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Abstract

Neutral macroecological models explain the assembly o f natural communities based 

on the simplified assumption that all species in a community are ecologically 

equivalent. In this dissertation I proposed a general continuous probabilistic approach 

to analyze the species abundance dynamics and extinction processes in neutral local 

communities governed by the principle o f zero-sum game. This principle asserts that 

every death in a local community is rapidly compensated by the birth of an individual 

belonging to the same or to a different species.

Firstly, I considered the species abundance dynamics in a local community 

governed by the principles of Hubbell's zero-sum neutral theory. Using a continuous 

probabilistic approach I calculated the persistence probability, the probability of 

extinction and the distribution o f the extinction time. Moreover, I proposed a 

classification of the species abundance dynamics based on different types o f species 

abundance distributions and species extinction dynamics in local communities. This 

classification allows one to distinguish which species are at high risk o f extinction.

I developed three new models for the species abundance dynamics in spatially 

structured ecological communities. The first model was designed to understand 

diversity in local communities located at the edge o f two different habitats. Using this 

model I explained higher species richness and higher extinction risk in local 

communities located at the edge between two different habitats than in local
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communities located in a homogeneous habitat. The second model was formulated for 

two local communities connected with each other and with the metacommunity 

through immigration, and the third model was formulated for two connected local 

communities in such way that the immigration from the metacommunity is possible 

only to one of them. From these models I showed that (1) higher similarity of the 

species abundance dynamics in two local communities is observed for larger values 

o f the immigration probability between local communities, (2) the average first time 

to species extinction from local community is larger if  the local community is more 

closely connected to the metacommunity and/or to the other local community, and (3) 

the time to species extinction is larger for local communities with more complex 

spatial structure.
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Chapter 1 
Introduction

1.1 Species abundance models and extinction 
dynamics

One o f the main goals o f ecology is to explain the distribution, abundance and 
persistence of living organisms in ecological communities (Anderwartha 1961, Pielou 
1975, Krebs 2001). These questions are also o f central theoretical and practical 
importance in conservation biology (Soule 1986, Primack 2002), since understanding 
the mechanisms o f species abundance dynamics is o f great concern in viability 
analysis.

1.1.1 Species abundance relationships and models
The species-abundance relationship is described by a species abundance distribution 
which represents the number o f species as a function o f their observed abundance. 
These relationships are often shown using Preston’s (1948) grouping method based 
on abundance intervals o f log base 2 containing 1, 2, 3-4, 5-8, 9-16,... individuals, or 
Williams (1964) method based on abundance intervals of log base 3 containing 1, 2- 
4, 5-13, 14-40,... individuals. A rank abundance plot is another way of portraying the 
same information as the species abundance distribution does. This type of plot shows 
the species abundance against the upper cumulative species abundance (May 1975).

To describe the species abundance relationship, inductive approaches were 
initially employed. By these approaches, observed distributions are fit to statistical 
distributions with little knowledge about the underlying biological mechanisms. The 
first such study is the classic work o f Fisher, Corbet and Williams (1943) who fitted 
the logseries model to 620 species of butterflies collected from Malay Peninsula. 
Recently, Magurran (2005) reconsidered Fisher’s log-series model and discovered its 
potential for describing large scale patterns o f species abundance. Preston (1948) 
argued that the species abundance distributions were more often bell-shaped and the 
logseries distribution did not describe this shape well. To fit the data that Preston had

1
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on bird species abundances, he log transformed the species abundances and 
discovered that the relative species abundance curve could then be normalized. To 
display the lognormal distribution he introduced doubling categories o f species 
abundance, “octaves”, and proposed a simple discrete formula for approximating the 
continuous lognormal distribution. Grundy (1951) proposed a precise mathematical 
definition of the truncated lognormal distribution for species abundances, but a proper 
estimation method was not published until Bulmer (1974) derived the maximum 
likelihood estimators assuming Poisson sampling, A combination o f log-series and 
log-normal distributions was proposed by Magurran and Henderson (2003) for 
description o f two components o f ecological communities: log-normal distributed 
core species which are persistent and abundant; and log-series distributed occasional 
species which occur infrequently in the long term record. These distributions were 
overlaid and produced a negative skew, which is typical for real data.

Later the preference was given to the theories o f species abundance based on 
one or another ecological theory o f community organization. MacArthur (1957) 
reasoned that the groups o f trophically similar species in ecological communities 
randomly divide up a common pool o f limiting resources. Therefore, he suggested 
that the species’ relative abundances are proportional to the fraction o f total resource 
each utilizes. By idealizing the resource pool as a stick o f unit length, he proposed the 
broken-stick hypothesis (MacArthur 1957) and the broken-stick hypothesis with 
niche overlap (MacArthur 1960, 1967). But the relative species abundances based on 
the broken-stick hypothesis do not fit well the empirical data. Note also that the 
theories based on the broken-stick hypotheses explain neither logseries, nor 
lognormal species abundance patterns. In 1975, a theoretical explanation for the 
logseries distribution was suggested by May (1975). He noticed that a steep 
geometric distribution for the relative abundances o f species obtained from the niche- 
preemption model (Motomura 1932, Whittaker 1965) produces a straight line on a 
dominance-diversity plot, typical o f the logseries of Fisher et al. (1943). A few years 
later, by making an analogy to the sequential breakage by the action o f a rock- 
crushing machine Sugihara (1980) modified the broken-stick model and explained the 
canonical lognormal distribution (Preston 1962) o f relative species abundances.

It is worthy to mention that the “broken-stick” models are based on niche 
theory, which assumes species abundances are proportional to the resource each 
exploits. And while the niche theory is conceptually appealing, it is not clear how 
such theory could help us understand the relationship between abundances and 
fundamental birth-death demographic processes in population dynamics, which we 
know are key to controlling population sizes (Hubbell, 2001).

Stochastic modeling o f species abundance dynamics in living communities 
has a long tradition in ecology (e.g., Bartlett 1960, Engen 1974, Lande et al. 2003). It 
is also possible to explain several species abundance relationships using stochastic 
population models (Lande et al. 2003). For example, Engen and Lande (1996a, b) 
developed stochastic models that allow species abundances to change due to specific 
environmental stochasticity in density-independent growth rate and deterministic 
density dependence within species. The underlying assumption o f their model is that 
taxonomically related species in the same trophic guild compete for the same or

2
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similar limited resources. Following their assumption, Engen and Lande showed that 
different forms of intraspecific density dependence produce different shapes of 
species abundance distributions (Lande et al. 2003). For example, logistic density 
dependence within species produces a Gamma distribution o f species abundances; 
Gompertz density dependence (linear on the log scale) produces a lognormal species 
abundance distribution. By applying a diffusion approximation for each species’ 
dynamics with density regulation of the 8-logistic type, Dieserud and Engen (2000) 
proposed a general species abundance model that embraces the lognormal and gamma 
distributions, allowing intermediate and more extreme fits than these two restricted 
distributions o f the model.

It is interesting to note that recently, analyzing the properties the lognormal 
distribution, Williamson and Gaston (2005) concluded that the lognormal is not an 
appropriate null model for any distributions of species abundances.

1.1.2 Extinction dynamics
The extinction o f animal and plant populations is affected by diverse processes, 
including environmental variability and catastrophes (Mangel and Tier 1993, Lande 
1993, Engen et al. 2005), habitat size reduction and habitat fragmentation (Sole et al. 
2004, Keymer et al. 2000, MacArthur and Wilson 1967), dispersal (Poethke et al. 
2003), harvesting (Lande et al. 1994, 1995), life history traits (Reynolds et al. 2005), 
loss o f genetic variability (Gaggiotti 2003), inbreeding depression (Frankham 2005), 
accumulation o f deleterious mutations (Lande et al. 1994, Gaggiotti 2003, Abu- 
Raddad and Ferguson 2004), sexual selection (Kokko and Brooks 2003, Moller 2003) 
and mating system (Bessa-Gomes et al. 2003, Saether et al. 2004), see also (Benton
2003).

A central problem in extinction processes is estimation and analysis of 
quantities associated with time to extinction, probability of extinction, and extinction 
thresholds. A substantial amount o f work has been done on the analysis o f extinction 
processes using various analytic, numerical and statistic methods, including 
parametric and non-parametric estimation (Solow and Roberts 2003, Bascompte 
2003, Solow 2005), maximum likelihood methods (Ludwig 1996a, Solow and Smith 
2000, Hakoyama and Iwasa 2000), Bayesian analysis (Solow 1993, Ludwig 1996b), 
Fourier series analysis (Sole et al. 1997, Newman and Eble 1999), time series analysis 
(Ludwig 1999, Flakoyama and Iwasa 2000), diffusion approximations (Gardiner 
1983, Lande et al. 1995, 2003, Ludwig 1996a, Grasman 1996, Nasell 1999, van 
Herwaarden and van der Wal 2002, Engen et al. 2005), and simulation studies 
(Mangel and Ludwig 1977, Grasman 1996, Akcakaya et al. 1997, Grimm and Wissel
2004).

The extinction dynamics o f populations was investigated for several 
population models. For example, Keymer et al. (2000), Jablonski (2000), Alonso and 
McKane (2002), Engen et al. (2002), Ovaskainen and Hanski (2003) studied spatial 
models and extinction, Ludwig (1996a) investigated the extinction time and
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probability for Gompertz population model, Grasman (1996), Hakoyama and Iwasa
(2000), Newman et al. (2004) investigated logistic models.

The effect o f various factors on extinction dynamics have been investigated in 
detail by many researchers. These include the effect o f demographic stochasticity 
(Lande 1988, 1993, 1994, Mangel and Tier 1993, Ludwig 1996b, Hakoyama and 
Iwasa 2000, Moller 2003, Bessa-Gomes et al. 2003, Abu-Raddad and Ferguson 2004, 
Saether et al. 2004, Engen et.al. 2004, 2005), the impact o f random environmental 
fluctuations and catastrophes (Lande and Orzack 1988, Lande 1993, 1994, Newman 
1997, Lande et al. 1995, 2003, Mangel and Tier 1993, Abrams 2002, Poethke et al. 
2003, Ovaskainen and Hanski 2003, Engen et.al. 2002, 2004, 2005), the effect of 
density dependence (Lande and Orzack 1988; Hakoyama and Iwasa 2000; Engen et 
al. 2002; Bascompte 2003), and the effect o f migration processes (Mangel and Tier 
1993; Lande et al. 1998, 2003; Engen et al. 2002; Alonso and McKane 2002; 
Gaggiotti 2003). In addition to extinction processes, Ginzburg et al. (1982), Ludwig 
(1999) and Engen et.al. (2002) studied quasi-extinction processes, which describe the 
decrease in population size to some given low level o f density.

The statistical analysis o f field datasets on species abundances over long time 
intervals allows comparison of different theories on extinction dynamics with field 
observations. When the observations of certain rare animal species are given only in 
the form o f occasional chance sightings, then it is possible to infer extinction from the 
time of most recent sighting (Solow 1993a, 1993b, 2005, Solow and Roberts 2003). 
Detecting a terminal mass extinction event has been studied using fossil records 
(Harvey et al. 1994, Jablonski 2000, 2002, Newman 1997, Newman and Eble 1999a, 
1999b, Newman and Sibani 1999, Sole et al. 1997, Solow and Smith 2000, Solow et 
al. 2006). The risk o f extinction and extinction time were computed for various 
datasets from short-term survival o f several different populations. For example, Pimm 
et al. (1988) presented an analysis o f the extinction risk using an abundance dataset of 
355 populations o f British land birds observed during 10’s of years. Aebischer (1986) 
analyzed the die-off of snags (Phalacrocorax) on the Isle o f May in southeast 
Scotland. Ricklefs (2006), using data for passerine birds (Passeriformes), tested the 
prediction that the time to extinction of a population o f size N is approximately 2N 
generations. Hakoyama and Iwasa (2000) illustrated the time series method using data 
for a freshwater fish, Japanese crucian carp (Carassius auratus) in Lake Biwa. 
Ovaskainen and Hanski (2003) analyzed extinction threshold in metapopulation 
models using the Glanville fritillary butterfly (Melitaea cinxia) metapopulation in the 
Aland Island in southwest Finland.

1.2 Neutral theories in ecology
Although the neutral community concept appeared three decades ago (Watterson 
1974, Caswell 1976, Leigh et al. 1993), the theory attracted little attention until 
Hubbell published the provocative monograph (Hubbell 2001), where he proposed a 
general theoretical framework that unifies theories o f biodiversity and biogeography 
and combined the processes o f birth, death, immigration and speciation. Hubbell’s 
theory was in large part developed by borrowing ideas from the neutral theory of
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molecular evolution by Kimura (1968, 1983). Similar to the neutral theory in 
genetics, Hubbell’s theory construction is based on the assumption that the 
distribution o f species abundance in a community is predominately due to the neutral 
drift o f species abundances (He and Hu 2005). The connection between evolutionary 
and ecological aspects o f biodiversity aids understanding and interpretation o f the 
neutral theory in ecology (Hubbell 2001, Nee and Stone 2003, Etienne and Olff 2004, 
Turner 2004, He and Hu 2005, Nee 2005, Hu et al. 2006). Similar to the neutrality- 
natural selection debate in evolution, the neutral theory resulted in the great 
neutrality-competition debate in ecology (Turner 2004).

Traditionally, ecologists assume that species differ in many aspects and that 
tradeoffs in life-history traits allow them to coexist in the same habitat (Hutchinson 
1959). Neutral theory makes diametral assumptions to niche theory about the 
necessity and importance o f species traits in determining species abundance and 
diversity patterns (Hubbell 2001, Harpole and Tilman 2006). The key assumption of 
models constructed on the basis o f neutral theory o f biodiversity is that all individuals 
o f a trophic level are assumed to be functionally equivalent (Hubbell 2001, Bell 
2001). Therefore, the neutral theory concerns a group o f trophically similar species 
typically occurring in sympatry and potentially competing for similar resources 
(Gaston and Chown, 2005; Chave, 2004).

It noteworthy that the assumption o f neutrality should only be referred to 
biological mechanisms o f species dynamics, but not to the species patterns in 
ecological communities or to the species dynamics itself. For example, the neutrality 
assumption can concern the mechanisms o f birth, death, immigration and emigration. 
However, such concepts as species abundance patterns, diversity indices, species 
extinction dynamics are rather deductions o f one or another biological model of 
species dynamics. It is possible that similar species abundance patterns, diversity 
indices, species extinction dynamics can be obtained from either neutral models, or 
niche based models, however, these models are dissimilar because o f different 
biological hypotheses.

The idea of neutrality has challenged the classic niche theory and has been 
controversial since the publication o f Hubbell’s book in 2001. There have been many 
attempts to criticize the neutrality assumptions and to reject the neutral model on the 
basis of different statistical tests in favor o f niche-based models (Tokeshi and Schmid 
2002, Clark and McLachlan 2003, Maurer and McGill 2004, Tilman 2004, Adler 
2004, Ulrich and Ollik 2004, Turnbull et al. 2005, Gilbert and Lechowicz 2004, 
Wootton 2005, Domelas et al.2006, McGill et al. 2006). However, the assumption 
that trophically similar species in communities might be ecologically equivalent is an 
ideal starting point for analysis and testing for community assembly rules due to its 
simplicity. The neutral theory provides a first approximation in describing real 
ecological communities (Hubbell 2005, 2006, Alonso et al. 2006, Bell et al. 2006). In 
the case o f insignificant differences between predictions of neutral and niche-based 
models, according to the Occam’s razor principle, the preference should be given to 
the simpler neutral model (Chase 2005). If  a simple neutral model and a complex 
niche model both make accurate predictions about some features o f community 
structure, it is not possible to give the preference to the niche model, because the
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niche hypothesis is known on independent grounds to be true. In this case the 
differences between models are not the same as differences between hypotheses. It is 
possible to construct several different models based on niche or neutral hypothesis. 
However, statistical tests for model comparison do not compare niche and neutral 
hypotheses. Such tests concern the model mechanisms and parameters, and do not 
incorporate explicitly the information about niche or neutral nature o f models.

The future development o f the theories o f community organization should rely 
on the results obtained from neutral theories, and introduction o f non-neutral 
mechanisms in neutral models might be considered as the next steps in analysis of 
species composition and dynamics in ecological communities (Chave 2004, Nee and 
Stone 2003, Chase 2005, Leibold and McPeek 2006). The first attempts to model 
species abundance dynamics in this theoretical niche-neutral framework have been 
proposed for variable mortality (Yu et al. 1998, Antonovics et al. 2006) and for 
variable deleterious and beneficial mutations (Fuentes 2004). Sole et al. (2000) 
introduced an ecosystem model o f many interacting species in which the species are 
connected through a random matrix with a given connectivity. Etienne and Olff 
(2004a) developed a simple model that unites a neutral community model with niche- 
based theory by considering different guilds o f species, assuming that within the same 
guild, all individuals are equivalent in their competition for resources, and have the 
same speciation rate and dispersal capacities. Pueyo (2006) illustrated that both 
neutral and non-neutral mechanisms coexist in nature, and have different weights in 
different groups of organisms.

Hubbell’s unified neutral theory o f biodiversity and biogeography concerns 
population dynamics on two scales: local communities and regional metacommunities 
(McKane et al. 2004). To formulate the models for species abundance dynamics in 
ecological communities Hubbell assumed that the dynamics o f ecological 
communities obey a zero-sum game, i.e., the sum of all changes in abundance is 
always zero -  the increase in abundance o f one species must company the same 
amount decrease in abundance of other species. Based on this assumption, the neutral 
theory predicts the existence o f a new statistical distribution o f relative species 
abundance, called the zero-sum multinomial. This distribution equals a log-series for 
large immigration probabilities, and is more “ humped” for small immigration 
probabilities, like a lognormal (Pueyo, 2006). Hubbell (2001) showed that the zero- 
sum multinomial distribution fits tropical forest tree data better than the lognormal. 
Based on the fossil record, Olszewski and Erwin (2004) showed that branchiopod 
abundance distributions from four temporally distinct ecological landscapes can be 
better described using zero-sum multinomial distribution than using the log-normal 
distributions. However, according to recent analyses (McGill 2003, Volkov et al. 
2003, Etienne and Olff 2004, Pueyo, 2006, McGill et al. 2006), one cannot always 
distinguish between these two distributions by using empirical data. Based on a set of 
best practices for testing the fit of the zero-sum multinomial vs. a lognormal null 
hypothesis developed by McGill et al. (2006), it was concluded that the lognormal 
outperforms the neutral theory on robust tests. It was also shown that neutral models 
are not robust to relaxation o f the assumption o f ecological equivalence (Zhang and 
Lin 1997, Yu et al. 1998, Fuentes 2004). Also, the fits o f the zero-sum ecological drift 
model to frequent and to occasional species can be worse than the respective fits of
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the occasional-frequent species model (Magurran and Henderson 2003) and the self­
similarity model (Moulliot et al. 2000, Sole and Alonso 1998), see analysis o f species 
abundance datasets from a large community of forest Hymenoptera conducted by 
Ulrich and Ollik (2004). Latimer et al. (2005), using neutral ecological theory, 
showed that the relative species abundance distributions o f South Africa's 
Mediterranean-climate fynbos shrubland can be explained by migration rates that are 
two orders o f magnitude lower than they are in tropical rain forests, and speciation 
rates are estimated to be higher than in any previously examined plant system.

Up to this date, successful development of the neutral theory o f biodiversity 
was achieved in several directions and on different spatial scales. There has been 
considerable interest in both spatially implicit and spatially explicit neutral models for 
species abundance dynamics on different spatial scales.

McKane et al. (2000) used “mean-field approximation”, in which one o f the 
species interacts with the combination o f all o f the other species in the community, to 
analyze dynamic models for species abundance. He (2005) developed a neutral 
spatially implicit model for species-abundance relationships. This model incorporates 
four fundamental processes o f population dynamics: birth, death, immigration and 
emigration. Volkov et al. (2003) presented an analytical solution for the distribution 
o f relative species abundances both in the metacommunity (Fisher’s log series) and in 
the local community. Volkov et al. (2005) proposed a model with symmetric density 
dependence to explain the rare species advantage in species abundance distributions. 
They also showed that both dispersal and density-dependence mechanisms offer 
sufficient and independent explanations for relative species abundances. Vallade and 
Houchmandzadeh (2003) derived an analytical solution for the distributions of 
species abundances in the metacommunity and in a local community as a function of 
speciation, migration rates and the size of the community. Zhou and Zhang (2006) 
showed that incorporation of the Allee effect in a neutral community results in a 
considerable decrease in species richness and radically different dominance-diversity 
curves. Dominance-diversity curves, which incorporate the Allee effect, show an 
excess o f both very abundant and very rare species but a shortage o f intermediate 
species.

