
University of Alberta

PERFORMANCE ANALYSIS OF RECENT REAL-TIME HEURISTIC SEARCH
THROUGH SEARCH-SPACE CHARACTERIZATION

by

Daniel Huntley

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Daniel Huntley
Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis, and
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatever without the author’s prior written permission.

Abstract

Recent real-time heuristic search algorithms have demonstrated outstanding performance in video

game pathfinding. However, their applications have been thus far limited to that domain. We pro-

ceed with the aim of facilitating wider applications of real-time search by fostering a greater under-

standing of the performance of recent algorithms. We first introduce several algorithm-independent

complexity measures for search spaces and correlate their values with algorithm performance. The

complexity measures are statistically shown to be strong predictors of algorithm performance across

a set of commercial video game maps. We then extend this analysis to a wider variety of search

spaces in the first formal application of state of the art real-time search to domains outside of video

game pathfinding.

Acknowledgements

I would like to extend my sincere thanks to my friends and family for their support during my

research. I would also like to thank the other members of IRCL for their feedback and assistance.

In addition, I thank Ramon Lawrence for his feedback in the early stages of this research. I would

also like to acknowledge the financial support of iCORE and NSERC.

I would like to thank all of the members of my examination committee for volunteering their

time and efforts. Lastly, I owe a great thanks to my supervisor Vadim Bulitko. Without his continued

guidance and support, this research would have been impossible.

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

2 Problem Formulation 3

2.1 Heuristic Search Problems . 3

2.2 Search Performance . 4

3 Real-time Search Algorithms 5

3.1 LRTA*: The Foundation . 6

3.1.1 Hill-climbing . 6

3.2 D LRTA* . 7

3.3 kNN LRTA* . 8

3.4 HCDPS . 11

3.5 TBA* . 13

4 Related Work 17

4.1 Real-time Heuristic Search Analysis . 17

4.2 Characterizing Search Spaces . 18

4.3 Predicting Search Performance . 20

5 Complexity Measures 21

5.1 Domain-Independent Complexity Measures . 21

5.2 Computing Complexity Measures in Practice . 22

5.2.1 Sufficient Sampling . 22

5.2.2 Localized Complexity . 23

6 Applications to Videogame Pathfinding 25

6.1 Pathfinding as a Search Problem . 25

6.2 Experimental Design . 26

6.2.1 Algorithm Implementation Details . 27

6.3 Correlation . 27

6.3.1 Correlation Among Algorithms . 28

6.3.2 Correlation Among Complexity Measures 29

6.3.3 LRTA* . 31

6.3.4 D LRTA* . 32

6.3.5 kNN LRTA* . 32

6.3.6 HCDPS . 33

6.3.7 TBA* . 33

6.3.8 Correlation to Database Construction Time 34

7 Predictive Modelling 35

7.1 Experimental Design . 35

7.2 Predicting Mean Suboptimality . 37

7.3 Predicting Median Suboptimality . 37

7.4 Predicting Database Construction Time . 38

7.5 Assisting Algorithm Parameterization . 39

8 Beyond Video Game Pathfinding 41

8.1 Road Maps . 41

8.1.1 Correlation Among Complexity Measures 42

8.1.2 Correlation Among Algorithms . 42

8.1.3 Correlation Between Complexity and Performance 42

8.2 Mazes . 44

8.2.1 Correlation Among Complexity Measures 45

8.2.2 Correlation Among Algorithms . 46

8.2.3 Correlation Between Complexity and Performance 47

9 Discussion 49

9.1 Understanding Algorithm Performance . 49

9.2 Facilitating Algorithm Use . 49

9.3 Characterizing Benchmarks . 50

9.4 Future Work . 50

10 Conclusion 51

Bibliography 52

A Videogame Maps 54

B Videogame Pathfinding Plots 57

C Road Map Plots 63

D Maze Pathfinding Plots 69

List of Tables

6.1 Spearman rank correlation coefficients ρ for mean solution suboptimality. p-values

for statistical significance are given in italics. 29

6.2 Spearman rank correlation coefficients ρ for median solution suboptimality. p-

values for statistical significance are given in italics. 29

6.3 Spearman rank correlation coefficients ρ between complexity measure values. p-

values for statistical significance are given in italics. 30

6.4 Spearman rank correlation coefficients ρmean for mean solution suboptimality against

complexity measure values. p-values for statistical significance are given in italics.

The strongest correlation for each algorithm is in bold. 31

6.5 Spearman rank correlation coefficients ρmedian for median solution suboptimality

against complexity measure values. p-values for statistical significance are given

in italics. The strongest correlation for each algorithm is in bold. 32

6.6 Spearman rank correlation coefficients ρtime between complexity measure values and

database computation time. p-values for statistical significance are given in italics. . 34

7.1 Classification accuracy for discretized mean suboptimality. The most accurate clas-

sifier for each algorithm is given in bold. 36

7.2 Prediction error (RMSE) for raw mean suboptimality. RRSE is given in italics. The

most accurate predictor for each algorithm is given in bold. 36

7.3 Classification accuracy for discretized median suboptimality. The most accurate

classifier for each algorithm is given in bold. 37

7.4 Prediction error (RMSE) for raw median suboptimality. RRSE is given in italics.

The most accurate predictor for each algorithm is given in bold. 37

7.5 Classification accuracy for discretized database construction time. The most accu-

rate classifier for each algorithm is given in bold. 38

7.6 Prediction error (RMSE) for raw database construction time. RRSE is given in

italics. The most accurate predictor for each algorithm is given in bold. 38

7.7 Classification accuracy for kNN LRTA* database size. The most accurate classifier

for each algorithm is given in bold. 39

7.8 Prediction error (RMSE) for kNN LRTA* database size. RRSE is given in italics.

The most accurate predictor for each algorithm is given in bold. 40

8.1 Spearman rank correlation coefficients ρ between complexity measure values for

road maps. p-values for statistical significance are given in italics. Correlations

substantially different from those observed for video game pathfinding are indicated

in bold. 43

8.2 Spearman rank correlation coefficients ρmean for mean solution suboptimality for

road maps. p-values for statistical significance are given in italics. 44

8.3 Spearman rank correlation coefficients ρmedian for median solution suboptimality for

road maps. p-values for statistical significance are given in italics. 44

8.4 Spearman rank correlation coefficients ρmean for mean solution suboptimality against

complexity measure values for road maps. p-values for statistical significance are

given in italics. The strongest correlation for each algorithm is in bold. 44

8.5 Spearman rank correlation coefficients ρmedian for median solution suboptimality

against complexity measure values for road maps. p-values for statistical signifi-

cance are given in italics. The strongest correlation for each algorithm is in bold. . 44

8.6 Spearman rank correlation coefficients ρ between complexity measure values for

mazes. p-values for statistical significance are given in italics. Correlations sub-

stantially different from those observed for video game pathfinding are indicated in

bold. 46

8.7 Spearman rank correlation coefficients ρmean for mean solution suboptimality for

maze pathfinding. p-values for statistical significance are given in italics. 47

8.8 Spearman rank correlation coefficients ρmedian for median solution suboptimality for

maze pathfinding. p-values for statistical significance are given in italics. 47

8.9 Spearman rank correlation coefficients ρmean for mean solution suboptimality against

complexity measure values for maze pathfinding. p-values for statistical significance

are given in italics. The strongest correlation for each algorithm is in bold. 48

8.10 Spearman rank correlation coefficients ρmedian for median solution suboptimality

against complexity measure values for maze pathfinding. p-values for statistical

significance are given in italics. The strongest correlation for each algorithm is in

bold. 48

List of Figures

3.1 Sample execution of D LRTA*. A is the current location of the D LRTA* agent and

G is the goal state. Abstract states are the groups of cells separated by dashed lines.

Representative states are demarked by blue diamonds. Subgoal states that will be

used along the red path are indicated by green circles. From its current position,

the D LRTA* agent will search for the subgoal stored for the pair of abstract states

(3, 5), indicated with a double outline. Figure taken from Bulitko et al. [10]. 9

3.2 Demonstration of the offline component of kNN LRTA*. Left: Two random pairs

of states are selected. Centre: The optimal path is found between the pairs of states.

Right: The optimal paths are compressed into chains of subgoals. Figure taken from

Bulitko et al. [8] . 9

3.3 Demonstration of the online component of kNN LRTA*. Left: A kNN LRTA* is

tasked with finding a path from S to G. Centre: The two subgoal records built in

Figure 3.2 are considered for use. (S1,G1) is ranked as more similar than (S2,G2)

to (S,G). Right: S1 is not hill-climbing reachable from S. (S2,G2) is the chosen

database record. Figure taken from Bulitko et al. [8] 11

3.4 HCDPS partitioning of a videogame map. Figure taken from Lawrence et al. [25] . 12

3.5 An example of TBA* execution. Figure taken from Björnsson et al. [25] 15

5.1 Stability plots for a sample videogame pathfinding search space. 23

5.2 A Towers of Hanoi search space. Notice the large amount of symmetry in the search

space. 24

6.1 Sample maps from the video games (clockwise from top left) Baldur’s Gate, Counter-

strike: Source, Warcraft 3 and Dragon Age: Origins. 26

7.1 Predictive model of search performance. 35

7.2 Predictive model for assisting algorithm parameterization. 39

8.1 An example 512× 512 maze, with a section enlarged for visibility. This maze has a

corridor width of 1. 45

A.1 Maps from the video game Baldur’s Gate [1]. 55

A.2 Maps from the video game Counter-strike: Source [33]. 55

A.3 Maps from the video game Dragon Age: Origins [2]. 56

A.4 Maps from the video game Warcraft 3 [4]. 56

B.1 Mean suboptimality by algorithm against mean suboptimality by algorithm for videogame

pathfinding problems. 58

B.2 Median suboptimality by algorithm against median suboptimality by algorithm for

videogame pathfinding problems. 58

B.3 Complexity measure values against other complexity measure values for videogame

pathfinding problems. (Continued in Figure B.4.) 59

B.4 Continued: Complexity measure values against other complexity measure values for

videogame pathfinding problems. 60

B.5 Complexity measure values against mean algorithm suboptimality for videogame

pathfinding problems. 61

B.6 Complexity measure values against median algorithm suboptimality for videogame

pathfinding problems. 62

C.1 Mean suboptimality by algorithm against mean suboptimality by algorithm for road

map problems. 64

C.2 Median suboptimality by algorithm against median suboptimality by algorithm for

road map problems. 64

C.3 Complexity measure values against other complexity measure values for road map

problems. (Continued in Figure C.4.) . 65

C.4 Continued: Complexity measure values against other complexity measure values for

road map problems. 66

C.5 Complexity measure values against mean algorithm suboptimality for road map

problems. 67

C.6 Complexity measure values against median algorithm suboptimality for road map

problems. 68

D.1 Mean suboptimality by algorithm against mean suboptimality by algorithm for maze

pathfinding problems. 70

D.2 Median suboptimality by algorithm against median suboptimality by algorithm for

maze pathfinding problems. 70

D.3 Complexity measure values against other complexity measure values for maze pathfind-

ing problems. (Continued in Figure D.4.) . 71

D.4 Continued: Complexity measure values against other complexity measure values for

maze pathfinding problems. 72

D.5 Complexity measure values against mean algorithm suboptimality for maze pathfind-

ing problems. 73

D.6 Complexity measure values against median algorithm suboptimality for maze pathfind-

ing problems. 74

List of Algorithms

1 LRTA*(sstart, sgoal, d) . 6

2 HC-Reachable(s1, s2, b) . 7

3 D ← build DLRTA*(`) . 7

4 D LRTA*(sstart, sglobal goal, D) . 8

5 build kNN LRTA*(N) . 10

6 Γ← compress((s1, ..., st)) . 10

7 kNN LRTA*(sstart, sglobal goal, d) . 11

8 r ← knnLRTAchoose(s, sglobal goal) . 12

9 P ← partition(S) . 13

10 D ← generateSubgoals(P) . 13

11 HCDPS(sstart, sglobal goal, D) . 14

12 TBA*(sstart, sgoal, R) . 16

12

Chapter 1

Introduction

Heuristic search is a mainstay of artificial intelligence research. A demand for quickly generated

solutions to search problems gave rise to a sub-field of investigation: real-time heuristic search.

Real-time heuristic search algorithms make decisions in constant time, independent of the size of

the problem being solved.

Recent algorithms have demonstrated exceptional academic performance in video game

pathfinding. However, despite being formulated for general search, most of these algorithms have

not been applied to a broader selection of problems. In preliminary experimentation, we found that

many of the algorithms yielded mixed or poor results in other search spaces, such as combinatorial

search puzzles [20]. Motivated by this mixed performance, we seek to establish a way of empiri-

cally characterizing search spaces based on their suitability for different real-time heuristic search

algorithms. This would assist algorithm selection, and provide insight for the development of future

algorithms.

In this chapter we discuss the goals of our research. We then describe our specific contributions,

and outline the layout of the remainder of this document.

1.1 Motivation

There are three major goals motivating our research. We address all of these goals through an anal-

ysis of real-time heuristic search performance, focusing on how performance is affected by search

space features. First, we seek to build a greater understanding of where current real-time heuristic

search is and is not effective. Second, we wish to demonstrate that this knowledge can facilitate

algorithm selection and parameterization. Finally, we want to provide a way for other researchers

to characterize benchmark search problems for the development of future real-time heuristic search

algorithms.

1

1.2 Contributions

This document makes the following contributions. First, we present a set of complexity measures

which are useful for characterizing search space complexity as it pretains to the performance of

modern real-time search algorithms. Some of these complexity measures are original to this work,

and some have been adapted from the literature.

We then empirically link the values of the collected complexity measures to the performance

of modern database-driven real-time search algorithms. We begin with an examination of algorithm

performance in pathfinding on a varied set of videogame maps. This has served as the traditional test

bed for subgoaling real-time search [10] [8] [25]. This examination demonstrates a statistical cor-

relation between solution suboptimality and complexity measure values. It also shows that machine

learning can be used to build a models to predict algorithm performance and facilitate algorithm

parameterization.

We continue with a parallel examination of algorithm performance beyond videogame pathfind-

ing. This study is performed using mazes and road maps. To our knowledge, this is the first time

that these algorithms have been applied to these domains. These additional search spaces represent

an incremental step towards more general spaces, and introduce several of the challenges that must

be addressed if contemporary algorithms are to be successfuly adapted for broader domains such as

planning.

2

Chapter 2

Problem Formulation

In this chapter we provide definitons for the terminology that will be used throughout the remainder

of this document. We formally define heuristic search problems, and present our methodology for

measuring the effectiveness of heuristic search algorithms.

2.1 Heuristic Search Problems

For the purposes of this document, we define a search problem as the following:

• S - a set of vertices, each being a representative of a distinct state in the problem model;

• E - a set of transitions, or weighted directed edges, on S × S;

• sstart ∈ S - the start state;

• sgoal ∈ S - the goal state;

• h - a heuristic function; h(s1, s2) is the heuristic distance between states s1 and s2 ∈ S; h(s)

is the heuristic distance between state s ∈ S and the closest goal state

The graph comprising S andE is called the search space. A single search space may accomodate

many possible search problems. Search space size is defined as |S|. Branching factor is defined as

|E|/|S|, the mean number of edges exiting any state in the search space. State s2 is said to be

reachable from state s1 if there exists a set of edges (s1, si), (si, si+1), ... (si+n, s2) connecting s1

to s2 in the search space. A search space is connected if every state is reachable from every other

state. A “dead-end” is a state which has incoming edges, but no outgoing edges.

