Useful names for vertices: An introduction
to dynamic implicit informative labelling

schemes

David Morgan

Department of Computing Science
University of Alberta
TR05-04

January 2005

USEFUL NAMES FOR VERTICES: AN INTRODUCTION TO DYNAMIC
IMPLICIT INFORMATIVE LABELLING SCHEMES

David Morgan

Department of Computing Science, University of Alberta, Edmonton AB,
Canada T6G 2ES.

Abstract

As defined by Peleg (Peleg, LNCS vol. 1893, 2000), an informa-
tive labelling scheme labels the vertices of a graph so that information
can be deduced from the vertex labels. Peleg’s paper on informative la-
belling schemes generalized the concepts introduced by Muller (Muller,
Ph.D. thesis, Georgia Tech, 1988) and Kannan et al. (Kannan et al.,
STAM J Disc Math, 1992) in which the adjacency of two vertices could
be determined using only their labels. In general, the vertex labellings
used in informative labelling schemes cannot be tweaked to accommo-
date small changes in the graph. Although Kannan et al., suggested
the dynamic version of their problem as a direction for future research,
only one paper has explored this topic. The paper of Brodal and Fager-
berg (Brodal and Fagerberg, LNCS vol. 1663, 1999) devises a dynamic
scheme for graphs of bounded arboricity, however, it lacks a formal
statement of the dynamic problem.

Motivated by the necessity of such a formal statement, we define
the notion of a dynamic implicit informative labelling scheme; discuss
measures for judging the quality of such dynamic schemes; and show a
connection between the existence of dynamic schemes and the recog-
nition problem. To illustrate the concept of a dynamic implicit infor-
mative labelling scheme we develop a space-optimal dynamic implicit
adjacency labelling scheme for r-minoes; as per the definition of Me-
telsky and Tyshkevich (Metelsky and Tyshkevich, STAM J Disc Math,
2003), a graph is said to be an r-mino if none of its vertices belong to
more than » maximal cliques.

1 Introduction

Consider a finite simple undirected graph G = (V, F¢) with n vertices and
m edges. Typically, we represent G using an adjacency matrix or a series of
adjacency lists, labelling the vertices from 1 to n. These rudimentary labels
serve only to distinguish between the vertices and do not tell us anything
about the structure of G. In particular, the adjacency of any pair of vertices

must be determined from the adjacency matrix or the adjacency lists, both
of which are usually maintained as global resources.

What if we could determine the adjacency of two vertices of G in a more
local manner, that is, by using only the labels given to them? One way to
do this is by labelling each vertex with a unique prelabel from {1,...,n},
along with its corresponding row of the adjacency matrix whose indices are
based on these prelabels. Given this labelling scheme, we can determine the
adjacency of two vertices having prelabels v; and v using only their labels
by looking up the bit corresponding to v, in the row of the adjacency matrix
found in the label of vy, or vice versa. In thislabelling scheme each vertex has
a label of size ©(n), the sum of the sizes of all the vertex labels is ©(n?), and
adjacency queries can be handled in ©(1) time. Another approach is to label
each vertex with a unique prelabel from {1,...,n}, along with a list of the
prelabels of the vertices to which it is adjacent. Given this labelling scheme,
we can determine the adjacency of two vertices having prelabels v; and v
using only their labels by determining if vy is in the adjacency list found in
the label of vy, or vice versa. In this labelling scheme a vertex v has a label
of size O(deg(v)logn) C O(nlogn), the sum of the sizes of all the vertex
labels is ©((m + n) logn), and adjacency queries can be handled in O(logn)
time providing the adjacency lists are sorted. Upon extension to families
of finite graphs these labelling schemes based upon adjacency matrices and
adjacency lists are examples of informative (adjacency) labelling schemes as
defined by Peleg [18].

Definition 1.1 (Peleg) Consider a function f(S,G) defined on sets of ver-
tices S of fized but arbitrary finite graphs G. An implicit f-labelling scheme
of a family G of finite graphs is a pair (M, D) defined as follows.

e M is a vertex labelling algorithm whose input is a graph G in G. Note
that M need not be deterministic; accordingly, let M¢ be the set of all
vertex labellings of Vo which can be assigned by M.

e D is a polynomial time deterministic evaluation algorithm whose input
is a set of vertex labels. Given any labelling Lg of Vi, let Ls g denote
the subset of these labels corresponding to a subset S of V. For any
graph G in G we define Lg to be (D, f)-correct if D(Lsq) = f(S,G)
for every subset S of Vi on which f is defined. Given this definition,
we require that M¢ be (D, f)-correct for all G in G and for all M¢ in
M. Note that D is a function of the labels only.

Allowing sufficiently large labels we can create informative labelling
schemes for any such function f, however, in doing so we may overlook

two desirable characteristics, namely, space-optimality and balance. If we
define the size of a labelling of a graph to be the sum of the sizes of its ver-
tex labels, then by a space-optimal f-labelling scheme of G we are referring
to an f-labelling scheme which generates labellings of asymptotically small-
est size over all f-labelling schemes of G. By “asymptotically smallest size”
we mean that the sizes of the graph labellings are considered asymptotically
with respect to the number of vertices in the graph. If the size of a vertex
labelling of a graph on n vertices is ©(S), then by a balanced f-labelling
scheme of G we are referring to an f-labelling scheme which generates ver-
tex labels of size O(%), thus distributing the information about f across the
graph. To date, balanced space-optimal informative labelling schemes have
been developed for a variety of functions over certain graph classes, such as
adjacency over interval graphs [11], distance over rings [17], and center of
three vertices over trees [18].