Sole et al. (2000) introduced an ecosystem model of many interacting species 
in which the species are connected through a random matrix with a given 
connectivity. Using this model, a natural link between log-normal and power-law 
distributions o f species abundances was suggested. Sole et al. (2004) explored both 
spatially-implicit and spatially-explicit metapopulation models for a competitive 
community, where the colonization-extinction dynamics takes place through neutral 
interactions, and species are not hierarchical at all but are somehow ecologically 
equivalent and just compete for space and resources through recruitment limitation. It 
was proven that there exists a common destruction threshold for all species. That is, it 
was shown that whenever habitat loss reaches a certain value a sudden biodiversity 
collapse takes place. Houchmandzadeh and Vallade (2003) showed by exact 
analytical methods for a spatially explicit model o f species abundances that under 
assumption o f neutrality, organisms tend to aggregate and form clusters. Chave and 
Leigh (2002) proposed a neutral model where seeds disperse a limited distance from
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their parents, and speciation is in equilibrium with random extinction. To describe 
beta diversity the similarity function was calculated as the probability that two trees 
separated by some distance belong to the same species. Bell (2000) presented a 
spatially explicit neutral model assuming constant a immigration probability and non­
exponential density regulation. Zillio et al. (2005) proposed an analytically tractable 
variant o f a spatially explicit voter neutral model that provided a quantitatively 
accurate description of beta diversity in two tropical forests and formed links between 
relative species abundance and the species area relationship.

The neutral theory of biodiversity is designed to apply to samples from a 
community, not only to the community as a whole. Therefore, special attention was 
devoted to development o f sampling techniques and estimates. Alonso and McKane 
(2004) developed a sampling theory of Hubbell’s neutral spatially implicit theory and 
derived simple abundance distributions for a random sample both from a local 
community and a metacommunity. Their result was given in terms o f the average 
number of species with a given abundance in any randomly extracted sample. Etienne 
and Alonso (2005) presented sampling distributions that contain binomial or 
hypergeometric sampling on the one hand, and dispersal limitation on the other hand. 
They concluded that metacommunity size does not independently affect the outcome 
o f neutral models. Etienne (2005) presented a simplified expression for the expected 
number o f species o f a particular abundance in a local community with dispersal 
limitation that can be regarded as an enhanced version of the Ewens (1972) sampling 
formula. This expression can be used in maximum likelihood methods for quick 
estimation o f the model parameters. Moreover, Etienne (2005) showed how to rapidly 
generate examples of species-abundance distributions for a given set o f model 
parameters and how to calculate Simpson’s diversity index. Etienne and Olff (2005) 
compared three classical distributions: the zero-sum multinomial distribution, based 
on Hubbell’s neutral model, the multivariate Poisson lognormal distribution, based on 
niche arguments, and the discrete broken stick distribution, based on MacArthur’s 
broken stick model. They gave explicit formulas for the probability o f observing a 
particular species-abundance data set in each model using a Bayesian analysis of 
species-abundance data. Condit et al. (2002) presented quantitative estimates o f beta- 
diversity for tropical trees by comparing species composition plots. They found that 
beta diversity is higher in Panama than in western Amazonia and that patterns in both 
areas are inconsistent with the neutral model in which habitat is uniform and only 
dispersal and speciation influence species turnover. Gilbert and Lechowicz (2004) 
proposed a sampling design that decoupled distance and environment in the 
understory plant communities o f an old-growth, temperate forest. Gray et al. (2006) 
investigated the effect o f binning methods on the differences o f species abundance 
distributions and studied statistical fits to the zero-sum multinomial and log-normal 
models. The discussions o f neutral theory in ecology were not only restricted to 
biological mechanisms (Chave et al. 2002) and comparisons with classical niche- 
based theories (Leibold and McPeek 2006, Harpole and Tilman 2006). Attention also 
has been devoted to tests o f neutral theory (Holoyak and Loreau 2006, McGill et al. 
2006) and spatial scale (Ostling 2005).

Using neutral models (Caswell 1976, Bell 2000, 2001, Hubbell 1997, 2001, 
Fuentes 2004) and stochastic population models (Lande et al. 2003, Tilman 2004)
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predictions can be made not only about species abundance relationships, patterns of 
species richness, species-area relationships, turnover in species composition with 
distance, but also about time to extinction or fixation, risk o f extinction, etc. Leigh 
(1981) determined that the average time to extinction under neutrality when a 
population cannot exceed size K  is equal to 2iV(l+ln[A/?V]) (> 2N). This result agrees 
with Fisher’s (1930) calculation that the number o f descendants of a single neutral 
mutant will not exceed a small multiple o f the number o f generations elapsed since 
the mutant occurred. Ricklefs (2003) suggested that drift is too slow to account for 
the observed turnover o f species within a regional flora and other forces must act. 
This result was confirmed experimentally by observing rapid increases in populations 
o f introduced species, and relatively rapid declines in species richness in 
communities. Ricklefs (2006) also tested the prediction from ecological drift that the 
time to extinction o f a population o f size N is approximately 2N  generations (Leigh 
1981). Based on data for passerine birds (Passeriformes), Ricklefs found that the 
waiting times to extinction are much less than twice the product o f average 
population size and generation length.

Nee (2005) discussed the time scale for extinction o f common species in a 
neutral community. Hubbell in his book (2001) introduced the probability that a 
species will suffer the death o f given number of individuals, and showed that the time 
to fixation (local extinction or complete dominance) is inversely proportional to the 
death rate in the isolated local communities. He also established that the times to 
fixation and local extinction are approximately Gamma distributed, calculated the 
average number o f deaths in a community until extinction of the given species using a 
discrete Markov chain approach, studied the extinction time o f newly arisen species, 
and reviewed the extinction dynamics in neutral models in phylogeny. Rosenzweig 
(1995) proposed a neutral model for the evolution of continental diversity and showed 
that increased diversity per se will cause increased extinction rates per species. Raup 
et al. (1973) and Nee et al. (1995) investigated the extinction dynamics for neutral 
models in phylogeny. Abu-Raddad and Ferguson (2004) examined how ecosystem 
properties change as a function o f the number o f pathogen strains, and presented the 
analysis o f how the interactions between diversification processes (i.e. mutation), 
inter-strain competition (via cross-immunity) and demographic stochasticity 
determine the equilibrium diversity of a pathogen in a finite-sized host population. 
Gilbert et al. (2006) used Hubbell’s neutral theory to predict the impact of habitat 
fragmentation on Amazonian tree communities. It was shown that the neutral theory 
in this case correctly predicts the rate o f species extinction as a function o f the 
diversity and mortality rate. However, they showed that the rate o f change in species 
composition in a real communities is much faster than predicted in fragments from 
neutral theory, indicating that different tree species respond differently to 
environmental changes.

Finally, to understand the mechanisms o f neutral models for local 
communities proposed in my thesis, I would like to detail the assumption of 
functional equivalence o f individuals in more precise way. I consider different type of 
models for opened ecological communities at small scale connected through 
immigration to metacommunities, closed ecological communities at large scale. I
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assume that individuals o f two different species are functionally equivalent if  the 
following conditions are fulfilled:

a) if  two different species have the same abundances in a local community, then 
in this local community the abundances o f these species have equal 
probabilities o f decrease in the same time interval due to death process, and 
equal probabilities of increase in the same time interval due to birth process;

b) if  two different species have the same abundances in the metacommunity, then 
the abundances o f these species in the local community have equal 
probabilities o f increase in the same time interval due to immigration process.

This more precise definition o f neutrality allows formulation o f the models for 
species abundance dynamics in local communities in more formal way.

1.3 Thesis outline
Although much progress has been made with the neutral theory, there is still a great 
need for a more thorough understanding about the distribution and extinction 
dynamics o f species. Questions such as distribution o f extinction times for species in 
local communities, probability of species extinction within a fixed time interval, 
species coexistence, and qualitative classification o f species dynamics with respect to 
parameter values have not yet been studied for many types of ecological communities 
in the framework o f the neutral theory o f biodiversity. These problems determine the 
main directions of my research. Moreover, in my study I also covered such important 
problems as the species distribution and extinction in spatially structured 
communities including local communities on the edge o f different ecosystems, and 
local communities involving immigration from different sources o f ecological 
network o f living habitats.

My thesis on the analysis o f neutral models o f community organization is 
organized as follows.

Chapter 2. Continuous Probabilistic Approach to Species 
Dynamics in Hubbell's Zero-Sum Local Community
In this chapter I analyzed species abundance distribution and extinction dynamics for 
Hubbell's zero-sum neutral model for species abundance dynamics in a local 
community connected through immigration to the metacommunity (see Figure 1.1(a) 
for the case when a local community is embedded into the metacommunity, and 
Figure 1.1(b) for the case when a local community represents an island and the 
metacommunity represents mainland). Using a continuous probabilistic technique I 
studied the probability density of species abundance, distribution o f the first passage 
time to species extinction or fixation and probability o f species extinction. Based on 
the sensitivity analysis for the continuous probabilistic models, I proposed a realistic 
classification of local communities subject to their diversity and species dynamics
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based on such ecological characteristics as the probability o f species persistence, 
extinction and complete dominance. I also investigated the effect o f immigration 
probability, the species metacommunity relative abundance and the size o f the local 
community on the species abundance distribution and the time to species extinction 
and monodominance. Finally, by the simulation study of Hubbell's zero-sum neutral 
model for the local community I verified the derived theoretical distribution o f the 
first passage time to extinction. Based on the simulation study I concluded that for 
species with large initial abundances, the distribution o f the first passage time to 
extinction is very close to the Gamma distribution, as it was presumed by Hubbell
(2001), but for the species with small initial abundance, the Gamma distribution does 
not produce a good fit to the first passage time to extinction.

Chapter 3. A Neutral Macroecological Model o f Edge Effects
Edge effects are one o f the most extensively studied ecological phenomena, because 
understanding the processes that occur at the edges between different living habitats 
can significantly improve our knowledge o f species abundance dynamics and 
composition o f heterogenous communities. In this chapter a new spatially implicit 
neutral model for explaining the edge effects between habitats with different species 
abundance structures was proposed (see Figure 1.2(a) for the case when a local 
community is located between two metacommunities, and Figure 1.2(b) for the case 
when a local community represents an island and the two metacommunities represent 
two parts o f disconnected mainland). Using this model, I investigated the diversity 
and evenness in local communities at the edge between two different 
metacomminities. Using a continuous probabilistic approach based on the 
Kolmogorov-Fokker-Planck forward equation, I also developed a realistic 
classification o f local communities with respect to immigration probability, species 
relative abundances o f metacommunity and size o f local community. The structure 
and dynamics of local communities at the edge between two distinct habitats were 
compared to those located in the interior of homogeneous habitat based on diversity 
measures such as species richness, Simpson and Shannon diversity indices, and 
evenness index. It was found that the proposed model o f edge effects can explain 
higher species diversity in local communities located at the edge between two distinct 
metacommunities than in interior local communities; however, the species persistence 
is higher in interior local communities than in local communities at the edge.

Chapter 4. Analysis o f species abundance distribution in two 
connected equal local communities
In this chapter I investigated the species abundance dynamics and distribution in 
similar patches or islands connected to a large source o f organisms -  the 
metacommunity (see Figure 1.3(a) for the case when local communities are 
embedded into the metacommunity, and Figure 1.3(b) for the case when local 
communities represent two islands and the metacommunity represents mainland). I 
developed a new model for species abundance dynamics in two equal local

11

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



communities connected with each other and with the metacommunity through 
immigration. Using continuous probabilistic technique based on Kolmogorov-Fokker- 
Planck forward equation, I investigated the effect o f the immigration probabilities, 
species representation in the metacommunity and the size of local communities on the 
type o f species abundance dynamics in local communities. Based on the sensitivity 
analysis, I proposed a realistic classification o f the species abundance dynamics in 
local communities with respect to such species characteristics as extinction, 
monodominance and persistence in one or both local communities. I also studied the 
similarity or dissimilarity o f the species abundance distributions between two local 
communities using the correlation coefficient between species abundances in the two 
local communities. It was found that higher similarity of the species abundance 
dynamics in two local communities was observed for larger values of the immigration 
probability between local communities. Specifically, for fixed probability of 
immigration from the metacommunity, the correlation between species abundances in 
two local communities increases with an increase in the immigration between local 
communities, and, vice versa, for fixed probability of immigration between local 
communities, the correlation decreases with an increase in the immigration from the 
metacommunity.

Chapter 5. Species extinction time and probability in two 
connected equal local communities
This chapter investigates the extinction time and extinction probability o f a species in 
the neutral model for species abundance dynamics in two equal local communities 
connected with each other and with the metacommunity formulated in Chapter 4. 
Using Kolmogorov-Fokker-Planck backward equation, I derived models for the 
species persistence probability in two local communities, and the average first time to 
species extinction. I considered two scenarios for species extinction: species 
extinction from one given local community, and species extinction from either the 
first or second local community. In addition, I calculated the probability o f species 
extinction from one local community before the other local community for different 
species abundances in two local communities. Using this probability I can define 
from each local community the species would most likely go extinct first. Finally, I 
made a comparison analysis o f species extinction dynamics in two local communities 
and in one local community. This analysis gives us an example o f comparison 
between species abundance dynamics in spatially structured ecological communities 
(ecological communities involving interaction between many different neighboring 
habitat patches) and unstructured ecological communities (ecological communities 
with no spatial factors). It was found that the structure o f the ecological system has an 
important effect on the species persistence in local habitats. Specifically, i f  the local 
community is located in a homogeneous landscape, the species extinction time is 
shorter than in the case when the habitat is non-homogeneous and spatially structured.
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Chapter 6. Analysis of species abundance distribution in two 
semi-isolated local communities
In this chapter a new spatially implicit model for species abundance dynamics in two 
semi-isolated local communities was developed. The two local communities 
connected with each other are positioned in the global ecological network of 
communities in such a way that only one o f them can obtain immigrants directly from 
the rest o f the metacommunity (Figure 1.4). Figure 1.4(a) shows the case when one 
(semi-isolated) local community is located at the boundary and the other (non­
isolated) local community is located between the main part o f the metacommunity 
and the semi-isolated local community. Figure 1.4(b) shows two local communities 
are connected but only one o f them is connected to the mainland. The diversity 
models for two semi-isolated local communities were analyzed using continuous 
probabilistic technique. Using this technique, I developed the realistic classification 
o f the species abundance dynamics in two semi-isolated local communities based on 
species characteristics such as immigration probability, species representation in the 
metacommunity and the size o f local communities. Based on different ecological 
characteristics such as species persistence, extinction and monodominance in one or 
both local communities, several different scenarios for species abundance dynamics 
were distinguished. The similarity or dissimilarity of the species abundance 
distributions between the two local communities was studied using the correlation 
coefficient between species abundances in two local communities. I found higher 
similarity o f the species abundance dynamics in two semi-isolated local communities 
with larger values o f the immigration probability between local communities, 
whereas the immigration probability from the metacommunity has a negative effect 
on the similarity between species abundance dynamics in two semi-isolated local 
communities.

Chapter 7. Species extinction time and probability in two semi­
isolated local communities
In this chapter the relationships between the extinction processes and immigration- 
demographic processes were investigated for structured neutral local communities, 
using the neutral model for the species abundance dynamics in two semi-isolated 
local communities developed in Chapter 6. The extinction time and probability of a 
species in two semi-isolated local communities were studied by means o f a 
continuous probabilistic approach. Using Kolmogorov-Fokker-Planck backward 
equation, I derived models for the species persistence probability in two local 
communities, and the average first time to species extinction. I considered two 
scenarios for species extinction: species extinction from one given local community 
(from only non-isolated or only semi-isolated local community), and species 
extinction from either the non-isolated or semi-isolated local community. In addition, 
I calculated the probability o f species extinction from one local community before the 
other local community for different species abundances in two local communities. 
Using this probability it was possible to define from each local community the
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species would most likely go extinct first. It was found that if  the species abundance 
is equal in two local communities, the species has more chances to go extinct from 
the semi-isolated local community than from the non-isolated local community. 
Finally, I compared analysis o f species extinction dynamics in two local communities 
and in one local community. This analysis compares species abundance dynamics in 
spatially structured ecological communities (ecological communities involving 
interaction between many different neighboring habitat patches) and unstructured 
ecological communities (ecological communities with no spatial factors). It was 
found that the species has higher risk of extinction in local community connected 
only to the homogeneous metacommunity, than in spatially structured ecological 
communities.
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Figure 1.1: Graphical illustration o f the model for species abundance dynamics in one 
local community connected through immigration to the metacommunity [Hubbell’s 
zero-sum model] (Chapter 2). Figure (a) represents the case when the local 
community is embedded into the metacommunity, figure (b) represents the case when 
the local community is an island not directly connected to the mainland (the 
metacommunity).
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Figure 1.2: Graphical illustration o f the model for species abundance dynamics in one 
local community at the edge between two metacommunities (Chapter 3). Figure (a) 
represents the case when the local community is directly connected to both 
metacommunities, figure (b) represents the case when the local community is an 
island not directly connected to either o f two distinct the mainlands (two 
metacommunities).
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Figure 1.3: Graphical illustration o f the model for species abundance dynamics in two 
equal local communities connected with each other and with the metacommunity 
through immigration (Chapters 4 and 5). Figure (a) represents the case when the local 
communities are embedded into the metacommunity, figure (b) represents the case 
when the local communities are islands not directly connected to the mainland.
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Figure 1.4: Graphical illustration o f the model for species abundance dynamics in two 
connected local communities to each other, but only one o f them is connected to the 
metacommunity through immigration (Chapters 6 and 7). Figure (a) represents the 
case when local communities are located close to the boundary o f the metacommunity 
(the second local community may represent a peninsula), figure (b) represents the 
case when local communities are islands not directly connected to the mainland.
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Chapter 2

Continuous Probabilistic 
Approach to Species Dynamics in 
Hubbell’s Zero-Sum Local 
Community

Babak, P. 2006. Continuous probabilistic approach to species dynamics in Hubbell’s 
zero-sum local community. Physical Review E 74, 021902.

2.1 Introduction
The main goals of biodiversity study are to explain and quantify the distribution, 
abundance and dynamics of living organisms in ecological communities. These 
questions are also of central theoretical and practical importance in conservation 
biology and ecosystem management (Lande et ah, 2003; Primack, 2002), since 
understanding the mechanisms of species abundance dynamics is of great concern 
in viability analysis.

Species abundance relationships have long been studied by ecologists, who de­
fined them as species commonness and rarity in ecological communities (Engen, 
1978; Lande et ah, 2003; Magurran, 2004). These relationships are usually de­
scribed by species abundance distributions that show the number of species as 
the functions of their observed abundances.

Early studies on species abundance relationships were focused on finding distri­
butions that could fit well with empirical data. Among the proposed distributions 
were the log-series (Fisher et ah, 1943) and the log-normal (Preston, 1948). Later 
the preference was given to modelling species abundance relationships using one 
or another ecological theory of community organization. Using this approach the
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broken-stick model was proposed by MacArthur (1957, 1960); the log-normal pat­
terns of species abundances were explained using the niche preemption model (Bul- 
mer, 1974; May, 1975; Sugihara, 1980), and using the dynamic population model 
with Gompertz density dependence (Engen and Lande, 1996). The gamma type 
of abundance distribution, including Fisher’s log-series, the extended gamma dis­
tribution and MacArthur’s broken-stick model, was elucidated using the dynamic 
approach with logistic density dependence (Engen and Lande, 1996).

In this chapter I discuss the theory of the species abundance relationships. 
This theory is based on the assumption of neutrality, which, on the contrary 
to the niche theory, does not assume differences between individuals of different 
species and trophic hierarchy of community (Gaston, and Chown, 2005; Hubbell, 
2001; Bell, 2001). Although the concept of neutral community appeared long 
time ago (Caswell, 1976), it did not attract much attention until Hubbell pub­
lished his monograph (Hubbell, 2001), where he proposed a neutral theory that 
unified theories of biodiversity and biogeography. The reference ecosystem of 
Hubbell’s neutral theory is a group of throphically similar, sympatric species that 
complete for the same or similar resources (Hubbell, 2001; Gaston, and Chown, 
2005). Hubbell’s theory was constructed on the basis of the assumption about the 
zero-sum dynamics, which states that the sum of all changes in species abundances 
is always zero, that is, the total number of individuals in the community is a con­
served quantity (Hubbell, 2001). Based on this assumption, the neutral theory 
predicts the existence of new statistical distribution of relative species abundance, 
called the zero-sum multinomial (Hubbell, 2001). This distribution is close to a 
log-series for large immigration probabilities, and is more ’’humped” for small im­
migration probabilities (Pueyo, 2006; Bell, 2001). The analytical formalization for 
zero-sum multinomial and other distributions generated under assumption of neu­
trality was obtained in (Volkov et al., 2003; Vallade, and Houchmandzadeh, 2003; 
McKane et al., 2004; Alonso, and McKane, 2004; Etienne, and Alonso, 2005). The 
performance of the zero-sum multinomuial has been intensively compared only 
with the log-normal distribution (Hubbell, 2001; Williamson, and Gaston, 2005; 
Pueyo, 2006; McGill, 2003; Nee and Stone, 2003; Maurer, and McGill, 2004; Volkov 
et al., 2003). Hubbell showed that the zero-sum multinomial distribution fits trop­
ical forest tree and coral reefs datasets better than the log-normal (Hubbell, 1997, 
2001). However, according to recent analysis, even if the log-normal theories do 
not lead to biologically realistic species abundance distributions (Williamson, and 
Gaston, 2005), one cannot always distinguish between these two distributions from 
empirical data (Pueyo, 2006).

