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ABSTRACT 

Mountain glaciers, key sources of freshwater to downstream ecosystems and users, are 

responsive and vulnerable to changes in climate. Understanding their current influence, their 

potential future changes, and consequences of those changes are all important research goals, so 

many modeling approaches have been developed to address these questions. However, modeling 

at the regional scale can be difficult since input data from field measurements is limited and there 

is high spatiotemporal variability. High uncertainty in model predictions can come from empirical 

modeling parameters, often based on limited observations which are then applied to other glaciers 

in potentially very different topographic settings. In this study, we aim to assess parameter 

uncertainty and transferability by revisiting empirical parameters that are commonly used in 

glacier modeling and explore potential future glacier behaviours by utilizing a range of values for 

each glacier modeling parameter. This approach allows us to quantify uncertainty bands due to 

both projected future climate uncertainty and predicted model uncertainty.  

First, rather than using a set of single parameter values we explore a range for the value of 

each parameter based on their physically meaningful maximum and minimum values. We set up a 

modeling framework by coupling glacier melt, surface mass balance, and spline-based volume-

area scaling (called evolution hereafter), denoted as CGME model for Coupled Glacier Mass-

balance Evolution model, to predict glacier melt runoff. Within the CGME model, we evaluate 

two temperature-index melt modeling approaches: the Classical Temperature Index Model 

(CTIM), which uses a degree-day approach, and the Pellicciotti Temperature-Index Model 

(PTIM), which incorporates radiative melt factors. Our study area is the Athabasca River Basin in 

Alberta, Canada, which contains 258 glaciers. 
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After calibration and optimization, we find that both of the melt models used in our CGME 

model predicted similar ranges of uncertainty (i.e., 95 Percent Prediction Uncertainty, 95PPU) in 

melt runoff, but the CTIM-based model reproduced more observed data points within its prediction 

uncertainty range (71% of observed data were captured within the predicted 95PPU) whereas the 

PTIM-based model reproduced 31% of the observed data.  

Second, we applied these optimized parameter ranges at the regional scale for the period 

1984-2007. Approximately 63% of the glaciers in the region had a normalized uncertainty value 

of greater than 0.5 for melt runoff, indicating that the parameter range transferability is not 

appropriate for the majority of glaciers in the region and that small glaciers are especially sensitive 

to input parameter variability. The framework developed here assesses the parameter 

transferability issue, especially in catchments where small-sized glaciers are dominant contributors 

to downstream water-ways that may have a cumulative ecological impact. 

Further, we explore the impact of potential future change. The glacier model is forced using 

4 CMIP6 GCMs under two shared socioeconomic pathways scenarios (SSP126 and SSP585) for 

the 258 glaciers for the period 1980-2100. From the maximum physically meaningful range for 

each parameter, 100 sets of model input parameters are sampled using Latin Hypercube Sampling 

technique. The 100 sets of sampled parameters are used with the future projected and downscaled 

climate data to force 100 simulations using CGME model for each glacier. This allows us to assess 

the projections’ ranges of uncertainty (using the 95PPU) stemming from input parameterization.  

Glacier changes are assessed based on two categorizations: glacier initial area and glacier 

initial elevation. Our results, based on size, show that glaciers are predicted to decrease in volume 

75-80%, decrease in area 72-78%, and discharge 70-80% of their potential melt runoff in the first 

forty years of the simulation period (1980-2019, the historical period). Monthly predicted flow 
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regimes not only indicate greatly reduced melt runoff as the century progresses, but also the loss 

of late spring and early fall melt runoff. Assessing potential changes by glacier initial elevation 

indicated similar trends, though low elevation glaciers are predicted to be especially responsive, 

discharging ~95% of their melt runoff during the historical period. Monthly melt runoff reflects 

similar trends to those found during size analysis, though low elevation glaciers have the most 

extreme response. These assessments show the potential range of glacier changes under various 

future climate scenarios and the uncertainty stemming from model parameterizations. This can 

assist with freshwater resource management as well as adaptation and mitigation planning and 

implementation.  
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Figure 3.5 Multimodel ensemble projections of annual change in area and volume for 1980-2100 

for glaciers grouped by size under SSP585. The coloured bands indicate the 95 percent prediction 
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signals within each band represent median of CGME predictions (M95PPU). Panels (a), (c), and 

(e) show change in area, while panels (b), (d), and (f) show change in volume. 

Figure 3.6 Multimodel ensemble projections of cumulative annual melt runoff for 1980-2100 for 

glaciers grouped by elevation. The coloured bands indicate the 95 percent prediction uncertainty 

(95PPU) resulting from CGME simulation under each of the GCM forcing. The single signals 

within each band represent median of CGME predictions (M95PPU). Figures (a), (c), and (e) show 

melt runoff under the SSP126 climate scenario, while figures (b), (d), and (f) show melt runoff 

under the SSP585 climate scenario. 
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from all GCMs in each period. In these figures only M95PPU were used, therefore the widths are 

not representing the model parameter uncertainty.
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CHAPTER I – INTRODUCTION 

 

 1.1 Overview 

Mountain glaciers act as natural “water towers,” storing and discharging water to downstream 

ecosystems and societies (Viviroli et al., 2007). Nearly a quarter of the people across the globe 

live directly downstream of mountainous areas and receive water from these water towers, yet 

these are some of the most vulnerable and irreplaceable sources of freshwater (IPCC, 2019; 

Immerzeel et al., 2019). This is due to the fact that unlike renewable water resources, glaciers are 

regarded as paleo waters, which are ancient bodies of water that have been created over millennia 

(Gleick & Palaniappan, 2010). Moreover, the water is stored as ice and snowpack, which are both 

sensitive to changes in climate. Understanding the changes in dynamics of glaciers, their 

accumulation, ablation, and melt runoff is crucial for downstream users and for aquatic ecosystems 

not only globally, but at the regional and local scales (Clarke et al., 2015). 

Western Canada contains many watersheds that are fed by glaciers (Marshall et al., 2011) and 

they rely on glacier runoff for anthropogenic use during low flow season (such as irrigation, 

hydropower generation, and municipal use) as well as for freshwater ecosystems and processes 

(Payne et al., 2004). The province of Alberta is one such area; its western boundary lies along the 

eastern slope of the Canadian Rocky Mountains (CRM) and has five main watersheds with glaciers 

at the headwaters. It contains approximately 700 glaciers that collectively cover an area of ~787.14 

km2 and contain an ice volume of  ~55±15 km3 (Bolch et al., 2010; Marshall et al., 2011). These 

glaciers contribute to seasonal river discharge during the summer melt season; this contribution 
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ranges from ~10% (Bash & Marshall, 2014) to up to 80% (Comeau et al., 2009) in some stream 

systems. Bolch et al. (2010) and Marshall et al. (2011) estimate that the glaciers on the eastern 

slope of the CRM lost more than 20% of their area during 1985-2005. While the majority of the 

glaciers are small, there are some that are quite large and contribute significantly to downstream 

systems. One of these is a part of the larger Columbia Icefield that lies completely within Alberta, 

known as the Athabasca Glacier (~14km2), which directly feeds some of the upper tributaries of 

the Athabasca River basin. This watershed allows the province to thrive, by providing water for 

both its natural and socioeconomic resources.  

Glaciers are dynamic systems with energy, water, and debris in constant flux in and out of their 

mass. One way to study glaciers and how they change is to model the mass of water in the glacier. 

Glaciers gain mass via accumulation (precipitation onto the glacier), lose mass via ablation 

(primarily through melt in mountain glaciers), and the difference between accumulation and 

ablation is the glacier mass balance (GMB). Snow and ice melt on the surface of the glacier is a 

factor of air temperature, incoming solar radiation, and albedo (Hock, 1999; Pellicciotti et al., 

2005). By tracking the GMB (net mass loss or gain) through time, trends in the glacier’s mass 

content can be determined. Historical trends not only lend insight into a glacier’s dynamics, but 

can also be used to understand the glacier’s response to changes in climate and for future 

projections (Intergovernmental Panel on Climate Change’s Fifth Assessment Report, IPCC AR5). 

Hydrological models are among the best means to study dynamics of glacier runoff and their 

evolution over time at a regional scale. A variety of glacier melt models have been developed to 

study such dynamics, yet a full understanding of the processes involved in glacier melt is subject 

to uncertainty due to various reasons. The availability of observations and input data is a major 

concern that limits the application of the most comprehensive process-based models in glacier melt 
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and mass balance simulations. Energy balance models are among the most robust process-based 

models to simulate energy fluxes. One example of such a model is that developed by Brock and 

Arnold (2000), which calculated the net shortwave and longwave radiation fluxes, the turbulent 

sensible and latent heat fluxes, and the surface melt rate of snow or ice. It required hourly inputs 

of incoming shortwave radiation, water vapour pressure, air temperature, and wind speed data, as 

well as details about the study site (the latitude, longitude, slope angle, aspect, elevation, local 

temperature lapse rate, albedo and aerodynamic roughness of the study site, and the elevation of 

the meteorological station) in order to calculate the fluxes. Clarke et al. (2015) employed similar 

calculations to determine mass balance, and their model also incorporated an ice flow/dynamics 

model, which required a DEM of subglacial bed topography, initial ice thickness, and a sliding 

coefficient. While these models are capable of simulating many processes involved in representing 

melt and dynamics, they require extensive measurements as inputs which are not often available 

for large spatial or temporal ranges. This limits their applicability for regional assessments at high 

spatiotemporal resolution for current management and future planning.  

On the other hand, temperature Index models (TIMs) have been developed in the past few 

decades, requiring fewer data to simulate glacier melt, mass balance, and evolution. TIMs are 

empirically-derived approaches that relate the air temperature to the accumulation or ablation of 

individual glaciers through several empirical parameters. Various TIM formulations (e.g., 

Braithwaite, 1995; Hock, 1999; Pellicciotti et al., 2005) have been developed, and their 

performance has been enhanced to represent spatiotemporal variability of melt processes across 

selected glaciers. While these models have been used extensively in glacier hydrologic modeling 

at a regional scale, often the parameters required by these models are kept constant and have been 

derived based on empirical studies from a limited number of glaciers across the world. 
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Climatological parameters, such as temperature lapse rate, precipitation gradient, and radiation 

factors vary widely among observational sites (e. g. Hock, 2003; Rabatel et al., 2011; Heynen et 

al., 2013) and this variability cannot be accounted for in specifically chosen global parameters. 

Moreover, in TIMs several physical processes are represented by a few empirical parameters, in 

their process simulations, which demonstrate considerable sensitivity to local hydro-climate and 

topographical conditions. Such limitations related to empirical TIMs, can produce high uncertainty 

in model predictions especially when parameters, which are often based on limited observations, 

are applied to other glaciers in potentially very different topographic settings. Therefore, it is 

crucial to assess parameter uncertainty and transferability in empirical parameters of TIMs that are 

commonly used in glacier modeling and applied for studying future glacier behaviours. 

 

 1.2 Research Objectives 

This Master of Science thesis aims to revisit commonly used mountain glacier melt and mass 

balance simulation approaches to improve understanding of their simulation capacity at a regional 

scale. The overarching goal of this study is to address the parameters’ transferability and quantify 

their uncertainty by developing and examining a coupled glacier melt, mass balance, and evolution 

model (CGME) using the common empirical approaches. We hypothesize that using a single set 

of parameter values based on empirical studies that had application to a regionally large number 

of melting glaciers in mountain environment setting is subject to uncertainty. The specific 

objectives listed below are developed to examine our hypothesis using the glaciers of the upper 

Athabasca watershed in western Canada as a study region: 
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1. Calibrate and validate a coupled glacier melt-mass balance-evolution (CGME) model, using 

two temperature-index model (TIM) melt modeling approaches including the Classical TIM 

(CTIM, Braithwaite, 1995) and the Pellicciotti TIM (PTIM, Pellicciotti et al., 2005), a surface 

mass balance calculation approach (Huss et al., 2010), a volume-area change approach (after 

Bahr et al., 1997; and Kraainjenbrink et al., 2017), to determine an optimal range of values 

for each model input parameter.  

2. Compare the glacier melt runoff results of CTIM and PTIM to study the most important 

physical processes affecting melt runoff, mass balance, and volume-area changes and to assess 

parameter sensitivity of the model. 

3. Assess historical changes in the glacier melt runoff of 258 glaciers across the study region to 

assess parameter transferability and associated uncertainty.  

4. Utilize optimized parameter uncertainty range and various future climate scenarios to assess 

the potential regional glacier responses in melt runoff, area and volume change for the period 

1980-2100. Explore how glacier size and elevation affect glacier dynamics and uncertainty 

throughout the study period.  

 

 1.3 Thesis Structure 

Chapter 2 introduces the CGME model and data used to setup the model. Model details, as 

well as an optimized parametrization, calibration and validation of melt runoff, and sensitivity 

analysis are described. Then the model is applied to 258 glaciers in a study area in the Canadian 

Rocky Mountains to evaluate parameter transferability issue via quantification of parameter 

uncertainty range.   
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Chapter 3 utilizes the glacier model and the optimized parameter ranges forced with future 

climate scenarios to assess glacier change and associated uncertainty at the regional scale for the 

period 1980-2100. Glaciers are categorized by initial area and initial elevation and changes in melt 

runoff, glacier area, and volume are assessed at various time scales.  

Chapter 4 summarizes the findings of the previous chapters and draws conclusions about 

the future of glaciers in the face of a changing environment. Finally, the applicability of these 

parametrization, uncertainty assessment, and scenario analysis are linked with the importance of 

glacio-hydrological studies, and their implications for adaptation and mitigation measures in the 

face of a changing world are discussed.   
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Highlights 

• Widely used glacier melt runoff, mass balance, and evolution models were coupled 

• Classical temperature index and enhanced melt modeling approaches were examined  

• Model forced to assess parameter uncertainty and transferability in 258 mountain glaciers 

•  Transferability of parameters deemed not appropriate for most glaciers in the region  

• Small glaciers are especially sensitive to input parameter variability and transferability 
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2.1 Abtract 

Mountain glaciers are key sources of freshwater to surrounding ecosystems and 

downstream users. Understanding their current impact and potential changes is important, and 

many modeling approaches have been developed to this end. However, modeling at the regional 

scale can be difficult, where input data is limited and there is high spatiotemporal variability. High 

uncertainty in model predictions can come from empirical modeling parameters, often based on 

limited observations which are then applied to other glaciers. In this study, we aim to assess 

parameter uncertainty and transferability revisiting empirical parameters that are commonly used 

in glacier melt, mass balance, and evolution modeling by examining them in 258 glaciers in the 

Upper Athabasca Watershed in Alberta, Canada.  

First, rather than using a set of single parameter values we explore a range for each 

parameter value based on their physically meaningful maximum and minimum spectrum. We set 

up a modeling framework by coupling melt, surface mass balance, and spline-based volume-area 

scaling models to evaluate glacier melt runoff simulations using two temperature-index model 

approaches including the Classical Temperature Index Model (CTIM), which uses a degree-day 

approach, and the Pellicciotti Temperature-Index Model (PTIM), which incorporates radiative 

melt factors. We found that both model results predicted similar ranges of uncertainty (i.e., 95 

Percent Prediction Uncertainty, 95PPU), but the CTIM-based model reproduced more observed 

data points within its prediction uncertainty range (71% of observed data were captured within the 

predicted 95PPU as opposed to the PTIM-based model, which reproduced only 31% of observed 

data).  

Second, we applied these optimized parameter ranges at the regional scale. Approximately 

63% of the glaciers in the region had a normalized uncertainty value of greater than 0.5 for melt 
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runoff, indicating that the parameter range transferability is not appropriate for the majority of 

glaciers in the region and that small glaciers are especially sensitive to input parameter variability. 

The framework developed in this study facilitates assessment of the parameter transferability issue, 

and conveys an important message for regional glacier melt modeling, especially in catchments 

where small-sized glaciers are dominant contributors to downstream water ways that may have a 

cumulative ecological impact. 

Keywords: melt runoff modeling, temperature index, mass balance modeling, evolution 

modeling, glacier size  
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2.2 Introduction 

Mountain glaciers act as natural water towers, storing and discharging water to downstream 

ecosystems and societies (Viviroli et al., 2007). Nearly two billion people across the globe live 

directly downstream of mountainous areas and benefit from these water towers. These towers, 

however, are vulnerable yet irreplaceable sources of freshwater (IPCC, 2019; Immerzeel et al., 

2019). Glaciers are created over millennia and their demise would mean it would take millennia 

for them to reform (Gleick & Palaniappan, 2010). Moreover, most of the annually-sourced water 

is stored as young ice and snowpack, which are sensitive to changes in climate. Understanding the 

changes in dynamics of glaciers in terms of their accumulation, ablation, and melt runoff is crucial 

for downstream users and aquatic ecosystems from the global to the regional and local scales 

(Clarke et al., 2015).  

Hydro-glacial models are ideal tools to study the meltwater and important processes driving 

their mass and melt runoff changes over time. Furthermore, coupled glacier melt, mass balance, 

and evolution models are critical for studying the transient and long-term changes in glacier area, 

extent, volume, and thickness with hydrological implications at basin- to local-scales (Jost et al., 

2012; Naz et al., 2014; Clarke et al., 2015; Kraaijenbrink et al., 2017;  Marzeion et al., 2012; Radić 

et al. 2014; Huss & Hock, 2018). However, a full understanding of the processes involved in 

glacier dynamics is subject to uncertainty due to various reasons. The paucity of observations and 

input data is a significant concern that limits the application of the most comprehensive process-

based models in glacier melt and mass balance simulations. Energy balance models are among the 

most robust process-based models to simulate energy fluxes. These models calculate the net 

shortwave and longwave radiation fluxes, the turbulent sensible and latent heat fluxes, and the 

surface melt rate of snow or ice. They require hourly input data including incoming shortwave 
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radiation, vapour pressure, air temperature, and wind speed at a high spatial resolution, as well as 

details about the study site (e.g., the latitude, longitude, slope angle, aspect, elevation, local 

temperature lapse rate, albedo and aerodynamic roughness of the study site, and the elevation of 

the meteorological station), to calculate the energy fluxes. More advanced models employ similar 

calculations to determine mass balance, which are coupled with an ice flow dynamics model that 

require a DEM of subglacial bed topography, initial ice thickness, and a sliding coefficient (e.g., 

Clarke et al., 2015). In these models the net shortwave and longwave radiation fluxes, the turbulent 

sensible and latent heat fluxes, and the surface melt rate of snow or ice are calculated. For such 

energy flux calculations, a comprehensive set of hourly input data and details about the study site 

are required. Clarke et al. (2015) employed similar calculations to determine mass balance, which 

was coupled with an ice flow dynamics model that required a DEM of subglacial bed topography, 

initial ice thickness, and a sliding coefficient. While these models are capable of simulating many 

processes involved in representing glacier melt and dynamics, they require extensive 

measurements at a high spatiotemporal resolution at each glacier site as inputs, which are not often 

available for large spatial or temporal ranges. This limits their applicability for regional 

assessments at high resolution for management and planning.  

In contrast to energy balance models, several temperature Index models (TIMs) have been 

developed in the past few decades, requiring fewer data to simulate glacier melt, mass balance, 

and evolution. TIMs are empirically-derived approaches that relate the air temperature to the 

accumulation or ablation of individual glaciers through several empirical parameters. Various TIM 

formulations (e.g., Braithwaite, 1995; Hock, 1999; Pellicciotti et al., 2005) have been developed, 

and their performance has been enhanced to represent spatiotemporal variability of melt processes 

across selected glaciers. TIMs have been used extensively in glacier hydrologic modeling because 
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they can model a number of dynamical processes with a small number of glacial and 

meteorological inputs that are readily available (e.g., temperature and precipitation data; Hock, 

1999). The Classical Temperature-Index Model (CTIM) was initially developed by Finsterwalder 

and Schunk in 1887 for use on Alpine glaciers and has since evolved for use in various studies 

(e.g., Braithwaite, 1995; Braun et al., 1993; Fuchs et al., 2016; Réveillet et al., 2017; Chen et al., 

2019). The CTIM uses empirical parameters such as the Degree Day Factor related to snow and 

ice (i.e., DDFsnow and DDFice), as well as a threshold temperature (i.e., the temperature above which 

snow and/or ice melt can occur, Tthres), to correlate air temperature to snow and ice melt. To further 

refine the simulation of glacier melt using this method, some studies use an elevation band 

approach, in which a glacier is delineated into bands of equal mean elevation based on glacier size 

and area (e.g., Huss & Hock, 2015). Such refined approaches account for changes in temperature 

due to elevation (Hock, 2003; Ohmura, 2001) and changes in precipitation due to orographic lifting 

(Shea et al., 2015). However, these refinements are not adequate to account for the simplifications 

and uncertainties inherent in the application of the CTIM approach. A more refined approach 

relates the snow and ice-melt factors, which alter throughout the melt season and observation 

periods (Rango & Martinec, 2008), and they vary spatially due to changes in albedo, insolation, 

and the relative contributions of surface energy balance fluxes (Shea et al., 2009). However, in 

most regional studies the parameters required by these models are kept constant and have been 

derived based on empirical studies from a limited number of glaciers across the world. 

