum schedule is 

generated and a single schedule is generated based on all schedules such that deviation 

from target production is minimized.  

 
Figure  1-3: Three stages of mine production scheduling process (Leite & Dimitrakopoulos, 

2007). 

Dimitrakopoulos and Ramazan (2004) proposed a probabilistic method for long-term 

mine planning based on linear programming. This method uses probabilities of being 

above or below a cut-off to account for uncertainty. An LP model is used to minimize the 

deviation from target production. This method does not directly and explicitly account for 

orebody uncertainty and also does not maximize NPV. 

Boland (2008) in an unpublished paper which is available through the internet presented 

a new stochastic based linear model for long-term mine production in presence of grade 

uncertainty. The uncertainty depends on the material mined in earlier periods.  

Dimitrakopoulos and Ramazan (2008) presented a stochastic integer programming (SIP) 

model to generate the optimal production schedule using multiple realizations as input. 

There is a penalty function that is the cost of deviation from the target production. The 

function is calculated from a geological risk discount rate (GDR) that is discounted unit 

cost of deviation from a target production. They use linear programming to maximize 

NPV minus penalty costs. They concluded that the generated production schedule is the 

optimum solution that can produce the maximum achievable discounted total value from 

the project, given the available orebody uncertainty described through a set of 

stochastically simulated orebody models. The proposed scheduling approach considers 

multiple simulated orebody models without increasing the required number of binary 

variables and thus computational complexity.  In their model, it is not clear how to define 

the GDR parameter. Adding constraints increases the complexity and CPU time to solve 
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the optimization. The short-term production schedule is not taken into account. It is not 

dynamic and flexible to new information that is acquired during the mine life. 

Koushavand and Askari-Nasab (2009) showed the impact of grade uncertainty on the 

production plan. The research was based on a case study on an oil sand deposit in 

Canada. The details of this research are presented in Section 4.1. The idea was to transfer 

grade uncertainty to the mine production schedule. Two different methodologies are used 

to assess the impact of grade uncertainty on output parameters of mine production 

scheduling such as NPV, ore tonnage, head grade, stripping ratio, amount of final 

production and annual target production.  

Table  1-1 summarizes the uncertainty based approaches to LTPP. 
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Table  1-1: Summary of uncertainty based algorithms to solve LTPP problems. 

Type of model Author Year Solution Advantages Disadvantages 

Risk analysis using 
deterministic 

algorithm 
Rovenscroft 

 
1992 

Conditional simulation 
technique and 

Deterministic LTPP  
algorithm 

Shows the impact of grade uncertainty on 
LTPP. 

Cannot quantify the risk of a project. 
Does not give the optimal solution in presence 

of grade uncertainty. 

Risk analysis using 
dynamic 

programming 
Dowd 1994 

Conditional simulation 
and DP 

Quantify risk associated in a project. 

Does not give any criteria to accept or reject 
the risk. 

Does not produce optimal solution in the 
presence of grade uncertainty. 

Linear 
programming 

Dimitrakopoulos 
and Ramazan 

2003 
Linear goal 

programming 

Generates the schedule that reduces the risk at 
early production stages. 

Considers equipment mobility and block access 
in production planning. 

Does not generate maximum NPV in presence 
of grade uncertainty. 

Meta-heuristic 
Gody and 

Dimitrakopoulos 
2003 

Conditional simulation 
and 

Simulated annealing 

Integrates ore body uncertainty, waste 
management and economic and mining 

consideration to generate optimal mining rates. 
Produces a single optimum production planning 

in presence of uncertainty. 

Implementation is complicated. 
The optimality of this method cannot be 

guaranteed. 
Does not consider equipment access. 
Grade uncertainty is not incorporated 

explicitly in the production planning process. 

Mixed integer 
programming 

Ramazan and 
Dimitrakopoulos 

2004 
Mixed integer 
programming 

Maximizes NPV explicitly with the 
consideration of equipment mobility and block 

access. 

Cannot implement on large deposit. 
Grade uncertainty has not been used directly. 

Meta-heuristic 
Leite and 

Dimitrakopoulos 
2007 

Conditional simulation 
and 

Simulated annealing 

Integrates ore body uncertainty, waste 
management and economic and mining 

consideration to generate optimal mining rates. 
Produces a single optimum production planning 

in presence of uncertainty. 
Minimizes deviation from target production that 

is caused by grade uncertainty. 

Cannot be implemented on large deposit. 
The optimality of this method cannot be 

guaranteed. 
Simulated annealing technique is very 
complex and needs lots of parameters. 

It is very slow and time consuming. 
 

Stochastic mixed 
integer 

programming 

Dimitrakopoulos 
and Ramazan 

2008 
Linear stochastic 

programming 

Maximizes NPV. 
Uses grade uncertainty directly. 

Produces a single optimum production planning 
for a geological risk discount rate (GDR) value. 

Cannot be implemented on large deposit. 
GDR parameter is not very clear. 

Short-term production schedule issue and blast 
data set are not taken into account. 

Risk analysis 
Koushavand, 

Askari-Nasab and 
Deutsch 

2009 
Conditional simulation 

technique 

Shows the impact of grade uncertainty on 
LTPP. 

 

Quantifies the risk of a project 
Does not guarantee optimal solution in 

presence of grade uncertainty. 
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1.4.3 Application of Clustering in Mine Planning 

In the model presented by Askari-Nasab et al. (2010; 2011), there are 3 TN×  decision 

variables where T is the number of periods and N is the number of blocks. The number of 

binary variables is TN  and the rest of the variables indicate portions of the blocks that 

should be extracted and processed in each period. For example, with a block model of 

20,000 blocks and 20 years of mine life, there would be 1,200,000 variables where 

400,000 are binary. Solving such a big model is not tractable with current commercial 

mixed integer programming solvers. Tabesh and Askari-Nasab (2011) tried to solve this 

problem by clustering the blocks in order to reduce the number of variables. Using grade 

aggregation methods, similar blocks are summarized to a group and are dealt with as one 

variable which will be extracted in the same period. Each group of blocks is called a 

mining cut. Figure  1-4 shows a schematic plan view of mining cuts. The mining cuts are 

distinguished with different colors. In this example, 226 blocks in a mining level are 

aggregated into 13 mining cuts. The goal was to create clusters with 17 blocks at each 

group. 

 

Figure  1-4. Schematic plan view of aggregated blocks into 13 mining-cuts on a mining bench; 

each mining cut is identified by a number (Askari-Nasab and Awuah-Offei, 2009) 

Clustering is a process to assign entities into groups called clusters. The objective is to 

maximize the similairy between entities inside the groups and maximize the dissimilarity 

between entites in different goups. Clustering is a nonlinear programming (NP) model 
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which Gonzalez (1982) proved to be NP-hard. Instead of solving this NP-hard problem, 

there are some non-exact algorithms that have been developted by several authers. There 

are two main clustering algorithms: (1) hard clustering, where each entity blongs to a 

group or not and (2) soft clustering or fuzzy clustering, where each entity belongs to each 

group with a certain degree. 

The different clustering algorithms can be organized as follows: (1) Hierarchical 

clustering, (2) partitional clustering and (3) overlapping clustering.  

Only hierarchical and partitional clustering can be used in mine planning because all 

blocks must belong to a single cluster. Tabesh and Askari-Nasab (2011) reviewed 

different clustering algorithms and presented a new method for clustering. Hierarchical 

clustering methods generate better results but they are computationally expensive (Feng 

et al., 2010). A well-known partitional clustering method is the k-mean algorithm. It is an 

iterative algorithm that tries to find better partitions at each loop. Recently some authors 

tried the k-mean algorithm (Bagirov, 2008; Chang et al., 2009; Chung and Lin, 2006; 

Niknam and Amiri, 2010; Niknam et al., 2010; Zalik, 2008). Jain (2010) has reviewed the 

k-mean method in more detail.  

The advantages of clustering are: (1) it decreases the number of variables in optimization 

stage and therefore increases the speed of the algorithm, (2) it reduces the gap factor and 

(3) because any real surface mine is not extracted in block scale resolution, applying 

clustering method to define mining cuts in optimization models is more accurate. 

1.5 Contributions 

There is a need for a well-established solution for long-term mine planning in presence of 

uncertainty. Heuristic methods and artificial intelligence techniques are not exact 

methods in which the global optimum is not guaranteed. There are subjective decisions 

involved with these methods that may lead to different solutions. Obtaining an exact 

solution based on MILP methods is computationally very expensive. Even with current 

super computers/computer clusters, it is intractable to solve a real size mine planning 

problem with more than 10,000 blocks and 10 periods. The suggested methods for 

reducing number of variables leads to suboptimal solutions. 

The main contribution of this research is the integration of geostatistical simulation 

methods with mixed integer programming in the context of mine planning. The generated 

schedule is near optimum. Some detailed contributions are: 
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• Several methods are presented with different objective functions: (1) the expected 

value of NPV is maximized and the expected deviation from target production is 

minimized considering grade realizations with and without a stockpile, (2) the 

expected value of NPV is minimized and the variance of the block is penalized  

to provide a smooth ore production with less fluctuations in input ore tonnage to 

the mill in early years of production and (3) the mean-variance method is adapted 

to the long-term mine planning such that the expected NPV is maximized while 

the variance of the NPV is minimized. The objective functions of the first two 

methods are a mixed integer linear programming and the last method is a mixed 

integer quadratic programming.  

• A new term called ‘cost of grade uncertainty’ is introduced and investigated. It is 

used as a guideline to determine the optimum trade-off factor in the optimization 

problem.  

• The effect of grade uncertainty, the cost of grade uncertainty and how to generate 

a near optimum schedule in presence of grade uncertainty are also investigated. 

• The relationship between mining and processing capacities and the cost of grade 

uncertainty is shown.  

The proposed methods and the developed software can be applied for real size industrial 

applications. 

1.6 Thesis Outline 

The main theoretical developments of the thesis are presented in  Chapter 2.  First, the 

MILP model without grade uncertainty is presented. The effect of grade uncertainty in 

mine planning is investigated. A formulation is developed to estimate the possible cost of 

unexpected shortfalls from the target production that is caused by grade uncertainty. Two 

new linear programming models are presented to use the grade uncertainty explicitly in 

scheduling.  The complete definition of the methods and the variables are presented in 

this chapter. In the first model the cost of grade uncertainty is used in the optimization 

stage. The NPV is maximized while the cost of grade uncertainty is minimized. In the 

second model a stockpile is mathematically considered in the objective function. A new 

linear programming model is presented in presence of grade uncertainty and a stockpile. 

Also, in this chapter a nonlinear programming model is presented. The mean-variance 

method is applied in long-term mine planning to minimize the effect of grade uncertainty 
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on the NPV of the project. The expected value of NPV is maximized while the variance 

of NPV is minimized. 

 Chapter 3 explains some implementation details, the steps and details that have to be 

taken to use block models in mine planning. FORTRAN programs and MATLAB codes 

are presented to implement developed models.  The clustering methods also are presented 

in this chapter. 

 Chapter 4 verifies the models and provides a case study. First, a schedule is generated 

using Whittle software. An ordinary kriging block model is used for this purpose. The 

traditional MILP method and all proposed optimization models are applied. For each 

model verification and uncertainty assessment procedure are implemented. This 

procedure includes quantifying the cost of grade uncertainty, calculating deviation from 

target production, evaluating the variance of NPV and creating proper graphs. Finally, 

using the aforementioned steps performances of different techniques are compared in this 

chapter. It is shown that grade uncertainty can cause shortfalls and sub-optimal 

production plans. By taking grade uncertainty into account and using a stockpile the 

negative effects of grade uncertainty on the production plan can be reduced significantly.  

 Chapter 5 presents a comprehensive sensitivity analysis on the input parameters of the 

models such as the number of mining cuts, the mining and processing capacity and the 

cost of grade uncertainty. 

 Chapter 6 presents conclusions and final remarks. Also limitations of the proposed 

methods are discussed in this chapter. 
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Chapter 2 Theoretical Framework 

The MILP framework without grade uncertainty is initially explained and formulated in 

Section  2.2. Then, the effect of grade uncertainty is considered in Section  2.3. The 

concept of the cost of grade uncertainty is proposed in Section  2.4 and equations are 

presented to estimate the cost of grade uncertainty in a mine production schedule with 

and without considering a stockpile. A new optimization model for generating the long-

term production schedule in presence of grade uncertainty is presented in Section  2.5. 

This model simultaneously considers NPV maximization and minimization of the cost of 

grade uncertainty. Two new variables are introduced to control the overproduction and 

underproduction in each period for each realization. In Section  2.6 the model is expanded 

to implement a stockpile. The idea is that any overproduction that occurs in some 

realizations in any period is transferred to the next periods. Section  2.7 presents a 

quadratic optimization based on a portfolio optimization method using mean-variance 

approach from economics. The idea is to maximize the expected return and minimize its 

variance. The method is adapted for multi-period long-term mine production scheduling 

in presence of grade uncertainty. The effect of grade uncertainty is minimized not only in 

the target production but also in the input head grade to the mill. The Hessian matrix is 

positive definite and therefore it is a convex mixed integer quadratic optimization 

problem and the unique optimum solution exists. In Section  2.8, a block aggregation 

method is presented to reduce the size of the optimization problem. Section  2.9 presents a 

discussion on the adaptive approach to the long-term mine planning problem and the 

combination of the anticipative and adaptive models. Finally, the chapter is summarized 

in Section  2.10. 

2.1 Introduction 

The first step in any mining project is to gather information from the orebody. Diamond 

core drilling is mostly used (Hustrulid and Kuchta, 1995) for this purpose. The core 

provides a continuous string of geologic information. The drillholes are subdivided into 

rock-types. Inside each rock-type there are a number of continues grade variables. A 3D 

characterization of the orebody in the form of a block model is constructed from the 

available drillholes. Geostatistical methods are widely used for block model generation. 

There are many methods to calculate the block estimates (Deutsch and Journel, 1998; 
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Deutsch et al., 2002; Goovaerts, 1997; Journel and Huijbregts, 1981). Among these 

techniques the most popular methods are Kriging and Simulation. The generated block 

model is the main input to long-term production planning (LTPP). The main goal of 

LTPP is to maximize the NPV of the project. There are constraints such as the annual 

mining limit and processing capacity. The optimal production schedule specifies the 

sequence of extraction of ore and waste material from the mine such that all constraints 

are satisfied and the NPV is maximized. In order to solve this optimization problem, the 

objective function and all constraints are required to be formulated in a mathematical 

form. A number of decision variables are defined for each block. There are T binary 

decision variables for each block where T is the mine life. These variables indicate 

whether or not the block is extracted in each period; 1 indicates that the block has been 

extracted and 0 indicates that the block has not been extracted yet. In these models the 

entire block should be extracted in one period. In some other models, a fraction of a block 

could be mined in each period. Nevertheless, binary variables are still required to track if 

a block has been extracted to control the precedence of block extractions. Therefore, the 

optimization problem is to find the order of extraction of the blocks such that the NPV is 

maximized and the constraints are satisfied. The mathematical form of such optimization 

problem can be written as Eq. (2.1): 

 Max NPV  (2.1) 

Such that the following constraints are satisfied: 

• Grade blending: the average input grade to the mill needs to be within specified 

limits due to the processing limitations and the plant design. Upper and lower 

constraints are specified for each element that is processed in each period. 

• Processing capacity: there is a specified annual capacity for the processing plant. 

The generated schedule should provide sufficient ore which should be between 

specified upper and lower processing capacities per period. 

• Mining capacity: there is a maximum mining capacity based on the excavation 

method and equipment that are used in the mine.  

• Mining precedence: the production schedule needs to be feasible. This means that 

if a block is planned to be extracted in period t, all the blocks above should have 

already been extracted or they are going to be extracted in the same period. This 

rule is enforced in the optimization model with mining precedence constraints. A 
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set of constraints is constructed to ensure that a block is not extracted until all the 

blocks located directly above are extracted.  

In the next section, a mixed integer linear programming model is developed using the 

aforementioned framework for the case where no uncertainty is involved in the LTPP 

problem. This model is later used for uncertainty based methods.  

2.2 MIPL Formulation for Deterministic Approach (Model #1) 

The MILP model developed by Askari-Nasab et al. (2010; 2011) is described in detail. 

This model is generalized from an earlier model presented by Caccetta and Hill (2003).  

For each block, a parameter called the Economic Block Value (EBV) is calculated. The 

EBV depends on the value of the block and the costs incurred during mining and 

processing stages. The mining cost of a block is a function of the distance between its 

location and its final destination. The EBV of a block is the revenue generated by selling 

the final product less all the costs involved in extracting and processing the block. 

Because the long-term production plan is a multi-period optimization problem and blocks 

are extracted in different periods, a discount rate is applied to calculate the present value 

of the EBV, revenue and the costs. Therefore, the Discounted Economic Block Value 

(DEBV) is calculated using Eq. (2.2): 

 
DEBV discounted revenue –  discounted costs=   (2.2)  

The discounted revenue is the present value of the ore minus the cost of processing. The 

value of the ore is the amount of money generated by selling the final product of the 

plant. Therefore for a block i, if there is only one valuable commodity, the ore value can 

be calculated by Eq. (2.3) 

 OreValue=(Tonnageof block)×Grade×Price  (2.3) 

The discounted revenue of block i in period t is denoted by ( );v i t  and calculated as Eq. 

(2.4).  

 

( )
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And the discounted cost of block i in period t, ( );q i t , can be written as Eq. (2.5): 

 

( )

( ) ( ) ( )

Mining Cost of block i
;

(1 )

;
(1 )

t

m

t

q i t
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or

C i
q i t T i

IR

=
+

= ×
+

 (2.5) 

Where  

• i is the identification number of the block. 

• t is the period number. 

• ( )T i  is the tonnage of block i. 

• ( )pC i and ( )mC i
 
are the cost of processing and mining of block i, respectively.  

• ( )pR i and ( )mR i are the recovery of processing and mining of block i, 

respectively. 

• ( )g i  is the estimated grade value of block i.  

• IR  is the interest rate of the project or the discounting rate.  

• P is the selling price per tonne of the final product. 

There are some considerations:  

1. Eq. (2.4) gives the discounted revenue of a single product. In general, there are 

several valuable products and the overall revenue is the summation of all 

discounted revenues from each element. Also, because in the processing plant 

there is a certain cost to remove the contaminants, the processing cost should 

include this cost. A multivariate geostatistical modeling technique is 

recommended to model both valuable properties as well as contaminants. ( );v i t

is the total discounted revenue of block i by considering all the valuable 

elements, the processing cost and the removal cost of the contaminants from final 

product. 

2. The tonnage of a block that is calculated by Eq. (2.6) is a function of density of 

the blocks, ( )iρ , and the volume of the block, V . Usually the density of a block 
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depends on the rock-type and can be modeled as a continuous variable using 

geostatistical techniques. 

 ( ) ( )T i V iρ= ×  (2.6) 

3. Based on the processing method, the required degree of liberation may be 

different for low and high grades. Also, the amount of required chemical reagents 

may vary. Therefore, the processing cost depends on the grades of the block. 

Moreover, the processing recovery factor is not constant value for all input 

grades. Usually these factors are modeled as a function of the rock-type and the 

grades of the blocks. Therefore, the grade uncertainty would influence on the 

recovery factors and processing cost, and it can be qualified by the realizations. 

4. Most of the time a cut-off grade ( cutg ) is used to determine whether a block is 

ore or waste. If the estimated grade of a block is less than cut-off grade, the block 

is considered as waste. The ore value of such a block is zero. 

Therefore, the EBV of block i can be shown as Eq. (2.7) by assuming the cut-off grade: 

( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
=

( )

m p p m cut

m cut

T i R i × g i × R i × P - C i T i C i if g i g
EBV i

T i C i if g i g

  × − × ≥  

− × <

 (2.7) 

The DEBV is given by Eq. (2.8).  

 
( ) ( ) ( )
( ) ( )
; ;

( ; )
;

cut

cut

v i t q i t if g i g
DEBV i t

q i t if g i g

 − ≥

− ≥

 (2.8) 

The NPV of the project is discounted revenue minus discounted costs of all blocks 

summed over all periods. The objective function for LTPP is to maximize NPV. There 

are different methods to define a linear optimization problem that maximizes the NPV. 

As described before, one method is to assign an integer (binary) variable ( ; )w t i  for block 

i in period t to determine whether the block is extracted or not. The general form of this 

model is presented in Eq. (2.9): 

 

T N

t=1 i=1

Max ( ; )NPV DEBV w t i= ×∑∑   (2.9) 

• T is the number of time periods or the mine life. 
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•  N is the total number of blocks.  

There are T N× binary decision variables. Since all the decision variables are binary, this 

optimization problem is called integer linear programming (ILP). 

In the second model, decision variables ( );y t i  are defined as the extraction portion of 

block i in period t. However, binary variables ( ; )a t i  are still required to satisfy the 

precedence of the block extraction. These binary variables appear in the constraints of the 

optimization problem. The second objective function is presented in Eq. (2.10): 

 ( ) ( )
1 1

; ;
N T

i t

Max NPV Max EBV t i y t i
= =

= ×∑∑  (2.10) 

This is a linear model with continues decision variables, ( );y t i , which can take any 

number between 0 to 1. Binary variables only control the precedence of the block 

extraction. This model is a mixed integer linear programming (MILP) problem. 

The cost of mining and processing always are a function of grade of the block.  In the 

earlier versions of long term optimization models the cut-off grade has been considered 

as a constant number and it has been decided before the optimization problem. Therefore, 

the destination of the blocks are decided by a static cut-off grade, and in the optimization 

process only the period of the extraction has been determined (and the portion of the 

extraction). Such a model has been shown in Eq. (2.9) where the decision variables are 

binary and Eq. (2.10) with continues decision variables that indicate the proportion of the 

block extraction. There is another approach which is called dynamic cut-off grade. In this 

approach, there is another decision variable that determines the portion of the block that 

should be processed. By using two different decision variables for extraction and 

processing of each block, the optimizer decides whether the block is processed or it 

should be sent to the waste dump. Therefore, the cut-off grade is implemented in the 

optimization process. In other words, because two separate variables are defined for 

extraction and processing, it is possible to generate a schedule that may send low quality 

ore blocks located on upper benches to waste dump (or, more likely to a low grade 

stockpile), in order to gain access to high quality ore blocks in the lower levels. This 

produces more cash flow in early periods of the project and increases the total profit of 

the project. So, in this model, the cut-off grade is dynamic through the mine life. This 

concept is modeled in the third model. 
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In the third model, there are two decision variables for each block i in each period t: (1) 

( );y t i  is the portion of block i to be extracted in period t and (2) ( );z t i  is the portion of 

block i to be processed (if it is ore) in period t. So, in this model, the cut-off grade is 

dynamic through the mine life. This model is called Model #1 from this point on. 

The mathematical form of optimal mining schedule with separate decision variables for 

mining and processing is presented in Eq. (2.11): 

 

( )
T N

t=1 i=1

Max ( ; ) ; ( ; ) ( ; )NPV v t i z t i q t i y t i = × − × ∑∑  (2.11) 

As mentioned before, any feasible production plan should satisfy technical and 

environmental constraints. These constraints are: 

• Grade blending constraints: These inequalities ensure that the head grade of 

estimated block model is within the desired range in each period.  
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∑
K  (2.12) 

� ( )lg t  and ( )ug t are the allowable lower and upper limits of the head 

grade in period t. A feasible solution is not guaranteed for any range of 

input head grade. So, these two parameters should be chosen such that 

the optimization problem is feasible. Therefore these two constrains 

should be within the range of values in the block model. There are 

separate constraints for each element of interest and any contaminants in 

each period.  Therefore, there are two equations (upper bound and lower 

bound) per element per period. For consistency, the lower limit constraint 

has been multiplied by a negative sign. Therefore, both constraints are 

enforced to be less than zero. 

• Processing capacity constraint: these inequalities ensure that the total ore 

processed in each period is within the acceptable range of the processing plant 

capacity. There are two equations, (upper and lower limits) per period.  
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( )
1

( ) ( ; ) ( ) 1,2, ,
N

l o u

i

p t T i z t i p t t T
=

 ≤ × ≤ ∀ = ∑ K  (2.13) 

� ( )lp t  and ( )up t  are the lower limit and upper limit (target production) 

for the designed processing plant in period t, respectively.   

• Mining Capacity constraint: these inequalities ensure that the total tonnage of 

material mined (ore, waste, overburden, and undefined waste) in each period is 

within the acceptable range of mining equipment capacity in that period. There 

are two equations (upper bound and lower bound) per period.  

 

( ) ( )
1

( ) ; ( ) 1,2, ,
N

l total u

i

m t T i y t i m t t T
=

 ≤ × ≤ ∀ = ∑ K  (2.14) 

� ( )lm t  and ( )um t are lower and upper limits for the mining capacity in 

period t. 

• These inequalities ensure that the amount of ore of any block processed in any 

given period is less than or equal to the amount of rock extracted in the 

considered period. 

 
( ; ) ( ; ) 1,2, , , 1,2, ,z t i y t i t T i N≤ ∀ = =K K  (2.15) 

• The constraints that specify the block extraction precedence: These equations 

control the relationship of block extraction precedence. 

 ( )
1

( ; ) ( ; ) 0 1,2, , , 1,2, , , 1,2, ,
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y u i a t i t T i N
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 ( ; ) ( 1; ) 0 1,2, , 1 , 1,2, ,a t i a t i t T i N− + ≤ ∀ = − =K K  (2.18) 

� ( , )a t i  is a binary integer variable. It equals one if the extraction of block 

i has started before or in period t (otherwise it is zero). 

� ( )C i
 
is the set of blocks that are needed to be extracted before extraction 

of block i. 
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� j is the index for set of the blocks, ( )C i , that need to be extracted prior 

to the extraction of block i.  

� This model only needs the set of immediate predecessor blocks on top of 

each block to model the order of block extraction. This is presented by 

set C(M) in Eq. (2.16). Figure  2-1 shows the 1-9 and 1-5 immediate 

blocks above each block that should be considered for precedence 

constraints. 

 

Figure  2-1. Representation of the 1-5 and 1-9 block constraints(Hustrulid and Kuchta, 1995). 

 

• Reserve constraints: these constraints enforce that all portions of the blocks 

inside the ultimate pit limit to be extracted until the end of the mine life. 

 1

( ; ) 1 1,2, ,
T

t

y t i i N
=

= ∀ =∑ K  (2.19) 

All the ore blocks in the model have to be mined. This is based on the assumption 

that a fixed final pit limit is used. In this case, the mining capacity should be large 

enough to extract all the material inside the pit during the mine life. Otherwise 

the optimization will be infeasible when the Eq. (2.20) is applied. In the case that 

the optimization is not forced to extract all the blocks inside the ultimate pit limit, 

Eq. (2.19) should be replaced by Eq. (2.20). This constraint forces the sum of the 

extraction portions of a block to be less than or equal to one. 

 ( )
1
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The optimization model presented in Eqs. (2.11) to (2.20) is a mixed integer linear 

programming (MILP) problem with linear constraints. There are two types of variables: 

(1) continuous values 
 
and

 
( );z t i  and (2) the binary variables ( ; )a t i  that indicate 

whether a block has been extracted or not in each period; 0 indicates that the bock has not 

been extracted until period t and 1 otherwise.  

Wolsey (1998) categorizes the MILP as an NP-hard problem. Branch-and-cut methods 

that are widely used to solve MILP problems are exact algorithms consisting of a 

combination of cutting plane algorithm with a branch-and-bound algorithm (Mitchell, 

1999). These methods solve the MILP problem by solving a sequence of linear 

programming relaxations of the MILP problem. Cutting plane methods improve the 

relaxations of the problem by close approximations of the MILP. The mixed integer 

programming problems are usually not efficiently solved by the cutting plane approach. 

A branching technique is used that results in the branch-and-cut approach. 

2.3 Effect of Grade Uncertainty in Mine Planning Optimization  

In this section, the effect of the grade uncertainty on the long-term mine production plan 

is studied. Grade uncertainty is modeled by generating multiple realizations using 

geostatistical simulation techniques. Usually, the average grade of a block is used to 

determine whether a block should be processed or not. The average grade of a block is 

calculated as the arithmetic mean of all simulated values.  In this section, the effect of 

grade uncertainty and cut-off grade on the mine planning is investigated.  

The cut-off grade is a critical threshold. Any block with a grade above this limit is 

considered as ore and has an economical value. Any material below the cut-off grade is 

considered to be waste with no economic value; however, there is a mining cost 

associated with that block.  Lane (1988) presented the fundamentals of cut-off grade 

calculation. There are two theoretical cut-off grades: (1) marginal and (2) break-even. 

The marginal cut-off grade is the critical grade threshold where the value of the material 

is equal to the cost of mining. Therefore, marginal cut-off grade is the point that the EBV 

is equal the negative value of the cost of mining or ( )M mEBV g C= − . 

The break-even cut-off grade is the critical grade value that the net value of the block is 

zero. This means that any block above this limit has positive net value. This can be 

denoted by: ( ) 0BEEBV g = . In other words, the break-even cut-off grade is the point that 

the revenue of a bock cancels out all the costs including cost of mining and processing. 

( );y t i
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On the other hand, operational cut-off grade ( OPg ) is applied in most of the industrial 

projects. This value is mostly imposed by the limitations of the processing methods and it 

is higher than the break-even cut-off grade. Therefore, the EBV of a block above 

operational cut-off grade is always a positive value: ( ) 0OPEBV g ≥ . 

Figure  2-2 (a) to (c) shows the cases where the marginal cut-off grade ( Mg ), break-even (

BEg ) and operational ( OPg ) cut-off grades are applied respectively to calculate the EBV 

for a single block. Figure  2-2 (a) shows the case that the marginal cut-off grade ( Mg ) is 

applied. Any block for which the average grade is lower than the marginal cut-off grade 

is not processed and it is sent to the waste dump. On the other hand, if the grade of a 

block is higher than Mg and lower than BEg  , still it generates negative EBV. However, 

processing these blocks reduces the negative impact of the mining cost. Therefore, it is 

economical to process these blocks. Figure  2-2 (b) shows the case that break-even cut-off 

grade is applied. All the blocks above BEg  have positive EBV values. Figure  2-2 (c) 

shows the case that operational cut-off grade is applied. Usually the operational cut-off 

grade is higher or equal to the break-even cut-off grade.  
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Figure  2-2. EBV of unit tonnage vs. input grade for an ore block with different cut-off grade 

(a) cut Mg g= ,(b) cut BEg g=  and (c)  cut OPg g=  

The grade uncertainty can affect the production plan in two different ways: (1) the 

tonnage of ore sent to the mill could vary and (2) the average EBV value over all 

realizations could be different than that calculated from the average grade. In this section 

each of these factors is studied.  

2.3.1 The Effect of Grade Uncertainty on the Input Tonnage 

There is uncertainty in the grade of each block. The local uncertainty in each block is 

described by L realizations. To show the effect of grade uncertainty on the tonnage of ore, 

four synthetic blocks are simulated based on a lognormal distribution.  The following 

conclusions are drawn: 

1. The first case (Figure  2-3): The mean of the block is 1.5% and the standard 

deviation is 0.5%. The distribution of this block is also shown in Figure  2-3. 