Since the time when Hubbell’s neutral theory was popularized, the neutral 
theories in ecology has been developed in many published works, they have been 
enriched with a large amount of theoretical results (Alonso, and McKane, 2004; 
Etienne, and Alonso, 2005; Etienne and Olff, 2004; He, and Hu, 2005; Houch­
mandzadeh, and Vallade, 2003; Hubbell, 2001; McKane et al., 2000, 2004; Sole 
et al., 2004; Vallade, and Houchmandzadeh, 2003; Volkov et al., 2003, 2005; 
Williamson, and Gaston, 2005), intensive discussion (Chave, 2004; Gaston, and 
Chown, 2005; Maurer, and McGill, 2004; Hu, He, and Hubbell, 2006; Nee and
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Stone, 2003; Nee, 2005; Ricklefs, 2003; Williamson, and Gaston, 2005) and test­
ing (Bell, 2001; Hubbell, 2001; Maurer, and McGill, 2004; McGill, 2003; Pueyo, 
2006; Volkov et al., 2003; Williamson, and Gaston, 2005).

In the framework of Hubbell’s neutral theory the populations are studied in 
two scales: local community and regional metacommunity (Hubbell, 2001; McK­
ane et al., 2004). The dynamics of species abundances on the local scale depends 
on species representation in the metacommunity -  a large reservoir of all trophi- 
cally similar individuals and species with constant fractional species abundances, 
on the intensity of immigration from the metacommunity and, of course, on the 
size of local community. Based on the principle of neutrality and zero-sum assump­
tion Hubbell defined the model for the abundance IVj of species i (i — 1 , . . . ,  S) 
in a local community of size J, J  =  Xq=i Nj,  using the following transition prob­
abilities (Hubbell, 2001)

Wi(N  -  1|N)  =  J  ((1 -  m ) y ^ y  +  m( 1 -  c * )) ,

Wi(N +  l \N)  =  ^ ^ ( ( l - m ) j ^  +  mcu^,  (2>1)

Wi(N\N)  =  1 -  Wi(N - 1 \ N ) ~  Wi{N  +  1\N),

where u>i is the fractional metacommunity relative species abundance of the ith 
species, m  is the probability that a death in the local community will be replaced 
by an immigrant and S  is the total number of species.

Hubbell’s model is neutral, so it does not involve any effect of mating system. 
Each individual has equal opportunity to migrate and reproduce independently 
of species abundance and size of local community. The dynamics of species abun­
dance in neutral local community is described, basically, in the same way as the 
dynamics of haploid genes in population genetics (Hu, He, and Hubbell, 2006).

For Hubbell’s model governed by Eq. (2.1), the species abundance distri­
bution and the first passage time of the species to extinction or fixation in a 
local community were investigated using Markov chain approach (Hubbell, 2001). 
Hubbell noticed that the species abundance distribution can take on different 
shapes with respect to the immigration probability, metacommunity relative abun­
dance and community size. In the case of isolated community it was shown that 
the mean time to fixation (extinction or complete dominance) varies as a function 
of community size and initial species abundance, and this time is maximal when 
the initial abundance of the species is a half of the community size. For non­
isolated local communities the mean and variance of the first passage time of the 
species to extinction were also investigated and, moreover, it was proposed that 
the time to local extinction in the ergodic community is approximately Gamma 
distributed (Hubbell, 2001).

The same results for the species abundance distribution were obtained using 
Birth-Death Master equation approach (Volkov et al., 2003; Vallade, and Houch­
mandzadeh, 2003; McKane et al., 2004), by which the probability that the ith 
species contains N  individuals at time t is governed by the following system of
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ordinary differential equations

^  =  Wi { N\ N  +  1 )pN+i,i +  Wz( N\ N  -  l )pN-i,i (2 2)

~ { Wi ( N  +  1\N) +  Wi (N -  l \ N) ) pN>i,

where N  — 0 , . . .  , J  and Wi{0\ -  1) =  Wi(J\J  +  1) =  0.
Based on the Birth-Death Master equation approach Volkov et al. (2003) ob­

tained the average number of species with specified abundance in a local commu­
nity. The number of species 0jv(t) containing N  individuals at time t was defined 
as

s
=  (2.3)

j' = i

where the indicator I j (N, t )  is a random variable, which takes the value 1 with 
probability PN, j { t )  and 0 with probability 1 — pNj ( t ) ,  and the average number of 
species containing N  individuals was calculated as

s
(<t>N(t))= y ; p n m - (2-4)

3 = 1

For S  demographically identical species in a community the average number of 
species was obtained as

(<f>N{t)} =  SpN(t), (2.5)

where p^ (t)’s satisfy system of equations (2.2) with oj =  uii =  1/S.
Note that this approach to the problem of species abundance relationships can

be accepted only for the communities with very large number of species. Because
the species do not behave independently in Hubbell’s zero-sum local communities 
due to zero-sum assumption (Etienne and Olff, 2004, 2005).

Up to this time, for analysis of Hubbell’s zero-sum neutral local community, 
only discrete methods were applied. Such methods are used when the main focus 
of research is on the investigation of small living systems; for large systems these 
methods are inextricable due to large number of variables and equations. In con­
trast to discrete methods, continuous methods not only allow to analyze arbitrary 
large communities, but also investigate such important quantities for community 
ecology and conservation biology as persistence probability, risk or probability of 
extinction, the distribution of the first passage time of the species to extinction, 
see (Lande, 1993; Gardiner, 1983).

In this chapter a continuous probabilistic technique will be applied for the 
investigation of Hubbell’s zero-sum neutral community theory. It will give as a 
possibility not only to derive the species abundance distribution and the moments 
of the first passage time to extinction or fixation, but also to define the distribution 
of the first passage time to extinction and make a classification of the species 
dynamics in local communities with respect to the immigration, species abundance 
in the metacommunity and size of local community. Note that the distribution of
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the first time to extinction and the quantitative classification of Hubbell’s zero- 
sum local communities have not been obtained before.

The chapter is organized as follows. In Section 2.2, the continuous model for 
the probability density of species abundance is derived using Kolmogorov-Fokker- 
Planck forward equation. Based on the probability density of species abundance 
in the local community the distribution of number of species with the specified 
abundance is obtained. In Section 2.3, the continuous approach is applied to study 
of the time development of species abundance distribution in the local community. 
Using Kolmogorov-Fokker-Planck backward equation technique the distribution 
and moments of the first passage time to extinction, and the probability of the 
species extinction from the local community are obtained. In Section 2.4, the sen­
sitivity analysis is performed for the equilibrium species abundance distribution, 
extinction and fixation times. According to this analysis four realistic scenarios 
for the species dynamics are distinguished with respect to the immigration proba­
bility, species metacommunity relative abundance and the size of local community. 
And, finally, a comparison of the simulation study results with the results of the 
continuous analysis is presented.

2.2 Species abundance distribution

2.2.1 Modified model
In order to derive the continuous model for the species abundance distribution in 
a zero-sum local community of size J , I define the transition probabilities for the 
change A N t of the number of individuals of the ith species per time step At  
as

Pr(ANi =  — l|IVj =  N)  =  fj ,AtWi(N -  1\N),
Pr(A =  1| Ni =  N)  =  n At Wi ( N +  1\N),
Pr(ANi =  0|IVj =  N)  =  1 -   ̂ '

-  f iAt (Wi(N - 1 \ N )  +  Wi (N  +  1|IV)),

where J  =  Yl j=i N ?> & dm number of all species, A Ni — Ni(t  +  At) — Ni(t), 
u>i is the fractional metacommunity relative species abundance of the ith species, 
i =  1 , . . . ,  S, m  is the probability that a death in the local community will be 
replaced by an emigrant, and n is the number of death events per unit time
interval. Note that the system of transition probabilities (2.6) is derived from
Hubbell’s zero-sum model (2.1).

For the random variable A Ni, which takes the values - 1 , 0  and 1 with proba­
bilities specified in (2.6), the first and second moments per infinitely small time
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interval A t  can be easily calculated as

E(ANi \Ni  =  N)  (  N  \
V i{N )= i™  — At— = - 1 )  >

Dl (N)  _  Um =  M
V ' At—>0 At  ̂ 7
/ 0/1 , N ( J - N ) „  .iV / i V \ \

,‘ ( 2 (1~ m) J ( J - l )  +  — 0 7  + ™ * ( i  -  7 )  j  ■

2.2.2 Dynamics of species abundance distribution. 
Kolmogorov-Fokker-Planck forward equation

To introduce a continuous model for the distribution of the species abundance, I 
define the abundance n of the ith species as a continuous variable allowing any real 
values from the interval [0, J], Then the conditional probability density, Pi(n, t ) ,  
that the ith species has abundance n at time t  satisfies Kolmogorov-Fokker-Planck 
forward equation

w = \ h m n ) P i )  ~  h Vi{n)Vi)' (2-8)
where n G (0, J), t  >  r, and Vi(n) and Di(n)  are the first moment and the variance 
of the change in the abundance per time step A t  as Af —> 0 defined in (2.7).

Equation (2.8) is supplemented with the initial condition defining the proba­
bility density of species abundance p\  (n) at the initial time moment t =  r

Pi(n,r) =p°i(n), n e [ 0 , J ] .  (2.9)

Equation (2.8) is considered subject to the following natural boundary condi­
tions

^ ^ ( A ( n ) P i)  -  (Vi(n)pi) =  0, (2.10)

at n =  0 and n =  J. The boundary conditions (2.10) are sufficient for the 
conservation of probability density

/  pi(n, t )dn =  f  p°(n)dn — l,  for all t >  r. (2-11)
Jo Jo

2.2.3 Equilibrium species abundance distribution
The equilibrium (the steady state) solution Pi of problem (2.8)-(2.11) fulfils the 
following ordinary differential equation of the second order

0 =  \ & {Di{n)Pi) ~  n  e  (0>J)> (2-12)

and boundary conditions (2.10), where the total probability over the interval [0, J] 
equals 1.
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Equation (2.12) can be easily transformed to the ordinary differential equation 
of the first order

representing the total probability instead of boundary conditions.
Problem (2.13), (2.14) can be explicitly solved. The steady state solution is

For known coefficients V* and Di  from (2.7), expression (2.15) can be trans­
formed to

It follows from Eqs. (2.15) and (2.16) that the steady state distribution of the 
species abundance is independent of the parameter fj, which corresponds to the 
time scale.

I would like to emphasize on the symmetry property of the probability density 
of species abundance in a local community of size J  stated as

This property can be easily explained for the distribution of two species with the 
metacommunity relative abundances u  and 1 — w, respectively. In view of (2.17), 
the probabilities that the first species abundance is n and the second species 
abundance is J  — n are equal.

2.2.4 Number of species with specified abundances
By an analogy with Eqs. (2.3)-(2.5), see (McKane et al., 2000; Volkov et al., 2003), 
the number of species containing from ni  to ri2 individuals at time t can be defined 
as

0 =  ~ ( D i( n) P^) - ( Vi ( n ) P ^  rae ( 0 , J ) , (2.13)

with the integral condition,
j

(2.14)

(2.15)

__ 2n±foi — d2)+2vp—d\ 
d2(n+—n~)

l—m
where n±

-P i (^ ) |w j= u >  — Pi{J ^ ) | u > j = l — uj- (2.17)

s
(2.18)
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where S  is the total number of species and indicator I j (ni ,n2, t ) is a random vari­
able which takes the value 1 with probability J)”2 P j { n ,  t ) d n  and 0 with probability
1 — P j ( n , t ) d n ]  p j  satisfies problem (2.8)-(2.11) for the evolution of the proba­
bility of species abundance or problem (2.13)-(2.14) for the probability of species 
abundance in an equilibrium community. Thus, the average number of species 
containing from n \  to n2 individuals at time t  is given by

S  pn 2
(<t>(ni,n2,t)) =  Y 2  Pj(n, t)dn.  (2.19)

i=i Jni
When a community consists of S  demographically identical species, the previous 
expression can be rewritten as

pn2
(^ (n i,n 2,t)) =  S  /  p ( n , t ) d n , (2.20)

J n\

where p =  pj  satisfies problem (2.8)-(2.11) for dynamic community or problem 
(2.13)-(2.14) for the equilibrium community with uij — u> =  1/S.

However, this approach to the problem of species abundance relationships can 
be validated only for very large local communities and for large number of species. 
In local communities governed by zero-sum assumption all species are not really 
independent, see (Etienne and Olff, 2004, 2005).

2.3 Persistence and extinction

2.3.1 Distribution of the first passage tim e to extinction. 
Kolmogorov-Fokker-Planck backward equation

The aim of this section is to study the probability of species extinction within the 
specified time interval. Note that this probability is often accepted as a measure 
of extinction risk in conservation management (Ginzburg et al., 1982; Primack, 
2002; Lande et al., 2003).

Let the initial abundance of the ith species at time t =  0 be n. Then the
probability that the ith species has not gone extinct by time I in a zero-sum
neutral community of size J  is defined as

Gi(t ,n)  =  Pr(T > t ) =  j  pi(y, t \n,0)dy.  (2.21)
Jo

This probability fulfills the Kolmogorov-Fokker-Planck backward equation (Gar­
diner, 1983; Lande et al., 2003)

= 2 Di{n)~ E ^  +  n e  (0’J ) ’ * > ° ’ (2'22)
with the initial condition

Gi ( n ,  0) =  1, n  E  [0, J], (2.23)
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where the coefficients V, and Di  are defined by (2.7).
Then the distribution function for the persistence time or the first passage time 

to extinction of the ith species with the initial abundance n from the interval of 
abundances (0, J] is

Fi (n,  t) =  1 -  G i ( n ,  t). (2.24)

And, furthermore, the probability density for the first persistence time is equal to

f i (n, t )  — —dGi (n, t ) / dt .  (2.25)

Note that the distribution of the persistence time and the first extinction time 
are extremely important in the problems of conservation biology. Since, from 
the known distribution of the persistence time, one can find, for example, the 
probability that the species is present in the community within given fixed time 
interval.

To completely define the problem for the probability of remaining in the in­
terval of species abundances (0, J], the boundary conditions for the probability 
at the species abundances n — AT =  0 and n =  N+ =  J  have to be specified. 
Since we are interested in the first passage time to the zero species abundance, 
we specify the absorbing boundary condition at the boundary species abundance 
n == iV_ — 0

Gi(0, t)  =  0, t >  0. (2.26)

Another type of boundary condition, called reflecting boundary condition, is 
stated at the boundary abundance n =  N + =  J

dGi(n,  t ) /dn\n~j  =  0, t >  0. (2.27)

This type of boundary conditions is specified when it is known that the species 
abundance cannot jump over some abundance level.

2.3.2 M oments of the first passage tim e to extinction
For the known distribution function (problem (2.22),(2.23),(2.26),(2.27)), the mean 
first passage time to the zero species abundance

= J 0 t ~ ^ d t~ ^dt =  Jo Gi^ ^ d t ' (2 '28)

can be obtained from the ordinary differential equation

l Ci(„ ) ! « l  + v, (n)S  =  - 1, n e ( M )  (2.39)

supplemented with the absorbing boundary condition at the boundary n — 0 and 
the reflecting boundary condition at the boundary n =  J,

77(0) =  0, dTl  (n) /  dn\n=j  =  0. (2.30)
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Similarly, the kth moment of the first passage time,

(n) =  /  tfcdtF ,(n ,t) -  - k  /  tk- xGi {n, t )dt , (2.31)

can be computed from the differential equation

(2.32)

subject to boundary conditions (2.30) for T k.
Note that the kth. moment of the first passage time to extinction of the ith 

species satisfies the following property

It follows from (2.33) that the kth moment of the first extinction time is inversely 
proportional to the kth power of /i. Thus, we can say that the parameter p, the 
number of death events per unit time interval, plays a role of the time scale for the 
time evolution of the species abundance in local community. The importance of 
the time scale and the problems with it defining in neutral theory of biodiversity 
was noticed and discussed by Nee (2005), Lande et al. (2003), Leigh (1999).

Note also that the problem for the mean first extinction time can be solved 
explicitly (Gardiner, 1983) as

where Pt is the equilibrium probability density of the ith species abundance. Fur­
thermore, it can be shown that T4(n) is an increasing function of the initial 
abundance n, and, moreover, d T x(n)/dn  >  0 for n E [0, J).

2.3.3 M oments of the first passage tim e to fixation
The problem of the first passage time to species fixation (extinction or monodomi­
nance) can be also addressed using the backward Kolmogorov-Fokker-Planck tech­
nique. In this case we replace the reflecting boundary conditions at n =  N + — J 
by the absorbing boundary conditions in equations (2.27) and (2.30).

Note also that as the equilibrium density of species abundance, the first fixation 
time satisfies the symmetry property, that is, the mean first passage times to 
fixation are equal for two species with the metacommunity relative abundances 
equal to cj, =  uj and uij — 1 — cj, if their initial abundances are n and J  — n, 
respectively, where J  is the size of the local community

3?(n)U=A =  ^ J ; fc(n)U=i. 
I1

!/*=£ — (2.33)

Di{y)Pi{y)
(2.34)

x,i(^ ^) I OJj=1 —oj (2.35)
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2.3.4 Probability of the species extinction
The probability of the species extinction is another characteristic of species be­
havior in local community. Using this probability we can estimate the chance of 
the species to go extinct in comparison with the chance of it to monodominate. 
The probability of extinction for the ith species nf(n)  can be calculated from the 
following ordinary differential equation (Gardiner, 1983)

1 d?7T® dn0
i Di ( n ) ^  +  Vi ( n ) ^  =  0, n € (0, J)  (2.36)

with the boundary conditions

tt°(0) =  1, tr°(J) =  0. (2.37)

The probability of complete dominance for the ith species in the local community, 
7r/(n), can be obtained from the equation

L°(n ) +  =  1,

or from Eq. (2.36) supplemented with the reverse boundary conditions to (2.37).

2.3.5 Quasi-extinction
Quasi-extinction is another concept related to the extinction process. By this 
concept a species is considered extinct once it reaches or falls below some small 
level (quasi-extinction level) of abundance (Ginzburg et al., 1982; Lande et al., 
2003). Assuming that C >  0 is a level of quasi-extinction (a lower absorbing 
boundary of species abundance), the problems for the first passage time to quasi­
extinction of the ith species and for the probability of the species quasi-extinction 
can be formulated by replacing the lower bound for critical species abundance 
AL =  0 by AL =  C  in the respective problems for the first passage time to 
extinction and the probability of extinction. Note that the mean first passage 
time to quasi-extinction can be also calculated from the following expression

T/(n) =  T /(n ,C ) +  T /(C ,0), n >  C,

where T /(n , k) is the mean first passage time for the ith species from the initial
abundance n > C  to the abundance k, n > k.