The seminal works of both Muller [15] and Kannan et al. [11] presented
a narrower version of adjacency labelling schemes in the form of what Spin-
rad [21] defines as the the implicit representation problem. A family G of
finite graphs is said to have an implicit representation if there is an ad-
jacency labelling scheme for G such that the members on n vertices have
vertex labels of size O(logn). To date, implicit representations have been
found for many classes of graphs including trees, bounded degree graphs,
planar graphs, and interval graphs. In his recent text on graph representa-
tion, Spinrad [21] has generalized the idea of an implicit representation by
asking if families of graphs with 29(¢(") members on n vertices have adja-
cency labelling schemes using O(%) bits per vertex. We observe that an
adjacency labelling scheme of a family of graphs provides a unique represen-
tation for each of the members of the family, so the number of bits required
by an adjacency labelling scheme is at least the number of bits required
to represent all of the members uniquely; in particular, a family of graphs
with 29(?(") members on n vertices requires a labelling of size ©(¢(n)) to
uniquely represent each of the members on n vertices. Therefore, general-
ized implicit representations are balanced space-optimal adjacency labelling
schemes. Note that the previously described adjacency labelling scheme de-
vised from adjacency matrices is a generalized implicit representation, and
hence a balanced space-optimal adjacency labelling scheme, for any family of
graphs having 20("*) members on n vertices. Such families include bipartite
graphs, chordal graphs, and the class of all graphs.

The terms “generalized implicit representation” and “adjacency labelling
scheme” used by Spinrad [21] and Peleg [18], respectively, do not precisely
capture the essence of what they are intended to define when considered in

the context of one another. The term “generalized implicit representation”
directly references the ability to determine the adjacency of two vertices
implicitly from their labels, however, put in the wider context of informative
labelling schemes, it is no longer evident that adjacency is the property
on which we are being informed. Moreover, the term “generalized implicit
representation” is used to capture the properties of space-optimality and
balance, neither of which are evident from the term itself. On the other hand,
the term “adjacency labelling scheme” makes evident the underlying interest
in vertex adjacency, but overlooks the fact that the adjacency of two vertices
can be determined implicitly from their labels. As such, what is defined by
Peleg to be an “adjacency labelling scheme” might more accurately be called
an “implicit adjacency labelling scheme”; similarly, what Spinrad defines to
be a “generalized implicit representation” might more accurately be termed
a “balanced space-optimal implicit adjacency labelling scheme”. Although
longer, these terms better capture the properties of what is being defined and
in doing so offer a unified terminology for researchers unfamiliar with the
subject area. We will use this new terminology throughout the remainder
of this article, except when referring to earlier works in a historical context.

In many applications the underlying topology is constantly changing and
we desire algorithms which can accommodate these changes without having
to process the new topology from scratch. At present, algorithms for finding
implicit adjacency labelling schemes are static; that is, if the graph provided
to the algorithm is changed then the algorithm must process the new graph
from scratch. The dynamic version of this problem was mentioned by Kan-
nan et al. [11] in their original work on implicit representations, however, no
formulation of the problem is attempted. At most, the authors suggest that
the addition or deletion of a vertex or an edge should require only a “quick”
update of the labels in order to obtain an implicit representation of the new
graph. To date, the paper of Brodal and Fagerberg [8] stands as the only
publication on this dynamic problem, however, their paper did not formally
define the notion of a dynamic implicit adjacency labelling scheme. Specif-
ically, they develop a dynamic implicit adjacency labelling scheme which
handles the addition and deletion of single edges and vertices in graphs of
bounded arboricity, providing the bounded arboricity is maintained. As a
continuation of the work of Brodal and Fagerberg, there is a need for more
formal discussion on dynamic implicit informative labelling schemes, as well
as the development of dynamic implicit informative labelling schemes for
more classes of graphs. In particular, algorithms developed for dynamic
implicit informative labelling schemes should incorporate some form of er-
ror detection; that is, the algorithms should recognize when the modified

graph is no longer a member of the family under consideration. In section 2
we formally introduce the theory of dynamic implicit informative labelling
schemes and in Section 3 we present dynamic implicit adjacency labelling
schemes for r-minoes; as defined by Metelsky and Tyshkevich [14], a graph
is an r-mino if none of its vertices belongs to more than r maximal cliques.

By further studying dynamic implicit adjacency labelling schemes we
hope to expand the applicability of implicit labelling schemes to real world
problems. In particular, implicit labelling schemes have direct applications
to the efficiency of XML (Extensible Markup Language) search engines [12].
Web documents conforming to the XML standard can be viewed as a tree
with nested nodes corresponding to individual words, phrases, or sections
of the document. Using implicit informative labelling schemes, an XML
search engine can assign labels to each of these nodes allowing relationships
such as ancestor, parent, and sibling to be determined using only the labels
of the nodes. This allows the search engine to answer web queries without
repeatedly accessing the file itself. Moreover, by employing dynamic schemes
the search engine will no longer have to recalculate the labels of the nodes
when a small change is made to the XML document. Applications of implicit
labelling schemes to communication networks have also been discussed in
[12], [17], and [22].