85.3% of the realizations are below the cut-off grade. The average grade of the 
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block is also less than cut-off grade and in traditional LTPP methods is 

considered as a waste block. However, with the probability of 14.7%, the grade 

of this block can be above the cut-off grade and it should be processed. 

Therefore, with the probability of 14.7 % this block can produce an unexpected 

ore tonnage which is not planned in the traditional long-term production 

schedule. In this thesis, this type of ore is referred to as overproduced ore.  The 

EBV of this block can be calculated by Eq. (2.7) for each realization. Therefore, 

the expected value of EBV and the variance of EBV can be calculated for this 

block. 

 

 

Figure  2-3. PDF (top) and CDF (bottom) for case 3, not all n realizations and mean (dashed 

blue line) are less than cut-off grade (dashed red line). 
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2. The second case (Figure  2-4): The mean and the standard deviation for this block 

respectively are 2.5% and 0.5%. The average grade of the block is above the cut-

off grade and the grade of the 85.3% the realizations is above the cut-off. 

Therefore in deterministic mine production plans this block is assumed an ore 

block and it is scheduled to be processed during mine life. However, there is a 

probability of 14.7% that the grade of this block is below the cut-off grade and it 

should not be processed. Therefore, it may cause the shortfall from target 

production. Same as the previous case, the expected value of EBV and the 

variance of EBV is calculated for this block using the Eq. (2.7). 

  

 

Figure  2-4. PDF (top) and CDF (bottom) for case 3, not all n realizations and mean (dashed 

blue line) are higher than cut-off grade (dashed red line). 
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In real life, the number of realizations is much lower than what we used here in this 

synthetic case. Therefore, two more cases may happen when the number of realizations is 

limited. For these two cases 100 realizations are generated:  

3. Third case (Figure  2-5): The average grade of the block is 1.5% and the standard 

deviation is 0.15%.  All of the realizations are below the cut-off grade. Therefore, 

in all realizations this block is a waste block and there is no grade uncertainty 

associated with this block when the number of realization is low. The EBV of the 

block in all realizations equals to the negative cost of the mining. So, the variance 

of the EBV is zero.  

 

 

Figure  2-5. PDF (top) and CDF (bottom) for case 1, all n realizations and mean (dashed blue 

line) are less than cut-off grade (dashed red line). 
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4. The Fourth case (Figure  2-6): The average grade of this block is 2.5% and the 

standard deviation is 0.15%. All of the L realizations are above the cut-off grade. 

Therefore, this block will be processed in all realizations. There is no uncertainty 

for the tonnage of ore for this block. However, the EBV of the block which is 

related to the grade of the block has a different value for each realization. So, the 

expected value and the variance of EBV can be calculated for this block. The 

variance of EBV is not zero for this case. 

 

 

Figure  2-6. PDF (top) and CDF (bottom) for case 2, all L realizations and mean (dashed blue 

line) are higher than cut-off grade (dashed red line). 
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Grade uncertainty influences the ore tonnage uncertainty and the input ore sent to the mill 

at different periods.  

2.3.2 The Effect of Grade Uncertainty on the Average EBV of Blocks  

The EBV of each block is highly dependent to the grade of the blocks in several ways: (1) 

simulated grade is used directly at EBV calculation, (2) the ore tonnage of the block 

which is controlled by simulated grade and the cut-off grade, (3) the processing cost and 

(4) recovery factor. In this section, considering a synthetic case, the effect of grade 

uncertanity on the average EBV value over all realizations is studied.  A block with 

lognormal distribution of grade with a mean and standard deviation of 2.2% and 0.5% 

respectively is simulated 10,000 times (Figure  2-7). The cut-off grade is assumed to be 

2%. Therefore, this block is considered as an ore block because the average grade is 

above the cut-off grade. Eq. (2.7) is used to calculate EBV of this block per tonne for all 

10,000 realizations where 100%pR = , Price 1$= , 0.5$ /pC tonne= and 1.5$ /mC tonne=

.  The histogram of EBV is shown in Figure  2-8. In 3744 cases over 10,000 generated 

values (37.44%), the block is decided to be waste because the simulated grade is less than 

the cut-off grade. In 62.56% of the cases, the simulated grade is above the cut off-grade 

and the block is decided to be ore (gray columns in the Figure  2-8).  The average EBV is 

-$0.26 which is less than zero. This means that even for a block with an average grade 

above the cut-off grade, the average EBV from simulations may be less than zero, so it is 

not economic to be processed. This is due to the nonlinearity of the EBV calculation. 

Therefore, with the methods that maximize NPV based on one single block model (that 

can be the kriging or average of realizations), this block is assumed as ore and will be 

processed. This phenomenon has direct impact on the NPV of each realization. 

The grade uncertainty has two main effects on the LTPP: (1) it may cause deviations 

from target production. This can be calculated from the simulated realizations by taking 

into account the grade variation and the input cut-off grade; and (2) the grade uncertainty 

directly has effect on the EBV calculation and consequently on the NPV of the project. In 

this thesis, the new term of “the cost of grade uncertainty” is proposed to quantify the 

first effect. In this thesis, two LTPP models are proposed to maximize the NPV and 

minimize the expected value of the cost of grade uncertainty. The second effect of grade 

uncertainty is also measured by the variance of NPV. In addition, a third LTPP model is 



 

35 
 

proposed which tries to maximize the expected mean of NPV and minimize the variance 

of NPV by taking all the realization into account directly at optimization procedure. 

 

  

 

Figure  2-7. PDF (top) and CDF (bottom) for a synthetic case to calculate expected value of 

EBV per tonne of ore. 
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Figure  2-8. Histogram of EBV for a block with lognormal distribution, mean=2.2, Std. 

dev=0.5 and cut-off grade=2. 

2.4 Cost of Grade Uncertainty 

In this section, a new term called “cost of grade uncertainty” is introduced. Cost of grade 

uncertainty is a quantitative parameter that estimates the cost in long-term production 

plans due to of grade uncertainty. In traditional mine planning methods, in order to 

generate a long-term production schedule, it is required to predict the grade of blocks and 

use these predictions to maximize the NPV of the project. This prediction may lead to 

miss-classification of ore and waste blocks. Consequently, during the extraction, it may 

cause an unexpected ore production or a shortfall from target production. Generally, the 

cost of grade uncertainty is caused by two main reasons: 

1. Cost of underproduction: where the mine has to react quickly to make up for an 

unexpected shortfall.  

2. Cost of overproduction: unexpected extra available ore in mine leads to sub-

optimal use of resources and/or imposes a cost for stockpiling.  

Both of these two costs are calculated using the realizations generated by geostatistical 

simulation algorithms. The realizations are used to assess the uncertainty and the average 

cost of it.  
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The cost of underproduction is the loss of revenue due to the shortfall from target 

production at the processing plant which causes the processing plant to operate sub-

optimally. The idea is that revenue will be lost if the plant is not running at full capacity. 

Although in real cases, mines make short-term arrangements to prevent this type of 

revenue loss, these extra arrangements incur a significant cost. A mathematical equation 

to calculate the cost of underproduction is proposed as: 

( )
Cost of under production = Tonnageof shortfall ×

                                          Averagerevenue per tonne - Processing cost per tonne

or

Cost of under production =  Tonnageof shortfall ×Cost of under production per tonne

 

This equation is used to calculate the discounted cost of underproduction for realization l 

in period t: 

 
( ) ( )

( )

C ; ( ; )
(1 ) (1 )

( ; )

p

up up t t

up up

CP
t l T t l × g t ×

IR IR

T t l c t

 
= − 

+ + 

= ×

 (2.21) 

Where  

• ( )C ;up t l  is the cost of underproduction using realization l. 

• ( ; )upT t l  is the tonnage of underproduction using realization l. 

• ( )g t  is the average input grade to the mill in period t. 

• ( )upc t  is the discounted cost of underproduction per tonne in period t and it is 

calculated by Eq.(2.22) as below: 

 ( ) ( )
(1 ) (1 )

p

up t t

CP
c t g t ×

IR IR
= −

+ +
 (2.22) 

The same concept is applied for the cost of overproduction. It is assumed that there is no 

stockpile available to store extra unplanned ore produced due to grade uncertainty. Also, 

in a hypothetical case, the processing plant is not able to handle extra ore and it is decided 

to send the extra ore to the waste dump. This assumption is revised in the Section ( 2.6) 

where a stockpile is considered in the calculation of cost of overproduction. For the case 

with no stockpile, the hypothetical cost of overproduction is presented in Eq. (2.23)  
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( ) ( )

( )

C ; ( ; )
(1 ) (1 )

( ; )

p

op op t t

op op

CP
t l T t l × g t ×

IR IR

T t l c t

 
= − 

+ + 

= ×

 (2.23) 

Where  

• ( ; )opT t l  is the tonnage of overproduced ore in period t and realization l.
 
 

• ( )opc t  is the cost of overproduction per tonne which is calculated by Eq. (2.24)  

 ( ) ( )
(1 ) (1 )

p

op t t

CP
c t g t ×

IR IR
= −

+ +
 (2.24) 

In this case, the cost of overproduction and underproduction per tonne are equal: 

( ) ( )up opc t c t= . Figure  2-9a shows the discounted cost of grade uncertainty at different 

periods which is a symmetric penalty function for this specific hypothetical case.  

The more accurate and realistic case is that the cost of overproduction is less than the cost 

of underproduction because over production will not be wasted. The mining plan will be 

modified or the extra ore will be stockpiled.  The new assumption here is that any extra 

ore is sent to the stockpile and it is processed in the next periods. There are different 

components involved in the cost of overproduction in presence of a stockpile. When a 

mine defers the processing of the extra ore to the next periods, this processed ore will 

have less value due to discounting.  The discounting factor also applies to the processing 

costs. A cost of stockpiling should be considered as well. As a result, the cost of 

overproduction is summarized as: 

Loss of valueof ore due to processingin next period
Discounted cost of over production= Extra ore tonnage×

Cost of stockpiling and rehandling

or

Revenue for a tonne of ore in period
=Extra ore tonnage×

 
 
+ 

 t - Revenue for a tonne of ore in period t+1

Cost of stockpiling and rehandling 

 
 
+ 

 (2.25) 

Eq. (2.26) is proposed to calculate the discounted cost of overproduction in presence of a 

stockpile: 
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( ) ( ) ( )
1 1

rehandlingthe difference of processingcoststhe lost of thevalue of ore
     cost

; ( ; )
(1 ) (1 ) (1 ) (1 ) (1 )

p p RH
op op t t t t t

C Cg t × P g t × P C
C t l T t l × -

IR IR IR IR IR+ +

 
 
   

= + − +    + + + + +  
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(2.26) 

This equation can be simplified by the following assumptions:  

 

( ) ( )

( ) ( )

( )

1 1

(1 ) (1 )

1
(1 ) (1 )

(1 )

p

op t t

p

op t t

RH
RH t

CP
c t g t ×

IR IR

CP
c t g t ×

IR IR

C
c t

IR

+ +

= −
+ +

+ = −
+ +

=
+

 (2.27) 

Where 

• ( )opc t is the cost of overproduction per tonne in period t  

• ( )1opc t + is the cost of overproduction per tonne in period t+1  

• ( )RHC t  is the re-handling cost of stockpile per tonne in period t. 

 

Eq. (2.26) is simplified as Eq.(2.28): 

 

 
( ) ( ) ( ) ( ){ }
( ) ( ),

; ( ; ) 1

ˆ; ( ; )

op op op op RH

op op op RH

C t l T t l × c t c t c t

C t l T t l × c t

= − + +

=
 (2.28) 

Where 

• ( )RHc t  is the discounted re-handling cost per tonne in period t.  

• ( ),ôp RHc t  is the adjusted cost per tonne of overproduction in presence of 

stockpile in period t.  

The cost of overproduction presented in Eq. (2.26) is an approximation because the mine 

may adapt dynamically to divert mining capacity to other locations to deal with the extra 

ore. However, extra unexpected ore makes the LTPP to be sub-optimal and this can be 

quantified and implemented in the new LTPP models to reach the optimal solution in 
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presence of the grade uncertainty. Any overproduced ore that has been transferred to the 

stockpile will be processed in the following periods whenever a shortfall happens. 

Therefore, the cost of overproduction is only related to losing value of ore due to 

processing in next periods plus re-handling and stockpiling costs. Figure  2-9b shows the 

penalty function for the second assumption, where the discounted cost of overproduction 

at different periods is less than underproduction. This figure shows that the slope of the 

linear penalty function for underproduction is more than overproduction in any period.  

 

 

 

Figure  2-9. Penalty function for over and under production at different periods based on a 

discounting factor; a: for the case that there is no stockpile and b: there is a stockpile. 
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The cost of over and under production are calculated based on realizations. ( )C ;up t l  and 

( );opC t l  are calculated for each realization in each period. The average discounted cost 

of grade uncertainty in period t over all L realizations is presented in Eq. (2.29) : 

 

( )

( ) ( ) ( )

1

1

1
( ; ) ( ; )

1
( ; ) ( ; )

L

u up op

l

L

u up up op op

l

C t C t l C t l
L

C t T t l c t T t l c t
L

=

=

 = + 

 = × + × 

∑

∑
 (2.29) 

The Discounted Cost of grade Uncertainty (DCOU) is calculated by Eq. (2.30) : 

 ( )
1

1

T

u

t

DCOU C t
−

=

=∑  (2.30) 

This gives a single value for the discounted cost of grade uncertainty over all periods and 

all realizations. It can be used to compare different schedules. It gives a quantitative 

measurement for the effect of the grade uncertainty on the long-term production plan.  

The cost of grade uncertainty is calculated over all periods except the final period. Any 

ore that is left for the final period will be processed and will not exceed the target 

production; and any shortfall in the final period is not relevant to the grade uncertainty. 

2.5 Grade Uncertainty Based LP Model Without Stockpile (Model #2) 

A Mixed Integer Linear Programming model for optimizing the long-term production 

scheduling in open-pit mines is developed with an objective function that maximizes the 

total NPV of the project under a managed grade risk profile. For the starting point, the 

MILP model that is developed by Askari-Nasab and Awuah-Offei (2009) is used. This 

model is the generalized form of an earlier model presented by Caccetta and Hill 

(Caccetta and Hill, 2003) that is widely accepted. 

Two main assumptions are made to model this optimization problem: 

1. There is no stockpile considered in the optimization model. However a post-

processing procedure is applied for each realization to remove possible extra ore 

to the stockpile to be processed at next periods. 

2. Long-term scheduling is a dynamic process. This means that it changes during 

the mine life. There are many situations that may occur at the operational level 
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that change the extraction schedule, such as misclassification of ore and waste 

that is determined by taking extra information (it is called as information effect), 

failures of equipment, price changes and changes to processing and mining costs. 

In addition, during each period, the generated schedule is updated with new 

information such as blast-hole data and new exploration drill holes. Therefore, no 

long-term production schedule is exactly followed from the first year until the 

end of the mine life. However, the goal here is to find a long-term schedule using 

all useful information in a way that the probability of over and under production 

is minimized for early years of production. This will reduce the mine reaction to 

unexpected shortfalls and/or surpluses. The optimization should be run again 

with new information to find the new optimum schedule as the mine life 

proceeds.  By using the new methods that are proposed here, negative effects of 

the grade uncertainty is reduced for the next production periods. 

The main idea of the proposed method is to generate a schedule that postpones the 

extraction of uncertain blocks with lower grade to later years when there will be new 

information and less uncertainty. The discounted cost of grade uncertainty that is 

presented in previous section is added to the objective function. The schedule that is 

generated using the proposed method poses less risk in the early years of production. 

However, there is always a risk that the generated schedule may not meet the target 

production. These probabilities can be calculated using the realizations.  

Two new variables are defined, ( ; )opT t l  and ( ; )upT t l , to represent the amount of 

overproduction and underproduction for realization l in period t. Each of these variables 

is multiplied by the discounted cost for over and under production, ( )opc t  and ( )upc t . 

These are the discounted penalty dollar values per tonne for probable over and under 

production. It is important to determine reasonable values for ( )opc t  and ( )upc t . 

Section  5.2 provides two methods to determine these parameters.   

The main objective of this model is to maximize the NPV that is calculated by an 

estimated block model and to minimize the cost of grade uncertainty that is calculated by 

conditional realizations: 

 
Max.  NPV of estimation block model

Min.   The cost of uncertainty





 (2.31) 
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These objectives can be combined as one optimization objective shown in Eq. (2.32): 

 { }Max.  NPV - The cost of uncertainty  (2.32) 

This can be formulated as Eq. (2.33) 

 

{ }

( ) ( ){ }
1

T

u

t

Max NPV DCoU

Max DCF t C t
=

−

= −∑
 (2.33) 

Where  

• ( )DCF t  is the discounted cash-flow for period t that is calculated by an 

estimation block model and it can be defined as Eq. (2.34). 

 ( ) ( )
N

i=1

( ; ) ; ( ; ) ( ; )DCF t v t i z t i q t i y t i = × − × ∑  (2.34) 

The mining cost does not depend on the grade of the blocks and has the same value for all 

realizations. In this model, the NPV is calculated based on the estimated block model. 

The revenue calculated from the estimated block model is denoted by ( );v t i . The 

conditional realizations are used to penalize the cost of over and under production. 

The mathematical form of Model #2 is presented in Eq.(2.35). This model generates the 

optimal production schedule in presence of grade uncertainty based on the concept that is 

presented in Eq.(2.31). 
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=
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  − × + ×  
 
  

∑

∑
∑

144444424444443

14444444244444443

 (2.35) 

Subject to: 

• Eq. (2.12) to Eq. (2.20). These constraints are applied to the estimated block 

model and are required for maximization of the NPV of the project based on the 

average block model.  
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• Tonnage of over and under production variables that are controlled with these 

two constraints per period and per realization:  

 

( ) ( ){ }

( ) ( ){ }
1

1

; ; ( ; ) ( )

1,2, , , 1,2, ,

; ; ( ; ) ( )

N

o up u

i

N

o op u

i

T i l z t i T t l p t

t T l L

T i l z t i T t l p t

=

=


− × − ≤ −


∀ = =

 × − ≤


∑

∑
K K  (2.36) 

These constraints control two new variables: ( ; )opT t l  and ( ; )upT t l . ( ; )opT t l  and 

( ; )upT t l  are decision variables and determined by optimization process.  Both of 

these variables are present in the objective function (Eq. (2.35)). ( ; )opT t l  is used 

to calculate ( ; )opC t l  and ( ; )upT t l  is included in ( ; )upC t l . Because they have a 

negative impact on the objective function, the optimizer tries to assign the lowest 

positive values to these variables. However, constraints presented in Eq. (2.36) 

enforce these variables to get lower limit values. ( ; )opT t l  is the tonnage of 

overproduction for realization l in period t and ( ; )upT t l  is the tonnage of 

underproduction in period t for realization l. 

The amount of processed ore and the amount of mined material are controlled by two 

separate continuous variables rather than binary integer variables. The NPV of the 

estimation block model can be calculated using Eq. (2.37): 

 ( ) ( ) ( ) ( )
1 1

; ; ; ;
T N

es

t i

NPV v t i z t l q t i y t i
= =

 = × − × ∑∑  (2.37) 

Where  

• esNPV  is the NPV of the project that is calculated from an estimation block 

model such as kriging. 

This optimization model is linear programming (LP). There are binary variables to 

control the precedence of the block extractions. Therefore, MILP methods are used to 

solve the model.  

The advantage of this model is that it generates a smooth production plan. esNPV  is also 

used to show the estimated NPV of the project that is calculated by the estimation model. 
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The cost of grade uncertainty is applied to the objective function such that all conditional 

realizations are explicitly used in the optimization stage.  

This model has two disadvantages:  

• The stockpile is not considered at the optimization model.  

• A symmetric penalty function is applied to this model (Figure  2-9a) which is not 

realistic. The cost of underproduction is more than overproduction because the 

overproduced ore can be saved in a stockpile to be used in next periods.  

In the next section, the stockpile has been embedded at the optimization procedure and an 

asymmetrical penalty function is used for the cost of under and over productions.  

2.6 Grade Uncertainty Based LP Model With a rule-based Stockpile (Model #3) 

The stockpile considered in this model is used to store surplus ore. The extra ore can be 

used in circumstances where the plant cannot be fed at full capacity, such as a failure of 

the extraction and hauling system, or when there is a grade blending problem with input 

material to the mill. Any possible overproduced ore will be processed in later years, so, 

the penalty value defined in Eq. (2.23) for overproduction will be less in the presence of a 

stockpile. For this case, the overproduced ore is calculated by Eq. (2.26). Therefore, any 

plausible overproduced ore from a realization is kept in a stockpile and it is used in the 

next periods.  

As shown in Section  2.1, the reasons for the costs of overproduction for this case are: 

• The cost of re-handling material from a stockpile. 

• The loss of discounted value of ore transferred to the next period. 

To calculate the cost of overproduction in presence of a stockpile, the cost of 

overproduction for each period is deducted from the cost of overproduction in the next 

period. This means that for each period, the penalty value is only the loss of the 

discounted value of ore that is transferred to the next period. Meanwhile, any re-handling 

cost is added to the cost of overproduction in each period. Therefore, a new optimization 

model is developed based on Eq. (2.32) for the long-term mine planning in the presence 

of grade uncertainty and a stockpile. The new model is presented in Eq. (2.38): 
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Subject to: 

• Eq. (2.12) to Eq. (2.20). The estimated block model is used for these constraints.  

• Modified version of Eq. (2.36) to control stockpile variables: 
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• Upper and lower limits for stockpile in each period: 

 ( ) ( ) ( ); 1,2, , , 1,2, ,l op uS t T t l S t t T l L≤ ≤ ∀ = =K K  (2.40) 

Where  

� ( )uS t
 
and

 
( )lS t  are the upper and lower limits of the stockpile tonnage 

in each period. These constraints are applied in each realization. So, there 

are two constraints per period and per realization. 

 

The number of decision variables and binary variables are the same as the previous model 

(Eq. (2.35)). This model is also a linear programming optimization problem with mixed 

integer variables.  

There are two main differences between this model and the previous one in which the 

stockpile was not considered. The first difference is that the cost of overproduction for 

this model is less than the previous one ( ( )opc t  vs. ( ),ôp RHc t ). This was shown in 

Figure  2-9. Because the tonnage of overproduction, ( ; )opT t l , is used in the next period, it 

has less effect on optimization process than ( ; )upT t l . Therefore, the tonnage of 

underproduction is penalized more in this model. This difference is applied on the second 

part of objective function. The second difference is hidden in the constraints that controls 
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the variables ( ; )opT t l  and ( ; )upT t l
 
in Eq. (2.39).  This equation contains two constraints 

that control the over and under production variables. The upper constraint,

( ) ( ) ( ){ } ( )
1

; ; ( 1; ) ( ; )
N

o op up u
n

T i l z t i T t l T t l P t
=

− × − − + ≤ −∑ , controls the possible 

underproduction of realization l  in period t. If there is any overproduced ore from 

previous year in the stockpile, ( )1;opT t l− , it is transferred to the current year. This is the 

reason that the overproduced tonnage in period t-1 is added to the under-produced 

tonnage in period t. The lower constraint, 

( ) ( ) ( ){ } ( )
1

; ; ( 1; ) ( ; )
N

o op op u
n

T i l z t i T t l T t l P t
=

× − − + ≤∑ , also controls the possible 

overproduced ore for realization l in period t, ( );opT t l , by adding the possible 

overproduction of previous year that has been transferred from stockpile, ( 1; )opT t l− . 

The concept of a stockpile is applied by using overproduced ore from previous period. 

Therefore, if there is a shortfall in current year, the model penalizes only the difference 

between overproduction from previous year and the shortfall of the current year. If the 

overproduction from last year is equal to or more than underproduction of current period, 

there will be no penalty for the current period. Another scenario is that both previous 

period and current period have overproduction. In this case, the overall surplus ore will 

accumulate for the current period. 

In Model #3 a rule-based stockpile is used in the optimization process. The stockpile 

considered in this model is used to minimize the division from target production and is 

not used as part of NPV maximization. Therefore, the treatment of the stockpile in this 

approach is not a full optimization approach, that is, mining cannot be accelerated to mine 

high grade where low grade ore is stockpiled for later treatment.  The stockpile is treated 

in a rule-based manner where surplus ore is saved and drawn down in time periods where 

there is inadequate ore supply.  Although the stockpile is not being optimized, this 

approach provides a mechanism to account for over and under production more 

realistically. In Model #3 it has been tried to overcome some limitations of Model #2 in 

which the costs of over and under productions are assumed to be the same. To solve this 

problem, stockpile is used in Model #3. The soft constraints on the processing capacity 

allow the optimizer to produce extra ore in some periods, store it in the stockpile and use 

it in different periods to reduce the possibility of shortfall. Although this can increase the 
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expected value of the NPV of the project, the stockpile is not part of the NPV 

maximization. 

2.7 A Quadratic Optimization Method for the Mean-Variance Approach (Model 

#4) 

As shown in Section  2.3, grade uncertainty affects not only the tonnage of ore, but also 

the average input grade to the mill. The NPV of the project that is calculated by 

combining the input grade and the input tonnage to the mill will have a different value for 

each realization. Both Model #2 and Model #3 assume that the grade uncertainty affects 

only the input tonnage of the ore to the mill. A more robust method to minimize the effect 

of grade uncertainty is to minimize the variance of NPV while the expected value of NPV 

is maximized. It is called mean-variance method. 

The portfolio optimization by mean-variance approach is well known in Economic 

Science. It is mainly referred to as modern portfolio theory (MPT) and its creator has 

been awarded by Nobel memorial prize in 1990. Harry Markowitz (1952) introduced the 

MPT for risk based methods in portfolio optimization. The main idea of MPT is to 

consider a weighted average combination of assets’ return and calculate expected value 

and variance of the return. The portfolio optimization with mean-variance approach is a 

quadratic optimization problem that tries to maximize the expected return and minimize 

the standard deviation. The decision variables are the weights or the portions of each 

asset.  

In this section, a modified version of mean-variance method is adapted to long-term mine 

planning in presence of grade uncertainty. For each realization, EBV of each block is 

calculated. The average and variance of discounted EBV in each period for each block 

can be calculated. The main idea of the mean-variance method is to find the portion of 

each block to be extracted and processed, such that the average NPV calculated from all 

realizations is maximized and the variance of NPV is minimized simultaneously.  
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To model this optimization problem, the NPV is required for each realization. Eq. (2.42) 

is used to calculate ( )NPV l . 

 ( ) ( )
1 1
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N T

i t
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= =

 = × − × ∑∑  (2.42) 

Where  

• ( ; ; )v t i l  is the discounted ore value of block i in period t in realization l. 

• ( ; ; )q t i l  is the discounted mining cost of block i in period t in realization l. 

( ; ; )q t i l  has the same value for all realizations and it can be calculated by Eqs. 

(2.43) and (2.5). 

 ( ; ; ) ( ; )q t i l q t i l= ∀  (2.43) 

Therefore using all realization, the expected NPV is calculated by Eq. (2.44): 
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Where 

• { }( ; )E v t i  is the expected value or the average of discounted ore value for block i 

in period t that is calculated by considering all realizations  

The variance of NPV is also calculated as Eq. (2.45) 
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Three solution options are suggested for the mean-variance approach: 

1- Maximize expected NPV with restricted variance: in this model, a linear 

objective function (expected NPV) is maximized such that a nonlinear constraint 

(variance or standard deviation of NPV) does not exceed a critical user-defined 

value.   

The general form for this method is shown in Eq. (2.46) 

 

{ }

2
UserDefined

E

. :

NPV

Max NPV

s t

Cσ ≤

 (2.46) 

UserDefinedC  is a user-defined upper limit for the variance of NPV. The model 

maximizes the NPV such that the variance does not exceed UserDefinedC . The 

optimization model consists of a linear objective function with linear and 

quadratic constraints. 

2- Minimize the variance or standard deviation of NPV with given minimum 

expected NPV: in this model, a quadratic optimization is minimized such that a 

minimum user-defined expected NPV is satisfied. The general form of the second 

type of optimization is shown in Eq. (2.47) 

 

{ }

2

UserDefined

. :

E

NPVMin

s t

NPV K

σ

≥
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UserDefinedK  is an input parameters that controls the minimum NPV. In this model, 

instead of maximization of NPV, the variance of NPV is minimized such that 

NPV is not less than a user-defined value called UserDefinedK . To use this solution 

method, user needs to make good estimation of expected NPV of the project. The 

optimization model consists of a quadratic objective function with linear 

constraints. 

3- Maximize the weighted differences of expected NPV and its variance: in this 

model, a quadratic function is maximized. The user-defined weight is a critical 

value that controls the trade-off between maximizing the expected NPV and 

minimizing its variance. Eq. (2.48) shows the general form of the third type. 
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 ( ) UserDefinedE . NPVMax NPV λ σ−  (2.48) 

UserDefinedλ  is a user-define value to control the trade-off between the 

maximization of NPV and the minimization of variance of NPV. This method is a 

more general way to optimize the dual objective functions. The weight can be 

any number from zero to infinity. Zero weight leads to a linear optimization 

without minimization of the variance of NPV. By increasing UserDefinedλ , both the 

expected NPV and the variance of the NPV decrease. User needs to have a clear 

understanding of the behavior of the Lambda parameters by doing a sensitivity 

analysis with different values. 

All three methods have user-defined parameters. These parameters control the trade-off 

between the expected NPV and variance of NPV.   

There are some considerations for these three methods:  

• There is no known relationship between ,C K  and λ . 

• Above a critical value of K in the second model (Eq. (2.47)), the optimization 

problem is infeasible and no solution exists. This means that, it is not possible to 

generate a schedule with NPV above this critical value. This critical value is the 

NPV that achieved by Model #1 presented in Section  2.1. It is the result of 

maximization of the NPV without any uncertainty. 

• All of the three methods are nonlinear mixed integer optimization problems. The 

integer (binary) variables control the precedence of the block extraction. Types 

two (Eq. (2.47) ) and three (Eq. (2.48)) have a quadratic objective function with 

linear constraints. The Hessian matrix is positive definite for both of them, so, the 

optimization model is always convex. There are well-developed algorithms to 

solve these kinds of optimization problems and the optimality of the solution is 

unique and guaranteed. Kozlov et al (1980) claimed that a convex quadratic 

optimization can be solved in polynomial time. In the first solution method (Eq. 

(2.46)), the objective function is linear, however, there are nonlinear constraints. 

This kind of optimization problems is mainly categorized as hard-NP and only 

numerical methods are available that may not be practically efficient. The 

iteration methods mainly are used to solve these types of optimization problems. 

Based on the above comments, the third model is chosen because it is more robust with 

less implementation details. The first model presented early in this chapter has been used 
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as the basis for this model. The general form of the objective function for mean-variance 

approach is presented in Eq. (2.49). 