2.4 Sensitiv ity  analysis for species dynam ics in
local com m unity

2.4.1 Analysis of species abundance distributions
In this section, the properties of species abundance distribution with respect to 
different values of the immigration probability m, the species metacommunity 
relative abundance u>i and the community size J  will be investigated.
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Let us first consider mixed boundary conditions (2.10). At both ends n  — 0 
and n  —  J  of the abundance interval, these boundary conditions can be rewritten 
as

A ( n ) ^  +  (D'(n) -  2Vi(n))pi =  0. (2.38)

At the abundance level n =  0 condition (2.38) degenerates to the zero flux 
boundary condition, also known as Neumann boundary condition, in the form 
dpi /dn\n=0 =  0 when D[(0) — 2V*(0) =  0. At the abundance n =  J ,  condition
(2.38) also transforms to the Neumann boundary condition dpi /dn\n=j  — 0 when 
£>((</) —  2Vi ( J )  =  0. The zero flux boundary conditions imply zero gradient of 
the probability of species abundances at n =  0 and n =  J ,  that is state that the 
changes in the species abundance at the boundaries are negligible. The values of 
the immigration probability, m,  for which the above conditions are fulfilled can 
be calculated at each boundary. Specifically at the abundance level n — 0

1

(J  -  l)(w i +  +  j - j  -  i )

and at n  =  J
1m j  =  --------------------------------

{ j  -  i) ( i  -  Wi -  f  + j b [  + j j )

For large local community sizes these values are equal to the drift with respect 
to the specific species i in the local community and to the drift with respect to 
all species other than the species i, that is, mo «  l/(w jJ) and toj 1/((1 -  
Wi )J) ,  respectively. Note that for the species with small metacommunity relative 
abundance, the drift with respect to all species other than the species i in the 
local community is approximately equal to the drift in the local community, 1 /J.

Let us restrict our analysis of the probability density to the species with the 
metacommunity relative abundance smaller then 1/2, i.e., <  1/2. The results
for cot >  1/2 can be obtained in analogous manner and will be only commented.

We shall examine the structure of the species abundance distribution sepa­
rately for the three intervals of the immigration probability (0, mj ) ,  (m j , mo) and 
(mo, 1). For the first interval of the immigration probability (0 ,m j), we observe 
that the probability that the species will go extinct or monodominate in the lo­
cal community is very high, see Figure 2.1 for 0 < m <  0.005 =  1 /J  «  mj .  
In this case the probability density of the species abundance has ”U” shape, see 
also (Hubbell, 2001), the immigration events are so rare that the species most 
of time are either at the abundance level 0, or J.  Since the new immigrants are 
rare and fundamentally change the structure of the local community, this type 
of immigration can be considered rather as catastrophic than regular. Note also 
that because the immigration probability is smaller than the drift with respect 
to the specific species in the local community and to the drift with respect to 
all species other than the specific species, the immigration effect is too small for 
species turnover in the local community, and diversity of such community is very 
low.
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When the immigration probability belongs to the second interval from m j  to 
mo, new individuals immigrate to the local community much more often than in 
the first case. This type of immigration essentially increases the diversity of the 
community, and decreases the chance of the species monodominance. Neverthe­
less, the intensity of immigration is still too low to essentially decrease the proba­
bility of extinction of the specific species. In this case the equilibrium probability 
density for the species abundance has ” S” shape with the maximal value at zero 
abundance, see Figure 2.1 for m j  « 1  / J  — 0.005 < m < 0.1 =  ss mo.

Finally, for the third interval of the immigration probability from mo to 1, the 
species in the local community becomes much more stable around nonzero species 
abundance than in the first two cases, see Figure 2.1 for m > 1/((1 — oj)J) — 
0.1. And the level of stabilization increases with increase of the immigration 
probability. The mode of the probability density for the species abundance is 
near uJ,  and the probability density has reverse ”U” shape. Moreover, the species 
turnover is very intensive for the immigration probabilities higher than the drift 
with respect to the specific species in the local community.

The immigration probability has different effect on the common species with 
oji >  1/2. In this case the first interval for the immigration probability from 0 to 
m0 can be classified as the interval with high chance of species fixation. As in the 
case with u> < 1/2 the species will occupy all local community or go extinct most 
of the time. The second interval, where the immigration probability is between 
mo and mj ,  is characterized by high probability of the species monodominance, 
that is, most of the time the species will occupy all local community. And, finally, 
for the immigration probabilities larger than mj ,  the mode of the probability 
density of the species abundance is located between 0 and J . Note also that if 
the metacommunity relative abundance u>i =  1/2, the intermediate interval of the 
probability of immigration is degenerated, see Figure 2.2(a).

The results for species dynamics in the local community obtained from the 
above analysis are summarized in Figures 2.2(a,b). Figure 2.2(a) shows four possi­
ble scenarios for the species dynamics in the local community: (i) low immigration 
intensity: the species most of the time is either not present or monodominant in 
the local community, see also (Hubbell, 2001); (ii) medium immigration intensity 
with small metacommunity relative abundance: the species most of the time is 
absent from the local community; (iii) medium immigration intensity with high 
metacommunity relative abundance: the species most of the time is monodom­
inant; and (iv) high immigration intensity: the species in the local community 
persists with high probability, and its relative abundance in the local community 
is more similar to those in the metacommunity, see also (Hubbell, 2001).

With increase in the immigration probability, scenario (i) changes first into 
either scenario (ii) or (iii), and then into scenario (iv). Also it worth to notice 
that when the metacommunity relative abundances is either very small or very 
high, the species dynamics can follow only two scenarios, see Figure 2.2(a). In 
the first case because the immigration probability is never high enough for the 
species abundance to be stabilized around nonzero mode in the local community, 
the probability for this species to go extinct is very high. In the second case,

41

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



when the metacommunity relative abundance is very high, the probability that 
the species will occupy all local community is also very high.

Figure 2.2(b) shows results of the sensitivity analysis for species dynamics 
with respect to different local community sizes. Specifically, it shows that for 
larger local communities, smaller immigration probability is required for species 
persistence.

2.4.2 Effect of immigration probability
In the previous section we defined four possible scenarios for species dynamics in 
the local community with respect to the immigration probability, metacommu­
nity relative abundance and size of the local community. Here we look at the first 
passage time of the species to either extinction or fixation (extinction or mon­
odominance) in the local community with respect to the immigration probability 
and initial species abundance. We shall consider the effect of the immigration 
probability separately for each possible scenario for low metacommunity species 
abundance. The case with high metacommunity species abundance will not be 
considered in detail, since the behavior of the first passage time dynamics is es­
sentially the same.

We start from scenario (i) for which the immigration probability is very small. 
In this case the species becomes fixed in much shorter time interval than the time 
to the next immigration event, thus the distribution and dynamics of the species 
abundance are very similar to the case without immigration. Since the species 
most of the time stays at the abundance level equal to the local community size 
or zero, each immigration event can be viewed as a catastrophic perturbation into 
the stabilized system at the constant species abundance.

In general, the first extinction time problem for scenario (i) is not very infor­
mative, since the species can have abundance close to the local community size 
most of the time (Figure 2.1) and the probability that the species abundance will 
change to smaller level is very low (Figure 2.3(f)). This persuades to very high 
uncertainty in the result for the first extinction time (Figure 2.3(e)). More inten­
sive immigration to the local community leads to increase in the probability of 
change in the species abundance from very large initial abundance to the abun­
dance close to zero. Thus, as a result, the mean and variance of the first passage 
time to extinction decreases (Figures 2.3(b,e)).

Since the uncertainty in the first passage time to fixation for species with low 
immigration intensity is of smaller order than the uncertainty in the first passage 
time to extinction, the first fixation time can be considered as more effective 
measure of species viability in this case. Note also that the first fixation time, on 
the contrary to the first extinction time, increases with increase in the immigration 
probability, see Figures 2.3(b,d) for small m.

Another interesting question for investigation concerns comparison of the first 
passage time to fixation or extinction in communities with small immigration 
probability to the communities without immigration, m — 0. For m  =  0 there 
are two absorbing states for the species abundance of 0 and J,  and the extinction
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event never occurs if the species totally occupies the local community. However, 
even for very small immigration intensity, the probability of extinction is always 
nonnegative. Figure 2.3(a) illustrates the asymptotic convergence of the first 
passage time to extinction as m  —> 0. The asymptotic analysis shows that the 
mean first passage time to extinction T̂ xt(n) converges to

as m  —> 0, where Cq is the positive constant, while the mean first passage time to 
fixation can be approximated by

a s m - ^ 0 .  Hubbell (2001) in his analysis of the isolated local community (m =  0) 
based on discrete Markov chain approach, obtained the following explicit formula 
for the mean first passage time to fixation

It is easy to note that the above expression is in agreement with our result, that 
is, Tjix(N)  converges to T ( N ) as m  —> 0, see also Figure 2.3(c).

Note also that approximations (2.39) and (2.40) state that in communities 
with very small immigration probabilities, the species metacommunity relative 
abundance plays almost no role in community species dynamics.

Further increase of the immigration probability (scenario (ii)) makes the local 
community richer on newcomers, the community becomes more diverse, and the 
turnover rate increases. As a result the species abundance distribution curve be­
comes ”S” shaped with the mode at the zero abundance. Naturally, the dynamics 
of extinction and fixation processes go through many changes during this tran­
sition scenario. From Figure 2.3(b) we can observe that the switching between 
decrease and increase of the mean first passage time to extinction with respect 
to the immigration probability takes place around the immigration probabilities 
from scenario (ii). For this scenario the mean and variance of the first fixation 
time becomes closer to the mean and variance of the first extinction time. This is 
due to the fact that for small species metacommunity relative abundance only the 
extinction is highly probable, the probability of monodominance is very small, see 
Figures 2.3(b,d,e).

Finally, we shall consider the interval of large immigration probabilities (sce­
nario (iv)). For this interval, the maximal probability of the species abundance is 
achieved for an abundance close to the mode WjJ and this probability increases 
with increase in the immigration probability. The species abundance is more sta­
ble around the mode u>iJ for higher immigration intensity, see Figure 2.1. As a 
consequence the mean and variance of the first passage times to extinction and

(2.39)

N J- 1

k=N+1
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fixation for these species increase with the increase in the immigration probability, 
see Figures 2.3(b,d).

Now let us summarize the relationship between the mean first passage times 
to extinction and fixation and the initial species abundance. It was already men­
tioned above that for very small values of the immigration probability the mean 
first extinction and fixation times are independent of the species metacommunity 
relative abundance. For small immigration probabilities, the mean first extinc­
tion time is almost proportional to the initial species abundance; the mean first 
fixation time increases on the interval (0, J /2 ), and decreases symmetrically on 
(J /2 , J), see Figures 2.3(a,c). As the immigration probability increases the mean 
first fixation and extinction times become closer to each other for all initial abun­
dances distinct from the abundances close to J. Note also that for communities 
with large immigration intensities the first extinction and fixation times are al­
most constant for the initial species abundances inside of the interval (0, J). At 
the initial abundances close to zero the mean first extinction and fixation times 
increase sharply from the zero level to some positive constant level. Similarly, 
the mean first fixation time decreases to zero sharply in the small vicinity of the 
initial abundance J, see Figures 2.3(a,c).

2.4.3 Effect of species metacommunity relative abundance
Figure 2.4(a) illustrates the effect of varying species metacomunity relative abun­
dance, oJi, on the equilibrium species abundance probability density for the immi­
gration probability m  =  0.02 > 0.01 =  2 /J . For small metacommunity relative 
abundance w* <  0.2, it can be seen from Figure 2.4(a), that the species dynam­
ics follows scenario (ii); for large metacommunity relative abundance u>i >  0.8, 
the species dynamics follows scenario (iii), and for 0.2 < < 0.8, the species
dynamics follows scenario (iv).

Analogous analysis can be carried out for small values of the immigration 
probability m. Specifically, it can be shown that for m  <  0.005 =  1 /J  the species 
dynamics follows scenario (i) for all possible values of the metacommunity relative 
abundance, while for the immigration probabilities from the interval (1/J, 2 /J ), 
the species dynamics first follows scenario (ii) for small u ,̂ then switches to sce­
nario (i) and, finally, for large w* to scenario (iii).

Figures 2.4(b,c) show the behavior of the mean first passage time to extinction 
and fixation. From Figure 2.4(b) one can easily see that the mean first passage 
time to extinction is an increasing function of the metacommunity relative abun­
dance, and the initial species abundance. This behavior of the extinction time 
is related to the species persistence in the local community: the persistence time 
is longer for the species with larger abundance and for the species with larger 
number of members in the metacommunity. From Figure 2.4(c) one can infer that 
the mean first passage time to fixation satisfies the symmetry property given by 
Eq. (2.35). Note that this property is essentially straightforward for understand­
ing in the case of two species in the zero-sum local community, since extinction of 
one species means monodominance of another species in the community.
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2.4.4 Effect of community size
The effect of varying local community size, J, on the steady state (equilibrium) 
probability density function is shown in Figure 2.5(a). For the present analysis, 
the immigration probability was fixed at the level of 0.01, and the metacommunity 
relative abundance was chosen to be 0.2. It can be seen from Figure 2.5(a) that the 
patterns of equilibrium species abundance are changing when the size of the local 
community increases. For small local communities, i.e., J  — 100, the immigration 
intensity is too low for species persistence, m  — 0.01 < m m { m o ,m j} ,  and the 
species dynamics follows scenario (i) with very high chance of species fixation. 
For the local communities of size J  =200, 300, 400 and 500, the species dynamics 
follows scenario (ii) with very high chance of extinction (m j  < m <  mo). And, 
finally, for the local communities of size J  > 500, the species follow scenario (iv) 
with high probability of persistence and high diversity (m > m ax{m o,m j}). The 
dynamics of the first passage time to extinction also differs with respect to the 
size of the local community, see Figure 2.5(b). If the size of the local community 
is small, then the species follows scenarios (i) or (ii) with high probability of 
extinction and, moreover, the first passage time to species extinction is a strictly 
increasing function of the initial species abundance. Since, for larger communities, 
smaller immigration intensity is required for species persistence, see Figure 2.2(b), 
the species abundance is inside of the interval (0, J ) most of the time, and thus, 
the mean first passage time to species extinction is almost independent of the 
initial species abundance.

2.4.5 Probability density of the first passage tim eto ex­
tinction

To complete our analysis of the species dynamics, let consider the distribution 
function F,(n, t) of the first passage time to extinction of the ith species. Note 
that the distribution function of the first extinction time Fi(n,t)  in the local 
community defines the risk or probability of extinction of the ith species with the 
initial abundance n before time t. It is directly related to another fundamental 
quantity for conservation biology, the probability of species persistence, Gi(n, t) ,  
by the following expression Gi(n, t) =  1 — Ft(n, t).

Figures 2.6(a,b) present the effect of varying initial abundance no of the 
ith species on the probability distribution and density of the first extinction 
time i in a local community of J  =  200 individuals undergoing zero-sum eco­
logical drift (u>i =  0.05, m =  0.05). Note that numeric approximations for 
the probability distribution function shown in Figure 2.6(a) were obtained from 
Eqs. (2.22),(2.23),(2.26) and (2.27). The probability density functions shown in 
Figure 2.6(b) were calculated as dFi (n , t ) /d t  using the distribution functions of 
the first extinction time Fi(n,t).  Alternatively, they could also be obtained from 
Eq. (2.22) or as § A (n )3 2i y d n 2 +  Vi(n)dFi/dn.

Unfortunately, there is no explicit formula for the distribution of the first 
passage time to extinction. So, we will compare our numerical results for the dis-
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tribution of the first extinction time to Gamma distribution. It was presumed by 
Hubbell (2001) that Gamma distribution is giving a good fit for the distribution of 
the first passage time to extinction. To verify this observation of Hubbell, the the­
oretical probability densities of the first passage time to extinction obtained from 
Eqs. (2.25) for the species with small and large initial abundances were compared 
to the relative frequencies of the first passage time to extinction calculated based 
on the simulations of Hubbell’s model (2.1), and to the shifted Gamma distribu­
tions fitted to simulated values of the first extinction times, see Figure 2.7. From 
Figure 2.7 one can note that for the initial abundance of the species no — 50 in a 
local community of size J  =  200, a shifted Gamma distribution gives a good fit to 
the simulated frequencies of the first extinction time and is close to the probability 
density of the first passage time to extinction calculated from Eq. (2.22); however, 
for smaller initial species abundance, i.e., n0 =  5, a shifted Gamma distribution 
does not give a good fit to the distribution of the first passage time to extinction. 
Thus, we can conclude that Gamma distribution produces a good fit to the prob­
ability density of the first passage time to extinction only for large initial species 
abundances, but for small initial species abundances such fit is unsatisfactory.

2.5 D iscussion and conclusions
The unified neutral theory of biodiversity and biogeography proposed by Hubbell 
(2001) aims to explain the species diversity and relative species abundance in 
ecological communities relying on the principles of zero-sum game and neutral­
ity. Up to this time the zero-sum neutral model of Hubbell was analyzed using 
only discrete techniques such as Markov chain analysis (Hubbell, 2001) and analy­
sis of master birth-death ordinary differential equations for the species abundance 
probability distribution (Volkov et al., 2003; Vallade, and Houchmandzadeh, 2003; 
McKane et al., 2004). In this work, Hubbell’s model was considered from a differ­
ent prospective. A continuous technique based on the Kolmogorov-Fokker-Planck 
forward and backward equations was applied for the investigation of the processes 
in the local communities. This technique gave us a possibility not only to work 
with communities of any size, but also derive such important measures in conser­
vation biology as the probability distributions of the persistence time and the first 
passage time to extinction and fixation. Note that the model for the distribution 
of the first passage time of the species to extinction in zero-sum local community 
has not been obtained before. The presented model was evaluated and verified 
through the simulation study of Hubbell’s neutral zero-sum model, see Figure 2.7. 
Figure 2.7 shows that for the species with large initial abundances, the distribu­
tion of the first passage time to extinction is very close to Gamma distribution, 
as it was presumed by Hubbell (2001), but for the species with small initial abun­
dance, Gamma distribution does not give a good fit to the first passage time to 
extinction.

Moreover, the main significance of this work lies in proposing a realistic clas­
sification for the species dynamics in the local community, see Figures 2.2 (a,b).
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The species dynamics classification was obtained from the sensitivity analysis of 
the species abundance distribution and was formulated with respect to the im­
migration intensity, species metacommunity relative abundance, and, of course, 
the size of the local community. According to this classification, the four possi­
ble scenarios for the species abundance dynamics in the local community are the 
following:

(i) low immigration intensity (m < m in{m o,m j}): the species most of the 
time is either monodominant or not present in the local community; the 
local community is characterized by low diversity (only one monodominant 
species); the species abundance distribution is ”U” shaped; immigration has 
catastrophic character;

(ii) medium immigration intensity (m j  <  m  < m 0) with small metacommunity 
relative abundance (u <  1/2): the species goes extinct with high probabil­
ity; the local community is characterized by medium diversity; the species 
abundance distribution is ” S” shaped;

(iii) medium immigration intensity (mo < m < m j )  with high metacommunity 
relative abundance (u <  1/2): the species becomes monodominant with 
high probability; the local community is characterized by medium diversity; 
the species abundance distribution has reverse ”S” shape;

(iv) high immigration intensity (m > m in{m o,m j}): the species in the local 
community has approximately stable abundance ujJ:  the turnover of species 
is high; the local community is characterized by high diversity; the species 
abundance distribution has reverse ”U” shape.

Note that such quantitative characterizations of the species abundance distri­
butions have not been obtained before.

Also in this chapter, the time scale parameter was investigated. It is known 
that this parameter plays an important role in the species dynamics of living com­
munities (Nee, 2005), since it defines how fast the community structure changes 
with time. A scale parameter for the time evolution of the species abundance 
distribution in our model is the parameter p, which denotes the number of death 
events per unit time. We have shown that the ktb. moment of the first passage 
time to extinction and the A'th power of /i are inversely related, but the equilib­
rium distribution of species abundance is independent of the time scale parameter 
fi.