2 Dynamic Implicit Adjacency Labelling Schemes
We begin by defining a dynamic implicit f-labelling scheme.

Definition 2.1 Consider a function f(S,G) defined on sets of vertices S of
fized but arbitrary finite graphs G. A dynamic implicit f-labelling scheme
of a family G of finite graphs is a tuple (M, D, A, C) defined as follows.

e (M,D) is an implicit f-labelling scheme of G.
e A is a set of functions which map graphs in G to other graphs.

e C is a polynomial time relabelling algorithm whose input is a pair
(0, Lg), where § € A, G € G, and L¢ is a (D, f)-correct labelling of
Vo from Lg (defined shortly); in particular, providing 6(G) € G, C
assigns a new (D, f)-correct labelling to Vs(q) based upon the labelling
Lg of G. Note that C need not be deterministic; accordingly, let Csr,,
be the set of labellings of Vsqy which can be assigned by C' on input
(0,Lg). For each G in G we define the family Lo of (D, f)-correct

labellings of Vg by La € L if and only if Lg € Mg or there exists
G*inG, din A, and Lg- in Lg such that §(G*) = G and Lg € Cs .. .

Moreover, we say that the dynamic implicit f-labelling scheme is error-
detecting if, given any input (3, Lg), C is able to determine when 0(G) & G.

In a less formal context, C' can be considered as the composition of
algorithms required by the graph operations found in A. For instance,
if A permitted the addition or deletion of any edge from a graph, we
might consider C' to be comprised of two algorithms, ADDEDGE(e,L¢) and
DELETEEDGE(e,L¢), which use a labelling L¢ to relabel G + e and G — e,
respectively. Again, note that the algorithms ADDEDGE and DELETEEDGE
are provided input about the graph only in the form of vertex labels; in
turn, these algorithms output labellings of the vertices of G + e and G — e,
respectively. Moreover, in practice we are not interested in maintaining a
labelling for every graph in the family, rather, we use the labelling of a graph
to determine a labelling of a slightly modified graph, discarding the labelling
of the original graph in the process. In this sense we can omit the labelling
from the input of the algorithms as these algorithms are directly modifying
the labelling of the graph under consideration; that is, the above algorithms
might be presented as ADDEDGE(e) and DELETEEDGE(e).

We have seen how an implicit f-labelling scheme can be created for any
function f when we allow sufficiently large labels; similarly, sufficiently weak
choices of M, A, and C' will result in a dynamic implicit f-labelling scheme
for any function f. As a result, there are several ways in which one might
judge the quality of a dynamic implicit f-labelling scheme. First of all, we
might judge a dynamic scheme according to the time taken by C on in-
put (0, Lg) relative to the time taken to label §(G) by the fastest labelling
algorithm of a non-dynamic implicit f-labelling scheme. Specifically, the
purpose of the dynamic scheme is to provide quick updates of the labels,
thereby, if there is a non-dynamic scheme which can generate the labels in
equal or better time, even from scratch, then there is no advantage gained
by using the dynamic scheme. Secondly, since a dynamic implicit f-labelling
scheme includes an implicit f-labelling scheme, we might also judge a dy-
namic scheme according to the size of the labels generated by M and C'. For
example, consider that the implicit adjacency labelling scheme developed
using adjacency matrices can be further developed into a dynamic implicit
adjacency labelling scheme. Since this dynamic scheme uses vertex labels
of size O(n), any other dynamic implicit adjacency labelling scheme using
labels of size ©(n) would only be advantageous if it permitted faster updates

of the labels than can be achieved using the dynamic scheme developed from
adjacency matrices. Finally, we might judge a dynamic scheme according
to the operations contained in A. Preferably, A will contain the addition
and deletion of a single edge or vertex (along with the edges incident with
this vertex) which are four fundamental dynamic graph operations. More-
over, using the operations found in A, we would like to be able to transform
any member of G into any other member of G without escaping the class G;
however, this may require more than these four fundamental dynamic graph
operations.

It should be noted that if G is a hereditary graph class then these fun-
damental graph operations are sufficient to transform any member of G into
any other member of G without escaping the class G; recall that a graph
class is said to be hereditary if every vertex induced subgraph of a member
of the class is also a member of the class. For each member G of G there is
a sequence Sg = {Go = 0,G1,...,G|vy|-1, G|y, = G} of members of G for
which G;_1 = G; — v;, where v; is a vertex of G; and 1 < i < |V|. Thereby,
given GV, G € G we can construct G from G(!) by using the vertex
deleting algorithm to transform GU) into () via the members of Saa), then
using the vertex adding algorithm to transform @ into G via the members
of SG(Q) .

Continuing with the idea of transforming one graph into another, there is
a connection between error-detecting dynamic implicit f-labelling schemes
and the problem of recognizing whether a graph belongs to a certain family.
Consider a family of graphs G for which there exists a dynamic implicit f-
labelling scheme (M, D, A, C') and the recognition problem is polynomial on
G. If f allows us to determine the structure of a graph G from any labelling
in L¢, then on any input (0, L) C can use f to determine the structure of G
and, hence, the structure of §(G), in polynomial time. In turn, C can apply a
polynomial time recognition algorithm to determine if §(G) is in G; thereby,
the dynamic implicit f-labelling scheme is error-detecting. Specifically, if f
is the adjacency function then f can determine the structure of the graph.