( ) ( ) ( )2 2

1 1 1 1

( ; ) ; ( ; ) ( ; ) ; ;
N T N T

v

n t n t

Max v t i z t i q t i y t i t i z t iλ σ
= = = =

    × − × − × ×      
∑∑ ∑∑  (2.49) 

Subject to the constraints in Eq. (2.12) to Eq. (2.20). 

λ  is the user-defined parameter that controls the trade-off between expected NPV 

maximization and minimization of variance of NPV. High λ  values generate a schedule 

with lower expected NPV and also lower variance. Therefore, in a very conservative case, 

a large λ  value should be used. On the other hand, in a case that the project is flexible 

with grade uncertainty, lower λ  values should be preferred. Section  5.4 presents a 

sensitivity analysis to study the effect of Lambda.  

The final optimization model presented in Eq. (2.49) is a Mixed Integer Quadratic 

Programming (MIQP) problem with linear constraints.  

Wolsey (1998) categorizes the MIQP as NP-Hard problems. Volkovich et al. (1987) have 

done a detailed survey about the quadratic integer programming. Based on a literature 

review by Axehill (2005), most commonly used methods to solve MIQP problems are :  

• Cutting plane methods 

• Decompositions methods 

• Logic-based methods  

• Branch-and-bound (B&B) methods 

Fletcher and Leyffer (1998) present a branch-and-bound (B&B) method for MIQP 

problems. They compare the result with generalized benders decompositions, outer 

approximation and LP/QP based branch-and-bound methods. They conclude that the 

B&B method is the superior method for solving MIQP problems. The B&B algorithm 

introduced by Land and Doig (1960) is a general method to solve discrete optimization 

problems.  

2.8 Mining Cuts 

One of the well-known methods in operations research for optimization of large problems 

is aggregation of similar variables in groups and assign a single new variable for all 
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aggregated variables.  In this method, the size of optimization reduces and the 

optimization problem can be solved in less CPU time. This has two main advantages: 

• It decreases the number of variables, so, the optimization stage can be tractable 

with current computer hardware and software. 

• It creates a schedule that is not spatially scattered. Using the high resolution 

block scale in optimization stage (even if it was tractable with current software 

and hardware) generates scattered schedules and there would be gaps between 

blocks extracted in the same period. Also in real mine operations, the production 

schedule is not at a block scale. The movement of huge excavators is minimized 

due to cost. Therefore, in real life the extraction unit is mining cut which contains 

several blocks instead of an individual block.  

A MATLAB Fuzzy c-means clustering algorithm (‘fcm’) is used as the clustering 

method. The clustering step should be done for each level of elevation separately. Blocks 

at different levels should not be aggregated in one cluster. The c-means clustering 

algorithm creates clusters based on the number of clusters and the input properties as 

similarity factors. The data that are used in this thesis as similarity factors are:  

•  X, Y coordinates of the blocks: it is important that the blocks within each cluster 

are not spatially separated. The coordinates of the blocks are the main input 

properties for the clustering algorithm.  

• Binary indicator that shows a block is ore or waste: it is 1 if the block is ore and 2 

if the block is waste. It prevents mixing the ore and waste blocks in one mining 

cut.   

• The average grade of the blocks: this helps the algorithm to cluster blocks with 

similar grades. 

• The grade variances of the blocks: Because the main goal in this thesis is to 

minimize the risk of grade uncertainty, it is important to not aggregate highly 

uncertain blocks with lowly uncertain blocks. Therefore, the grade variances of 

blocks which are good measurements of the uncertainty of the blocks are used 

here. 

By applying MATLAB fcm function for each branch, N blocks are aggregated into M 

mining cuts. For each mining cut the following parameters are calculated and stored 

in a MATLAB “mat” file: 

• Center coordinate: X, Y and Z coordinate of the mining cut. 
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• Total tonnage, EBV, ore value, mining cost, ore tonnage and waste tonnage of 

the mining cut by adding up the values of the blocks inside each mining cut. 

• Average grade of the mining cut which is calculated by taking a volumetrically 

average of the blocks. 

• Precedence of mining cuts is stored in an array for each mining cut. This is the 

list of the indexes of the mining cuts that are needed to be extracted before 

getting access to the specific mining cut. First for each block inside a mining cut, 

the list of all nine blocks (Figure  2-1) that are located at the immediate top of the 

block is generated. Then, indexes of the mining cuts that these blocks belong to 

are determined and listed in an array. 

Using clustered blocks in optimization of LTPP may lead to a sub-optimal solution. This 

is the disadvantage of using mining cuts instead of blocks in the optimization problem. 

Therefore, it is important to determine the correct number of cuts and use an efficient 

method to aggregate blocks such that the optimality of the objective function is not 

affected that much, the generated schedule is feasible and also the optimization process is 

tractable for industrial scale projects. A sensitivity analysis is required to determine the 

optimal clusters. In Section  5.1, the results of such a sensitivity analysis on the number of 

cuts and its effects on objective function are presented. 

2.9 Discussion 

LTPP in presence of grade uncertainty is discussed in this chapter. The input grade is an 

uncertain parameter and this uncertainty can be modeled by geostatistical simulation 

methods. Multiple and equal probable scenarios are used in LTPP optimization models to 

consider the uncertainty in the optimization process.  In mine planning, there are always 

integer variables involved in the objective function. Therefore, mine planning in presence 

of grade uncertainty is considered as a mixed integer programming (MIP). Birge and 

Louveaus (1997) have discussed different methods to solve the optimization problems in 

presence of uncertainty. The main approaches that exist for these types of optimization 

problems are: anticipative models, adaptive models, anticipation and adaptation 

(recourse) models and chance constraints. 

To explain the differences between each of these methods consider a situation that a 

decision has to be made in an uncertain world where the uncertainty is described by the 

random vector x. A prudent plan should anticipate the possible future realizations. 
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In anticipative models, the uncertainty is not changed over the optimization process and 

the decisions are independent from uncertainty. Anticipative models can be adapted to the 

long-term mine planning problems, because when a planner generates a long-term 

production schedule for the mine life, the grade uncertainty of the blocks are modeled by 

a finite number of realizations.  

In the adaptive models, the decision is dependent on the uncertainty of the input 

parameters. The observation related to the uncertainty becomes available before the 

decision is made. Therefore, such an optimization model takes place in a learning 

environment. In this approach, the observation provides partial information about the 

uncertainty related variables. The anticipative model is not suitable for long-term mine 

planning problems, “because block grades will not be known in time, or by waiting, as 

required for the purpose of optimisation” (Dimitrakopoulos and Ramazan, 2008). The 

adaptive models can be suitable for short-term mine planning.  

The recourse models are the combination of anticipative and adaptive models. The 

problem is solved by taking all future realizations (anticipation) and thus can be adapted 

by taking recourse decisions. For example, a long-term mine planning model, generated 

by maximizing the NPV and minimizing the deviation from target production, is an 

anticipative model. In future, whenever new information is gathered such as new infill 

drill holes, blast drill holes or the average grade of extracted blocks, new optimum 

decisions are made by solving the new model. 

The fourth approach is the chance constraints that are not suitable for long-term mine 

planning due to the unrealistic assumptions such as normality of grade distributions in 

mining blocks (Dimitrakopoulos and Ramazan, 2008). 

All methods presented in this thesis are anticipative models. They can be used as adaptive 

models anytime that new information is available.  

The NPV of Models #2, 3 and 4 will be less than Model #1. In Model #1, NPV of the 

ordinary kriging is maximized without considering any grade uncertainty. However, in all 

other models presented in this chapter, there is an extra term in the objective function that 

is related to the grade uncertainty.  It is either the cost of grade uncertainty or the variance 

of the NPV.  Therefore, NPV of the OK block model that is gained from production 

schedule of any of these methods will be less than Model #1.  This can be summarized in 

three main reasons: 



 

56 
 

1. Model #1 maximizes NPV directly without considering any other limitations 

such as minimizing the cost of grade uncertainty. Therefore, the feasibility region 

for any other models would be smaller and the solution will be sub-optimal 

relative to the maximum NPV solution that is achieved by Model #1. 

2. The objective function of Model #2, 3 or 4 is quite different. It has an extra term 

that is the minimization of the discounted cost of grade uncertainty and/or the 

variance of the NPV. It is obvious that an optimum solution for one objective 

function is not optimal for the others. It is concluded that the objective function 

of any of these models (e.g. Model #2) has the maximum value with its own 

solution. For example, the solution of Model #1 is not optimum with objective 

function Model #2. 

3. There is a trade-off between NPV maximization and minimization of the negative 

effect of uncertainty. By reducing the effect of grade uncertainty at the 

production plan, it is expected that the NPV of the project may be slightly 

decreased. 

Model #1 to 3 are mixed integer linear programming (MILP) problems and Model is 

mixed integer quadratic optimization problems (MIQP) where the Hessian matrix is 

positive definite. Therefore, the solution for any of these models is the global optimum 

solution. The numerical methods, algorithms and available software to solve these kinds 

of optimization problems are very well developed. However, a user-defined factor called 

the gap tolerance is required as the termination criterion of the algorithm. This parameter 

also shows how different the current solution is from the real achievable optimum 

solution and it shows how good the current answer is. This is one of the main advantages 

of using operations research methods to find the optimal mine production schedule. There 

is no guarantee with heuristic methods that the final solution is close to the global 

optimum solution. Also, there is no parameter to show the goodness of the solution.  

2.10 Summary 

An optimization model based on the deterministic approach was presented in Section  2.2 

for mine planning problem. The effect of grade uncertainty on the input tonnage and the 

NPV of the project were shown by studying a single block model with different local 

grade distributions. The concept of cut-off grade and its effect on the EBV and input 

tonnage in presence of grade uncertainty was presented in Section  2.3. 



 

57 
 

The cost of grade uncertainty was presented in Section  2.4. The cost of overproduction 

and the cost of underproduction were taken into account in the proposed models. 

Equations were presented for both cases. The more realistic method to calculate the cost 

of grade uncertainty was considered by assuming a stockpile. The equations for this case 

also have been provided in Section  2.4. 

Three main methodologies are proposed to consider grade uncertainty in long-term 

production scheduling in Sections  2.5 to  2.7. The first method uses the cost of grade 

uncertainty and tries to minimize this cost and maximize net present value of the project 

simultaneously. This method does not consider any stockpiles. Two variables control the 

over and under production of ore in each period for each realization. A linear 

optimization model is developed to generate an optimum solution for ore production 

problem. The main goal in this method is to feed the plant with less deviation in early 

years of production. By deferring highly uncertain blocks to the later years, a schedule 

with lower deviation from target production is generated. 

In the second method a stockpile is also used in the optimization process. The presence of 

a stockpile has two main effects on the model: (1) the extra ore can be processed at the 

next period, therefore, the cost of overproduction is much less than the cost of 

underproduction; and (2) the extra ore from the previous period can reduce or eliminate 

the cost of underproduction of the current period. 

The final method is based on the mean-variance approach. It is more robust than other 

two methods. Since the grade uncertainty causes the fluctuation of the NPV, the expected 

value of NPV and the variance of NPV are used directly in the objective function. With 

this approach, the optimization model maximizes the expected value of NPV and 

minimizes the variance of NPV. 

Finally, two main anticipative and adaptive methods to solve LTPP in presence of grade 

uncertainty are discussed. It is briefly explained why adaptive models are not suitable for 

long-term mine planning. The best solution for LTPP will be obtained by recourse 

models. In this method, a schedule is generated using all available information such as 

generated realizations for uncertain parameters. The recursive scheme can be generated 

by using all new information that will be available during the mine life. 
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Chapter 3 Implementation Details  

In this chapter, implementation details of the proposed methods are discussed. In 

Section  3.1, the steps to generate an open-pit production schedule are presented. 

Section  3.2 explains how to use geostatistics to generate a geologically representative 

block model. Section  3.3 shows how to import that block model into the Whittle program 

in order to generate the optimum final pit limit by using 3D LG method. In Section  3.4, 

all realizations are imported into MATLAB. The implementation details for each of mine 

schedule optimization methods are described in Section  3.5. Finally, a summary of the 

chapter is presented in Section  3.6. 

3.1 Introduction 

In previous chapter, four optimization models are presented. Three are mixed integer 

linear programming (MILP) problems and one is a mixed integer quadratic programming 

(MIQP) problem. There are different software packages to handle MILP and MIQP 

problems. One approach is to utilize MATLAB (MathWorks Inc., 2011) and the 

optimization toolbox called TOMLAB/CPLEX (Holmström, 1989-2011).  MATLAB is a 

numerical computing software package that contains a high level programming language 

with an interactive environment for numerical computation and visualization. MATLAB 

has many built-in functions, procedures and toolboxes for data analysis and visualization. 

Therefore, MATLAB is a convenient environment to experiment and test new 

mathematical algorithms and workflows. However, the computational time for a 

MATLAB code may be longer than the codes that are written and compiled in traditional 

programming languages such as FORTRAN and C/C++.  

A commercial optimization package called TOMLAB/CPLEX is available to plug into 

the MATLAB environment. This package has some very powerful optimization engines 

and algorithms that can be used for different purposes. The important optimization engine 

called CPLEX (ILOG Inc, 2007) has been integrated with TOMLAB. CPLEX has been 

developed since 1988 and it is a very powerful solver for large scale LP, MILP, QP and 

MIQP problems.  

TOMLAB has a standard form for MILP and MIQP problems. The required matrices and 

vectors are easily prepared for input to the TOMLAB solvers.  
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The general workflow for numerical implementation of the proposed methods that are 

theoretically discussed in the previous chapter is as follow: 

1. Generate multiple conditional realizations for grade of the blocks to capture 

uncertainty using geostatistical methods. The GSLIB programs are used in this 

step (Deutsch and Journel, 1998). 

2. Generate ultimate pit limit by 3D LG method using the average block model or 

an estimated block model from Ordinary Kriging (OK). The Whittle software is 

employed for this purpose (Gemcom Software International, 1998-2008). 

3. For each realization filter all of the blocks outside of the final pit limit and save 

the ones inside to an ASCI file. This custom written program also applies the cut-

off grade to the input realizations and calculates the EBV. 

4. Import all the ASCI output files into MATLAB and run the MATLAB 

subroutines step by step to generate the standard format for TOMLAB/CPLEX 

solver. 

5. Run the TOMLAB/CPLEX solver.  

6. Post-process the results to create summary tables and plots, and export the final 

solution as an ASCI file format that can be used in other software. 

A computer with 8 CPUs and 20 GB of ram has been used with Windows 7 Professional. 

The processor is an Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz, 2801 MHz, 4 Core(s), 8 

Logical Processor(s). All the methods are solved by TOMLAB/CPLEX solver.  

In this chapter, all the important implementation steps are described. Additional details of 

some steps, input parameters and subroutines are presented in an Appendix. Figure  3-1 

shows the steps that are described in this section.  
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Figure  3-1. Summary of the steps to generate optimum mine schedule with grade uncertainty 

3.2 Geostatistical Modeling 

GSLIB (Deutsch and Journel, 1998) is used for geostatistical modeling. The first step for 

a geostatistical study is to define stationary subsets of the data and the deposit. For each 

of these different subsets, geostatistical modeling is performed separately. This step can 

be done by defining different rock-types of different depositional or digenetic alteration 

style. Geological knowledge has a critical role in this step. Usually, the geologist defines 

the subsets based on drillhole data. Geophysical data may also be used to supplement 

drillhole data. For each stationary subset the following steps are implemented to generate 

a geological block model:  

1. The first step is to determine the representative distribution of each grade 

variable. Due to preferential sampling from high grade zones, usually 

distributions of the variables are not representative of the entire area. Therefore, a 

declustering algorithm has to be done to adjust the distributions. The declus  
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program in GSLIB is used for this purpose. This program generates numerical 

weights that indicate the effect of each sample in a representative distribution. 

2. The next step is to perform a multivariate statistical analysis to determine the 

correlation of the multivariate data. For example, Copper is more likely to have 

high positive correlation with Molybdenum in porphyry deposits. In this step, the 

goal is to find all other properties that have either positive or negative 

relationship with the property of interest. Scatplt, scatnscores, 

corrmat_plot  etc. are used for this purpose.  

3. The next step is to transform the data to Gaussian units. For univariate data, 

nscore  and for multivariate data sctrans  is used. In both cases, the output 

data has a standard normal distribution. The sctrans approach removes 

any correlation between the variables using the Stepwise Conditional 

Transformation (Leuangthong, 2003) method. Therefore, each of transformed 

variables is standard normal distribution and not correlated to any other variable. 

So, they can be modeled separately.  

4. The experimental variograms are calculated with normalized data by using 

gamv. vmodel  is used to fit and calculate the variogram model in different 

directions. vargplt  plots the experimental variograms and fitted variogram 

models.  

5. The next stage is to generate the rock-type model for the chosen grid definition. 

There are two main approaches to generate a rock-type model: estimation and 

simulation. ik3d  applies indicator kriging to estimate the probability distribution 

of a discrete variable such as rock-type. Indicator variograms are required as an 

input for ik3d . The most probable rock-type is chosen for each block or grid 

node. Another method to create a rock-type model is to use sequential indicator 

simulation (SIS) algorithm. sisim  is used for this purpose. This algorithm 

generates multiple realizations of the rock-types.  

6. The final step is to generate rock-property models such as grade, density, etc. for 

each rock-type, and back-transform data to the original unit. kt3d  estimates 

continuous variables. This program provides a variety of kriging algorithms such 

as simple, ordinary and universal kriging. The OK method does not require any 

transformation and it should be applied to the data in original unit. In order to 
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generate conditional realizations that are representative of the grade uncertainty 

in the area of interest, sgsim  is employed. This program is based on Sequential 

Gaussian Simulation (SGS) algorithm.  

The generated block model needs to be checked and verified. The most important 

statistics that should be reproduced are the histogram and variogram. The realizations 

should reproduce the input histogram and variogram model within acceptable statistical 

fluctuations. Gam is used to calculate directional variograms from a simulated grid. 

Vargplt  plots the calculated variograms and the input variogram model. There should 

be a good match between the input variogram and the average variogram calculated from 

all realizations. Histplotsim  is also used to plot cumulative distribution function 

(CDF) of each realization and the reference distribution (input data) in one graph. Some 

additional post processing procedures are done to check the model such as calculating E-

Type mean and variance using postsim . E-Type mean of all realizations should be 

close to the kriging estimation. 

3.3 Final Pit Limit Design Using 3D LG 

The next step is to determine the final pit limit using 3D LG algorithm. An estimation 

block model such as ordinary kriging is used to generate the final pit limit. This block 

model is imported into Whittle (Gemcom Software International, 1998-2008) where  3D 

LG algorithm is employed to determine the optimum final pit limit.  A series of nested 

pits or push-backs are generated by different revenue factors. A long-term production 

plan is generated by push-backs and all required input parameters. The msq file 

(The mining sequence file) is exported from Whittle. This file contains the extraction 

portion of the blocks in each period and their destinations.  A program called MSQ90 was 

written to extract all the blocks inside the final pit and remove the blocks outside. The 

final block model is saved in an ASCII format for each realization. These files are used as 

the input in the optimization stage. MSQ90 also can be used to read the production 

schedule generated by Whittle and assess the effect of grade uncertainty on a production 

schedule using the input realizations. The idea is that by following the production 

schedules with each realization the input ore tonnage to the plant and other parameters 

such as input head grade, NPV etc. are recalculated. This program needs to be run 

separately for each realization. The second output of this program is a summary file that 

includes ore tonnage, waste tonnage, average input grade, etc. for each period. 
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The parameter file and detail information on this program are found in an appendix. 

3.4 Data Preparation for the Optimization Stage 

The mathematical optimization models that are proposed in the previous chapter, are 

coded in MATLAB (MathWorks Inc., 2011) version 2009. The TOMLAB/CPLEX solver 

(Holmström, 1989-2011) is used for optimization. 

There are five preliminary steps to be taken before starting the optimization. These steps 

include importing the input block models and parameters, creating the precedence matrix, 

clustering the blocks, creating the mining cuts and adding the simulation realizations to 

each mining cut. For each step, there is a folder that contains the functions and 

procedures that should be used. The output file of each step is transferred to the next step. 

Each step is described in detail in an appendix; however, a brief summary of these steps 

is as follows: 

• Step 1: Import data to MATLAB. In this step, each of output files that are 

generated by MSQ90, are transferred to a separate MATLAB “.mat” file. 

• Step 2: Create adjacency matrix. An estimation block model such as OK, which 

has been imported to MATLAB in previous step, is used to generate the 

adjacency matrix. The precedence of block extraction is defined in this step. 

• Step 3: Create clusters or mining cuts. The output file of previous step is used 

here to generate the clusters or mining cuts.  

• Step 4: In this step, all the ‘.mat’ files that are generated in first step are merged 

with the output file from step 3. For each mining cut, total tonnage, EBV, ore 

value, mining cost, ore tonnage, waste tonnage and average grade are calculated 

for each realization. All simulated numbers for each of these parameters are 

stored in separate vectors and one “.mat” file is created. This file has a cell array 

in which each cell contains information on each mining cut.  

• Step 5: Input user parameters that are required for the optimization models #1, 2, 

3 and 4. At this step, the final input parameters such as the minimum and 

maximum mining and processing capacities for each period, number of periods or 

mine life in years, number of pre-striping years, number of simulation 

realizations, the discounted cost of over and under production in each period (

( )upc t  and ( )opc t ) which are used in models #2 and #3 and Lambda (λ ) which 

is used in Model #4 are added to the generated “.mat” file.   
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The final production of these steps is a MATLAB “.mat” file that contains all input 

parameters required for the proposed models. In the next section the implementation 

details of each model is presented. 

3.5 MILP Formulation Implementation 

The CPLEX solver starts with relaxing the LP model. During this procedure, all integer 

variables are relaxed by being changed to real variables and the LP model is solved. 

Then, CPLEX uses the branch-and-cut search algorithm to reach a feasible integer 

solution. Branch-and-cut is a combination of branch-and-bound and cutting plane 

methods (Horst and Tuy, 2003; Wolsey, 1998).  

There is an important termination criterion that is set by the user. It is called the MIP gap 

(MIPGAP) and it is the absolute tolerance of the gap between the best integer objective 

and the objective of the best node remaining in the branch-and-bound algorithm. This 

parameter instructs CPLEX to stop as soon as it has found a feasible integer solution 

proved to be within the MIPGAP limit. 

TOMLAB uses a general form as an input for all optimization problems. The general 

form for an MILP problem is stated by Equations (3.1) to (3.3).  

 min ( )f x ′= c x  (3.1) 

Such that: 

 L U≤ ≤x x x  (3.2) 

 L U≤ ≤b Ax b  (3.3) 

Where 

• c  is the coefficient of linear objective function in the MILP model; a vector of 

1n× . 

• n  is the total number of decision variables. 

• x  is the vector of the decision variables of the MILP model including binary and 

continues variable; vector of 1n× .  

• Lx and Ux  define the lower and upper limit of the decision variables 

respectively; vectors of 1n× . 
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• A  is the coefficient matrix of linear constraints of the MILP model; a matrix of 

m n× .  

• m  is the total number of linear constraints in the MILP model. 

• Lb  and Ub  define the lower and upper bounds of the linear constraints; vectors 

of 1m× . Any equality constraint can be added to the model by setting equal 

values for upper and lower boundaries for the respective elements of vectors Lb

and Ub . 

In this section, the implementation details of Model #1 are presented first followed by the 

other models which are updated versions of Model #1. This includes all the matrices of 

the objective functions and constraints that are required to build each model in order to 

solve by TOMLAB. The goal is to create the models in the standard format shown in Eqs. 

(3.1) to (3.3). All implementations are at the in mining cut level. The assumption is that N 

blocks are clustered in M mining cuts. The mine life is denoted by T and L is used for 

total number of realizations. 

3.5.1 Implementation of Model #1: MILP Without Considering Grade 

Uncertainty 

In order to solve Model #1 (MILP model), the objective function presented in Eq. (2.11) 

and all constraints formulated in Eqs. (2.12) to (2.20) are reformatted in matrices and 

vectors. The matrices or vectors for each of these equations are shown below: 

• x  vector: The vector of decision variables. For each mining cut there are binary 

decision variables { }( ; ) 0,1a t i ∈  that are used to control the precedence of the 

blocks. ( );a t i  equals to 1 if mining cut i has been extracted before period t and 

equals to 0 if it has not been extracted yet. Also there are two continuous decision 

variables, ( );y t i  and ( );z t i { }0...1∈ . ( );y t i  is the portion of extraction and 

( );z t i  is the portion of processing of mining cut i in period t. x  is a vector that 

includes all decision variables. The size of the x vector is 3 1TM ×  which means 

that x is a vector with 3TM of rows and 1 column as shown below: 

 

[ ]
[ ]
[ ]

1

1

1 3 1

( ; )

( ; )

( ; )

TM

TM

TM TM

a t i

z t i

y t i

×

×

× ×

 
 

=  
 
  

x  (3.4) 
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The structure for each of these variables is also shown in Eq. (3.5) : 

 

mining cut 1

mining cut 2
at period 1

mining cut M

mining cut 1

mining cut 2
at period 2

mining cut M

mining cut 1

mining cut 2
at period T

mining cut M

  
  
  
  
  
  
            


 
 
 
 
  

M

M

M

M






















 (3.5) 

All three decision variables are between zero and 1 because the binary variables,

( ; )a t i , are zero or one and the other two variables, ( ; )z t i  and ( ; )y t i , are 

continuous variables between 0 and 1. Therefore, the upper limit and lower limit 

for x  that are called Ux and Lx  are respectively defined as below: 

 
[ ]
[ ]

3 1

3 1

1

0

U TM

L TM

×

×

=

=

x

x
 (3.6) 

Where [ ]
3 1

1
TM×

 is a vertical vector with the size of 3 1TM × . The lower limit,

[ ]
3 1

0
TM×

, is a zero vertical vector with all elements equal to zero. 

• Objective function: Eq. (2.11). 

The objective function maximizes NPV of the mining operation. However, as 

shown in Eq. (3.1), the general form of the objective function is a minimization. 

Therefore, the objective function coefficients of Model #1 and all other models 

that are presented in previous chapter should be multiplied by a negative sign to 

change a maximization of NPV to the minimization of –NPV: 

 NPV ′− = c x  (3.7) 
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The coefficients of objective function are stored in a vector called c . It is a 

column vector with size of 3 1TM × . Each row of this vector is the coefficient for 

relevant column of the decision variables. The binary variables do not have any 

coefficient in the objective function, so, the first TN rows of cvector are zero. 

These zero values remove the binary variables from the objective function. The 

second part of this vector is ( ; )v t i values or the discounted revenue of block i in 

period t. These values are the coefficients of ( );z t i . These values occupy TN

rows of the c  vector ( ( ) ( )1 2TN TN+ L ). The last part is ( ; )q t i  values or the 

discounted cost of mining of block i in period t ( ( ) ( )2 1 3TN TN+ L ). Both ( ; )v t i

and ( ; )q t i  are positive values, therefore, as discussed before, to change the 

maximization to the minimization problem, only ( ; )v t i are multiplied by a 

negative sign. The final form of c  vector: 

 

[ ]
( )

( )

1

1

1 3 1

0

;

;

TM

TM

TM TM

v t i

q t i

×

×

× ×

 
 
  = −  
    

c  (3.8) 

• Grade blending constraints: Eq. (2.12). 

These constraints enforce the average input grade to the mill to be in the 

acceptable range in each period. The standard form of this constraint is indicated 

as Eq.(3.9): 

 [ ] [0]grade−∞ < ≤A x  (3.9) 

Coefficients of this constraint are stored in a matrix called gradeA . As shown in 

Eq. (2.12), gradeA  should be multiplied by ( ; )z t i . To eliminate other variables 

from this constraint, coefficients of other decision variables are set to zero. 

Matrix gradeA  has 3TM  columns in which each column is related to the same 

row of decision variables in vector x . There are upper and lower limits for each 

period; therefore, the total number of grade blending constraints is 2T . Each 

constraint occupies a row in gradeA ; so, there are 2T rows for this matrix. The 

general form of matrix gradeA  is shown in Eq. (3.10). The upper limit of this 
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constraint is a zero vector called U_gradeb . There is no lower limit for these 

constraints. Therefore, L_gradeb  is a vector with very large negative number as 

shown in Eq. (3.11). 

 
[ ] ( ) ( ) [ ]
[ ] ( ) ( ) [ ]

2 3

0 ( ) ( ) 0

0 ( ) ( ) 0

o uT TM T TMT TM

grade

o lT TM T TMT TM T TM

T i g i g t

T i g t g i

× ××

× ×× ×

  × −  =
  × −  

A  (3.10) 

 
[ ]
[ ]

2 1

2 1

0

inf

U_grade T

L_grade T

×

×

=

= −

b

b
 (3.11) 

Where 

• [ ]0
T TM×

 is the zero matrix with T rows and TM columns.  

• [ ]
2 1

0
T×

 is the zero vector with 2T rows and 1 column. 

 

• Processing capacity constraints: Eq. (2.13) 

These constraints control the input ore tonnage to the mill in each period. The 

general form is presented in Eq. (3.12): 

 L_PC processing U_PC< ≤b A x b  (3.12) 

 There are two constraints per period to control the upper and lower limits of 

input tonnage. The matrix of coefficients of constraints is called processingA  which 

is shown in Eq. (3.13). The upper and lower limit vectors of the constraints are 

called U_PCb  and L_PCb  which are shown in Eq. (3.14). 

 [ ] ( ) [ ]
3

0 0processing oT TM T TMT TM T TM
T i

× ×× ×
  =   A  (3.13) 

 
[ ]
[ ]

1

1

( )

( )

U_PC u T

L_PC l T

p t

p t

×

×

=

=

b

b
 (3.14) 

• Mining capacity constraints: Eq. (2.14). 
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Same as the processing capacity constraints, there are 2T number of constraints 

which occupy one row of the coefficient matrix called MiningA . The general form 

is: 

 _ _L MC Mining U MC< ≤b A x b  (3.15) 

The coefficients are multiplied by the decision variables that indicate the portion 

of extraction, ( ; )y t i . The coefficients related to ( ; )a t i  and ( ; )z t i  must be zero. 

The coefficient matrix and the upper and lower limit vectors are shown in Eqs. 

(3.16) and (3.17). 

 [ ] [ ] ( )
3

0 0Mining TotalT TM T TM T TM T TM
T i

× × × ×
  =   A  (3.16) 

 
[ ]
[ ]

_ 1

_ 1

( )

( )

U MC u T

L MC l T

m t

m t

×

×

=

=

b

b
 (3.17) 

• Ore-mining constraints: Eq. (2.15). 

These constraints enforce the portion of processing to be equal or smaller than 

the portion of extraction at the same period for each mining cut. Eq. (2.15) is 

modified as: 

  ( ; ) ( ; ) 0z t i y t i− ≤  (3.18) 

Therefore, the upper limit of the constraint equals to zero. The general form for 

this constraint is presented in Eq. (3.19)  

 _ [0]Ore Mining−∞ < ≤A x  (3.19) 

There will be TM constraints. The coefficient matrix and upper and lower limit 

vectors are shown in Eq. (3.21). 