A solution to a search problem consists of the ordered set of edges that forms a path from sstart to

the goal state sgoal. This is intuitively the set of decisions that an agent must make, or the plan that it

must execute, to traverse from an initial state to a goal state. The length of a solution is the number

of edges comprising the solution, while the cost of a solution is the sum of the weights of those

edges. An optimal solution to a search problem is one where there does not exist another solution

with a lower cost. A suboptimal solution is any solution to a search problem which is not optimal.

3

The heuristic function h may be used by an agent to inform decisions when searching for a

solution to a problem. Here we define two specific types of heuristic functions:

• h0 - the initial heuristic function; h0(s1, s2) is the estimated minimal cost between states s1

and s2 ∈ S; h0(s) is the estimated minimal distance between state s ∈ S and the goal state;

• h∗ - the optimal cost function; h∗(s1, s2) is the actual minimal cost between states s1 and

s2 ∈ S; h∗(s) is the actual minimal distance between state s ∈ S and the goal state.

We refer to the class of algorithms designed to solve search problems as heuristic search al-

gorithms. An agent executing a heuristic search algorithm is a heuristic search agent. A heuristic

search algorithm that is guaranteed to find a solution if one exists is called complete. An algorithm

that is guaranteed to find an optimal solution is called an optimal algorithm. Learning algorithms are

those which make updates to their heuristic function during execution. In these instances, h will de-

note the current heuristic function. A heuristic function h is admissible if and only if h(s) ≤ h∗(s)

∀s ∈ S.

2.2 Search Performance

We will use two major metrics to assess the performance of a heuristic search algorithm in this doc-

ument: solution suboptimality and pre-computation time. These measures are collectively referred

to as search performance. We define solution suboptimality as the ratio of the cost of a solution to

the cost of the optimal solution. For example, if a given solution has cost 5 and the optimal solution

has cost 4, then the solution suboptimality is 1.25.

Some of the algorithms that we discuss require pre-computation time to construct a database for

the given search space. We refer to this as database construction time or pre-computation time. Any

such preparatory behaviour performed by a search agent is refered to as being offline, whereas any

work done during active solving of specific search problems is refered to as being online.

4

Chapter 3

Real-time Search Algorithms

In this chapter, we discuss several recent real-time heuristic search algorithms and the historical

foundation of those algorithms. We also define hill-climbability, and present the algorithm for

checking hill-climbability which is used throughout this document.

Real-time heuristic search algorithms operate under enforced time constraints on their decision

making. This limit is by definition a constant independent of search space size. Every search

decision by a real-time agent must be made within this fixed amount of time. A real-time agent

typically interleaves phases of planning and execution to traverse from the start state to a goal state.

In a planning phase, the agent has a bounded amount of time to select a single edge out of the current

state. This is typically done by expanding a frontier, a collection of nearby states, for consideration.

In an execution phase, the agent moves along the selected edge to the neighbour state. The current

state is updated to be the neighbour state, and a new planning phase begins.

A common approach among the algorithms we discuss is to augment online performance with

the offline pre-computation of a search-space-specific database. These databases are usually used to

provide one or several intermediate goals, or subgoals, for use during search. When an appropriate

subgoal is found, search is directed towards that state rather than the original global goal. This

approach often improves search performance, since heuristic accuracy is typically higher for states

which are closer together.

All of the real-time heuristic search algorithms that we discuss are suboptimal (i.e., do not guar-

antee optimal solutions). We refer to the class of algorithms that are not real-time as conventional

heuristic search methods. Popular search methods in this class include both optimal algorithms such

as A* [14] and IDA* [24], and suboptimal algorithms such as weighted-A* and HPA* [6]. These

search methods typically perform by finding an entire solution to a problem offline before an agent

executes the corresponding plan online. This document does not focus on conventional heuristic

search, but some methods are discussed briefly.

5

3.1 LRTA*: The Foundation

Learning real-time A* (LRTA*) [23] is the first real-time heuristic search algorithm we discuss.

LRTA* serves as the foundation for three of the subsequent real-time search algorithms discussed in

this chapter.

Pseudo-code for LRTA* is given as Algorithm 1. The agent begins by initializing its current

location s to the start state sstart (line 1). Next, a frontier of sucessor states is generated surrounding

s (line 3). This frontier includes all states reachable via a maximum of d transitions from s. d is

defined as the frontier-depth, and is given as a constant to LRTA*.

Once the frontier is generated, the agent selects the most promising state, s′ (line 4). The chosen

state is that which minimizes the function g(s′) + h(s′), where g(s′) is the cost of an optimal path

from s to s′ within the search frontier. To deter state revisitation, the heuristic value h(s) is updated

to g(s, s′)+h(s′) (line 5). The agent then moves its position one step along the path towards s′ (line

6), and a new frontier is expanded. These steps are repeated until the agent’s current state matches

the goal state.

Despite the learning step at line 5, LRTA* is prone to frequent state revisitation. This tendency

has been named scrubbing [7], since the agent appears to “scrub” back and forth over small regions

of the search space to fill in heuristic depressions. Scrubbing behaviour is detrimental for two major

reasons. First, state revisitation necessarily increases suboptimality of solutions. Second, scrubbing

in applications such as videogame pathfinding is visually unappealing and reduces player immersion.

This is a major barrier preventing LRTA* from being applied in commercial videogames.

Algorithm 1 LRTA*(sstart, sgoal, d)
1: s← sstart
2: while s 6= sgoal do
3: generate successor states of s up to d edges away, generating a frontier
4: find a frontier state s′ with the lowest g(s, s′) + h(s′)
5: h(s)← g(s, s′) + h(s′)
6: change s one step towards s′

7: end while

3.1.1 Hill-climbing

We define a hill-climbing (HC) agent as a greedy LRTA*-like agent which performs no heuristic

updates and only uses the immediate neighbours of the current state to build the search frontier.

Hill-climbing is not complete. Search is terminated if the agent ever reaches a state with a heuristic

value less than or equal to all surrounding states. To detect search problems where one state is HC-

reachable from another, that is, where a hill-climbing agent will find a solution, we use Algorithm

2 [8]. Note that this algorithm does not guarantee that the HC path will be optimal, but only that it

can be found by a hill-climbing agent.

6

Algorithm 2 HC-Reachable(s1, s2, b)
1: s← s1; i← 0
2: while s 6= s2 and i < b do
3: generate immediate successor states of s, generating a frontier
4: if h(s) ≤ h(s′) for all s′ in the frontier then
5: terminate search
6: end if
7: find a frontier state s′ with the lowest g(s′) + h(s′, s2)
8: s← s′; i← i+ 1
9: end while

3.2 D LRTA*

Dynamic LRTA* (D LRTA*) [10] was designed to mitigate the scrubbing behaviour of LRTA*. Two

improvements are made over the original LRTA*: dynamic selection of search depth d, and case-

based subgoaling. Both of these ends are accomplished with the aid of a pre-computed database

generated offline, before the D LRTA* agent is tasked with solving search problems online.

The first component of the D LRTA* database is a system that dynamically supplies a search

depth d to the agent. D LRTA* proposes two methods for selecting this search depth. The first

method relies on training a classifier that takes as input information about the heuristic function

and recent search history, and returns a search depth as output. The alternative method builds an

abstracted version, or pattern database of the state space. For each pair of abstract states, an optimal

search depth is computed and stored in a lookup table. For reasons discussed in Chapter 6, our

implementation of D LRTA* uses a fixed search depth of 1 rather than one of these two dynamic

approaches proposed by Bulitko et al.

Algorithm 3 D ← build DLRTA*(`)
1: apply a clique abstraction to the search space ` times
2: for every abstract state ai do
3: si ← representative state for ai
4: run Dijkstra’s algorithm from si
5: store shortest path to all other representative states
6: end for
7: for every state si representative of ai do
8: for every state sj representative of aj do
9: ssubgoal ← first state on shortest path from si to sj outside of ai

10: store ssubgoal for (ai,aj) in D
11: end for
12: end for

The second component of the D LRTA* database provides dynamic subgoals. Pseudo-code for

building this component is given in Algorithm 3. First, a clique-abstraction is applied to the search

space ` times (line 1). The result is that every ground-level state in the search space is mapped to a

corresponding abstract state. Every abstract state ai is also given a single representative state si in

the original search space. Since not all of the search spaces we examine are map-based, a random

7

ground-level state is chosen as the representative for each abstract state, rather than the centroid

ground-level state.

After building the abstraction, Dijkstra’s algorithm [12] is used to find the optimal path between

every pair of representative states (lines 2-6). Finally, for each of these paths from si to sj , we find

the first state on the path that moves into a new abstract state (line 9). This first state, ssubgoal, is

selected and stored as the subgoal for the given pair of abstract states, ai and aj (line 10). Whenever

a D LRTA* agent is in abstract state ai and is searching for a goal in abstract state aj , the subgoal

ssubgoal is used.

The foundation for the online component of D LRTA* (Algorithm 4) is very similar to the

original LRTA*. The principal changes are at line 3. Rather than expanding a frontier to a static

depth towards the global goal sglobal goal, the agent consults the database D for an appropriate depth

d and subgoal ssubgoal. Search is then directed towards ssubgoal rather than towards sglobal goal. An

example of D LRTA* in action is given in Figure 3.1.

Algorithm 4 D LRTA*(sstart, sglobal goal, D)
1: s← sstart
2: while s 6= sgoal do
3: select search depth d and goal ssubgoal from database D
4: generate successor states of s up to d steps away, generating a frontier
5: find a frontier state s′ with the lowest g(s, s′) + h(s′, ssubgoal)
6: h(s, ssubgoal)← g(s, s′) + h(s′, ssubgoal)
7: change s one step towards s′

8: end while

3.3 kNN LRTA*

The next database-driven real-time algorithm we discuss is k-nearest neighbour LRTA* (kNN

LRTA*) [8]. The primary advantage kNN LRTA* offers over D LRTA* is that it does not require a

complete enumeration of all states in the search space like D LRTA* does. Rather than partitioning

the search space into abstract regions, kNN LRTA* creates database records for random pairs of

states across the search space. Online, the agent selects the nearest, or most appropriate, database

entry for the search problem at hand.

The offline construction of a kNN LRTA* database proceeds according to Algorithm 5. The

construction is parameterized by N , the number of desired entries in the database. To create one of

the N records, we first select a pair of random states (sstart, sgoal) (line 3). An optimal path p from

sstart to sgoal is found using A* . If no solution exists, or if the solution has length less than 3, a new

random pair of states is selected. Otherwise, we generate a database entry Γp by compressing p into

a chain of subgoals (lines 6-7). This process is repeated for each of the N records. Example offline

database construction by kNN LRTA* is demonstrated in Figure 3.2.

The compression of an optimal solution into a chain of subgoals is performed using Algorithm

8

Figure 3.1: Sample execution of D LRTA*. A is the current location of the D LRTA* agent and G is
the goal state. Abstract states are the groups of cells separated by dashed lines. Representative states
are demarked by blue diamonds. Subgoal states that will be used along the red path are indicated
by green circles. From its current position, the D LRTA* agent will search for the subgoal stored
for the pair of abstract states (3, 5), indicated with a double outline. Figure taken from Bulitko et al.
[10].

6. The subgoals are selected from the states (s1, ...st) in a path p such that each subgoal is reachable

from the previous one via simple hill-climbing. The first and final states are automatically included

in the chain of subgoals. γ is the set of indices of states included in the chain of subgoals. Beginning

one index beyond the last subgoal added to γ, we search for the furthest index i which is HC-

reachable from the last subgoal. This is achieved via a binary search. The indices l and r track a

decreasing window on the set of candidate indices. Through repeated HC-reachability checks (line

8), we repeatedly decrease the size of the window by half, until only a single state i remains. We

then add i to γ. This is repeated until the index t of the final state st is added to γ (line 2).

The online component of kNN LRTA* is presented in Algorithm 7. Much like D LRTA*, kNN

Figure 3.2: Demonstration of the offline component of kNN LRTA*. Left: Two random pairs of
states are selected. Centre: The optimal path is found between the pairs of states. Right: The
optimal paths are compressed into chains of subgoals. Figure taken from Bulitko et al. [8]

9

Algorithm 5 build kNN LRTA*(N)
1: subgoal database← ∅
2: for n = 1, ..., N do
3: generate a random pair of states (sstart, sgoal)
4: compute an optimal p from sstart to sgoal with A*
5: if p 6= ∅ and |p| ≥ 3 then
6: Γp ← compress(p)
7: add Γp to the subgoal database
8: end if
9: end for

Algorithm 6 Γ← compress((s1, ..., st))
1: γ ← (1)
2: while t /∈ γ do
3: i← end(γ) +1
4: l← i+ 1
5: r ← t
6: while l ≤ r do
7: m← b l+r2 c
8: if HC-Reachable(send(γ), sm) then
9: i← m

10: l← m+ 1
11: else
12: r ← m− 1
13: end if
14: end while
15: γ ← γ ∪ (i)
16: end while
17: Γ← sγ

LRTA* is an adapted form of LRTA*. However, rather than receiving a single subgoal at a time from

the database, kNN LRTA* receives a stack of subgoals r (line 5). If no subgoal is available because

no suitable record was found, sglobal goal is placed in r. Every time the agent’s location is updated,

kNN LRTA* compares the new location s to the top of r. If the agent has reached ssubgoal (or if

sglobal goal is being used) the top entry in r is discarded (line 13). If sglobal goal was being used, kNN

LRTA* consults the database for a new subgoal in the next iteration of the planning phase (lines

4-6).

Algorithm 8 details the online method for selecting the most appropriate chain of subgoals based

on the agent’s current location s and the goal sglobal goal. First, the records in the database are sorted

in ascending order by their dissimilarity to the current search problem (line 1). The dissimilarity

of record ri is defined as max(h(s, sfirst), h(slast, sglobal)), where sfirst and slast are the first and last

states respectively in the chain of states constituting record ri. We then iterate through the sorted

list of records until we find one where sfirst is HC-reachable from s, and sglobal goal is HC-reachable

from slast (lines 2-8). The first such record is returned for use by kNN LRTA*. If no such record

is available, search defaults to the global goal (line 9). Notice that only the first M records are

10

Figure 3.3: Demonstration of the online component of kNN LRTA*. Left: A kNN LRTA* is tasked
with finding a path from S toG. Centre: The two subgoal records built in Figure 3.2 are considered
for use. (S1,G1) is ranked as more similar than (S2,G2) to (S,G). Right: S1 is not hill-climbing
reachable from S. (S2,G2) is the chosen database record. Figure taken from Bulitko et al. [8]

Algorithm 7 kNN LRTA*(sstart, sglobal goal, d)
1: s← sstart
2: r ← ∅
3: while s 6= sgoal do
4: if r = ∅ then
5: r ← knnLRTAchoose(s, sglobal goal)
6: end if
7: ssubgoal ← top of r
8: generate successor states of s up to d steps away, generating a frontier
9: find a frontier state s′ with the lowest g(s, s′) + h(s′, ssubgoal)

10: h(s, ssubgoal)← g(s, s′) + h(s′, ssubgoal)
11: change s one step towards s′

12: if top of r = s or top of r = sglobal goal then
13: pop from r
14: end if
15: end while

considered for selection. M < N is a constant chosen to increase the online speed of kNN LRTA*,

since HC-reachability checks are computationally expensive. Example online operation of kNN

LRTA* is demonstrated in Figure 3.3.