Finally, in this chapter a complicated behavior of the mean first passage time 
to extinction with respect to the immigration intensity was studied. It was no­
ticed (Hubbell, 2001) that for small immigration probabilities, the first extinction 
time decreases with increase in the immigration intensities, see Figure 2.3(b). As 
our analysis shows, this behavior is typical for the local communities with small 
immigration probabilities (scenario (i)). The species in such communities not only 
have a high chance to go extinct, but also have a high chance to monodominate.
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Moreover, more intensive immigration in such community leads to increase in the 
probability of the species to leave the monodominant state and, therefore, will 
lead to increase in the probability of the species extinction. As a result, the mean 
of the first extinction time will decrease. For large immigration intensities (sce­
nario (iv)), the mean first passage time to extinction increases with the increase in 
the immigration probability. This is connected to the fact that the rate of species 
turnover in such local community increases and the species abundance stabilizes 
around u>J. Note that the change in the monotonicity of the mean first time to 
extinction will occur only for the values of the immigration probabilities from the 
intermediate scenario (ii) or (iii).
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Figure 2.1: The effect of varying the probability of immigration m  on the equilib­
rium probability density function for the abundance of the ith. species in Hubbell’s 
zero-sum local community. Numerical results for a local community of J  =  200 
individuals and the species metacommunity relative abundance Ui — 0.05 are 
obtained from the exact solution (2.16) of Problem (2.13),(2.14).
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Figure 2.2: Classification for the local community species dynamics with respect 
to (a) different values of the immigration probability and the metacommunity 
species relative abundance; (b) different values of the immigration probability 
and the size of local community.
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Figure 2.3: The effect of varying the probability of immigration m  on the first 
passage times to extinction and fixation and on the probability of extinction for the 
ith species in Hubbell’s zero-sum local community of J  — 200 individuals and the 
species metacommunity relative abundance u  =  0.05: (a) the mean first passage 
time to extinction as a function of the initial species abundance for different values 
of m  [Eqs. (2.29),(2.30)]; (b) the mean first passage time to extinction as a function 
of the immigration probability for different values of the initial species abundance 
[Eqs. (2.29),(2.30)];
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Figure 2.3: Cont. (c) the mean first passage time to fixation as a function of 
the initial species abundance for different values of m  [Eq. (2.29) with absorbing 
boundary conditions at n =  7V_ =  0 and n =  N + =  J  (see Sec. 2.3.3)]; (d) the 
mean first passage time to fixation as a function of the immigration probability 
for different values of the initial species abundance [Eq. (2.29) with absorbing 
boundary conditions (see Sec. 2.3.3)];
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Figure 2.3: Cont. (e) the standard deviations of the first extinction and fixation 
times [Eqs. (2.29),(2.32) with boundary conditions (2.30) for extinction time and 
absorbing boundary conditions for fixation time (see Sec. 2.3.3)]; (f) the prob­
ability of species extinction [Eqs. (2.36),(2.37)]. All results are obtained using 
numerical approximations.
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the ith species on (a) the equilibrium probability density function of the species 
abundance obtained from the exact solution (2.16) of Problem (2.13),(2.14); (b) 
the mean first passage time to extinction of the ith species obtained from the 
numerical approximations of Problem (2.29),(2.30);
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Figure 2.4: Cont. (c) the mean first passage time to fixation of the ith species ob­
tained from the numerical approximations of Eq. (2.29) with absorbing boundary 
conditions at n =  1V_ =  0 and n =  N + =  J  (see Sec. 2.3.3). Example for a local 
community of J  =  200 individuals and the immigration probability m  =  0.02.
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Figure 2.5: The effect of varying the local community size J  on (a) the equilibrium 
(steady state) probability density function of the ith species abundance obtained 
from the exact solution (2.16) of Problem (2.13),(2.14); (b) the mean first pas­
sage time to extinction of the ith species in Hubbell’s zero-sum local community 
obtained from the numerical approximations of Problem (2.29),(2.30). Example 
for the species metacommunity relative abundance w* =  0.2, and the immigration 
probability m  =  0.01.
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the first passage time to extinction. Results are obtained from numerical approx­
imations of Problem (2.22),(2.23),(2.26),(2.27) and (a) Eq. (2.24), (b) Eq. (2.25). 
Example for a local community of J  =  200 individuals, the species metacommu­
nity relative abundance LUi =  0.05, the immigration probability m  =  0.05 and the 
number of death events per unit time fi =  1.
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Figure 2.7: Comparison of the probability density of the first passage time to 
extinction (solid lines) obtained from numerical approximations for continuous 
probabilistic model (2.22),(2.23),(2.26),(2.27) and Eq. (2.25) to the relative fre­
quencies of the first extinction time (dots) calculated from simulations of Hubbell 
model (2.1), and to the probability density functions of shifted Gamma distribu­
tions fitted to the simulated first extinction times (dashed lines). Example for 
the initial species abundances no =  5 and no =  50 in a local community of size 
J  =  200, the species metacommunity relative abundance tOi =  0.05, the immigra­
tion probability m  =  0.05 and the number of death events per unit time n =  1.
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Chapter 3

A Neutral Macroecological Model 
of Edge Effects

3.1 Introduction
It is frequently observed in ecology that the structure of living communities and 
species abundance dynamics at boundaries between different habitats is signif­
icantly different from that in the interior of homogeneous habitat (Ries et ah, 
2004; Strayer et ah, 2003). This is referred to as an edge effect. The most se­
vere impacts of the edge effect are related to changes in dispersal, microclimate, 
ecological functions, decreasing regeneration, and facilitating invasion of other 
species (Ries et ah, 2004). Analysis of the edge effect including identification and 
measurement of edges (Strayer et ah, 2003; Ovaskainen, 2004), impact of edges on 
migration, competition, growth and speciation (Fagan et ah, 1999; Ovaskainen, 
2004; Schilthuizen, 2000) movement and development of edges (Potapov, 2004) 
have been conducted using several different spatially implicit and explicit models, 
i.e., diffusion models (Fagan et ah, 1999; Ovaskainen, 2004), cellular automata 
model (Kupfer, 2003), random walk models (Schultz, 2001), matrix transition 
models (Schooley, 2005), etc.

In this chapter the impact of edge effects on the species abundance distribution 
and dynamics is investigated using the neutral macroecological theory by which 
individuals of all species are assumed to be per capita ecological equivalent, and 
communities do not have trophic hierarchy (Hubbell, 2001). For the purpose of 
analysis, a new model is constructed for the change in the species abundance in a 
local community at the edge between two different metacommunities, large reser­
voirs of all trophically similar individuals and species with constant fractional 
species abundances. The proposed model is developed under the zero-sum as­
sumption which states that the total number of individuals in the community is 
a conserved quantity (Hubbell, 2001).
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3.2 M odel form ulation
The model for the dynamics of species abundance in a local community at the edge 
introduced in this chapter will be compared to the Hubbell’s zero-sum neutral 
model in a local community connected to only one metacommunity (Hubbell, 
2001). Recall that Hubbell’s model for the change in the abundance Ni =  N  of 
species i in an internal local community of size J  connected to the metacommunity 
with the total number of species S  is formulated using the following transition 
probabilities

Wi(N - l \ N )  = j ((1 -  m ) i +  m{ 1 -  u*

Wi(N\N)  =  1 -  Wi(N  -  1|JV) -  Wi(N  +  1|]V),

where w* is the fractional metacommunity relative species abundance of the ith 
species, m  is the probability that a death in the local community will be replaced 
by an immigrant, and J  =  Ŷr

Our model for the dynamics of species abundance in a local community at 
the edge is formulated as follows. Let us assume that a local community of size 
J  is located at the edge between two metacommunities with unchanged relative 
abundances uj] and ujf of the ith species. Let us also assume that the probability of 
a new immigrant in the local community appeared from the fcth metacommunity 
is 9k, k =  1,2, where 9l +  92 =  1. Then for the local community at the edge we 
can define the change in the number of individuals N  =  N  oi species i per unit 
time step using the following transition probabilities

W t ( N + l \ N )  =  ( (1 - m )  j L  +  m 91u>j +  ro0 2w?) >

Wle(N\N)  =  l - W le{ N - l \ N ) - W %e{ N + l \ N ) .

3.3 Continuous probabilistic approach
To analyze the discrete model (3.2) for species abundance dynamics in a zero- 
sum local community at the edge between two metacommunities using continuous 
probabilistic technique, this model has to be adapted for any continuous time 
steps and species abundances. Further, let assume that the species abundance 
can attain any value from the interval [0, J}. Then the transition probabilities for 
the non-zero change AiVj =  Ni(t +  At)  — Ni(t) in the number of individuals Ni of 
species i per time step At can be evaluated as follows

Pr(A Ni =  A| Ni =  N)  =  /xA tW?(N  +  A\N) ,  (3.3)
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for A =  1 or —1, where p  is the number of death events per unit time interval.
Using the transition probabilities specified in (3.3), the first and second mo­

ments of the random variable A N t can be easily calculated as

\ r (  a t \  r  E ( A N i \ N i  =  N )  (  N \
V‘(N) = i S ,  At  =  "  l ) •

Dl{N)  _  lim _  p .4)
A t—>0 A t

, N ( J - N )  , N  J - N '[(2(1 -  m )7 ( 7 ^ I ) T  + r n { l - » ) 7  +

where u =  Qxoj) +  d2u 2; note also that in the Hubbell’s zero-sum model (3.1): 
oj =  u>i (Babak, 2006).

Assuming that the abundance n of species i is a continuous variable from the 
abundance interval [0, J], we proceed to Kolmogorov-Fokker-Planck forward and 
backward equations in the form

d p i  _  l d 2D i ( n ) p i  d V i ( n ) p i

dt  2 dn2 dn  ’ [ }
where n 6 =  (0, J) and t > 0.

Forward equation (3.5) supplemented with the initial condition

P i{ n ,Q )  = p ° i ( n ) ,  n  £ [0, J], (3.6)

and the natural boundary conditions at n  =  0 and n  =  J

\ ^ p P i . Vt{n)pt _ 0l < > 0 ,  (3.7)
2 on n=o,j

defines the evolution of species abundance probability pi =  Pi(n,t) given the 
probability density of the species abundance p°(n) at the initial time moment 
t  =  0.

Note that the boundary conditions (3.7) are sufficient for conservation of prob­
ability density

f  pi(n, t)dn  =  f  Pi(n)dn =  1, for all t > 0. (3.8)
Jo Jo

The steady-state solution Pt of the forward problem [Eqs. (3.5) and (3.6)-(3.8)] 
gives the equilibrium abundance probability density of species i. This density
describes the long time behavior of species abundance in the local community.
It can be easily verified that in our case the equilibrium probability density Pt 
satisfies the ordinary differential equation of the first order

\ dDi^ Pi -  V̂ n )p i =  °> " € (0, J), (3.9)

su p p lem en ted  w ith  th e  in teg ra l co n d itio n
f J

Pi(n)dn =  l, (3.10)
/ o

representing the total probability instead of boundary conditions, see also (Babak, 
2006).
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3.4 B iodiversity indices
Using the abundance probability density of species i in the local community given 
by Eqs. (3.5) and (3.6)-(3.8) or Eqs. (3.9) and (3.10), several diversity indices 
can be defined, that is, Simpson and Shannon indices, evenness indices, species 
richness, etc.

The Simpson and Shannon diversity indices can be introduced by first consid­
ering Renyi continuous entropy (Renyi, 1970; Vinga, 2004)

d n ,  (3.11)

where the abundance probability density P i ( n )  of species i  is defined either by 
P i ( n )  =  Pi { n ,  t) from the evolution equations (3.5)—(3.8), or by P i ( n )  — P i ( n )  from 
the steady-state equations (3.9) and (3.10). Then the generalized diversity index 
Da as a continuum of possible diversity measures can be defined as follows (Hill, 
1973)

Da =  expH a. (3.12)

For different a,  the index Da differs only in its sensitivity to the presence of 
rare species. Turning the exponent a  we can focus on different aspects of species 
abundance composition in the community, for example, for a — 0, D0 is equal 
to the total number of species 5; for a =  2, D2 defines the Simpson index D = 
1 -  E f= i Jo ( j )  Pi(n) dn =  1 — 1/D2, and if a  —> 1, Ha converges to Shannon
entropy H  =  — X /L i  J o  1  ( j )  Pi(n) d n ,  and Da —> exp H.

To calculate the species richness in a local community of size J,  we define the 
average number of species containing from rq to n2 individuals as (Babak, 2006)

u fTi
(4>(n1,n 2)) =  Pi(n) dn (3.13)

i = l  • '" i

with Pi(n) — P i ( n , t ) or Pi(n) =  Pi ( n) .  Then the species richness in the local 
community is given by (0(1, J) ) .

3.5 Com parison study
To explain the diversity at the edge between two metacommunities, let us consider 
two metacommunities with the same number of evenly distributed distinct species, 
i.e., S\ =  S2 =  8, u>l =  =  1/3 ,  i =  1 , . . . ,  S ; and with the same probabilities of
immigration into the local community at the edge, 91 =  92 =  1/2. Note that the 
model for the local community at the edge can be easily converted to the model 
for the internal local community by choosing uii — 1 /(25) for each species. In 
subsequent analysis we will compare the species abundance dynamics in a local 
community at the edge and in an internal local community of the same size with 
evenly distributed 5  species, cuj =  1 /5 , i =  1 , . . . ,  5.
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Let us first compare the dynamics of a given species in the local community 
at the edge with that in the internal local community of the same size. For the 
species abundance dynamics in the internal local community four different scenar­
ios were distinguished in (Babak, 2006) with respect to the size of local community 
J, the relative species abundance in the metacommunity lo and the probability of 
immigration m.  According to this classification, the species is persistent in the 
internal local community if m >  mo ~  J -1 • 5  (Scenario (iv)), it has a high prob­
ability of extinction if m j  < m  <  m0 (Scenario (ii)) with m j  & J -1 • 5 / ( 5  — 1), 
and it has very high chance of either extinction or monodominance if m  <  m j  
(Scenario (i)). Alternatively, for the local community at the edge between the 
two metacommunities, the species is persistent for m > m l  w J -1 • 25 (Sce­
nario (iv)), it has high chance of extinction if m ej  < m < m l  (Scenario (ii)) with 
m ej  ~  J -1 • 2 5 /(2 5  — 1), and it has very high probability of either extinction or 
monodominance if m < rrfj (Scenario (i)). Using these results we can easily com­
pare the species abundance dynamics in the internal local community to that in 
the local community of the same size at the edge between two metacommunities. 
Figure 3.1 shows an example of such comparison study for J  =  100. Specifically, 
this figure reveals two regions for the immigration probability with different types 
of species abundance dynamics in the internal local community and in the local 
community at the edge between two metacommunities. For the first region with 
relatively large immigration probabilities, that is, for probabilities between J -1 -5  
and J -1 ■ 25, the species is persistent in the internal local community, and its 
abundance dynamics is typical for Scenario (iv); however, in the local community 
at the edge between two metacommunities the species has very high chance to 
go extinct and its abundance dynamics is typical for Scenario (ii). For the sec­
ond region with relatively small immigration probabilities, that is, probabilities 
between J -1 • 2 5 /(2 5  — 1) and • 5 / ( 5  — 1), the species has very high chance of 
extinction and monodominance in the internal local community (Scenario (i)); on 
the other hand for the local community at the edge the probability of this species 
to go extinct is also very high and the probability of its monodominance is very 
small (Scenario (ii)).

Let us now compare the species richness in the internal local community to 
that in the local community at the edge between two metacommunities, see Fig­
ure 3.2. This figure shows that for large immigration probability m and small 
total number of species in one metacommunity 5  (Scenario (iv)), the total num­
ber of species in the local community at the edge between two metacommunities 
is almost twice larger than in the internal local community. With decrease in 
the immigration probability and/or increase in the total number of species 5 , the 
difference between the average number of species in these local communities be­
comes relatively smaller; and, eventually, for very small immigration probabilities 
(Scenario (i)), the average number of species is almost identical in the local com­
munities at the edge and in the interior. This is because in each local community 
most of the time only one species is monodominant.

Simpson diversity index (D ) defines the probability that two randomly selected 
individuals belong to two different species. Figure 3.3(a) shows that for large
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immigration probability m  and for small total number of species S  (Scenario (iv)), 
the Simpson index is much larger for the local community at the edge between two 
metacommunities than in the interior of one metacommunity, thus the probability 
that two randomly selected individuals from the local community belong to two 
different species and, therefore, the diversity is much higher at the edge than in 
the interior. However, for large total number of species (Scenarios (i) and (ii)), the 
values of the Simpson index are almost identical for the local communities of both 
types; moreover, with decrease in the immigration probability m  and increase 
in the total number of species S  these values become smaller. Note also from 
Figure 3.3(a) that the Simpson index increases with respect to the immigration 
probability for both types of communities.

To measure the order of species abundances in a local community Shannon 
entropy index H  was used, see Figure 3.3(b). This diversity index is applied to 
determine how well each species abundance category is represented in the local 
community. Figure 3.3(b) clearly displays that the Shannon index of diversity is 
always larger for the local community at the edge between two metacommunities 
than for the internal local community. Therefore we can conclude that different 
species abundance categories are worse represented in the local community at the 
edge between two metacommunities than in the interior. Because Shannon index 
for each local community increases with increase in the total number of species 
S, each abundance category becomes worse represented in the local communities 
for larger S.

Finally, let us consider how similar the abundances of different species are 
in community at the edge between two metacommunities and in the interior of 
the metacommunity. To measure similarity several evenness indices are used. 
Figure 3.3(c) shows the Simpson evenness index of diversity D / D max for both 
local communities. Note from Figure 3.3(c) that the Simpson evenness index is 
always larger for the internal local community, thus the species are more evenly 
distributed in the internal local community than in the local community at the 
edge between two metacommunities. Also note that the Simpson evenness index 
increases with respect to the immigration probability and decreases with respect 
to the total number of species, moreover, this index is very close to zero when 
the immigration probability is very small and the total number of species is large. 
The above evenness characterization can be explained in terms of the species 
abundance scenarios. Specifically, for small immigration probabilities (Scenario 
(i)) only one species is present in the local community most of the time and the 
evenness index is close to zero. In contrast, for large immigration probability m  
and small total number of species S  (Scenario (iv)), all species persist in the local 
community most of the time and, therefore, the evenness index is very high.

3.6 D iscussion
In this chapter I proposed the neutral macroecological model for species abundance 
dynamics at the edge of two different metacommunities. The model describes
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the species dynamics in well defined local communities located between differen 
habitats. In reality it is not very easy to define the local community at the edge of 
different habitats, since there is a continuous gradation from one metacommunity 
(e.g., forest) to the other (e.g., grassland). Therefore, spatially explicit models of 
population dynamics are often used to analyze edge effects.

The model I propose is, however, spatially implicit. It does not incorporate 
any spatial factors explicitly, and it is not very clear how to define local com­
munities at the edge of two homogeneous habitats. In this case I propose to 
consider the gradient of species abundances as a determining factor for the edge 
local community. To define the local community at the edge of two distinct meta­
communities for the implicit model proposed in this chapter, we can consider how 
significant is non-zero gradation of the species abundance composition of some 
site located close to both metacommunities in comparison to the gradation of the 
species abundance composition in the homogeneous metacommunities. Thus, if 
the gradients of the (most) species abundances from both metacommunities in 
some small area are significantly different from zero, then this area can be consid­
ered as a part of local community at the edge of two metacommunities, otherwise, 
this area belongs to the interior of one homogeneous metacommunity. In this 
case, the size of the local community at the edge of two different metacommuni­
ties should be relatively much smaller than the size of metacommunities. Once 
the strict borders of relatively small (narrow) local community at the edge of two 
distinct homogeneous large (wide) habitats are defined, it is not necessary to use 
spatially explicit models to describe the species abundance dynamics. Using spa­
tially implicit models for species abundance dynamics in this case could not only 
simplify technical disadvantages of spatially explicit models, but also provide easy 
testable null hypotheses and good explanations of edge effects.

In conclusion, I considered the two distinct metacommunities with the same 
number of species and the same probabilities of immigration from these metacom­
munities into the local community between them in this chapter . However, the 
analysis of species abundance dynamics and diversity in the local communities at 
the edge between two metacommunities can be easily extended to the case with 
different number of species in two metacommunities and/or different immigration 
probabilities from the metacommunities, and to the case when the same species 
is present in two metacommunities. In these more general cases the diversity 
will be always higher in the local community connected to two metacommunities 
by immigration than in the internal local community connected to only one of 
these metacommunities, moreover, the persistence of species will be higher in the 
internal local community than in the local community at the edge between two 
metacommunities.
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Figure 3.1: Effect of varying total number of species S  and the immigration 
probability m  on the species abundance dynamics scenario in the internal local 
community (first roman number) and the species abundance dynamics scenario 
in the local community at the edge between two metacommunities (second roman 
number).

-  -  interior local community
—  local community at the edge
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100

Figure 3.2: Effect of varying total number of species S  and the immigration 
probability m  on the average number of species in the local community at the 
edge (solid line) and in the interior of the metacommunity (dashed line).
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Figure 3.3: Effect of varying total number of species S  and immigration probability 
m  on (a) Simpson index, (b) Shannon index.
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Figure 3.3: Cont. Effect of varying total number of species S  and immigration 
probability m  on (c) Simpson evenness index in the local community at the edge 
(solid line) and in the internal local community (dashed line).
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Chapter 4 
Analysis o f  species abundance 
distribution in two connected 
equal local communities

4 .1  In tr o d u ctio n
Understanding the mechanisms o f species abundance dynamics in ecological 
communities is o f high concern in viability analysis and ecosystem management and 
restoration (Lande et al. 2003; Mac Arthur and Wilson 1967). Early studies on the 
species abundance relationships were focused on finding distributions that could fit 
empirical data of species abundances in ecological communities (Fisher et al. 1943; 
Preston 1948). Later the preference was given to modeling species abundance 
relationships using one or another ecological theory of community organization 
(MacArthur 1957; 1960; Bulmer 1974; May 1975; Caswell 1976; Sugihara 1980; 
Engen & Lande 1996). Currently, ecologists are involved in a strong discussion about 
the principles o f the unified neutral theory o f biodiversity and biogeography (Hubbell 
2001). This theory is based on the assumption of neutrality, which, in contrast to the 
niche theory, does not assume differences between individuals o f different species 
and trophic hierarchy o f community (Hubbell 2001; Gaston & Chown 2005). Another 
assumption o f Hubbell’s theory - the zero-sum dynamics - states that the sum of all 
changes in abundances is always zero, that is, the total number o f individuals in the 
community is a conserved quantity (Hubbell 2001). Based on this assumption, the 
neutral theory predicts the existence o f a new statistical distribution o f relative species 
abundance, called the zero-sum multinomial, which explains species area 
relationships.