On the other hand, it is more complicated to develop recognition from
error-detection. Consider a family of graphs G for which there exists an
error-detecting dynamic implicit f-labelling scheme (M, D, A, C). If for any
graph G in G

e there exists a graph G* in G for which we can determine in polynomial
time a polynomial length sequence S = {Gy = G*,G1,...,Gr_1,G =
G} of members of G, as well as a polynomial length sequence G* =
{00,01,...,0,_1} of members of A such that §;(G;) = Gj41, for 0 <

1<k—-1

e and there exists a polynomial time function for determining a labelling
of G* which belongs to Lg-

then the recognition problem is polynomial on G. The reason being that we
can determine Sg, G2, and the labelling for G* in polynomial time; then
transform the labelling of G* into a labelling for G, 1 using a polynomial
number of calls of the polynomial time algorithm C', namely {Cy, C1,...,Cr_1},
where Cy = C(dy, Lg+) and C; = C(0;,Cj—1), for 1 < 4 < k — 1; and fi-
nally resolve the membership of G in G according to the action of C' when
it attempts to determine a labelling of G from the labelling of G 1. If
G € G then C will determine a labelling of G, otherwise, it will output that
G ¢ @G since it is an error-detecting algorithm. For example, consider a
hereditary graph class with an error-detecting dynamic implicit f-labelling
scheme whose graph operation set includes the addition of vertices (along
with incident edges). For each member G of the class there is a sequence
Se¢ = {Go = 0,G1,...,Gvy-1,G)vy = G} of members of G for which
Gi—1 = G; — v;, where v; is a vertex of G; and 1 < ¢ < |Vg|. We have
a polynomial time labelling for () and a means to achieve Glyy|-1 from 0
using operations in A, thereby, the recognition problem is polynomial for
the hereditary class.

Given that the algorithms which change the labellings are functions of
the change and the labelling only, the vertex labels used in dynamic im-
plicit labelling schemes must contain sufficient information to allow algo-
rithms to update the labellings. In general, the labels used in implicit ad-
jacency labelling schemes do not contain enough information to be used
in dynamic implicit adjacency labelling schemes, however, the implicit ad-
jacency labelling schemes of some classes are inherently dynamic. For in-
stance, consider the following implicit adjacency labelling scheme for trees.
Let T be a tree on n vertices. We arbitrarily assign to 7" a root and
give each vertex a unique prelabel from {1,...,n}. We now obtain an
implicit adjacency labelling scheme for 7" by giving each vertex v of T
the label (prelabel(v), prelabel(parent(v))). The adjacency of two ver-
tices v; and vy can be determined using only their labels by a polynomial
time algorithm D which checks if prelabel(v;) = prelabel(parent(vs)) or
prelabel(vg) = prelabel(parent(v;)). Moreover, each label is of size O(logn),
thus making the scheme space-optimal and balanced as the number of trees
on n vertices is 29("1987) If a new vertex is added to a tree such that the re-
sulting graph is still a tree, then its only neighbour is its parent. Therefore,
we can give it the label (prelabel, prelabel of parent) so that the labelling is

still (D,adjacency)-correct on the new graph. If a vertex is deleted such that
the resulting graph is still a tree, then the vertex must have been a pendant
vertex. Therefore, it was not the parent of any other vertex and so deleting
the vertex keeps the labelling (D,adjacency)-correct on the remaining tree.
Although the maintenance of this space-optimal implicit adjacency labelling
scheme for trees seems straightforward, there are some underlying shortcom-
ings. One such problem is that when a vertex is added and given a prelabel
there must be some way of determining an acceptably small unused prelabel
to assign to it. Another such problem is that it is possible to delete too
many vertices causing the remaining prelabels to ruin the space-optimality
of the labelling. In the work on r-minoes presented in Section 3 we make
assumptions which eliminate these problems.

As mentioned, the only work on dynamic implicit adjacency labelling
schemes is by Brodal and Fagerberg [8] who develop such schemes for graphs
of bounded arboricity. Fundamental to their work is the relationship be-
tween arboricity and outdegree orientations where, in particular, a graph
with arboricity ¢ has an outdegree-c orientation. Their scheme maintains
an outneighbourhood list for each vertex v, denoted by adj[v], where, most
importantly, their algorithms include a mechanism to handle outdegree lists
which get too big. On a graph with n vertices and arboricity bounded by
¢, Brodal and Fagerberg’s representation supports adjacency testing in O(c)
time, edge insertions in O(1) time, and edge deletions in O(c + logn) time.
We present their algorithms for handling the addition and deletion of a single
edge from a graph of bounded arboricity ¢ in Figure 1. Unfortunately, these
algorithms are built on the assumption that the changes to the graph do
not cause its arboricity to exceed c. In their article, Brodal and Fagerberg
do describe modified algorithms which can handle unspecified arboricities,
however, this results in increased time bounds.