Climatological parameters, such as temperature lapse rate, precipitation gradient, and radiation 

factors vary widely among observational sites (e. g. Hock, 2003; Rabatel et al., 2011; Heynen et 

al., 2013) and this variability cannot be accounted for in specifically chosen global parameters. 
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Tsai and Ruan (2018) demonstrated that the Braithwaite TIM approach consistently 

overestimates early season melt, which occurs above 0°C. These overestimations are partially 

because of constant DDFsnow, DDFice, and Tthres values, which are empirically derived but can vary 

widely across different spatiotemporal scales. On the other hand, Pellicciotti (2005) and Hock 

(1999) showed that by not accounting for melt due to incoming radiation, the CTIM cannot capture 

the spatiotemporal variability of DDFs and the resulting effects on melt, due to the surrounding 

topography and the changes in the melt and discharge cyclicity due to diurnal and seasonal 

changes. It has been suggested, therefore, that the CTIM has relatively poor predictive capability 

(Hock, 1999). To overcome the shortcomings of the CTIM approach, Pellicciotti et al. (2005) 

developed an enhanced TIM that incorporates radiation melt, hereafter referred to as the 

Pellicciotti Temperature-Index Model (PTIM). Using the PTIM approach, Bash and Marshall 

(2014) found that an average of 80% of summer melt could be attributed to absorbed radiation in 

Haig Glacier, which is a relatively small glacier feeding the upper tributaries of the Bow river 

basin in the Canadian Rocky Mountains. However, it is unknown whether this improved approach 

can be applied to large regional–scale studies.  

In another study Braithwaite and Olesen (1985) show that while DDFs have high temporal 

stability across a range of climatic regimes, differentiation of the DDF for ice and snow can 

account for some of these variations due to local surface conditions (Arendt & Sharp, 1999). 

According to their study, the DDF of snow can be less than half of that for ice because snow can 

have a wider range of albedos than ice and thus its energy absorption can vary more. These 

refinements to the TIM approach have been shown to assist surface mass balance (SMB) models 

to reproduce historical observations and to be a component of models that suitably simulate a 

glacier’s SMB responses to climate change, although these studies are limited by the fact that they 
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are local rather than regional or global in spatial scale (Jóhannesson, et al., 1995; Hock, 2003; 

Pellicciotti et al., 2005; Haslinger et al., 2014).    

The coupling of melt and SMB models with a dynamic glacier evolution model has been 

used in various studies to understand glacier mass balance sensitivity and response to climate 

change (e.g., by Jóhannesson, 1997; Khadka et al., 2020). While fully distributed physically 

process-based models are the best means to simulate ice flow dynamics and their evolution, they 

are often suitable only in areas for which high resolution data are available. As an alternative for 

data-poor areas, incomplex approaches have been developed and coupled with improved TIM and 

SMB models to simulate glacier dynamics that require only a minimal amount of input data. As 

an example, the volume-area scaling (VAS) approach (Bahr, 1997; Radić et al., 2007) allows for 

recalculation of glacier area and volume in response to changes in mass, making it suitable for 

simulating the evolution of glaciers over time. This approach has been used widely at the regional 

scale (for example, see Radić & Hock, 2010; Farrinotti et al., 2009). However, Bahr et al. (2015) 

point out that while the theoretical basis of the VAS equation has been validated for glaciers of a 

wide range of sizes, it is best applied to estimate aggregate volume of ensembles of glaciers and 

cannot be used on individual branches of a glacier. Moreover, the VAS is generally an empirically-

based approach; the physical parameters that identify spatiotemporal relationships are not 

explicitly simulated. Most of the recent VAS-based model studies hold the V-A parameters 

constant in space and time while simulating glacier evolution which may not represent V-A 

relationships accurately. To minimize these limitations, some studies suggest using a smoothing 

spline interpolation that finds a relationship between volume and area, in the first year based on 

initial glacier area, volume, and ice thickness observations and changing at each time step as the 

glacier evolves (Kraaijenbrink et al., 2017; Shekar et al., 2021; Brenning et al., 2007; Tarasov et 
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al., 2003). This relation between volume and area is used to predict the change in area (after 

Kraaijenbrink et al., 2017) in response to the SMB and to estimate the volume of melt runoff per 

year. The smoothing spline method is completed at an annual time step when, after annual SMB 

and mass redistribution are estimated, the volume is sampled at different ice thicknesses. A 

predictive spline model is fitted through these samples to determine the volume-area relation per 

glacier per year (further details in section 2.3.2.3). This allows for a determination of the volume-

area relation for each glacier in the study area, in contrast to the VAS approach which uses an 

empirically-derived scaling parameter which may not be appropriate for all glaciers in the region 

at any given time. By estimating volume-area changes for each glacier individually, a higher spatial 

resolution and more heterogeneity in glacier topography (elevation, aspect, etc.) is simulated.   

The overarching goal of this study is to revisit empirical models that are commonly used 

in glacier melt, mass balance, and evolution modeling and address those areas of uncertainty when 

these models are applied at a regional scale for planning and management. We hypothesize that 

using a single set of parameter values based on empirical studies that had application to a regionally 

large number of melting glaciers is subject to uncertainty. To achieve our goal we have setup a 

modeling framework by coupling melt, SMB, and spline-based VAS models in order to evaluate 

glacier melt simulations using both the CTIM and PTIM approaches. Our objective is to examine 

the response of glacier melt, SMB, and evolution (e.g. changes in volume, area, and depth) to 

physical parameters that are driven based on their maximum physically meaningful spectrum. This 

allows a comparison of the performance and predictive capability of PTIM, CTIM, SMB, and 

spline-based VAS models at the regional scale and also when measurements for critical parameters 

are poor or totally lacking.   



18 

 

Our model is applied to the Canadian Rocky Mountains (CRM) at the upstream, western 

portion of the Athabasca River basin (ARB) that drains melt water from approximately 258 

glaciers. The region is characterized by heterogeneous hydro-climate and geospatial conditions, as 

well as a diverse range of glacier sizes, each with their own specific hydro-climatic settings. 

Moreover, there is a unique conglomerate glacier called the Columbia Icefield, which gives rise to 

the Athabasca Glacier (~14 km2) that has long-term runoff observations at its outlet, altogether 

making the upper ARB a suitable study region for our model application and uncertainty analyses.  

2.3. Material and methods 

2.3.1 Study area 

The ARB has a drainage area of ~ 150,000 km2 (24% of the area of the province of Alberta, 

Canada) and is a key source of water for both natural ecosystems and downstream human 

consumption. Bawden et al. (2014) in their basin-wide, multi-decadal analysis found a strong 

decreasing trend in summer flows which were more prominent in the ARB than in the surrounding 

river basins during the same period. Numerous glaciers exist at elevations ranging from ~2,200 m 

to ~3,500 m, within the region 117-120°W to 52-54°N (Fig. 1). According to climate observations 

available from the Jasper Warden climate station (Environment and Climate Change Canada), the 

annual mean temperature and precipitation are, respectively, 3.5 ⸰C and 352 mm. Autumn and 

winter have average air temperatures below freezing, denoting the accumulation seasons. Spring 

and summer are the ablation seasons, despite higher average precipitation. The Athabasca River 

begins at the outlet of the Athabasca glacier and flows more than 1500 km to where it empties into 

Lake Athabasca. Along its extent, it crosses forests, agricultural lands, oil sands and notable 

amounts of water are abstracted for use in these industries (Peters et al., 2013). At its delta in north-
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eastern Alberta, the river becomes a part of the Peace-Athabasca Delta, a deltaic lake and wetland 

ecosystem of international significance recognized by the Ramsar Convention to be susceptible to 

climate change (Peters et al., 2013; Rokaya et al., 2020).  

  
Figure 1. Study area, showing the upper (glacierized) end of the Athabasca river basin in western 

Alberta, Canada. Watershed boundaries, glaciers, and climate and hydrometric stations are 

highlighted. The 258 glaciers are illustrated in blue, with the Athabasca Glacier and the Albertan 

extents of the Columbia Icefield in the lower right of the watershed; the hydrometric station used 

for calibration is indicated in red.  

 

There are 258 glaciers in the Athabasca river basin, which are the focus of this study. They 

lie on the eastern slope of the CRM.  The Athabasca Glacier (part of the Columbia Icefield) feeds 

one of the main tributaries in the Athabasca River basin; there are other tributaries fed by smaller 

mountain glaciers present in the upper Athabasca region which are also affected by the decrease 

in their extent. Negative changes in glacier extent have been reported for other glaciers in the 
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region, including other portions of the Columbia Icefield (Clarke et al., 2013; Intsiful & 

Ambinakudige, 2020) that run off to the North Saskatchewan River basin (Alberta) and the 

Columbia River basin (British Columbia). Figure 1 shows the glaciers, as well as the location of 

the climate station and hydrometric stations, used in this study.  

2.3.2 Model Description 

We developed a coupled glacier mass balance-dynamic evolution model (CGME) in the  

 

Figure 2. Flow chart, illustrating the coupled glacier melt mass balance dynamic-evolution model 

(CGME). Module 1 (blue) is the Temperature Index Model that calculates daily melt depth. 

Module 2 (orange) calculates the daily surface mass balance and daily melt runoff. Module 3 (gray) 

calculates the annual change in glacier geometry using a volume-area smoothing spline relation 

and initial glacier hypsometry (Farinotti et al., 2019). Further details can be found in Appendix 

figure A3.   

  

R programming environment (Fig. 2). Our model is composed of three modules: Module 1, which 

calculates daily melt from a glacier (m day-1) based on a temperature index model (TIM) that will 
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be explained in section 2.3.2.1. In Module 2 and Module 3, annual volumetric melt and surface 

area change are calculated.  Module 2 calculates the daily surface mass balance of the glacier (m 

day-1), which is summed to an annual mass balance (m year-1). The simulated SMB in Module 2 

is an input into Module 3, which calculates the change in glacier surface area (m2 year-1) in 

response to this change in mass. Module 3 also performs calculations per elevation band and sums 

to find the total change for the entire glacier.  A new glacier volume (m3) is then computed using 

surface area and changes in glacier elevation (ice thickness). Changes in ice thickness per elevation 

band are calculated using the ice-flux divergence (see section 2.3.2.3). This approach enables 

analysis of not only mass loss due to volume-area decrease but also changes in the discharge 

regime downstream (Huss & Hock, 2015) and is appropriate at the basin or regional scale 

(Immerzeel et al., 2012) and in multi-decade to multi-century timescales (Radić et al., 2007). It is 

noteworthy that the elevation band approach used in our model framework allows each glacier to 

be delineated into bands of equal mean elevation based on glacier area. The glaciers are divided 

into a minimum of 6 elevation bands (for the smallest glaciers) and up to 16 elevation bands (for 

the largest glaciers). In the initial year, glacier area (based on input glacier outlines and DEM) and 

minimum and maximum elevation is determined, with elevation being equally distributed across 

the glacier surface; e.g., if a glacier’s area determines that it falls into a 10-band size class, the 

maximum – minimum elevation will be divided by 10 and each band will be assigned an equal 

elevation difference (“band width”). This will be held constant through time as the simulation 

progresses; as volume, area, ice thickness, and mean elevation of each band are updated at each 

time step (in this study, daily), band width will stay the same. This is assigned and held constant 

per glacier; band width will vary glacier to glacier based on overall initial glacier elevation 

difference. The simulation of melt, mass balance, and evolution for each band individually, allows 



22 

 

for a more refined model of the entire glacier’s mass flux and geometry changes through time 

because it accounts for changes in temperature due to elevation (Hock, 2003; Ohmura, 2001) and 

changes in precipitation due to orographic lifting (Shea et al., 2015). The elevation band approach 

also allows for intra-band mass exchange via ice-flux divergence (described further in 2.2.3.1), as 

well as for complete meltdown (i.e., when the volume becomes negligible) of bands while still 

modeling the further melt, SMB, and volume-area change of the remaining bands. 

2.3.2.1 Temperature Index Model (TIM)  

In this study, we employed two widely used TIM approaches in Module 1 (cf., Fig. 2):  the 

Classical Temperature Index model (CTIM), and the Pellicciotti Temperature Index model 

(PTIM). The Classical Temperature-Index Model (CTIM) was initially developed by 

Finsterwalder and Schunk in 1887 for use on Alpine glaciers and has since evolved over time for 

use in various studies (e.g., Braithwaite, 1995; Braun et al., 1993; Fuchs et al., 2016; Chen et al., 

2019). CTIM is an empirically-derived approach that relates the air temperature to accumulation 

or ablation using two degree day factors (DDFs, sometimes called melt coefficients) and based on 

a threshold temperature (Tthres) above which snow/ice melt can occur. The two DDFs used in this 

approach are related to snow (DDFsnow) and ice (DDFice), both in mm day-1 ⁰C-1, which are 

computed from statistical relationships between positive degree-days (Ohmura, 2001) and surface 

melt and crudely account for the effect of local surface conditions such as surface albedo and 

turbulence (Arendt & Sharp, 1999). This approach statistically relates ablation to the sum of 

positive degree days (days with an average temperature above 0°C) and allows for the calculation 

of the amount of melt that occurs per degree above freezing (the DDF). The maximum physically 

meaningful ranges, based on an extensive literature review, are reported to be 0.38-14 mm day-1 

⁰C-1 for DDFsnow and 4.5-10.6 mm day-1 ⁰C-1 for DDFice (Silwal et al., 2022; Du et al., 2022). We 
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have examined the effects of parameter variation on melt simulations using such physically 

meaningful ranges. All parameters and the ranges used in this study are listed in Table 1.  

To overcome the shortcomings of the CTIM approach in process representation, Pellicciotti 

et al. (2005) developed an enhanced TIM that incorporates radiation melt into the TIM approach, 

hereafter referred to as the Pellicciotti Temperature-Index Model (PTIM). The PTIM simulates 

snow and ice melt based on a temperature melt factor (TF), shortwave radiation factors (SRFs) for 

snow and ice, daily incoming shortwave radiation, and the albedos for snow and ice. Daily 

incoming shortwave radiation is considered a model input; daily observations are not available for 

the full study region, so it is estimated after Walter et al. (2005) and modified due to atmospheric 

conditions (e.g. thickness, aerosols) after Follum et al. (2015). The albedo for ice, TF, and SRFs 

for ice and snow are considered input parameters to melt modeling. TF and SRF are empirical 

coefficients, which account for the effects of temperature and shortwave radiation on surface melt 

(Pellicciotti et al., 2005). In most regional analyses, the albedo for ice, TF, and SRFs for snow and 

ice are either assigned from a limited number of glaciers (Tawde et al., 2016; Kienholz et al., 2020) 

or they are manually calibrated based on a limited amount of measurements (Gardner & Sharp, 

2009; Wortmann et al., 2019). In this study we evaluate how varying parameters generated through 

a parameter sampling technique from their physically meaningful minima and maxima can impact 

melt simulations (see section 2.3.4.1, Table 1). 

While spatial and temporal variability in albedo introduces challenges and uncertainty in 

glacier melt modeling (Hock, 2005), by separating albedo into that of snow and ice we are able to 

better simulate the changes in melt runoff due to seasonal changes in surface albedo (Arnold et al., 

1996). Snow albedo, due to its ability to reflect radiation and thus affect the glacier surface energy 

budget, greatly influences melt runoff (Hock, 2005). In this study, daily snow albedo was a model 
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input, approximated using a logarithmic function of accumulated daily maximum positive 

temperature adapted by Pellicciotti et al. (2005) from Brock et al. (2001a). Ice albedo has been the 

focus of only a few studies and is often held as a spatiotemporal constant (Brock et al., 2001a; 

Hock, 2005). Instead of a using a fixed value for the albedo of ice from an empirical survey of the 

literature, we included it as a melt model parameter of interest and used Latin Hypercube Sampling 

(LHS) to sample and test values from a range suggested for mountain glaciers in the Rocky 

Mountains (see Table 1). The modeled melt depth using CTIM and PTIM is later converted to a 

volumetric melt runoff (the output of Module 1), which is based on the combined melt runoff due 

to rainfall on the glacier surface, snowmelt on the glacier surface, and melting of glacier ice (see 

Eq. 1).  

𝑄𝑚𝑒𝑙𝑡 = [Icemelt × GlacC + 𝑠nowmelt × SnowC + Prain × RainC] × A [Eq. 1] 

Where, 𝑄𝑚𝑒𝑙𝑡  is the total runoff (m3s-1) from the elevation band; GlacC, SnowC, and RainC are 

coefficients of, respectively, glacier ice melt (m), snowmelt (m), and liquid precipitation (rainfall, 

m) that convert melt depth into melt runoff considering the glacier surface area (m2) and using the 

storage-discharge relationship, after Martinec et al. (2008). In this study, GlacC, SnowC, and 

RainC were considered as input parameters and were estimated using calibration and uncertainty 

analyses explained in section 2.3.4.3 Prain  is the liquid precipitation (mm) for each elevation band, 

determined by temperature thresholds that convert daily precipitation into rain (Quick & Pipes, 

1977). Each type of runoff (rain, snowmelt, and glacier ice melt) is calculated per band, then the 

bands are summed to determine the total melt runoff for the glacier per day. This is used by Module 

2 to calculate the daily SMB.  
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Because air temperature is essential to the TIM calculation and since mountain glacier 

models are highly sensitive to temperature lapse rates, two temperature lapse rates (Ragettli & 

Pellicciotti, 2011) are used in our model in the melt calculation. Using a singular temperature lapse 

rate has been found to overestimate the number of positive degree days (PDDs; Gardner et al., 

2009), especially at higher elevations (Shea et al., 2009). The lapse rate along a glacier surface can 

be vastly different from an assumed free air lapse rate (Arendt & Sharp, 1999; Gardner & Sharp, 

2009; Gardner et al., 2009). While lapse rate can be estimated using a linear regression of measured 

temperature, such a lapse rate introduces high uncertainty both spatially and temporally because 

of sample size, dataset noise, domain selection, and estimation methods (Lute & Abatzoglou, 

2021) and will likely be a poor approximation at the regional level (Gardner & Sharp, 2009). In 

addition, the presence of a glacier can strongly affect local climate conditions (Arendt & Sharp, 

1999), and a lapse rate estimated from observed climate data can overestimate the lapse rate near 

the surface of the glacier (Arendt & Sharp, 1999). This is because such estimation does not account 

for the cooling presence of the glacier (Gardner et al., 2009). Lapse rate can also have great 

seasonal variability due to fluctuations in temperature (Arendt & Sharp, 1999) and thus some 

studies, such as that by Schaefli and Huss (2011), use seasonal lapse rates. While this was not 

feasible in our study, we did use two distinct lapse rates. The altitudinal temperature lapse rate 

(LR) is used to calculate the change in air temperature between the temperature measured at the 

elevation of the climate station and the elevation at the base of the glacier (lowest elevation of the 

glacier surface). Then the temperature lapse rate along the glacier surface (LRGlacier) is used to 

calculate the temperature from the base of the glacier up to each elevation band of the glacier. Both 

LR and LRGlacier are not calculated individually for each glacier, but are treated as input 

parameters and are sampled from within the range utilized by similar studies in the region.   
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2.3.2.2 Surface Mass Balance (SMB) 

Surface mass balance (SMB) was modelled by taking the difference between modelled 

accumulation and ablation. Though this is a simplified mass balance relation, it has been used by 

numerous glacier modeling studies, including temperature-indexed studies (Stahl et al., 2008; 

Hock, 2003), studies in the CRM (Marshall et al., 2011), and studies of coupled models used for 

glacier melt runoff projections (Khadka et al., 2020). In our modeling framework (Fig. 2), Module 

2 calculates SMB by using estimates of the accumulation (snowfall) and the ablation (total melt 

runoff) calculated in Module 1 (CTIM or PTIM). The SMB is calculated based on daily total solid 

precipitation or accumulation for each elevation band and the daily total ice and snow melt from 

Module 1. The temperatures that are extrapolated and assigned to each elevation band in Module 

1 are used to determine the amount of accumulation and ablation. The simulated daily net SMB 

for each elevation band is then summed to calculate the net annual SMB for the glacier. This is 

used to find the mass balance gradient (MBG) of the glacier for the simulation year by fitting a 

linear regression between the net SMB and the mean elevation of different elevation bands in each 

year. The annual net SMB and MBG compared to the previous time step are used in Module 3 to 

determine the annual evolution in the glacier’s geometry (see section 2.3.2.3). 