3.4 HCDPS

Both kNN LRTA* and D LRTA* are prone to the same scrubbing behaviour as LRTA*, either due

to unavailable or inappropriate subgoals. Scrubbing can be viewed as a side effect of the sometimes

slow heuristic learning process that these algorithms perform. Hill-Climbing Dynamic Programming

Search (HCDPS) aims to avoid scrubbing by removing this learning component, and by guaranteeing

the availability of a subgoal record [25].

Similar to the previous two algorithms, HCDPS constructs a database offline to inform search

decisions. The first step in this database construction involves partitioning the entire search space

into a set of abstract regions called HC regions. Each HC region is a set of states, with one state

11

Algorithm 8 r ← knnLRTAchoose(s, sglobal goal)
1: (r1, ..., rN)← database records from most to least similar
2: for i = 1, ...,M do
3: retrieve ri = (sfirst, ..., slast)
4: if HC-Reachable(s, sfirst) and HC-Reachable(slast, sglobal goal) then
5: r ← ri
6: return
7: end if
8: end for
9: r ← (s, sglobal goal)

Figure 3.4: HCDPS partitioning of a videogame map. Figure taken from Lawrence et al. [25]

designated as the seed state. Every state in a HC region is mutually HC-reachable with the seed

state. In practice, the required HC checks are constrained to a constant maximum distance. An

example partition of the search space by HCDPS is presented in Figure 3.4. The second step in the

database construction involves computing a path between the representative seed states of each pair

of HC regions. This path is then converted into a chain of subgoals and stored as a database record.

Pseudo-code for the partitioning scheme is presented in Algorithm 9. The partitioning P is

initialized to the empty set, and Sunpartitioned is initialized as the set of all states in the search space

(lines 1-2). While states remain that have not been assigned to a HC region in P , we select a random

state sseed from Sunpartitioned and designate it as a new seed state. We then grow a maximal HC region

R from sseed via breadth first search (line 5). An HC region is maximal when no adjacent states can

be added to the region, either since they are not mutually HC-reachable to the seed state, or because

of the bound on the HC distance. Only states remaining in Sunpartitioned are eligible to be added to R.

sseed and R are recorded to the partition P (line 7) and the loop continues.

The procedure for generating a subgoal database from the search space partitioning is presented

in Algorithm 10. HCDPS does not calculate the true optimal path between every pair of represen-

12

Algorithm 9 P ← partition(S)
1: P ← ∅
2: Sunpartitioned ← S
3: while |Sunpartitioned| > 0 do
4: select a random state sseed from Sunpartitioned
5: R← maximal HC region grown from sseed
6: Sunpartitioned ← Sunpartitioned −R
7: P ← P ∪ (sseed, R)
8: end while

tative seed states. Instead, we use dynamic programming to assemble composite paths by chaining

together optimal paths between seed states of neighbouring HC regions. The resulting algorithm is

essentially an adapted version of the Floyd-Warshall algorithm which finds a path between every

pair of seed states in the partition P . First, HCDPS finds the optimal path between seed states of

adjacent HC regions (line 3), and compresses those paths (line 4) using the method in Algorithm 6.

Once this is done for all pairs of neighbouring HC regions, the paths between all other HC regions

are constructed using dynamic programming (lines 7-13).

Algorithm 10 D ← generateSubgoals(P)
1: for each seed state si in P do
2: for each seed state sj of an adjacent HC region do
3: path← optimal path from si to sj using A*
4: subgoals[i][j]← compress(path)
5: end for
6: end for
7: for k from 1 to |P | do
8: for i from 1 to |P | do
9: for j from 1 to |P | do

10: subgoals[i][j]← the shorter of subgoals[i][j] and subgoals[i][k] + subgoals[k][j]
11: end for
12: end for
13: end for

The online HCDPS agent is presented in Algorithm 11. It is similar to the kNN LRTA* agent

presented in Algorithm 7 with a few exceptions. The first difference is that subgoals are guaranteed

to be available. To select an appropriate database record for a search problem, we simply look up

the assigned HC regions for the start and goal state pair (line 2). The second difference is that a

search depth of 1 is always used when expanding a search frontier (line 5). The final difference is

the elimination of the learning step. Since HCDPS provides subgoals that can guide an agent to any

goal via hill-climbing alone, there is never a need to update heurisic values.

3.5 TBA*

The final real-time algorithm we discuss in this document is time-bounded A* (TBA*) [3]. Unlike

the previous three algorithms discussed, TBA* does not make use of a subgoal database. However,

13

Algorithm 11 HCDPS(sstart, sglobal goal, D)
1: s← sstart
2: r ← subgoal stack for (sstart, sglobal goal) from D
3: while s 6= sgoal do
4: ssubgoal ← top of r
5: generate successor states of s, generating a frontier
6: find a frontier state s′ with the lowest g(s, s′) + h(s′, ssubgoal)
7: s← s′

8: if s = top of r then
9: pop from r

10: end if
11: end while

recent literature has included TBA* in the discussion of state of the art real-time heuristic search

[25], and so we include it in our research.

Pseudo-code for TBA* is presented in Algorithm 12. Similar to the above LRTA*-based algo-

rithms, TBA* interleaves planning (lines 6–20) and execution (lines 21-31). The planning phase

makes use of a series of resource-limited iterations of conventional A* (line 7). In each iteration,

only a fixed number of node expansions are permitted, as parameterized by R. However, the open

and closed lists are stored in the variable L between iterations. This specialized A* search is per-

formed in every planning phase until a goal state is found.

Next, the most promising state (that with the lowest A* f cost) is selected from L (line 11).

TBA* then traces the current lowest-cost path from the most promising state back to the start state

sstart (line 13). This is performed by repeatedly consulting a table of “next hop” pointers stored by

the specialized A* agent. This tracing is also resource-limited, and may be split between iterations

of TBA* if necessary. When a trace is completed, TBA* has a new plan Pfollow for the agent to

follow in the execution phase (line 15). In the next iteration, TBA* will then begin tracing another

path from the new most promising state. This process of building a new best path for TBA* to

follow is repeated until a complete path to sgoal is found.

In the execution phase, the agent attempts to move along the current Pfollow. However, if the

agent is not currently on the path Pfollow, it will instead take a step back towards sstart (line 25).

Eventually, the agent’s backtracing will intersect with Pfollow, and it can resume moving towards the

goal. In the worst case, this does not happen until the agent has returned all the way to sstart.

Sample execution of TBA* is depicted in Figure 3.5. In this example, the TBA* agent is be-

ginning at state S and searching for state G. The cloud-shaped rings represent the states on the

open list after three successive planning phases. The darkly colored states labeled a, b and c are the

most-promising states after each planning phase, and the dotted lines represent the paths traced back

to S. In the first two execution phases, the agent moves from S to 1 and from 1 to 2. In the third

execution phase, the agent moves back to 1, trying to reach the new path leading from S to c.

Our implementation of TBA* includes enhancements presented by the original authors. Rather

than always backtracing along the former path until an intersection with the new path is found, TBA*

14

Figure 3.5: An example of TBA* execution. Figure taken from Björnsson et al. [25]

will perform a limited A* search for a shortcut to the new path. This is done by initializing the open

list of the limited A* agent with the g values associated with the new path and searching backwards

towards the agent’s current location. Another enhancement mitigates the backtracking associated

with frequently switching to a new more promising path. The agent only elects to begin following a

new path when the cumulative cost of the path is at least as high as that of the current path.

15

Algorithm 12 TBA*(sstart, sgoal, R)
1: solutionFound← false
2: solutionFoundAndTraced← false
3: doneTrace← true
4: s← sstart
5: while s 6= sgoal do
6: if not solutionFound then
7: solutionFound← A*(L, sstart, sgoal, R)
8: end if
9: if not solutionFoundAndTraced then

10: if doneTrace then
11: Pnew ← L.mostPromisingState()
12: end if
13: doneTrace←traceBack(Pnew, s, R)
14: if doneTrace then
15: Pfollow ← Pnew
16: if Pfollow.back() = sgoal then
17: solutionFoundAndTraced← true
18: end if
19: end if
20: end if
21: if Pfollow.contains(s) then
22: s← Pfollow.popFront()
23: else
24: if s 6= sstart then
25: s← L.stepBack(s)
26: else
27: s← sprev
28: end if
29: end if
30: sprev ← s
31: move agent to s
32: end while

16

Chapter 4

Related Work

There has been significant past research on analyzing search space complexity and prediction of

search algorithm performance. A modest subset of this work has focused on real-time heuristic

search in particular. In this section we explore some of this related work.

4.1 Real-time Heuristic Search Analysis

Koenig first presented motivation for analysis of real-time search performance [22]. Koenig in-

dicated that, unlike conventional search methods, real-time search was poorly understood. As a

preliminary effort, he discussed the impact of domain, heuristic and algorithm properties on search

behaviour, noting that real-time search and conventional search are affected quite differently by

these factors. Specifically, Koenig stated the following:

In general, [...] not much is known about how domain properties affect the plan-

execution time of real-time search methods, and there are no good techniques yet for

predicting how well they will perform in a given domain. This is a promising area for

future research.

Similarly, Koenig stated that there were no strong methods for predicting the comparative per-

formance of multiple different real-time search algorithms on a given planning task. As an example,

he compares the disparate performances of LRTA* and the similar algorithm Node Counting on a

selected set of domains. Koenig observed that, despite comparable typical case performance over

thousands of trials, worst case solution costs for Node Counting are substantially more expensive

than for LRTA*. Furthermore, he indicated the difficulty of predicting these degenerate cases of

Node Counting.

As stated, Koenig’s early analysis of real-time search was limited to LRTA* and select vari-

ants. We seek to extend analysis to the more contemporary class of database-driven algorithms

discussed in Chapter 3. The major motivations that we take from Koenig’s work are that real-time

search behaviour differs greatly not only from conventional search, but also among different real-

time algorithms and search spaces. Therefore, our system for characterizing algorithm performance

17

discussed in Chapter 5 is designed specifically with properties of contemporary real-time algorithms

in mind.

Bulitko and Lee performed a large scale analysis of numerous real-time heuristic search algo-

rithms, including LRTA*, ε-LRTA*, SLA* and γ-trap [9]. They developed LRTS, a unified frame-

work for these four algorithms, and performed a large scale empirical study across several search

spaces. As motivation, they cited the present difficulty of appropriately selecting algorithms and

parameters from the available pool.

Four of the five real-time search algorithms that we explore in detail have been developed in

the time after the work of Bulitko and Lee. We therefore find ourselves again faced with a similar

problem of an abundance of algorithms of which the relative merits have only been briefly explored

in a small selection of search spaces [25]. While we do not take the approach of combining the

algorithms into a single framework, we do share the motivation of facilitating algorithm selection

and parameterization.

4.2 Characterizing Search Spaces

We root our efforts to analyze real-time search performance in building an understanding of search

space features that influence search behaviour. This is largely motivated by the disparate perfor-

mance in initial experiments applying recent real-time methods to a wider variety of search spaces

[20]. Understanding search spaces can serve two important purposes. First, we can more make

more informed decisions when selecting or designing algorithms for a given search space. Second,

we can more consistently compare the performance of new algorithms by establishing benchmark

search spaces with well understood characteristics.

Two of the features that we present in Chapter 5 are derived from the work of Ishida. Ishida

identified that given the necessarily commital behaviour of real-time search algorithms, they are

more susceptible to local heuristic topography than conventional search methods [21]. To measure

this topography empirically, Ishida provides the following definitions:

A heuristic depression is a set of connected states with heuristic values less than or

equal to those of the set of immediate and completely surrounding states. A heuristic

depression is locally maximal, when no single surrounding state can be added to the set;

if added, the set does not satisfy the condition of a heuristic depression. [21]

As alluded to in Chapter 3, heuristic depressions can cause scrubbing to occur in LRTA*-based

search methods. Ishida performed experiments that enumerated heuristic depressions in mazes and

sliding tile puzzles. He also provided intuition as to how these search space features might affect

real-time search performance in terms of the number of heuristic updates performed.

Ishida also conducted an empirical comparison of the performance of LRTA* and two variants,

Real-Time A* (RTA*) [23] and Local Consistency Maintenance (LCM) [29]. The analysis focused

18

on comparing the learning efficiency of these algorithms when multiple trials are allowed (i.e., as

the heuristic converges) or when different initial heuristic functions are used.

More recently, Hoffman extended a similar study of heuristic topology1 to general planning

[17] [18]. On a set of 13 well-established planning benchmarks, Hoffman enumerated topological

heuristic features and domain properties to sort the benchmarks into a complexity taxonomy. This is

a somewhat similar approach to our ranking of search spaces based on complexity in Chapters 6 and

8, although Hoffman does not compute empirical correlations to performance. Hoffman concluded

that the benchmark taxonomy would shed insight on the relative levels of success of heuristic search

planning in these benchmarks. He also claimed that it could inform subsequent improvement of

heuristic functions, allow prediction of planning performance and assist in developing more formally

challenging benchmark problems.

Another of the complexity measures we use to characterize search spaces is inspired by the

research of Mizusawa and Kurihara [28]. They successfully demonstrated a strong link between

search performance in gridworld pathfinding domains and two “hardness measures”: initial heuristic

error and probability of solution existence. They define initial heuristic error for a search problem

as

E =
∑
s∈S′

h∗(s)− h0(s)

where S′ is the set of all states on some path between connecting the start and goal states. 2

The search spaces used by Mizusawa and Kurihara are generated randomly by making random

cells in the gridworld untraversable. The percentage of untraversable cells is called the obstacle

ratio. Since the obstacles are placed randomly, solutions are not guaranteed to exist for search

problems. The entropy

H = −p log2 p− (1− p) log2(1− p)

is used as their measure of likeliness of solution existence.

Mizusawa and Kurihara demonstrated that E, H , and LRTA* and RTA* solution cost are all

maximized at a similar obstacle ratio of approximately 41% in square, randomly generated maps.

Unlike Mizusawa and Kurihara, the search problems we consider are guaranteed to have solutions.

However, their system of using complexity measures to characterize search spaces with respect to

search performance was informative to our own research.

Rayner et. al recently examined dimensionality as an instrinsic property of search spaces [30].

They found that by considering the dimensionality of a search space, they were able to gain insights

as to what classes of heuristic function would be appropriate for that search space. As future work,

we would like to incorporate dimensionality into the selection of complexity measures we present

in Chapter 5.

1The terms topography and topology are used interchangeably in the literature when discussing heuristic functions.
2In a fully connected search space, S′ is equivalent to S, the set of all states.

19

4.3 Predicting Search Performance

Previous work has been conducted to predict the performance of simpler real-time heuristic search

algorithms. Citing important applications in planning (e.g., as part of the Heuristic Search Plan-

ner [5] and the Fast-Forward Planner [19]), Lòpez sought to model the efficiency of heuristic hill-

climbing by modelling the algorithm as a Markov process [26]. Using several sizes of the sliding

tile puzzle, the model could reasonably predict the likelihood that a hill-climbing agent reaches a

target state in a number of moves equal to the initial heuristic value. Lòpez states that this model

is useful not only as a predictor of simple real-time search performance, but as a gauge of heuristic

accuracy.