The analytical formalization of Hubbell's neutral theory was proposed in two 
scales: local community and regional metacommunity (McKane et al. 2004). The 
metacommunity can be considered as a closed evolutionary biogeographic unit in 
which species can generate, live and go extinct (Hu et al. 2006). The metacommunity 
can be subdivided into several opened local communities linked by dispersal of 
species. The dynamics o f species abundances on the local scale depends on species 
representation in the metacommunity, on the intensity of immigration from the 
metacommunity and, o f course, on the size o f local community. To describe the
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model, Hubbell defined the change in the number o f individuals o f species i per unit 
time step using the transition probabilities for the species abundances. I f  we denote 
the number o f individuals o f the i th species in a local community by IVj and the size 
o f local community by J . Then, the respective transition probabilities for abundance 
o f species i per unit time step are (Hubbell 1997, 2001)

where a>l is the fractional metacommunity relative species abundance o f the /th  
species, and m is the probability that a death in the local community will be replaced

Hubbell's model is spatially implicit, since the species dynamics is studied in 
the local community which does not involve any spatial structure. Because the living 
organisms are not distributed in homogeneous surroundings in nature, the 
incorporation o f the spatial structure is very important. Therefore, Hubbell (2001) 
modified his model for one local community to propose a model for species 
abundance dynamics in two local communities connected with each other and with 
the metacommunity through immigration. This model forms a link between spatially 
implicit and spatially explicit models for distribution o f organisms in the 
metacommunity, because introduction o f the spatial structure requires spatial 
discretization of the metacommunity landscape into small connected local 
communities. To analyze the model for species abundance distribution at the 
equilibrium state in two local communities Hubbell (2001) employs the covariance in 
abundance o f a species in two local communities. He found that the covariance in 
abundance of a species in two local communities is affected not only by immigration 
from the metacommunity, but also via exchange of immigrants, and it is maximal 
when the intensity o f immigrants between local community is large relative to the 
intensity from the metacommunity. However, in the view o f high computation 
difficulty o f the discrete Markov chain approach used by Hubbell to obtain the 
equilibrium species abundance distribution in two local communities, the study o f the 
model for species abundance dynamics in two local communities is restricted only to 
very small local communities.

In this chapter we propose a new model for species abundance dynamics in 
two zero-sum local communities of the same size. This model for two local 
communities, in contrast to Hubbell’s discrete analysis, is formulated using the 
continuous probabilistic technique. This technique allows us not only to derive the 
species abundance distribution for the local communities o f any sizes, but also to 
make a classification o f the species abundance dynamics in the two local

/ \ N (  J - N  \
Wi{ N - \ \ N )  = —  (1 - m ) - ---- -  + m ( \ -co :) ,

(1)

Wi( N \ N )  = \ - W i( N - \  \ N ) - W j ( N  + 1 1 iV),

by an immigrant (Hubbell, 1997; 2001). J  = N j where S  is the total number 

species.
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communities with respect to the immigration intensities, species abundance in the 
metacommunity and size o f local communities. It noteworthy that in our analysis we 
consider the local communities at different time scales, that is, we consider 
communities with different frequencies o f death events. As to our knowledge, such 
analysis has not been done before. The local communities are considered at small 
spatial scale, and all processes in the local communities are much faster than in the 
metacommunity. Therefore, in the model for two local communities we concentrate 
on the species abundance dynamics in local communities, whereas in the 
metacommunity all species are considered with constant relative abundances.

The chapter is organized as follows. In Section 2, we will propose a discrete 
model for species abundance dynamics in two local communities. In Section 3, we 
modify this discrete model to formulate a continuous model for probability density of 
species abundance in two local communities using Kolmogorov-Fokker-Planck 
forward equation. Moreover, in this section we also derive the models for species 
abundance density function in equilibrium local communities and additive species 
abundance density function in both local communities. In Section 4, we analyze the 
model for equilibrium species abundance distribution in two local communities, and 
make a classification of species abundance dynamics in two local communities. 
According to this classification we distinguish nine realistic scenarios for the species 
abundance dynamics in two local communities with respect to the immigration 
probability, species metacommunity relative abundance and the size o f local 
community. And, finally, in Sections 5 and 6, we present several examples for 
possible scenarios o f species abundance dynamics in two local communities. The 
ecological motives underlying each o f the scenarios are discussed.

4.2 Discrete model for species abundance 
dynamics in two local communities

Let us consider two zero-sum local communities o f the same size connected through 
immigration with each other and with the metacommunity, a large reservoir of 
organisms o f different species with unchanged species abundance fractions. The 
discrete model for species abundance dynamics in this case can be formulated as 
follows.

The change in the number o f individuals N , o f species i per unit time step 

in the p  th local community, p  = 1,2, can be defined using the following transition 
probabilities

w j N p - l \ N p,Nq) = ^ ( l - m m- m l) ^ ^  + rnm(l-coi) + m1̂ ^
J - 1 J

J - N „
J

N„
(1 - m m - m ' ) — — + m mG)j +m ‘—-  

J - 1 ' J
(2 )
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Wp, (Np \ N p, N q) = l - W j N p - l \ N p, N q) - W pJ (Np + \ \ N p, N q)

where J  is the size o f local communities, q = -T ’ ^  N r = N r ., r = 1,2; is a
[2: p  = l;

fractional metacommunity relative species abundance of species i ,  m m is the 
probability that a death in a local community will be replaced by an immigrant from 
the metacommunity and ml is the probability that a death in a local community will 
be replaced by an immigrant from the other local community, m = mm + m ‘ .

The transition probabilities given by expressions (2) can be explained as 
N  J - N

follows. The fractions ■—  and — ~ -  in the transition probabilities

Wpi{Np -  \ \ N p, N q) and Wpi [n  p + 1 1 N p,N q), respectively, account for death of one

individual in species i and one individual in other species. The numbers
N  J - N

(1 - m m - m 1) — 1-  and (1 - m m - m 1) — — define the probabilities of one birth in

local community p  in species i and in other species. The probabilities of 
immigration from the metacommunity into the p  th local community o f an individual 

o f species i and an individual o f other species are given by m"'coi and mm{\-coj) ,
, N  , J ~ N a

respectively. Finally, the numbers m —-  and m ------- -  define the probabilities of
J  .J

immigration from local community q into local community p  o f an individual of 
species i and an individual o f other species.

Further, we assume that the species abundance dynamics in one local 
community is independent o f the species abundance dynamics in another local 
community. Then, the transition probabilities for the dynamics of species i in both 
local communities can be defined as

Wt{Nx +A  „ N 2 + A 2 | N l, N 2)= W li{Nl + A, | N {, N 2 )x W2j {N2 + A 2 \ N 2, N l ) (3)

where A p = -1,0,1; p  = 1,2.

Recall that Hubbell (2001) also proposed a model for species abundance 
dynamics in two discrete habitat patches or islands (local communities). In his model 
Hubbell used the transition probabilities for dynamics of given species in both local 
communities, where he assumed that the abundance of this species can be changed 
only in one local community per one time step. On the contrary to Hubbell, we 
assume that the abundance of given species can be changed in both local communities 
in one time step. Because the local communities are located separately in the space 
and the death in one local community may occur at the same time as in another local 
community, the assumption underlying our model is more realistic than that of 
Hubbell.

Another major difference between our discrete model for species abundance 
dynamics in two local communities and Hubbell’s model lies in parameterization for
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the immigration probabilities. Hubbell used the variable m to denote the probability 
that either local community receives an immigrant from the metacommunity in which 
they are imbedded. In our model this immigration probability is denoted by m " , see 
equations (2). To define the probability that two local communities exchange 
migrants per birth, Hubbell used the variable m', that is related to the respective 
immigration probability from our model as m'= m ‘ or m‘ = .

Recall thatw ' in our discrete model for species abundance dynamics in two local 
communities denotes the probability that a death in a local community is replaced by 
an immigrant from another local community. It is clear from the above analysis that 
there is one to one correspondence between the immigration probabilities in Hubbell 
model and our model for the species abundance dynamics in two local communities. 
However, on the contrary to Hubbell’s (2001) parameterization, the parameterization 
for the immigration probabilities proposed is this chapter is much more convenient 
for analysis and visualization o f the species abundance results due to the fact that it 
allows formulation of the transition probabilities for the change in species abundance 
using simple linear relationships o f mm and m ‘ .

4.3 Continuous probabilistic approach
4.3.1 Model for species abundance dynamics in two local 

communities
The continuous model for the species abundance distribution in two zero-sum local 
communities is derived as follows. Let define the transition probabilities for the 
change AN pi in the number o f individuals N  pj o f the i th species in local community

p  , p  = 1,2 per time step At as

where jup is the number of death events per unit time interval in local community p  .

Then the joint transition probabilities for the change in the species abundance 
in both local communities are given by

(4)

(5)

where A p =-1,0,1; p  = 1,2.
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4.3.2 Dynamics of species abundance distribution. 
Kolmogorov-Fokker-Planck forward equation

Let define the change in the abundance o f the i th species in both local communities 
per time step At as a vector ANi = (AN u , AN2i) ,  where ANp i = N p i (t + At) -  N p i (t) ,

p  = 1,2; and let N t = (Nhi, N 2j) and x -  (x,,x2) .

Because the species abundance in one local community per one time step 
At can change only by one individual or remain the same, the variables ANp , attain
only values -1,0 and 1. And therefore the mean and the second moment o f the change 
in the abundance o f the i  th species per infinitely small time interval At can be 
calculated as

V(x)
V\(x)

KV2 ( X ) ;
lim —
Ai->0 A f

'E(ANy  | N i = x) 

E(AN2J\ N , = x )

F,(x) = ppn" f  X1 1 I (  x 2 X, N
CDi ------L +  fdxm —±_.

l  ' J j ~ J )
, V2{x) = p 2m" CD:

J
+ p 2m

J  J
(6)

D(x) =

Dn (x) = 

A

D22 (x)

A  i (x) A 2 A )

.AlA) D 22 (X).

, x ^ J - x ,)

lim —
A l - > 0  At

E(ANU2 | Nj = x) E(ANhiAN2J \ N, = x) 

E(ANUAN2J I N , = x )  E(AN2J2 \ N , = x )

J - x ,2(1 -  mm -  m‘) "v ■7 + mm (1 -  m,) ^
J ( J - 1) ' J  ' J

■ + m
l J  -  x2 X, I x2 J  - x  I

J  J
+ m

J  J

'22 V 
f

P2 2(1 - m m - m l)
J ( J ~  1)

£ > 1 2  (x) = D2, (x) = 0 .

J - x ,  I J - x ,  x, / x, J  -  x, + m  L— + m —------ -
J J  J J  J

(7)

Let us now define the abundances x, and x2 o f the i th species in the first and 
second local communities as a continuous variables allowing any real values from the 
interval [0, J ] . Then the conditional probability density, p(x , t) ,  that the z'th species 
has abundances x, and x2 in local communities 1 and 2 at time t satisfies the 
following Kolmogorov-Fokker-Planck forward equation

dp  _ 1
dt 2

5 A iP + S2D22p

V 8 x \ dx

tj dJX n
— 1-------A - ’ x = (x,,x2) eCl = (0 ,7 )x (0,7), t > r, (8)

2
dx.

where x = (x ,,x2) e Q  = (0,J ) x ( 0 , J ) ,  t > v ,  and V and D  are the first and second 
moment o f the change in the abundance o f the z'th species per time step At as 
At -»  0 defined in (6)-(7).
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Equation (8) is supplemented with the initial condition defining p°(x) ,  the 
probability density o f the i th species abundances x, and x2 in the two local 
communities at the initial time moment t = x

p(x,x)  = p° (x), x e Q ,  (9)

and the natural boundary conditions

(1 an _ \  (1 an „ A
n2 = 0, x e T , t>x,  (10)L ™ u £ - v , p

2 dx,
I ® a £ _ F!P
2 dx,

where T is the boundary o f the abundance domain Q , and the vector n = (n{,n2) is 
the outward normal to the boundary. Note that the boundary conditions (10) are 
sufficient for conservation o f probability density

JJ/?(x,r)dx,dx2 = JJ/?°(x)dx,dx2 = 1, f or a l l t >r .  (11)
o Q

In order to define the natural boundary conditions (10) more precisely, we 
need to specify the boundary F of the abundance domain Q = (0 ,J )x (0 ,J )  and the 
outward normal vectors n at each boundary abundance of Q . It is clear that the 
abundance boundary Y consists o f four parts T = r°* u f  u T 1* u f ’0 , where 
r°* = {0}x (o ,j), r* 1 = ( o , j ) x { j} ,  r ' ^ i y j x ^ y )  and r ’° = (o ,y )x{o} .
Therefore the outward normal vectors are given by n°* = (n°*,n2 ) = (-1,0) for T0*, 
H1* = («;%«>*) = (1,0) for r ' \  i f 0 = (« ;° ,« ;o) = (0 ,-l) for T*0, and

n x = ( « ; ',n2x) = (0,1) for T*1.

Now let us rewrite the boundary conditions (10) for each part o f the boundary 
separately as

I ^ u £ _ ^  = 0, x e r 0’u r ' \  I ^ £ _ F 2p = 0, ^ r ^ r ’1. (12)
2 dx, 2 5x9

4.3.3 Equilibrium species abundance distribution in two local 
communities

Equilibrium species abundance distribution can be considered as a long time limit of 
species abundance distribution in local communities or as a stabilized species 
abundance distribution in absence o f external perturbations.

It follows from model (8 )-(ll), that the equilibrium (steady state) abundance 
density o f species i in two local communities fulfils the following elliptic differential 
equation

0 =  -  

2
2DuP , d 2P a P
dx.

dV,P
dx,

8V2P
dx,

X  £  Q, ( 1 3 )
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and boundary conditions (10) or (12) with the total probability over domain Q equal 
to 1 (see also E q .(ll)).

4.3.4 Additive species abundance distribution in both local 
communities

Another problem of interest for community ecologists is the additive species 
abundance distribution in both local communities, that is the distribution o f x, + x 2. 
This distribution is useful for comparison study o f the abundance distributions in two 
local communities and in one large local community formed by merging both of 
them.

The species abundance distribution in both local communities can be defined

where p(x, , x 2,t) under the integral sign is set to be 0 outside the domain Q .

4.3.5 Correlation between species abundances in two local 
communities

One of the important characteristics o f the relationship between species abundance 
distributions in two local communities is the magnitude of their correlation. In order 
to define it, we derive first the formulae for the covariance and variances o f the 
species abundance in local communities

as
z z

p * ( z , t ) ~  j p ( x ], z - x ],t)dxl = j p ( z - x 2,x2,t)dx2 , z e O  = (0 ,2J) (14)
0 0

Cov(N u , N 2j) = JJ(x, - E ( N pJ))(x, - E ( N pJ))p(xl, x2, t)dxxdx.
n

n

where

n

Then, the correlation coefficient can be found as

Cov(Nu , N 2j)
r'2 ^jVar(Nl j)Var(NZi) '

( 16)
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4 .4  A nalysis o f  the m odel
4.4.1 Analysis of the boundary conditions for the species 

abundance density function
A change in species abundance distribution with respect to different values o f the 
immigration probabilities, the species metacommunity relative abundance, the 
community sizes and the number o f death events per unit time interval can be 
investigated by analyzing boundary conditions (12) on equation (8) or (13).

Let us consider the type of boundary conditions (12). These mixed boundary 
conditions can be rewritten as

\_
2

1

A , f  +
O X,

-Da % -  +
2  8 x 2

I dA,
2 dx.

1 dDy
2 dx,

-V,

■ V,

p  = 0, r e L ’ u f ' 1

p  = o, x e r * ° u r * (17)

The critical boundary abundances at which the mixed boundary conditions 
degenerate to the zero flux boundary conditions can be found by solving the 
following equations

1 dD
pp

2 dx.
0 ,

x„=0

1 8Dpp
2 dx.

= 0 . P = U , (18)

where

1 dDPPP
■vpP

c
, J  + 1 1■m — T-xa + -------

J 2 9 J - 1
+ m co.

J

, (19)

is non-increasing function with respect to x  , q = 1 if  p  = 2 and q = 2 if  p  = 1.

Note that the zero flux boundary conditions, also known as Neumann 
Boundary conditions, imply zero gradient o f the probability o f species abundances at 
the boundary abundances.

After substitution o f Eq. (19) into Eq. (18), we obtain the following formulae 
for calculation of the boundary abundances (O,*”) , (jcf,0) and (x \ , J )
where boundary conditions (17) degenerate to the zero-flux boundary conditions

l - ( m m + m ‘) J 2
m

mm + m J
(J -1 ) (J  + 1) 2 tr i J  + l

m
■oo— J , 

m
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x1 = x\ = x\ -  -
m m

For large local communities, the above formulae can be simplified to the 
subsequent

1 - ( m m +m ‘) + mm +m i \

m 2 m l
m T

' COj —r  J ,
m

\ - ( m m + m l) m m +m   i ------'  +
m 2m

m
+ J  + (1 —co;)— —J .

m

Since x,° = x° and x,' = x'2, the behavior o f the species abundance distribution 
in the first local community if  the species is absent or monodominant in the second 
local community is the same as the behavior in the second local community if the 
species is absent or monodominant in the first local community. In this case we also

see that the signs o f the derivatives and are symmetrical at the parts o f the
dx.

boundaries T0* u  T1* and F*° u  T*1. Thus, in order to show the behavior of the 
species abundance distribution at the boundary T of the domain Q , it is enough to 
study this distribution at only one pair o f the parallel sides r ° * u r '*  or r*° u r * 1 of 
the boundary T , since the structure o f this distribution is the same at another pair of 
the parallel sides o f T .

4.4.2 Structure of species abundance distribution at parallel 
boundary sides

To continue the species abundance distribution analysis, let us consider expression

(19) in more detail. Because the functions
1 dD__ I
2 dx

pp Vp in (19) are non-increasing at

the boundaries with respect to x , we can conclude the following:

1) if  x° > 0 , then < 0 at {x = 0} n  {x < x°}, and if x° < J , then
dxp

dp_
dx„

> 0  at {x = 0 } n { x . > x 0} ;

2) if x 1 > 0 , then < 0 at {x -  J}  n  {xa < x 1} , and if x 1 < J , then
dxp

>  0 at {x = J)  n  {x > x 1} ,
dxp

where q = 2 if p  = 1 and q = 1 if  p - 2 .
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Based on the statements 1) and 2), a classification of the species abundance 
distributions at the boundary abundances x  = 0 and x p = 7  with respect to the

abundances x° and x 1, where the mixed boundary conditions (17) degenerate to the 
zero flux boundary conditions, is straightforward. The possible cases for the behavior 
o f species abundance distributions at the boundaries are distinguished with respect to 
9 different locations o f the abundances x° and x 1 in the intervals: (-oo,0), [0,7) and 
[J,+co). Figure 4.1 shows the shapes of two contours of the species abundance 
distribution on the boundary sides x p = 0 (lover curve) and x p = J  (upper curve).

Further the species abundance distributions classification is performed 
separately for species with small and large metacomunity relative abundances, 

< 1 /2  and cot > 1 / 2 , respectively. It follows directly from Table 4.1, that if

6)t < 1 /2  then there are only 6 possible combinations for x° and x 1, these are cases

(i)-(iii), (v), (vi) and (ix) in Figure 4.1. On the other hand, if <y, > 1/2 then there are

also 6 possible combinations for x° and x 1 , these are cases (;), (iv), (v) and (vii)-(ix) 
in Figure 4.1.