2.3.2.3 Evolution 

Though this is a regional study, because our model simulates glacier melt and SMB for an 

individual glacier (and further divides into elevation bands), the simplistic VAS approach would 

not be an appropriate approach due to its limitations (Bahr et al., 2015; Frey et al., 2014; Stahl et 

al., 2008).  Instead, we used a smoothing spline that fits a cubic polynomial line (Green & 

Silverman, 1994) to find a relationship between volume and area. The relation between volume 

and area is used to estimate the volume of melt runoff per band per year based on the predicted 
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change in area of the elevation band (Kraaijenbrink et al., 2017) in response to the SMB. In the 

following paragraphs we provide more details.  

Module 3 uses the elevation bands defined in Module 1, and the SMB and glacier surface 

gradient are calculated in Module 2 to compute the change in glacier area per elevation band per 

year. Module 3 translates glacier mass changes, as represented by surface glacier mass balance, 

into area and volume changes (i.e., evolution) in each elevation band. The coupling of a TIM-SMB 

simulation to a dynamic glacier evolution model has been used in various studies to understand 

glacier mass balance sensitivity and response to climate change (e.g., by Jóhannesson, 1997; 

Kraaijenbrink et al., 2017; Khadka et al., 2020). By using the elevation bands in Module 3, ice flux 

at the sub-glacial scale is simulated (i.e., mass flux to/from one elevation band to another) before 

being summed and used in conjunction with the net annual SMB rate to determine the annual 

change in glacier mass.  

The rate of change of ice thickness, 
∂Hi 

∂t
 , (at the ith elevation band) is calculated as the 

difference between the net annual SMB rate and the ice flux: 

 
𝜕𝐻𝑖

𝜕𝑡
= S𝑀𝐵𝑖 − ∇. 𝑞𝑖  [Eq. 2] 

Where ∇.qi, the ice flux, is calculated per elevation band after Kraaijenbrink et al. (2017): 

∇. 𝑞𝑖 = 𝑟ℎ𝑒 × 𝐴𝑖 × 𝐻𝑖
5 × 𝛻𝑧𝑖

3   [Eq. 3] 

where, 𝑟ℎ𝑒 is the rheology parameter. In our study it was specified through sampling from a 

physically meaningful range (see next section).  Ai (m
2) is the area of the glacier in ith elevation 

band. Hi (m) is the average ice-thickness of ith elevation band. ∇zi the gradient of the glacier 

surface at elevation band i. The initial ice thickness for the first time step (initial year) is from 
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Farinotti et al. (2019; see section 2.3.4.1) and is updated with Eq. 2 for each subsequent time step 

(the next year in our simulation). After the ice flux is calculated, it, the glacier surface gradient, 

and the net annual surface mass balance are used to determine the new volume of each elevation 

band (net change in mass per band and the corresponding change in ice thickness and volume. Ice 

thickness is simulated for the grid cells per band, based on the initial DEM raster input, and the 

new volume is distributed across the ice thickness grid cells). Both ice thickness Hi and mean 

elevation of band i are updated at each time step, while “band width” of the ith elevation band is 

fixed (see section 2.3.2.1). Then the volume-area dynamic model, which is a smoothing spline 

approach, begins by sampling the volume for different ice thickness grid cells across the band and 

determining the sample’s area from the sample’s volume and length. It then fits a smoothing spline 

(a cubic polynomial) to these volume-area samples to find the unique volume-area relation for the 

entire band, and uses this volume-area relation to predict the new area of this band. If a band is not 

large enough to fit the spline (which may happen if a band becomes small enough that it does not 

have enough unique volume-area combinations), the model instead uses a linear regression to 

determine the volume-area relation. In contrast, when a glacier grows beyond its initial volume, a 

volume-area relation is applied to simulate the glacier’s advance. Once the surface area for the 

elevation bands are calculated, they are then summed to determine the annual change in surface 

area and ice thickness for the entire glacier. The annual change in glacier area from Module 3, 

together with the melt depth calculated from the TIM of Module 1, are then used to calculate the 

total melt runoff (m3) of the glacier for that simulation year. This is one cycle of the CGME model 

(Module 1 and Module 2 at the daily time step to calculate annual melt depth and SMB; then 

Module 3 at the yearly time step to calculate annual surface area and volume change, and annual 

total melt runoff calculation. An enhanced workflow is provided in Appendix figure A3). Further, 



29 

 

the new glacier geometry (i.e. glacier area, volume, and depth) is used as input into the CGME to 

calculate the melt, SMB, volume-area, and runoff for the next year and it cycles thus through the 

number of years set for the simulation. When simulating multiple glaciers, the model cycles 

through all the simulation years for an individual glacier before looping to the next glacier. For a 

cost effective simulation, we developed a parallel processing framework using a multicore 

computer and performed 1000 simulations for each of the 258 glaciers to test the effect of 

parameter transferability on the prediction uncertainty across our study region.  

2.3.4 Data Description 

The data required for this study includes: 1) the input data required to setup the simulation 

models; and 2) the observed historical data required for model calibration, validation, and 

uncertainty assessments. 

2.3.4.1 Input data 

The modeling framework used in this study (cf., Fig. 2) requires two types of input data to 

initiate a simulation: input modeling parameters and spatiotemporal data required to run the model.    

The input parameters include the meteorological modeling parameters that can vary 

spatiotemporally (e.g., temperature lapse rate and precipitation gradient), glacier characteristics 

(e.g., albedo of glacier ice, rheology parameter), and TIM parameters (e.g., degree day factor for 

ice, coefficient of ice melt), as detailed in section 2.3.2. These input parameters can fall within a 

physically meaningful range, described by previous empirical studies for glaciers with similar 

climate regimes (e.g., Gardner & Sharp, 2009; Shea et al., 2009; and Stahl et al., 2008); the 

maximum physically meaningful range for each parameter are listed in Table 1. To examine the 

effects of parameter transferability on model prediction uncertainty for regional-scale studies, a 
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total of 1000 samples from each parameter were created via the Latin Hypercube Sampling 

technique (Krause et al., 2005). The samples were generated from the parameters’ physically 

meaningful minima and maxima based on a literature review. This process is detailed further in 

section 2.3.2.  

Aside from the model input parameters, the model simulations also require geospatial and 

time series data. These data include observations of initial glacier geometry (i.e., DEM), initial 

surface area of the glaciers, initial ice thickness, aspect, hill slope, and a time series of climate for 

the simulation period (i.e., daily maximum, minimum, mean, and difference between maximum 

and minimum temperature; daily precipitation; and daily incoming solar radiation at the glacier 

surface). The data used in this study and their sources are detailed in Table 2. The initial glacier 

surface area and aspect are used to initiate Module 2, which calculates the daily SMB. Initial ice 

thickness, slope, and extent (outline) for the glaciers are required as inputs for Module 3 to 

calculate initial volume (for the first year of the simulation); later years use the ice volume 

calculated at the end of the previous simulated year (see section 2.3.2). Initial glacier outlines were 

obtained from the Randolph Glacier Inventory version 6 (RGI Consortium, Pfeffer et al., 2017). 

Glacier hypsometry was derived from a digital elevation model (DEM), with a grid resolution of 

10 m ×10 m, sourced from maps Canada (http://maps.canada.ca/) based on Shuttle Radar 

Topography Mission (SRTM) DEM version 4 (Jarvis et al., 2008). 

Table 1. The studied meteorological and glacier melt, runoff, and evolution parameters that are 

considered for examination of their response to different scenarios using CGME in this study. The 

maximum physically-meaningful initial ranges are set based on literature review (see Silwal et al., 

2023). 

Parameter Description  Unit Initial 

range 

CTIM 

calibrated 

range 

PTIM 

calibrated 

range 

 Melt model parameters 

DDFsnow Degree day factor for snow melt  mmd−1°C−1 2.0-4.5 3.0-4.5  -- 

http://maps.canada.ca/
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DDFice Degree day factor for ice melt  mmd−1 °C−1 4.5-12.5 6.0-10.0 -- 

Tthres Temperature threshold for melting  °C 0.0-4.5 0.0-3.0 0.0-2.0 

TF Temperature melt factor  mmd−1°C−1 0.0-1.5 -- 0.0-1.5 

SRFsnow Shortwave radiation factor for snow  
m2 w-1mmd-

1°C−1 
0.01-0.12 -- 0.004-0.10 

SRFice Shortwave radiation factor for ice  -- 0.011-0.14 -- 0.004-0.4 

Rexp 
Exposition factor that modifies DDFsnow and 

DDFice  with respect to aspect of glacier 
 -- 0.02-0.2 0.1-0.2 0.05-0.2 

αice Albedo of glacier ice  -- 0.2-0.4 -- 0.2-0.43 

 Parameters used in modeling surface meteorological variables 

LR Temperature lapse rate (Altitudinal)  °Cm−1 
0.006-

0.0085 

0.006-

0.007 

0.004-

0.007 

LRGlacier 
Temperature lapse rate (along surface of 

glacier) 
 °Cm−1 

0.0015-

0.0055 

0.0015-

0.0040 

0.0010-

0.0025 

Ppara Precipitation parameter  -- 1.05-1.85 1.2-1.7 1.5-3.0 

Prate Precipitation gradient  mm/m 0-0.25 0.1-0.2 0.02-0.1 

 Melt runoff coefficients 

RainC Coefficient of rainfall  -- 0.1-0.2 0.1-0.15 0.2-0.3 

SnowC Coefficient of snowmelt  -- 0.2-0.6 0.2-0.4 0.7-1.0 

GlacC Coefficient of glacier ice melt  -- 0.2-0.9 0.4-0.7 0.9-1.5 

 Volume-Area parameters 

rhe1 Rheology parameter  m−4 yr−1 0.6e-8 -1.8e-8 
1.0 e-8 -1.8 

e-8 

1.2 e-8 -1.8 

e-8 

 

Ice thickness used for model initiation in year 1 are from the estimates by Farinotti et al., 2019, 

who used glacier topography from SRTMv4, glacier outlines from RGIv6, and a combination of 

five ice thickness estimation models to provide an ensemble-based estimate for the ice thickness 

distribution (by inverting for local ice thickness using the principles of ice flow dynamics and the 

glacier’s surface topography). Ice thickness data was resampled to 10m to match the DEM 

resolution. These geospatial data (initial area, thickness, slope, and aspect) for each glacier are 

 
1 Not calibrated in Silwal et al., 2023. Initial range suggested by Marshall and White, 2010; Adhikari and Marshall, 

2013; and Wortmann et all 2019.  
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used for the initial year and updated annually in response to the geometry changes calculated by 

Module 3 for the following time steps. 

Table 2. Data accessed or obtained for the purpose of this study. 

Data type, description Source Resolution 

Glacier Outlines, 

Randolph Glacier 

Inventory-RGI v6.0, 

2017 

Global Land Ice Measurements from Space (GLIMS) Randolph 

Glacier Inventory 

http://www.glims.org/RGI/randolph.html 

Polygon 

Digital elevation model 

of glacier hypsometry, 

2017   

Government of Canada 

https://maps.canada.ca/czs/index-en.html 

 

10m×10m 

Digital elevation model 

of glacier ice thickness, 

2018  

 

DEM processed with GlabTop2 

https://glabtop2-py.readthedocs.io/en/latest/installation.html 

 

10m×10m 

Daily precipitation, 

1994-2018 (station 

3053536, Jasper 

Warden)  

Environment and Climate Change Canada  

http://climate.weather.gc.ca/historical_data/search_historic_data_e.ht

ml 

daily mm  

Daily max, min, mean 

temperature, 1994-

2018 (station 3053536, 

Jasper Warden)  

Environment and Climate Change Canada  

http://climate.weather.gc.ca/historical_data/search_historic_data_e.ht

ml 

 

daily ◦C 

Daily seasonal 

streamflow data, 2006-

2018 (station 

07AA007, Sunwapta 

River) 

 

Environment Canada Water Survey Data Explorer  

https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/ 

daily  m3/s 

 

Both CTIM and PTIM versions of the melt module require precipitation, maximum 

temperature, minimum temperature, mean temperature, and difference between maximum and 

minimum temperature at the daily time step to calculate daily melt runoff. Similar to other 

regional-scale glacier melt modeling studies, the historical climate observations in our study area 

are sparse, limited by spatial and temporal discontinuity of data collection, the type of data 

collected, or both. For this study, historical climate data are from the Jasper Warden climate station 

(chosen for its proximity to the glaciers and the robustness of its records, Environment and Climate 

Change Canada). The PTIM also requires daily inputs for incoming shortwave radiation (SW) and 

http://www.glims.org/RGI/randolph.html
https://maps.canada.ca/czs/index-en.html
https://glabtop2-py.readthedocs.io/en/latest/installation.html
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/
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albedo for snow (αsnow). These are calculated from available observed climate data (see section 

2.3.1). Estimations of SW and αsnow are based from the approach taken by Walter et al. (2005), 

where PET is estimated using the Hargreaves-Samani method for the continental interior regime, 

after Li et al. (2018). 

2.3.4.2 Observed Data for Calibration and Validation 

For validation and calibration of model performance, this study also requires time series 

measurements of melt runoff from the outlet of glacier lakes. The Sunwapta River hydrometric 

station is located near the terminus of the Athabasca Glacier where the meltwater flows 

downstream to feed the headwaters of the Sunwapta River. Athabasca Glacier is one of the largest 

glaciers in the study area, with an ice volume of approximately 1.84×108 m3, several orders of 

magnitude larger than the majority of the glaciers in the study area. Due to the proximity of the 

Sunwapta River hydrometric station to the Athabasca glacier, the observed daily flows from this 

station and the simulated daily melt runoff of the Athabasca glacier were used for model validation, 

calibration, and uncertainty assessment. Due to the data availability of both climate data for model 

simulations and observed daily flows, the calibration period was 2011-2018 and the validation 

period was 2006-2010. Separate calibration and validation periods have been used in other glacier 

modeling studies, including TIM-based models (Pellicciotti et al. 2005) and basin-scale glacier 

mass balance volume-area scaling models (Stahl et al., 2008). Having a separate validation period 

allows us to assess the model’s predictive capability after calibration.   

2.3.4.3 Calibration, Validation, Uncertainty Assessment approach description 

For calibration and uncertainty assessment we developed a similar approach as Abbaspour 

et al. (2004) and sampled the parameters using the LHS approach (McKay et al., 1979). A total of 

1000 samples were taken from the maximum physically meaningful range that was identified for 
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each parameter based on an extensive literature review (see Table 1). The coefficient of 

determination (R2), slope-based modified coefficient of determination (bR2), and Nash–Sutcliffe 

efficiency (NS) were used as objective functions to compare simulated versus observed glacier 

melt runoff on a daily basis. The parameter set samples were fed into our coupled glacier melt, 

mass balance, and evolution model to generate 1000 simulation outputs for the calibration period 

based on the sampled parameters. After each iteration of 1000 simulations, the range of parameters 

was narrowed based on the simulation closest to the observed runoff, as determined by our chosen 

objective functions. The 1000 simulations based on optimized parameter ranges in the final 

iteration generated a 95% prediction uncertainty (95PPU) of the output variables (i.e., glacier melt 

runoff) that were calculated at the 2.5% and 97.5% levels of the cumulative distribution functions 

of glacier melt runoff. Two statistical criteria were used for assessment of model performance and 

uncertainty including p-factor and r-factor. The p-factor is the percentage of observed data 

bracketed by the 95PPU, and the r-factor represents the thickness of the 95PPU, which is calculated 

as the ratio of the average width of the 95PPU to the standard deviation of the measured variable 

(i.e., measured daily melt runoff). Ideally, a p-factor value of 1 and a r-factor value of zero is 

expected, however in large scale studies due to inherent uncertainties in input data, physical 

parameters, and model conceptualization a p-factor of above 0.5 and an r-factor of around 1-2 is 

considered satisfactory in hydrologic studies (Faramarzi et al., 2009, 2017; Sao et al., 2020). In 

this study, during the iterative calibration procedure, a total of 18000 model runs were performed 

in a R environmnet and simulations were parallelized in a 40-core computer.  

To assess the response of glacier melt, SMB, and dynamics to physical parameters that are 

driven based on their maximum physically meaningful spectrum (as listed in Table 1), one-at-a-

time (OAT) parameter perturbations were performed. The idea was to examine how a selection of 
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parameter values from empirical studies on a limited number of glaciers would be realistic as an 

input in melt runoff simulations of other glaciers at a regional scale. A reference simulation was 

also performed using the calibrated optimized parameter ranges for both CTIM-based and PTIM-

based CGME models for the 2006-2018 period. Further, each parameter (listed in Table 1) was 

changed to an extreme value, either an extreme minimum or an extreme maximum within its 

physically meaningful range, while all other parameters were held unchanged. This process was 

repeated for each parameter until simulations were run for a minimum and a maximum for all 

parameters. These simulations were compared to the reference simulation.  

2.4. Results and discussion  

2.4.1 Calibration, validation, and uncertainty assessment based on Athabasca 

glacier measured runoff   

Overall, the performance of our CTIM-based model for the entire simulation period, 

including both calibration and validation periods (2006-2018), was more successful than that of 

the PTIM-based model (Fig. 3a,b). However, the performance measures for the calibration period 

(2011-2018) were slightly different from those of the validation period (2006-2010) for both 

models. After a total of nine iterations, the CTIM-based CGME model results for the 2011-2018 

calibration period indicated that the simulated glacier melt runoff for Athabasca glacier are 

satisfactory with a p-factor of 0.72 and an r-factor of 0.73. These were considered satisfactory, as 

a p-factor within 0.6-0.8 and an r-factor between 0 and 1 are considered satisfactory ranges (after 

Abbaspour et al., 2007; Sao et al., 2020). Based on the optimum parameter range resulting from 

the final iteration, the R2, bR2, and NS for the best performing model output was 0.78, 0.78, and 

0.72 respectively. The calibration results showed that the best simulated daily melt runoff from 
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1000 model runs using the samples from optimized parameter ranges compared well with the 

observed melt runoff (Fig. S1 and S2).  

For the PTIM-based CGME model, calibration results based on the final iteration indicated 

that simulated glacier melt runoff for Athabasca glacier are not as satisfactory as those of the 

CTIM-based model. The performance criteria for calibration of this model for the 2011-2018 

period were 1.20 for the r-factor, 0.31 for the p-factor, 0.60 for R2, 0.56 for bR2, and 0.20 for NS 

(see Fig. S1).  