 [ ]_
3

0Ore Mining TM TM TM TMTM TM TM TM
I I× ×× ×

 = − A  (3.20) 

 
[ ]
[ ]

_ 1

_ 1

0

inf

U OM TM

L OM TM

×

×

=

= −

b

b
 (3.21) 

Where TM TMI ×  is the identity matrix with size of TM TM× . 
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• Extraction precedence constraints: Eqs. (2.16) to (2.18). 

The general form of these constraints is shown in Eq. (3.22): 

 [ ] [0]precedence−∞ < ≤A x  (3.22) 

There are three constraints for each mining cut. These constraints enforce all 

immediate mining cuts above mining cut i to be extracted completely before 

ahead with i. Binary decision variables, ( ; )a t i , are used for this purpose. ( ; )a t i  is 

1 if mining cut i is completely extracted before period t ; otherwise it is zero. 

• The first Eq. (2.16) enforce ( ; )a t i  to be zero if any of the mining cuts 

located above mining cut i is not extracted completely until period t. If all 

the precedent mining cuts are extracted completely until period t, the 

decision variable ( ; )a t i  can be either 0 or 1. The coefficient of this 

constraint is shown in Eq. (3.23): 

 ( ) [ ] ( )
3

1 ; 0 1 ;
TMK TMTMK TM TMK TM TMK TM

t i u j
×× × ×

    −      (3.23) 

Where 

• K is the total number of precedence relationships between all 

mining cuts. 

• ( )1 ;
TMK TM

t i
×

    is the coefficient matrix for ( ; )a t i . In this vector, 

all the elements for mining cut i (i=1..M) and j (j=1..C(i)) in 

period t (t=1..T) are one; other elements are zero.  

• [ ]0
TMK TM×

 is a zero matrix and it is the coefficient matrix of 

( ; )z t i . 

• ( )1 ;
TM TM

u j
×

 −   is the coefficient matrix for ( ; )y u j  that is 

related to mining cut j in period u. For mining cut i, there are 

( )T C i×  rows and each row is a separate constraint related to 

mining cut i in period t; there are ( )C i  number of precedent 

mining cuts each mining cut i. For any i and j th mining cut in 

period 1 to t, the element of this matrix are -1.  



 

71 
 

• The second constraint, Eq. (2.17),  enforces binary variable ( ; )a t i  to be 0 

if mining cut i has not been extracted until period t; otherwise it can be 

either 0 or 1. The coefficient of this constraint is shown in Eq. (3.24): 

 [ ] ( )
3

0 ;TM TM TM TM TM TM TM TM
I adj u i× × × ×

  −     (3.24) 

Where 

•  ( );
TM TM

adj u i
×

    is the adjacency matrix with size of TM TM× . 

The element representing mining cut i in period t is 1 if mining 

cut u should be extracted before; otherwise it is zero.  

• The third constraint, Eq.(2.18), ensures that if a mining cut has been 

extracted in period t, all ( ; )a t i  to ( ; )a T i  are 1. There is a constraint for 

mining cut i, in period t. These constraints are shown in matrix form as 

Eq. (3.25). 

 ( ) ( ) [ ] [ ]
3

1 ; , 1 ; 1 0 0
TM TM TM TMTM TM TM TM

t i t i
× ×× ×

  − +    (3.25) 

The complete precedence constraint coefficient matrix called precedenceA  is 

summarized as below: 

 

( ) [ ] ( )

[ ] ( )

( ) ( ) [ ] [ ]
( )( 2) 3

1 ; 0 1 ;

0 1 ;

1 ; , 1 ; 1 0 0

TMK TMTMK TM TMK TM

precedence TM TM TM TM TM TM

TM TM TM TMTM TM TM K TM

t i u j

I u i

t i t i

×× ×

× × ×

× ×× + ×

     −     
   = −    
 
  − +    

A  (3.26) 

The upper and lower limit vectors are also shown as below: 

 
[ ]( )

[ ]( )

_ ( 2) 1

_ ( 2) 1

0

inf

U precidence TM K

L precidence TM K

+ ×

+ ×

=

= −

b

b
 (3.27) 

• Reserve constraint: Eq. (2.19) or Eq. (2.20). 

There are two versions for this type of constraints: The first type, Eq. (2.19), 

ensures all the blocks inside the final pit limit are extracted. The summation of 

extraction portions of any mining cut is one. It is an equality constraint and upper 

limit and lower limit of the constraint should be set to one.  
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The assumption here is that the final pit limit that is determined by 3D LG 

method is the optimum limit. Therefore, all the blocks inside the final pit should 

be extracted. The second type, if for any reason one does not agree with this 

assumption and decides to let optimizer determine the final pit limit inside the 

ultimate pit limit, the equality constraint is not required anymore. However, it is 

required that summation of extraction portions of a single mining cut not to 

exceed 1.  

 

[1] [1]

[ ] [1]

Reserve

Reserve

or

< ≤

−∞ < ≤

A x

A x

 (3.28) 

The coefficient matrix for both cases is the same and it is called ReserveA  that is 

shown in Eq. (3.29). The upper limit vector of these constraints is shown in Eq. 

(3.30). The lower limit depends on which case is considered. If the ultimate pit 

limit determined by 3D LG is decided to be the final pit limit, an equality 

constraint can be satisfied by setting the lower limit equal to the upper limit as 

shown in Eq. (3.31). Otherwise, the lower limit is not required anymore and it 

can be eliminated by setting to the negative infinity (Eq. (3.32)). 

 [ ] [ ] ( )
3

0 0 1 1 ;Reserve M TM M TM M TM M TM
T i

× × × ×
  =   A K  (3.29) 

 [ ]_ 1
1U reserve M×

=b  (3.30) 

 [ ]_ 1
1L reserve M×

=b  (3.31) 

 [ ]_ 1
infL reserve M×

= −b  (3.32) 

• Where ( )1 1 ;
M TM

T i
×

  K  is a matrix that has M rows (one row for each 

mining cut). For mining cut i, all the columns that are related to 

(1; ), (1; ), , ( ; )y i y i y T iK  are set to 1; all other elements are zero.  

The general form of the constraints can be rewritten as one matrix and two upper and 

lower limit constraints as Eq. (3.33): 

L U≤ ≤b Ax b  (3.33) 

Where 
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b

b

b

b
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 (3.34) 

3.5.2 Implementation of Model #2: MILP Considering Grade Uncertainty 

Without Stockpile 

In this section, the implementation of Model #2 is presented. The constraints are same as 

Model #1 as shown in Eqs. (2.12) to (2.20) plus one extra constraint to control the 

tonnage of over and under production ore that is shown in Eq. (2.36). To implement this 

model, implementation of Model #1 has been updated as below: 

• x  vector: is same as the previous model as shown in Eq. (3.4); except there are 

additional variables that store the tonnage of over and under production. 

Therefore x  vector is updated as Eq. (3.35) as below:  

 

[ ]
[ ]
[ ]

( )

1

1

1

1

1 3 2 1

( ; )

( ; )

( ; )

( ; )

( ; )

TM

TM

TM

op TL

up
TL TM TL

a t i

z t i

y t i

T t l

T t l

×

×

×

×

× + ×

 
 
 
 

=  
    
 
    

x  (3.35) 
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Where ( ; )opT t l  and ( ; )upT t l  are tonnage of over and under production in period t 

for realization l. The size of x  vector increases to 3 2TM TL+ . The structure of 

each of the vectors 
1

( ; )up
TL

T t l
×

    and 
1

( ; )op
TL

T t l
×

    are shown in Eq. (3.36). 

 

realization 1

realization 2
at period 1

realization L

realization 1

realization 2
at period 2

realization L

realization 1

realization 2
at period T

realization L

  
  
  
  
  
  
            

 
 
 
 
 
 

M

M

M

M














 
 
 
 
 
 
 
 



 (3.36) 

The upper limit of the x  vector which is defined by vector Ux is required to be 

modified as well. Since new variables ( ; )upT t l  and ( ; )opT t l  are the tonnage of 

under and over production, they can take any positive number. The lower limit 

vector, Lx , is still 0: 

 

[ ]
[ ]

[ ]

3 1

2 1 (3 2 ) 1

(3 2 ) 1

1

inf

0

TM
U

TL TM TL

L TM TL

×

× + ×

+ ×

 
=  

  

=

x

x

 (3.37) 

• Objective function: Eq. (2.35).  

The tonnage of over and under production is multiplied by the cost of over and 

under production per tonne. Therefore, the objective function coefficient vector, 

c , is modified in order to add these extra terms in Model #2. The new vector c is 

shown in Eq. (3.38): 
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[ ]
( )

( )

( )

( )
( )

1

1

1

1

1 3 2 1

0

;

;

TM

TM

TM

op
TL

up
TL TM TL

v t i

q t i

c t

c t

×

×

×

×

× + ×

 
 
 −  

 
  =   
    
    

c  (3.38) 

Where ( )opc t and ( )upc t  are the average cost of over and under production per 

tonne, respectively. They are simply calculated by dividing ( )upc t  and ( )opc t  by 

the total number of conditional realizations L. ( )upc t  and ( )opc t  are equal in all 

realizations in period t. 

 

( )
( )

( )
( )

1,2, ,

op

op

up

up

c t
c t

L
l L

c t
c t

L


= ∀ =

 =

K  (3.39) 

• Grade blending constraint: Eq. (2.12). 

Because ( ; )upT t l  and ( ; )opT t l  do not have any effects on the input grade to the 

mill, the coefficients related to these variables are set to zero in gradeA . The 

modified version of this matrix is shown in Eq. (3.40): 

 
[ ] ( ) ( ) [ ] [ ]
[ ] ( ) ( ) [ ] [ ]

2

2 2 (3 2 )

0 ( ) ( ) 0 0

0 ( ) ( ) 0 0

o uT TM T TM T TLT TM

grade

o lT TM T TM T TLT TM T TM TL

T i g i g t

T i g t g i

× × ××

× × ×× × +

  × −  =
  × −  

A (3.40) 

The upper and lower limit vectors for this constraint are same as Model #1 as 

shown in Eq. (3.11). 

• Processing capacity constraint: Eq. (2.13). 

Same as grade blending constraint, processingA  is modified. The new variables do 

not have any contribution in processing capacity constraints as well. Therefore, 

the coefficients related to these variables are zero.  

 [ ] ( ) [ ] [ ]
2 (3 2 )

0 0 0processing oT TM T TM T TLT TM T TM TL
T i

× × ×× × +
  =   A  (3.41) 
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The upper and lower limit vectors are same as Model #1 that are shown in Eq. 

(3.14). 

• Mining capacity constraint: Eq. (2.14). 

MiningA  is also updated as below: 

 [ ] [ ] ( ) [ ]
2 (3 2 )

0 0 0Mining TotalT TM T TM T TLT TM T TM TL
T i

× × ×× × +
  =   A  (3.42) 

The upper and lower limit vectors are same as Model #1 that are shown in Eq. 

(3.17). 

• Ore-mining constraint: Eq. (2.15). 

 [ ] [ ]
( )_ 2 3 2

0 0Ore Mining TM TM TM TMTM TM TM TL TM TM TL
I I× ×× × × +

 =  A  (3.43) 

The upper limit vectors are same as Model #1 that are shown in Eq.(3.21). 

• Extraction precedence constraints: Eqs. (2.16) to (2.18). 

For these constraints, the coefficient matrix, precedenceA , is calculated by 

modifying Eq. (3.26).  The result is shown in Eq.(3.44). The upper and lower 

limits are exactly same as Eq. (3.27).  

( ) [ ] ( ) [ ]

[ ] ( ) [ ]

( ) ( ) [ ] [ ] [ ]
( )( ) ( )

2

2

2
2 3 2

1 ; 0 1 ; 0

0 1 ; 0

1 ; , 1 ; 1 0 0 0

TMK TM TMK TLTMK TM TMK TM

precedence TMK TM TMK TM TMK TLTMK TM

TMK TM TMK TM TMK TLTMK TM TM K TM TL

t i u j

I u i

t i t i

× ×× ×

× × ××

× × ×× + × +

     −     
   = −    
 
  − +    

A
 (3.44) 

• Reserve constraint: Eq. (2.19) or Eq. (2.20). 

Same as the previous constraints, the coefficient matrix, ReserveA , that has been 

presented in Eq. (3.29) is updated as Eq.(3.45). 

 [ ] [ ] ( ) [ ]
( )2 3 2

0 0 1 1 ; 0Reserve M TM M TM M TLM TM M TM TL
T i

× × ×× × +
  =   A K  (3.45) 

The upper limit is equal to Eq. (3.30) and lower limit is equal to Eq. (3.31) or Eq. 

(3.32) . 

• Over and under production constraints: Eq. (2.36). 

These constraints assign the tonnage of over and under production for realization 

l in period t. If there is a surplus ore at realization l in period t, ( ; )opT t l  is a 
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positive number and equals to the tonnage of overproduction and ( ; )upT t l is zero. 

If there is a shortfall from target production at realization l in period t, ( ; )upT t l

equals to the tonnage of underproduction and
 
 ( ; )opT t l  is zero. The matrix for the 

coefficients of these constraints is called OU_ProdA  which is shown in Eq. (3.46). 

The upper and lower limit vectors of the constraints are called U_OUb  and L_UOb . 

They are shown in Eq.(3.47):
 

[ ] ( )[ ] [ ] ( )[ ] [ ]
[ ] ( )[ ] [ ] [ ] ( )[ ]
0 0 ; 0

0 0 0 ;
2 (3 2 )
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OU_Prod

T i T i l

T i T i l
T TM TL
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× × ×× ×

−
=

− −
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A  (3.46) 
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b
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 (3.47) 

The general form of the constraints are shown in Eq. (3.48). All of the coefficient 

matrices are collected in one matrix called A . The upper and lower limits for the 

constrains are gathered in two vectors called Ub  and Lb : 
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 (3.48) 
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3.5.3 Implementation of Model #3: MILP Considering Grade Uncertainty With 

Stockpile 

The main idea with this model is that any overproduced ore is transferred to the next 

periods. Therefore, Model #2 is modified. The cost of overproduction is reduced since the 

only cost of overproduction is the loss of ore value due to the selling the commodity at 

the latter years. This loss is calculated by the difference of the discounted ore value in 

two periods. Therefore, two main changes are needed to implement Model #3. The 

implementation details for this model are presented as below:  

• x  vector: same as Eq. (3.35). 

• Objective function: Eq. (2.38).  

The format of the objective function is same as Model #2 that is shown in Eq. 

(3.38). However, the cost of overproduction is different and it is shown in Eq. 

(3.49) and Eq. (2.28). 

 ( )
( ),

ˆ ,
, 1,2, ,

op RH

op

c t l
c t l l L

L
= ∀ = K  (3.49) 

• Grade blending constraint: Eq. (2.12). 

It is same as Model #2 as shown in Eq. (3.40). 

• Processing capacity constraint: Eq. (2.13). 

It is same as Model #2 as presented in Eq. (3.41). 

• Ore-mining constraint Eq. (2.15). 

It is same as Model #2 as indicated in Eq. (3.43). 

• Extraction precedence constraints: Eqs. (2.16) to (2.18). 

They are same as Model #2 as shown in Eq. (3.44) 

• Reserve constraint: Eq. (2.19) or Eq. (2.20). 

Both cases are same as Model #2 as presented in Eq. (3.45) 

• Over and underproduction constraints: Eq. (2.21) and Eq. (2.23). 

These constraints are needed to be modified in order to account for the 

overproduced ore from the previous period. Eq. (3.46) is modified as below to 

Eq. (3.50). The upper and lower limits of this constraint are also same as Model 

#2 as demonstrated in Eq. (3.47). 
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[ ] ( )[ ] [ ] ( ) ( )[ ] [ ]

[ ] ( )[ ] [ ] ( )[ ] ( )[ ]
0 0 1; ; 0

0 0 1; ;
2 (3 2 )

,
o op opT TM T TM T TLT TM T TL

o op upT TM T TMT TM T TL T TL

T i T t l T i l

OU_Prod T i T t l T i l
T TM TL

× × ×× ×

× ×× × ×

− −
=

− − −
× +

 
 
  

A
 (3.50) 

• Stockpile capacity constraint: Eq. (2.40). 

The stockpile limit constraints are consistent of TL constraints. The general form 

of this constraint is shown as below: 

 L_Stockpile Stockpile U_Stockpile< ≤b A x b  (3.51) 

 For each realization in each period the overproduced ore is controlled by these 

constraints. The coefficient matrix called StockpileA  is shown in Eq. (3.52). 

 
[ ] [ ] [ ] ( ) [ ]

(3 2 )
0 0 0 ; 0Stockpile opTL TM TL TM TL TM TL TLTL TL TL TM TL

T i l
× × × ×× × +

  =   A  (3.52) 

The upper and lower limits are shows in Eq. (3.53). 

 
( )

( )
1

1

U_Stockpile u TL

L_Stockpile l TL

S t

S t

×

×

 =  

 =  

b

b
 (3.53) 

( )
1l TL

S t
×

    
and

 
( )

1u TL
S t

×
    are vertical vectors with size of TL.  

The general form of the constraints are shown in Eq. (3.54). All of the coefficient 

matrices are collected in one matrix, A , and the upper and lower limits for the constrains 

are gathered in two vectors called Ub  and Lb : 

  



 

80 
 

 

( )( )T TL TM K M TM

U

grade

processing

OU_Prod

Stockpile

Mining

Ore Mining

precedence

Reserve

U grade

U processing

U_OU

U_Stockpile

U Mining

U Ore Mining

U precedence

U res

+ + + + ×

=

=

 
 
 
 
 
 
 
 
 
 
 
  

A

b

A

A

A

A

A

A

A

A

b

b

b

b

b

b

b

b
( )( ) ( )( )

L

T TL TM K M T TL TM K M

L grade

L processing

L_OU

L_Stockpile

L Mining

L Ore Mining

L precedence

erve L reserve+ + + + × + + + + ×

=

   
   
   
   
   
   
   
   
   
   
   
      

b

b

b

b

b

b

b

b

b

 (3.54) 

3.5.4 Implementation of Model #4: MIQP for Mean-Variance Approach 

In this section, the mixed integer quadratic programming that has been presented in Eq. 

(2.49) is transformed into the standard form of TOMLAB. Model #2 is used and 

modified.  The general form of MIQP problems can be written as below: 

 Max ′ ′
1

x Qx + c x
2

 (3.55) 

Subject to: 

 L U≤ ≤x x x  (3.56) 

 L U≤ ≤b Ax b  (3.57) 

Where  

• x , c , Lx , Ux , A , Lb , Ub  and A are same as the general form of MILP, and 

they have been described in Model #2. The implementation details for each of 

them have been shown in Section  3.5.1. 

• Q : The quadratic part of the objective function.  

This is a diagonal matrix with the size of 3 3TM TM× . Q is the covariance 

matrix of all parameters that are used in NPV calculation in each realization. 

Since only variance of ore value is considered in the objective function presented 
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in Eq.(2.49), the coefficients for ( ; )z t i  that are ( )2 ;v t iσ  must only be included in 

Q  matrix. Q  is a diagonal matrix in which each diagonal elements is the 

variance of a variable, and other elements are zero. This matrix can be calculated 

by eq. (3.58) as below: 

 

[ ] [ ] [ ]
[ ] ( ) [ ]
[ ] [ ] [ ]

2

3 3

0 0 0

0 ; 0

0 0 0

TM TM TM TM TM TM

vTM TM TM TMTM TM

TM TM TM TM TM TM TM TM

t iσ

× × ×

× ××

× × × ×

 
 

  =   
  

Q  (3.58) 

Where ( )2 ;v
TM TM

t iσ
×

   is also the diagonal matrix in which each diagonal 

element is the variance of the ore value of mining cut i in period t. 

Q  is a “strictly diagonally dominant matrix”. It means that the magnitude of the diagonal 

entry in a row is larger than or equal to the sum of the magnitudes of all the other (non-

diagonal) entries in that row. It can be proved that these type of matrices are positive 

semi-definite. Also Q  is the covariance matrix of NPV in presence of grade uncertainty. 

It is a well known fact that all covariance matrices are positive definite. Any quadratic 

optimization problem with a positive semi-definite Hessian matrix is convex. Therefore, 

there is always a unique solution for this optimization problem which is also the global 

optimum solution. 

3.6 Summary 

In this chapter, the programs and steps that are required to generate geostatistical model 

by GSLIB software were described. The estimation model is imported to Whittle to 

generate the final pit limit that is required for optimization stage. A program called 

MSQ90 was presented. This program is used to assess the grade uncertainty for the 

production plan, remove the blocks outside the final pit, apply the cut-off grade to the 

blocks and calculate the economic parameters for each block and realization. The 

generated files from MSQ90 are used as an input to the clustering. The clustering 

technique and the implementation details were presented. Finally, in this chapter, the 

implementation details for each of four proposed models have been showed. All the 

generated matrices and vectors are in standard input format for TOMLAB solver. 
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Chapter 4 Case Study 

This chapter focuses on the application of the approaches that are presented in Chapter 2. 

A data set from an oil sands deposit has been used for this purpose. In Section  4.1, 

summary statistics of the data are presented. In this section, a geostatistical workflow is 

followed to generate a block model. Ordinary kriging is used to estimate the bitumen 

grade and sequential Gaussian simulation is used to simulate 50 realizations. In 

Section  4.3, the Whittle software is employed to generate the ultimate pit limit and the 

long-term production plan using the estimated values. The simulated bitumen grade 

values are used to assess the effect of grade uncertainty on the long-term production 

schedule. Section  4.5 shows the schedule generated by Model #1 based on the estimated 

values. Section  4.6 presents the results of Model #2. In this model the realizations are 

used to penalize input ore tonnage fluctuations into the plant that are caused by grade 

uncertainty. A symmetric penalty function has been used for this model. In Section  4.7, 

an optimum production schedule has been generated using Model #3 with an 

asymmetrical penalty function. In this model the stockpile is modeled as part of the 

optimization stage. In each section, the generated schedules are compared to each other. 

Finally, in Section  4.8 a summary of the chapter and some conclusions are presented.  

4.1 Practical regulations of oil sands mining in Alberta 

The Energy Resources Conservation Board (ERCB) has been succeeded by the Alberta 

Energy Regulator (AER). The Alberta Energy Regulator is a regulatory body with a 

mandate to provide for the efficient, safe, orderly, and environmentally responsible 

development of Alberta’s energy resources. The following information is extracted from 

directive 082. (http://www.aer.ca/). Here is some information that is required for a long 

term mine planning project for oil sand deposits in Alberta. 

4.1.1 Bitumen Recovery  

The in situ oil sands cut-off grade is defined as the minimum bitumen content of the oil 

sands that would be classified as ore. It has been set at 7 weight per cent bitumen. The 

minimum mining thickness (mining selectivity) is defined as the minimum thickness of 

ore that can be separated from waste or waste that can be separated from ore. It has been 
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set at 3 meters (m). Processing plant recovery is a variable factor based on the average 

bitumen content of the as-mined ore. The factor is determined as follows:  

• If the average bitumen content of the as-mined ore is 11 weight per cent bitumen 

or greater, the recovery factor is 90 weight per cent.  

• If the average bitumen content of the as-mined ore is less than 11 weight per cent 

bitumen, recovery is determined by the following equation, where x is the 

average weight per cent bitumen content of the as-mined ore:  

Recovery 202.7 54.1( ) 2.5( )x x= − + −  

4.1.2 Drilling Density Requirements  

For all areas subject to development within the first ten years and for a 1 kilometer (km) 

buffer around these areas, the maximum spacing between drillholes meeting the drilling 

data quality requirements must be 350 m as determined by triangulation. If any one side 

of the triangle is greater than 350 m, the ERCB will determine if additional drilling is 

required.  

For all other areas subject to development after the first ten years and for a 1 km buffer 

around these areas, the maximum spacing between drillholes meeting the drilling data 

quality requirements must be 700 m as determined by triangulation. If any one side of the 

triangle is greater than 700 m, the ERCB will determine if additional drilling is required.  

4.2 Input Data 

The input data set belongs to an oil sand deposit in Fort McMurray, Alberta, Canada. The 

only rock property that is used in this study is mass percent of the bitumen. There are 210 

vertical boreholes in this data set. The location of the boreholes is shown in Figure  4-1. 

The horizontal and vertical scales are in meters. This figure also shows the boundary of 

the ore body. This polygon is chosen manually based on an approximately a constant 

distance from the boreholes. All the blocks outside this polygon are considered as waste. 

The histogram and cumulative density function (CDF) of the data are shown in 

Figure  4-2. The data set has 7887 samples of the mass percent bitumen with a mean and 

standard deviation of 8.73 and 4.76 m%, respectively. The P10, P50 (median) and P90 of 

the data, respectively are: 1.9, 9.2 and 14.7. Also, from the CDF curve 68% of the data 

are above 6 m% of bitumen. This is the operational cut-off grade that is used in this case 

study. This is 1 weight per cent less than the cut-off grade that has been defined by AER. 
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Also, the recovery factor in the case study is assumed to be a constant number for all 

input grades. This has been explained in Section  2.2. On the other hand, stockpiles are not 

popular in oil sand open pit mines. Due to the huge size of oil sand operations, it is 

almost impractical to have a stockpile and keep the ore in the stockpile. However, the 

presented case study in this chapter has tried to show the application and results of Model 

#1 and #2 without stockpile and Model #3 in which the stockpile is considered.  

 

 

Figure  4-1: location map of boreholes and the boundary of the ore body in meters. 
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Figure  4-2: (a) Histogram and (b) the CDF of bitumen grade (m%). 
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As described in Section  3.2, the next step is to find the representative distribution of the 

bitumen by reducing the effect of clustered samples. The cell declustering technique is 

used for this purpose. Since the clustered wells have been drilled in high grade zones, the 

cell declustering method is used to correct the mean of the data. Figure  4-3 shows a cross-

plot of cell size versus the declustered mean. From this graph, the optimum cell size is 

chosen as 45m. From the location map of the boreholes in Figure  4-1, it is concluded that 

the cell de-clustering is affected by vertical clustered samples. Figure  4-4 shows the 

vertical locations of the samples at each borehole. It is clear that the distance between the 

samples is not regular and in some areas the density of the samples is less than other 

boreholes. In order to check the results of cell-declustering method, another technique 

called Global Kriging method declustering method is applied. In this method the 

cumulative sum of the weights that each data location receives is calculated. These 

cumulative weight sums can be used as declustering weights as those data located in a 

densely sampled area will not receive as much weight as those data located in sparsely 

sampled areas. The average of the bitumen grade with this method is reduced to 7.27 m%. 

This is close to the cell declustering method that is performed for this data set and proves 

that the data has vertical declustering. 

 

Figure  4-3: Scatter-plot of cell sizes versus declustered mean 
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Figure  4-4: The vertical locations of the samples at each borehole 

 

Figure  4-5 shows the histogram and CDF of the bitumen grade using the declustering 

weights. The representative distribution of the data has a mean and standard division of 

7.19 and 5.00 mass percent respectively. Also P10, P50 and P90 of the data respectively 

are: 0.70, 6.60 and 14.2 m%. The grade of the 64.0 percent of declustered data is above 

6.00 m%.  

Both histograms (Figure  4-2 and Figure  4-5) clearly show a bimodal distribution. This 

also can also be seen in Figure  4-6. This graph shows the normal probability plot of the 

bitumen grade using declustering weights. The two populations could be separated into 

two domains; however during this thesis, the modeling techniques are aimed at the grade 

uncertainty on the production plan. Therefore, all of the data are considered in one 

domain. 

 

190

210

230

250

270

290

310

330

0 50 100 150 200 250 300 350

�������� ��



 

88 
 

 

 

 

Figure  4-5: (a) Histogram and (b) the CDF of bitumen with declustered weights  
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Figure  4-6: Probability plot of bitumen using declustered weights. 

 

Directional experimental variograms are calculated and a theoretical variogram model is 

fitted. The azimuths of the major and minor directions were found to be 50 and 140 

degrees. Figure  4-7 shows the experimental and the fitted variogram models in major 

(Figure  4-7a), minor (Figure  4-7b) and vertical (Figure  4-7c) directions. The variogram 

model consists of two nested spherical models. The general equation for an isotropic 

spherical variogram is given by Eq. (4.1). 
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Where 

• 0C  is the nugget effect. 

• C   is the sill of the variogram model. 

• a  is the range of the variogram. 
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Figure  4-7: Experimental directional variograms (dots) and the fitted variogram models 

(solid lines), distance units in meter 
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Table  4-1 shows the parameters for the variogram model that were used for bitumen 

modeling.  

Table  4-1: Variogram model for bitumen 

  Spherical Spherical 

Bitumen Nugget 
Effect 

Sill Range 
N50E 

Range 
N40W 

Range 
Vert. 

Sill Range 
N50E 

Range 
N40W 

Range 
Vert. 

0.4 0.25 1200m 500m 25m 0.35 1200m 1200m 25m 

 

The next step is to define a regular grid that will be used for estimation and simulation. 

The parameters that are required to define a grid are: the distance between each grid 

nodes in the X, Y and Z direction, the number of grid nodes in the X, Y and Z directions 

and the coordinates of the first grid node. As discussed in Section  1.2, the size of the 

block should be chosen carefully. Using small blocks increases the size of the model and 

the overall number of blocks in the model. Having too many blocks increases the 

computational time for the modeling and optimization process. Also, for a relatively 

homogeneous oil sand deposit, a larger block size can be used. On the other hand, 

extremely large block sizes will smooth out the grade fluctuations and therefore the effect 

of grade uncertainty will be diminished. Therefore, considering all of these parameters, 

the size of the blocks is chosen to be 50 by 50 by 10 meters. The height of each level or 

bench is considered as the height of one block which is 10 meters. To estimate (or 

simulate) at the block level, the scale difference of the input data and the blocks should be 

taken into account: The input data are at a point scale and the calculated histogram and 

variograms are at this scale. Therefore, the correct way to create a geomodel at a block 

scale is to build a high resolution grid and then scale it up to the block size. For this case 

study each block was discretized into 2 points in length, 2 point in width and 5 points in 

height. Therefore, inside each block there are 20 point scale simulation or estimation 

values. The grid definition of the high resolution grid for point scale modeling is given in 

Table  4-2. There are 6624000 nodes in this grid. The block scale grid is also given in 

Table  4-3. There are 89600 blocks in this grid.  
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Table  4-2: High resolution grid definition for point scale modeling. 

Direction Number 

of nodes 

Center coordinates 

of first node 

Grid 

spacing 

Easting 240 146000 25.0m 

Northing 240 251000 25.0m 

Elevation 115 190 2.0m 

 

Table  4-3: Block scale grid definition. 

Direction Number 

of nodes 

Center coordinates 

of first node 

Grid 

spacing 

Easting 80 146800 50.0m 

Northing 80 252000 50.0m 

Elevation 14 220 10.0m 

 

The next step is to create the necessary bounding surfaces. There are three surfaces in this 

model: the surface of the ground, the top of the ore body and the base of the ore body. 