In Table 4.1 the conditions for different types o f species abundance 
distribution at the boundary abundances xp = 0 and x p = J  are given using linear 

relationships:

wJa(mm ,m l) = mm(2co(J- l)  + l) + m' and

v i  ) = m m(2co(J - 1) +1) + m' (27 -1 ) ,

which involve the immigration probabilities tnm and m l , the metacommunity relative 
abundance co, and the size o f local communities 7 .  The ranges o f the immigration

probabilities m m and m! for possible types o f species abundance distribution at 
xp = 0 and x p = J  are shown in Figure 4.2 for 0 < co, < 1 / 2 , co, = 1 /2  and

1/2 <co, < 1. These ranges are separated using the lines:

u / ( m mV )  = 2 7 /(7  + l ) ,  wJx_(0i(mm,m')  = 2 J I ( J  + \),

vJai (jmm,m ')  = 2 7 /(7  +1), v j^  (m m,m l) = 2 7 /(7  +1) . (20)

Note that if  the local communities are isolated from the metacommunity, i.e., 
mm = 0 , the type o f the species abundance distribution differs for the values of the 
immigration probability between local communities m1 smaller and larger of

m' (v) = — - — , where m' (w) -  - - --- » 2 . Similarly, if the local communities are
2 7 -1  7  + 1

isolated from each other, m‘ = 0 , the type o f the species abundance distribution
27

depends on the values m m(coj) = ----------------------------  and
* ‘ (7  + l)(2cOi (7  -1 ) +1)
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2 7
m m(l-co j) = ----------------------------------- for the immigration probability from the

(.J + l)(2(l-<o<)(7 -l)  + l)
metacommunity m m, see Figure 4.2.

Note that the model for species abundance dynamics in two local communities
(2) requires that the sum of nonnegative immigration probabilities m m and m‘ be less 
or equal to one. This inequality constraint yields oftentimes reduction in the number 
of possible combinations for the species abundance distributions at the boundary 
abundances x p = 0  and x p = J ,  see Figure 4.3. For example, in the case when cy(. is

very small, i.e., 0 <co, < — -— , Figure 4.3 shows that the combination (z) at the 
'  ' 2(7 +1) 5 W

boundaries xp = 0 and x p = J  is not feasible. Similarly, it can be inferred from 

Figure 4.2 for coi > 1 /2  that this combination is also not feasible when the

metacommunity relative abundance is large, i.e., coi > 1 -  ^  . Therefore, the

combination (z) is possible only for the following metacommunity relative 
abundances

1 ■ < « , . < !  l-  . ( 21 )
2(7 + 1) ' 2(7 + 1)

It worth to note the important influence o f the relationship between the 
metacommunity relative abundance and the size o f the local community in 
determining possible combinations for the species abundance distributions at the 
boundary abundances x p = 0 and xp = 7 .  For example, the combination (z) is only
possible when the size o f the local community is enough large, that is when

7  > --------7-̂ ---------r -1 .  (see inequality (21))
2 minjrt), ,1 -  co, }

Moreover, note that the type of species abundance behavior at the boundaries 
xp = 0 and x p - J  varies significantly with the sizes o f local community 7 ,  see Eqs.

(20). For example, for coi = 0.2, m m = 0.05 and m l = 0.05 we observe that with 
increase in the size of local community 7  the combination (ix) with 7  = 10 switches 
first to the combination (vi) with 7  = 15 then to (v) with 7  = 20, (ii) with 7  = 50 
and, finally, to (z) with 7  = 100. Another example illustrates different sequence of 
species abundance combinations at the boundary for variable 7 ,  i.e., for a>i = 0 .2 ,

m m = 0.05 and m' = 0.01 we observe that the combination (ix) with 7  = 10 switches 
first to the combination (vi) with J  - 2 0 ,  then to (Hi) with 7  = 30, (ii) with 7  = 50 
and, finally, to (i) with 7  = 100 .
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4.4.3 Classification of the species abundance dynamics in the 
local communities

When the species is extinct or monodominant in one local community, then the type 
o f species abundance distribution in another local community defines the joint species 
abundance distribution for both local communities. Hereafter we will refer to 
different types o f joint species abundance distributions as the scenarios of species 
abundance dynamics in two local communities. O f course, the number for the 
scenario o f the species abundance dynamics will be defined based on the number of 
the type for species abundance distribution at the boundary abundances. Since all 9 
types o f species abundance behavior at both pairs of the parallel boundary sides of the 
abundance domain Q are not feasible for any values o f model parameters 
(immigration probabilities, metacommunity relative abundance and the size of local 
communities), the number o f possible scenarios for the species abundance is also less 
than 9. More advanced analysis reveals that there are only 3 possible scenarios for 
species abundance dynamics in two local communities for co, = 1 / 2 , 6 possible

scenarios for 0 < 00, J
2(J + 1)

, and 5 possible scenarios for co, - -
1 > J

2(7 + 1)

4.5 Sensitivity analysis. Examples
In this section we analyze the equilibrium species abundance distributions. 
Specifically, we: (a) investigate in great detail the equilibrium species abundance 
distributions for two local communities with the same frequencies o f death events, 
//, = ju2, and (b) sketch the results for the two local communities with different 
frequencies o f death events n x . Moreover, we also analyze the equilibrium 
species abundance distributions using the correlation coefficient between species 
abundances in two local communities.

4.5.1 Two local communities with the same frequencies of 
death events

Let us consider two local communities o f size J  = 200 individuals each that have the 
same frequencies of death events (//, = ju2). Further, assume that species o f interest, 
say species has small relative abundance in the metacommunity, ool =0.2 < 1 /2 . 
The analysis o f the common species ( ooi > 1 / 2 ) can be provided in analogous 
manner.

It was mentioned in the previous section that there are only 6 possible 
scenarios for the species abundance dynamics in the case when the metacommunity 
relative abundance is smaller than 1 /2 , these are scenarios (i)-(iii), (v), (vi) and (ix). 
To illustrate all these scenarios we have chosen the realistic values for the 
immigration probabilities in each scenario. For both local communities we showed
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the landscape and contour plots for the abundance density of species i in Figure 4.4. 
Furthermore, we also showed the additive species abundance distributions in both 
local communities, see Figure 4.4. Note that in this experiment equilibrium species 
abundance distributions is independent o f the equal values o f the parameters jux and 
H2, since these parameters specify the speed o f the convergence to equilibrium 
species abundance distributions, and play a role of the time scales in the dynamics of 
the species abundances in the local communities. Thus, a constant value o f 0.0001 for 
the parameters jux and ju2 was used in all experiments.

Let us now analyze all scenarios for species abundance distribution and 
dynamics in more detail.

Consider Scenario (ix) first. This scenario is characterized by low immigration 
from the metacommunity and between the local communities. Because of low 
immigration, the species abundance dynamics in local communities is very similar to 
the case with no immigration. Note that in the local communities which do not obtain 
immigrants from the metacommunity and from each other, the species dynamics are 
independent between two local communities and between each local community and 
the metacommunity. Such local communities are referred to as isolated local 
communities.

When analyzing isolated local communities Hubbell (2001) observed that 
species abundance dynamics in such communities possesses two absorbing states at 
zero abundance level and at the monodominance level. In the case o f two local 
isolated communities considered in this chapter, we observe not two, but four 
absorbing states (0,0), ( J ,0 ) , (0, J )  and (J,  J )  for the species abundance dynamics. 
Because the immigration intensity is very small, the new immigrants appear in local 
communities very seldom, and the species abundance in local communities becomes 
stabilized at one o f the four absorbing states most o f time. Therefore, the effect of the 
small immigration on the species abundance distribution can be considered as a 
catastrophic event in local communities. As a result, for small immigration intensities, 
the species abundance combinations (0,0), (J ,0 ), (0, J )  and ( J , J )  have maximal 
probabilities. That is, the probabilities that the species will go extinct or become 
monodominant in these local communities are very high. Moreover, note that in the 
case of species abundance dynamics scenario (ix), the additive species abundance 
distribution in both local communities is significantly different from the species 
abundance distribution in each local community. From Figure 4.4 we can see that the 
additive species abundance distribution in both local communities is W-shaped and 
has local maximums not only at the species abundance levels 0 and 2 J , but also at 
abundance J . Note that when the additive species abundance distribution reaches 
level J , the species o f interest is monodominant in one local community and extinct 
from the other local community.

Scenario (vi). When species immigrate to local communities from the 
metacommunity more often, or when they move from one local community to another 
more frequently, the species abundance dynamics distribution takes on a different 
shape than that o f Scenario (ix). Specifically, if  the species abundance is very small in 
one local community, then this species will have very small effect on the species
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abundance distribution in another local community. In this case, with increase in the 
immigration intensity from the metacommunity, the species abundance distribution in 
the second local community will be S-shaped (Babak, 2006). Otherwise, if  the species 
is almost monodominant in one local community, its effect on the species abundance 
in another local community is large. As result, the species abundance distribution in 
the second local community will be still U-shaped as in Scenario (ix). When 
analyzing both local communities jointly, we can infer that the species abundance 
distribution has two local maximums at the abundances (0,0) and (J, J ) , despite the 
additive species abundance for both local communities is S-shaped, see Figure 
4.4(vi). Thus, the probability that species will go extinct or become monodominate in 
both local communities is the highest.

Scenario (v). For Scenario (v) the species abundance distribution can take on 
two reverse shapes at the boundary o f the abundance domain Q . If  the species is not 
presented in one local community, its abundance in another local community is, as in 
Scenario (vi), S-shaped. I f  species is monodomimant in one local community, its 
abundance in another local community is reverse S-shaped. This shape o f the species 
abundance distribution can be explained by increasing similarity o f the local 
communities due to high local immigration intensities. Figure 4.4(v) shows the 
patterns o f species abundance distribution with immigration probabilities larger than 
considered in Scenarios (ix) and (vi). One can clearly note from this figure that 
because of high immigration, the local communities are tightly connected and are 
very similar to each other. As result the species abundance combinations (J,0) and 
(0 ,/ )  are less probable in this scenario than in Scenarios (ix) and (vi). The additive 
species abundance dynamics in Scenario (vi) is S-shaped. As in Scenario (vi), the 
species has very high chance o f extinction from both local communities or 
monodominance in both local communities.

Scenario (iii). The species abundance distribution for Scenario (iii) is shown 
in Figure 4.4(iii). This figure clearly shows that if  the immigration from the 
metacommunity dominates the local immigration between communities, then the 
effect o f one local community on another local community is not strong and, 
therefore, the species composition in both local communities are very similar to those 
in the metacommunity. As a result, the equilibrium species abundance distribution is 
S-Shaped at each side o f the domain Q ,  its maximum is attained at the species 
abundance (0,0), and its minimum is at ( J , J ) .  The probability that species go 
extinct from both local communities is very high, while the probability o f species 
monodominance in both communities is very low.

Scenario (ii). Similarly to Scenario (iii), the maximum of the equilibrium 
species abundance distribution in Scenario (ii) is attained at (0,0), that is, the 
probability that the species will go extinct is the highest for this scenario. However, 
on the contrary to Scenario (iii), the equilibrium species abundance distribution is not 
always S-Shaped at the boundary values o f the species abundances in this case. This 
is because o f the strong impact o f the local immigration from one local community to 
another. The role o f local immigration is the best seen for the species abundance 
distribution in one local community if  the species is monodominant in another local
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community. In this case the species abundance contour for a local community is 
reverse U-shaped. As in Scenarios (iii), (v) and (vi), the additive species abundance 
distribution in Scenario (ii) is S-shaped.

Scenario (i). The last possible scenario for the species abundance dynamics is 
Scenario (i). For this scenario we can observe that for large immigration probabilities, 
particularly for large m m, new immigrants intensively move to the local communities 
from the metacommunity. As result, the species abundance distributions in local 
communities become more similar to those in the metacommunity. The species 
abundance probability density achieves maximum close to the species abundances 
(a>iJ,(D,J). This means that species o f scenario (0 tends to persist for a long time in
at least one local community. Note also that at the boundary levels o f abundance in 
one local community, the species abundance distribution in another local community 
takes on reverse U-shape. Moreover, the additive species abundance distribution for 
both local communities is also reverse U-shaped.

Now let us consider the intermediate scenarios. In particular, the following 
four intermediate scenarios will be considered for cot < 1 /2 , see Figures 4.2 and 4.3:
Scenario (i-ii-iii) as an intermediate case for Scenarios (/), (ii) and (iii); Scenario (iii- 
vi-ix) as an intermediate case for Scenarios (iii), (vi) and (ix); Scenario (v-vi-ix) as an 
intermediate case for Scenarios (v), (vi) and (ix); and, finally, Scenario (ii-iii-v-vi) as 
an intermediate case for Scenarios (ii), (iii), (v) and (vi).

Because the probabilities o f local immigration in Scenarios (i-ii-iii) and (iii-vi- 
ix) are zeros, the species dynamics in one local community in either o f these scenarios 
is independent of its dynamics in another local community. Thus, the analysis of 
species abundance dynamics for each local community can be made separately, see 
(Babak, 2006).

For Scenario (v-vi-ix) the immigration probabilities from the metacommunity 
into local communities are zeros. Thus, because o f no immigration from outside of 
the local communities, the species abundance dynamics in local communities has two 
absorbing states as in the case o f only one local community (Hubbell, 2001; Babak, 
2006). These absorbing states o f species abundance are 0 and 2 J  corresponding to 
species extinction from both local communities and species monodomimance in both 
local communities, respectively.

From analysis of the boundary conditions given in Figure 4.1, we can 
conclude that the equilibrium species abundance distribution at the boundary sides 
x, = 0 and x2 = 0 for intermediate Scenario (ii-iii-v-vi) is S-shaped. Moreover, we 
can also observe that the species abundance distribution at the boundaries x, = J  and 
x 2 —J  has zero gradients at both ends o f the abundance intervals. Figure 4.5 shows 
the equilibrium species abundance for the intermediate values o f the immigration

probabilities m m = -------- ---------  and m 1 = ---- -—— ----  calculated from Equations
( \ - ( o t)(J + \) ( l - ^ X J  + l)

(11)-(13). From this figure one can clearly see, that species abundance distribution 
confirms to all conclusions made from the analysis o f the boundary conditions using
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Figure 4.1. It worth to note also that the maximal probability o f the species abundance 
in intermediate Scenario (ii-iii-v-vi) is attained at the zero abundance level (0,0) , and 
the minimal is at the abundance combinations (7,0) and (0 ,7 ). Since Scenario (ii-iii- 
v-vi) is an intermediate case of Scenarios (ii), (iii), (v) and (vi), the additive species 
abundance distribution for both local communities is S-shaped, as it is in all o f these 
scenarios. In general, the species dynamics also follows for intermediate scenario 
some average characteristics of Scenarios (ii), (iii), (v) and (vi). In particular, the 
chance o f the species extinction for the Scenario (ii-iii-v-vi) is very high.

Note that for analysis o f each individual Scenario (i), (ii), (iii), (v), (vi) or (ix) 
we can either create figures like Figure 4.4, or directly analyze the behavior of the 
species abundance distribution at the boundary of the domain Q using Figure 4.1.

4.5.2 Non-isolated local communities of equal size with 
different frequencies of death events

Because the frequencies of the death events in local communities can be eliminated 
from boundary conditions (12), we can conclude that the type of species abundance 
distribution at the boundary o f the domain Q is independent of death frequencies, ju{ 
and ju2. Furthermore, note that despite the values of the species abundance 
distribution in the domain Q depend on the parameters and jx2, the shape of this 
distribution (i.e., locations o f maximum and minimum values, the directions of 
monotonicity) is defined only based on the type o f boundary conditions.

Figure 4.6 shows an example o f species abundance distribution in two local 
communities o f the same size with the same immigration probabilities, but with 
/ d j  Mi = 10 . As you can see different frequencies o f death events, that is different 
values o f //, and /u2, mainly influence the symmetry o f species abundance 
distribution in the local communities.

4.5.3 Correlation between species abundances in two local 
communities

Correlation between species abundances in two local communities can be considered 
as a measure of similarity o f local communities. It can be easily calculated from the 
probability density o f species abundance in both local communities using equation 
(16). Figure 4.7 shows the plot of correlation between species abundances in two 
local communities as a function of immigration probabilities mm and ml . From this 
figure, one can clearly see that for very small immigration probability from the 
metacommunity m m, the correlation between species abundance in two local 
communities is close to 1, and for very small immigration probability between local 
communities m 1, the correlation between species abundance in two local 
communities is close to 0.
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Let us consider all o f these cases more deeply. When the two local 
communities are isolated from the metacommunity, mm = 0 , the abundance dynamics 
for given species possesses two absorbing states corresponding to extinction and 
monodominance o f the species in both local communities. Note that the same was 
observed for the species abundance dynamics in one local community (Hubbell, 
2001; Babak, 2006). When species abundances in both local communities become 
equal to (0,0) or (J , J ) , the correlation coefficient between species abundances in 
the two deterministic local communities becomes 1, that is, we observe perfect linear 
correlation between local communities. When the immigration probability m m is very 
small, the species abundances in two local communities are most o f the time at the 
levels (0,0) or (J , J ). This is because new immigrants perturb the species abundance 
compositions o f the local communities very seldom. As a result, correlation between 
species abundances in two local communities is close to 1. When ml = 0 , the species 
abundance in mutually isolated local communities are changing independently each 
o f other, and, therefore, the correlation between species abundances is zero. If  the 
connection between local communities is very weak, the species abundance dynamics 
in one local community is almost independent o f the other local community, thus, the 
correlation coefficient in this case is very small.

From Figure 4.7 we can also note that when the probability o f immigration 
from the metacommunity is fixed, the correlation increases with increase in the 
immigration between local communities. This is because the similarity of species 
abundance dynamics in two local communities increases with increase in intensity of 
the immigration level between local communities. On the other hand, when the 
probability o f immigration between local communities is fixed, the correlation 
between local comunities reduces with increase in the probability o f immigration 
from the metacommunity. In this case the balance between local and global 
immigration processes is shifted towards the prevalence of the immigration from the 
metacommunity. Thus, less similarity in the species abundance composition for both 
local communities can be observed.

Analyzing different scenarios for species abundance dynamics, we noticed 
that for each scenario the range of possible correlation coefficients between species 
abundances in both local communities is large, it can be from 0 to 1. Thus, only based 
on the value o f correlation between species abundances in local communities it is 
impossible to predict the type o f species abundance dynamics in these two local 
communities. Therefore, we can conclude that similarity or dissimilarity o f two local 
communities does not have a sensitive effect on the type o f species abundance 
dynamics in these local communities.

Finally, we would like to note that the correlation between species abundances 
in two local communities can be closely approximated using the following formula

The conclusions made above for the correlation between species abundance in two 
local communities can be easily verified using this approximation.
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4.6 Conclusions and discussion
In this chapter a model for species abundance dynamics in two local communities of 
equal size was formulated. The proposed model describes species dynamics in similar 
patches or islands connected to a large source o f organisms -  a metacommunity. The 
model for species abundance dynamics in two local communities o f equal size is 
developed in line with the framework o f Hubbell’s neutral theory for species 
dynamics in zero-sum local community. The species in the proposed model are 
considered to be neutral, that is, individuals o f different species are assumed to have 
the same birth-death-immigration characteristics and do not have trophic hierarchy.

To analyze the model for species abundance dynamics a continuous 
probabilistic approach was applied. Specifically, Kolmogorov-Fokker-Planck forward 
equation for the distribution of species abundance in two local communities was 
derived and analyzed. A similar continuous approach to species abundance dynamics 
was used for analysis o f species abundance dynamics in one zero-sum local 
community (Babak, 2006). However, the continuous model for two local 
communities presented in this chapter is much more complicated due to increased 
dimensionality of the problem. Thus, it requires more thorough analysis.

A comprehensive analysis of species abundance distributions for two local 
communities at the equilibrium state, a state at which the species abundance 
dynamics is assumed to be stable in local communities, is provided in Section 4 o f the 
chapter. For investigation o f the equilibrium species abundance distribution, 
properties o f boundary conditions were considered first. As a result o f analysis of 
species abundances distributions at boundary levels, we obtained classification of 
species abundance dynamics in two local communities with respect to different 
species characteristics such as immigration intensity, species representation in the 
metacommunity and, o f course, the size o f local communities. Based on different 
ecological features such as species persistence, extinction and monodominance in one 
or both local communities, several different scenarios for species abundance 
dynamics were distinguished. Using information on the type of species abundance 
dynamics scenario in local communities, one can easily predict the development of 
species abundance in these local communities and take conservation actions to 
prevent species extinction if  needed.

The sensitivity analysis o f the model for species abundance dynamics in two 
local communities of equal size is confirmed by a case study o f different species 
abundance scenarios in two equal local communities and local communities with 
different death rates.