 

Figure 3. Comparison of the simulated daily melt runoff with observed data for the Athabasca 

Glacier based on (a) CTIM-based CGME, (b) PTIM-based CGME for the 2006-2018 calibration 

period. Simulated daily runoff based on the best parameter sets are indicated by orange dots, while 

observed flow data is indicated by the blue line. The 95 percent prediction uncertainty (95PPU) 

for 1000 simulations based on the optimal parameter ranges is indicated by the grey band. Bottom 

row panels illustrate the long-term (2006-2018) daily average data for different months based on 

the best simulated signals for: (c) CTIM-based CGMEM, (d) PTIM-based CGME.  
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To test the reliability of model predictions we performed a model validation for the 2006-

2010 period. For the validation period, the climate data for model setup were obtained from the 

same meteorological station as those used for the calibration period (Jasper Warden station, 

Environment and Climate Change Canada). Jasper Warden station lies approximately 98 km north 

of Athabasca Glacier (where observed runoff for validation was measured) and at an elevation of 

1020 m.a.s.l. Given that long-term times series data that correlate with observed streamflow data 

are not available for this station, our validation period was shorter than the calibration period. 

However, we covered at least five ablation-accumulation periods in our times series for the 

validation period to represent several years of seasonal variability. Similar to the calibration period, 

the validation performance fell within target ranges with a higher performance for the CTIM-based 

model (p-factor=0.64, r-factor=0.66, R2=0.68, bR2=0.68, and NS=0.51) than the PTIM-based 

model (p-factor=0.31, r-factor=1.02, R2=0.54, bR2=0.53, and NS=0.04) (Fig. S1, Table S1). 

Overall, while the CTIM-based CGME model performed well during the entire simulation period 

(Fig. 3a), the simulated melts occurred earlier in the season than observed flows. The model also 

slightly overestimated peak daily flows during the peak melt season in July and August.  

Comparison of the CTIM-based and PTIM-based CGME model results indicate that the 

PTIM-based model overestimates peak daily flows during the peak melt season (July and August), 

which reduces the performance of the model for both the calibration and validation periods (see 

Fig. S2). The simulation results for the 2006-2018 period show that only 31 percent of observed 

data were represented by the predicted 95PPU in the PTIM-based model, and the R2, bR2, and NS 

were lower than those of the CTIM-based model (Fig. 3b). This is contrary to the assumption in 

the literature that PTIM is superior to other TIM approaches because of its capacity to involve 
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more process representation as compared to the other TIM-based approaches, e.g., consideration 

of incoming and reflected shortwave radiation (see Pellicciotti et al., 2005; Carenzo et al., 2009; 

Ragettli & Pellicciotti, 2012; Heynen et al., 2013). The overestimation of peaks and the low 

performance of the PTIM-based approach in our analyses is partially due to the lack of high 

resolution incoming solar radiation and snow and ice albedo observed data, and hence the use of 

estimated data in the model. The poor performance and a high uncertainty prediction of more 

sophisticated process-based models due to the lack of high quality input data has been reported in 

earlier studies (see Zaremehrjardy et al., (2020) and Engelhardt et al., (2013)). While simulated 

results at the 97.5th prediction percentile level (upper band of the 95PPU) indicated that the PTIM-

based model significantly overestimated melt runoff during the warm season, the simulated data 

at the 2.5th prediction percentile level (lower band of the 95PPU) showed an underestimation of 

melt runoff during the ablation periods (Fig. 3b). This underestimation (Fig. 3b, Fig. S1 and S2) is 

consistent with another study performed in the CRM. Bash and Marshall (2014) found that the 

PTIM and an enhanced TIM they developed based on the PTIM also consistently underestimated 

melt compared to observations and exhibited high sensitivity. Some other studies indicated that 

the radiative-enhanced models are not always regarded as superior to temperature-based models, 

because ablation, especially at the glacier and larger scale, is most greatly impacted by temperature 

(see for example, Réveillet et al., 2017). While collinearity may be a factor in our PTIM model as 

well, we attribute the relatively poor PTIM performance to uncertainties related to PTIM model 

inputs, especially estimated values for radiative factors such as incoming shortwave radiation, 

αsnow, αice, SRFsnow, and SRFice (see section 2.2.4.1).  

Analysis of the monthly data (Fig. 3c,d) showed that simulated melt runoff reflects 

variability of the observed monthly streamflow. Runoff was zero during the accumulation season 
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(Dec-Feb) and reached a maximum during the ablation season (Jun-Aug) for both the CTIM- and 

PTIM-based models. Between CTIM and PTIM, the PTIM-based model demonstrated greater 

inter-annual variability (Fig. 3b) and increased simulated melt runoff in the shoulder seasons, i.e., 

Mar-May and Sept-Nov (Fig. 3b,d). This is expected due to the incorporation of radiative melt 

factors in the PTIM-based model that allows simulation of some ice melt due to radiation energy 

absorption even on days when the daily temperature is below the melting threshold.  

 In general, both CTIM-based and PTIM-based model results predicted rather similar 

ranges of uncertainty (i.e., 95PPU represented by the r-factor), but the CTIM-base model 

reproduced more observed data points within its prediction uncertainty range (i.e., 71% of 

observed data were captured within predicted 95PPU) than PTIM-based model (i.e., 31% of 

observed data were bracketed within predicted 95PPU). In addition, the objective functions based 

on the comparison of observed with simulated melt runoff data were considerably higher in the 

CTIM-based model simulations. Overall, the uncertainty prediction and the model performance 

measures indicate that the CTIM model, which requires less volume of input data for model setup 

than the PTIM-based model, performs better. However, the PTIM-based model, which requires 

more input data and suffered from estimation of the inputs due to the lack of observations, 

generates poor performance with a similar range of uncertainty as that of CTIM-based model. Our 

findings are supported by other studies that reported similar conclusions (Vincent and Six, 2017; 

Zolles et al., 2019; Zaremehrjardy et al., 2020), especially at the glacier to basin-wide scale 

(Réveillet et al., 2017) that have high temporal resolution (Bash and Moorman, 2019). 

2.4.2 Glacier melt runoff response to parameter perturbations 

The results of OAT sensitivity analysis indicate the response of the simulated melt runoff 

to a change in each of the parameters used by our CTIM- and PTIM-based CGME models, 
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respectively (Figures 4 and 5). As shown in Figure 4, the CTIM-based simulated melt runoff 

increases in response to an increase in DDFsnow, DDFice, Ppara, RainC, SnowC, and GlacC or a 

decrease in Tthres, Rexp, LR, and LRGlacier (negligible response to changes in Prate or rhe). 

Simulated melt runoff using our PTIM-based model in Figure 5 increases in response to an increase 

in Ppara, RainC, SnowC, and GlacC or a decrease in LR, LRG, Tthres, and TF (negligible response 

to changes in Prate, rhe, SRFsnow, SRFice, or αice). In the following sections we provide analyses of 

the physical implications of parameter sensitivity by discussion of the parameters in more details.  

2.4.2.1 Melt 

By having and calibrating separate degree day factors for snow and ice (DDFsnow and 

DDFice respectively), the CTIM better differentiates surface properties as compared to the models 

that use single DDF representing both snow and ice conditions cumulatively (Braithwaite, 1995; 

Hock, 1999). Figure 4 (a) and (b) indicate that the model is highly sensitive to changes in values 

for both DDFsnow and DDFice, with increases in both DDFsnow and DDFice leading to increased total 

melt runoff. The DDFs are empirically derived and the melt calculation is simplistic, leading the 

CTIM approach to be sensitive to these parameters as they are reflecting several underlying 

processes (Hock, 1999; Tsai & Ruan, 2018). To further refine the DDF approach, an exposition 

factor (Rexp) is considered (Shea et al., 2015; Marshall et al., 2011); which modifies both DDFsnow 

and DDFice to vary with DEM-derived aspect and surface type. Our simulated data in Figure 4d 

indicates some sensitivity to changes in Rexp parameter, with a decrease in Rexp correlating to a 

slight increase in total melt runoff.  
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Figure 4. Monthly variability of CTIM-based coupled melt-mass balance-evolution model 

parameters, results of one-at-a-time parameter perturbations. Simulated daily glacier melt runoff 

is plotted by month for the period 2006-2018. A reference simulation using CTIM-based model 

optimized parameters is shown in grey, while melt runoff using an extreme minimum parameter 

value and an extreme maximum parameter value are shown to the right of reference. The parameter 

descriptions and ranges in figure panels (a-l) are listed in Table 1. 
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Figure 5. Monthly variability of PTIM-based coupled melt-mass balance-evolution model 

parameters, results of one-at-a-time parameter perturbations. Simulated daily glacier melt runoff 

is plotted by month for the period 2006-2018. A reference simulation using PTIM-based model 

optimized parameters is shown in grey, while melt runoff using an extreme minimum parameter 

value and an extreme maximum parameter value are shown to the right of reference. The parameter 

descriptions and ranges in figure panels (a-n) are listed in Table 1. 
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The PTIM uses the albedo, temperature melt factor (TF), incoming shortwave radiation, 

and shortwave radiation factor (SRF). By separating both albedo and SRF into those for snow and 

ice, we aimed to improve model performance by better simulating retention of radiation across the 

glacier surface. Figure 5 (l) and (m) indicate that changes in either SRFsnow or SRFice do not 

significantly affect the modelled melt runoff. Daily incoming shortwave radiation was a model 

input; observed incoming radiation was not available for the full study region, so it was estimated 

after Walter et al. (2005) and modified due to atmospheric conditions (e.g. thickness, aerosols) 

after Follum et al. (2015). As shown in Figure 5 (n), the albedo of ice does not significantly affect 

the modelled total melt runoff. This is contrary to the findings of Marshall and Miller (2020), 

whose observations at Haig glacier in Alberta found strong variability in glacier surface albedo 

and corresponding runoff during the melt season. Other studies show that albedo affects glacier 

melt at sub-daily time scales, whereas the most commonly used models (similar to the one 

developed here) simulate at the daily time scale (Pellicciotti et al., 2005; Heynen et al., 2013), 

which may explain why the effects of albedo are not profoundly observed in the simulations. This 

demonstrates the limitations of approximated albedo values for snow, even when the albedos of 

snow and ice are separated.  

The final PTIM parameter, temperature melt factor (TF), was found to have some effect on 

PTIM overall model performance. This is shown in Figure 5 (k), which also indicates that low 

values of TF greatly decrease modelled total melt runoff.  

The other melt model parameters, required by both CTIM and PTIM are a threshold 

temperature for snow melt (Tthres), the coefficients of glacier ice melt, snowmelt, and rainfall 

(GlacC, SnowC, and RainC, respectively). These are used with modelled melt from either CTIM 

or PTIM to calculate total runoff per elevation band, which is later used to find the surface mass 
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balance of the elevation band (see section 2.3.2.2.) As shown in Figure 4 c, j, k, and l and Figure 

5 g, h, i, and j, both CTIM and PTIM versions of the model showed similar sensitivities to these 

parameters; an increase in total simulated melt runoff in response to an increase in GlacC, SnowC, 

or RainC or a decrease in Tthres. This is consistent with other studies, though Ragettli and 

Pellicciotti (2012) found their PTIM-based model was more sensitive to the SRF than these 

coefficients. Our study, unlike theirs, did not account for the percolation and storage of meltwater 

in nearby soils, which may be one cause of the difference. 

2.4.2.2 Surface Mass Balance (SMB) 

In this study, the processes that affect SMB are those that contribute to snowfall 

(accumulation) and total melt runoff (ablation). The parameters used by the coupled mass balance 

dynamic evolution model that govern snowfall and total melt runoff (aside from those used by the 

TIM in Module 1, as explained in the previous section) are the precipitation gradient (Prate), 

precipitation parameter (Ppara), Altitudinal lapse rate (LR), and lapse rate along the glacier surface 

(LRGlacier). These plus the model inputs of daily observed precipitation and temperature allow 

for the calculation of temperature and amount of precipitation at each elevation band.  

By using LHS and 95PPU through our calibration procedure, we were able to predict an 

uncertainty range for both LR and LRGlacier. This is an improvement compared to studies that 

use a single fixed value for the lapse rate. Figure 6 (e) and (f) and Figure 7 (b) and (c) show that 

both CTIM and PTIM-based versions of the model are highly sensitive to variations in both LR 

and LRGlacier and that a decrease in either LR or LRGlacier leads to an increase in simulated melt 

runoff. This is consistent with what has been observed (such as by Arendt & Sharp, 2009) as a 

large lapse rate would lead to estimations of lower temperatures at higher elevations, causing 

higher simulated snowfall and lower simulated melt runoff.  
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Similarly, the choice of precipitation gradient (Prate), which extrapolates precipitation by 

elevation, affects TIM-based glacier melt models (Engelhardt et al., 2013; Heynen et al., 2013). 

This is in conjunction with a precipitation correction parameter (Ppara) which is empirically 

derived to correlate winter mass balance and climate station elevation to better simulate SMB and 

melt runoff (Stahl et al., 2008). Both CTIM and PTIM-based models show slight sensitivity to 

Ppara, with a response of increased melt runoff to an increase in Ppara, indicated in Figure 6 (g) 

and Figure 7 (d). Negligible sensitivity to Prate in both models is illustrated in Figure 6 (h) and 

Figure 7 (e). This may be because the precipitation distribution to each elevation band by Prate is 

less significant to total melt runoff than the distribution of precipitation type (rain or snow) 

governed by temperature-based processes.  

While the simulated process of surface mass balance is simplistic in this model (snowfall – 

total melt runoff), it is the aim of this study to refine it by calculating daily SMB using estimated 

melt runoff (as described in 3.2.1.); distributing temperature and precipitation to each elevation 

band by using calibrated ranges of LR, LRGlacier, Prate, and Ppara; and distinguishing between 

solid and liquid precipitation (i.e. snow or rainfall.) From this daily, elevational SMB, the total 

annual SMB for the entire glacier can be determined and used to simulate glacier dynamic 

evolution.    

2.4.2.3 Evolution 

In this study, initial glacier hypsometry is defined as model inputs (see section 2.3.4.1.) 

The only model parameter relating to dynamic evolution was the rheology parameter, which was 

calibrated using LHS and 95PPU from a physically meaningful range from other studies of 

mountain glaciers. In this model the rheology parameter is used in the calculation of ice flux and 

the change in the range of ice thickness (see Equations 2 and 3). Figure 6 (i) and Figure 7 (f) show 
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negligible sensitivity in simulated melt runoff to changes in the rheology parameter in both CTIM 

and PTIM-based models. Calibrated ranges for the rheology parameter in both models (see Table 

2) agree with values found by other studies in the CRM (Marshall et al., 2011).  

2.4.3. Parameter transferability and the use of a range of parameters at the 

regional scale 

To examine the issue of parameter transferability and prediction uncertainty of glacier melt, 

mass balance, and evolution modeling at a regional scale, we applied our calibrated-validated 

model to predict melt runoff in 258 glaciers in the Athabasca River Basin for the historical period 

1984-2007. This period was selected due to limitations in data availability at the regional scale, as 

the glaciers are distributed across 15 sub-basins of the Athabasca River Basin and contiguous 

meteorological observations are not available across these sub-basins. Instead, we used a gridded 

climate product, which covered 1984-2007, that was downscaled to our study’s spatial resolution 

(see Faramarzi et al., 2015).  Due to its better performance and limited input observations, we used 

the CTIM version of the model. For each glacier we performed 100 simulations using the optimum 

parameter ranges that were obtained through the calibration iterations for the Athabasca glacier. 

The simulations were based on 100 sets of new sampled parameters from the optimum range using 

the LHS approach explained in Section 2.3.2.1.  

The simulation results indicate that depending on the glacier size and location, the average 

annual cumulative melt runoff ranges from ~ 0.005 m3 sec-1 to ~ 75 m3 sec-1 using L95PPU, which 

refers to the 2.5th prediction percentiles (Fig. 6a); from ~ 0.046 m3 sec-1 to ~ 205 m3 sec-1 using 

U95PPU, which refers to 97.5th prediction percentiles (Fig. 6b), and from ~ 0.01 m3 sec-1 to ~ 132 

m3 sec-1 M95PPU, which refers to the median of predictions (Fig. 6c) across the region. The 



47 

 

predicted uncertainty range, which is calculated as the difference between L95PPU (m3 sec-1) and 

U95PPU (m3 sec-1) for each glacier (∆95PPU (m3 sec-1)), varied from 0.04 m3 sec-1 to ~ 134 m3 

sec-1 (Fig. 6d) across glaciers. Prediction of such 
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Figure 6. Maps of the 258 glaciers in the Athabasca River Basin, indicating the average annual 

cumulative melt runoff per glacier (m3 sec-1) for the Lower (a), Upper (b), and Median of 95% 

Prediction Uncertainty (95PPU) for the period 1984-2007, from 100 simulations of the CTIM 

CGBMDEM using optimized parameter ranges. Bottom right (d) is the difference between Lower 

and Upper bands (Δ95PPU). The cumulative melt runoff was calculated as the sum of daily melt 

runoff (m3 sec-1) for all days of the given year. 
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a range of runoff for each glacier rather than a single runoff value demonstrates the issue of 

parameter transferability, and indicates that the simulated runoff is strongly dependent on the value 

of input parameters. In these glaciers different sets of input parameter values in the model results 

in a different runoff accumulation, with the largest predictions which can stay up to 134 m3 sec-1 

apart from their predicted L95PPU (m3 sec-1). The results indicate that the large values of ∆95PPU 

are observed only in large glaciers which count for < 3% of the total number of glaciers in the 

region (Fig. 6d). However, the lesser ∆95PPU (m3 sec-1) in small size glaciers do not understate 

the parameter transferability issue because of the mathematical error propagation, where the 

∆95PPU (m3 sec-1) values are magnified in large quantities (e.g., large cumulative runoff from 

larger glaciers) as compared to small values. To mask the effect of error propagation issues in the 

interpretation of our results, we normalized the predicted uncertainty ranges by dividing their 

∆95PPU (m3 sec-1) to the median of the predicted runoff values (i.e., M95PPU (m3 sec-1)) for each 

of the glaciers (Fig. 7a) and presented them as their share from the maximum value (Fig. 7b). The 

normalized uncertainty prediction (Rn) varied from 0.37 to 1 across glaciers (Fig. 6d), which 

showed ~ 63% of the glaciers in the region had an Rn value of greater than 0.5 and only in less 

than 37% of the glaciers the R value was less than 0.5.  Note that the larger the Rn indicates the 

greater the share of their normalized uncertainty prediction and, therefore, demonstrates a greater 

sensitivity of the predicted melt runoff to their underlying input parameters. This indicates that in 

more than 63% of the glaciers in the region, the input parameters for melt-mass balance-evolution 

modeling (such as the one developed in this study) cannot be driven from empirical measurements 

from other adjacent glaciers such as the Athabasca. However, in less than 37% of the glaciers in 

the region the parameter values can be transferred from their adjacent glaciers with relatively 

smaller uncertainty in their runoff predictions (Rn < 0.5) as compared to the other glaciers (with 
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Rn > 0.5). While other TIM-based studies note that parameterization has limited transferability 

due to being based upon and calibrated to site-specific measurements (Litt et al., 2019; Marshall 

& Miller, 2020), Carenzo et al., (2009) note that parameterization can be transferred across spatial 

and temporal scales in general mountain regions with minimal loss to performance, and of the 

models analyzed by Réveillet et al. (2017) not one model type offered better transferability over 

the others. By using a range of parameter values, calibrated from the maximum physically 

meaningful range for each parameter from an adjacent glacier (e.g., Athabasca glacier in this 

study), we demonstrate different levels of uncertainty arising from the parameter transferability in 

each glacier.  

 

Figure 7. Maps of the 258 glaciers in the Athabasca River Basin, indicating normalized 

uncertainty range of melt runoff (a), calculated as as: Δ95PPU/M95PPU, and share of normalized 

range from their maximum value (b), calculated as: Rn = ( Δ95PPU/M95PPU)/2.16.  
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To further investigate how glacier size plays a part in parameter transferability issue, we 

categorized all glaciers of the region into 3 size classes after Chinn (2001) and calculated the 

cumulative melt runoff differences (∆95PPU (m3 sec-1)) and % difference of cumulative melt 

runoff for each category. It was determined that 46.5% of total glacier count are small glaciers and 

they account only for ~ 5.8% of total initial glacier area in the region. Medium size glaciers make 

up 45% of the total glacier count, and accounted for 35.8% of total initial surface area. Large 

glaciers, at 8.5% of the total glacier count, accounted for 58.4% of the total initial surface area. 