3 Error-Detecting Dynamic Implicit Adjacency La-
belling Schemes for r-minoes

In the remainder of this work we consider error-detecting dynamic implicit
adjacency labelling schemes for a series of graph classes known as r-minoes.
As mentioned in Section 1, Metelsky and Tyshkevich [14] define a graph to
be an r-mino if none of its vertices belongs to more than r maximal cliques;
this notion of an r-mino is an extension of the idea of a domino, as defined
by Kloks et al. [13], in which each vertex belongs to at most two maximal
cliques. In their work, Metelsky and Tyshkevich show that the class of r-

INSERT((u, v))
1 adjfu] < adj[u] U {v}
2 if |adjfu]| = 4c+1
3 then S < {u}
while § % 0
do w + Pop(S)
for z € adj[w]
do adj[z] < adj[z] U {w}
if |adj[z]| = 4e+1
then Push(S,z)
adj[w] < 0

O © 0~ DO

DELETE((u, v))
1 adjfu] « adj[u] \ {v}
2 adjv] < adj[v] \ {u}

Figure 1: Algorithms for dynamic implicit representations of graphs of
bounded arboricity c.

minoes is the same as the class of line graphs of Helly hypergraphs with
rank at most r; recall that the line graph of a hypergraph H = (V,€) is the
graph L(H) = (€, E') for which ee’ € E’ if and only if e # ¢’ and e N e’ # (;
that the hypergraph H is said to satisfy the Helly property if every pairwise
intersecting subset £ of £ is such that (,.¢ e # 0; and that the rank of H
is the value Zleagz{|e|}

The challenge in creating dynamic implicit adjacency labelling schemes
lies in storing sufficient information in the vertex labels to deduce, at least
partially, the structure of the graph in an efficient manner. Without know-
ing the structure of the graph we cannot determine the structure of the new
graph and, in turn, we cannot determine the labels of the new graph. If the
label of a vertex v were to contain only the indices of the maximal cliques
in which it is contained then it would be impossible to deduce the neigh-
bourhood of v without checking the label of every vertex u in the graph to
see if u shared a common maximal clique with v. To overcome this problem
we use the vertex labels to maintain a circular (doubly) linked list structure
of the vertices in each maximal clique. Not only will a vertex label contain
a listing of all the maximal cliques in which it is contained, but for each of

10

these cliques it will contain the name of the previous and next vertex in the
circular linked list for that clique. Using these circular liked lists, we can
determine all the vertices in a maximal clique by examining only the labels
of the vertices in that clique and, moreover, we will be able to determine
the neighbourhood of a vertex by examining only the labels of the vertices
in the neighbourhood. Given the labels of two vertices v; and vy of the
graph an evaluation algorithm can determine their adjacency in polynomial
time by checking if they are in a common maximal clique. It should also
be noted that the labelling algorithm can determine the maximal cliques,
and hence the vertex labels, in polynomial time providing r is polynomial
in n; we will discuss this in more detail later. Specifically, the labels of our
dynamic scheme will contain the following information.

pre: Each vertex is assigned a unique prelabel from {1,...,n}; pre is the
prelabel of the vertex.

pre.cliquesin: The number of maximal cliques in which pre is contained.

pre.cl: A list of triples containing information on the maximal cliques in
which pre is contained. Each member pre.cl; is a triple of the form
(num, nx, prev) where num is the number assigned to the clique; nz is
the prelabel of the next vertex after pre in the circular doubly linked
list of the vertices in clique num; and prev is the prelabel of the vertex
before pre in the circular doubly linked list. The index % ranges from
1 to cliquesin.

In particular, the label of a vertex is (pre: pre.cliquesin; pre.cl). As an
example of this labelling consider the graph presented in Figure 2.

J(@Li(0.0.0)
(e:1;(2,d,d)) (b:1;(1,¢,d))

(d:2;(1,b,0);(2,e,e)) (c:15(1,d,b))

Figure 2: A labelling of a graph obtained using our labelling scheme for
2-minoes (dominoes).

Consider an r-mino which, through some series of modifications, now
contains exactly n vertices. If [(string) denotes the size of the representation

11

of string then the size of a label is

pre.cliquesin

I(pre) + l(pre.cliquesin) + Z I(pre.cl;)
i=1

€ O(l(pre + log(r —i—r(l (pre.cli-))
= O(l(pre) + log(r) + r(I(pre.cli- .num) + I (pre.cl-. m:)))
= O(l() + log(r) + r(log(rn) + I(pre.cli-. nz)))

- O(l(pre) +log(n) + l(pre.cli*.nx)>,

where i* is the value of 7 for which [(pre.cl;) is a maximum.

Observe that if the graph had been obtained by the deletion of vertices
then it is possible that the largest prelabel of a vertex might be larger than n;
as such, let the largest prelabel of a vertex in the graph be L. Thereby, [(pre)
and [(pre.cli-.nz) are O(logL). If L € O(n), which we assume hereafter,
then the size of a vertex label reduces to O(log(n)). That is, the graph
is represented using O(n log(n)) bits. The space-optimality of this labelling
can be established using an argument found in Spinrad [21] (p. 18) to develop
a lower bound on the number of r-minoes on n vertices. Consider a graph
with 5 disjoint edges, each of which has one endpoint in {1,...,5} and
the other in {§ 4+ 1,...,n}. There are (§)! such graphs, each of which is a
member of our family. Yet,

: n\n 2 log(% nlog(n
!>(Z)4 :241g(4)69(2 log())’

so there are Q(27°8(")) r-minoes on n vertices. Therefore, any labelling
which uniquely represents each member of this class, as ours does, requires
Q(nlog(n)) bits thereby proving the space-optimality of our dynamic la-
belling scheme when r € O(1).