One of the complexity measures we present in Chapter 5 bears similarity to Lòpez’s work. We

consider the probability with which a hill-climbing agent successfuly reaches a target state. Unlike

Lòpez, we do not differentiate between cases where the path taken by the agent is more or less

expensive than the heuristic estimate.

20

Chapter 5

Complexity Measures

To prepare for the application of recent real-time heuristic search to new domains, we sought to first

find a method of empirically characterizing the challenges that new search spaces would bring. It is

suspected intuitively that a maze is more “complex” than an open room for an agent to navigate, but

this notion of complexity is not as evident in search spaces which are not easily visualized.

Our goals for this research are threefold. We first seek to facilitate algorithm selection. Second,

we wish to build an understanding of search space features that will inform subsequent algorithm

development. Third, we wish to support an improved system of characterizing the difficulty of

benchmark problems used in real-time search experimentation.

In this chapter we present a set of complexity measures that are used to quantify the innate fea-

tures of a search space. The complexity measures are specifically designed to assess the suitability

of existing real-time search algorithms to a given search space. We also discuss how these measures

should be computed in practice.

5.1 Domain-Independent Complexity Measures

This work uses a set of eight domain-independent complexity measures [20]. All of the measures

are calculated independently of any algorithm, and may thus be useful for assessing the suitability

of several different algorithms for a particular search space. For presentational clarity, we discuss

the measures as they are calculated for search spaces with a single goal state. However, all of the

measures could be easily adapted to serve search spaces with multiple goals.

1. HC Region Size - the mean number of states per abstract region when the search space is

partitioned using the abstraction method of HCDPS. This abstraction method is presented in

Algorithm 9 in Section 3.4.

2. HC Probability - the probability that a randomly selected state is HC-reachable from another

randomly selected state. HC-reachability is checked using Algorithm 2 from Section 3.1.1.

21

3. Scrubbing Complexity - the mean number of visits among all states receiving at least one

visit in the solution returned by an LRTA* agent. This measure is intended to model real-time

search behaviour when no sub-goals are made available to the agent.

4. Path Compressibility - the mean number of subgoal states when the solution to a random

search problem is compressed using Algorithm 6.

5. A*-Difficulty - the mean number of states on the A* closed list after solving a random search

problem, scaled by the length of the solution. This measure has been previously used to

measure the complexity of search problems for conventional search.

6. Heuristic Error - Adapted from [28]. Heuristic error is the average cumulative difference in

value between h0 and h∗ across all reachable states sampled over a random set of goal states.

7. Total Depression Width - The mean number of depressed states for a random goal state.

States within the heuristic depression containing the goal state are excluded from considera-

tion, since that depression is not inhibitive for real-time search. This measure is intended to

model the likelihood that a real-time agent will become temporarily trapped during search.

8. Depression Capacity - The mean sum of depths across all depressed states for a random goal

state. Again, the heuristic depression containing the goal state is not considered. This measure

is intended to model not only the likelihood for a real-time agent to become temporarily

trapped, but also the duration for which it will be trapped.

5.2 Computing Complexity Measures in Practice

There are two major considerations when computing the values of these measures for a search space.

First, we must make sure that we are sampling across a sufficient number of goal states or search

problems for the measured value to be representative of the search space. Second, we must calculate

the measures in a way that avoids introducing bias towards search space size. In this section we

discuss how we address both concerns.

5.2.1 Sufficient Sampling

To determine an appropriate sample size to calculate each measure, we perform repeated sampling

until the current observed mean becomes relatively stable. As an aid we used stability graphs,

which plot the current sample number against the current observed mean. After a certain number of

samples, we observe a decrease in fluctuation of the current mean value. This number of samples is

then used to compute that complexity measure in practice. A complete set of eight stability graphs

for a sample search space is presented in Figure 5.1.

There is no constant sample size that will be sufficient for all search spaces. However, this

method serves as a reasonable guide for selecting appropriate sample sizes. Larger search spaces,

22

Figure 5.1: Stability plots for a sample videogame pathfinding search space.

and those with diverse regional complexity, will require a larger number of samples. Luckily, many

common search spaces exhibit a similar degree of complexity across the whole search space. As

an example, see Figure 5.2. This figure depicts a small Towers of Hanoi search space with 5 pegs

and 3 discs. Due to symmetries in the search space definition, large sections of the search space are

repeated, reducing the number of samples that we will require to measure the complexity.

5.2.2 Localized Complexity

The ultimate purpose of the complexity measures is to allow efficient comparison of multiple search

spaces. Our aim is to compare these search spaces on the basis of local complexity. To ensure

that the measures are effectively capturing local complexity rather than being confounded by search

space size, we can constrain the calculation of the complexity measures to a fixed portion of the

search space. To accurately reflect the entirety of the search space, we can then perform repeated

23

Figure 5.2: A Towers of Hanoi search space. Notice the large amount of symmetry in the search
space.

sampling across several such random portions of the search space. The random sub-spaces can be

generated via a bounded breadth-first search originating at a randomly selected state. After repeating

the sampling across a variety of bounded regions, we compute the aggregate complexity measure as

the mean of the collected measure values for the sampled regions. It is important to ensure that the

subspaces are of the same size for all of the search spaces being compared in this way.

Aside from preventing a bias to search space size, this sampling technique can improve the

efficiency of calculating the complexity measures. This is of particular importance when applying

the measures to large search spaces. For example, calculating scrubbing complexity on a large video

game map can be very expensive, since solving even a single instance of LRTA* takes a non-trivial

amount of time. We can instead solve a larger number of LRTA* problems in the smaller sub-spaces.

The final benefit of this technique is that it allows the complexity measures to be computed for

implicitly defined search spaces which are too large to fit in memory. Instead of expanding the entire

search space at once, we expand only one bounded portion at a time. The complexity measures are

computed for that bounded portion, and the process is repeated.

24

Chapter 6

Applications to Videogame
Pathfinding

In this chapter we present experimental evidence linking the performance of real-time heuristic

search algorithms on videogame pathfinding to the values of the complexity measures presented in

Chapter 5. We begin by describing our selection of search spaces for experimentation. We then

detail our methodology for measuring search performance.

We make use of two distinct methods for linking the complexity measures to search performance.

The first method, which we explore in this Chapter, is to compute the rank correlation between the

values of a complexity measure and the performance of an algorithm for a given search space. This

method allows us to identify which search space features can significantly impact the performance of

an algorithm. This is useful for understanding the limitations of current algorithms, and for gauging

the relative difficulty of search spaces for an algorithm.

Our second method involves using machine learning to build predictive models of search space

performance. This demonstrates that we can use the values of the complexity measures to assist in

algorithm selection and parameterization. This second method is explored in Chapter 7.

6.1 Pathfinding as a Search Problem

Videogame pathfinding has been been the traditional testbed for the recent real-time heuristic search

algorithms we examine. Pathfinding in commercial videogames is very resource limited, often lim-

ited to a specific amount of time (often less than 1 ms) [8]. It is therefore a natural application for

real-time search. In this section we formally describe videogame pathfinding as a search problem as

defined in Chapter 2.

A videogame pathfinding search space, or map, consists of a grid of cells that are either

travsersable or untraversable. An untraversable cell is also referred to as an obstacle. An agent

may move from its current cell to any cardinally or diagonally adjacent travserable cell. The cost of

every cardinal transition is 1, and the cost of every diagonal transition is 1.4. We use octile distance

25

Figure 6.1: Sample maps from the video games (clockwise from top left) Baldur’s Gate, Counter-
strike: Source, Warcraft 3 and Dragon Age: Origins.

as our heuristic function. The octile distance between states s1 and s2 is defined as

octile(s1, s2) = ||x1 − x2| − |y1 − y2||+ 1.4×min(|x1 − x2|, |y1 − y2|)

where the state si is located in row xi and column yi of the grid. All of the videogame pathfinding

problems we discuss have a single start state and a single goal state, although different problems on

the same map may have differing start and goal states.

6.2 Experimental Design

To establish a quantifiable link between the complexity measures presented in Chapter 5 and the

performance of real-time heuristic search, we first conducted experiments in pathfinding across a

sample of video game maps. The experiments presented in this chapter are conducted across 20

video game maps, with 5 from each of Baldur’s Gate [1], Counter-strike: Source [33], Warcraft

3 [4] and Dragon Age: Origins [2]. Maps from the first three games have been previously used in

recent real-time heuristic search literature [8, 25]. Most of these maps are available online through

Nathan Sturtevant’s Moving AI Lab [32]. Four example maps are presented in Figure 6.1. The

complete set of maps is presented in Appendix A.

26

As discussed in Chapter 2, we consider two basic measures of a real-time search algorithm’s

performance: solution suboptimality and database computation time.1 Both of these measures can

differ vastly based on the properties of a search space.

To ensure that search suboptimality was not influenced by search space size, we first scaled all

of the maps to approximately 50000 states. We then generated 10 sub-maps per map by randomly

selecting samples of exactly 20000 states from each map. Sub-maps were generated via breadth-first

search, originating at a random state in the search space. We treated each of these 20 × 10 = 200

sub-maps as a whole and distinct search space for our experiments. The intent of this sampling

technique was to increase the number of available data points 10-fold, while retaining maps that

were sufficiently similar by inspection to full-size game maps, and yet diverse enough to establish

trends in search space complexity.

To compute the solution suboptimality of each algorithm, we generated a random set of 250

pathfinding problems on each sub-map, and solved each problem with each of the three algorithms.

This number of problems was chosen to cover a sufficient sample of typical search problems, while

balancing experimental time constraints. The problems were constrained to have solutions of length

at least 10 to avoid the inclusion of trivially easy search problems.

6.2.1 Algorithm Implementation Details

In this chapter we examine five real-time heuristic search algorithms: LRTA*, D LRTA*, kNN

LRTA*, HCDPA and TBA*. All of our algorithm implementations exist within a common frame-

work. While this may reduce algorithm efficiency in some cases, it helps reduce any discrepencies

in performance due to differences in tie-breaking procedures, data structures used etc.

In order to make the trends in algorithm performance most visible, algorithm parameters were

chosen to yield a wide spread of performance. If algorithms are parameterized to produce the lowest

cost solutions, then observed suboptimality tends towards 1, obscuring intrinsic differences in the

search spaces. Therefore, all parameters were chosen so that very few problems would be solved

optimally. LRTA* was run with a lookahead depth of d = 1. D LRTA* ran with ` = 5. kNN LRTA*

used N = 1000 and M = 10. HCDPS ran with r = 1. All on-line HC checks were limited to 250

steps. TBA* was run with a resource limit of R = 5.

6.3 Correlation

To empirically link the complexity measures to search performance, we calculate the Spearman rank

correlation coefficients between the average solution suboptimality and a complexity measure’s val-

ues [31]. The coefficient reflects the tendency for two variables to increase or decrease monotoni-

cally together, possibly in a non-linear fashion. The ability to gauge non-linear correlation was our

main motivation for selecting Spearman correlation over other measures such as Pearson correlation.

1Since LRTA* and TBA* do not utilize subgoal databases they are omitted from our discussion of precomputation time.

27

Let X and Y be two sets of data. Let xi be the rank, or position in descending order, of the ith

element in X . Define yi analogously. Then Spearman correlation is defined as

corr(X,Y) =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑
i(yi − ȳ)2

where x̄ is the mean rank for all xi, and ȳ is the mean rank for all yi.

We compute two sets of correlations: ρmean using mean suboptimality, and ρmedian using median

suboptimality. The use of median suboptimality is to mitigate the impact of outliers: rare but vastly

suboptimal solutions. Let Āi(mk) and Ãi(mk) be the mean and median solution suboptimality

respectively when algorithm i is run on the set of 250 problems for sub-map k. Also let Cj(mk) be

the value of complexity measure j for sub-map k.

ρijmean = corr([Āi(m1), ..., Āi(m200)], [Cj(m1), ..., Cj(m200)])

ρijmedian = corr([Ãi(m1), ..., Ãi(m200)], [Cj(m1), ..., Cj(m200)])

All correlation values that we report were computed using the MATLAB Statistics Toolbox [27].

For each pair of one of the five algorithms and one of the eight complexity measures, we compute

the two sets of correlation coefficients using 200 data points (one for each sub-map). The closer the

correlation coefficient is to +1 or −1, the higher the associaton of the algorithm’s performance to

the complexity measure. The complete sets of correlation coefficients and corresponding p-values

are presented in Tables 6.4 and 6.5, and discussed in the following subsections. A complete set

of scatterplot graphs depicting the relationships between mean and median algorithm suboptimality

and the complexity measure values is presented in Appendix B in Figures B.5 and B.6.

6.3.1 Correlation Among Algorithms

Our first step was to test our hypothesis that some real-time search algorithms respond differently

to certain search space features than others. In other words, we wanted to demonstrate that search

problems can not simply be sorted on a one-dimensional continuum of complexity. A certain search

problem may be very difficult for one algorithm, and yet comparatively easy for another.

To demonstrate this, we calculated the Spearman rank correlation between the solution subop-

timality for each of the five algorithms in a pairwise fashion. The correlations between the mean

suboptimalities are presented in Table 6.1 and between the median suboptimalities in 6.2. The cor-

responding graphical plots are presented in Figures B.1 and B.2.

We observed very few strong correlations in performance in the mean case. The only strong

correlation was between TBA* and LRTA* (ρ = 0.857), with a moderate correlation observed

between knn LRTA* and HCDPS (ρ = 0.538).

In contrast, we observed typically stronger correlations in the median case. HCDPS and kNN

LRTA* (ρ = 0.821), HCDPS and LRTA* (ρ = 0.714), and kNN LRTA* and LRTA* (ρ = 0.763)

are all substantially more correlated than in the mean case, and TBA* and LRTA* remain fairly

28

LRTA* D LRTA* kNN LRTA*
LRTA* – 0.4862, < 10−10 0.182, 1 .01 × 10−2

D LRTA* 0.4862, < 10−10 – 0.263, 1 .77 × 10−4

kNN LRTA* 0.182, 1 .01 × 10−2 0.263, 1 .77 × 10−4 –
HCDPS 0.140, 4 .89 × 10−2 0.163, 2 .09 × 10−2 0.538, < 10−10

TBA* 0.857, < 10−10 0.425, < 10−10 0.284, 5 .00 × 10−5

HCDPS TBA*
LRTA* 0.140, 4 .89 × 10−2 0.857, < 10−10

D LRTA* 0.163, 2 .09 × 10−2 0.425, < 10−10

kNN LRTA* 0.538, < 10−10 0.284, 5 .00 × 10−5

HCDPS – 0.210, 2 .87 × 10−3

TBA* 0.210, 2 .87 × 10−3 –

Table 6.1: Spearman rank correlation coefficients ρ for mean solution suboptimality. p-values for
statistical significance are given in italics.