Each of these surfaces is created based on the borehole information. The ore body is 

limited between the top and base surfaces and inside the polygon defined earlier 

(Figure  4-1). There are three types of blocks in this block model: (1) potential ore blocks 

that are inside the ore body, (2) waste blocks that are outside the orebody and (3) the air 

blocks. Figure  4-8 shows a plan view at 290m and two perpendicular cross sections at 

252750m looking north and 148250m looking east.  The grey area is the waste rocks, the 

yellow blocks are ore and the transparent area is above the ground surface.  
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Figure  4-8: Plan view, cross section looking north and east of the ore body and waste blocks 
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The next step is to estimate the bitumen grade. Ordinary Kriging (OK) is used to estimate 

the bitumen grade in original units (without normal score transform) at each block 

location with a 2*2*5 block discretization. A minimum of 30 and maximum of 40 

samples were used to estimate each node. The search ellipsoid is defined as two times the 

variogram range in each direction.  

Fifty realizations of the bitumen grade are generated using Sequential Gaussian 

Simulation (SGS) at the high resolution grid at the point scale. The declustered weights 

are used in SGS to transform the data to Gaussian space and back-transform to original 

units. The main difference between simulation and estimation is that the estimated model 

does not reproduce the input histogram and variogram. Figure  4-9 shows the variogram 

reproduction in three major, minor and vertical directions from the realizations. 

Figure  4-10 shows the histogram reproduction in Gaussian units and original units. Since 

the histogram and variogram are reproduced quite reasonably, the generated realizations 

are considered representative of the grade uncertainty. Finally the block averaging step is 

applied to get the simulated values at block scale.  

Kriging with a limited search is conditionally biased (Isaaks, 2005) and “there is no 

conditional bias of simulation when the simulation results are used correctly” (McLennan 

and Deutsch, 2004). The grade-tonnage curve is a good tool to understand the predicted 

values. Figure  4-11 shows the grade tonnage curve of simulation realization (dashed 

lines), OK (bold solid line) and E-type mean (bold dashed line) all at the block scale. The 

E-type mean is simply the average of the simulated values in each block. The E-type 

mean is slightly different than kriging because kriging is applied in original units; 

theoretically they would be the same in Gaussian units (Journel and Huijbregts, 1981). 

For this case study, the large search radii (12000m in horizontal and 250m in vertical) and 

up 40 conditional data has been applied for OK algorithm to reduce the conditional 

biasness of the OK. Using large search routines reduces the uncertainty and increases the 

smoothness of the OK block model. On the other hand, the uncertainty of the data is 

taken into account in optimization process for long term production plan. 
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Figure  4-9: Variogram reproduction at Gaussian units of conditional simulation realizations 

(red dash lines), the reference variogram model (solid black lines) and the average 

variogram from realization (dashed blue line).  
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Figure  4-10: Histogram reproduction of simulation realizations (dashed lines) and histogram 

of original data (bold line) at Gaussian unit (top) and original unit (bottom) 
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Figure  4-11: Grade tonnage curve of simulation realizations, OK, and E-type mean at block 

scale 

All of the simulated and estimated blocks outside the area of interest are clipped and 

removed from the model. The same plan view and cross sections that are shown in 

Figure  4-8 are shown in Figure  4-12 for the kriged bitumen grade. Figure  4-13 and 

Figure  4-14 show the same maps and cross sections for the E-type mean and E-type 

variance, respectively. The E-type variance shows the areas that are uncertain. The 

uncertainty at the center of the domain is lower than the edges where there are fewer 

drillholes. Realization number 26 is shown. Figure  4-15 shows the plan view and the 

cross sections. 
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Figure  4-12: Plan view, cross section looking north and east of estimated Bitumen grade 

(m%) using OK method. 
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Figure  4-13: Plan view, cross section looking north and east of E-Type mean of  Bitumen 

grade (m%) using 50 conditional realizations. 
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Figure  4-14: Plan view, cross section looking north and east of E-Type variance of  Bitumen 

grade (m%^2) using 50 conditional realizations. 
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Figure  4-15: Plan view, cross section looking north and east of simulated Bitumen grade 

(m%) realization number 26. 
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The economic block value was calculated for the OK values and realizations. See Eq. 

(2.7). The E-type mean and variance of the EBV are also calculated.  

The economic parameters that are required for this calculation are based on the 

Syncrude's costs in CAN$/bbl of sweet blend for the third quarter of 2008 (Jaremko 

2009). These parameters are summarized in Table  4-4.  

Table  4-4: The parameters that are required to calculate EBV 

Arcanum Description Value 

P  Selling price ($/tonne) 281.25 

mC  Mining Cost ($/tonne) 4.6 

pC  Processing Cost ($/tonne) 0.5025 

mR  Mining recovery factor 0.88 

pR  Processing  recovery factor  0.95 

cutg  Cut-off grade (%m) 6 

oT  Tonnage of ore blocks (tonne) 54000 

wT  Tonnage of waste blocks(tonne) 52500 

 

The price of oil is considered 44.7 $/bbl and the density of the bitumen is approximately 

1 3tonne m  at 20 degree Celsius. 1 cubic meter is 6.2895 bbl. Therefore, the price of 1 

tonne of bitumen is calculated as $281.25. 

The density of ore blocks and waste block are assumed 2.16 3tonne m  2.1 3tonne m , 

respectively. Figure  4-16 shows a plan view and two cross sections of the EBV for the 

OK values. The expected value (mean) and the variance of the EBV also are calculated 

for each block. Figure  4-17 also shows the expected value of EBV for each block at the 

same maps and Figure  4-18 shows the variance of EBV.  

 

 

 

 

 



 

103 
 

 

 

 

 

Figure  4-16: Plan view, cross section looking north and east of EBV($) using kriged bitument 

grade (m%). 
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Figure  4-17: Plan view, cross section looking north and east of E-Type mean of  EBV($) 

using 50 conditional realizations of simulated bitumen grade (m%). 
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Figure  4-18: Plan view, cross section looking north and east of E-Type varaince of  EBV($) 

using 50 conditional realizations of simulated bitumen grade (m%). 
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4.3 Determine the Ultimate Pit Limit  

The next stage is to determine the ultimate pit limits with the ordinary kriging block 

model. The same economic parameters as presented in Table  4-4 are used here. The 

overall slope of the pit is assumed to be 20 degrees. 3D LG algorithm is applied to 

generate 33 pit-shells by using revenue factors ranging from 0.1 to 2.5. Some revenue 

factors generate the same pit shell.  Table  4-5 shows the error of the pit slope for the 

ultimate pit limit. The values are in the acceptable range. Usually the average slope error 

should not exceed 1 to 2 degrees.  Table  4-6 shows the 14 pit-shell generated by different 

revenue factors. By increasing the revenue factor, the selling price increases and therefore 

the size of the pit and the strip ratio increase. The revenue factors less than one create 

smaller pit-shells aimed to extract more ore blocks with higher grade. Lower revenue 

factor create more conservative pit limits where the price of ore is predicted to be lower 

than the current price. The base case pit-shell is generated with a revenue factor equal to 

one (pit shell number 14).   

Table  4-7 show the number of the blocks inside the final pit. The cut off grade is not 

applied to the values presented in this table.  There are 653.6 million tonnes of ore and 

waste inside the ultimate pit limit. There are 297.4 million tonnes of waste. By applying 

cut off grade of 6 mass percent to the estimated bitumen values, the ore tonnage is 

calculated to be 282.4 million tonnes with an average grade of 10.31 m%. The waste 

tonnage is calculated to be 371.17 million tonnes. The estimated total tonnage of bitumen 

is 29.11 million tonnes. Considering the overall recovery factor of 83.6% (from 

Table  4-4), the total estimated recoverable bitumen is 8.2 billion dollars.  

Figure  4-19 shows the ultimate pit limit in plan view and two cross sections at 290m, 

25275m and 148250m, respectively. The final pit does not cover all the ore blocks; some 

ore blocks in the Northwest of the area are not inside the final pit limit.  
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Table  4-5: Errors of generated pit slope by LG method 

Description Value 

Minimum slope error 0.1 degrees 

Average slope error 0.8 degrees 

Maximum slope error 1.1 degrees 

 

Table  4-6: Generated pit shells using different revenue factors using OK block model 

Pit Rev. 

Factor 

Rock       

(M tonne) 

Ore          

(M tonne) 

Strip 

Ratio 

Max 

Bench 

Min 

Bench 

Bitumen     

(M tonne)  

Bitumen 

Grade(m%) 

1 0.35 137.30 71.37 0.92 18 7 7.95 11.14 

2 0.4 373.83 190.73 0.96 18 7 19.88 10.42 

3 0.45 440.18 219.54 1.01 18 6 22.70 10.34 

4 0.5 458.05 226.26 1.02 18 6 23.37 10.33 

5 0.55 505.06 241.68 1.09 18 5 24.96 10.33 

6 0.6 576.25 263.24 1.19 18 5 27.15 10.31 

7 0.65 607.98 272.22 1.23 18 5 28.05 10.3 

8 0.7 619.51 275.09 1.25 18 5 28.35 10.31 

9 0.75 630.11 277.59 1.27 18 5 28.61 10.31 

10 0.8 640.61 279.90 1.29 18 5 28.85 10.31 

11 0.85 646.19 281.03 1.3 18 5 28.97 10.31 

12 0.9 647.86 281.36 1.3 18 5 29.00 10.31 

13 0.95 652.23 282.21 1.31 18 5 29.08 10.31 

14 1 653.61 282.44 1.31 18 5 29.11 10.31 

15 1.05 656.81 283.06 1.32 18 5 29.16 10.3 

16 1.1 726.12 296.17 1.45 18 5 30.32 10.24 

17 1.15 - 1.2 731.27 297.06 1.46 18 5 30.40 10.23 

18 1.25 733.90 297.54 1.47 18 5 30.44 10.23 

19 1.3 737.64 298.20 1.47 18 5 30.49 10.22 

20 1.35 739.31 298.48 1.48 18 5 30.51 10.22 

 

Table  4-7: Number of blocks and tonnages for ore and waste rock-types 

Block Type Number of blocks Tonnage (M tonne) 

Ore 6625 356.2 

Waste 7987 297.4 

Total 14612 653.6 
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Figure  4-19: Plan view, cross section looking north and east of ultimate pit limit with over 

bourden (blue blocks), ore body (yellow blocks) and surrounding waste blocks outside the pit 

limit (gray blocks) 
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4.3.1 Uncertainty Assessment of Final Pit Limit Using Simulation Realizations 

The effect of grade uncertainty is now studied on the size of the final pit limit. There are 

two main options: apply the 3D LG algorithm on each realization to generate different 

ultimate pit limits for every realization.  In the second method the simulated realizations 

are assessed in the ultimate pit generated by kriging. The total tonnage (ore+waste) would 

be the same for all realizations in the second method. Koushavand and Askari-Nasab 

(2009) presented these two methods for the same case study presented here. The results 

for the second method are reported here. Figure  4-20 to Figure  4-23 show the histogram 

and the box-plot of the average simulated grade, total ore tonnage, strip ratio and the total 

tonnage of bitumen inside the final pit. The cut-off grade is applied for all realizations 

such that all blocks below the 6 m% of the bitumen grade are considered as waste blocks. 

 

  

Figure  4-20: Histogram and box-plot of bitumen grade inside the final pit that was generated 

by OK. OK result is marked by solid circle. Cut-off grade has been applied to the all 

realizations. 
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Figure  4-21: Histogram and box-plots of ore tonnage inside the final pit. OK result is 

marked by solid circle. Cut-off grade has been applied to OK values and all realizations. 

 

Figure  4-22: Histograms and box-plots of overall stripping ratio inside the final pit. OK 

result is marked by solid circle. Cut-off grade has been applied to OK values and all 

realizations. 
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Figure  4-23: Histograms and box-plots of tonnage of bitumen inside the final pit. OK result 

is marked by solid circle. Cut-off grade has been applied to OK values and all realizations. 

 

Table  4-8 shows the percentile rank of realizations based on the producible bitumen 

inside the final pit. The smoothing of kriging is clearly shown in this table. The 

producible bitumen calculated by ordinary kriging is more than 97 percent of the 

realizations (only 2 realizations produce more ore than OK). The histograms and box 

plots shown in Figure  4-20 to Figure  4-23 suggest that the OK is significantly biased 

from realizations. The reason for this biasness is that the final pit limit has been derived 

from OK block model. Therefore, the results are optimum for the OK block model and 

not for the realizations. The final pit covers all the ore blocks in OK block model only. 

This is a good example to motivate the future research to take into account grade 

uncertainty in pit limit optimization. The E-type mean is much closer to the median of the 

distribution. There are 40 percent of the realizations that produce more ore than E-type 

mean. Also, Table  4-9 shows the summary statistics of the final pit from realizations for 

ore tonnage, strip ratio and bitumen in place. 

The NPV calculated with the OK block model will be highest because of the smoothing 

effect and overestimation of ore tonnes. 
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Table  4-8: The producible bitumen and rank of realizations  

Realization Bitumen tonnage (MT) Percentile 

4 27.28 1 

27 27.62 10 

5 27.88 24 

15 28.27 50 

47 28.65 75 

7 28.81 90 
10 29.40 99 

OK 29.11 97 
E-type Mean 28.50 61 

 

Table  4-9: Summary of statistics for the ultimate pit limit  

Statistics Ore tonnage (MT) STRO Bitumen tonnage (MT) 

Mean 276.35 1.37 28.29 

Std. dev 3.89 0.03 0.47 

Min 269.28 1.27 27.28 

Quartile 1 273.31 1.34 27.90 

Median 276.51 1.36 28.27 

Quartile 2 278.91 1.39 28.65 

Max 287.39 1.43 29.40 

 

4.4 Production Scheduling With Whittle  

The kriged model is used to generate a production schedule.  The same economical 

parameters presented in Table  4-4 are used. No stockpile and capital costs are considered. 

Additional parameters are shown in Table  4-10. 

Table  4-10: Mine planning input parameters 

Parameter Value 

Mining dilution fraction 1.0 
Discount factor per period 10% 

Mining Limit 67.5 M Tonne 
Processing Limit 36 M Tonne 

Pre-stripping mining 2 years 
Mine life 10 years 

 

Milawa NPV is used as the scheduling algorithm. All configurations of 3 push backs up 

to 9 push-backs are checked with “Full” calculation mode. In this mode, the program 

searches all the possible combinations of the pushbacks and reports the case with higher 
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NPV. Among all configurations, three pushbacks case generates reasonable result such 

that by increasing the number of push-backs, the NPV is not improved significantly. The 

pit-shells number 1, 5 and 14 are chosen as the push-backs by the algorithm. In all the 

scenarios that are generated by Whittle, the mine life is 11 years. This is because the 

processing capacity is very tight for Whittle to be able to process all the ore tonnage 

inside the final pit. On the other hand, the generate schedules by Model #1 to #4 have 10 

years of mine life. Therefore, to keep consistency with other production schedules and to 

compare the result, the mining and processing capacity at the final period (10) is 

increased to 87MT and 40 MT respectively.  

4.4.1 Verification of the Generated Production Schedule 

Table  4-11 shows the summary of the schedule for each period. The NPV of the project is 

2387 million dollars.  This schedule is valid based on the input parameters because there 

are two pre-striping periods and also the mining and processing capacity constraints are 

satisfied in all periods. 

The total tonnage of processed ore is 281 MT. The comparison of this number with the 

total of 282.4 million tonnes of ore inside the final pit limit shows that there are 1MT of 

rejected ore.  Each block is flagged with: (i) the extraction period (ii) the portion of the 

extraction and (iii) the destination of the block. Any ore block that is sent to the waste 

dump is called rejected ore. The total average head grade is 10.28 m%. 

Figure  4-24 shows the schedule generated by Whittle. The mill is fed at full capacity in 

periods 3 to 8. There is shortfall in period 9 while 40 MT of ore is processed in the period 

10. 

Figure  4-25 shows the plan view and two cross section looking north and east for the 

extraction periods of the blocks. The three push-backs that control the extraction strategy 

can clearly be observed in this figure. The extraction of the blocks is continuous and there 

is no gap effect. The production schedule can be easily followed without any extra 

equipment movement during each period. 
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Table  4-11: Summary of Production schedule in each period for OK block model; the 

schedule generated by Whittle with OK block model. 

Period 
Input Ore 

MT 

Waste 

MT 

Mined 

MT 
SR 

Grade 

M% 

stockpile 

MT 

stockpile 

grade M% 

CDCF 

MD 

1 0.0 67.5 67.50 Inf. 0.00 0.0 0.00 -282.28 

2 0.0 67.5 67.50 Inf. 0.00 0.0 0.00 -538.88 

3 36.0 25.8 61.80 0.72 10.35 0.0 0.00 -17.96 

4 36.0 31.1 67.10 0.86 11.38 0.0 0.00 506.47 
5 36.0 31.5 67.50 0.87 9.17 0.0 0.00 850.19 

6 36.0 17.0 53.00 0.47 10.01 0.0 0.00 1,245.88 

7 36.0 11.1 47.10 0.31 10.71 0.0 0.00 1,654.02 

8 36.0 31.5 67.50 0.88 10.85 0.0 0.00 1,987.45 

9 25.2 42.3 67.50 1.68 9.67 0.0 0.00 2,126.13 

10 40.0 47.0 87.00 1.18 10.22 0.0 0.00 2,387.24 

Total 281.2 372.3 653.5 1.37 10.28 0.0 0.00 2,387.24 

 

 

 

Figure  4-24: Production schedule generated by Whittle with OK block model. 
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Figure  4-25: Extraction periods of production schedule generated by Whittle with OK block 

model. 
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4.4.2 Uncertainty Assessment of the Whittle Generated Production Schedule 

By following the single schedule for all realizations the uncertainty in the production 

schedule can be measured.  The period of extraction for each block and the portion of the 

extraction are specified by the production schedule, but the destination of the blocks will 

be different for the simulated realizations. The assumption here is that the destination of 

the blocks is decided based on the simulated grade value of each block and the cut-off 

grade. There will be two contradictions:  

1. The block is estimated above 6% and is processed in the schedule; however the 

simulated value is lower than the cut-off grade. These kinds of blocks are sent to 

the waste dump for that specific realization. This can cause shortfall from target 

production.  

2. The block is estimated as waste and the simulation value is above the cut-off 

grade. This block is sent to the mill and processing plant. The extra ore tonnage 

of such blocks in a realization and a specific period can exceed the target 

production and generate overproduced ore for that realization.  

The overproduced ore is transferred to a stockpile to be used in later periods. It is 

unrealistic to dispose the extra ore. Ore that is transferred to the stockpile will be 

available for subsequent periods if there is any shortfall from target production.  

Figure  4-26 shows 6 graphs with different aspects of the generated schedule in each 

period. The black bold line is the result of OK in each period and dashed red lines are the 

results of the realizations that are followed by the same generated schedule. Figure  4-26a 

shows the average grade of the mined ore. The average grades of ore for all realizations 

are roughly between 8 to 10 m%. Figure  4-26b shows the ore tonnage that is mined in 

each period. Extra ore is generated only in periods 6, 7 and 8 with very few realizations 

and the tonnage of extra ore for these periods is very low.  Figure  4-26c and Figure  4-26d 

show the average input grade of ore and the tonnage of ore to the mill. Any extra ore that 

generated with this schedule has transferred to the next earliest year that shortfall 

happens. The average input grade is updated by the tonnage of ore from the stockpile. 

Figure  4-26f shows the cumulative discounted cash flow (CDCF). Only one realization 

(#10) has higher NPV than OK. This is fully expected because of the smoothing of 

kriging and the fact that the cut-off is less than the average. 
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Table  4-12 shows the discounted cost of grade uncertainty before and after post-

processing calculated by Eq. (2.30). The discounted cost of grade uncertainty is 

calculated before and after post-processing as 218.67 and 214.76 million dollars, 

respectively. The cost of grade uncertainty is reduced by 1.8% after post-processing the 

production schedule. 

Figure  4-27 shows the box-plot of the input tonnage of the mined ore. The target 

production is marked by the horizontal black line. The second vertical axis at the right 

shows the percentage of the average deviation from the target production. The yellow 

transparent columns show the average deviation from target production for each period. 

The numbers attached to each column also show the average deviation from target 

production.  The deviation from the target is the absolute value of the difference of the 

actual value from the target value divided by the target value: 

 
Actual value - Target

deviation from targert=
Target

 (4.2) 

The deviation from target production in period t is calculated by taking the average values 

from all the realization. This is called the deviation from target production in period t and 

it is shown by ( )DTP t  in Eq. (4.3) :  
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1
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DTP t DTP t l
L

Where

T t l T t
DTP t l

T t

=

=

−
=

∑
 (4.3) 

Where 

• ( );DTP t l  is the deviation from target production for realization number l. 

• ( )tT t  is the target production in period t. ( )tT t  for this case study is zero in pre-

striping periods (1 and 2), and 36MT for periods 3 to 9.  

The deviation from target production for each period is shown in Figure  4-28.  This graph 

shows the results after post-processing. Figure  4-27 and Figure  4-28 are not very different 

from each other because this production schedule does not produce a significant tonnage 
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of extra ore from the realizations. There is a shortfall from target production in the period 

9.  

The box-plots in these figures also show the variation of the input feed to the mill from 

all realizations. Each box-plot shows the minimum and maximum values in the tails. The 

limits of the box itself show the 25 and 75 percentile of the values or first and third 

quartile. The middle line also shows the second quartile or the median of the data. 

The average of deviation from target production is shown by DTP and it is simply the 

average of ( )DTP t  at all production periods except the last period and it is calculated by 

Eq.(4.4) as below: 

 ( )
1

1

1

1

pT

p t

DTP DTP t
T

−

=

=
− ∑  (4.4) 

Where pT  is the total number of production years. For this case it is 8 years. 

DTP  is another variable that can be used to compare the performance of the production 

schedule in the present of grade uncertainty.   

Table  4-13 shows the percentage of the average deviation from target production 

calculated form period 3 to 9 before and after post-processing. These numbers are used to 

compare the Whittle generated schedule with other methods that are presented in this 

thesis. As expected, the post-processing stage reduces the effect of the grade uncertainty 

and the average of the deviation from target production is reduced.  

Table  4-14 shows the summary statistics for production schedule that is generated by 

Whittle after post-processing. Since there are some ore tonnage left at the end of period 

10, the statistics for ore tonnage, strip ratio and tonnage of bitumen are less than the 

values that are reported in Table  4-9. Also, because the OK block model has more ore 

tonnage than almost all of the realizations (Table  4-8), the NPV of the OK block model is 

higher than most of the realizations. 

Figure  4-29 shows the histogram of the mined ore tonnage at different periods. The solid 

black columns (e.g. in periods 7 and 8) indicates that the frequency of that particular 

range of data exceeds the vertical axes upper limit which is 0.4. The box-plot is plotted 

for each histogram at the bottom of the horizontal axis. The vertical dashed line shows the 

processing limit of 36MT per year (3 to 9). There are some realizations where the tonnage 
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of mined ore is more than the processing limit in time periods 6, 7 and 8. After post-

processing, all overproduced ore is removed and added to the next period that shortfall 

happens.  

Figure  4-30 shows the histogram and box-plot of the tonnage of processed ore for the 

realizations and ordinary kriging. Post-processing the schedule helps to reduce the effect 

of grade uncertainty because any overproduced ore can be used in subsequent periods. 

This can be observed by comparing the histogram of periods 6, 7 and 8 from Figure  4-29 

and Figure  4-30. This effect can be easily detected from these histograms even though the 

tonnage of overproduced ore that is transferred to the stockpile is very low.  

4.4.3 Conclusion  

The Whittle software is a very well-known mine planning software package. It has many 

tools to create long-term production plans. The push-back design algorithm increases the 

feasibility of the generated production schedule.  However there are some shortcomings: 

• There is no control for the mine life. The user needs to change the mining and 

processing limit to create a schedule with desired mine life.  

• Whittle uses a heuristic algorithm to maximize the NPV; however the program 

does not give any measurement of the optimality of the solution.  

The generated schedule from Whittle is not necessarily the optimum solution.  
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Figure  4-26: a: average grade of mined ore, b: tonnage of mine ore, c: average grade of input 

ore to the mill before post processing, d: tonnage of ore input to the mill after post 

processing, e: tonnage of ore at the stockpile after post processing and f: CDCF after post 

processing stage; the schedule generated by Whittle with OK block model. 

 

 

Table  4-12: DCOU with and without stockpile for the Whittle generated schedule 

 Discounted cost of grade uncertainty (MD) 

Before post processing 218.67 

After post processing 214.76 
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Figure  4-27: box-plot and deviation from mine ore for each period (before post-processing); 

the schedule generated by Whittle with OK block model. 

 

 

Figure  4-28: Feed of the plant and the box-plot of the deviation from target production for 

each period (after post-processing); the schedule generated by Whittle with OK block model. 
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Table  4-13: DTP  with and without stockpile for the Whittle generated schedule 

 Average deviation from target production ( DTP ) 

Before post processing (No stockpile) 6.90% 

After post processing (With stockpile) 6.79% 

 

Table  4-14: Summary of statistics for the production schedule after post processing stage; 

the schedule generated by Whittle with OK block model 

Statistics 
Ore tonnage  

(MT) 
STRO 

Bitumen tonnage  

(MT) 

Average 

m% 

NPV 

 (MD) 

DCOU 

(MD) 

Mean 275.48 1.37 28.23 10.25 2256.32 214.76 

Std. dev 3.74 0.03 0.46 0.09 64.14 43.96 

Min 268.84 1.29 27.24 10.04 2113.15 107.02 

Quartile 1 272.75 1.35 27.87 10.20 2205.85 183.66 

Median 275.83 1.37 28.21 10.26 2255.90 211.61 

Quartile 2 278.02 1.40 28.60 10.30 2310.99 247.76 

Max 285.87 1.43 29.27 10.53 2394.84 290.40 

OK 281.36 1.32 29.03 10.32 2387.24 N/A 
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Figure  4-29: Histograms of mined ore tonnage. The schedule is generated with Whittle using 

OK block model. OK result is marked by solid circle and dash line indicates target 

production. 

F
re

q
u
e
n
cy

20 25 30 35 40

0.0

0.1

0.2

0.3

0.4
Period3

Number of Data 50

mean 35.27
std. dev. 0.49

coef. of var 0.01

maximum 36.18
upper quartile 35.65

median 35.31
lower quartile 34.94

minimum 33.95

F
re

q
u
e
n
cy

20 25 30 35 40

0.0

0.1

0.2

0.3

0.4
Period4

Number of Data 50

mean 34.50
std. dev. 0.72

coef. of var 0.02

maximum 35.80
upper quartile 35.15

median 34.47
lower quartile 33.90

minimum 32.49

F
re

q
u
e
n
c
y

20 25 30 35 40

0.0

0.1

0.2

0.3

0.4
Period5

Number of Data 50

mean 33.66
std. dev. 1.17

coef. of var 0.03

maximum 35.93
upper quartile 34.70

median 33.64
lower quartile 32.85

minimum 31.28

F
re

q
u
e
n
c
y

20 25 30 35 40

0.0

0.1

0.2

0.3

0.4
Period6

Number of Data 50

mean 35.61
std. dev. 0.57

coef. of var 0.02

maximum 36.58
upper quartile 36.01

median 35.63
lower quartile 35.30

minimum 34.11

F
re

q
u
e
n
c
y

20 25 30 35 40

0.0

0.1

0.2

0.3

0.4
Period7

Number of Data 50

mean 35.98
std. dev. 0.19

coef. of var 0.01

maximum 36.38
upper quartile 36.12

median 36.00
lower quartile 35.86

minimum 35.44

F
re

q
u
e
n
c
y

20 25 30 35 40

0.0

0.1

0.2

0.3

0.4
Period8

Number of Data 50

mean 35.79
std. dev. 0.19

coef. of var 0.01

maximum 36.14
upper quartile 35.94

median 35.81
lower quartile 35.67

minimum 35.11

F
re

q
u
e
n
cy

20 25 30 35 40

0.0

0.1

0.2

0.3

0.4
Period9

Number of Data 50

mean 24.07
std. dev. 0.96

coef. of var 0.04

maximum 26.37
upper quartile 24.85

median 24.04
lower quartile 23.56

minimum 21.74

F
re

q
u
e
n
cy

20 25 30 35 40

0.0

0.1

0.2

0.3

0.4
Period 10

Number of Data 50

mean 40.60
std. dev. 1.67

coef. of var 0.04

maximum 43.97
upper quartile 41.70

median 40.87
lower quartile 39.39

minimum 35.88



 

124 
 

Figure  4-30: Histograms of input ore tonnage to the mill. The schedule is generated with 

Whittle using OK block model and post pressed by assuming presence of stockpile. OK 

result is marked by solid circle and dash line indicates target production. 
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4.5 Production Scheduling With Model #1  

The MILP approach described in Section  2.1 is coded in MATLAB (MathWorks Inc., 

2011) environment.  Model #1 maximizes the NPV of an input block model. This model 

is formulated in Eq.  (2.11). For this case study, the ordinary kriging block model is used. 

The output of the 3D LG that was used in Whittle was imported to MATLAB. All the 

steps are described in the previous chapter. The 14612 blocks inside the final pit are 

aggregate into 1834 mining cuts by using MATLAB’s c-mean clustering function. First 

the number of mining cuts for each level is calculated and then for each level Fuzzy C-

mean clustering technique is applied to aggregate based on similar grades, X and Y 

coordinates. Total tonnage, EBV, ore value, mining cost, ore tonnage and waste tonnage 

of the mining cut is calculated by adding up the values of the blocks inside each mining 

cut. The average grade of the mining cut is calculated by taking a volumetrically average 

of the blocks for each realization. Figure  4-31 shows the histogram of average grade of 

mining cuts calculated from OK block model. There are 973 waste mining cut which is 

about 53% of the all mining cuts. Figure  4-32 shows the histogram of ore mining cuts. 

The average grade of ore mining cuts in OK block model is about 10 m%. The 

Histplotsim is used to calculate and plot the CDF of average grade of mining cuts for all 

realizations shown in Figure  4-33. In this graph the waste mining cuts are filtered. OK 

block model is indicated by red line and the realizations by black lines. The small 

deviation of the OK from the realizations is due to the smoothing effect of the OK. 
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Figure  4-31: Histogram of average grade of ore and waste mining cuts calculated from OK 

block model; yellow bars indicate ore and the gray bar indicates waste mining cuts 

 

Figure  4-32: Histogram of average grade of ore mining cuts calculated from OK block model 
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Figure  4-33: CDF of average grade of ore mining cuts; simulation realizations (black lines) 

and OK (red line) 
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• Zero constraint for input head grade (Eq. (2.12)). For this case study no constraint 

is considered for input head grade. 

• 20 constraints (two for each period) for processing capacity; the lower limits are 

set to zero. These constraints are formulated in Eq. (2.13) and implemented in 

Eqs. (3.13) and (3.14). 

• 20 for mining capacity; two (upper and lower) limits for each period. The lower 

limits are set to zero. These constraints are formulated in Eq. (2.14) and 

implemented in Eqs. (3.16) and (3.17). 