3.1 Algorithms used in the dynamic scheme

In the remainder of this work we discuss the graph operations included in our
dynamic scheme. In particular, we accommodate the addition or deletion of
a vertex (along with its incident edges) and the addition or deletion of an
edge.

12

3.1.1 Deleting a vertex from the graph

One action that we allow on the r-mino is the deletion of a vertex along with
its incident edges; the algorithm DELETEVERTEX found in Figure 3 can be
used to maintain the vertex labels in this situation. Letting pre be the prela-
bel of the vertex of the graph to be deleted, DELETEVERTEX first removes
pre from each maximal clique in which it is contained. If any of the resid-
ual cliques are empty, or no longer maximal, then it removes all references
to these residual cliques and frees the clique number for future use using
FREECLIQUE. Before finishing, DELETEVERTEX frees the prelabel pre for
future use. If maxcl(pre) is the size of the largest maximal clique contain-
ing pre, then DELETEVERTEX runs in O(r? - mazcl(pre)) time. Moreover,
DELETEVERTEX is error-detecting because the vertex induced subgraph of
any r-mino is also an r-mino.

3.1.2 Adding a vertex to the graph

Another action we allow is the addition of a vertex along with its incident
edges; the algorithm ADDVERTEX found in Figure 4 can be used to maintain
the vertex labels in this situation. Letting pre be the prelabel of the vertex to
be added, ADDVERTEX examines the maximal cliques that contain members
of N (pre), the open neighbourhood of pre, to determine the maximal cliques
to which pre belongs. For each maximal clique containing a member of
N(pre) we consider the subclique of vertices in N(pre). If the vertices of
this subclique are not contained within another maximal clique which has
yet to be explored then we will use this subclique to create a maximal clique
containing pre; otherwise, we will wait until we encounter the same subclique
later. Specifically, if the subclique is a maximal clique then we simply add
pre to the subclique; otherwise, we form a new maximal clique from the
subclique and pre. If maxzcl(pre) is the size of the largest maximal clique
containing pre, then ADDVERTEX runs in O(r3 - maxcl(pre) -|N(pre)|) time.
Moreover, whenever a vertex is placed in a new clique we check that it is not
in more than r maximal cliques, thus making the algorithm ADDVERTEX
error-detecting.

Since the class of r-minoes is hereditary, the labelling algorithm associ-
ated with the dynamic scheme can iteratively run ADDVERTEX, beginning
with the empty graph, in order to determine an initial labelling of any mem-
ber in the class. Such an algorithm would run in polynomial time, as required
by the definition of a dynamic implicit informative labelling scheme.

13

3.1.3 Deleting an edge from the graph

The third action we allow is the deletion of an edge; the algorithm DELE-
TEEDGE found in Figure 5 can be used to maintain the vertex labels in this
situation. Letting u and v be the prelabels of the endpoints of the edge to
be deleted, DELETEEDGE examines the maximal cliques that contain both
u and v. For each of these maximal cliques, clnum, we need to consider the
possibilities of clnum —{u} and clnum —{v} being maximal cliques. Specif-
ically, if the vertices in these cliques share another common clique besides
clnum then we do not add any new cliques; however, if these vertices do
not share another common clique then we add a new clique. If maxcl(u, v)
denotes the size of the largest maximal clique containing both « and v then
DELETEVERTEX runs in O(r? - mazcl(u,v)) time. Moreover, whenever a
vertex is placed in a new clique we check that it is not in more than r
maximal cliques, thus making the algorithm DELETEEDGE error-detecting.
We present the algorithm at a higher level than we did ADDVERTEX as
many of the details can be implemented using similar constructs found in
ADDVERTEX.

3.1.4 Adding an edge to the graph

The final action we allow is the addition of an edge; the algorithm ADDEDGE
found in Figure 6 can be used to maintain the vertex labels in this situation.
Letting w4 and v be the prelabels of the endpoints of the edge to be added,
ADDEDGE examines the maximal cliques that contain v. For each maximal
clique containing v we consider the subclique of vertices in N(u). If the
vertices of this subclique are not contained within another maximal clique
which has yet to be explored then we will use this subclique to create a
maximal clique containing wu; otherwise, we will wait until we encounter
the same subclique later. Specifically, if the subclique is a maximal clique
then we simply add u to the subclique; otherwise, we form a new maximal
clique from the subclique and w. The algorithm ADDEDGE is very similar to
ADDVERTEX. If mazcl(u) and mazcl(v) are the sizes of the largest maximal
cliques containing v and v respectively, then DELETEVERTEX runs in O(r? -
maz{mazcl(u), mazcl(v)}) time. Moreover, whenever a vertex is placed
in a new clique we check that it is not in more than r maximal cliques,
thus making the algorithm ADDEDGE error-detecting. As a final comment,
we note the similarity between the algorithm ADDEDGE and the algorithm
ADDVERTEX.

14

3.2 Maximal cliques, edge clique covers, and intersection
representations

We observe that the set of maximal cliques of a graph G constitutes an
edge clique cover which is a set of complete subgraphs of G which cover
E¢. Therefore, an r-mino has an edge clique cover in which each vertex is
contained in at most 7 of these cliques. The converse of this statement is
not true; for example, consider the graph G shown in Figure 7. The vertex
v is contained in % € O(|V¢|) maximal cliques, however, the edge clique
cover {{v,a1,...,a}, {v,b1,...,bk},{a1,b1},...,{ak,bg}} is such that each
vertex is contained in at most two cliques.