LRTA* D LRTA* kNN LRTA*
LRTA* – −0.154, 2 .91 × 10−2 0.714, < 10−10

D LRTA* −0.154, 2 .91 × 10−2 – 0.071, 3 .19 × 10−1

kNN LRTA* 0.714, < 10−10 0.071, 3 .19 × 10−1 –
HCDPS 0.763, < 10−10 −0.018, 7 .97 × 10−1 0.821, < 10−10

TBA* 0.764, < 10−10 −0.324, 3 .25 × 10−6 0.446, < 10−10

HCDPS TBA*
LRTA* 0.763, < 10−10 0.764, < 10−10

D LRTA* −0.018, 7 .97 × 10−1 −0.324, 3 .25 × 10−6

kNN LRTA* 0.821, < 10−10 0.446, < 10−10

HCDPS – 0.584, < 10−10

TBA* 0.584, < 10−10 –

Table 6.2: Spearman rank correlation coefficients ρ for median solution suboptimality. p-values for
statistical significance are given in italics.

correlated (ρ = 0.764). By considering only median solution suboptimality, we effectively remove

from consideration any degenerate cases where the algorithms return vastly suboptimal solutions.

Therefore, the algorithms are more frequently observed to achieve optimal or near optimal median

solution costs, and the overall variance in median suboptimality is lower. We hypothesize that this

“tightening of the pack” is responsible for the higher correlations. We therefore postulate that the

relative disparities in algorithm performance manifest more apparently in outlying cases.

6.3.2 Correlation Among Complexity Measures

Note that not all of the complexity measures are independent. In fact, some of the complexity

measures are quite highly correlated. However, we feel that the subtle differences between the highly

correlated measures warrant the inclusion of all of these measures. Similar to the inter-algorithm

comparison in the previous section, we present the pairwise Spearman rank correlation of all of

the complexity measures in Table 6.3. A scatterplot of the relationships between the complexity

29

measures is presented in Figure B.3 and continued in Figure B.4.

HC Region Size HC Probability Scrubbing Complexity
HC Region Size – 0.759, < 10−10 −0.117, 1 .00 × 10−1

HC Probability 0.759, < 10−10 – −0.529, < 10−10

Scrubbing Complexity −0.117, 1 .00 × 10−1 −0.529, < 10−10 –
Path Compressibility −0.697, < 10−10 −0.920, < 10−10 0.602, < 10−10

A* Difficulty −0.055, 4 .36 × 10−1 −0.514, < 10−10 0.918, < 10−10

Heuristic Error −0.068, 3 .40 × 10−1 −0.540, < 10−10 0.945, < 10−10

Depression Width −0.435, < 10−10 −0.611, < 10−10 0.696, < 10−10

Depression Capacity 0.072, 3 .11 × 10−1 −0.178, 1 .15 × 10−2 0.633, < 10−10

Path Compressibility A* Difficulty Heuristic Error
HC Region Size −0.697, < 10−10 −0.055, 4 .36 × 10−1 −0.068, 3 .40 × 10−1

HC Probability −0.920, < 10−10 −0.514, < 10−10 −0.540, < 10−10

Scrubbing Complexity 0.602, < 10−10 0.918, < 10−10 0.945, < 10−10

Path Compressibility – 0.613, < 10−10 0.624, < 10−10

A* Difficulty 0.613, < 10−10 – 0.983, < 10−10

Heuristic Error 0.624, < 10−10 0.983, < 10−10 –
Depression Width 0.622, < 10−10 0.621, < 10−10 0.629, < 10−10

Depression Capacity 0.230, 1 .05 × 10−3 0.594, < 10−10 0.606, < 10−10

Depression Width Depression Capacity
HC Region Size −0.435, < 10−10 0.072, 3 .11 × 10−1

HC Probability −0.611, < 10−10 −0.178, 1 .15 × 10−2

Scrubbing Complexity 0.696, < 10−10 0.633, < 10−10

Path Compressibility 0.622, < 10−10 0.230, 1 .05 × 10−3

A* Difficulty 0.621, < 10−10 0.594, < 10−10

Heuristic Error 0.629, < 10−10 0.606, < 10−10

Depression Width – 0.737, < 10−10

Depression Capacity 0.737, < 10−10 –

Table 6.3: Spearman rank correlation coefficients ρ between complexity measure values. p-values
for statistical significance are given in italics.

We observe that HC region size is fairly correlated to HC probability (ρ = 0.759) and path

compressibility (ρ = 0.697). Likewise, HC probability and path compressibility are observed to be

very highly correlated (ρ = 0.920). These three complexity measures are all directly dependent on

the movement of a hill-climbing agent through the search space.

We do, however, propose that there are intuitive differences in what these complexity measures

are capturing. Unlike the other two measures, HC region size is measuring a space, rather than along

a single path. HC region size differs more appreciably from the other two measures in search spaces

with many narrow corridors, versus search spaces with open regions. This behaviour is discussed

in Chapter 8. Additionally, we hypothesize that HC region size is a locally focused measure of

hill-climbability among local groups of states, whereas HC probability measures hill-climbability

between states that are arbitrarily positioned across the search space. HC probability provides a

qualitative measure of hill-climbing performance, whereas path compressibility provides a quantita-

tive measure. The former only distinguishes between problems which a hill-climbing agent can and

30

LRTA* D LRTA* kNN LRTA*
HC Region Size 0.045, 5 .23 × 10−1 −0.207, 3 .27 × 10−3 −0.804, < 10−10

HC Probability −0.433, < 10−10 −0.309, 8 .29 × 10−6 −0.708, < 10−10

Scrubbing Complexity 0.955, < 10−10 0.451, < 10−10 0.216, 2 .21 × 10−3

Path Compressibility 0.498, < 10−10 0.327, 2 .37 × 10−6 0.617, < 10−10

A* Difficulty 0.854, < 10−10 0.328, 2 .43 × 10−6 0.136, 5 .57 × 10−2

Heuristic Error 0.884, < 10−10 0.352, 3 .80 × 10−7 0.152, 3 .16 × 10−2

Depression Width 0.663, < 10−10 0.447, < 10−10 0.503, < 10−10

Depression Capacity 0.647, < 10−10 0.359, 2 .21 × 10−7 0.066, 3 .51 × 10−1

HCDPS TBA*
HC Region Size −0.458, < 10−10 −0.124, 8 .06 × 10−2

HC Probability −0.515, < 10−10 −0.513, < 10−10

Scrubbing Complexity 0.168, 1 .72 × 10−2 0.878, < 10−10

Path Compressibility 0.428, < 10−10 0.572, < 10−10

A* Difficulty 0.108, 1 .28 × 10−1 0.883, < 10−10

Heuristic Error 0.128, 6 .99 × 10−2 0.882, < 10−10

Depression Width 0.332, 1 .61 × 10−6 0.705, < 10−10

Depression Capacity 0.190, 7 .90 × 10−1 0.613, < 10−10

Table 6.4: Spearman rank correlation coefficients ρmean for mean solution suboptimality against
complexity measure values. p-values for statistical significance are given in italics. The strongest
correlation for each algorithm is in bold.

cannot solve, whereas path compressibility provides a gauge of how many failures a hill-climbing

agent would encounter.

Heuristic error exhibited a strong correlation to scrubbing complexity (ρ = 0.945) and A* dif-

ficulty (ρ = 0.983). This is unsurprising, since higher magnitude heuristic errors will naturally

correspond to a larger number of states being entered or considered by an LRTA* or A* agent. A*

difficulty and scrubbing complexity are also very highly correlated (ρ = 0.918). We suspect this is

due to their mutual sensitivity to inaccurate heuristics.

6.3.3 LRTA*

We observed a high correlation between the mean suboptimality of LRTA* and scrubbing complex-

ity (ρmean = 0.955). This is natural, since scrubbing complexity is directly derived from LRTA*. A

high correlation to heuristic error is also observed (ρmean = 0.884), which we attribute to the link

between high magnitude heuristic errors and repeated state revisitation in LRTA*. The moderate

correlation to depression width (ρmean = 0.663) and depression capacity (ρmean = 0.647) fits with

prior literature that links the presence of heuristic depressions to poor LRTA* performance [9].

When we consider median suboptimality, LRTA* exhibits higher correlations to the HC-related

measures path compressibility (ρmedian = 0.852) and HC probability (ρmean = −0.841). In the

median case, LRTA* is not as hampered by scrubbing. By removing outliers, we are removing

the cases where LRTA* must perform excessive state revisitation. We believe that this similarity

in behaviour of LRTA* and a hill-climbing agent on easier search problems causes these higher

31

LRTA* D LRTA* kNN LRTA*
HC Region Size −0.609, < 10−10 −0.211, 2 .68 × 10−3 −0.762, < 10−10

HC Probability −0.841, < 10−10 0.073, 3 .03 × 10−1 −0.832, < 10−10

Scrubbing Complexity 0.669, < 10−10 −0.377, 4 .69 × 10−8 0.320, 3 .75 × 10−6

Path Compressibility 0.852, < 10−10 −0.071, 3 .18 × 10−1 0.727, < 10−10

A* Difficulty 0.656, < 10−10 −0.429, < 10−10 0.252, 3 .16 × 10−4

Heuristic Error 0.656, < 10−10 −0.443, < 10−10 0.278, 6 .61 × 10−5

Depression Width 0.728, < 10−10 −0.127, 7 .35 × 10−2 0.504, < 10−10

Depression Capacity 0.352, 3 .28 × 10−7 −0.248, 4 .06 × 10−4 0.046, 5 .18 × 10−1

HCDPS TBA*
HC Region Size −0.639, < 10−10 −0.176, 1 .29 × 10−2

HC Probability −0.828, < 10−10 −0.609, < 10−10

Scrubbing Complexity 0.485, < 10−10 0.862, < 10−10

Path Compressibility 0.809, < 10−10 0.665, < 10−10

A* Difficulty 0.449, < 10−10 0.889, < 10−10

Heuristic Error 0.467, < 10−10 0.892, < 10−10

Depression Width 0.548, < 10−10 0.651, < 10−10

Depression Capacity 0.170, 1 .58 × 10−2 0.542, < 10−10

Table 6.5: Spearman rank correlation coefficients ρmedian for median solution suboptimality against
complexity measure values. p-values for statistical significance are given in italics. The strongest
correlation for each algorithm is in bold.

correlations in the median case.

6.3.4 D LRTA*

Despite having the same underlying agent as LRTA* and kNN LRTA*, D LRTA* exhibits no strong

correlations with the presented complexity measures. The interaction between the clique abstraction

and the heuristic topology of the map can be complex, even among ground-level states within a

common abstract region. Very suboptimal solutions are usually tied to scrubbing behavior within an

abstract region. However, the frequency of these cases is only weakly linked to overall scrubbing

complexity (ρmean = 0.451) and to heuristic error (ρmean = 0.352).

Finding a computationally efficient predictor of D LRTA* performance remains an open research

goal.

6.3.5 kNN LRTA*

In the mean case, kNN LRTA* performance is most correlated to HC region size (ρmean = −0.804)

and HC probability (ρmean = −0.708). Since database records can only be used when they are HC-

reachable relative to the start and goal states, a lower HC probability results in a lower chance of

finding an appropriate record, causing search to fall back on LRTA* and therefore yielding a higher

suboptimality. HC region size is suspected to be a marginally stronger predictor of record availability

than HC probability since it is a more locally focused measure than HC probability. Since only the

M most similar kNN LRTA* database records are considered for use, localized hill-climbability

32

will be more related to a database record being available.

In the median case, similar correlations are observed to HC probability (ρmedian = −0.832) and

HC region size (ρmedian = −0.762). Path compressibility also has a somewhat higher correlation

(ρmean = 0.727).

6.3.6 HCDPS

HCDPS performance is most correlated to HC probability (ρmean = −0.515) and the other HC-

based measures. We were initially surprised that HC region size did not correlate more highly to

the performance of HCDPS in the mean case, since HC region size is computed using the same

abstraction method as in HCDPS databases. However, it appears that in the mean case, HC region

size has a twofold relationship with solution suboptimality for HCDPS. Larger HC regions typically

lead to lower suboptimality. This is due to the method that HCDPS uses to pre-compute subgoal

records. When passing through fewer abstract regions, as is expected when region sizes are larger,

the database record will be generated using fewer constituent paths, and is expected to be closer to

optimal. However, if HC regions are too large, suboptimality can increase as the HC agent will be

forced to deviate from the optimal path to pass through representative states.

In the median case, HCDPS correlates most strongly to HC probability (ρmedian = −0.828)

and path compressibility (ρmedian = 0.809), and correlates more highly with HC region size than

in the mean case (ρmedian = −0.639). We take this as evidence that in typical cases larger HC

regions result in lower suboptimality, while in highly suboptimal cases, larger HC regions can cause

increased suboptimality, matching the effects described above.

HCDPS performance is poorly correlated to depression capacity (ρmean = 0.190, ρmedian =

0.170), scrubbing complexity (ρmean = 0.168, ρmedian = 0.485) and heuristic error (ρmean = 0.128,

ρmedian = 0.467). Since HCDPS does not perform heuristic updates, there is never a need to revisit

states to fill in heuristic depressions. Therefore it is unsurprising that complexity measures which

gauge the magnitude of heuristic innacuracy and state-revisitation are not correlated to HCDPS

performance.

6.3.7 TBA*

The mean suboptimality of TBA* is most highly correlated to A* difficulty (ρmean = 0.883). This

follows from the dependence of TBA* on a bounded A* agent. The more node expansions required

by the A* agent, the more execution phases that will occur with TBA* following a potentially incom-

plete path. We attribute the similarly high correlations of TBA* to heuristic error (ρmean = 0.892)

and scrubbing complexity (ρmean = 0.862) to the high correlation between these two measures and

A* difficulty. TBA* also has a moderately high correlation to depression width (ρmean = 0.705).

In the median case, TBA* remains highly correlated to A* difficulty (ρmedian = 0.889), heuristic

error (ρmedian = 0.892) and scrubbing complexity (ρmedian = 0.862). This leads us to believe that

33

there are no drastic differences between typical and degenerate behaviour of TBA* relative to the

eight complexity measures we present.

6.3.8 Correlation to Database Construction Time

Solution suboptimality is not the only important measure of real-time search performance that is

affected by search space features. The amount of time required for database precomputation can

differ substantially even among search spaces of the same size. Therefore, we also examined how the

complexity measures correlate to precomputation time. Table 6.6 presents the Spearman correlation

ρtime between complexity measure values and the database precomputation time in seconds.

D LRTA* kNN LRTA* HCDPS
HC Region Size −0.544, < 10−10 −0.016, 8 .19 × 10−1 0.477, < 10−10

HC Probability −0.632, < 10−10 −0.491, < 10−10 0.708, < 10−10

Scrubbing Complexity 0.509, < 10−10 0.911, < 10−10 −0.344, 5 .97 × 10−7

Path Compressibility 0.723, < 10−10 0.580, < 10−10 −0.665, < 10−10

A* Difficulty 0.582, < 10−10 0.988, < 10−10 −0.342, 7 .31 × 10−7

Heuristic Error 0.556, < 10−10 0.982, < 10−10 −0.357, 2 .07 × 10−7

Depression Width 0.427, < 10−10 0.601, < 10−10 −0.444, < 10−10

Depression Capacity 0.188, 7 .56 × 10−3 0.606, < 10−10 −0.177, 1 .22 × 10−2

Table 6.6: Spearman rank correlation coefficients ρtime between complexity measure values and
database computation time. p-values for statistical significance are given in italics.