• 18340 ore-mining constraints based on Eq.(2.15), which enforce the portion of 

the block that is extraction in each period to be greater than the portion of 

processing. These constraints are implemented in Eq. (3.20) and (3.21).  

• There are 126626 constraints that control the precedence of block extraction 

based on the Eqs. (2.16), (2.17) and (2.18). The implementations for these 

constraints are shown in Eqs. (3.26) and (3.27).  

• There are 3668 constraints that force all the blocks inside the final pit to be 

extracted. This constraint is so called reserve constraint (Eq. (2.19)). The equality 

constraints are split into two inequality constraints with equal lower and upper 

limits. Therefore the total number of reserve constrains equals to two times of 

number of mining cuts. The implementations are based on Eq. (3.29), (3.30) and 

(3.31). 

There are 146840 constraints based on the constraints that are models in Eq. (2.12) to 

(2.19).  Therefore matrix A has 146840 rows and 55020 columns.  

The upper limit and lower limit of the variables are also kept in the Ux  and Lx . Each of 

these vectors has 55020 rows. Therefore there are 110040 constraints (two for each 

variable) to control the upper and lower limit of the variables. The lower and upper limits 

for all decision variables are respectively zero and one. 

Table  4-15 summaries the size of each of these matrices and vectors. The total number of 

constrains is 403720. However not all of these constraints are active. There are many 

inactive constraints in Ub . The total number of active constraints equals to 258714. 

There are some input parameters that are required by the CPLEX solver. These 

parameters are: 

• MIPGAP: is set to 0.1% or 0.001. The MIPGAP is the gap of optimization. 
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• EPMRK: is set to 0.001. EPMRK species the amount by which an integer 

variable can be different from an integer and still be considered feasible. 

• EPOPT: is set to 0.00001. It is called optimality tolerance. This parameter 

governs how closely CPLEX must approach the theoretically optimal solution. 

This parameter is used in LP relaxation stage.  

• MIPEMPHASIS: is set to 1. This parameter emphasizes feasibility over 

optimality. It is very important that the generated answer to be feasible and 

satisfy all the constraints.  

• MIL probe level:  is set to 0. Determines the amount of probing on variables to be 

performed before MIP branching. Higher settings perform more probing. Probing 

can be very powerful but very time consuming at the start. Setting the parameter 

to values above the default of 0 (automatic) can result in dramatic reductions or 

dramatic increases in solution time, depending on the model. Probing can 

dramatically improve performance, although it may also consume significant 

amounts of time.  

• DIVE-TYPE (MIP dive strategy): is set to 2. The MIP traversal strategy 

occasionally performs probing dives, where it looks ahead at both children nodes 

before deciding which node to choose. The default (automatic) setting lets 

CPLEX choose when to perform a probing dive, if the value is set to1 then 

CPLEX will never perform probing dives; 2: always to probe, and 3: spend more 

time exploring potential solutions that are similar to the current incumbent. The 

recommended number for DIVE-TYPE in mixed integer programming is 2.  

• CLIQUES (MIP cliques indicator): is set to 0. This parameter determines whether 

or not clique cuts should be generated for the problem. Setting the value to 0, the 

default, indicates that the attempt to generate cliques should continue only if it 

seems to be helping.   

CPLEX is a parallel solver and it can be run in as many CPUs that are available in the 

system. For this case study 7 CPUs are assigned to CPLEX solver.  

Table  4-16 shows CPU time and the real time in seconds. The real time is the elapsed real 

runtime that CPLEX takes to solve the optimization problem and terminates based on the 

MIPGAP parameter. It takes 11723 seconds or 3 hours and 15 minutes to solve this 

problem. The CPU time is the sum of the all seconds that any of these CPUs was busy 
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with the solving the problem. It is 58915 seconds or 16 hours and 22 minutes. This means 

that if the system had 1 CPU, the real time would be close to this number. On the other 

hand, by having 7 CPUs, the real time is not decreased by the same factor. The real time 

is about 5 times less than the CPU time. There are two reasons for this: (1): all algorithms 

inside the CPLEX solver are not parallelized. There is also wait-time as some subroutines 

wait to get results from other subroutines.  

Table  4-15: The dimensions of the matrices for MILP with OK block model (Model #1) 

Matrix x  c  A  
Ub and Lb  Ux and Lx  

row 55020 55020 146840 146840 55020 

column 1 1 55020 1 1 

 

4.5.1 Verification of the Schedule Generated by Model #1 

Table  4-17 summarizes the production schedule in each period. The values are based on 

the OK block model. The generated model satisfied all the input constraints. The input 

ore to the mill in first two periods are zero due to the pre-striping. The annually input ore 

tonnage to the mill does not exceed the processing limit of 36 MT in each period. The 

annual mining limit which is the sum of ore and waste tonnage in each period does not 

exceed the total tonnage of 67.5 MT in each period. All the precedence relationships are 

satisfied. The NPV of the project is 2461 million dollars. This is 3% higher than the NPV 

that has been reported by Whittle. The total processed ore tonnage after 10 years is 282.5 

MT that is equal to the total ore tonnage inside the final pit. Therefore there is no rejected 

ore tonnage in this schedule. The total average of the input head grade is 10.3 m%. The 

mill has been feed with full capacity at all the periods except the final period. The 

shortfall in the final period is due to the less remained ore in this period. This model 

shows a significant improvement at feeding ore to the plant with full capacity compared 

to the Whittle generated schedule.  

The cross sections and plan view of the generated schedule are presented in Figure  4-35. 

These are the same cross sections and plan view that has been presented for Whittle 

results in Figure  4-25. There are no push-backs for this model therefore the generated 

schedule is quite different from Whittle. However the schedule is still feasible and no gap 

effect is detected. 
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Table  4-16: The performance of MILP for the Model #1 

Parameter CPU time 

seconds 

Real time  

seconds 

Final Gap 

percentage 

 

value 58,915 11,723 or  0.01%  

 

Table  4-17: Summary of Production schedule in each period for OK block model (Model  

#1). 

Period 
Input Ore 

MT 

Waste 

MT 

Mined 

MT 
SR 

Grade 

M% 

stockpile 

MT 

stockpile 

grade M% 

CDCF 

MD 

1 0.0 46.2 46.20 Inf. 0.00 0.0 0.00 -193.18 

2 0.0 67.5 67.50 Inf. 0.00 0.0 0.00 -449.79 

3 36.0 31.5 67.50 0.88 11.47 0.0 0.00 132.02 

4 36.0 31.5 67.50 0.88 11.31 0.0 0.00 650.56 

5 36.0 31.5 67.50 0.88 10.17 0.0 0.00 1053.99 

6 36.0 31.5 67.50 0.88 9.85 0.0 0.00 1403.09 
7 36.0 31.5 67.50 0.88 9.59 0.0 0.00 1707.77 

8 36.0 31.5 67.50 0.88 10.05 0.0 0.00 2005.40 

9 35.1 32.4 67.50 0.92 10.27 0.0 0.00 2274.61 

10 31.4 36.1 67.50 1.15 9.66 0.0 0.00 2460.98 

Total 282.5 371.2 653.6 1.31 10.3 0.0 0.00 2460.98 

 

 

Figure  4-34: Production schedule generated by MILP with OK block model (Model #1)  
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Figure  4-35: Extraction periods of production schedule generated by MILP with OK block 

model (Model #1). 
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4.5.2 Uncertainty Assessment of the Schedule Generated by Model #1 

The performance of the generated schedule in presence of grade uncertainty is studied. 

Everything inside the final pit has been removed by this model, so the total statistics such 

as total tonnage of ore, strip ratio and total tonnage of bitumen are the same as Table  4-9 

and Figure  4-20 to Figure  4-23. The detailed uncertainty assessment of the final pit limit 

has been studied in Section  4.3.1. 

To assess the effect of grade uncertainty on the production schedule the same procedure 

as Section  4.4.2 is followed here. None of the realizations is used in the objective 

function and the constraints. The schedule may generate extra ore that exceeds the annual 

feed limit of the plant. Also, in the pre-striping periods it is possible that extra ore is 

produced. The post processing step is applied to make the schedule feasible at all 

realizations. The same assumption as taken in Section  4.4.2 is applied here to transfer any 

extra ore to the next periods and NPV and other parameters are recalculated for each of 

the realizations. 

Figure  4-36 contains the same 6 graphs that are presented with Whittle. The orders of the 

graphs are kept the same. Therefore in Figure  4-36a and Figure  4-36b the average grade 

of mined ore and the tonnage of mined ore are presented, respectively. These two graphs 

are before post-processing. In most of the realizations there is some extra ore that is 

mined in first two periods that the processing plant is not working due to the pre-striping. 

Therefore the extra ore of periods 1 and 2 has been transferred to the period 3. 

Figure  4-36c and Figure  4-36d show the post processing results for input average ore and 

tonnage to the mill respectively. Figure  4-36e shows the tonnage of ore in the stockpile 

for each realization. Figure  4-36f also shows the discounted case flow over the mine life. 

Unlike Whittle, Model #1 does not have a significant shortfall in the periods 9 and 10. 

The generated schedule with this model has higher NPV and fewer shortfalls compare to 

the Whittle.  

Table  4-20 also presents summary statistics for this model. The ordinary kriged block 

model has the largest NPV over all realizations because the optimization model has been 

applied to this block model. The average and the standard deviation of NPV that is 

calculated from all realizations are 2334 and 62.82 million dollars, respectively. 

Table  4-18 shows the effect of post-processing stage for this model. The cost of grade 
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uncertainty before and after post-processing is 118 million dollars and 81 million dollars, 

respectively. The stockpile can reduce the cost of grade uncertainty up to 31.2%.  

Figure  4-37 and Figure  4-38 show the box-plot of the mined ore and the input ore to the 

mill that is calculated from the realizations. The post processing stage removes 

overproduced ore and transfers the extra ore to the next period if there is any shortfall 

from target. Therefore the deviations from target production are reduced.  

The schedule created by Model #1 has less deviation from the target production than 

Whittle. By comparing Figure  4-38 with Figure  4-28 there is a significant reduction in the 

deviation from target production in the first three years of production. The main reason is 

that the extra ore that is generated in period 3 is used to reduce the deviation from target 

in later years.  

Table  4-19 shows DTP  values before and after post-processing. Both of these two values 

are less than the equivalent values from Whittle.  

By comparing the NPV of this model and Whittle (Table  4-25 vs. Table  4-20) it can be 

concluded that the average NPV increases by 8.6% while the average cost of grade 

uncertainty is decreased by 26.5%. Also the standard deviation of the NPV has been 

decreased from 63.7 to 62.8 million dollars. 

Figure  4-39 shows the histograms of mined ore in different periods. Period 3 has the 

highest average of overproduced ore among all other periods. This extra ore can be use in 

later years whenever a shortfall happens. The shortfalls at the final period ( period #10) is 

due to the less amount of ore remained to this period and does not taken in to account in 

the calculation of the average cost of grade uncertainty.     

The histograms of processed ore in each period are showed in Figure  4-40. These are 

post-processed results. The post-processing by assuming a presence of a stockpile has a 

significant impact on the production schedule.  

4.5.3 Conclusion 

The Model #1 has been applied to the OK bock model and the uncertainty has been 

assessed by following the same schedule for each of the realizations. The NPV of the OK 

block model is maximized by considering hard constraints on the mining and processing 

limits. It is a feasible production plan and there is not significant gap effect in the periods. 

The NPV is significantly higher that Whittle. The generated schedule provides a smooth 
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input ore to the mill in each period. However the post-processing stage has a huge impact 

on the uncertainty of the input tonnage to the mill. The average cost of the uncertainty of 

this model is less than the Whittle generated schedule. The variance of the NPV also is 

less than the Whittle method. 

The disadvantage of the model is that: 

• The realizations and grade uncertainty are not taken into account in this model at 

the optimization stage. 

• The stockpile has not been used directly in the model. 

The generated schedule is sensitive to grade uncertainty and the post-processing stage. 

Therefore, the production schedule that does not consider the grade uncertainty may not 

be the optimum solution. In the next section, Model #2 is used to take the realizations 

into account at LTPP problem. 
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Figure  4-36: a: average grade of mined ore, b: tonnage of mine ore, c: average grade of input 

ore to the mill before post processing, d: tonnage of ore input to the mill after post 

processing, e: tonnage of ore at the stockpile after post processing and f: CDCF after post 

processing stage; the schedule generated by MILP with OK block model (Model #1). 

 

 

Table  4-18: DCOU with and without stockpile for the schedule generated by Model #1 

 Discounted cost of grade uncertainty (MD) 

Without post processing (No stockpile) 117.97 

After post processing (With stockpile) 81.15 
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Figure  4-37: Box-plot and deviation from target production for each period; the schedule 

generated by MILP with OK block model (Model #1). 

 

 

Figure  4-38: Feed of the plant and the box-plot of the deviation from target production for 

each period; the schedule generated by MILP with OK block model (Model #1). 
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Table  4-19: DTP  with and without stockpile the schedule generated by MILP with OK 

block model (Model #1). 

 Average deviation from target production ( DTP ) 

Without post processing (No stockpile) 3.06% 

After post processing (With stockpile) 2.23% 

 

 

Table  4-20: Summary of statistics for the production schedule after post processing stage; 

the schedule generated by MILP with OK block model (Model #1). 

Statistics 
Average grade 

(m%) 

NPV 

 (MD) 

DCOU 

(MD) 

Mean 10.24 2334.41 81.15 

Std. dev 0.09 62.82 45.29 

Min 10.02 2201.39 0.00 

Quartile 1 10.19 2283.42 44.13 

Median 10.24 2331.40 77.61 

Quartile 2 10.29 2386.67 116.49 

Max 10.52 2458.97 192.14 

OK 10.31 2460.98 N/A 
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Figure  4-39: Histograms of tonnage of mined ore in different periods. The schedule is 

generated with MILP using OK block model (Model #1). OK result is marked by solid circle 

and dash line indicates 36 MT of target production. 
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Figure  4-40: Histograms of input ore tonnage to the mill. The schedule is generated with 

MILP (Model #1) using OK block model and post pressed by assuming presence of stockpile. 

OK result is marked by solid circle and dash line indicates 36 MT of target production. 
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4.6 Production Scheduling With Model #2 

As discussed in Section  4.5.3, the effective way to consider the grade uncertainty is to 

implement the realizations in the optimization model. Model #2 (Eq. (2.35)), that has 

been shown in Section  2.5 uses the realizations to optimize over and under production in 

each period. Generally, the average cost of grade uncertainty has been minimized while 

the NPV of the OK block model is maximized. The unit discounted cost of over and 

under production per tonne ( ( )upc t  and ( )opc t ) is an input parameter for this model. 

Model #2 can be run with two different modes:  

• With a symmetric penalty function (Figure  2-9a): In this model the cost of 

overproduction is equal to the underproduction, ( ) ( )up opc t c t= . Symmetrical 

penalty function should be used when there is no stockpile available and 

production plan cannot handle the possible extra ore tonnage effectively. 

• With an asymmetric penalty function (Figure  2-9b): This case is recommended 

when there is a stockpile in the mine and any probable overproduced ore can be 

sent to the stockpile to be used in the next periods. Therefore the cost of 

overproduction is lower than the cost of underproduction.  

In this section the results of the model are presented with the symmetric penalty function. 

Other parameters such as the mining and processing limits, the discounting rate and all 

other economical parameters are kept exactly the same as previous cases (Whittle and 

Model #1).  

Model #2 has more decision variables compared to Model #1. There are 2 new 

continuous variables ( ; )upT t l  and  ( ; )opT t l  for each realization in each period (totally 

1000). These variables contain the tonnage of over and under production at reach period 

and each realization. Therefore the total number of variables increases to 56020. There 

are also two more constraints per period per realization that are showed in Eq. (2.36). 

Therefore Model #2 has 1000 extra constraint.  

Table  4-21 shows the sizes of the matrices and vectors that are imported to the CIPLEX. 

MIPGAP is set 0.5% or 0.005.  Other parameters of CPLEX are the same as Model #1.  
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Table  4-21: The dimensions of the matrices for MILP with OK block model and realizations 

(Model #2) 

Matrix x  c  A  
Ub and Lb  Ux and Lx  

row 56020 56020 147840 147840 56020 

column 1 1 56020 1 1 

 

The penalty function is the discounted cost of under and overproduction ore in each 

period. ( )upc t  and ( )opc t  that were introduced in  Chapter 2 are used in this model for the 

discounted cost of under and overproduction per unit ore tonnage in period t. Eqs. (2.22) 

and (2.24) calculate these two values. It is assumed that the average grade of the input 

grade to the mill is about 11m%. Other parameters are given at Table  4-4. So, the cost of 

the under and overproduction in period zero ( ( )0upc  and ( )0opc ) equals 25 $/tonne. The 

average cost of under and overproduction ( ( )upc t  and ( )opc t ), which are calculated by 

Eq. (3.39), in period zero are 0.5 $/tonne. Table  4-22 shows the ( )upc t (on top) and 

( )opc t (on bottom) values over the time periods for one tonne of ore. The symmetric 

function has been considered for this case.  The only difference is in period 10 where the 

average discounted cost of underproduction is zero. The reason has been given in 

Section  2.4. 

Table  4-23 shows the performance of this model. The run time to solve this problem was 

183600 seconds or 2 days 3 hours 1 minute and 0 seconds. The CPU time was 1272500 

seconds or if the problem has been tried to solve in one CPU it would take 14 days 17 

hours 28 minutes and 20 seconds. The run time in parallel mode is reduced by 6.9 times. 

This shows that by using more CPUs the speed of the algorithm can be increased 

significantly.  However this model is 20 times slower than Model #1. 

Table  4-22: Discounted penalty value of over and under production over the periods. 

Periods 0 1 2 3 4 5 6 7 8 9 10 

( )upc t  0.5 0.455 0.413 0.376 0.342 0.310 0.282 0.257 0.233 0.212 0.000 

( )opc t  0.5 0.455 0.413 0.376 0.342 0.310 0.282 0.257 0.233 0.212 0.193 
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4.6.1 Verification of the Schedule Generated by Model #2 

Table  4-24 shows the summary of the Model #2 with symmetric penalty function. 

Figure  4-41 also shows the tonnage of ore, waste and stockpiled ore in different periods. 

The annual processing capacity has been satisfied in all periods. The mining capacity is 

satisfied in all periods too. The same as Model #1, there is no rejected ore in this case and 

all the ore blocks inside the final pit have been processed. The NPV of this model is 2454 

million dollars. There is no significant difference in the NPV of this model and Model #1.  

Figure  4-42 shows the plan view and two cross sections. The plan view and the cross 

sections are not very different from the previous model shown in Figure  4-35. The big 

difference is in early periods. This model tries to defer the uncertain blocks to later years. 

The discounted cost of grade uncertainty has less effect on the objective function at the 

later years. Therefore, in the early years of the mine life less uncertain blocks are 

extracted.  
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Table  4-23. The performance of MILP for the Model #2 

Parameter CPU time 

seconds 

Real time  

seconds 

Final Gap 

percentage 

 

value 1,272,500 183,660  0.5%  

 

Table  4-24: Summary of Production schedule in each period for OK block model. 

Period 
Input Ore 

MT 

Waste 

MT 

Mined 

MT 
SR 

Grade 

M% 

stockpile 

MT 

stockpile 

grade M% 

CDCF 

MD 

1 0.00 46.40 46.40 Inf. 0.00 0.0 0.00 -194.03 

2 0.00 67.50 67.50 Inf. 0.00 0.0 0.00 -450.64 
3 36.00 31.50 67.50 0.88 11.11 0.0 0.00 105.08 

4 36.00 31.50 67.50 0.88 11.24 0.0 0.00 619.03 

5 36.00 31.50 67.50 0.88 10.43 0.0 0.00 1038.05 

6 36.00 31.50 67.50 0.88 9.98 0.0 0.00 1394.61 

7 36.00 31.50 67.50 0.88 9.56 0.0 0.00 1697.95 
8 36.00 31.50 67.50 0.88 10.03 0.0 0.00 1994.55 

9 35.12 32.38 67.50 0.92 10.34 0.0 0.00 2266.71 

10 31.33 35.89 67.22 1.15 9.68 0.0 0.00 2453.88 

Total 282.5 371.2 653.6 1.31 10.31 0.0 0.00 2453.88 

 

 

Figure  4-41. Production schedule generated by MILP with OK block model and realizations 

(Model #2) with symmetrical penalty function 
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Figure  4-42: Extraction periods of production schedule generated by MILP using OK block 

model and realization with symmetric penalty function (Model #2). 
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4.6.2 Uncertainty Assessment of the Schedule Generated by Model #2 

Figure  4-43 shows the same graphs as Figure  4-26 for Whittle and Figure  4-36 for Model 

#1. The discounted cost of grade uncertainty for the schedule generated with Model #2 

with symmetric penalty function is shows in Table  4-25. The values of DCOU before and 

after post-processed are 89.4 MD and 80.5 MD, respectively. The following conclusions 

are drawn from this table: 

• The DCOU of Model #2 before post-processing is 89.4 where the relevant value 

form previous case with Model #1 is 118. The cost of grade uncertainty is 

reduced by 23%.   

• The post-processing stage does not make a big difference in DCOU in Model #2. 

The DCOU after post-processing is 80.5 and it is reduced only about 10 % after 

prost-processing the schedule. 

Therefore Model #2 is more robust than Model #1 in the presence of grade uncertainty. 

The requirement for a stockpile can be reduced by using realizations in the optimization 

stage. The amount of over and under production of ore is reduced significantly. On the 

other hand because the stockpile is not implemented in the objective function explicitly, 

the post-processing of the schedule does not have a big impact and it does not reduce the 

cost of grade uncertainty significantly.   

Figure  4-44 shows the box-plot and the deviations from target production of the mined 

ore in different periods. The same graph has been presented in Figure  4-37 for Model #1. 

The Model #2 generates less deviation from target production compared to Model #1.  

Figure  4-45 shows the box-plots and deviations from target production for each period 

after post-processing. The values of deviations from target production at all periods are 

slightly less than the same values from Figure  4-44. Also, this graph is not very different 

from Figure  4-38 that is generated from post-processed schedule of Model #1. The 

overproduced ore is less for this case therefore the presence of a stockpile does not have a 

big effect on reducing the cost of grade uncertainty.  

Table  4-26 shows the average deviation from target production. DTP  before and after 

post-processing is 3.06% and 2.23% respectively. As it is expected, both of these two 

values are less than the equivalent values from Whittle and Model #1.  
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Table  4-27 summarizes the statistics of Model #2. The DCOU for realization #10 is 0, 

which means that this schedule does not generate any shortfall for realization #10.  

Figure  4-46 shows the histograms of tonnage of mined ore. This model has less standard 

deviation in periods 3, 5, 6 and 9 compared to the Model #1.  

Figure  4-47 shows the input ore tonnage to the mill after post processing the results. By 

post-processing the schedule, the uncertainty of input ore tonnage is reduced slightly in 

all periods. Since the stockpile is not implemented in the optimization, the post-

processing does not have a big impact.   

4.6.3 Conclusion 

The results of Model #2 showed with a symmetric penalty function were more robust 

than Model #1. Therefore, the presence of a stockpile is essential to reduce the cost of 

grade uncertainty. However the presence of a stockpile does not have much effect on 

Model #2. 

The stockpile has not been implemented in Model #2. On the other hand, the hard 

constraint on the processing limit that was applied to the OK block model prevents the 

optimization to create extra ore in early periods. If there is a stockpile in the mine, this 

extra ore can be used to fill the shortfall in later years.  The next case shows the 

application of Model #3, where a stockpile is modeled directly in the optimization. 
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Figure  4-43: a: average grade of mined ore, b: tonnage of mined ore, c: average grade of 

input ore to the mill before post processing, d: tonnage of ore input to the mill after post 

processing, e: tonnage of ore at the stockpile after post processing and f: CDCF after post 

processing stage; the schedule generated by MILP with OK block model and realizations 

with symmetrical penalty function (Model #2). 

 

Table  4-25: DCOU with and without stockpile for the schedule generated with Model #2 with 

a symmetric penalty function 

 Discounted cost of grade uncertainty (MD) 

Without post processing (No stockpile) 89.39 

After post processing (With stockpile) 80.46 
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Figure  4-44: Box-plot and deviation from target production for each period; the schedule 

generated by Model #2 with symmetrical penalty function. 

 

Figure  4-45: Feed of the plant and the box-plot of the deviation from target production for 

each period; the schedule generated by MILP with OK block model and realizations with 

symmetrical penalty function (Model #2). 
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Table  4-26: DTP  with and without stockpile the schedule generated by MILP with OK 

block model (Model #2). 

 Average deviation from target production ( DTP ) 

Without post processing (No stockpile) 2.41% 

After post processing (With stockpile) 2.14% 

 

 

 

Table  4-27: Summary of statistics for the production schedule after post processing stage. 

Statistics 
Average grade 

(m%) 

NPV 

 (MD) 

DCOU 

(MD) 

Mean 10.24 2329.06 80.46 

Std. dev 0.09 63.10 47.16 

Min 10.02 2195.53 0.00 

Quartile 1 10.19 2276.80 41.48 

Median 10.24 2324.25 80.11 

Quartile 2 10.29 2380.74 115.85 

Max 10.52 2456.52 203.18 

OK 10.31 2453.88 N/A 
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Figure  4-46: Histograms of tonnage of mined ore in different periods. The schedule is 

generated with Model #2 with symmetrical penalty function. OK result is marked by solid 

circle and dash line indicates 36 MT of target production. 
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Figure  4-47: Histograms of input ore tonnage to the mill. The schedule is generated with 

Model #2 with symmetrical penalty function and post pressed by assuming presence of 

stockpile. OK result is marked by solid circle and dash line indicates 36 MT of target 

production. 
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4.7 Production Scheduling With Model #3 

In real life projects, the cost of over-production is not equal to the cost of under-

production. There are always good ways to deal with any extra unpredicted ore, such as 

stockpiling. The extra ore can be used in the later periods if for some reason the mill 

cannot be fed. Model #3 has a stockpile concept in the optimization stage. The same as 

Model #2, the idea here is to penalize over and under production of ore such that the NPV 

of the OK block model is maximized and the deviations from target production is 

minimized. There are three differences between Model #2 and #3:  

1. The cost of underproduction is reduced by the additional value of extra ore 

available from previous periods. On the other hand the tonnage of 

underproduction is re-adjusted by the extra ore from previous periods. 

2. The tonnage of overproduction in each period equals to the extra ore available 

from current period plus any extra ore remaining from previous period. 

These two conditions are embedded in the constraints that controls the under and 

overproduced ore in Eq. (2.21) and Eq. (2.23). The implementation is shown in 

Section  3.5.3.  

3. The hard constraint on the OK is replaced with the same constraints that controls 

the over and under production. Therefore with this model, it is expected that the 

OK block model also generates overproduction and shortfalls before post-

processing stage. It is also expected that the schedule after post-processing with 

OK block model should be smooth and feed the plant with full capacity. The OK 

block model is used to maximize NPV, so it will have the largest NPV. 

The upper limit of the stockpile is set to 40 million Tonne. The Lower limit is set to zero. 

The stockpile capacity constraints are shown in Eq. (2.40).
 
 The implementations are 

shown in Eq. (3.52) and (3.53) in Section  3.5.3.  

With this model, there are two new variables in each period: tonnage of over and under 

production of OK block model. Therefore there are 20 more continuous variables than 

Model #2 which increases the total number of variables to 56040. The number of 

constraints however is the same as Model #2. The hard constraints on the upper and 

lower limit for the processing that is applied to the OK block model in previous models 

(1 and 2) is replaced with the same number of constraints that controls the over and under 

production constraints for the OK block model (Table  4-28). 
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Table  4-28: The dimensions of the matrices for MILP with OK block model and realizations 

(Model #3) 

Matrix x  c  A  
Ub and Lb  Ux and Lx  

row 56040 56040 147840 147840 56040 

column 1 1 56040 1 1 

 

The asymmetric penalty function that is used for this model is shown in Table  4-29. The 

new cost of over-production is calculated by Eq. (2.28).  ( ),ôp RHc t is the difference of the 

average cost of over-production in periods t and t+1 calculated at previous section. The 

average cost of under-production is the same as the previous section. 

Table  4-29: Discounted penalty value of over and under production over the periods. 

Periods 0 1 2 3 4 5 6 7 8 9 10 

( )upc t  0.5 0.455 0.413 0.376 0.342 0.310 0.282 0.257 0.233 0.212 0.000 

( )opc t  0.5 0.041 0.038 0.034 0.031 0.028 0.026 0.023 0.021 0.019 0.193 

 

Table  4-30 shows the run times for this case. The CPU time is 16 hours, 12 minutes and 

24 seconds. The real time that elapsed for this case was 3 hours and 35 minutes with 7 

CPUs. The performance of the model is increased 4.5 times with 7 CPUs. This model is 

much faster than Model #2: The CPU time and real times are14 times and 11 times less in 

Model #3.  

4.7.1 Verification of the Schedule Generated by Model #3 

Table  4-31 shows the summary of the production schedule in each period after the post-

processing stage. The input ore tonnage to the mill satisfies the processing capacity 

constraints (first column) at all time periods. Also, the mining capacity is satisfied at all 

periods because the total tonnage of mined material (third column) does not exceed the 

mining capacity. One of the important aspects of this model is that during the two pre-

striping periods the schedule extracts 9.54 and 27.5 million tonnes of ore, respectively. 

This ore is transferred to the stockpile. At the beginning of the third period, 37.1 million 

tonnes of ore is stockpiled. The tonnage of ore that has been reclaimed from the stockpile 

during period 3 and 4 are 2.66 million 19.4 million. Nevertheless, the upper limit of the 

stockpile is satisfied and total tonnage of stockpiled ore does not exceed the upper limit 

of 40 million tonne.  
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The average grade in the stockpile in different periods is 10.52 m% to 11.03 m%. These 

values are very close to the assumption of 11m% that was used to calculate the cost of 

over and under production in Section  4.6. Therefore, there is no need to rerun the 

optimization with adjusted costs. 

The NPV of the OK block model is 2460 million dollars. It is very close to the previous 

models. The stockpile does not increase the NPV of the model, but, it reduces the effect 

of grade uncertainty and the potential cost of grade uncertainty. 

Figure  4-48 also shows the annual distribution of the input ore, tonnage of ore in 

stockpile, mined waste rock and input ore tonnage from stockpile to the mill over the 

mine life. The same as Table  4-31, these values are related to the OK block model. In 

periods 1 and 2 the large amount of ore is mined and transferred to the stockpile. Most of 

these extra ore are used in periods 3, 4 and 5. Periods 6, 7 and 8 also generate a small 

amount of extra ore that is transferred to the stockpile. The other portion of the ore in the 

stockpile is used in period 9 to feed the plant with full capacity and the remained ore in 

the stockpile is processed in period 10. This graph shows that in all production periods 

except final period the mill is fed in full capacity the same as all previous models. Also 

the same as previous models all ore tonnage inside the final pit is processed therefore 

there is no rejected ore for this model as well. The same as Model #1 and #2 the 

uncertainty of the total ore, average grade and bitumen are the same as Section  4.3.1. 