The total predicted ∆95PPU for small, medium, and large size glaciers were 697.4 m3 sec-1, 326.1 

m3 sec-1, and 529.5 m3 sec-1, respectively (Table 3). It is evident that, while large glaciers account 

for the largest cumulative ∆95PPU of melt runoff due to their size, small glaciers have a greater 

cumulative melt runoff difference arising from the input parameter variability. This indicates larger 

parameter dependence of the melt-mass balance-evolution modeling in smaller glaciers. While a 

majority of glacio-hydrological studies have focused on modeling of large glaciers across the 

world (Radic et al., 2014; Kraaijenbrink et al., 2017; Immerzeel et al., 2019), reliable prediction 

of the response of small glaciers to future climate changes are of utmost importance not only due 

to their cumulative impact on their downstream water resources for economic sectors, but also for 

their ecological impacts (Brown et al., 2006; Cauvy-Fraunié et al., 2016). Small glaciers feed 

numerous stream tributaries worldwide, and they play a key role in regulating stream temperature, 

stream biochemical makeup, and stream type/channel evolution. Even small changes in glacier 

streamflow contribution can cause rapid, dramatic changes in the surrounding ecosystem, 

including stream microscopic biota, algal growth, fish and other macro-organism populations, and 

surrounding vegetation cover and type (Brown et al., 2006; Cauvy-Fraunié et al., 2016; Cannone 
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et al., 2008; Milner et al., 2009). An accurate and reliable simulation of these glaciers and 

prediction of their changes in the future are key for adaptation and mitigation strategies.        

 

Table 2.3. Summary data of glaciers in the Athabasca River Basin and the difference in Lower (L) 

and Upper (U) 95 percent prediction uncertainty (95PPU) estimates of cumulative melt runoff for 

the period 1984-2007 from 100 simulations using the CTIM calibrated parameter range.  

Category Size (km²) Count 

% of total 

glacier 

count 

Initial 

surface 

area (km²) 

% of total 

initial 

surface area 

Cumulative melt 

runoff difference 

∆95PPU (m3 sec-1)  

Small 0.01-0.32 120 46.50% 17.46 5.80% 697.4 

Medium 0.32-2.56 116 45.00% 108.1 35.80% 326.1 

Large 2.56-29.95 22 8.50% 176.32 58.40% 529.5 

Total _ 258 100.00% 301.88 100.00% _ 

 

2.5. Summary, conclusions, and future directions 

We revisit widely used glacier models (CTIM, PTIM, SMB, and spline-based VAS 

models), incorporating them into a coupled glacier mass balance dynamic evolution model 

(CGME) to characterize uncertainty associated with physical input parameters and assess the 

suitability of using such models at the regional scale and when input data is limited. We examined 

the response of glacier melt, SMB, and dynamics to physical parameters that are driven based on 

their maximum physically meaningful spectrum rather than a fixed value for each parameter.   

 Calibration and validation determined that while both versions of the CGME with different 

melt models (CTIM or PTIM) gave similar ranges of uncertainty for melt runoff from 1000 

simulations forced by the maximum meaningful parameter range for each model, representation 

of observed data by the simulated predictions were vastly different. Using 95 percent prediction 

uncertainty (95PPU), it was found that 31% of observed data were represented by prediction 
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95PPU in the PTIM-based model versus the 71% represented by the CTIM-based model. There 

was high uncertainty associated with both overestimation and underestimation of melt runoff in 

the PTIM-based model.  While model performance may be improved by using a range of parameter 

values compared to a singular value, prediction uncertainty may still be high due to model selection 

and quality of input data.  

 One-at-a-time (OAT) sensitivity analysis of each parameter for both model types showed 

the sensitivity of simulated melt runoff to each parameter. Both were found to be highly sensitive 

to similar parameters associated with temperature and melt runoff, with even small changes in 

parameter values leading to large changes in runoff. This highlights the importance and associated 

uncertainty of parameter selection and parameter transferability both spatially and temporally.  

 Assessment of 95PPU of melt runoff at a larger spatiotemporal scale reinforced this idea. 

Differences between U95PPU and L95PPU average annual cumulative melt runoff for each glacier 

(∆95PPU (mm)), varied from 0.04 mm to ~ 134 mm across the 258 glaciers simulated. Normalized 

uncertainty prediction (Rn), which accounts for differences in glacier area, varied from 0.37 to 1 

and ~63% of glaciers had Rn between 0.5-1. This demonstrates higher sensitivity of the predicted 

melt runoff to their underlying input parameters and that these glaciers ought not to be driven with 

parameters from empirical measurements from other adjacent glaciers. We also assessed 

cumulative melt runoff differences (∆95PPU (mm)) and % difference of cumulative melt runoff 

based on glacier size. This determined that small glaciers have a greater cumulative melt runoff 

difference arising from the input parameter variability and larger parameter dependence at a 

regional scale. From this, we conclude that small glaciers have a wide range of potential 

cumulative melt runoff values that are regionally significant and ought not to be overlooked in 

examinations and discussions of regional projections.  
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 Overall, we explored different levels of uncertainty in using ranges of parameter values in 

CGME modeling approaches. We determined that ranges of model predictions compared to 

observed data can be improved (and we developed optimized ranges for each parameter and 

modeling approach), but improvement is dependent on available input data and associated model 

selection. The models are more sensitive to changes in the range of some parameters and not 

responsive to others, which can help identify sources of uncertainty. We also assessed uncertainty 

at the regional scale, determining that even when using an optimized parameter range for simulated 

melt runoff, parameter range transferability is not appropriate for the majority of glaciers in the 

region and that small glaciers are especially sensitive to input parameter variability.  

Applications of the optimized parameter ranges used with this model include being used 

to examine glacier melt runoff, mass balance, and evolution (such as change in ice area or glacier 

thickness) in regions where observations are sparse. They could also be used to generate 

predictions of simulated melt runoff to be coupled with other hydrological models to explore the 

impacts of glacier melt runoff to a watershed, such as volume and timing of seasonal melt runoff 

or the ecological and environmental impacts to stream temperature. Future work will focus on 

incorporating the range of predictions into projections of glacial changes through the end of this 

century under various climate change scenarios.  
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3.1 Abstract 

While they are important sources of freshwater, mountain glaciers are responsive and 

vulnerable to changes in climate. Modeling can provide insight to potential future changes, but 

regional-scale predictions can be difficult where limited input data and high spatiotemporal 

variability can lead to high uncertainty in model results. We aim to explore potential future glacier 

behaviour by taking into account the uncertainty arising from series of predictive models including 

glacier melt, mass balance, evolution simulators (CGME) and global climate models (GCMs), as 

well as future shared socioeconomic scenarios (SSPs).  

We evaluate glacier melt runoff and area-volume change simulations by applying a 

modeling framework that couples empirical melt, surface mass balance, and spline-based volume-

area scaling models. Our calibrated-validated CGME is forced using projected climate data from 

four GCMs of the Coupled Model Intercomparison Project 6 (CMIP6) series, and two SSP 

scenarios (SSP126 and SSP585) for the 258 glaciers in the Athabasca Watershed in Alberta, 

Canada for the period 1980-2100. The CGME model uncertainty is quantified by performing 100 

sets of model input parameters from their maximum physically meaningful range and are used 

with a series of downscaled future climate data to force 100 simulations for each glacier. This 

allows us to explicitly quantify the uncertainty related to GCME model projections (via the 95 

Percent Prediction Uncertainty, 95PPU) stemming from input parameterization, as well as those 

related to GCM model spread and different SSPs.  

Glacier changes are assessed based on two categorization schemes, including glacier size 

class and their elevation class. The former is identified based on glacier initial area, and the later 

is defined based on glacier initial elevation. Our results based on size show that small-to-large 

glaciers are predicted to decrease in volume 75% (small)-80% (large), decrease in area 72% 
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(small)-78% (large), and discharge 70% (small)-80% (large) of their potential melt runoff in the 

first forty years of the simulation period (1980-2019, the historical period). Monthly predicted 

flow regimes not only indicate greatly reduced melt runoff as the century progresses, but also the 

loss of late spring and early fall melt runoff. Assessing potential changes by glacier initial elevation 

indicated similar trends, though low elevation glaciers are predicted to be especially responsive, 

discharging ~95% of their melt runoff during the historical period. Monthly melt runoff reflects 

similar trends to those found in the size analysis, though low elevation glaciers have the most 

extreme response. These assessments show the potential range of recent and imminent glacier 

retreat and related impacts on the glacio-hydrological regime.  

 

Keywords: glacier model uncertainty, CMIP 6, SSP126, SSP585, glacier volume and area, 

glacier melt runoff 
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 3.2 Introduction 

 Mountain glaciers have undergone many changes in the last century, including dramatic 

area loss (Tennant et al., 2012; Paul & Mölg, 2014) and increased contribution to streamflow 

(Comeau et al., 2009; Liu et al., 2022). Continued drastic changes in the current century is expected 

in alpine environments across the world (Clarke et al. 2015; Gan et al., 2015; Hock et al., 2019), 

affecting runoff regimes (Huss et al., 2010), surface water availability (Duethmann et al., 2016), 

and glacio-hydrological processes in mountainous catchments (Gan et al., 2015). The potential 

effects of changing hydrology, including water quality and quantity, has significant implications 

for downstream human and ecologic systems (Tolotti et al., 2020; Bash & Marshall, 2014; Jost et 

al., 2012). Much work has been done to project potential changes in glacier melt runoff, mass 

balance, and volume and area at the global, regional, and local levels (Radić et al., 2014; Clarke et 

al., 2015; Ambinakudige & Intsiful, 2022). However, characterizing future changes using model 

projections is difficult due to the inherent uncertainties stemming from spread in (i) global climate 

model projections, i.e., portrayals of elements of the atmosphere, ocean, land surface, and ice 

system that models emphasize on their process simulation, and their downscaling when applied 

for regional to local studies (Intergovernmental Panel on Climate Change 6th Assessment Report, 

IPCC AR6, 2019) ; (ii) emissions scenarios, e.g., Shared Socioeconomic Pathways, SSPs, which 

reflect the uncertainty of the future radiative forcing affecting the GCM projections (IPCC AR6); 

(iii) glacier model uncertainty, including process representation and downscaling procedures, 

model parameterization uncertainty, and uncertainty related to input data quality, including initial 

glacier geometry (Huss et al., 2014; Marzeion et al., 2020).  Combined, these can lead to a range 

of possibilities, e.g. in glacier area loss (-100% to -63%) and the change in annual runoff (-57% to 

+25% relative to today) in projections through 2100 of glacierized catchments (Huss et al., 2014). 
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While many studies have been dedicated to characterizing the source and range of uncertainty to 

one of these factors (e.g., downscaling, Radić & Hock, 2006; initial ice geometry, Farinotti et al., 

2009; and ice melt, Pellicciotti et al., 2005), others have attempted to quantify uncertainty ranges 

(Huss et al., 2014) or partition sources of uncertainty in projection ensembles (Hock et al., 2019; 

Marzeion et al., 2020). Framing future emissions scenarios as SSPs can assist in characterizing the 

uncertainty and assist in adaptation and mitigation assessments (O’Neill et al., 2017), given that 

the greatest source of uncertainty in 21st century projections of glacier mass, area, and runoff 

changes are reported to be emissions scenarios and climate models, especially later in the century 

(Huss et al., 2014; Marzeion et al., 2020). However, the share of uncertainty sources in impact 

assessments can vary spatially and temporally in regional studies. In an earlier study, 

Zaremehrjardy et al. (2021) showed that in hydrological and snow depth modeling of a snow 

dominated watershed, the uncertainty related to input data can dominate other sources of 

uncertainty such as the emission scenarios and GCMs depending on the ecoregion. Overall, 

assessment of the uncertainty range of future glacier melts can help society today to plan for a 

breadth of potential impacts in regions affected by glacier retreat (Milner et al., 2017). In this 

study, we aim to characterize the spectrum of possible glacier responses to future climate by 

forcing a CGME model not only with a GCM-SSP ensemble but also with a range of optimum 

values for each input parameter (i.e., model parameter uncertainty). Thus we can assess the range 

of uncertainty associated with model output uncertainty in addition to that from future climate. 

This study focuses on regional glacio-hydrological changes and uses the Canadian Rocky 

Mountain (CRM) glaciers of Alberta, Canada as a study area. Numerous glacier melt and change 

studies have noted the potential vulnerability of CRM glaciers and water resources to rapid glacier 

retreat and deglaciation (e.g., Anderson & Radić, 2020; Bonsal et al., 2020; Clarke et al., 2015; 



67 

 

DeBeer et al. 2016; Ambinakudige & Intsiful, 2022). Regional glacier studies of observed change 

in ice cover extent (Marshall et al., 2011), glacier area (Moore et al., 2009), and modelled estimates 

of glacier melt and streamflow contribution (Bash & Marshall, 2014; Comeau et al., 2009) have 

shown that glacial discharge at present contributes between 39 – 64% of streamflow in the summer 

season and glacier loss during the past decades has been affecting downstream users and 

ecosystems (Payne et al., 2004). Furthermore, the projected deglaciation of western Canada (by 

Clarke et al., 2015) shows that by 2100, the volume of glacier ice in western Canada will shrink 

by 70 ± 10% relative to 2005 levels. Similarly, the projected maximum rate of ice volume loss, 

corresponding to peak input of deglacial meltwater to streams and rivers, will occur around 2020 

and 2040 (Clarke et al., 2015). In some glacierized basins, streamflow is estimated to decrease by 

40% by 2050 and changes in monthly discharge regimes are expected, especially after 2070 

(Chernos et al., 2020). The potential implications of these changes in glacial area and volume are 

envisaged to result in the decline of water supply for aquatic ecosystem function, agriculture, 

forestry, alpine tourism, and quality in the region (Clarke et al., 2015). While this is important 

information about mountain glacier behaviour throughout the 21st century, the uncertainty in 

projected regional glacier behaviour can be different due to heterogeneity in intial glacier 

characteristics. A major factor for determining mountain glacier behaviour is initial glacier area. 

It has been shown in historical observations (Paul & Mölg, 2014; Ambinakudige & Intsiful, 2022), 

in modeling studies (e..g Radić et al., 2007), and glacio-hydrological projections (Gan et al., 2015; 

Liu et al., 2022) that the runoff and area changes in relatively small glaciers are drastically different 

to relatively larger glaciers in the same region. They have been found to be more sensitive to the 

various emissions scenarios (Gan et al., 2015) leading to increased uncertainty (Duethmann et al., 

2016). Another characteristic that determines how a glacier has and may continue to change is 
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elevation. The empirical, data driven, and modeling studies (e.g. Tennant et al., 2012; Huss et al., 

2014; Gan et al., 2015; Perroud et al., 2019) have shown that a glacier’s elevation greatly 

influences the changes in its melt runoff, area/volume change, and mass balance. A glacier at high 

elevation responds differently to the regional changes in climate than a similar glacier at lower 

elevation. These studies either provided average estimates of projected glacier melt contribution 

to streamflow and projected glacier area change at the catchment scale (Liu et al., 2022; Gan et al., 

2015) or characterized projected glacier volume-area change based on individual sample glaciers 

of various sizes (Radić et al., 2007) or projected mass balance of sample glacier based on elevation 

(Perroud et al., 2019). Of these studies, Duethmann et al. (2016) presented the most uncertainty 

analysis and 5-95 percentile ensemble spread estimates at the catchment scale, but did not explore 

glacial regimes based on size or elevation. We aim to explore regional projections of glacier melt 

runoff, volume and area change. To account for glacier behaviour due to differences in size and in 

initial elevation at a large regional scale, we organize our study glaciers into size classes and 

elevation classes and evaluating potential changes using these classifications. We seek to 

characterize a range of potential glacio-hydrological futures in the region by characterizing 

uncertainty based on climate model ensemble spread, model parametrization, and size and 

elevation class.    

In addition, projections by earlier studies were centred on application of CMIP5 models 

and Representative Concentration Pathways (IPCC, 2007). This study will explore regional 

changes in glacier runoff, area, and volume in response to the future climate models and radiative 

forcing presented in CMIP6 (IPCC, 2019). The CMIP6 provides the means to simulate climate 

change scenarios from the state-of-the-art GCMs which are now included in the 6th assessment 

report (AR6) of the IPCC (Eyring et al., 2016; Masud et al., 2021). A major difference between 
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CMIP5 and CMIP6 is the set of future scenarios used to project climate evolution. The CMIP6 

offers scenarios based on socioeconomic trajectories (i.e., Shared Socioeconomic Pathways or 

SSPs), which work in harmony with the Representative Concentration Pathways (RCP) from 

CMIP5. The development of CMIP6 helps overcome and improve the limitations identified in 

CMIP5, namely identifying and interpreting systematic errors in simulations, improving the 

estimation of radiative forcing, identifying the response of climate to aerosol forcing, and 

improving the representation of impacts of land use changes on climate (Eyring et al., 2016; Masud 

et al., 2021; Voldoire et al., 2019). Recent climate change studies in Canada which employed 

CMIP6 data (Masud et al., 2021; Papalexiou et al., 2019; Voldoire et al., 2019) were focused on 

evaluating the performance of CMIP6 in models to reproduce the historical simulations, mean and 

extreme climate characteristics and drought duration and severity at local scales. We utilize four 

GCMs of CMPI6 series and two most extreme SSPs (i.e., SSP126, which assumes the least 

warming effects, and SSP585, which representes the most warming effects due to socioeconomic 

developments) to project the ranges of potential glacier behaviour based on the latest climate 

scenarios and models, which will be useful for adaptive planning and mitigation (Bonsal et al., 

2020; Hindshaw et al., 2011; Wheater & Gober, 2013). 

The hydro-glaciological model used in this study is a calibrated, validated CGME model 

which quantifies the prediction uncertainty range (Kotila et al., in review). It is composed of three 

modules, which calculate daily melt runoff from the glacier, daily surface mass balance (SMB) of 

the glacier, and the annual changes in glacier surface area, depth, and volume in response to the 

change in mass. The coupling between these sections of the model allows for refined modeling of 

the long-term feedback between SMB and changes in glacier geometry such as length, area, and 

ice thickness (Kraainjenbrink et al., 2017) and for projections of glacier response to climate 
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change. This approach enables analysis of not only mass loss due to volume-area dynamics but 

also changes in the discharge regime downstream (Huss & Hock, 2015) and is appropriate at the 

basin or regional scale (Immerzeel et al., 2012) and multi-decade to multi-century timescales 

(Radić et al., 2007). In addition to the coupled glacier mass balance dynamic evolution 

components, the model also uses an elevation-band approach. Other studies, such as that by Huss 

and Hock (2015) have used elevation bands when doing temperature-based melt modeling. The 

elevation-band approach delineates each glacier into bands of equal mean elevation based on 

glacier size and area. The daily melt runoff, SMB, and volume-area changes are simulated for each 

band individually, allowing for a more refined model of the entire glacier’s mass flux and geometry 

changes through time. Using this model, we can project not only the quantity and timing of glacier 

melt runoff but also corresponding changes in glacier volume, area, and ice thickness.  In addition, 

the model can be forced using a range of values for each model parameter (which includes 

meteorological, glacial, and temperature-index parameters). In this study, we forced the 

projections with 100 parameter sets, sampled from the maximum physically meaningful range for 

each parameter (Kotila et al., in review) using Latin Hypercube Sampling (LHS, Mckay et al., 

1979). This approach allows quantification of model output uncertainty using 95 Percent 

Prediction Uncertainty (95PPU). 95PPU predicts an uncertainty band calculated at the 2.5% and 

97.5% levels of the cumulative distribution of model output in response to parameter uncertainty 

(Abbaspour et al., 2007), instead of a single modelled value reponse to a single parameter. Kotila 

et al. (in review) optimized the parameter ranges for this model in this region using historical 

observed glacier melt runoff, ensuring bracketing most of the data within the 95PPU while seeking 

the smallest possible uncertainty band. By applying this parameterization in this study, we seek to 
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keep the uncertainty band due to model parameterization narrow while still exploring the possible 

range of predictions in glacier behaviour and avoiding a single value for each input parameter.  