Additionally, there exists a dual relationship between edge clique covers
and intersection models of graphs. In particular, an intersection model of a
graph can be obtained from an edge clique cover by representing each vertex
by the set of cliques in the edge clique cover to which it belongs; similarly, an
edge clique cover can be obtained by associating a clique with each element
used in the intersection model, thereby, a vertex will be contained in a clique
of the edge clique cover if the set corresponding to the vertex contains the
element associated with that clique. Therefore, an r-mino has an intersection
model in which each vertex is represented by a set of size at most r. As with
our previous observations regarding edge clique covers, the converse of this
statement does not hold.

4 Conclusion

Over the last fifteen years the study of informative labelling schemes has
evolved through the efforts of several authors, including Muller [15], Kannan
et al. [11], Peleg [18], and Spinrad [21]. In this work we formalize the idea of a
dynamic implicit informative labelling scheme and present dynamic schemes
for graph classes known as r-minoes. In particular, the graph operations
which are permitted in this dynamic scheme for graphs are the addition or
deletion of a vertex (and its incident edges) and the addition or deletion of
an edge. In developing this dynamic scheme we have employed a technique
in which information about the neighbourhood of a vertex is incorporated
into the vertex labels via circular linked list structures so as to distribute
information about a maximal clique across the labellings of the vertices in
that maximal clique.

Future research on dynamic implicit informative labelling schemes will
reveal dynamic schemes for additional classes of graphs. By studying these
dynamic schemes we will increase the applicability of informative labelling

15

schemes to real world problems such as internet search engines and commu-
nication networks [12, 17, 22].

References

1]

2]

[4]

[9]

S. Abiteboul, H. Kaplan, and T. Milo, Compact labeling schemes for an-
cestor queries, Proceedings of the Twelfth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (Washington, D.C., USA), 2001, pp. 547—
556.

S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe, Nearest common
ancestors: A survey and a new distributed algorithm, Proceedings of
the Fourteenth Annual ACM Symposium on Parallel Algorithms and
Architectures (Winnipeg, Canada), 2002, pp. 258-264.

S. Alstrup and T. Rauhe, Small induced-universal graphs and compact
implicit graph representations, 43'4 Annual Symposium on Foundations
of Computer Science (Vancouver, Canada), IEEE, 2002, pp. 53-62.

S. R. Arikati, A. Maheshwari, and C. Zaroliagis, Efficient computation
of implicit representations of sparse graphs, Discrete Applied Mathe-
matics 78 (1997), no. 1, 1-16.

B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, Compact dis-
tributed data structures for adaptive routing, Proceedings of the 215
Annual ACM Symposium on Theory of Computing (Seattle, USA),
1989, pp. 467-478.

M. A. Breuer, Coding the vertezes of a graph, IEEE Transactions on
Information Theory 12 (1966), 148-153.

M. A. Breuer and J. Folkman, An unexpected result in coding the ver-
tices of a graph, Journal of Mathematical Analysis and Applications 20
(1967), 583-600.

G. S. Brodal and R. Fagerberg, Dynamic representation of sparse
graphs, Algorithms and Data Structures, Proceedings of the 6 Inter-
national Workshop (Vancouver, Canada), Lecture Notes in Computer
Science, vol. 1663, Springer-Verlag, 1999, pp. 342-351.

W. R. Franklin, Compressing elevation data, Advances in Spatial
Databases, Proceedings of the 4" International Symposium (Portland,

16

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

USA), Lecture Notes in Computer Science, vol. 951, Springer-Verlag,
1995, pp. 385-404.

C. Gavoille, D. Peleg, S. Pérennes, and R. Raz, Distance labeling in
graphs, Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms (Washington, D.C., USA), 2001, pp. 210-219.

S. Kannan, M. Naor, and S. Rudich, Implicit representation of graphs,
STAM Journal on Discrete Mathematics 5 (1992), no. 4, 596-603.

H. Kaplan and T. Milo, Short and simple labels for small distances
and other functions, Algorithms and Data Structures, Proceedings of
the 7" International Workshop (Providence, USA), Lecture Notes in
Computer Science, vol. 2125, Springer-Verlag, 2001, pp. 246-257.

T. Kloks, D. Kratsch, and H. Miiller, Dominoes, Graph Theoretic Con-
cepts in Computer Science, Proceedings of the 20*" International Work-
shop (Herrsching, Germany), Lecture Notes in Computer Science, vol.
903, Springer-Verlag, 1995, pp. 106-120.

Y. Metelsky and R. Tyshkevich, Line graphs of Helly hypergraphs,
SIAM Journal of Discrete Mathematics 16 (2003), no. 3, 438-448.

J. H. Muller, Local structure in graph classes, Ph.D. thesis, Georgia
Institute of Technology, March 1988.

M. Naor, Succinct representation of general unlabeled graphs, Discrete
Applied Mathematics 28 (1990), 303-307.

D. Peleg, Proxzimity-preserving labeling schemes and their applications,
Graph Theoretic Concepts in Computer Science, Proceedings of the
25" International Workshop (Ascona, Switzerland), Lecture Notes in
Computer Science, vol. 1665, Springer-Verlag, 1999, pp. 30-41.