D LRTA* construction time is most correlated to path compressibility (ρmean = 0.723). kNN

LRTA* is highly correlated to A* difficulty (ρtime = 0.988). The most time consuming component

of kNN LRTA* database construction requires the optimal solving of a fixed number of search

problems with A*. Therefore, the more difficult these problems are to solve for A*, the longer

the time required to build the database. HCDPS database construction is most correlated to HC

probability (ρmean = 0.708).

34

Chapter 7

Predictive Modelling

In the preceding chapter, we established a statistical link between the complexity measures and

real-time search performance. Given the values of the complexity measures for two search spaces,

we have an idea of how well a real-time heuristic search algorithm will perform in one search

space relative to the other. This information alone solidifies our understanding of what search space

features the five algorithms are sensitive to, and will be useful for characterizing search benchmarks.

However, we would also like to apply the complexity measures to assist in algorithm selection and

parameter tuning. To this end, we now adopt a predictive approach to modelling search performance

with the complexity measures.

7.1 Experimental Design

Using machine learning, we construct a predictive model of search performance. As input, this

model takes the values of the complexity measures computed for a given search space. As output,

the model returns a predicted value of a chosen performance metric (e.g., solution suboptimality).

A depiction of this model is presented in Figure 7.1.

For each metric of search performance, we build two classes of models. For the first class of

models, we discretize the output metric into 10 bins with equal frequency in the training data. The

output prediction is then a classification into one of these 10 bins. For the second class of models,

Figure 7.1: Predictive model of search performance.

35

the output is simply a numerical prediction of the search performance metric.

For each class of model, we tested a selection of classifiers within the WEKA framework [13].

We use the naive ZeroR classifier as a bassline predictor. In the first class, ZeroR always outputs the

first bin. In the second class, ZeroR always outputs the mean value of the output metric observed in

the training data.

The models that we build are trained and tested on the video game pathfinding data described in

Section 6.2. All trials are performed with 10-fold cross-validation. For the first class of models, we

report the percentage of cases where the correct bin was predicted for the output search metric. A

greater percentage represents higher classifier accuracy. For the second class of models, we report

the root-mean-square error (RMSE) and the relative root-square error (RRSE) of the output metric.

RRSE is the percentage size of the error relative to the error of the ZeroR classifier. A smaller RMSE

and RRSE correpsond to higher classifier accuracy.

Classifier LRTA* D LRTA* kNN LRTA* HCDPS TBA
BayesNet 48% 18.5% 28.5% 15.5% 32%
MultilayerPerceptron 50.5% 24% 37% 19.5% 39.5%
AdaBoostM1 19.5% 18.5% 18% 17% 20%
Bagging 49% 22% 35.5% 16% 35.5%
ClassificationViaRegression 54% 21% 31.5% 22.5% 33%
RandomCommittee 51.5% 23% 29.5% 14.5% 39.5%
DecisionTable 45% 18.5% 30.5% 17.5% 31.5%
J48 44.5% 21% 28.5% 18% 32.5%
ZeroR 10% 10% 10% 10% 10%

Table 7.1: Classification accuracy for discretized mean suboptimality. The most accurate classifier
for each algorithm is given in bold.

Classifier LRTA* D LRTA* kNN LRTA*
SimpleLinearRegression 8.975, 36 .22% 6.273, 76 .24% 0.1452, 91 .49%
LeastMedSq 23.45, 57 .57% 8.555, 103 .9% 0.1399, 88 .12%
LinearRegression 13.21, 32 .43% 6.563, 79 .77% 0.1412, 88 .99%
MultilayerPerceptron 17.55, 43 .07% 13.70, 166 .5% 0.1706, 107 .5%
ZeroR 40.74, 100% 8.230, 100% 0.1587, 100%

Classifier HCDPS TBA*
SimpleLinearRegression 0.0335, 83 .48% 0.5925, 58 .05%
LeastMedSq 0.0317, 79 .11% 0.4973, 48 .72%
LinearRegression 0.0317, 78 .98% 0.4631, 45 .37%
MultilayerPerceptron 0.0350, 87 .34% 0.5531, 54 .18%
ZeroR 0.0401, 100% 1.021, 100%

Table 7.2: Prediction error (RMSE) for raw mean suboptimality. RRSE is given in italics. The most
accurate predictor for each algorithm is given in bold.

36

7.2 Predicting Mean Suboptimality

Table 7.1 presents the accuracy when predicting discretized mean suboptimality. We observe that

LRTA* (54%), TBA* (39.5%) and kNN LRTA* (37%) have the highest peak classification accu-

racies. This is in keeping with our observations in Table 6.4, where these three algorithms had the

highest observed correlations to the complexity measures. Conversely, D LRTA* (24%) and HCDPS

(22.5%) have lower peak accuracies. However, in all cases, we are able to achieve a higher accuracy

than the uninformed ZeroR classifier (10%).

Table 7.2 presents the RMSE and RRSE when predicting continuous mean suboptimality.

We observe the lowest minimum error rates for LRTA* (RRSE = 36.22%) and TBA* (RRSE

= 45.37%). kNN LRTA* (RRSE = 88.12%) is not as successfuly predicted as in the discretized

case.

7.3 Predicting Median Suboptimality

Classifier LRTA* D LRTA* kNN LRTA* HCDPS TBA
BayesNet 43% 15.5% 41.5% 29% 31%
MultilayerPerceptron 48% 21% 47% 31% 35%
AdaBoostM1 20% 17.5% 20% 19.5% 19%
Bagging 47.5% 23.5% 42% 35.5% 34%
ClassificationViaRegression 48% 15% 45% 30.5% 36.5%
RandomCommittee 49% 21.5% 38.5% 31% 37%
DecisionTable 39.5% 15% 36.5% 27.5% 29%
J48 48.5% 15.5% 41% 30% 38.5%
ZeroR 10% 10% 10% 10% 10%

Table 7.3: Classification accuracy for discretized median suboptimality. The most accurate classifier
for each algorithm is given in bold.

Classifier LRTA* D LRTA* kNN LRTA*
SimpleLinearRegression 6.994, 92 .81% 0.1313, 94 .67% 0.0285, 50 .29%
LeastMedSq 7.524, 99 .86% 0.1283, 91 .81% 0.0240, 42 .31%
LinearRegression 6.564, 87 .11% 0.1257, 89 .98% 0.0227, 40 .13%
MultilayerPerceptron 9.149, 121 .4% 0.1431, 102 .4% 0.0226, 39 .88%
ZeroR 7.535, 100% 0.1397, 100% 0.0566, 100%

Classifier HCDPS TBA*
SimpleLinearRegression 0.0175, 53 .57% 0.6409, 53 .46%
LeastMedSq 0.0176, 54 .03% 0.5198, 43 .35%
LinearRegression 0.0173, 52 .86% 0.5194, 43 .33%
MultilayerPerceptron 0.0238, 72 .90% 0.6725, 56 .09%
ZeroR 0.0326, 100% 1.199, 100%

Table 7.4: Prediction error (RMSE) for raw median suboptimality. RRSE is given in italics. The
most accurate predictor for each algorithm is given in bold.

Table 7.3 presents the accuracy when predicting discretized median suboptimality. We again ob-

37

serve that LRTA* (49%), kNN LRTA* (47%) and TBA* (38.5%) have the highest peak classification

accuracies. In the case of kNN LRTA* and HCDPS (35.5%), we observe a higher classification ac-

curacy than in the mean case. This corresponds to the higher correlations observed with median

suboptimality for these algorithms, as presented in Table 6.5.

Table 7.4 presents the RMSE and RRSE when predicting continuous median suboptimality.

We observe the lowest minimum error rates for kNN LRTA* (RRSE = 39.88%), TBA* (RRSE

= 43.33%) and HCDPS (RRSE = 52.86%).

Classifier D LRTA* kNN LRTA* HCDPS
BayesNet 21% 67.5% 18.5%
MultilayerPerceptron 32% 63% 21.5%
AdaBoostM1 19% 19.5% 18.5%
Bagging 31% 69% 25.5%
ClassificationViaRegression 29% 61% 24%
RandomCommittee 27.5% 66% 24%
DecisionTable 20% 62.5% 18.5%
J48 27.5% 62% 22%
ZeroR 10% 10% 10%

Table 7.5: Classification accuracy for discretized database construction time. The most accurate
classifier for each algorithm is given in bold.

Classifier D LRTA* kNN LRTA* HCDPS
SimpleLinearRegression 12.97, 69 .46% 0.3369, 16 .00% 0.5362, 75 .49%
LeastMedSq 13.24, 70 .90% 0.3007, 14 .29% 0.5346, 75 .26%
LinearRegression 11.19, 59 .94% 0.2672, 12 .70% 0.5113, 71 .99%
MultilayerPerceptron 12.64, 67 .71% 0.3580, 17 .01% 0.6813, 95 .92%
ZeroR 18.68, 100% 2.105, 100% 0.7103, 100%

Table 7.6: Prediction error (RMSE) for raw database construction time. RRSE is given in italics.
The most accurate predictor for each algorithm is given in bold.

7.4 Predicting Database Construction Time

Table 7.5 presents the accuracy when predicting discretized database construction time. We observe

the highest peak classification accuracy for kNN LRTA* (69%). In Table 6.6, kNN LRTA* database

construction time had the highest observed correlations. Note though that D LRTA* (32%) and

HCDPS (25.5%) also exhibit peak classification accuracies well above the ZeroR classifier.

Table 7.6 presents the RMSE and RRSE when predicting continuous database construction time.

Similarly to in the discrete case, the error rate for kNN LRTA* (12.70%) is lowest, follwed by D

LRTA* (59.94%) and then HCDPS (71.99%).

38

Figure 7.2: Predictive model for assisting algorithm parameterization.

7.5 Assisting Algorithm Parameterization

In the previous models we use the values of complexity measures to predict the search performance

of a given algorithm for a search space. However, if we instead include desired search performance

as an input to the model, we can predict appropriate values for algorithm parameters. Figure 7.2

depicts a predictive model for assisting algorithm parameterization.

As an example, we use this approach to predict appropriate kNN LRTA* database sizes that will

achieve a desired mean suboptimality. Using the same search problems described in Section 6.2, we

ran kNN LRTA* with database sizes of 500, 1000, 2500, 5000, 10000 and 20000, for 6×200 = 1200

datapoints. We then trained classifiers to output database size, using the values of the 8 complexity

measures for a map and the mean kNN LRTA* suboptimality for that map as input.

Table 7.7 presents the accuracy when predicting database size discretized into 6 bins. Table

7.8 presents the RMSE and RRSE when predicting continuous database size. All experiments are

performed with 10-fold cross-validation. In the discrete case, the peak classification accuracy is

50.42%. In the continuous case, the lowest RRSE is (52.54%). In both cases, we are able to

outperform the ZeroR classifier.

Classifier Accuracy
BayesNet 34.17%
MultilayerPerceptron 49.33%
AdaBoostM1 30.33%
Bagging 50.42%
ClassificationViaRegression 48.58%
RandomCommittee 39.83%
DecisionTable 39.12%
J48 48.92%
ZeroR 16.67%

Table 7.7: Classification accuracy for kNN LRTA* database size. The most accurate classifier for
each algorithm is given in bold.

39

Classifier RMSE, (RRSE)

SimpleLinearRegression 6469.66, 94 .79%
Bagging 3585.58, 52 .54%
LinearRegression 6840.78, 94 .96%
MultilayerPerceptron 4130.0811, 51 .76%
ZeroR 6824.65, 100%

Table 7.8: Prediction error (RMSE) for kNN LRTA* database size. RRSE is given in italics. The
most accurate predictor for each algorithm is given in bold.

40

Chapter 8

Beyond Video Game Pathfinding

In the previous two chapters we presented a set of complexity measures for characterizing search

spaces, and demonstrated their relationship to the performance of five real-time heuristic search

algorithms in the domain of video game pathfinding. In this chapter, we seek to extend these results

to two additional classes of search problems: pathfinding in mazes and road maps. This is the first

study to apply TBA*, kNN LRTA* and HCDPS to either of these domains, or any search space

outside of video game pathfinding.

We begin by formally describing the two new classes of search problems. We then conduct

experiments using the same correlation approach as in the previous chapter. To mitigate the influence

of differing search space sizes, we again apply the sampling method described in Section 6.2. All of

the experiments in this chapter are performed using sub-spaces of 20, 000 states.

For this chapter we omit the algorithm D LRTA*. This decision is in part due to the poor

correlations observed to D LRTA* in the previous chapter. Additionally, computing a D LRTA*

database becomes exceedingly expensive in general domains with an unknown branching factor.

For D LRTA* to be successfuly applied to domains beyond video game pathfinding, we recommend

that alternative abstraction techniques be used. By selecting a more appropriate abstraction method,

one can avoid the high expense associated with building a clique-expansion in search spaces with

a high branching factor. We have not confirmed what effect alternative abstraction methods would

have on the suboptimality of D LRTA* solutions. This is suggested as future work.

8.1 Road Maps

Finding short paths in real-time on road maps is a common demand for consumer electronics such

as personal and automotive GPS devices. Similar to video game pathfinding, this is an application

where speed of search and quality of paths are critical to a positive user experience. The road maps

that we examine are essentially arbitrary graphs. The edge weights in the graph are real-valued, and

represent the geographical distance between the states the edge connects. For each state, we also

have integer longitude and latitude values that are used for heuristic computation.

41

We use four maps from the 9th DIMACS Implementation Challenge [11]. The road maps have

between 264, 346 and 1, 070, 376 states, and between 733, 846 and 2, 712, 798 edges. For each of the

four maps, we generated 25 sub-spaces for a total of 100 submaps. We solved 250 search problems

on each map. We use the geographical Euclidean distance between two nodes as our heuristic. For

states s1 and s2,

h(s1, s2) =
√

(x1 − x2)2 + (y1 − y2)2

where xi and yi are the longitude and latitude of state si respectively. Each search problem has

a single start state and a single goal state chosen randomly from the search space. Plots of the

experimental data are presented in Appendix C.

Note that HCDPS is omitted from this section. Constructing an HCDPS database for these road

maps exceeded the available amount of memory. The HCDPS partitioning scheme generates too

many abstract regions for road maps. This causes the number of required subgoal entries to increase

beyond a feasible level. This is reflected in the very low HC region size observed for road maps (5

to 15 states on average).

8.1.1 Correlation Among Complexity Measures

Table 8.1 presents the observed Spearman rank correlations between the complexity measures for

road maps. Most of the correlations match those observed for video game pathfinding, and so we

referback to the rationale provided in Section 6.3.2. However, there are several instances where the

observed correlation differs by a substantial margin (> ±0.300). In particular, HC region size and

depression capacity exhibited higher correlations in road maps than in video game maps.

8.1.2 Correlation Among Algorithms

Table 8.2 presents the correlation between the mean suboptimality of the algorithms for road maps.

Table 8.3 presents the correlation between the median suboptimality of the algorithms for road maps.

In both cases, a very high correlation is observed between LRTA* and kNN LRTA* suboptimality.

In the vast majority of road map problems, kNN LRTA* is unable to find a suitable database record,

and thus falls back on LRTA*. Therefore, the two algorithms are observed to have very similar

performance. This is reflected in the very low observed HC probability for road maps (< 0.03).