The overarching goal of this study is to characterize mountain glacier dynamics based on their 

size and elevation and by quantifying the range of uncertainty arising from various sources. We 

use a coupled glacier melt, mass balance, evolution modeling framework to evaluate the changes 

in the past (1980-2019) and future (2020-2100) years using projections from CGME model, four 

GCMs of the CMIP6, under two SSP scenarios. The specific objectives in this study are as follows: 

(i) Characterize uncertainty due to both projected future climate uncertainty and predicted 

model uncertainty for the projected glacier dynamics (changes in melt runoff, volume, 

and area.)  

(ii) Compare the behaviour and associated uncertainty of three populations of glaciers 

(“small”, “medium”, and “large”) classified based on initial surface area. 

(iii) Compare the behaviour and associated uncertainty of three populations of glaciers 

(“low”, “medium”, and “high”) classified based on initial median elevation. 

Our model is applied to the western boundary of the Canadian Rocky Mountains (CRM) at the 

upstream of the Athabasca River basin (ARB) that drains melt water from 258 glaciers. The 

region is characterized by heterogeneous hydro-climate and geospatial conditions, as well as a 

diverse range of glacier sizes (ranging from approximately 0.01 to 29.96 km2) and glacier 

elevations, ranging from a median elevation of approximately 2050 to 3300 m.a.s.l. This 

glacio-hydrological heterogeneity, as well as the ARB being an important catchment to 

downstream ecosystems and users (Payne et al., 2004; Rokaya et al., 2020) altogether makes 

the upper ARB a suitable study region for examining our study objectives.  
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3.3 Material and methods 

3.3.1 Study Area 

The province of Alberta in western Canada covers about 661,000 km² and extends from 

49° N –60° N and 110° W–120° W along its widest extent. Elevation ranges from 152m at Slave 

River in the northeast to 3747 m at Mount Columbia in the Canadian Rocky Mountains along the 

southwest border of the province. Seventeen river basins intersect Alberta, five of which are 

glacierized (the Athabasca, Bow, North Saskatchewan, Peace, and Red Deer watersheds). Six 

hundred sixty-eight glaciers lie at elevations from 2,200-3,500m (approximately within the region 

from 117-120°W and 52-54°N; Pfeffer et al., 2017). Most of Alberta lies leeward of the Rocky 

Mountains, and thus has a semi-arid continental climate with 350 – 500 mm of average annual 

precipitation (Mwale et al., 2009) and a mean annual temperature ranging from 3.6 to 4.4 °C (with 

a winter temperature typically varying between −25.1 and −9.6 °C, and a summer temperature 

between 8.7 and 18.5 °C; Jiang et al., 2015). At higher elevations (above 1500m), annual average 

precipitation can be 600 mm or more (Mwale et al., 2009) due to orographic precipitation and 

average daily temperatures of about -11°C in January, 11°C in July and 0°C at these elevations 

(30-year averages, Environment and Climate Change Canada, 2022).   

There are 258 glaciers in our study area, the Athabasca river basin,. They lie on the eastern 

slope of the CRM.  The Athabasca Glacier (part of the Columbia Icefield) feeds one of the main 

tributaries in the Athabasca River basin (which were used for calibration and validation of the 

glacier model; Kotila et al., in review); there are other tributaries fed by smaller mountain glaciers 

present in the upper Athabasca region which are also affected by the decrease in their extent. 

Negative changes in glacier extent have been reported for other glaciers in the region, including 
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other portions of the Columbia Icefield (Clarke et al., 2013; Intsiful & Ambinakudige, 2020) that 

run off to the North Saskatchewan River basin (Alberta) and the Columbia River basin (British 

Columbia). To meet our study objectives, the glaciers were organized in two ways. Firstly, into 

three size classes after Chinn et al., 2001 (see section 3.4.1.) based on initial area. Then into three 

groups based on initial median elevation (see section 3.4.2.). Figure 1 shows the study area and 

the two classification schemes.  

 

Figure 1. Study area, showing the upper (glacierized) end of the Athabasca river basin in western 

Alberta, Canada. Watershed boundaries and the 258 glaciers are highlighted (glacier boundaries 

are exaggerated to enhance visibility). Figure (a) shows the glaciers organized by size class, with 

small glaciers in yellow, medium glaciers in red, and large glaciers in blue. Figure (b) shows the 

glaciers organized by elevation group, with low elevation glaciers in green, medium glaciers in 

pink, and high glaciers in purple.   

 

3.3.2. Glacier Model 

The model used in this study is a coupled glacier mass balance dynamic evolution model 

(CGME). It is composed of three modules, which calculate daily melt runoff from the glacier 

(using a degree day factor temperature index model, TIM), daily and annual surface mass balance 

(SMB) of the glacier, and annual changes in glacier surface area, depth, and volume in response 
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to the change in mass. The model is driven with daily mean temperature (adjusted for elevation 

using an altitudinal lapse rate and a surface-of-glacier lapse rate) and precipitation (separated into 

rainfall and snowfall using a threshold temperature and adjusted for elevation using a precipitation 

gradient). Geometry changes are calculated annually using a smoothing spline predictor. For each 

module, the model also uses an elevation-band approach. The elevation-band approach delineates 

each glacier into bands of equal mean elevation based on glacier area. The daily melt runoff, SMB, 

and volume-area changes are simulated for each band individually, allowing for a more refined 

model of the entire glacier’s mass flux and geometry changes through time. This is because it 

accounts for changes in temperature due to elevation (Hock, 2003; Ohmura, 2001) and changes in 

precipitation due to orographic lifting (Shea et al., 2015). A detailed description of the CGME can 

be found in Kotila et al. (in review) and Silwal et al. (2022).  

 The model uses 14 input parameters, including the meteorological modeling parameters 

that can vary spatiotemporally (e.g., temperature lapse rate and precipitation gradient), glacier 

characteristics (e.g., albedo of glacier ice, rheology parameter), and TIM parameters (e.g., degree 

day factor for ice, coefficient of ice melt). These input parameters fall within a physically 

meaningful range, described by previous empirical studies for glaciers with similar climate 

regimes (e.g., Gardner & Sharp, 2009; Shea et al., 2009; and Stahl et al., 2008); the optimization 

of the range for each parameter is described in Kotila et al. (in review). To examine the model 

prediction uncertainty for regional-scale studies (i.e., range of possible changes in the glacier 

dynamics across study region), a total of 100 samples from each parameter were created via the 

Latin Hypercube Sampling (LHS) technique (Krause et al., 2005). These 100 parameter sets were 

used to force the CGME model for each GCM and SSP to create projections for each glacier for 

the period 1980-2100. 
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3.3.3 Climate Model Selection 

The climate data used in this study to force the model come from the simulations of the 

General Circulation Models (GCMs) included in the 6th assessment report (AR6) of the IPCC 

through the CMIP6 (Eyring et al., 2016). Four GCMs from CMIP 6 were used in this study: EC-

Earth3 (Döscher et al., 2022), EC-Earth3-veg (Döscher et al., 2022), CNRM‐CM6‐1 (Voldoire et 

al., 2019), and MRI-ESM2.0 (Yukimoto et al., 2019). The climate input data for the model was 

previously downscaled for the province of Alberta using thin-plate spline interpolation and the 

‘ClimDown’ R package (Cannon et al., 2016) after Masud et al. (2021). This is a statistical 

downscaling approach that utilizes multiple techniques (included in the ‘ClimDown’ R package, 

including climate imprint and quantile data mapping) and a high-resolution reference observed 

climate dataset.  It calculates daily climate anomalies for the GCM dataset during the observed 

data set period, interpolates these to the observed dataset grid, calculates a monthly climatology, 

adds this to the climate imprint, and uses this imprint and the observations to perform a quantile 

mapping bias correction. This approach results in more accurate representation of event-scale 

spatial gradients, prevents the downscaled results from drifting away from the GCM’s long-term 

trend, and can generate estimates of extreme events (Masud et al., 2021).  

In this study, we force the CGME with the downscaled outputs for each of our 4 GCMs 

under two extreme scenarios: SSP 126 (low carbon intensity) and SSP 585 (high carbon intensity) 

for the period 1980-2100.  

3.3.4. Data Description 

Aside from the model input parameters, the model simulations also require geospatial and 

time series data. These data include observations of initial glacier geometry (i.e., DEM), initial 

surface area of the glaciers, initial ice thickness, aspect, hill slope, and a time series of climate for 
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the simulation period (i.e., daily maximum, minimum, mean, and difference between maximum 

and minimum temperature; daily precipitation; and daily incoming solar radiation at the glacier 

surface). The initial glacier surface area and aspect are used to initiate Module 2, which calculates 

the daily SMB. Initial ice thickness, slope, and extent (outline) for the glaciers are required as 

inputs for Module 3 to calculate initial volume (for the first year of the simulation); later years use 

the ice volume calculated at the end of the previous simulated year. Initial glacier outlines were 

obtained from the Randolph Glacier Inventory version 6 (RGI Consortium, Pfeffer et al., 2017). 

Glacier hypsometry was derived from a digital elevation model (DEM), with a grid resolution of 

10 m ×10 m, sourced from maps Canada (http://maps.canada.ca/) based on Shuttle Radar 

Topography Mission (SRTM) DEM version 4 (Jarvis et al., 2008). Ice thickness used for model 

initiation in year 1 are from the estimates by Farinotti et al. (2019) who used glacier topography 

from SRTMv4, glacier outlines from RGIv6, and a combination of five ice thickness estimation 

models to provide an ensemble-based estimate for the ice thickness distribution (by inverting for 

local ice thickness using the principles of ice flow dynamics and the glacier’s surface topography). 

Ice thickness data was resampled to 10m to match the DEM resolution. (Table of data sources in 

Appendix Table 2). 

3.4 Results and discussion 

3.4.1 Analysis by glacier size 

Glaciers were categorized into three size classes (“small”, “medium”, and “large”), using 

their initial area extents from the RGI v6 (Pfeffer et al., 2017) and using the classification scheme 

developed by Chinn et al. (2001) for mountain glaciers, used by other mountain glacier inventories 

(e.g. Baumann et al., 2020). Using this categorization, small glaciers are those with an initial area 

http://maps.canada.ca/
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of 0.01- <0.32 km2, medium glaciers are 0.32-2.56 km2, and large glaciers are >2.56 km2. In our 

study area 120 (46.51%) glaciers fell into the small category, 116 (44.96%) medium, and 22 

(8.53%) large. Small glaciers had an initial area of 17.46 km2 (which made up 5.78% of initial  

 

 

Figure 2. Multimodel ensemble projections of cumulative annual melt runoff for 1980-2100 for 

glaciers grouped by size. The coloured bands indicate the 95 percent prediction uncertainty 

(95PPU) resulting from CGME simulation under each of the GCM forcing. The single signals 

within each band represent median of CGME predictions (M95PPU). Figures (a), (c), and (e) show 

melt runoff under the SSP126 climate scenario, while figures (b), (d), and (f) show melt runoff 

under the SSP585 climate scenario.  
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glacier area coverage), medium glaciers covered 108.10 km2 (35.81%), and large glaciers 176.32 

km2 (58.41%). 

Daily melt runoff was accumulated to yearly melt runoff for each group of glaciers for each 

GCM and ninety-five percent prediction uncertainty (95PPU) performed on the 100 simulations 

for the period 1980-2100. Results reported in Table 1 are based on the median of the uncertainty 

range (M95PPU); annual cumulative average (ACA) is the yearly cumulative melt runoff averaged 

for the four GCMs. Table 1 presents ACA, summed for the whole period and for each sub-period 

(“historical”, “near-future”, and “far-future”). %ACA for the whole period (row 3) is calculated 

per sub-period; it is the percent of the ACA discharged each sub-period relative to the total ACA 

discharged over the whole period (per size class per SSP). %ACA relative to normal (row 7) is 

calculated per sub-period; it is the percent of ACA discharged in the near-future or far-future 

relative to the total ACA discharged during the historical period.  The historical period is simulated 

M95PPU for the period 1980-2019; near-future is 2020-2059; and far-future is 2060-2100. The 

small size class had the smallest initial glacier area (5.78% of total initial glacier area); the medium 

class had in between (35.8%); and the large class had the largest (58.41%).  

The multimodel ensemble projections of cumulative melt runoff indicate that glaciers in 

all size classes are expected to produce the greatest amount of melt runoff during the historical 

period (1980-2019), under both climate scenarios. Table 1 details the behaviour of each size class 

during each section of the simulation period, using the median of the uncertainty prediction 

(M95PPU) averaged across the four GCMs. Figure 3 indicates the monthly distribution and 

variability of cumulative melt runoff for each size class across the simulation periods under both 

SSPs. The largest amount of melt runoff is again expected during the historical period and runoff 

being greatly reduced in the far-future (2060-2100) period in both climate scenarios. It also shows  
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Table 1. Results of cumulative melt runoff predictions from four GCMs under two SSPs for 

glaciers grouped by size. Results reported below are for the median of the uncertainty range 

(M95PPU); annual cumulative average (ACA) is the yearly cumulative melt runoff averaged for 

the four GCMs and for the number of years in the sub-period.  

    SSP126 SSP585   

  Units Small Medium Large Small Medium Large 
Time 

period 

Annual 

cumulative 

average (ACA), 

summed for 

whole period 

m3 sec-1 94 716.6 10703.6 89.9 778.9 10313.6 

Whole 

period 

(1980-

2100) 

ACA, summed 

for sub-period 
m3 sec-1 

66.2 577.5 8286.9 65.8 635 8271.1 Historical 

20.3 120.5 2064.8 20.4 134.9 1892.2 Near-future 

7.3 18.5 348.6 3.7 8.9 150.3 Far-future 

%ACA summed 

for whole period 
% 

70.5 80.6 77.4 73.2 81.5 80.2 Historical 

21.7 16.8 19.3 22.7 17.3 18.3 Near-future 

7.8 2.6 3.3 4.1 1.2 1.5 Far-future 

Summed ACA 

normalized by 

size class initial 

area 

m3 sec-1 

per km2 

3.8 5.3 47 3.8 5.9 46.9 Historical 

1.2 1.1 11.7 1.2 1.2 10.7 Near-future 

0.4 0.2 2 0.2 0.1 0.9 Far-future 

ACA 
m3 sec-1 

yr-1 

1.69 14.8 212.5 1.7 16.3 212.1 Historical 

0.52 3.1 52.9 0.5 3.5 48.5 Near-future 

0.19 0.5 8.9 0.1 0.2 3.9 Far-future 

ACA normalized 

by area 

m3 sec-1 

yr-1 per 

km2 

0.097 0.137 1.205 0.097 0.151 1.203 Historical 

0.029 0.029 0.3 0.03 0.032 0.275 Near-future 

0.011 0.004 0.051 0.005 0.002 0.022 Far-future 

%ACA relative 

to historical 
% 

100 100 100 100 100 100 Historical 

30.74 20.86 24.92 31.01 21.24 22.88 Near-future 

11.12 3.2 4.21 5.58 1.41 1.82 Far-future 

the predicted evolution of monthly flows, with shoulder-season melt runoff (Apr-May, Sep-Oct) 

being substantially reduced or non-existent in the far-future period, especially under SSP585. It is 

to be noted that in this study a glaciological year is (accumulation and ablation periods) is not 

temporally defined, but daily simulations for each day in the period are performed. Thus, daily net 

accumulation or ablation (if any) is calculated, allowing for analysis of possible temporal trends. 

Details referred to in the following paragraphs can also be found in Table 1 (recall that these results 
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are the M95PPU averaged across the four GCMs and indicate the median of the predicted range 

of cumulative melt runoff). Overall, small glaciers are predicted to discharge the least  

 

Figure 3. Historical (1980-2020) and multimodel ensemble projections of cumulative monthly 

runoff for near future (2020-2060) and far future (2060-2100) periods. The width of the box plot 

for historical periods is based on simulated runoff values for each month during 1980-2019. The 

width of the box plot for future periods is based on the monthly values for all years simulated from 

all GCMs in each period. In these figures only M95PPU were used, therefore the widths are not 

representing the CGME model parameter uncertainty. 

melt runoff (94.0 m3 sec-1 and 89.9 m3 sec-1 under SSP126 and SSP585, respectively) over the 

full period (1980-2100), which is to be expected as they have the smallest initial area and volume. 

Of this total, small glaciers are predicted to discharge 71.9% during the historical period, 21.7% 
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during the near-future (under scenario SSP126; 22.7% under SSP 585), and 7.8% during the far-

future (under SSP126; 4.1% under SSP 585). This indicates that a large portion of the glaciers’ 

potential for melt runoff is discharged during the historical (1980-2019) period; relative to the 

discharge of the historical period, in the near-future they are predicted to discharge 30.86%  of the 

melt runoff discharged during the historical period and in the far-future the prediction is 8.35% 

relative to historical. This is also indicated by the ACA normalized by initial glacier area for each 

period (shown in Table 1): 0.097 m3 sec-1 yr-1 per km2 during the historical; 0.029  m3 sec-1 yr-1 

per km2 during the near-future 126 (and 0.030 for SSP585); and 0.011  m3 sec-1 yr-1 per km2 SSP 

126 (0.005 SSP585) during the far-future. We expected quick meltdown of the small-sized 

glaciers, due to both their initial geometry, location, and the degree-day factor melt model 

approach (Huss et al., 2014). However, results may indicate that small glaciers will have the most 

gradual meltdown/discharge of melt runoff, with the lowest percentages of melt runoff throughout 

the period compared to the other glacier classes. Looking at the ACA normalized by area (Table 

1), we see it is lower relative to the other, larger glaciers. This may be a function of the 

heterogeneity of small glaciers in the region, whose aspect, elevation, or proximity to larger 

glaciers may affect their microclimate and melt regimes. Another contributing factor may be GCM 

choice coupled with using M95PPU for analysis of the results. CNRM consistently predicts higher 

melt runoff (especially in the historical period) and greater 95PPU range (under both SSPs) than 

the other three GCMs, which produce relatively similar results. This notably affected the average 

M95PPU of all four GCMS (under both SSPs) and may have affected the predicted melt runoff, 

especially in the near-future and early far-future sub-periods, indicating a more sustained melt 

runoff regime than would have been indicated otherwise.    
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The general results are similar for the medium class glaciers (Table 1). They are predicted 

to discharge 716.6 m3 sec-1 and 778.9 m3 sec-1 of melt runoff under SSP126 and SSP585, 

respectively, over the full period (1980-2100). Of this total, medium class glaciers are predicted to 

discharge 81.1% during the historical period, 16.8% during the near-future, and 2.6% during the 

far-future (under scenario SSP126); it is predicted to be 17.3% and 1.2% respectively under SSP 

585. Again, this indicates that the majority of the glaciers’ potential for melt runoff will be 

discharged during the historical (1980-2019) period; in the near-future they are predicted to 

discharge 20.86% (SSP126; 21.24% for SSP585) of the melt runoff discharged during the 

historical period, and in the far-future the prediction is 3.20% for SSP126 (1.41% for SSP585) 

relative to historical. The ACA normalized by initial glacier area for each period reinforces this 

trend: during the historical (0.144 m3 sec-1 yr-1 per km2), 0.029 m3 sec-1 yr-1 per km2 under SSP 

126 (0.032 under SSP585) during the near-future; and 0.004  m3 sec-1 yr-1 per km2 SSP 126 (0.002 

SSP585) during the far-future. 