Figure  4-49 shows plan view and cross sections for this model. There are big differences 

between the new schedules with other methods. This schedule digs deep early on to the 

ore zone rather than simply extracting over burden. The cross section looking east 

(bottom graph) clearly shows extraction of blocks deeps in first periods in the north part 

of the model area. This can be seen from plan view. As with all previous models, the 

southwest part of the model is extracted at the end. 
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Table  4-30: The performance of MILP for the Model #3 

Parameter CPU time 

seconds 

Real time  

seconds 

Final Gap 

percentage 

 

value 58344 12891 0.56%  

Table  4-31: Summary of Production schedule in each period for OK block model. 

Period 
Input Ore 

MT 

Waste 

MT 

Grade 

M% 

stockpile 

MT 

stockpile 

grade M% 

CDCF 

MD 

1 0.00 47.76 0.00 9.54 10.52 -199.72 

2 0.00 39.84 0.00 37.07 11.39 -351.18 
3 36.00 34.16 11.50 34.41 11.39 213.93 

4 36.00 50.94 10.60 14.97 11.39 626.83 

5 36.00 40.63 10.52 5.84 11.39 1030.51 

6 36.00 30.37 9.76 6.97 11.13 1380.24 

7 36.00 31.23 9.57 7.24 11.07 1685.78 

8 36.00 31.15 9.99 7.58 11.03 1984.16 
9 36.00 32.93 10.67 6.15 11.03 2258.61 

10 30.40 32.20 9.74 0.00 0.00 2460.00 

Total 282.4 371.2 10.27 0.0 0.00 2460.00 

 

 

Figure  4-48: Production schedule generated by MILP and realizations and a stockpile 

(Model #3) with asymmetrical penalty function 
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Figure  4-49: Extraction periods of production schedule generated by MILP using OK block 

model and realization and by considering a stockpile with un-symmetric penalty function 

(Model #3). 
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4.7.2 Uncertainty Assessment of the Schedule Generated by Model #3 

The same procedure as previous models is followed for this model as well. The generated 

schedule is followed for all the realizations and post-processed. Figure  4-50 shows the 

response of the generated schedule for each of the realizations. Figure  4-50a and 

Figure  4-50b show the mined ore and the average extracted ore in each period. These 

graphs show the results before post-processing. All of the realizations generated ore in the 

pre-striping periods (1 and 2) is transferred to the stockpile. There is a big gap in period 4 

between the mined ore and the target production. This gap is filled by the ore tonnage 

from stockpile. The results after the post processing are shown in Figure  4-50c and 

Figure  4-50d. All the extra ore that is mined in the first and second periods are transferred 

to the later periods such that in periods 3 and 4 all of the realizations feed the plant with 

full capacity. Figure  4-50e shows the tonnage of ore inside the stockpile in each period 

for each realization. The maximum amount of ore is stockpiled in period 2. Finally the 

cumulative discounted cash flow of the realizations and OK block model are shown in 

Figure  4-50.  

The discounted cost of grade uncertainty before and after post-processing is shown in 

Table  4-32. After post-processing the extra ore tonnage and transfer to later years the 

DCOU is dropped to 26.1 MD. This is the lowest DCOU among all other models. It is 

8.38 times or 193 million dollars less than Whittle generated schedule and 3.7 times or 

70.8 million dollars less than Model #2. There are 13 out of 50 realizations with zero 

DCOU. This means that with this production shortfall will not happen with 13 

realizations. In other words there is a 26% chance that no shortfall happens during the 

mine life with this production schedule. 

Figure  4-51 and Figure  4-52 show the box-plot and deviations from target production in 

each period before and after post processing the schedule. The first two periods (pre-

striping periods) are not shown in these graphs. After post-processing the schedule (see 

Figure  4-52), none of the realization creates a shortfall in first two production periods 

(periods 4 and 5). Therefore, the deviation from target production in period 3 and 4 is 

zero. Also the periods 5 and 6 have very small shortfall from target production such that 

the deviations from target production for periods 5 and 6 respectively are 0.18% and 

0.06%.  The deviation from target production increases toward the end of the mine life. 

This uncertainty can be reduced by new data that are collected during mine life.  
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Table  4-33 indicates the average deviation from target production before and after post 

processing that are calculated between periods 3 to 9. The DTP  after post-processing the 

schedule drops to 0.84%. This is the lowest DTP value compare to the previous models.  

Table  4-34 shows the summary statistics for all realizations after post-processing. 

Another interesting point of this schedule is that the average NPV of this model is 

increased and the standard deviation of the NPV is decreased significantly. One should 

note that none of these two parameters are in the objective function therefore these values 

can be different in other cases. Having low deviation from target at the early years of the 

production can increase the average NPV and reduce the variance of the NPV 

significantly in most cases.  

Figure  4-53 shows the histogram of mined ore tonnage in each period except periods 1 

and 2. These histograms are before the post-processing stage. Most of the shortfalls are 

compensated by the extra ore available in the stockpile. 

Figure  4-54 illustrates the histograms of total input ore tonnage to the mill in each period. 

These histograms are after post processing the schedule. All of the realizations feed the 

plant with full capacity in periods 3 and 4. Therefore the histograms are one column at 

36MT. There are small deviations in periods 5 and 6. 

4.7.3 Conclusion  

The concept of a stockpile used in Model #3 helps to reduce the shortfalls and deviations 

from target production. The impact on the cost of grade uncertainty is significant. This 

model is superior to the previous models because the stockpile is considered in the 

optimization process. The asymmetric penalty function, where the cost of 

underproduction is higher than cost of overproduction. However the presence of a 

stockpile allows optimization to extract extra ore at early stages of the mine life. These 

extra ore reduce the chance of short falls at later years.  

With this method the average of NPV can be increased and the variance of the NPV can 

also be decreased. 
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Figure  4-50 a: average grade of mined ore before post processing, b: tonnage of mine ore 

before post processing, c: average grade of input ore to the mill after post processing, d: 

tonnage of ore input to the mill after post processing, d: tonnage of ore at the stockpile after 

post processing and f: CDCF after post processing stage, 

 

Table  4-32: DCOU with and without stockpile for the schedule generated by Model #3 

 Discounted cost of grade uncertainty (MD) 

Without post processing (No stockpile) 1561.98 

After post processing (With stockpile) 26.11 
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Figure  4-51: Box-plot and deviation from target production for each period; the schedule 

generated by Model #3 with asymmetrical penalty function with stockpile. 

 

Figure  4-52: Feed of the plant and the box-plot of the deviation from target production for 

each period; the schedule generated by MILP with OK block model and realizations with 

asymmetrical penalty function with stockpile (Model #3). 
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Table  4-33: DTP  with and without stockpile the schedule generated by MILP with OK 

block model (Model #3). 

 Average deviation from target production ( DTP ) 

Without post processing (No stockpile) 15.46% 

After post processing (With stockpile) 0.84% 

 

 

Table  4-34: Summary of statistics for the production schedule after post processing stage. 

Statistics 
Average grade 

m% 

NPV 

 MD 

DCOU 

MD 

Mean 10.27 2336.01 26.11 

Std. dev 0.09 55.34 30.08 

Min 10.06 2211.27 0.00 

Quartile 1 10.24 2291.79 0.00 

Median 10.28 2334.51 14.85 

Quartile 2 10.32 2378.72 45.30 

Max 10.56 2441.89 99.65 

OK 10.31 2460.00 N/A 
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Figure  4-53: Histograms of tonnage of mined ore in different periods. The schedule is 

generated with Model #3 with asymmetrical penalty function. OK result is marked by solid 

circle and dash line indicates 36 MT of target production. 
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Figure  4-54: Histograms of input ore tonnage to the mill. The schedule is generated with 

MILP and realization and a stockpile with un-symmetric penalty function (Model #3). OK 

result is marked by solid circle and dash line indicates 36 MT of target production. 
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4.8 Summary 

In this chapter, an oil sands data set from Alberta has been used. The Whittle software has 

been employed to generate a final pit limit using the 3D LG method. This program 

created a production schedule based on three push-backs to maximize the NPV of the OK 

block model. The simulated realizations are used to measure the effect of grade 

uncertainty on the production plan. Two new quantities are introduced to quantify the 

effect of grade uncertainty: (1) the average deviation from target production and (2) the 

average discounted cost of grade uncertainty. The optimization algorithms called Model 

#1, #2 and #3 have been used in this chapter to create the production schedules. The 

results of each of these models are compared with the previous model.  

Table  4-35 shows the summery of statistics for the different methods. The values in this 

table have been used in Figure  4-55 to Figure  4-57. Table  4-36 and Table  4-37 show the 

percentages of change for NPV and DCOU. In both of these tables, the first column 

presents the base method. As shown in Table  4-36, generally the percentage changes of 

the NPV in proposed optimization methods (1 to 3) are very small. The biggest change is 

0.3% reduction of NPV in Model #2 relative to Model #1. However, as shown in 

Table  4-36, there is a 78% reduction in the cost of grade uncertainty in Model #3 relative 

to Model #1.  

The effect of grade uncertainty is quantified by the concept that has been introduced in 

this thesis. The effect of grade uncertainty highly depends on the nature of the deposit. 

Oil sand deposits are huge homogenous deposits. The number of boreholes in the case 

study is quite reasonable and the density of the boreholes at most of the area is higher that 

the AER requirement. Therefore, the grade uncertainty has relatively small effect on the 

production plan. This can be investigated from Table  4-35 and Table  4-36. Model #1 is 

the deterministic model based on OK block model. The discounted cost of grade 

uncertainty before post processing for this model is 118 MD while the NPV of the project 

is 2461MD. The effect of grade uncertainty is about 4.8% of the NPV of the project.  

However, this percentage will change for different deposits. Smaller deposits such as 

gold, copper, etc. with higher grade uncertainty, lower number of boreholes and naturally 

more variable elements will have significantly higher cost of grade uncertainty. 

Nevertheless, the effect of grade uncertainty is reduced for the presented case study. The 

percentage of the cost of grade uncertainty is about 3.6% and 1% of the NPV for Model 

#2 and #3, respectively.  The NPV of the project does not change significantly from 
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Model #1 to #3; however, the cost of grade uncertainty is reduced by 25% and 78% by 

using Model #2 and #3. 

Table  4-35. Summary of statistics for the different methods. 

Method 
NPV of Kriging 

MD 

E{NPV} 

MD 

Std.dev{NPV} 

MD 

DCOU 

MD 

Whittle 2387 2256 64 219 

Model #1 2461 2334 63 118 

Model #2 2454 2329 63 89 

Model #3 2460 2336 55 26 

 

Table  4-36. Percentage change of NPV for different methods. 

 Whittle Model #1 Model #2 Model #3 

Whittle +0.0% -3.0% -2.7% -3.0% 

Model #1 +3.1% +0.0% +0.3% +0.0% 
Model #2 +2.8% -0.3% +0.0% -0.2% 

Model #3 +3.0% -0.0% +0.2% +0.0% 

 

Table  4-37. Percentage change of DCOU for different methods. 

 Whittle Model #1 Model #2 Model #3 

Whittle +0% +86% +146% +742% 

Model #1 -46% +0% +33% +354% 

Model #2 -59% -25% +0% +242% 
Model #3 -88% -78% -71% +0% 

 

Figure  4-55 compares all four case studies. This graph shows that there are substantial 

differences between NPVs resulted from Whittle and other MILP-based methods. On the 

other hand, NPV of the three optimization-based methods are quite close. However, NPV 

of Model #2 is lower than Model #1 and #3. The reasons have been explained in this 

chapter.  

Figure  4-56 shows the standard deviation of the NPV that is calculated using all 50 

realizations.  Different production plans are generated using different methods that are 

presented in this chapter.  The standard deviation of Model #3 is lower than all other 

three methods. The production plan generated by Whittle has more variation in NPV.  
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The discounted cost of grade uncertainty for all methods is shown in Figure  4-57. As 

discussed before, Model #3 has the lowest value among all other methods because the 

stockpile is used in this optimization model.  

Figure  4-58 shows the runtime for each method in logarithmic scale. Whittle takes about 

24 seconds to create a production schedule. The 3D LG also takes 27 seconds. Whittle is 

very fast compared to all optimization-based methods. Model #3 is faster than other two 

optimization-based methods.  

 

 

Figure  4-55: NPV of the kriging (bold blue line) and the expected value of the NPV 

calculated from realizations for each of the production schedules generated by Whittle and 

models #1, #2 and #3. 
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Figure  4-56: The standard deviation of the NPV calculated from realizations for each of the 

production schedules generated by Whittle and models #1, #2 and #3. 

 

Figure  4-57: The average discounted cost of the grade uncertainty calculated from 

realizations for each of the production schedules generated by Whittle and models #1, #2 and 

#3. 
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Figure  4-58: Runtime values for each of the production schedules algorithms generated by 

Whittle and models #1, #2 and #3. 
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Chapter 5 Sensitivity Analysis  

In this chapter, a sensitivity analysis is performed on important parameters. First, a 

sensitivity analysis on the clustering methods and the number of cuts is presented in 

Section  5.1. The input parameters that are used in Sections  2.5 and  2.6 are studied in 

Section  5.2. Two practical methods are presented to estimate the optimal values for the 

costs of over and under production. Section  5.3 presents a methodology to determine 

mining capacity based on the cost of grade uncertainty. Also In this section, the effect of 

grade uncertainty is studied with different processing capacities. In Section  5.4, 

sensitivity analysis is applied on the lambda parameter needed for the mean-variance 

method in Eq. (2.49). Finally, the chapter summary is in Section  5.5. 

5.1 Sensitivity Analysis on Clustering and Number of Cuts 

To investigate the sensitivity of the project to the number of clusters or mining cuts, 

different numbers of mining cuts are generated. Model #1 presented in Eq. (2.11) is used 

with a kriged block model. Although this model does not consider any grade uncertainty 

in the optimization stage, it is used because: (1) it is much faster than considering grade 

uncertainty and (2) the variance of each block has already been used as an input 

parameter in creating the clusters. The absolute MIPGAP tolerance is set to 0.0001 or 

0.01%. To make the algorithm faster, the mine life is set to 3 years with no pre-striping, 

and very high mining and processing capacities are assumed (350 MT for mining 

capacity and 100MT for processing capacity). The optimization is run with 100, 500, 

1000, 2000, 3000 and 4000 mining cuts with 8 CPUs. Figure  5-1 shows the schedules 

generated for 100 (top figure) and 2000 (bottom figure) mining cuts. Yellow bars are the 

amount of ore that is sent to the processing plant. The annual processing capacity limit is 

satisfied at all three periods of mine life. Grey bars indicate the waste tonnage. The sum 

of the yellow and grey bars shows the total amount of material (ore and waste) that is 

removed from the mine. The mining capacity limit is also satisfied during the mine life. It 

is clear from these graphs that the production schedule with more mining cuts feeds the 

plant at full capacity over the mine life. The schedule generated with 100 mining cuts has 

a 7.7 MT shortfall in the first period and the plant was not fully fed (92.3 MT). Also, with 

2000 mining cuts, in order to maximize the NPV, less waste material has been removed 

in the first period (158 MT vs. 285 MT). This increases the NPV of the project by 
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deferring the removal of waste material. Also, with smaller mining cuts, the schedule can 

reach to the high grade zone faster with less waste mining. 

Figure  5-2 shows clusters generated with 100 mining cuts in plan view of 310 m and two 

cross sections of 252750 m looking north and 14825 m looking east. Figure  5-3 shows 

the generated schedule and each block’s extraction period in the same plan view and 

cross sections. Figure  5-4 and Figure  5-5 show the plan view and cross sections of mining 

cuts and extraction period of each block with 2000 mining cuts. It is clear that by 

increasing the number of clusters, the size of each cluster decreases. These two cases 

have different production schedules (compare Figure  5-3 to Figure  5-5). 

The NPV of each case has been calculated using Eq. (2.37). Figure  5-6 shows the changes 

in NPV versus the number of cuts. By increasing the number of cuts, the optimization 

generates higher NPV because of more flexibility in decision variables. However, after a 

point the NPV does not increase significantly because the clustering method used here 

aggregates blocks with similar grades and similar EBVs. Therefore, the NPV from 2000 

mining cuts can be considered as a good estimate of the maximum achievable NPV of the 

project.  2000 mining cuts have been used for the case study presented in  Chapter 4. 

Figure  5-7 shows elapsed real time for solving the optimization problem. To generate an 

optimum schedule with 2000 mining cuts elapsed real time is about 300 seconds. This 

number increases dramatically for larger numbers of cuts. For 5000 cuts, 4000 seconds 

was required to reach the 0.01% gap. The relationship between elapsed real time and 

CPU time is shown in Figure  5-8. This graph shows that with the same CPU 

specifications and using only one core, the run time of the optimization would be 5 times 

more than using all 8 cores.  
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Figure  5-1. Schedules generated by a) 100 mining cuts (top) and b) 2000 mining cuts 

(bottom). 
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Figure  5-2. Plan view and cross sections for 100 generated mining cuts. 

 

   148000.00    149000.00    150000.00

   252000.00

   253000.00

   254000.00

   255000.00

   148250.00

   252750.00

65

66

67
68

69

70

71

72
73

74

75

76

77

78

Plan View - 310m

East

N
o
rt

h

146975 150975
251475

255475

   148000.00    149000.00    150000.00

     240.000

     290.000

     310.000

Cross Section Looking North - 252750m

East

E
le

v
at

io
n

(V
er

ti
ca

l 
E

x
ag

er
at

io
n

 =
  

5
)

146975 150975
215

355

   252000.00    253000.00    254000.00    255000.00

     240.000

     290.000

     310.000

Cross Section Looking East - 148250m

North

E
le

v
at

io
n

(V
er

ti
ca

l 
E

x
ag

er
at

io
n

 =
  

5
)

251475 255475
215

355

0

20

40

60

80

100



 

174 
 

 

Figure  5-3. Plan view and cross sections of extraction period for each block with 100 mining 

cuts. 
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Figure  5-4. Plan view and cross sections for 2000 generated mining cuts. 
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Figure  5-5. Plan view and cross sections of extraction period for each block with 2000 mining 

cuts. 
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Figure  5-6. NPV versus the number of mining cuts for the case that the mine life is 3 years. 

 

 

Figure  5-7. Number of mining cuts versus real run time of the optimization stage in seconds; 

Mine life is 3 years. 

 

 

Figure  5-8. Correlation between CPU time and real run time for a case that the optimization 

has been run in a computer with 8 CPUs; Mine life is 3 years. 
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In order to compare the results with 10 year mine life that was used in case studies, the 

same configurations as the previous section are used. Model #1 is run with 100, 500, 

1000, 2000 and 3000 mining cuts. Figure  5-9 shows the number of mining cuts versus the 

NPV of the project with 10 years of mine life. As it is shown in Figure  5-6, 2000 mining 

cut can be used for this case as the sufficient number of mining cuts. Using more mining 

cuts does not have significant improvement on the NPV maximization. The runtime for 

10 years of mine life is much longer. Figure  5-10 shows the real run time for the case of 

10 years mine life with different number of mining cuts. A polynomial function has been 

used to capture the trend which has been shown with dashed line in the graph. High R² 

value shows that the number of mining cuts has polynomial effect on the run time of the 

optimization.  From this line it can be predict that the run time for the case with 5000 

mining cuts is about 90,000 seconds or 25 hours with 8 CPUs. The correlation between 

CPU time and real run time also has been shown in Figure  5-11. Running the code with 8 

CPUs with 10 years of mine life decreases 4.3 times of the real run time, which is very 

close to what has been shown in Figure  5-8 with 3 year of mine life.  

 

 

Figure  5-9. NPV versus the number of mining cuts for the case that the mine life is 10 years. 
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Figure  5-10. Number of mining cuts versus real run time of the optimization stage in 

seconds; Mine life is 10 years. 

 

Figure  5-11. Correlation between CPU time and real run time for a case that the 

optimization has been run in a computer with 8 CPUs; Mine life is 10 years. 
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calculate or estimate these parameters; choosing these parameters are subjective. A high 

geological risk discount or GDR rate means that low uncertainty blocks are going to be 

extracted in the early years of production if at all possible. The generated schedule may 

be quite conservative with lower NPV. In this research, only one discount factor is used 

in the objective functions. In this section, two different techniques are presented to 

calculate and calibrate these factors.  

• Deterministic method: The factors as shown in Eq. (2.21) and Eq. (2.23)  can be 

calculated as: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),

( )

(1 ) (1 )

ˆ 1

p

up op p t t

op RH op op RH

C tP t
c t c t g t × R t ×

IR IR

c t c t c t c t

= = −
+ +

= − + +

 (4.5) 

This requires a prior knowledge of the average input grade to the mill for each 

realization and the average grade of the stockpile in each period. This cannot be 

calculated exactly until the optimization finds the solution. Therefore, the user 

needs to have a rough estimate, run the optimization and iterate if necessary. Our 

observation shows that the optimization process is robust with respect to small 

changes in the ( )upc t  and ( )opc t  or ( ),ôp RHc t  values. 

• Numerical method: In this method, the same cost is applied for over and under 

production ( ) ( ) ( )up opc t c t c t= = . ( )c t  is the discounted cost of not meeting the 

target production. In this method, the optimization algorithm is run with different 

uC  values that are introduced in Eq. (2.29). For any value of c, the values of 

esNPV  and DCOU  in Eqs. (2.37) and (2.30) are calculated. The difference 

between esNPV and DCOU  is also calculated as: 

 esDelta NPV DCOU= −  (4.6) 

The uC  value is the trade-off parameter between the maximization of NPV and 

the minimization of the cost of grade uncertainty. When it is zero, the 

optimization problem turns to the NPV maximization such as Model #1. By 

increasing uC , the NPV and the cost of grade uncertainty are decreased. 

However the slope of declination for NPV and DCOU are not the same. With 

lower uC  , the DCOU is reduced more than what we lose at NPV of the project 
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and after some point, higher uC  cannot reduce the DCOU more than NPV 

reduction. Therefore the Delta reaches to the maximum value where the 

difference between NPV and DCOU is maximized. Therefore the optimum uC  is 

where Delta reaches to its maximum value. 

Both of these two methods converge to the same value with small differences. However a 

sensitivity analysis is required for detail investigation. For this purpose the three year 

mine life that has been introduced in previous section is used with Model #2. Table  5-1 

shows the NPV, Delta and the uC  values that are used for each case.  Figure  5-12 shows 

the NPV values with different uC . This graph and the values in Table  5-1 suggest that a 

new schedule is generated is not generated for any changes of uC . For example the 

generated schedule with uC equals to 0.5, 0.6 and 0.7 are identical. And the reduction rate 

of the NPV with small uC is lower than with higher uC . For example by changing uC

from zero to 0.7, the NPV is dropped 3 million dollars. Figure  5-13 shows the DCOU 

values with the same uC values. The DCOU is 133 million dollars when uC is zero. This 

values is dropped to 75 million dollars when uC  is 0.5 dollars per tonne. From 

Figure  5-14, it can be conclude that the Delta is maximized when uC  is 0.9 dollars per 

tonne. This value is little bit different from what it has been suggested from deterministic 

method, 0.5 dollars per tonne, and has been used in case study in the previous chapter.  
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Table  5-1. The NPV and Delta values at different uC  values with 3 year of mine life case. 

 

NPV DCOU Delta 

0 3.86E+09 1.33E+08 3.72E+09 

0.1 3.86E+09 8.12E+07 3.78E+09 

0.2 3.86E+09 8.10E+07 3.78E+09 

0.3 3.86E+09 8.11E+07 3.78E+09 

0.4 3.86E+09 7.95E+07 3.78E+09 

0.5 3.85E+09 7.50E+07 3.78E+09 

0.6 3.85E+09 7.50E+07 3.78E+09 

0.7 3.85E+09 7.50E+07 3.78E+09 

0.8 3.85E+09 5.89E+07 3.79E+09 

0.9 3.84E+09 4.67E+07 3.80E+09 

1 3.84E+09 4.60E+07 3.80E+09 

1.2 3.84E+09 4.57E+07 3.80E+09 

1.4 3.84E+09 4.57E+07 3.80E+09 

1.6 3.84E+09 4.42E+07 3.79E+09 

1.8 3.83E+09 4.38E+07 3.79E+09 

2 3.83E+09 4.37E+07 3.79E+09 

2.5 3.83E+09 4.23E+07 3.78E+09 

3 3.83E+09 4.22E+07 3.78E+09 

3.5 3.83E+09 4.22E+07 3.78E+09 

4 3.82E+09 4.10E+07 3.78E+09 

5 3.81E+09 3.73E+07 3.77E+09 

10 3.78E+09 2.40E+07 3.75E+09 

 

uC
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Figure  5-12. The NPV vs. uC  with 3 year of mine life case using Model #2. 

 

Figure  5-13. The DCOU vs. uC  with 3 year of mine life case using Model #2. 
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Figure  5-14. The Delta vs. uC  with 3 year of mine life case using Model #2. 

 

5.3 Cost of grade uncertainty Versus Mining and Processing Capacities 

One of the most important input parameters in an open-pit mine scheduling process is the 

capacity of mining. Usually, in traditional methods, where no uncertainty is considered, 

the mine planner starts with an initial mining capacity and tries to find a reasonable 

schedule. The schedule should be smooth during the mine life and it should also be 

feasible. The plant should be fed at full capacity during the mine life, except in the last 

period; and the annual tonnage of mined material should not exceed the mining capacity. 

The mine planner increases the mining capacity if the assumed value is not able to feed 

the plant at full capacity.  

In this section, a new technique to find the optimum mining and processing limits is 

presented by considering the cost of grade uncertainty.  For this case, Model #2 is used. 

The objective function presented in Eq. (2.33) allows the mine planner to consider grade 

uncertainty. The objective function maximizes NPV as well as minimizes the cost of 

grade uncertainty. By changing mining and processing limits, different optimum 
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solutions are generated. The cost of grade uncertainty is calculated for each case. 

Figure  5-15 shows the relationship between cost of grade uncertainty and mining and 

processing capacities. Both mining and processing capacities are increased 10 times with 

5 and 10 unit intervals, respectively. Therefore, the optimization has been run 100 times. 

Each line shows a different scenario where the processing capacity is constant and the 

mining capacity changes. The vertical axis is the cost of the uncertainty. The following 

points can be concluded from this graph: 

• For a chosen processing capacity (each line), by increasing the mining capacity, 

the cost of grade uncertainty reduces until a certain point.  

• With a larger processing capacity, it is required to set a much larger mining 

capacity in order to get the minimum cost of grade uncertainty. This can be well 

understood by comparing two processing capacities of 95 and 140. In these two 

lines, the mining capacities resulting in minimum costs of uncertainty are 290 

and 350, respectively. 

• Larger mines with high processing and mining capacities have higher cost of 

grade uncertainty. 

  A higher mining capacity reduces the cost of grade uncertainty because there is 

flexibility to makeup an unexpected shortfall. Also, any possible extra ore can be handled 

easily by stockpiling.  As shown in this graph, as the mining capacity increases, the cost 

of grade uncertainty decreases. This decrease is not significant after a certain amount of 

mining capacity. For each processing capacity, there is an optimum mining capacity. 

After this point, the cost of grade uncertainty does not decrease further by increasing the 

mining capacity. The mining capacity estimated this way is higher than the capacity 

found by the traditional method with an estimated model. The best practice to get the 

optimum value of mining limit is to increase the mining capacity and calculate the cost of 

grade uncertainty for each case. The optimum mining capacity is the capacity that the 

higher values (than that capacity) do not change the cost of grade uncertainty, because 

after some point the processing capacity limits the total ore that is mined and higher 

mining capacity does not have any impact on the schedule. However if the model #3 is 

used, the stockpile capacity is the factor that confine the cost of grade uncertainty and by 

increasing the mining capacity after a critical value the cost of grade uncertainty cannot 

be decreased. However if the stockpile capacity is high enough, the cost of grade 

uncertainty can be reach to zero with higher mining capacity.  
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Figure  5-15: The cost of grade uncertainty versus different mining and processing capacities 

in a synthetic case. 

5.4 Sensitivity Analysis on Lambda 

In this section the sensitivity analysis on lambda in the mean-variance method (Model 

#4) is presented (Eq. (2.49)). Different Lambda values are used with 100 mining cuts and 

mine life is 3 years. Figure  5-16 to Figure  5-18 show the different Lambda values versus 

the average NPV, variance of NPV and total tonnage of mined material (Ore + Waste). In 

each pair of graphs, the graph at the top shows the changes in the variable of interest 

when Lambda changes between 0 and 0.65. To show details on the small Lambda values, 

the same graph is shown with a smaller range of Lambda: 0 to 0.5. Figure  5-16 shows the 

effect of Lambda on average NPV. With higher Lambda values, the average NPV is 

reduced. Figure  5-17 shows that higher Lambda values reduce the variance of NPV. 

Because the reserve constraint is not considered in this case, with higher Lambda values, 

the size of the final pit is smaller. Figure  5-18 shows that when a large Lambda value is 

chosen, the average tonnage of mined material is less and the final pit is smaller. The size 

of final pit is reduced dramatically for Lambda 0.2 and 0.5.  

Figure  5-19 and Figure  5-20 show a plan view and two cross sections for the cases where 

Lambda is 0.10 and 0.65. The schedules are quite different. From cross section looking 

north, it is clear that some blocks are not extracted when Lambda is 0.65.   
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Figure  5-16. Lambda factor versus average NPV. 
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Figure  5-17. Lambda factor versus variance of NPV. 
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Figure  5-18. Lambda factor versus average tonnage of mined material (ore + waste). 
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Figure  5-19. Plan view and two cross sections of the schedule generated by mean-variance 

approach using 100 cuts and Lambda=0.1. 
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Figure  5-20. Plan view and two cross sections of the schedule generated by mean-variance 

approach using 100 cuts and Lambda=0.65. 
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5.5 MIPGAP versus RunTime 

MIPGAP is the absolute tolerance of the gap between the best integer objective and the 

objective of the best node remaining in the branch-and-bound algorithm. This is an 

important termination criterion that is set by user. This parameter instructs CPLEX to 

stop as soon as it has found a feasible integer solution proved to be within the MIPGAP 

limit. MIPGAP shows the goodness of the optimal solution and it indicates how far we 

are from the theoretical solution. CPLEX reduces the GAP of current answer from 

theoretical answer by creating new branches and exploring new nodes in the tree of 

answers in two ways: (1) finding new better answers with higher objective function and 

(2) getting better estimation of the theoretical answer. Choosing higher MIPGAP 

decreases the runtime in two ways: (1) the algorithm needs to create less branches and (2) 

every time that CPLEX creates a new branch, it eliminates the branch for which the gap 

is less than the target MIPGAP. Therefore, it reaches the required MIPGAP much faster. 