8.1.3 Correlation Between Complexity and Performance

Table 8.4 presents the correlation between the mean suboptimality of the algorithms and the com-

plexity measure values for road maps. Table 8.5 presents the correlation between the median subop-

timality of the algorithms and the complexity measure values for road maps. In both the mean and

median case, LRTA* suboptimality is correlated to similar measures as in video game pathfinding,

with the highest correlation to scrubbing complexity (ρmean = 0.878, ρmedian = 0.839). The higher

42

HC Region Size HC Probability Scrubbing Complexity
HC Region Size – 0.683, < 10−10 −0.569, < 10−10

HC Probability 0.683, < 10−10 – −0.611, < 10−10

Scrubbing Complexity −0.569, < 10−10 −0.611, < 10−10 –
Path Compressibility −0.706, < 10−10 −0.764, < 10−10 0.830, < 10−10

A* Difficulty −0.364, 2 .14 × 10−4 −0.468, 9 .33 × 10−7 0.731, < 10−10

Heuristic Error −0.667, < 10−10 −0.732, < 10−10 0.892, < 10−10

Depression Width −0.936, < 10−10 −0.654, < 10−10 0.570, < 10−10

Depression Capacity −0.710, < 10−10 −0.746, < 10−10 0.836, < 10−10

Path Compressibility A* Difficulty Heuristic Error
HC Region Size −0.706, < 10−10 −0.364, 2 .14 × 10−4 −0.667, < 10−10

HC Probability −0.764, < 10−10 −0.468, 9 .33 × 10−7 −0.732, < 10−10

Scrubbing Complexity 0.830, < 10−10 0.732, < 10−10 0.892, < 10−10

Path Compressibility – 0.653, < 10−10 0.955, < 10−10

A* Difficulty 0.653, < 10−10 – 0.696, < 10−10

Heuristic Error 0.955, < 10−10 0.696, < 10−10 –
Depression Width 0.644, < 10−10 0.454, 2 .67 × 10−6 0.607, < 10−10

Depression Capacity 0.924, < 10−10 0.561, 1 .90 × 10−9 0.954, < 10−10

Depression Width Depression Capacity
HC Region Size −0.936, < 10−10 −0.710, < 10−10

HC Probability −0.654, < 10−10 −0.746, < 10−10

Scrubbing Complexity 0.570, < 10−10 0.835, < 10−10

Path Compressibility 0.644, < 10−10 0.924, < 10−10

A* Difficulty 0.454, 2 .67 × 10−6 0.561, 1 .90 × 10−9

Heuristic Error 0.607, < 10−10 0.954, < 10−10

Depression Width – 0.636, < 10−10

Depression Capacity 0.636, < 10−10 –

Table 8.1: Spearman rank correlation coefficients ρ between complexity measure values for road
maps. p-values for statistical significance are given in italics. Correlations substantially different
from those observed for video game pathfinding are indicated in bold.

correlation between LRTA* and HC region size in road maps (ρmean = −0.431, ρmedian = −0.680)

parallels the increased correlation between HC region size and scrubbing complexity in Table 8.1.

kNN LRTA* is most correlated to scrubbing complexity (ρmean = −0.431, ρmedian = −0.680),

A* difficulty (ρmean = 0.773, ρmedian = 0.743) and heuristic error (ρmean = 0.761, ρmedian = 0.818).

In video game pathfinding, these measures had a very low correlation to kNN LRTA* suboptimality.

We attribute this difference to the lower likelihood that kNN LRTA* can find a subgoal in road maps,

as discussed in Section 8.1.2.

TBA* suboptimality in road maps is most correlated to A* difficulty (ρmean = 0.536, ρmedian =

0.491). As discussed in the previous chapter, this is due to the foundation of TBA* being a depth-

limited A* agent.

43

LRTA* kNN LRTA* TBA*
LRTA* – 0.970, < 10−10 0.189, 5 .85 × 10−2

kNN LRTA* 0.970, < 10−10 – 0.220, 2 .80 × 10−2

TBA* 0.189, 5 .85 × 10−2 0.220, 2 .80 × 10−2 –

Table 8.2: Spearman rank correlation coefficients ρmean for mean solution suboptimality for road
maps. p-values for statistical significance are given in italics.

LRTA* kNN LRTA* TBA*
LRTA* – 0.984, < 10−10 0.137, 1 .73 × 10−1

kNN LRTA* 0.984, < 10−10 – 0.133, 1 .86 × 10−1

TBA* 0.137, 1 .73 × 10−2 0.133, 1 .86 × 10−1 –

Table 8.3: Spearman rank correlation coefficients ρmedian for median solution suboptimality for road
maps. p-values for statistical significance are given in italics.

LRTA* kNN LRTA* TBA*
HC Region Size −0.431, 9 .62 × 10−6 −0.528, 2 .83 × 10−8 0.071, 4 .85 × 10−1

HC Probability −0.402, 3 .38 × 10−5 −0.502, 1 .04 × 10−7 0.017, 8 .70 × 10−1

Scrubbing Complexity 0.878, < 10−10 0.908, < 10−10 0.051, 6 .13 × 10−1

Path Compressibility 0.596, < 10−10 0.697, < 10−10 −0.001, 9 .90 × 10−1

A* Difficulty 0.737, < 10−10 0.773, < 10−10 0.536, 1 .57 × 10−8

Heuristic Error 0.680, < 10−10 0.761, < 10−10 0.009, 9 .29 × 10−1

Depression Width 0.510, 9 .96 × 10−8 0.592, < 10−10 0.048, 6 .32 × 10−1

Depression Capacity 0.590, < 10−10 0.689, < 10−10 −0.100, 3 .17 × 10−1

Table 8.4: Spearman rank correlation coefficients ρmean for mean solution suboptimality against
complexity measure values for road maps. p-values for statistical significance are given in italics.
The strongest correlation for each algorithm is in bold.

LRTA* kNN LRTA* TBA*
HC Region Size −0.680, < 10−10 −0.733, 2 .83 × 10−8 0.133, 4 .85 × 10−1

HC Probability −0.648, < 10−10 −0.699, 1 .04 × 10−7 0.059, 8 .70 × 10−1

Scrubbing Complexity 0.839, < 10−10 0.844, < 10−10 −0.007, 6 .13 × 10−1

Path Compressibility 0.759, < 10−10 0.812, < 10−10 −0.030, 9 .90 × 10−1

A* Difficulty 0.739, < 10−10 0.743, < 10−10 0.491, 1 .57 × 10−8

Heuristic Error 0.776, < 10−10 0.818, < 10−10 −0.016, 9 .29 × 10−1

Depression Width 0.773, < 10−10 0.807, < 10−10 −0.031, 6 .32 × 10−1

Depression Capacity 0.740, < 10−10 0.783, < 10−10 −0.143, 3 .17 × 10−1

Table 8.5: Spearman rank correlation coefficients ρmedian for median solution suboptimality against
complexity measure values for road maps. p-values for statistical significance are given in italics.
The strongest correlation for each algorithm is in bold.

8.2 Mazes

Mazes are defined identically to the video game maps used in Chapter 6. However, search problems

in a maze are generally more challenging than in a video game map. Video game maps are typically

composed of open regions where obstacles may frequently have no impact on direct agent move-

ment. In contrast, mazes consist of many winding narrow passages, often forcing an agent to take

a convoluted path to reach the goal state. The practical manifestation of this tendency is reduced

44

Figure 8.1: An example 512 × 512 maze, with a section enlarged for visibility. This maze has a
corridor width of 1.

heuristic accuracy.

Another property that differentiates mazes from video games results from corridor width. The

corridor width of a maze is defined as the width in cells of the narrow passages constituting the

maze. The mazes we explore have corridor widths of 1, 2, 4 and 8. As a result, the branching factor

of states is typically smaller in mazes than in video game maps. When in a narrow corridor, an agent

We use a set of 20 distinct random mazes [32], with 5 mazes for each corridor width. The mazes

are 512×512 cells in size. An example maze is presented in Figure 8.1. For each maze we generated

5 sub-spaces of 20, 000 states, for a total of 100 sub-mazes. We solved 250 search problems in each

sub-maze. Plots of the experimental data are presented in Appendix D.

8.2.1 Correlation Among Complexity Measures

Table 8.6 presents the observed correlations between the complexity measures for mazes. The ob-

served correlations for mazes differ more significantly from video game pathfinding than those for

the road maps did. For example, several of the correlations to HC region size are much higher. We

suspect that this is due to the clustering of data according to corridor width. Mazes with a com-

mon corridor width typically exhibit a similar HC region size. This can be seen in Figures D.3 and

D.4. The differences observed for HC region size in search spaces with narrow corridors match our

suspicions about the locality of HC region size discussed in the previous chapter.

The observed correlations for scrubbing complexity are lower than for video game pathfinding.

Scrubbing complexity appears to have a similar spread of values for each different corridor width

(as seen in Figures D.3 and D.4). In contrast, other measures are generally more disparate accross

different corridor widths. This decreases the observed correlations for scrubbing complexity.

Perhaps the most interesting result is that the directions of the correlations for A* difficulty and

for depression capacity are reversed from those observed in video game pathfinding. We attribute

45

HC Region Size HC Probability Scrubbing Complexity
HC Region Size – 0.899, < 10−10 −0.049, 6 .26 × 10−1

HC Probability 0.899, < 10−10 – −0.109, 2 .79 × 10−1

Scrubbing Complexity −0.049, 6 .26 × 10−1 −0.109, 2 .79 × 10−1 –
Path Compressibility −0.924, < 10−10 −0.900, < 10−10 0.206, 3 .99 × 10−2

A* Difficulty 0.420, 1 .59 × 10−5 0.321, 1 .13 × 10−3 0.378, 1 .19 × 10−4

Heuristic Error −0.837, < 10−10 −0.829, < 10−10 0.337, 6 .56 × 10−4

Depression Width −0.921, < 10−10 −0.890, < 10−10 0.065, 5 .23 × 10−1

Depression Capacity 0.951, < 10−10 0.890, < 10−10 −0.060, 5 .53 × 10−1

Path Compressibility A* Difficulty Heuristic Error
HC Region Size −0.924, < 10−10 0.421, 1 .59 × 10−5 −0.837, < 10−10

HC Probability −0.900, < 10−10 0.321, 1 .13 × 10−3 −0.829, < 10−10

Scrubbing Complexity 0.206, 3 .99 × 10−2 0.378, 1 .19 × 10−4 0.337, 6 .56 × 10−4

Path Compressibility – −0.209, 3 .71 × 10−2 0.962, < 10−10

A* Difficulty −0.209, 3 .71 × 10−2 – −0.015, 8 .79 × 10−1

Heuristic Error 0.962, < 10−10 −0.015, 8 .79 × 10−1 –
Depression Width 0.905, < 10−10 −0.372, 1 .58 × 10−4 0.833, < 10−10

Depression Capacity −0.932, < 10−10 0.435, 7 .61 × 10−6 −0.840, < 10−10

Depression Width Depression Capacity
HC Region Size −0.921, < 10−10 0.951, < 10−10

HC Probability −0.886, < 10−10 0.890, < 10−10

Scrubbing Complexity 0.065, 5 .23 × 10−1 −0.060, 5 .53 × 10−1

Path Compressibility 0.905, < 10−10 −0.932, < 10−10

A* Difficulty −0.372, 1 .58 × 10−4 0.435, 7 .61 × 10−6

Heuristic Error 0.833, < 10−10 −0.840, < 10−10

Depression Width – −0.865, < 10−10

Depression Capacity −0.865, < 10−10 –

Table 8.6: Spearman rank correlation coefficients ρ between complexity measure values for mazes.
p-values for statistical significance are given in italics. Correlations substantially different from
those observed for video game pathfinding are indicated in bold.

this observation to the Yule-Simpson effect. Despite a positive trend among the data among mazes

of a fixed corridor width, the overall data exhibits a negative trend. This indicates a potential dan-

ger of using a correlation-based analysis of the complexity measures without also considering the

distribution of the data, especially when diverse search spaces are being considered.

8.2.2 Correlation Among Algorithms

Table 8.7 presents the correlation between the mean suboptimality of the algorithms for mazes.

Table 8.8 presents the correlation between the median suboptimality of the algorithms for mazes.

The observed correlations are analogous to those observed in video game pathfinding, with the

exception of kNN LRTA* where the direction of the correlations is reversed. We again attribute this

to the Yule-Simpson effect. The correlations for mazes of a single fixed corridor width are in line

with those observed in video game maps.

46

LRTA* kNN LRTA*
LRTA* – −0.528, 2 .80 × 10−8

kNN LRTA* −0.528, 2 .80 × 10−8 –
HCDPS 0.277, 5 .41 × 10−3 −0.422, 1 .46 × 10−5

TBA* 0.780, < 10−10 −0.810, < 10−10

HCDPS TBA*
LRTA* 0.277, 5 .41 × 10−3 0.780, < 10−10

kNN LRTA* −0.422, 1 .46 × 10−5 −0.810, < 10−10

HCDPS – 0.549, 5 .49 × 10−9

TBA* 0.549, 5 .49 × 10−9 –

Table 8.7: Spearman rank correlation coefficients ρmean for mean solution suboptimality for maze
pathfinding. p-values for statistical significance are given in italics.

LRTA* kNN LRTA*
LRTA* – −0.522, 4 .10 × 10−8

kNN LRTA* −0.522, 4 .10 × 10−8 –
HCDPS 0.238, 1 .70 × 10−2 −0.340, 5 .46 × 10−4

TBA* 0.716, < 10−10 −0.829, < 10−10

HCDPS TBA*
LRTA* 0.238, 1 .70 × 10−2 0.716, < 10−10

kNN LRTA* −0.340, 5 .46 × 10−4 −0.829, < 10−10

HCDPS – 0.474, 6 .30 × 10−7

TBA* 0.474, 6 .30 × 10−7 –

Table 8.8: Spearman rank correlation coefficients ρmedian for median solution suboptimality for maze
pathfinding. p-values for statistical significance are given in italics.

8.2.3 Correlation Between Complexity and Performance

Table 8.9 presents the correlation between the mean suboptimality of the algorithms and the com-

plexity measure values for mazes. Table 8.10 presents the correlation between the median sub-

optimality of the algorithms and the complexity measure values for mazes. We again observe a

manifestation of the Yule-Simpson effect: the direction of most correlations for LRTA*, HCDPS

and TBA* are reversed from those observed in video game pathfinding.

For kNN LRTA*, HC region size (ρmean = −0.840, ρmedian = −0.847), HC probability

(ρmean = −0.807, ρmedian = −0.827) and path compressibility (ρmean = 0.810, ρmedian = 0.820)

have similarly high correlations to those in video game maps. We suspect that this is due to the way

that kNN LRTA* provides subgoals during search. The corridor width does not significantly alter

the ability of kNN LRTA* to find appropriate subgoals.