Large glaciers exhibit similar behaviour (Figure 1, Table 1). The simulated M95PPU 

values indicate discharge of 10,703.6 m3 sec-1 and 10,313.6 m3 sec-1 of melt runoff under SSP126 

and SSP585, respectively, over the full period (1980-2100). Of this total, large glaciers are 

predicted to discharge 78.8% during the historical period, 19.3% (SSP126; 18.3% for SSP585) 

during the near-future, and 3.3% (SSP126; 1.5% for SSP585) during the far-future. While again 

reflecting the majority of the glaciers’ potential for melt runoff will be discharged during the 

historical (1980-2019) period, it also exhibits the expected resiliency of large glaciers due to their 

size; their loss rates are slightly lower and they are predicted to persist for slightly longer than 

smaller glaciers in the same basin. This is reinforced by the relative-to-historical period melt 

runoff; in the near-future they are predicted to discharge 23.90% relative to the melt runoff 
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discharged during the historical period, and in the far-future the projection is 4.21% for SSP126 

(1.82% for SSP585) relative to the historical period. This higher-for-longer time melt runoff is 

highlighted by the ACA normalized values based on initial glacier area for each period: 1.204 m3 

sec-1 yr-1 per km2 during the historical period, 0.300 m3 sec-1 yr-1 per km2 under SSP 126 (0.275 

under SSP585) during the near-future period, and 0.051 m3 sec-1 yr-1 per km2 SSP under 126 (0.022 

under SSP585) during the far-future period. This reflects the expected behaviour of large glaciers, 

whose large volume and mass allow for a more gradual and sustained change in predicted melt 

runoff (seen in observations of the region, Intsiful & Ambinakudige, 2020; and reflected in 

modeled mountain glaciers, e.g. Rounce et al., 2020).  However, their melt regimes throughout the 

period but especially in the historical are similar to the other glacier size classes, with the highest 

amount of melt in the historical period. This was expected based on observed glacier retreat and 

melt runoff in the region (Bolch et al., 2010; Bawden et al., 2014) and modeled projections or melt 

runoff trends (Clarke et al., 2015; Chernos et al., 2020).  

Comparing results between SSP126 and SSP585, both the percent of ACA for each sub-

period relative to the ACA for the whole period and the normalized-by-area ACA for each sub-

period are generally similar (for all size classes) in the historical period and the near-future period 

under both scenarios. For instance, it is 70.5% under SSP126 (73.2% under SSP585) for small 

glaciers, 80.6% under SSP126 (81.5% under SSP585) for medium glaciers, and 77.4% under 

SSP126 (80.2% under SSP585) for large glaciers during the historical period. During the near-

future, it is 21.7% under SSP126 (22.7% under SSP585) for small glaciers, 16.7% under SSP126 

(17.3% under SSP 585) for medium glaciers, and 19.3% under SSP126 (18.3% under SSP585) for 

large glaciers. However, in the far-future period there is a relatively greater difference between 

SSPs. For instance, it is 7.8% under SSP126 (4.1% under SS585) for small glaciers, 2.6% under 
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SSP126 (1.2% under SSP585) for medium glaciers, and 5.0% under SSP126 (2.6% under SSP585) 

for large glaciers. This is also evident looking at the normalized ACA; while similar in the 

historical and near-future sub-periods, in the far-future it is relatively different between the SSPs 

for all glacier sizes. It is 0.011 under SSP126 (0.005 under SSP585) for small glaciers, 0.004 under 

SSP126 (0.002 under SSP585) for medium glaciers, and 0.051 under SSP126 (0.022 under 

SSP585) for large glaciers (all values in m3 sec-1 yr-1 per km2). Both metrics indicate that, while 

the values of melt runoff in the far future are miniscule compared to those predicted in the historical 

and near-future periods, the difference between climate scenarios is striking. While both SSPs 

predict similar behaviour and amounts during 1980-2059, in the far-future (2060-2099) SSP585 

consistently predicts melt runoff half that predicted by SSP126. This may indicate a sooner 

meltdown of glaciers with less far-future discharge under a SSP585-like climate scenario. Another 

factor may be downscaling techniques of the GCM ensemble and potential shifts in precipitation 

regime noted in this downscaled data. Khalili et al. (2021) found that in southwest Alberta 

projected precipitation anomalies under SSP585 project a decrease in precipitation in the 

mountainous regions compared to historical periods.  

 This is reinforced by looking at the predicted volume and area change. Recall that the 

model uses the annual mass balance to adjust glacier geometry, which is then the input to the 

subsequent simulated year. Figure 4 and Figure 5 show the area and volume change over time for 

each size class, under the SSP126 and SSP585 climate scenarios, respectively.  
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Figure 4. Multimodel ensemble projections of annual change in area and volume for 1980-2100 

for glaciers grouped by size under SSP126. The coloured bands indicate the 95 percent prediction 

uncertainty (95PPU) resulting from CGME simulation under each of the GCM forcing. The single 

signals within each band represent median of CGME predictions (M95PPU). Panels (a), (c), and 

(e) show change in area, while panels (b), (d), and (f) show change in volume.  
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Figure 5. Multimodel ensemble projections of annual change in area and volume for 1980-2100 

for glaciers grouped by size under SSP585. The coloured bands indicate the 95 percent prediction 

uncertainty (95PPU) resulting from CGME simulation under each of the GCM forcing. The single 

signals within each band represent median of CGME predictions (M95PPU). Panels (a), (c), and 

(e) show change in area, while panels (b), (d), and (f) show change in volume. 

As was indicated by the melt runoff, all glacier size classes are predicted to decrease in both area 

and size rapidly during the historical (1980-2019) period under both SSP126 and SSP585. For 

small glaciers, 74.4% of the decrease of surface area occurs during the historical period, 18.4% 

during the near-future, and 4.1% during the far-future under SSP126 (21.1% and 5.4% respectively 

under SSP585.) Similar behaviours are indicated for the medium and large size classes of glaciers 

for their area and volume as reported in Table 2 below. 



87 

 

Table 2.  Results of area and volume change predictions from four GCMs under two SSPs for 

glaciers grouped by size. Results reported below are based on M95PPU. Change in area (volume) 

is the difference in area (volume) over the period averaged for the four GCMs. Rate of change is 

the difference in area (volume) per number of years in the sub-period. Percent change of area 

(volume) indicate the percentage of change of that sub-period compared to change over the whole 

period. The historical period is simulated M95PPU for the 1980-2019, near-future is 2020-2059, 

and far-future is 2060-2100.  

    SSP126 SSP126   

  Unit Small Medium Large Small Medium Large Time period 

Change of 

surcae area 
km2 

-0.125 -0.869 -7.699 -0.131 -0.875 -7.742 Whole period 

-0.096 -0.685 -5.83 -0.094 -0.679 -5.797 Historical 

-0.023 -0.157 -1.559 -0.028 -0.171 -1.678 Near-future 

-0.005 -0.017 -0.205 -0.007 -0.015 -0.171 Far-future 

Rate of change 

of surface area 
km2 yr-1 

-0.001 -0.0073 -0.0642 
-

0.0011 
-0.0073 -0.0645 Whole period 

-

0.0024 
-0.0171 -0.1458 

-

0.0024 
-0.0169 -0.1449 Historical 

-

0.0006 
-0.0039 -0.0389 

-

0.0007 
-0.0043 -0.0419 Near-future 

-

0.0001 
-0.0004 -0.0051 

-

0.0002 
-0.0004 -0.0043 Far-future 

Percent 

change in area 

relative to 

whole period 

% 

76.5 78.8 75.7 72.3 77.6 74.9 Historical 

18.4 18 20.2 21.1 19.6 21.7 Near-future 

4.1 1.9 2.7 5.4 1.7 2.2 Far-future 

Percent 

change in area 

relative to 

historical 

period 

% 

100 100 100 100 100 100 Historical 

24.1 22.8 26.7 29.2 25.2 29 Near-future 

5.45 2.5 3.5 7.4 2.1 2.9 Far-future 

Change of 

volume 
km3 

-

0.0025 
-0.0346 -0.6658 

-

0.0026 
-0.0347 -0.6678 Whole period 

-0.002 -0.0281 -0.5402 
-

0.0019 
-0.0279 -0.5376 Historical 

-

0.0004 
-0.0055 -0.1064 

-

0.0005 
-0.0061 -0.1143 Near-future 

-

0.0001 
-0.0005 -0.0116 -0.001 -0.0005 -0.0092 Far-future 

Rate of change 

of volume 

km3 yr-1 

-2.1 e-

05 
-0.0003 -0.0056 

-2.2 e-

05 
-0.0003 -0.0056 Whole period 

-4.9 e-

05 
-0.0007 -0.0135 

-4.8 e-

05 
-0.0007 -0.0134 Historical 

-1.1 e-

05 
-0.0001 -0.0027 

-1.3 e-

05 
-0.0002 -0.0029 Near-future 

-2.4 e-

06 

-1.3 e-

05 
-0.0003 

-3.2 e-

06 

-1.1 e-

05 
-0.0002 Far-future 

Percent 

change in 

volume 

relative to 

whole period 

% 

77.8 81.3 81.3 73.8 80.2 80.5 Historical 

17.5 16 15.9 20.1 17.4 17.1 Near-future 

3.9 1.6 1.7 4.9 1.3 1.4 Far-future 
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Percent 

change in 

volume 

relative to 

historical 

period 

% 

100 100 100 100 100 100 Historical 

22.4 19.7 19.7 27.2 21.7 21.3 Near-future 

4.9 1.9 2.1 6.7 1.6 1.7 Far-future 

Comparing glacier behaviour between SSP126 and SSP585, the most notable difference is 

in the rate of change in both area and volume during the near-future period. For glaciers in all three 

sizes classes, the rate of change in area and volume during the near-future period under SSP585 is 

increased compared to that under SSP126. There is a corresponding slight increase in the change 

in area/volume and percent change in area/volume during this period. While this may be expected 

for this climate scenario, this phenomenon may also indicate the slightly increased uncertainty 

under SSP585 as Table 2 is calculated using the M95PPU averaged from the four GCMS and 

indicated in Figures 4 and 5. As noted earlier, CNRM consistently predicts the highest Upper 

95PPU for this study area using this model.   

3.4.2 Analysis by glacier elevation 

Glaciers were also categorized into three elevation classes (“low”, “medium”, and “high”), 

using their initial median elevation from Farinotti et al. (2019). Using this categorization, low 

elevation glaciers are those with an initial median elevation of 1933-2407 m.a.s.l., medium 2408-

2880 m.a.s.l., and high 2881-3356 m.a.s.l. In our study area 53 (20.54%) glaciers fell into the low 

category, 167 (64.73%) medium, and 38 (14.73%) high. In terms of initial area coverage, low 

glaciers had an initial area of 28.03 km2 (which made up 9.29% of initial glacier area coverage), 

medium glaciers covered 200.53 km2 (66.43%), and high glaciers 73.32 km2 (24.28%). Initial 

volumes were 0.99 km3 for the low glaciers, 12.74 km3 for the medium glaciers, and 6.05 km3 for 

the high glaciers.  
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Figure 6. Multimodel ensemble projections of cumulative annual melt runoff for 1980-2100 for 

glaciers grouped by elevation. The coloured bands indicate the 95 percent prediction uncertainty 

(95PPU) resulting from CGME simulation under each of the GCM forcing. The single signals 

within each band represent median of CGME predictions (M95PPU). Figures (a), (c), and (e) show 

melt runoff under the SSP126 climate scenario, while figures (b), (d), and (f) show melt runoff 

under the SSP585 climate scenario.  
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Table 3. Results of cumulative melt runoff predictions from 4 GCMs under 2 SSPs for glaciers 

grouped by elevation. Results reported below are for the median of the uncertainty range 

(M95PPU); annual cumulative average (ACA) is the yearly cumulative melt runoff averaged for 

the 4 GCMs and for the number of years in the sub-period. The historical period is simulated 

M95PPU for the period 1980-2019; near-future is 2020-2059; and far-future is 2060-2100. The 

low elevation group had the smallest initial glacier area (9.29%); the medium group had the highest 

(66.43%); and the high group had in between (24.28%).  

    SSP126 SSP585   

  Units low medium high low medium high Time period 

Annual cumulative 

average (ACA), 

summed for whole 

period 

m3 sec-1 236.4 1276.2 2815.5 234.5 1262 2744.8 

Whole 

period 

(1980-2100) 

ACA, summed for 

sub-period 
m3 sec-1 

225.2 1040 2061.5 224.3 1036.2 2057.2 Historical 

9.4 212.7 612.2 9.4 213.8 615.9 Near-future 

1.8 23.3 141.8 0.8 12 71.6 Far-future 

%ACA summed for 

whole period 
% 

95.3 81.5 73.2 95.6 82.1 74.9 Historical 

3.9 16.7 21.8 4 16.9 22.5 Near-future 

0.8 1.8 5 0.4 1 2.6 Far-future 

summed ACA 

normalized by size 

class initial area 

m3 sec-1 

per km2 

8 5.2 28.1 5.8 5.2 28.1 Historical 

0.3 1.1 8.3 0.2 1.1 8.4 Near-future 

0.1 0.1 1.9 0.02 0.06 1 Far-future 

ACA 
m3 sec-1 

yr-1 

5.78 26.67 52.86 5.75 26.6 52.7 Historical 

0.24 5.45 16.7 0.24 5.5 15.8 Near-future 

0.05 0.6 3.64 0.05 0.3 1.8 Far-future 

ACA normalized 

by area 

m3 sec-1 

yr-1 per 

km2 

0.206 0.133 0.721 0.205 0.132 0.719 Historical 

0.009 0.027 0.214 0.009 0.027 0.215 Near-future 

0.002 0.003 0.05 0.001 0.002 0.025 Far-future 

%ACA relative to 

historical 
% 

100 100 100 100 100 100 Historical 

4.17 20.45 29.7 4.19 20.6 29.94 Near-future 

0.79 2.24 6.88 0.36 1.16 3.48 Far-future 

As before, daily melt runoff was accumulated to yearly melt runoff for each group of 

glaciers for each GCM and ninety-five percent prediction uncertainty (95PPU) was performed on 

the 100 simulations for the period 1980-2100. Results shown in Figure 6, reported in Table 3, and 

presented in the following paragraphs are based on the median of the uncertainty range (M95PPU). 
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The low elevation group had the smallest initial glacier area (9.29%), the medium group had the 

highest (66.43%), and the high group was in between (24.28%).  

Low elevation glaciers are predicted to discharge the least melt runoff (236.4 m3 sec-1 and 

234.5 m3 sec-1 under SSP126 and SSP585, respectively) over the full period (1980-2100), which 

is to be expected as they have the smallest initial area and volume. Of this total, low elevation 

glaciers are predicted to discharge 95.5% during the historical period, 3.9% (SSP126; 4.0% for 

SSP 585) during the near-future, and 0.6% (SSP126; 0.4% for SSP585) during the far-future. This 

indicates that the majority of the glaciers’ potential for melt runoff will be discharged during the 

historical (1980-2019) period; relative to the discharge of the historical period, in the near-future 

they are predicted to discharge 4.17% (SSP126, 4.19% for SSP585) of the melt runoff discharged 

during the historical period and in the far-future the prediction is 0.79% for SSP126 (0.36% for 

SSP585) relative to historical. This is also indicated by the ACA normalized by initial glacier area 

for each period: 0.206 m3 sec-1 yr-1 per km2 SSP during the historical; 0.009  m3 sec-1 yr-1 per km2 

under SSP126 (also 0.009 m3 sec-1 yr-1 per km2  under SSP585) during the near-future; and 0.002  

m3 sec-1 yr-1 per km2 under SSP126 (0.001 m3 sec-1 yr-1 per km2  under SSP585) during the far-

future.  

The results are similar for the medium elevation glaciers, which covered the most initial 

area and volume. They are predicted to discharge 1276.2 m3 sec-1 and 1262.0 m3 sec-1 of melt 

runoff under SSP126 and SSP585, respectively, over the full period (1980-2100). Note that results 

are reported using M95PPU, so while SSP585 appears to predict lower discharge, this value 

indicates the increased uncertainty range under this climate scenario. Potential decreases in 

precipitation at higher elevations under SSP585 (Khalili et al., 2021, see section 3.4.1.) may also 

contribute to melt runoff for medium and high elevation glaciers as indicated in Table 2. Of this 
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total, medium elevation glaciers are predicted to discharge 81.8% during the historical period, 

16.7% during the near-future, and 1.8% during the far-future (under scenario SSP126); it is 

predicted to be 16.9% and 1.0% respectively under SSP585. Again, this indicates that the majority 

of the glaciers’ potential for melt runoff was discharged during the historical (1980-2019) period; 

in the near-future, 20.45% under SSP126 and 20.6% under SSP585 of the melt runoff discharged 

during the historical period; and in the far-future the prediction is 2.24% for SSP126 (1.16% for 

SSP585) The ACA normalized by initial glacier area for each period reinforces this trend: 0.132 

m3 sec-1 yr-1 per km2 during the historical, 0.027  m3 sec-1 yr-1 per km2 for SSP126 (also 0.027 m3 

sec-1 yr-1 per km2 for SSP585) during the near-future, and 0.003  m3 sec-1 yr-1 per km2 for SSP 126 

(0.002 m3 sec-1 yr-1 per km2 for SSP585) during the far-future. 

While the high elevation glaciers exhibit similar trends, the results are slightly different. 

Despite having the medium amount of initial glacier area and volume, their total ACA for both the 

whole period and during each sub-period is the highest of the three elevation groups. They are 

predicted to discharge 2815.5 m3 sec-1 and 2744.8 m3 sec-1 of melt runoff under SSP126 and 

SSP585, respectively, over the full period (1980-2100). Of this total, high elevation glaciers are 

predicted to discharge 74.1% during the historical period, 21.8% during the near-future, and 5.0% 

during the far-future (under scenario SSP126); it is predicted to be 74.9%, 22.5%, and 2.6% 

respectively under SSP585. While again reflecting the majority of the glaciers’ potential for melt 

runoff will be discharged during the historical (1980-2019) period, it also exhibits the expected 

resiliency of high elevation glaciers due to their microclimate; their loss rates are slightly lower 

and they are predicted to persist for slightly longer than similar glaciers at lower elevations in the 

same basin. This is reinforced by the relative-to-historical period melt runoff; in the near-future 

they are predicted to discharge 29.70% (SSP126; 29.94% for SSP585) of the melt runoff 
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discharged during the historical period, and in the far-future the prediction is 6.08% for SSP126 

(3.48% for SSP585) relative to historical. This higher-for-longer melt runoff is also shown by the 

ACA normalized by initial glacier area for each period: 0.720 m3 sec-1 yr-1 per during the historical; 

0.214  m3 sec-1 yr-1 per km2 SSP 126 (also 0.215  m3 sec-1 yr-1 per km2 for SSP585) during the 

near-future; and 0.050  m3 sec-1 yr-1 per km2 SSP 126 (0.025 m3 sec-1 yr-1 per km2 for SSP585) 

during the far-future. While the trends are reflective of the location and expected behaviour of high 

elevation glaciers, the high values may be due to using M95PPU for analysis of the results. The 

high elevation glaciers exhibit the highest 95PPU band (Upper 95PPU – Lower 95PPU) of the 

three groups throughout the whole period, but especially in the far-future (in both SSPs). Thus, 

these results may indicate increased uncertainty, especially in the far future, in the melt runoff 

regimes of high elevation glaciers. This may also be a remnant of GCM choice and forcing. Of the 

4 GCMs used, CNRM consistently predicts higher melt runoff (especially in the historical period) 

and greater 95PPU range (under both SSPs) than the other 3 GCMs, which produce relatively 

similar results. This was especially evident for the high elevation glaciers, where the higher range, 

and higher M95PPU, notably affected the average M95PPU of all 4 GCMS (under both SSPs). 

This may reflect on the suitability of CNRM for projections in this region, especially at high 

elevations.   

Comparing results between SSP126 and SSP585, both the percent of ACA for each sub-

period relative to the ACA for the whole period and the normalized-by-area ACA for each sub-

period are markedly similar (for all elevation groups) in the historical period and the near-future 

period under both scenarios. For instance, it is 95.5% for low elevation glaciers; 81.8% for medium 

elevation glaciers; and 74.0% for high elevation glaciers during the historical period. During the 

near-future, it is 3.9% SSP126/4.0% SSP585 for low elevation glaciers; 16.7% SSP126/16.9% 



94 

 

SSP585 for medium elevation glaciers; and 21.8% SSP126/22.50% SSP585 for high elevation 

glaciers. However, in the far-future period there is a greater difference between SSPs. For instance, 

it is 0.8% SSP126/0.4% SSP585 for low elevation glaciers; 1.8% SSP126/1.0% SSP585 for 

medium elevation glaciers; and 5.0% SSP126/2.6% SSP585 for high elevation glaciers. This is 

also evident looking at the normalized ACA for the far-future: it is 0.002 SSP126/0.001 SSP585 

for low elevation glaciers; 0.003 SSP126/0.002 SSP585 for medium elevation glaciers; and 0.050 

SSP126/0.025 SSP585 for high elevation glaciers (all values in m3 sec-1 yr-1 per km2). Both metrics 

indicate that, while the values of melt runoff in the far future are miniscule compared to those 

predicted in the historical and near-future periods, the difference between climate scenarios is 

striking. While both SSPs predict similar behaviour and amounts during 1980-2059, in the far-

future (2060-2100) SSP585 consistently predicts melt runoff half that predicted by SSP126. It is 

expected that by the far-future, glacier volume has decreased substantially, leaving less ice 

available to melt. This has implications for future water resources in the region and reinforces the 

need for adaptation and mitigation strategies to be implemented in the coming decades.   
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Figure 7. Historical (1980-2019) and multimodel ensemble projections of cumulative monthly 

runoff for the near future (2020-2059) and far future (2060-2100) periods. The width of the box 

plot for historical periods is based on simulated runoff values for each month during 1980-2019. 