There is always a tradeoff between the goodness of the optimum solution and the runtime 

of the optimization problem.  As shown in Figure  5-21, by increasing the runtime, the gap 

between red and blue lines decreases until the gap of 0.1% is reached after 14 hours of 

runtime. As shown in this graph, after around 5 hours of running, the current solution 

does not improve significantly (blue line) and only the theoretical answer (red line) is 

decreased to reach the required GAP. Therefore, by setting the gap to higher values the 

runtime can decrease significantly.  

 

Figure  5-21: NPV of the project in current best answer (best integer) and the theoretical 

NPV at current node (Best Node) vs. the runtime  
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5.6 Summary 

A sensitivity analysis on the number of cuts, the cost of grade uncertainty, the Lambda 

value and MIPGAP has been considered.  

The clustering method is an important step for all optimization-based production 

planning algorithms. The size of the optimization problem is directly related to the 

number of blocks or cuts that exist in the model. The number of continuous and binary 

decision variables is related to the number of cuts and the number of periods in the 

project. Typically, for long-term production plan the mine life is consider between 10 to 

30 years. A large numbers of blocks increase the complexity of the problem. On the other 

hand, by clustering similar blocks and assigning a single variable for each cluster, the size 

of the problem decreases. The side effect of clustering blocks to the mining cuts is that 

the maximum achievable NPV of the project is reduced due to the sub-optimality of the 

problem compared to using all blocks in the optimization.  

It is almost impossible to solve the optimization with all blocks. Using mining cuts is 

more practical in that the long-term production plan is kept at an appropriate scale and 

the movement of the equipment during a single period is minimized. 

The NPV of the project increases by increasing the total number of mining cuts. 

However, after a point there is no significant improvement in the NPV. An important 

issue is to choose the clustering algorithm and the input parameters for the similarity 

parameters between the blocks.  

The other important input parameters that have been investigated in this chapter are the 

trade-off parameters. These parameters are required to be selected by user: the c factor 

for Model #2 and #3 and the Lambda factor for Model #4. The main conclusion here is 

that production plans are not very sensitive to this parameter. It is suggested to use a 

range of c factor within acceptable limits in order to find the optimal values for this 

parameter. On the other hand, Model #4 is very sensitive to the Lambda value. This 

model aims to minimize the variance of NPV. The variance of the NPV is highly 

correlated to the NPV itself. Therefore, in most of the cases, by increasing Lambda, the 

optimizer finds a solution with lower NPV. On the other hand, in order to reduce the 

variance of NPV, the optimizer reduces the size of the pit and total processed ore; which 

is not a good solution. The recommendation here is to use a reserve constraint to force the 

optimizer to process all the blocks inside the final pit. A sensitivity analysis is also 
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required to determine the optimum Lambda value which has been shown in this chapter 

as well. 

Finally, the behavior of the cost of grade uncertainty has been studied in different mining 

and processing limits. Increasing the mining capacity reduces the cost of grade 

uncertainty. An optimum ratio of processing capacity to mining capacity can be 

determined by using the concept of the cost of the uncertainty. 
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Chapter 6 Concluding Remarks 

A summary of the research is presented in Section  6.1. Conclusions and applications are 

discussed in Section  6.2. The contributions of this dissertation are summarized in 

Section  6.3. Finally, recommendations for future work are presented in Section  6.5. 

6.1 Summary of Research 

Open-pit mining is the most widely used mining technique.  Open-pit mining has high 

capital cost and the average grade of the ore-body may be relatively low. An important 

problem is to determine the optimum production schedule. Recently, the operations 

research methods are used to generate the optimal long-term production plan. Usually the 

goal is to maximize the net present value of the project in long-term and feed the plant at 

full capacity in the short-term. To determine the optimum production plan it is required to 

have a complete knowledge of the value of ore and the cost of mining and processing of 

the blocks, and this is not possible until extraction of all blocks. In traditional methods 

the estimated block values are used as the main input to determine the optimum 

production schedule.  

Currently, commercial software tools are available to determine production schedules. 

One of these software tools is Whittle which works based on some heuristic methods. 

This software creates the production schedule at the block level and provides the 

destination of each block and the portion of the extraction in each period. Although this 

software does not generate the optimum solution that maximizes NPV of the project, it is 

widely accepted as a good tool in the industry to generate long-term production plans. 

This software uses the 3D LG algorithm to find the final pit limit and push-backs.  

The demand to apply the operations research-based algorithms in open-pit mining is 

increasing.  The main reason for this is the recent improvements in the optimization 

methods and in the computer power that allows solving large scale optimization problems 

more efficiently. The advantage of the operations research-based algorithms that are 

discussed in  Chapter 1 can be summarized as: 

• Operations research-based algorithms such as linear programming generate the 

best achievable solutions. The optimality of the solutions from heuristic-based 

algorithms is not guaranteed.  
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• There is a gap parameter that measures the goodness of the solution. This 

parameter is used as the stop criterion of the algorithm. It shows the gap between 

the best integer objective and the objective of the best node remaining. 

• The proposed algorithms are much more flexible than currently available 

commercial software such as Whittle. It is easy to add constraints such as 

directional mining and to optimize based on multiple valuable elements and 

multiple processing plants.  

Many recent techniques are based on linear programming techniques without considering 

the uncertainty in the input block model. However, the uncertainty in the input block 

model may cause shortfalls from target production.  

There are very limited numbers of uncertainty-based methods. The major shortcomings 

of the current uncertainty-based methods in the literature for long-term mine planning 

are: 

• Some of these methods are only based on local uncertainty. These methods don’t 

accept jointly simulated realizations as an input. The main input for these types 

of methods is the variance of each individual block. This is not a correct way to 

transfer the geological uncertainty into the production plan. The best practice is 

to use simulated realizations. These values are generated based on the fact that 

geological properties are spatially correlated and the values of the blocks are 

dependent on the nearby blocks.  

• Although the computer power and the optimization methods have improved 

significantly, it is not possible to use all blocks in the optimization directly due to 

the size of the problem.   

A methodology has been developed to transfer grade uncertainty into the mine production 

plan. A program has been developed to assess the effect of grade uncertainty on the 

production plan. A theoretical framework for the long-term production planning problem 

in presence of grade uncertainty was developed, implemented and verified by a case 

study. Three different models were developed based on a deterministic model. The 

deterministic model was presented by Askari-Nasab et al. (2010; 2011), which was 

referred as Model #1. Models, #2 and #3 are mixed integer linear programming problems 

and the last model, #4, is a quadratic optimization problem. The simulation realizations 

are directly used in the proposed models.  
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MATLAB (MathWorks Inc., 2011) environment was used to implement the codes. A 

standard form of the MILP problem that can be used by TOMLAB/CPLEX (Holmström, 

1989-2011) optimization toolbox has been developed. The TOMLAB Optimization 

Environment is a modeling platform for solving applied optimization problems 

in MATLAB. This toolbox contains a large number of different solvers.  CPLEX (ILOG 

Inc, 2007)  was used as the main solver engine to find the solution for the proposed MILP 

and MIQP models. The implementation details for each model and the vectors and 

matrices that are required to build the models in standard format were presented 

in  Chapter 3. 

An oil-sand deposit was used to apply models #1, #2, #3 and #4.  A comprehensive 

geological analysis and the geostatistical simulation steps were presented in  Chapter 4. 

The ordinary kriging block model and 50 realizations were generated in high resolution 

and up-scaled into blocks. Whittle was employed to generate the final pit using the 3D 

LG algorithm and to estimate a production schedule based on OK block model. The 

realizations were used to assess the effect of grade uncertainty on the final pit limit and 

on the production schedule generated by Whittle. The deterministic method to generate 

the production schedule using the mixed integer linear optimization approach was applied 

with aggregated mining cuts. Later on in  Chapter 5, a sensitivity study has been done to 

confirm the number of mining cuts. Model #1 was used to optimize the NPV of the 

kriging without considering the grade uncertainty. Model #2 was applied to this data set 

with symmetrical penalty function. All Realizations are used in the objective function to 

reduce the cost of grade uncertainty. Although the NPV of Model #2 was very close to 

the NPV of Model #1, it reduced the cost of grade uncertainty. Finally, Model #3 was 

applied. In this model, the stockpile is considered directly in the objective function. 

Therefore, although the NPV of the project was not changed significantly compared to 

model #1 and #2, the cost of grade uncertainty was reduced by 68% (Table  4-37). Also, 

the variance of NPV was reduced compared to other methods. Furthermore, the run time 

of Model #3 is much less than Model #2.  

Finally, the sensitivity analysis on the input parameters was presented in  Chapter 5. It 

was shown that the optimum number of mining cuts can be determined. A deterministic 

and a numerical method were presented to determine the optimum penalty values for over 

and under productions. It was shown that the generated schedule by either Model #2 or 

#3 is not very sensitive to the penalty values of over and under productions. On the other 
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hand, the production schedule created by Model #4 is sensitive to Lambda parameter. If a 

high value is selected for this parameter, the optimizer can reduce the variance of NPV by 

reducing NPV itself. Therefore, a lower Lambda parameter has to be chosen. A 

sensitivity analysis is required to obtain the optimum values for all of the input 

parameters. Finally, the application of the cost of grade uncertainty in finding the 

optimum mining and processing capacities or the ratio of mining to processing capacity 

was shown in  Chapter 5. 

Table  6-1 summarizes the proposed optimization models and the main advantages and 

disadvantages of each model.  

Table  6-1. Summary of the proposed methods, advantages and disadvantages. 

Method Solution Advantage  Disadvantage 

Model #1 

(MILP) 

Deterministic 
approach: NPV of the 
estimate block model 
is maximized. 

The generated schedule for 
the estimate block model 
has the highest NPV 
among all methods.  

The geological uncertainty is 
not taken into account.   

Model #2 

(MILP) 

Uncertainty based 
approach: NPV of the 
estimate block model 
is maximized and the 
COU is minimized. 

A symmetrical and 
asymmetrical penalty 
functions are applied to 
minimize the COU. The 
results are optimum when 
there is no stockpile 
available. 

No stockpile is considered. 
The over produced ore in any 
period is not used to reduce 
the underproduction during 
following periods. 

Model #3 

(MILP) 

Uncertainty based 
approach: NPV of the 
estimate block model 
is maximized and the 
COU is minimized. 

Stockpile is modeled 
explicitly and used in 
optimization stage.  

The average grade of the ore 
inside the stockpile is given 
by user. A recursive scheme 
may need to rerun the model 
to adjust the assumed grade 
values. 

Model #4 

(MIQP) 

Uncertainty based 
approach: The 
expected mean of the 
NPV is maximized 
while the variance of 
NPV is minimized. 

No need for estimate block 
model. It only uses 
realizations. The 
nonlinearity effect of grade 
uncertainty on NPV is 
taken into account. 

Due to the nature of the 
quadratic optimization, the 
size of the problem is larger 
than other methods. Therefore 
it is very slow and difficult to 
handle large problems.  
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6.2 Conclusion  

• All proposed models have two separate decision variables for the portion of 

extraction and the portion of processing. This is very useful when there is no 

certain value for the cut-off grade. In this case, the optimization procedure 

decides which blocks should be processed and which blocks should be sent to the 

waste dump. Therefore, in the case that there is a cut-off grade to distinguish ore 

and waste blocks and also there is a stockpile to store extra ore, there is no need 

to define two separate variables. All of the ore blocks are going to be processed 

or sent to the stockpile for being processed at later years.  Therefore, only one 

continuous decision variable was used for each period in Model #3. This variable 

is the extraction portion of the blocks. The destination of each block (or mining 

cut) is decided based on the average grade of that block. 

• The grade uncertainty has linear and nonlinear effects on the mining project. The 

linear effect is applied to the input ore tonnage to the mill. This effect is due to 

the existence of a cut-off grade. If in a realization a block gets less simulated 

value than the cut-off grade, it is considered as a waste block in that realization. 

In this way, the grade uncertainty is transferred to the ore tonnage uncertainty.  

• The other effect of grade uncertainty is on the ore value. Different simulated 

grades generate different ore values and this affects the NPV. Therefore, if the 

simulated grade of a block in all realizations is less than the cut-off grade, this 

block does not have any effects on the ore tonnage or NPV.  In general, the grade 

uncertainty does not have linear effect on the NPV. 

• Models #2 and #3 account for the grade uncertainty and reduce the effect of 

grade uncertainty in long term production plan. Model #4 accounts for both the 

linear and the nonlinear effect of the grade uncertainty by minimizing the 

variance of NPV.  

• The cost of grade uncertainty can be reduced by using Model #2 and #3. 

However, there is always a trade-off between the maximization of the NPV and 

minimization of the negative effect of grade uncertainty. By reducing the effect 

of grade uncertainty, it is expected the NPV of the project to be reduced too. 

However, as it is shown in Table  4-36, the percentages of reduction for proposed 

models are not significant.  
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• To solve MIQP, new variables are defined inside the solver. Therefore, Model #4 

is slower than any other proposed model. The other models are recommended. If 

the grade uncertainty significantly changes the results, then Model #4 should be 

applied. A good initial point such as the results of Model #1 can increase the 

speed of this model.  

• The long-term mine plan is established using all available information. The 

production plan will be updated as new information becomes available during the 

mine life. The new information is obtained from new infill and blast holes. 

Therefore, the best practice is to re-run the optimization algorithm based on all 

available data to generate the optimum schedule as the mine life evolves. 

6.3 Summary of Contributions 

This research has studied the effect of grade uncertainty on the long-term production 

planning problem. The goal was to investigate the negative effect of the grade 

uncertainty, propose a robust algorithm and develop tools to incorporate grade 

uncertainty in the long-term production planning. The grade uncertainty is modeled by 

realizations that are generated by geostatistical simulation algorithms such as sequential 

Gaussian simulation. This dissertation is an effort to develop long-term production 

planning algorithms in presence of grade uncertainty. The proposed methodologies offer 

the following significant improvements over existing methods in the context of long-term 

mine planning in presence of grade uncertainty. 

6.3.1 The Effect of Grade Uncertainty on Long-term Production Planning 

The first contribution of this research is that it provides a body of knowledge on the effect 

of grade uncertainty on the LTPP. It has been shown that grade uncertainty has linear and 

quadratic effects on NPV of the project. The linear effect is on the input ore tonnage to 

the mill and can cause shortfalls from target production or surplus unexpected ore. Both 

of these effects make the production plan sub-optimal if the grade uncertainty is not 

considered in the optimization process. The nonlinear (quadratic) effect of the grade 

uncertainty occurs on the NPV of the project. A methodology has been presented to 

transfer the grade uncertainty into the production plan.  
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6.3.2 The Cost of grade uncertainty 

A new term called the cost of grade uncertainty has been introduced. It gives a good 

measurement of the potential cost of the grade uncertainty on the long-term production 

schedule. It is based on the linear effect of the grade uncertainty on the input ore tonnage 

into the plant. The cost of grade uncertainty can be used to compare different production 

schedules in presence of grade uncertainty. Also, it has been used in the proposed 

models. The goal was to incorporate the cost of grade uncertainty in the optimization 

stage.  

6.3.3 Two MILP Models for LTPP (Model #2 and #3) 

In this research, two different MILP models were presented and implemented in 

MATLAB environment to generate the optimum LTPP in presence of grade uncertainty. 

Both of these models have dual objective functions to maximize the NPV and minimize 

the cost of grade uncertainty. The difference between these two models is that in Model 

#3, the stockpile has been considered in the objective function while in Model #2 it is 

assumed that no stockpile is available. As it is summarized in Table  4-37, by using Model 

#3 the cost of grade uncertainty is reduced up to 68% compared to Model #1 for the case 

study that has been presented in  Chapter 4.  

6.3.4 MIQP Model for LTPP (Model #4) 

A mixed integer quadratic optimization model has been proposed in this thesis. The idea 

is to maximize the expected return and minimize the variance of the result that are 

calculated directly from realizations. Therefore, there is no need for an estimation block 

model in Model #4.  

6.4 Assumptions and Limitations 

The following assumptions and limitations are considered for the proposed methods in 

this thesis: 

• The generated realizations and the number of realizations are assumed to be 

enough to represent the geological uncertainty.  

• The uncertainty on the rock-type, the density of the rock, the mining cost and the 

price of the commodity are not taken into account in any of the models.  
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• The proposed models are adapted for single-element deposit. The production 

plan for a multi-element deposit needs a multivariate geostatistical model as an 

input. However, the proposed models can be adapted for a general case with 

multi-element deposit. 

• All models are designed for a single-process open pit mine. It is required extra 

effort to adapt the models for a complex multi-process open pit mines. 

• For all the models, push-backs are not considered. However, this can be 

implemented by adding extra precedence constraints for the blocks that are in 

different push-backs. 

• There is no constraint to apply a preferable directional mining in none of the 

proposed models.  However, same as push-backs, by adding extra precedence 

constraints, this feature can be added to each of the models. 

• Long term mine planning is a recursive procedure such that at the end of each 

period or any time that is required, the optimization models should be run. 

However, the goal here is to use as much information as possible to reduce the 

effect of grade uncertainty on the production plan. For this purpose, the 

extraction of low grade high uncertain blocks is deferred to the later years or 

stockpile is used. All methods presented in this thesis are anticipative models. 

The best practice would be to use them as adaptive models anytime that new 

information is available.  

• In Model #3, in order to model the stockpile and keep the optimization model 

linear, the average grade of stockpile for each realization at each period is 

assumed to be an input parameter. As it was shown in the case study, this 

assumption is checked and retuned in a recursive scheme, so that the assumed 

values are close to the actual numbers. However, the grade blending procedure 

always smoothes out the fluctuations in average grade of stockpile. Therefore, 

the average grade of the stockpile is close to the average grade of the block 

model when the cut-off grade is applied. 

• In Model #3, the stockpile is treated in a rule-based manner where surplus ore is 

saved and drawn down in time periods where there is inadequate ore 

supply.  Although the stockpile is not being optimized, this approach provides a 

mechanism to account for over and under production more realistically. 

• Model #4 is a quadratic optimization problem. A positive definite quadratic 

optimization problem always can be solved in a polynomial time. However, the 
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size of Model #4 is much bigger than the other models considering the same 

mine life and the same number of mining cuts. Because it takes too much time to 

solve this model, it is not a practical model for real size problems with current 

software and hardware capacity. 

• Clustering is required to reduce the size of the problem. 

 

Aforementioned limitations derive some recommendations for the future research 

which are presented in the following section. 

6.5 Recommendations for Future Research 

Although the LTPP models developed in this thesis have provided pioneering efforts to 

effectively use the grade uncertainty on the production plans, there is still a need to 

continue investigation on using simulation realizations in the mine planning context. 

The following recommendations could be considered: 

• Push-backs are very well known extraction strategies that are used for many 

years in open-pit mine design. However, there is a debate that they are not 

required anymore because of increased usage of operations research algorithms 

in mine planning. Push-backs could be implemented in any of models by adding 

extra constraints. 

• Directional mining can be implemented in all of the models. New sets of blocks 

are added to each block precedence list. These new block sets enforce the mining 

to be in a specific direction.  

• The long-term production planning optimization models at the block scale are 

intractable. There is still a significant requirement to aggregate blocks into 

mining cuts. A more efficient clustering technique in which grade uncertainty is 

considered exclusively is recommended for future research. 

• Rock-type uncertainty is not considered in this thesis. Realizations for rock-

types; then, inside each rock type, grade realizations should be generated. For 

future work, it is recommended to explicitly use the rock-type in the optimization 

process. 

• The recovery factor and the cost of processing should depend on the input grade. 

• As shown in different chapters, the NPV of the project is not a linear function of 

the grade uncertainty. The quadratic optimization model developed in this thesis 
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is the first attempt to model nonlinear behavior of the grade uncertainty.  The 

next step in LTPP problems is to investigate the efficiency of MIQP models and 

compare them to MILP models.  
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Appendix 

MSQ90 FORTRAN Program 

A FORTRAN 90 program called MSQ90 is developed to assess the uncertainty of the pit 

limit and production schedule generated by Whittle. Whittle uses a file format called 

mining sequence file (msq) to report the portion of the extraction and the destination for 

each block. Only the blocks inside the final pit are reported in this file. Also some 

parameters of the blocks such as grade, EBV, cost of mining, and cost of processing are 

calculated based on the input block model that imported to the whittle. Based on this, the 

final pit and the schedule are generated. To assess the uncertainty of the final pit or the 

production schedule that is usually generated by OK block model, it is required to read 

this msq file and replace the economical parameters of the OK block model with the 

realizations. The MSQ90 program reads the Whittle msq (mining sequence) file and a 

conditional realization (in GSLIB grid format) and recalculates all the economical 

parameters for each block. The extraction and the portion of the extraction of the blocks 

are followed based on what is reported in msq file. However, the destination of a block 

may be different when the values are replaced by the realizations.  Based on the grade 

uncertainty of the blocks and the operational cut-off grade two different situations may 

happen that MSQ90 program changes the destination of the block:  

1. In the msq file, a block is waste (and is seeing sent to the waste dump), but is has 

higher simulated grade than the cut-off grade in the realization: this block is 

considered as an ore block and is sent to the processing plant. This kind of blocks 

may cause overproduced ore. 

2. The block is ore in the msq file but the simulated grade is less than the cut-off 

grade: The program changes the destination of this block from processing to the 

waste dump. This type of blocks cause the shortfall from target production and it 

is the source of the cost of underproduction. 

The general steps of MSQ90 program includes: 

1. Read the parameter file that contains all the input parameters. 
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2. Read the msq file. This file contains the index of each block, the period of the 

extraction, the portion of the extraction and the destination of the block if it is an 

ore block. 

3. Read the realization file in GSLIB grid format. 

4. Apply the cut-off grade to the simulated value. If the simulated value is below the 

cut-off grade, the block is considered as a waste block. If the simulated value is 

above the cut-off grade the block is considered as an ore block. 

5. Recalculate the tonnage of ore, EBV, ore value, and waste cost. 

6. Calculate the total tonnage of ore and waste EBV discounted cash flow for each 

period.  

7. Report the results in the two different output files 

The MSQ90 program is based on GSLIB codes. All the parameters are stored in the 

parameter file. A sample parameter file for the program is shown in Figure APX 1.  

 

Figure APX 1: parameter file for the MSQ90 program 

Line 1 is the location and the file name of the input msq file. This file is in the standard 

format of the Whittle mining sequence file format. It is an ASCII format. Figure APX 2 

shows a part of an msq file. There are two types of blocks in an msq file: (1) air blocks 

and (2) non-air blocks. There is one line per air block in the msq file. It is highlighted by 

grey color in Figure APX 2. The non-air blocks may be ore or waste. A waste block is 

                  Parameters for MSQ 
                  *********************** 
 
START OF PARAMETERS: 
1 : krig.msq                         -MSQ file 
2 : 1                                -number of rock-type that are ore 
3 : ORE                              -name of the rock-type 1 
4 : sim_1.out                        -file with blocks 
5 : 1                                -   column for variable  
6 : 120   146000.0     50                 -nx, xmn, xsiz 
7 : 120   251000.0     50                 -ny, ymn, ysiz 
8 : 23    190.0        10                 -nz, zmn, zsiz 
9 : 4.6                              -Mining Reference Cost 
10: 0.88                             -Mining Recovery 
11: 0.5025                           -Processing Costs 
12: 0.95                             -Processing Recovery 
13: 281.25                           -Selling price ($ per %mass) 
14: 6                                -Cut off grade 
15: 0.1                              -Interest Rate  
16: msq.csv                          -file with output 
17: msq.dbg                          -file with Debug 
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highlighted by blue and an ore block is highlighted by yellow. The first line for any type 

of block contains: ix, iy and iz (indices of the block that are same as GSLIB), number of 

parcel, MCAF (Mining Cost Adjustment Factor), PCAF (Processing Cost Adjustment 

Factor), BlockTonnage, Period, BlockFraction, PushbackNum. If the block is air, there 

will not be any value for BlockFraction and PushbackNum. If the block is not air, there 

will be a second line which contains: ix, iy and iz, name of the block (ore, waste, etc), 

ParcelTonnes, and the name of the processing plant. If a block is being extracted in 

different periods, there are these two lines for each portion that is extracted at each 

period. Therefore, in an msq file, a block can be reported several times in different 

locations of the file.  

 

Figure APX 2: Part of a msq file 

Line 2 is the number of ore rock-type. 

Line 3 specifies the names of the ore rock-types.  

Line 4 specifies the name and the location of the file of the grade realization. Each 

realization should be stored in a separate file. 

Line 5 is the column in the realization file that contains the grade of the blocks. 

Line 6 to 8 is the grid definition of the realization. 

Line 9 is the mining cost per tonne. 

Line 10 is the mining recovery fraction. 

Line 11 is the processing cost. 

Line 12 is the processing recovery fraction. 

Line 13 is the selling price ($ per %mass). 

Line 14 is the cut-off grade. 

Line 15 is the interest rate. 

Line 16 is the name of output file. This file contains the tonnages of input ore, mined ore, 

the average grade, etc for each period. 

1,1,9,0,1.000,1.000,0,1,1.0000 
66,23,15,1,1.000,1.000,25000,8,1.0000,3 
66,23,15,WAST,25000,0,-np- 
40,48,8,1,1.000,1.000,54000,9,0.0006,1 
40,48,8,ORE,54000,545007.188,UPGR 
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Line 17 is the name of the debug file. It reports one line for each block with different 

block properties such as EBV and period that the block is started to be extracted and 

finish the extraction. 

MATLAB codes 

MATLAB codes are categorized in different folders: 

• Step01_Read: A MATLAB function called ReadData.m  reads all block models 

that are saved in separate files using MSQ90, and transfers them to MATLAB data 

files. Therefore, there will be a separate output file for each block model. The output 

file is a MATLAB data file called ‘*.mat’. The user also should enter the following 

parameters as well:  

� Path: it is the location where all the MSQ90 output files are saved. 

� GSLIB grid definition that is used to generate the block model: nx,ny,nz, 

xmin,ymin,zmin, xsize,ysize and zsize. 

� numBlocks which is the number of blocks inside the final pit limit.  

In each output MATLAB file, there is a cell array called Blocks that contains 

numBlocks cells. Each cell contains the information of each block such as x, y, z, ix, 

iy, iz, tonnage, ore tonnage, waste tonnage, grade, ore value, mining cost, EBV and 

rock-type. 

� Cut-off: the cut-off grade of the project. 

� NumOfPeriods: the number of periods. 

� interestRate: the interest rate or the discount factor of the project. 

� mcMax and mcMin: the maximum and minimum mining capacity in 

each period. 

� pcMax and pcMin: the maximum and minimum processing capacity in 

each period. If there is a pre-striping stage, it should be defined here by 

forcing the pcMax to be zero in the pre-striping periods. 

� oreGradeMin and oreGradeMax: the maximum and minimum of average 

input grade to the mill in each period. 

� numOfRockType: the number of rock-types that are going to be extracted 

� rockTypesMined: the array of 1 to numOfRockType that indicates the 

rock codes that will be extracted. 
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• Step02_Adjacency_Matrix:  In this step the adjacency matrix is generated.  There 

are a main function called ‘adjacency_matrix.m ’ and 4 subroutines: 

‘arcs_graph.m ’, ‘blocks_above.m ’, ‘blocks_indices.m ’, 

‘find_precedent_blocks.m ’. These codes have been mostly written by 

Dr. Hooman Askari Nasab and some minor modifications have been made to fix 

some bugs. The main function reads a file called “blocks.mat ” as an input. It 

is recommended that the same block model that is used to generate ultimate pit 

limit to be used in this step. For example, if ultimate pit limit is generated from 

kriging block model, it is a good idea to copy the kriging mat file from previous 

step to this folder and rename it as ‘blocks.mat ’. The output file will be 

‘inputToMILPBlocks.mat ’. This file contains same properties of input 

block model ‘blocks.mat ’ and the adjacency matrix:  

� blocksAbove: cell array from 1 to numBlocks. For each block or cell 

there is an array that shows the indices of blocks above that cell or block. 

• Step03_Clustering: the output file of previous step is used here to generate the 

clusters. One block model is used to generate clusters. In this code, the blocks in 

each branch or level are used to create the mining cuts inside each bench. 

‘clustering_mining_cuts.m ’ is the main function and 

‘blocks_on_top_of_cuts.m ’, ‘blocks2cuts.m ’ and 

‘cut_clustering.m ’ are the subroutines. The output file is 

‘inputToMILPcuts.mat ’.  

• Step04_addSims: This folder contains two MATLAB files, the main one is 

‘AddSims.m ’ and ‘blocks2cuts.m ’ is a subroutine. In this step, the output 

file of previous step is used. For each mining cut, the economical values are 

recalculated using simulated grade values from all realizations. At the end, the 

output file called ‘inputToMILPcuts2.mat’  contains all realizations. 

In this step, one single file is generated. This file has a cell array that each cell contains 

information of each mining cut for each realization such as tonnage, ore tonnage, waste 

tonnage, grade, ore value, mining cost and EBV. Finally one of the two MATLAB codes 

called ‘params.m ’ or ‘params_Stockpile.m ’ in case that there is a stockpile needs 

to be run. These codes read the ‘inputToMILPCuts2.mat ’ and add some final input 

parameters such as minimum and maximum mining and processing capacity for each 

period, number of periods or mine life in years,  number of pre-striping years, number of 
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simulation realizations and the  discounted cost of over and under production in each 

period ( ( )upc t  and  ( )opc t ) .  These values can be equal specially when there is no 

stockpile. For the case that there is a stockpile, the overproduction of each period is 

calculated as Eq.(2.26). 

Figure  2-9 shows the over and under production costs at different periods. 

Also in the mean-variance approach, there is one input parameters called Lambda (λ ). 

Lambda is set in ‘params.m ’ in case that the mean-variance is the interested approach. 

The output file name for both of ‘params.m ’ and ‘params_Stockpile.m ’ is 

‘inputToMILPcuts3.mat’ . This file is the only input file for all the optimization 

steps that are described below. 

The next step is use the ‘inputToMILPcuts3.mat ’ to generate schedule with 

different methods. For each method there is a folder. As before the main code called 

‘main.m ’ is the one should be run. Other files are the sub-routines and are required to 

run the code.  

Here is the description for each method: 

• MILP_Cuts: this folder contains the optimization main codes and subroutines 

that are witten for generating schedule without considering grade uncertainty. 

Basically, it is based on Eqs.(2.11) to (2.19).  It is a mixed integer linear 

programming (MILP) in cut level. The input file is the output file of 

‘params.m ’  

• MILP_Cuts_Sims: This folder has MATLAB codes for generating schedules 

based on Eqs.(2.35) to (2.36) and its constrains described in section   2.6. This 

model is a MILP problem too. The input file is also the output file of 

‘params.m ’  

• MILP_Cuts_Sims _Stockpile: In this folder, there are codes that generate the 

schedule based on Eqs. (2.38) and its constrains described in section   2.6. The 

input file is the out file of ‘params_Stockpile.m ’.  

• MIQP_Cuts_Sims: to generate a schedule based on mean-variance approach 

presented in section  2.7 the codes inside this folder is required. Three different 

methods are presented in section 3.5. But the last solution was coded. Therefore 
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the schedule generated by the codes inside this folder is based on Eq.(2.49) and 

its constraints Eq. (2.12) to Eq. (2.20). 

 

 