47

LRTA* kNN LRTA*
HC Region Size 0.786, < 10−10 −0.840, < 10−10

HC Probability 0.745, < 10−10 −0.807, < 10−10

Scrubbing Complexity 0.325, 1 .05 × 10−3 0.203, 4 .27 × 10−2

Path Compressibility −0.759, < 10−10 0.810, < 10−10

A* Difficulty 0.429, 1 .02 × 10−5 −0.328, 9 .26 × 10−4

Heuristic Error −0.651, < 10−10 0.745, < 10−10

Depression Width −0.790, < 10−10 0.806, < 10−10

Depression Capacity 0.788, < 10−10 −0.814, < 10−10

HCDPS TBA*
HC Region Size 0.466, 1 .42 × 10−6 0.922, < 10−10

HC Probability 0.440, 4 .67 × 10−6 0.898, < 10−10

Scrubbing Complexity −0.384, 9 .09 × 10−5 −0.183, 6 .83 × 10−2

Path Compressibility −0.551, 4 .86 × 10−9 −0.978, < 10−10

A* Difficulty 0.031, 7 .62 × 10−1 0.283, 4 .52 × 10−3

Heuristic Error −0.583, < 10−10 −0.935, < 10−10

Depression Width −0.456, 2 .39 × 10−6 −0.903, < 10−10

Depression Capacity 0.447, 3 .98 × 10−6 0.928, < 10−10

Table 8.9: Spearman rank correlation coefficients ρmean for mean solution suboptimality against
complexity measure values for maze pathfinding. p-values for statistical significance are given in
italics. The strongest correlation for each algorithm is in bold.

LRTA* kNN LRTA*
HC Region Size 0.733, < 10−10 −0.847, < 10−10

HC Probability 0.660, < 10−10 −0.827, < 10−10

Scrubbing Complexity 0.312, 1 .64 × 10−3 0.103, 3 .09 × 10−1

Path Compressibility −0.651, < 10−10 0.820, < 10−10

A* Difficulty 0.597, < 10−10 −0.348, 4 .24 × 10−4

Heuristic Error −0.506, 1 .21 × 10−7 0.754, < 10−10

Depression Width −0.726, < 10−10 0.809, < 10−10

Depression Capacity 0.754, < 10−10 −0.814, < 10−10

HCDPS TBA*
HC Region Size 0.390, 6 .11 × 10−5 0.917, < 10−10

HC Probability 0.382, 8 .87 × 10−5 0.888, < 10−10

Scrubbing Complexity −0.344, 4 .62 × 10−4 −0.167, 9 .70 × 10−2

Path Compressibility −0.464, 1 .20 × 10−6 −0.970, < 10−10

A* Difficulty 0.069, 4 .97 × 10−1 0.303, 2 .27 × 10−3

Heuristic Error −0.489, 2 .42 × 10−7 −0.925, < 10−10

Depression Width −0.382, 8 .84 × 10−5 −0.899, < 10−10

Depression Capacity 0.384, 7 .86 × 10−5 0.925, < 10−10

Table 8.10: Spearman rank correlation coefficients ρmedian for median solution suboptimality against
complexity measure values for maze pathfinding. p-values for statistical significance are given in
italics. The strongest correlation for each algorithm is in bold.

48

Chapter 9

Discussion

In this chapter we conduct a discussion of the results presented in this work. We organize the

discussion according to the three major goals of our research presented in Chapter 1. We also

discuss how the research could be extended to make additional contributions towards these goals.

Finally, we suggest future work in the field of real-time heuristic search.

9.1 Understanding Algorithm Performance

The statistical correlations we observe in Chapters 6 and 8 provide insight into how search space

features affect the performance of real-time heuristic search. While the importance of these features

was already known, we now have a way of empirically measuring the degree to which they are affect

the performance a specific algorithm.

9.2 Facilitating Algorithm Use

We have described a system by which one can inform the decision of which real-time algorithm is

suitable for a given search space. Using the models we presented, one can automatically predict the

performance of an algorithm on a novel search space. One can also use a similar model to determine

algorithm parameters which will yield the approximate desired level of performance. Previously

there was no way to accomplish this without expert knowledge. Given the large investment of time

required to compute databases for subgoal-driven search in large search spaces, this is a valuable

tool.

Several improvements could be made to bolster the strength of the predictions made by the

models we present. The performance of some algorithms, such as D LRTA*, was not predicted

as accurately as others. We suspect that this could be improved by finding a better way to extract

search space features which affect D LRTA* performance. We tested additional measures to try

and measure the effect of the D LRTA* clique abstraction on search performance. However, these

measures were expensive to compute and did not yield significantly stronger results.

49

We would also like to test the ability of a single model to make predictions accross several

domain types. We would also like to build such a model across search spaces of differing sizes,

including search spaces size as an input to the predictive model.

9.3 Characterizing Benchmarks

We propose that the eight complexity measures we have presented are appropriate for characterizing

benchmarks for real-time heuristic search. Having a universal way of empirically measuring the

complexity of search spaces is a useful tool for algorithm development and evaluation. The com-

plexity measures can be applied to any search space, and have been statistically demonstrated to

impact the performance of real-time heuristic search.

We are aware of other research being simultaneously conducted to establish similar complexity

measures for characterizing benchmarks [32]. However, to our knowledge, this work has not yet

been formally published. Additionally, this independent work is aimed at conventional heuristic

search, rather than real-time heuristic search.

9.4 Future Work

During the course of this work, other researchers have independently developed two real-time heuris-

tic search algorithms which actively use heuristic depression information to adjust search decisions.

The first, aLSS-LRTA* [16] uses a scheme to flag and avoid states which have been discovered

online to belong to a heuristic depression. The authors do not present a comparison of the perfor-

mance of this algorithm to contemporary subgoaling algorithms such as DLRTA*, kNN LRTA* and

HCDPS.

The second algorithm (which is unnamed by the authors) [15] is a modified version of LRTA*

that uses subgoals placed according to the presence of heuristic depressions. The subgoal database

is a set of trees constructed by performing a modified version of Dijkstra’s algorithm. The subgoal

trees store states which are identified as exits from heuristic depressions. Unfortunately, one subgoal

tree must be computed for every state in the search space. We therefore suspect that this algorithm

will scale poorly to larger search spaces.

As future work, we suggest the development of a modified version of kNN LRTA* that uses

search space information to guide the placement of database entries, rather than distributing them

randomly. We suggest building from kNN LRTA*, since it has the favorable property of not re-

quiring a complete search space enumeration. This could be essential for adapting database-driven

real-time heuristic search to very large domains such as planning. One idea is to have kNN LRTA*

select multiple random candidate entries at a time, and only store the entry deemed to be in the most

complex area, as computed by an appropriate complexity measure.

50

Chapter 10

Conclusion

In this document, we have explored the performance of real-time heuristic search as it is affected

by the properties of search spaces. We began by formally defining heuristic search and real-time

search. We then comprehensively reviewed a selection of state of the art real-time heuristic search

algorithms. We discussed the common approach of many of these algorithms to compute a domain-

specific database that provides subgoals to guide the search agent. We explored the efforts of other

researchers to understand real-time heuristic search performance, and discussed why our work was

significant in this context.

We then presented our main vehicle for characterizing search spaces and understanding algo-

rithm performance: a set of eight domain-independent complexity measures. After explaining how

the complexity measures can be computed in practice, we examined how they relate to the perfor-

mance of real-time heuristic search in videogame pathfinding. We demonstrated a statistical link

between the measures and the performance of five real-time algorithms. We then showed how the

measures could be used to predict the performance of algorithms, and to assist in algorithm param-

eterization. Our examination of videogame pathfinding was followed by an extension of the com-

plexity measures to mazes and road maps. This was the first such examination of database-driven

real-time search in these domains. Finally, we suggested avenues for future research, and discussed

how this work could inform the future development of real-time heuristic search algorithms.

51

Bibliography

[1] BioWare Corp. Baldur’s Gate, 1998.

[2] BioWare Corp. Dragon Age: Origins, 2009.

[3] Yngvi Björnsson, Vadim Bulitko, and Nathan R. Sturtevant. Tba*: Time-bounded a*. In Craig
Boutilier, editor, IJCAI, pages 431–436, 2009.

[4] Blizzard Entertainment. Warcraft III: Reign of Chaos, 2002.

[5] Blai Bonet and Hector Geffner. Planning as heuristic search. Artificial Intelligence, 129:5–33,
2001.

[6] Adi Botea, Martin Müller, and Jonathan Schaeffer. Near optimal hierarchical path-finding.
Journal of Game Development, 1:7–28, 2004.

[7] Vadim Bulitko and Yngvi Björnsson. kNN LRTA*: Simple subgoaling for real-time search.
In AIIDE, pages 2–7, 2009.

[8] Vadim Bulitko, Yngvi Björnsson, and Ramon Lawrence. Case-based subgoaling in real-time
heuristic search for video game pathfinding. JAIR, 39:269 – 300, 2010.

[9] Vadim Bulitko and Greg Lee. Learning in real-time search: A unifying framework. J. Artif.
Intell. Res. (JAIR), 25:119–157, 2006.

[10] Vadim Bulitko, Mitja Luštrek, Jonathan Schaeffer, Yngvi Björnsson, and Sverrir Sigmundar-
son. Dynamic control in real-time heuristic search. JAIR, 32:419 – 452, 2008.

[11] Center for Discrete Mathematics & Theoretical Computer Science. 9th DIMACS Implemen-
tation Challenge - Shortest Paths. http://www.dis.uniroma1.it/˜challenge9/
download.shtml.

[12] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[13] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten. The WEKA data mining software: An update. In SIGKDD Explorations, volume 11,
2009.

[14] P E Hart, N J Nilsson, and B Raphael. A formal basis for the heuristic determination of
minimum cost paths. Ieee Transactions On Systems Science And Cybernetics, 4(2):100–107,
1968.

[15] Carlos Hernandez and Jorge A. Baier. Fast subgoaling for pathfinding via real-time search.
In Proceedings of the 21st International Conference on Automated Planning and Scheduling
(ICAPS-11), Freiburg, Germany, June 2011.

[16] Carlos Hernandez and Jorge A. Baier. Real-time heuristic search with depression avoidance. In
Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11),
Barcelona, Spain, July 2011.

[17] Jörg Hoffmann. Local search topology in planning benchmarks: An empirical analysis. In
Bernhard Nebel, editor, IJCAI, pages 453–458. Morgan Kaufmann, 2001.

[18] Jörg Hoffmann. Local search topology in planning benchmarks: A theoretical analysis. In
Malik Ghallab, Joachim Hertzberg, and Paolo Traverso, editors, AIPS, pages 92–100. AAAI,
2002.

52

[19] Jrg Hoffmann. Ff: The fast-forward planning system. AI magazine, 22:57–62, 2001.

[20] Daniel Huntley and Vadim Bulitko. Extending the applications of recent real-time heuristic
search. In AAAI, page In press, 2011.

[21] Toru Ishida. Real-time search for learning autonomous agents. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[22] Sven Koenig. Real-time heuristic search: Research issues. In AIPS Workshop on Planning
as Combinatorial Search: Propositional, Graph-Based, and Disjunctive Planning Methods,
pages 75–79, 1998.

[23] Richard Korf. Real-time heuristic search. AIJ, 42:189–211, 1990.

[24] Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27:97–109, 1985.

[25] Ramon Lawrence and Vadim Bulitko. Taking learning out of real-time heuristic search for
video-game pathfinding. In Australasian Joint Conf. on AI, pages 10–19, Adelaide, Australia,
2010.

[26] Carlos Linares Lòpez. Heuristic hill-climbing as a markov process. In Danail Dochev, Marco
Pistore, and Paolo Traverso, editors, AIMSA, volume 5253 of Lecture Notes in Computer Sci-
ence, pages 274–284. Springer, 2008.

[27] MathWorks. Linear or Rank Correlation - MATLAB. http://www.mathworks.com/
help/toolbox/stats/corr.html.

[28] Masataka Mizusawa and Masahito Kurihara. Hardness measures for gridworld benchmarks
and performance analysis of real-time heuristic search algorithms. J. Heuristics, 16(1):23–36,
2010.

[29] Joseph Pemberton and Richard E. Korf. Making locally optimal decisions on graphs with cy-
cles. Technical report, goal Example LRTA LS *(k) with Lookahead 6 RTAA* with Lookahead
6 LRTS with Lookahead 3, 1992.

[30] D. Chris Rayner, Michael H. Bowling, and Nathan R. Sturtevant. Euclidean heuristic opti-
mization. In Wolfram Burgard and Dan Roth, editors, AAAI. AAAI Press, 2011.

[31] Charles Spearman. The proof and measurement of association between two things. AJP,
15:7–28, 1904.

[32] Nathan Sturtevant. Moving AI Lab Pathfinding Benchmarks. http://www.aiide.org/
benchmarks/.

[33] Valve Corporation. Counter-Strike: Source, 2004.

53

Appendix A

Videogame Maps

In this appendix, we present images of the complete set of commercial videogame maps used for

experiments in Chapter 6.

54

Figure A.1: Maps from the video game Baldur’s Gate [1].

Figure A.2: Maps from the video game Counter-strike: Source [33].

55

Figure A.3: Maps from the video game Dragon Age: Origins [2].

Figure A.4: Maps from the video game Warcraft 3 [4].

56

Appendix B

Videogame Pathfinding Plots

In this appendix we present plots of the experimental data collected in Chapter 6.

57

Figure B.1: Mean suboptimality by algorithm against mean suboptimality by algorithm for
videogame pathfinding problems.

Figure B.2: Median suboptimality by algorithm against median suboptimality by algorithm for
videogame pathfinding problems.

58

Figure B.3: Complexity measure values against other complexity measure values for videogame
pathfinding problems. (Continued in Figure B.4.)

59

Figure B.4: Continued: Complexity measure values against other complexity measure values for
videogame pathfinding problems.

60

Figure B.5: Complexity measure values against mean algorithm suboptimality for videogame
pathfinding problems.

61

Figure B.6: Complexity measure values against median algorithm suboptimality for videogame
pathfinding problems.

62

Appendix C

Road Map Plots

In this appendix we present plots of the experimental data for road maps in Chapter 8.

63

Figure C.1: Mean suboptimality by algorithm against mean suboptimality by algorithm for road
map problems.

Figure C.2: Median suboptimality by algorithm against median suboptimality by algorithm for road
map problems.

64

Figure C.3: Complexity measure values against other complexity measure values for road map
problems. (Continued in Figure C.4.)

65

Figure C.4: Continued: Complexity measure values against other complexity measure values for
road map problems.

66

Figure C.5: Complexity measure values against mean algorithm suboptimality for road map prob-
lems.

67

Figure C.6: Complexity measure values against median algorithm suboptimality for road map prob-
lems.

68

Appendix D

Maze Pathfinding Plots

In this appendix we present plots of the experimental data for maze pathfinding in Chapter 8. The

apparent clustering of data points in the plots is due to the differing corridor widths in the mazes

used. The data points within a cluster belong to mazes with a common corridor width.

69

Figure D.1: Mean suboptimality by algorithm against mean suboptimality by algorithm for maze
pathfinding problems.

Figure D.2: Median suboptimality by algorithm against median suboptimality by algorithm for maze
pathfinding problems.

70

Figure D.3: Complexity measure values against other complexity measure values for maze pathfind-
ing problems. (Continued in Figure D.4.)

71

Figure D.4: Continued: Complexity measure values against other complexity measure values for
maze pathfinding problems.

72

Figure D.5: Complexity measure values against mean algorithm suboptimality for maze pathfinding
problems.

73

Figure D.6: Complexity measure values against median algorithm suboptimality for maze pathfind-
ing problems.

74