The width of the box plot for future periods is based on the monthly values for all years simulated 

from all GCMs in each period. In these figures only M95PPU were used, therefore the widths are 

not representing the model parameter uncertainty. 

 

The multimodel ensemble projections of cumulative melt runoff indicate that glaciers in 

all elevation groups are expected to produce the greatest amount of melt runoff during the historical 

period (1980-2019) under both climate scenarios. Figure 7 indicates the monthly distribution and 

variability of cumulative melt runoff for each elevation group across the simulation periods under 
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both SSPs. The largest amount of melt runoff is again expected during the historical period and 

runoff being greatly reduced in the far-future (2060-2100) period in both climate scenarios. Low 

elevation glaciers are predicted to have the majority of their melt during this period. It also shows 

the predicted evolution of monthly flows, with shoulder-season melt runoff (Apr-May, Sep-Oct) 

being substantially reduced or non-existent in the far-future period for all glaciers, especially under 

SSP585. For low elevation glaciers, shoulder-season flows are predicted to disappear after the 

historical period, with low Jun-Jul-Aug melt runoff in the near-future and indiscernible runoff in 

the far-future. Medium elevation glaciers are predicted to have indiscernible runoff in the far-

future under SSP585, while low melt runoff is indicated to persist under SSP126.  

3.5 Conclusions and future directions 

In this study, we assess future changes in glacier melt runoff, ice area, and ice volume in 

mountain glaciers using a coupled glacier mass balance dynamic evolution model (CGME) and a 

range of input parameters. The potential range of changes for the period 1980-2100 in 258 glaciers 

in the Canadian Rocky Mountains were simulated by forcing the CGME using four GCMs from 

CMIP6, two climate scenarios (SSP126 and SSP585), and 100 parameter sets sampled from the 

maximum physically meaningful range for each parameter. Doing so allowed us to characterize 

the spectrum of possible glacier responses to future climate and assess the range of uncertainty 

associated with model output uncertainty due to parameterization. We also assess glacier 

behaviour based on glacier size and glacier elevation.  

The simulations predict dramatic, rapid retreat for all glaciers regardless of the climate 

scenario. Assessing glacier change by size, all glaciers are predicted to behave similarly across the 

size classes and SSPs; using ninety-five percent prediction uncertainty (95PPU) and multimodel 

median averages it was determined that glaciers are predicted to decrease in volume 75-80%, 
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decrease in area 72-78%, and discharge 70-80% of their potential melt runoff in the first forty 

years of the simulation period (1980-2019, the historical period). Monthly predicted flow regimes 

not only indicate greatly reduced melt runoff as the century progresses, but also the loss of late 

spring and early fall melt runoff, predicting low flows during Jun-Jul-Aug by 2060-2100 (the far-

future period). Assessing potential changes by glacier initial elevation indicated similar trends, 

though low elevation glaciers are predicted to be especially responsive, discharging ~95% of their 

melt runoff during the historical period. Monthly melt runoff reflects similar trends to those found 

during size analysis, though low elevation glaciers have the most extreme response, reducing their 

melt runoff to Jun-July-Aug during the near-future period (2020-2059) and discharging their melt 

runoff by the end of the near-future. These assessments quantitatively show that recent and 

imminent glacier retreat will have impacts on the glacio-hydrological regime.  

By performing simulations with both an ensemble of CMIP6 GCMs and a range of 

parameterizations, we are able to characterize the uncertainty due to parameterization while 

assessing potential changes. Looking at predicted changes both as a result of glacier size and also 

glacier elevation allows us to characterize more potential glacio-hydrological regimes while 

constraining model uncertainty using 95PPU. While the results presented here refer to one specific 

catchment and the relative relevance of the individual components of uncertainty might vary for 

different climatological settings, the methodologies presented here related to ranges of parameters 

and characterizing uncertainty using 95PPU are applicable to a wide range of different glacier 

types and scenarios of future climate change. This approach could also be used to generate 

predictions of simulated melt runoff to be coupled with other hydrological models to explore the 

potential range of impacts of glacier melt runoff to a watershed. Future work will focus on 

translating the range of predictions into projections across several glacierized catchments.  
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CHAPTER IV – CONCLUSION 

 

 4.1 Research Summary 

 The primary goals of this study are to validate and optimize a parameterization for a 

coupled glacier mass balance dynamic evolution model (CGME) using a range of values for each 

parameter and then to apply this parameterization to projections of glacier response under various 

future climate scenarios. The study area is the Athabasca River Basin, which is selected as it is 

glacierized with a highly heterogeneous variety of glaciers including a portion of the Columbia 

Icefield, which has been consistently monitored and had data available which is used for 

calibration and validation. This catchment is also a key source of water for both natural ecosystems 

and downstream human consumption. To meet the first study objective, we select a maximum 

meaningful range for each parameter used by the CGME, calibrate, validate, and perform 

sensitivity analyses to create an optimized range for each parameter. We assess model 

performance, and compare two melt model frameworks within the CGME and develop and 

optimize parameter ranges for both versions of the model. Selecting the model framework that was 

performing better with the input data available to us, we proceed to apply the parametrization at 

the regional scale, assessing its performance during the historical period 1984-2007.  

 For each of the 258 glaciers we perform 100 simulations using the optimum parameter 

ranges that were obtained through calibration iterations for the Athabasca glacier. The simulations 

are based on 100 sets of new sampled parameters from the optimum range using the Latin 

Hypercube Sampling approach (Mckay et al., 1979). This approach quantifies model output 

uncertainty using the 95 Percent Prediction Uncertainty (95PPU). 95PPU predicts an uncertainty 
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band calculated at the 2.5% and 97.5% levels of the cumulative distribution of model output in 

response to parameter uncertainty (Abbaspour et al., 2007), instead of a single modelled value 

response to a single parameter. The predicted uncertainty range, which is calculated as the 

difference between L95PPU (mm) and U95PPU (mm) for each glacier (∆95PPU (mm)), varies 

from 0.04 mm to ~ 134 mm across glaciers. In these glaciers different sets of input parameter 

values in the model result in different runoff accumulations, with the largest differences being up 

to 134 mm above their predicted L95PPU (mm). The results indicate that the largest values of 

∆95PPU are observed only in large glaciers which count for < 3% of the total number of glaciers 

in the region. To mask the effect of error propagation issues in the interpretation of our results, we 

normalize the predicted uncertainty ranges. The normalized uncertainty prediction (Rn) varies 

from 0.37 to 1 across glaciers (cf. Fig. 6d), which show ~ 63% of the glaciers in the region have 

an Rn value of greater than 0.5. This indicates that in more than 63% of the glaciers in the region, 

the input parameters for melt-mass balance-evolution modeling (such the one developed in this 

study) cannot be accurately driven from empirical measurements from other adjacent glaciers. By 

using a range of parameter values, calibrated from the maximum physically meaningful range for 

each parameter from an adjacent glacier (e.g., Athabasca glacier in this study), we demonstrate 

different levels of uncertainty arising from the parameter transferability in each glacier. 

 Using this parameterization approach, we then assess glacier responses to future climate 

scenarios. We explore regional changes in Albertan glacier runoff, area, and volume in response 

to climate model results and forcings for the future as presented in CMIP6. We utilized 4 CMIP6 

GCMs and 2 SSPs to project the ranges of potential glacier behaviour based on the latest climate 

scenarios and models, which will be useful for adaptive planning and mitigation. By applying the 

previously explored methodology, we seek to keep the uncertainty band due to model 
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parameterization narrow while still exploring the maximum possible range of predictions in glacier 

behaviour by avoiding use of just a single value for each input parameter. We use LHS to sample 

100 parameter sets and use them with our chosen climate forcings to simulate the changes in melt 

runoff, area, and volume for the 258 glaciers in the Athabascan River Basin for the period 1980-

2100. We also assess predicted glacier change based on glacier initial size and glacier initial 

median elevation. 

 The multimodel ensemble projections of cumulative melt runoff indicates that glaciers in 

all size classes are expected to produce the greatest amount of melt runoff during the historical 

period (1980-2019), under both climate scenarios. It also shows the predicted evolution of monthly 

flows, with shoulder-season melt runoff (Apr-May, Sep-Oct) being substantially reduced or non-

existent in the far-future period, especially under SSP585. The multimodel ensemble projections 

of cumulative melt runoff indicate that glaciers in all elevation groups are expected to produce the 

greatest amount of melt runoff during the historical period (1980-2019), under both climate 

scenarios. The monthly distribution and variability of cumulative melt runoff for each elevation 

group evolves across the simulation periods under both SSPs. The largest amount of melt runoff 

is again expected during the historical period and runoff being greatly reduced in the far-future 

(2060-2100) period in both climate scenarios. Low elevation glaciers are predicted to have the 

majority of their melt during this period. It also shows the predicted evolution of monthly flows, 

with shoulder-season melt runoff (Apr-May, Sep-Oct) being substantially reduced or non-existent 

in the far-future period for all glaciers, especially under SSP585. For low elevation glaciers, 

shoulder-season flows are predicted to disappear after the historical period, with low Jun-Jul-Aug 

melt runoff in the near-future and indiscernible runoff in the far-future. Medium elevation glaciers 



109 

 

are predicted to have indiscernible runoff in the far-future under SSP585, while low melt runoff is 

indicated to persist under SSP126. 

By performing simulations with both an ensemble of CMIP6 GCMs and a range of 

parameterizations, we are able to characterize the uncertainty due to parameterization while 

assessing potential changes. Looking at predicted changes both as a result of glacier size and also 

glacier elevation allows us to characterize more potential glacio-hydological regimes while 

constraining model uncertainty using 95PPU. 

4.2 Study Conclusions  

 Calibration and validation determined that while both versions of the CGME with different 

melt models (CTIM or PTIM) gave similar ranges of uncertainty for melt runoff from 1000 

simulations forced by the maximum meaningful parameter range for each model, representation 

of observed data by the simulated predictions were vastly different. Using 95 percent prediction 

uncertainty (95PPU), high uncertainty associated with both overestimation and underestimation of 

melt runoff in the PTIM-based model was found.  While model performance may be improved by 

using a range of parameter values compared to a singular value, prediction uncertainty may still 

be high due to model selection and quality of input data.  

 One-at-a-time (OAT) sensitivity analysis of each parameter for both model types showed 

the sensitivity of simulated melt runoff to each parameter. Both were found to be highly sensitive 

to similar parameters associated with temperature and melt runoff, with even small changes in 

parameter values leading to large changes in runoff. This highlights the importance and associated 

uncertainty of parameter selection and parameter transferability both spatially and temporally.  
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 Assessment of 95PPU of melt runoff at a larger spatiotemporal scale reinforced this idea. 

The normalized uncertainty prediction (Rn), which accounts for differences in glacier area, 

demonstrated that approximately two-thirds of glaciers in the study area higher sensitivity of the 

predicted melt runoff to their underlying input parameters and that these glaciers ought not to be 

driven with parameters from empirical measurements from other adjacent glaciers. Assessment of 

cumulative melt runoff differences and % difference of cumulative melt runoff based on glacier 

size determined that small glaciers have a greater cumulative melt runoff difference arising from 

the input parameter variability and larger parameter dependence at a regional scale. From this, we 

conclude that small glaciers have a wide range of potential cumulative melt runoff values that are 

regionally significant and ought not to be overlooked in examinations and discussions of regional 

projections.  

With this in mind, we used the GCME and optimized parameter ranges to characterize 

uncertainty in future regional projections. These simulations predict dramatic, rapid retreat for all 

glaciers regardless of the climate scenario. Assessing glacier change by size, all glaciers are 

predicted to behave similarly across the size classes and SSPs; using ninety-five percent prediction 

uncertainty (95PPU) and multimodel median averages it was determined that glaciers are predicted 

to decrease in volume in the first forty years of the simulation period (1980-2019, the historical 

period). Monthly predicted flow regimes not only indicate greatly reduced melt runoff as the 

century progresses, but also the loss of late spring and early fall melt runoff, predicting low flows 

during Jun-Jul-Aug by 2060-2100 (the far-future period). Assessing potential changes by glacier 

initial elevation indicated similar trends, though low elevation glaciers are predicted to be 

especially responsive, discharging the majority of their melt runoff during the historical period. 

Monthly melt runoff reflects similar trends to those found during size analysis, though low 
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elevation glaciers have the most extreme response, reducing their melt runoff to Jun-July-Aug 

during the near-future period (2020-2059) and discharging their melt runoff by the end of the near-

future. These assessments show that recent and imminent glacier retreat will have impacts on the 

glacio-hydrological regime.  

 To conclude, we explored different levels of uncertainty in using ranges of parameter 

values in CGME modeling approaches. We determined that ranges of model predictions compared 

to observed data can be improved (and we developed optimized ranges for each parameter and 

modeling approach), but overall model performance is dependent on available input data and 

associated melt model selection. Both melt model versions of the CGME are more sensitive to 

changes in the range of some parameters and not responsive to others, which can help identify 

sources of uncertainty. We also assessed uncertainty at the regional scale, determining the 

appropriateness of parameter range transferability and that small glaciers are especially sensitive 

to input parameter variability.  

We also assessed future changes in glacier melt runoff, ice area, and ice volume in 

mountain glaciers, assessing projected changes based on glacier size and elevation. All sizes and 

elevation groups of glaciers exhibit similar trends, with glaciers losing most of their volume and 

discharging it as runoff during the 1980-2019 period and making greatly reduced contributions to 

streamflow later in the century (2060-2100). Low-elevation glaciers were found to be especially 

sensitive. All glaciers also exhibited changes in their monthly melt runoff, losing early- and late-

season flows by the 2020-2059 period. The combined changes to glacier volume/area, streamflow 

contributions, and the timing of melt runoff foretell lasting and irreversible impacts to the 

surrounding and downstream hydrological regime and the ecosystems and users that rely on it. 

These trends are indicated by all climate projection scenarios and the range of uncertainty from 
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both future climate and model parametrization, highlighting the imminent need for preparing and 

implementing adaptation and mitigation strategies. 

 4.3 Study Limitations and Future Directions 

 The complex physics of glaciers and their dynamics that can change even on an hourly 

basis mean that any glacier model is a simplification, which is certainly true of the CGME. It 

utilizes empirically-derived parameters to simulate processes at the daily or annual timescale. It 

uses a mass balance framework, with accumulation being precipitation falling as snow and ablation 

being glacier ice melt runoff. It cannot account for processes like blowing snow or sublimation. It 

is limited by data availability, both for initial glacier geometry such as ice thickness and for 

climatic forcing data such as daily temperature and precipitation. For the historical observations, 

data from the single closest climate station is interpolated using lapse rates and precipitation 

gradients to approximate conditions on the individual glaciers in the region. Calibration and 

validation are also limited by data availability; there are temporal interruptions in both the climate 

station record and the streamflow record used to calibrate and validate melt runoff, meaning the 

most continuous period of matching records is 2006-2018. Regarding future projections, initial 

glacier geometry has to be assumed from approximate ice thickness and glacier surface area 

products, which are based on observations 10+ years old. We also utilize General Circulation 

Models downscaled to our study area to force the future projections, rather than Regional Climate 

Models. This was based on the availability of models to form a coherent multimodel ensemble. 

Our research characterizes the differing levels of uncertainty associated with parameter 

transferability.  
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 Glaciers are a precious natural resource, which benefit the watershed and ecosystems far 

beyond their mountainous reaches. The glaciers of the Canadian Rocky Mountains are known to 

be vulnerable and responsive to changes in climates, while being remote and difficult to observe 

directly. By using models to simulate their dynamics, we can gain a better picture of the current 

and potential future changes these glaciers may undergo, and their potential interaction and impact 

on the larger hydrological system. It is my hope that this and similar studies can lend some insight 

into the future demise of glaciers and assist in wise stewardship of our water resources.  
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APPENDICES 
 

 

Figure A1. Comparison of the simulated daily melt runoff with observed data for the Athabasca 

Glacier based on (a, c) CTIM-based CGMEM, (b,d) PTIM-based CGMEM for the 2011-2018 

calibration and 2006-2010 validation periods. Simulated daily runoff based on the best parameter 

sets are indicated by orange dots, while observed flow data is indicated by the blue line. The 95 

percent prediction uncertainty (95PPU) for 1000 simulations based on the optimal parameter 

ranges is indicated by the grey band.  
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Figure A2. Long-term average data for different months based on (a) CTIM-based CGMEM, 

(b) PTIM-based CGMEM for the 2011-2018 calibration period and (c) CTIM-based CGMEM, (d) 

PTIM-based CGMBDEM for the 2006-2018 validation period.   

 



128 

 

 

Figure A3. Flowchart showing the workflow involved in coupled glacier melt, mass balance, 

and evolution model adapted in this study. Courtesy of Silwal et al. (in review). It is to be noted 

that the volume-area scaling approach used in this thesis work is spline-based (as opposed to that 
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presented in this figure. Also in this thesis work, instead of using the GlabTop model to initialize 

the ice thickness of each glacier, ice thickness approximations from Farinotti et al. (2019) were 

used, as was noted in section 2.3.4.1. 

 

 

Table A1. Objective functions used in calibration and validation (after Abbaspour et al., 2007; 

Omani et al., 2017; and Sao et al., 2020).  

Index bR2 R2 NS p-factor r-factor 

Range 0 to 1 0 to 1 −∞ to 1 0 to 1 −∞ to 1 

Optimal Value 1 1 1 1 0 

Satisfactory 

Value 

>0.5 >0.5 >0.5 0.6-0.8 ~1 

Calibrated 

Value (CTIM) 

0.78 0.78 0.72 0.73 0.46 

Validated 

Value (CTIM) 

0.68 0.68 0.51 0.64 0.66 

Calibrated 

Value (PTIM) 

0.60 0.56 0.2 0.31 1.2 

Validated 

Value (PTIM) 

0.54 0.53 0.04 0.31 1.2 

 

 

Table A2. Data accessed or obtained for the purpose of this study.  
Data type, description Source Units 

Glacier Outlines, Randolph Glacier 

Inventory-RGI v6.0, 2017 

Global Land Ice Measurements from Space (GLIMS) 

Randolph Glacier Inventory 

http://www.glims.org/RGI/randolph.html 

 

50m×50m 

Digital elevation model of glacier 

hypsometry, 2017 

Government of Canada 

https://maps.canada.ca/czs/index-en.html 

 

10m×10m 

Digital elevation model of glacier 

ice thickness, 2018 

Farinotti et al., 2019.  https://doi.org/10.3929/ethz-b-

000315707 

 

10m×10m 

Daily simulated max, min, mean 

temperature, precipitation, 1980-

World Climate Research Programme Coupled Model 

Intercomparison Project Phase 6 

daily ◦C, 

mm 

http://www.glims.org/RGI/randolph.html
http://www.glims.org/RGI/randolph.html
https://maps.canada.ca/czs/index-en.html
https://maps.canada.ca/czs/index-en.html
https://doi.org/10.3929/ethz-b-000315707
https://doi.org/10.3929/ethz-b-000315707
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2100 (CMIP6) https://esgf-node.llnl.gov/search/cmip6/ 

Downscaled by Watershed Science and Modeling 

Laboratory, University of Alberta, Canada 

https://cms.eas.ualberta.ca/faramarzilab/contact/ 

 

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
https://cms.eas.ualberta.ca/faramarzilab/contact/