, Informative labeling schemes for graphs, Mathematical Foun-
dations of Computer Science 2000, Proceedings of the 25 International
Symposium (Bratislava, Slovakia), Lecture Notes in Computer Science,
vol. 1893, Springer-Verlag, 2000, pp. 579-588.

N. Santoro and R. Khatib, Labelling and implicit routing in networks,
The Computer Journal 28 (1985), 5-8.

E. R. Scheinerman, Local representations using very short labels, Dis-
crete Mathematics 203 (1999), 287-290.

17

[21] J. Spinrad, Efficient graph representation, Fields Institute Monographs,
AMS, Providence, 2003.

[22] M. Thorup and U. Zwick, Compact routing schemes, Proceedings of
the Thirteenth Annual ACM Symposium on Parallel Algorithms and
Architectures (Heraklion, Greece), 2001, pp. 1-10.

18

DELETEVERTEX(pre)

1
2

for i < 1 to pre.cliquesin do
if pre.cl;.nz = pre or the vertices of clique pre.cl;.num, other

than pre, exist in a common clique besides pre.cl;.num then

3
4
5

FREECLIQUE(pre.cl;.num, pre)
else REMOVEFROMCLIQUE(pre.cl;.num, pre)
FREEVERTEX(pre)

FREECLIQUE(cliguenum, start)

1

~N O O = W N

8

future

T < start
y < the next vertex after x in clique cliquenum
REMOVEFROMCLIQUE(cliguenum, x)
while y # start do
T4y
y < the next vertex after z in clique cliquenum
REMOVEFROMCLIQUE(cliqguenum, x)
free cliquenum so that it can be used as the name of a clique in the

REMOVEFROMCLIQUE(cliquenum,)

1y < the next vertex after = in clique cliquenum
2z + the vertex before z in clique cliqguenum
3 if z =y then
4 remove the reference to clique cliguenum in the label of x
5 else remove z from between z and y in clique cliquenum
6 z.cliquesin < z.cliquesin —1
FREEVERTEX(v)
1 delete the label of the vertex with prelabel v and free the prelabel

v for future use

Figure 3: The algorithm DELETEVERTEX which updates the labels when a
vertex (along with its incident edges) is deleted from the r-mino.

19

ADDVERTEX(N (pre))
1 pre < GETPRELABEL

2 toprocess < the maximal cliques containing members of N (pre)
3 for each vertex v in N(pre) do
4 for 1 < 1 to v.cliquesin do
5 toprocess < toprocess —{v.clj.num}
6 cliquelist < toprocess
7 I < NiL
8 outside < 0
9 for each vertex w in clique v.cl;.num do
10 if w € N(pre) then
11 cliquelist + the maximal cliques in cliquelist that con-
tain w
12 PusH(I,w)
13 else outside < 1
14 if cliquelist = () then
15 if outside = 0 then
16 ADDTOCLIQUE(v, pre, v.cly.nz, v.cly.num)
17 else PusH(I, pre)
18 MAKENEWCLIQUE([)
GETPRELABEL()

1 return an unused prelabel for the new vertex

ADDTOCLIQUE(z, z,y, cliguenum)
1 z.cliquesin + x.cliquesin +1
2 CHECKRCLIQUES(z)
3 insert z between z and y in clique cliqguenum

CHECKRCLIQUES(x)
1 if z.cliquesin > r then
2 error “the new graph is no longer an r-mino”

MAKENEWCLIQUE(S)
1 cliqguenum < GETCLIQUENUMBER
start < Pop(S)
T 4 start
ADDTOCLIQUE(z, x, z, cliguenum)
while S # NIiL do
Z4 T
x + Pop(S)
ADDTOCLIQUE(z, z, start, cliquenum)

O~ O Ui W N

Figure 4: The algorithm ADDVEREOX which updates the labels when a
vertex (along with its incident edges) is added to the r-mino.

DELETEEDGE(u, v)

1

and v

2
3
4
)
6
7
8

9
10
11
12
13

cliques < the numbers of the maximal cliques common to both

for each maximal clique clnum in cliques do

I + N1L

for each vertex w in clique clnum other than v and v do
PusH(I,w)

FREECLIQUE(clnum, u)

PusH(I,v)

if the vertices in I do not share a common clique then
MAKENEWCLIQUE([)

Por(I)

PusH(I,u)

if the vertices in I do not share a common clique then
MAKENEWCLIQUE([)

Figure 5: The algorithm DELETEEDGE which updates the labels when an
edge is deleted from the r-mino.

ADDEDGE(u, v)

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

toprocess <— the maximal cliques containing v
for 7 < 1 to v.cliquesin do

toprocess < toprocess —{v.cl;}
cliquelist < toprocess
I + NIL
outside < 0
for each vertex w in clique v.cl; do
if w € N(u) then
cliquelist < the maximal cliques in cliquelist that contain

PusH(I, w)
else outside + 1
if cliquelist = () then
if outside = 0 then
ADDTOCLIQUE(v, pre, v.cly.nz, v.cly.num)
else PUsH(I, pre)
MAKENEWCLIQUE(])

Figure 6: The algorithm ADDEDGE which updates the labels when an edge
is added to the r-mino.

21

clique

Figure 7: A graph G with an edge clique cover in which each vertex is
contained in at most two cliques, but also with a vertex contained in O(|Vs|)
maximal cliques.

22