Also in this chapter, the similarities o f the species abundance dynamics in two 
local communities were investigated using the correlation coefficient between species 
abundances in both local communities. It was found that for a fixed probability of 
immigration from the metacommunity, the correlation increases with an increase in 
the immigration between local communities, and, vice versa, for a fixed probability of 
immigration between local communities, the correlation decreases with an increase in 
the immigration from the metacommunity. Moreover, from equation (22), we can 
infer that the correlation between species abundance dynamics in local communities
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is approximately constant for proportional values of the immigration probabilities 
m'  / mm = C and the correlation coefficient increases with respect to the coefficient 
o f proportion C . Thus, higher similarity of the species abundance dynamics in two 
local communities is observed for larger values o f the proportion between 
immigration probabilities m 1 / m m. However, the type (scenario) o f the species 
abundance dynamics in local communities cannot be defined on the basis of similarity 
or dissimilarity between species abundance in two local communities, since the 
ranges o f the correlation coefficient between species abundances in two local 
communities are large and overlap for different scenarios o f species abundance 
dynamics.

We believe that the model for species abundance dynamics in two local 
communities proposed in this chapter allows us to understand more deeply the 
processes in local habitats or islands connected through immigration. The developed 
model can be considered as a link between spatially implicit and spatially explicit 
models of species abundance dynamics, since introduction o f spatial characteristics 
requires discretization o f ecological communities into two or more small component 
communities. We also hope that the results presented here will be useful for 
landscape ecology, particularly for the study o f population dynamics in fragmented 
landscapes.
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Figure 4.1: The shapes o f the probability density o f species abundance in the p  th 
local community if  the species is absent xq = 0 (lower line) and monodominant 

x = J  in the q th local community. These shapes are constructed based on the values 

x° and x1 with respect to location on the interval [0, J )  . Possible combinations for 
ty < 1/2 are in the upper triangle o f the figure, i.e., cases (i)-(iu), (v), (vi) and (ix). 
Possible combinations for <y(. > 1 /2  are in the lower triangle o f the figure, i.e., cases 
(/), (iv), (v) and (vii)-(ix).
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Table 4.1: The conditions for parameters o f the model required for each combination 
ofvalues x° and x1 specified by cases (z)-(zx). wJa (mm ,m')  = m m (2co(J- \)  + \) + m 1 

and vJa (mm,m l) = rnm(2a>(J - 1) +1) + m l(2J  - 1).

Combination Description Conditions
(0 x° <0

J < x l
2 J  /(J  + l ) < w i i (mm ,m ‘) 

2 J l ( J  + \) < w(_(a (mm,m l)

(ii) 0 < x° < J
J < x l

w,Jai (mm, m l) < 2 J  / (J  +1) < v Jmi (mm ,m l) 

2 J  !(J + \ ) < w t oj(mm ,m')

(iii) j 0J  < X  

J  < x 1
v i ( m m,m ‘) < 2 J i ( J  + \)

2J P !(JP +1) < W'-ah (mp , m‘P)
(iv) x° < 0

0 < x1 < J
2 J / ( J  + \ ) < w i ( m m,m l) 

w(_ai (m"\ml) < 2J/(J  +1) <

(v) 0 < x° < J  
0 < x1 < J

wJai (mm ,m ‘) < 2 J l ( J  +1) < (mm ,m l) 

(mm,ml) < 2J/(J  + 1) < (mm,ml)

(v0 J < x °  
0 < x ‘ < J

vJC0(mm ,m ‘) < 2 J  !(J + \)

wJx_0i ( m \ m l) < 2J / (J  +1) < (m '\m l)
(vii) x° < 0 

x1 < 0
2 J / ( J  + I ) < w j0>(mm,m l) 

v i m(mm,m l) < 2 J / ( J  + \)

(viii) 0 < x° < J  
x 1 < 0

u /  (tnm, m l) < 2J l ( J  + 1) < v \  (mm ,m l) 

v i ai(mm,tnl) < 2 J / ( J  + \)
(ix) J < x °

x 1 < 0
v i ( m m,m l) < 2 J / ( J  + l) 

v t 01i(rnm,m , ) < 2 J / ( J  + \)
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mm( co.) =  mm( 1 -  co.)

co. = 1/20 < co . < 1/2 1/2 < to. < 1

Figure 4.2: Illustration o f different cases for species abundance distribution at the 
boundaries xq = 0 and xq = J  with respect to the values of immigration probabilities

m m and m ‘ , q - 3 - p ,  p  = 1,2. Three intervals for the metacommunity relative 
abundance o f species i are presented: 0<o)i < 1 / 2 , coj = 1 /2  and 1/2 < cot < 1.

1/(2(J+ l) )< to .<  1/2
m (w)

m (v)

vi
m

m

m (w )

m (v)

ix in

W7w( l - ( D . )i

Figure 4.3: Illustration o f different cases for species abundance distribution at the 
boundaries xq = 0 and xq = J  with respect to the values o f immigration probabilities

m m and m 1, q = 3 - p ,  p  = 1,2, subject to the conditions mm + m l < 0 , and mm > 0, 
m l > 0 . There are 6 possible scenarios if  1/(2(J +1)) < coi < 1 /2 , and only 5 possible 
combinations if  0 < coi < 1/(2( J  +1)).
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J
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0 Jx,

J
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0
0 Jx.
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0 2J 0J J 2J 0 J 2J
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Figure 4.4: Illustration o f possible scenarios for species abundance probability density 
in two equal local communities o f size J  = 200, and //, = n 2 with respect to different 
values o f the immigration probabilities. The species metacommunity relative 
abundance is coj = 0.2 < 1/2 . Figures in the top row show the landscape log-plots and
figures in the middle row show the contour plots for the equilibrium species 
abundance probability densities obtained using numerical approximations for problem 
(11)-(13). Figures in the bottom row show the additive equilibrium species abundance 
probability functions calculated using Equation (15).
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Figure 4.4: Cont. The values o f the immigration probabilities are chosen to be the 
following: (?) m m = 0.1, m; = 0 .1 ; (?'?) mm = 0.01, ml -  0.01; (iii) mm = 0.01, 
ml = 0.001; (v) m m = 0.005, ml = 0.005 ; (v?) m n = 0.005 , m‘ = 0.002; (ix) 
m m =0.001, m' =0.001.
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(ii-iii-v -v i)

Figure 4.5: Illustration o f the intermediate scenario (ii-iii-v-vi) for species abundance 
probability density in two local communities o f size J  = 200, cai = 0.2 < 1/2 and
Hx = n 2. Upper figure shows the landscape log-plots and lower figure shows the 
contour plots for the equilibrium species abundance probability densities obtained 
using numerical approximations for problem (11)-(13). The values o f the immigration

probabilities are chosen to be: m m = --------   , ml = - — ----------.
( l - ^ X J + i )  ( l - ^ x y + i )
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0 Jx.
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Figure 4.6: Illustration o f the effect o f different values o f the parameters //, and n 2 
( juJ ju2 = 10) on the species abundance probability density in two local communities 
o f size J  = 200 and immigration probabilities mm =0.01, m =0.01. The species 
metacommunity relative abundance is <y; = 0.2 < 1 /2 . Upper figure shows the
landscape log-plots and middle figure shows the contour plots for the equilibrium 
species abundance probability densities obtained using numerical approximations for 
problem (11)-(13). Lower figure shows the additive equilibrium species abundance 
probability functions calculated using Equation (15). The species abundance 
dynamics follows Scenario (ii) in both local communities, but the species abundance 
distribution is not symmetric as in the case when //, = /z2.

102

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



0 .8 -

0 .7 -

(ix)
©  =  0.2

0 .2 -

0.1 -

Figure 4.7: Correlation between abundance o f species i in two local communities as 
a function o f probability o f immigration from the metacommunity mm and from 
another local community m‘, mm +ml < 1. The size of local community J  -  200, and 
the metacommunity species relative abundance <y, = 0.2. The surface is divided into
the areas o f the immigration probabilities from different types of species abundance 
dynamics represented by scenarios (i), (ii), (iii), (v), (vi) and (ix).
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Chapter 5 
Species extinction time and 
probability in two connected 
equal local communities

5.1 Introduction
A question that has important implications for the conservation o f biodiversity in 
ecological communities is how the species extinction time and probability depend on 
such ecological processes as immigration (Lande et al. 2003, Alonso and McKane 
2002, Gaggiotti 2003), reproduction (Ludwig 1996b, Hakoyama and Iwasa 2000, 
Moller 2003, Lande et.al. 2003, Engen et al. 2005), the size and spatial structure of 
ecological community (Keymer et al. 2000, Jablonski 2000, Alonso and McKane
2002, Engen et al. 2002, Ovaskainen and Hanski 2003).

To analyze the extinction time and probability various approaches were 
applied including statistical estimation (Solow 2005), maximum likelihood methods 
(Hakoyama and Iwasa 2000), Bayesian analysis (Solow 1993, Ludwig 1996b), 
Fourier series analysis (Sole et al. 1997, Newman and Eble 1999), time series analysis 
(Ludwig 1999, Hakoyama and Iwasa 2000), diffusion approximations (Lande et al.
2003, Ludwig 1996a, Grasman 1996, Nasell 1999, Engen et al. 2005), and simulation 
study (Mangel and Ludwig 1977, Grimm and Wissel 2004). Using these methods 
both spatially implicit and spatially explicit population models were investigated 
(Lande et al. 2003, Alonso and McKane 2002, Ovaskainen and Hanski 2003).

The extinction time and probability were studied for various population 
models. For example, probability of extinction in a stochastic competition was 
studied by Mangel and Ludwig (1977), the effect o f demographic and environmental 
stochasticity and random catastrophes on extinction processes were investigated by 
Lande et al. (2003), Hakoyama and Iwasa (2000), Engen et al. (2005), effect of 
migration processes on the extinction dynamics was considered by Alonso and 
McKane (2002), Gaggiotti (2003), models with density dependence were studied by 
Lande et al. (2003), Hakoyama and Iwasa (2000), Bascompte (2003).

Relatively smaller attention was attracted to the study o f extinction dynamics 
and estimation of extinction time and probability for neutral macroecological models.
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Leigh (1981) determined that the average time to extinction under neutrality 
when a population size is bounded. Rosenzweig (1995) proposed a neutral model for 
the evolution o f continental diversity and showed that increased diversity per se will 
cause increased extinction rates per species. Ricklefs (2003, 2006) suggested that drift 
is too slow to account for the turnover o f species within a regional flora and other 
forces must act. Nee (2005) discussed the time scale for extinction o f common 
species in a neutral community. Hubbell (2001) introduced the probability that a 
species will suffer the death o f given number o f individuals, showed that the time to 
fixation (local extinction or complete dominance) is inversely proportional to the 
death rate in the isolated local communities, established that the times to fixation and 
local extinction are approximately Gamma distributed, and calculated the average 
number o f death in community until extinction o f the given species using discrete 
Markov chain approach.

In this chapter the relationships between the extinction processes, and 
immigration and demographic processes are investigated for structured neutral local 
communities, using a neutral model for the species abundance dynamics in two equal 
local communities connected with each other and with the metacommunity through 
immigration. The investigation o f species abundance dynamics for this model was 
performed in Chapter 4 based on the sensitivity analysis of the equilibrium species 
abundance distributions in two local communities with respect to immigration and 
demographic factors. Similar model for species abundance dynamics in two local 
communities was studied by Hubbell (2001) using discrete Markov Chain approach, 
and, therefore, was restricted only to small local communities. In Chapter 4 I used a 
continuous probabilistic approach to investigate the species abundance dynamics in 
two local communities, and proposed a realistic classification o f species abundance 
behavior in local communities subject to different chances o f species extinction, 
monodominance and persistence.

This chapter is addressed to the study of extinction time and probability o f a 
species in two equal neutral local communities connected with each other and with 
the metacommunity by means o f a continuous probabilistic approach. Using 
Kolmogorov-Fokker-Planck backward equation, I derive models for the species 
persistence probability in two local communities, and the average first time to species 
extinction. I consider two scenarios for species extinction: species extinction from 
one given local community, and species extinction from either the first or second 
local community. In addition, I calculate the probability of species extinction from 
one local community before the other local community for different species 
abundances in two local communities. Using this probability I can answer the 
question from each local community the species would most likely go extinct first. 
Finally, I make a comparison analysis o f species extinction dynamics in two local 
communities and in one local community. This analysis gives us an example of 
comparison between species abundance dynamics in spatially structured ecological 
communities (ecological communities involving interaction between many different 
neighboring habitat patches) and unstructured ecological communities (ecological 
communities with no spatial factors).
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This chapter is organized as follows. In Section 5 .2 ,1 review the formulation 
o f the model for species abundance dynamics in two equal local communities 
connected with each other and to the metacommunity (see Chapter 4). In Section 5.3, 
the model for distribution of the first time to species extinction is derived using 
Kolmogorov-Fokker-Planck backward equation. Based on this model, the average 
first time to species extinction and higher moments of the first time to species 
extinction are calculated for two scenarios. In the first problem the extinction o f the 
species is considered from one given local community (say from the first local 
community), and in the second problem the extinction of the species is considered 
from at least one local community (from either the first or second local community). 
In Section 5.4, the model for probability o f species extinction from one local 
community before the species extinction from the other local community is 
developed. In Section 5.5, the sensitivity analysis for the average extinction time and 
the probability of extinction from one local community before the other local 
community is provided with respect to such ecological characteristics as immigration 
probability between local communities and immigration probability from the 
metacommunity. Finally, in Section 5.6, the comparison study is performed for the 
species extinction time from the local community connected only to the 
metacommunity, and for the species extinction time from the local community 
connected to both the other local community and the metacommunity.

5.2 Discrete model for species abundance 
dynamics in two local communities

The model for species abundance dynamics in two zero-sum local communities o f the 
same size connected through immigration with each other and with the 
metacommunity is derived in Chapter 4. Denote the size of local communities by J , 
the number of individuals o f species i in the first and second local communities by 
N u and N 2 i , respectively. Then the change in the number o f individuals o f species

thi per unit time step in p  local community, p  = 1,2, can be defined using the 
following transition probabilities

\

WpJ{Np - \ \ N p, N q) = - j -  (1 - r n m- m l) r /  +mm{\-coi) + m'
J - 1 ' J

J - N  f  N  N  ^

Wptl(Np | N p,N q) = 1 -  WpJ(Np - 1 1 N p,N q) -  Wp/ N p + 1 1 N p,N q),

(1)

fl: p  = 2,
where q = ( N  = N  ., r -  1,2 ; co, is the relative abundance o f species i

[2: p  = l;
in the metacommunity, m m is the probability that a death in a local community will 
be replaced by an immigrant from the metacommunity and m l is the probability that
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a death in a local community will be replaced by an immigrant from the other local 
community, m = m m + m ' .

Further, we assume that species abundance dynamics in one local community 
is independent o f species abundance dynamics in another local community. Then, the 
transition probabilities for the dynamics o f species i in both local communities can 
be defined as

Wj(N ] + A l, N 2 + A2 \ N v N 2) = Wu (N t + A, | N ], N 2)y.W2J(N 2 + A2 \ N 2, N ]) (2)

where A p = -1,0,1; p  = 1,2.

To apply a continuous probabilistic technique to the analysis o f the model for 
the species abundance dynamics in two local communities, we define the transition 
probabilities for the change AN p j in the number of individuals N p i o f the i th species

in local community p , p - 1,2 per time step At as

?r{ANpJ = ± 11 N pi = N p, N qJ = N q) = p pAtWpJ(N p ± 1 1 N p, N q),

Pr(ANpJ = 0 1 N pJ = N p, N qi = N q) = 1 -  Pr(AN pi = 11 N pJ = N p, N qJ = N q)

-  Pr(AA^;. = - 1 1 N pJ = N p, N q; = N q),

where p p is the number o f death events per unit time interval in local community p .

Then the joint transition probabilities for the change in the species abundance 
in both local communities are given by

Pr (A/Vj ,. = ApAA^,. = A2 | = N t , N 2J = N 2)

= Pr(AATu = A, | N y  = N ], N 2J = N 2) x  Pr(AN 2<i = A 2 \ N v  = N 2, = N })

(4)
where A p = -1,0,1; p  = 1,2.

Let’s define the change in the abundance o f the i th species in both local
communities per time step At as a vector ANt = (ANUl,AN2i) , where

^ P i  = N p,i + A0  -  N p,i (0  ’ P = 1>2 ; and let N, = (N Ui, N v ) and x = (x,, x2).

Because the species abundance in one local community per one time step
At can change only by one individual or remain the same, the variables AN p i attain

only values -1,0 and 1. And, therefore, the mean and the second moment o f the 
change in the abundance o f the i th species per infinitely small time interval At can 
be calculated as

V(x)
F,(x)

vF2(x)y
.........................

EiAN^j | Nt = x) 

E(AN2J\ N t =x)
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D(x)
Z>l2( x f

= lim —
^£)2i(x) A 2 2  (x ) j ^  At V

E(ANh,2 \ N , = x )  E ( M uAN2J | N t = x) 

E(ANUAN2J | N, = x) E(AN2j2 | N, = x )

D pp(x) = juf
( J  —

2(1 -  m m -   p~- + m m( l - o ) i) ^ -  + rnmcoi
7 ( 7 - 1 )

J  -  x r_____A
7

• +

, J - X C X P  , X q J ~ X p+ m  ~ —  + m
J  J J  J

where p  = 1,2 and q

D pq{x) = 0 ,

fl '• A = 2,
12: /, = !.

(6)

5,3 Distribution of persistence and extinction times
Let us now define the abundances x, and x 2 o f species i in the first and second local 
communities as continuous variables from interval [0 ,7]; and let p t(y,s  \ x,t)  be the 

probability density that species i has abundance y  = (yv y 2) in both local 
communities at time s given abundance x = (x,,x2) o f species i at time t , t < s .

The probability that the abundance o f species i at time t remains in the 
abundance domain Q c f l  = (0,7 ) x (0,7) given the abundance x = (x,,x2) e Q  of 
species i at time 0 is:

Gj(x,t;Q)  = | x ,0 )d£ . (7)

This probability is a solution of the Kolmogorov backward equation (Gardiner, 1983)

dG, 1 
dt 2

r n d2G. n d2G.'s
D  ' +  D  - 'u \\ ~ 2 ^  u n  a 2> dxt 8 x 2 j

+  V , ^  +  V 2 ^ ,  x  6 Q , f>0,  (8 )
5x, d x 2

where V and D  are the first and second moments o f the change in the abundance of 
species i per time step At  as At -»  0 defined in (5) and (6).

Since it is assumed that the species abundance belongs to the abundance 
domain Q at the initial time moment, say at time 0 (the probability that the species 
abundance belongs to the domain Q is zero), the following initial condition is 
imposed
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G,(x,0) = l, x e Q .  (9)

Depending on the ecological formulation o f the problem we set either 
absorbing or reflecting boundary conditions. In general, let r  be the boundary o f the 
species abundances domain Q , and let T = Ta/J? u  Tref, where Tabs and Tref denote

absorbing and reflecting parts o f the boundary f , and 0  = Tato n  Tref. Then on the

absorbing boundary Tafo o f the abundance domain Q we assume that

G,= 0, x e f abs, t>  0, (10)

and on the reflecting boundary Tref, the boundary condition is

D n ~ ~ n i + D 2 2 ~ n 2 = °> O 1)C/A] (7a 2

where the vector h = (nv n2) is the outward normal to the boundary o f the domain Q 

defined on

Note that G fx , t )  defines the probability distribution o f time by which species 

i has not crossed the boundary Tafo given the species abundance in both local 

communities x = (x,,x2) at the initial time t -  0 . Using this distribution we can easily 

calculate the probability that species i will cross the boundary f a6s by time t as

F fx , t )  = l - G i(x,t).

We will use this probability to define the probability o f species extinction, the 
mean and variance o f the first passage time to species extinction etc.

Let us now consider the abundance domain Q = (0, J )  x (0, J )  in more detail. 
The boundary T o f this domain can be divided into four distinct regions
r  = r ° * u r * l u r ,* u r* ° , such that r°* = { 0 } x (o ,j) , r* 1 = ( o , j ) x { j} ,
T1* = {J} x (0, J )  and T*0 = (0 ,y )x  {0}. The outward normal vectors for each region 

of the boundary T are: «°* = ( n f  ,n2 ) -  (-1,0) for T°*, n [' = (n \ \n 2 ) -  (1,0) for T1*, 

n °  = (n}°,n20) -  (0,-1) for T*°, and = («,*',«*') -  (0,1) for T*1.

Two scenarios deserve special consideration here.

(1) Extinction o f  species i from either the first or second local community

Let us denote by Gjv2(x, t) the probability that species i has not gone extinct 
by time t from any local community if  at the initial time moment t -  0 its abundance 
was x . To define the boundary conditions for G f 2 note that the extinction o f species 
i from at least one local community occurs when its abundance reaches zero level in 
at least one local community, that is, the abundance o f species i reaches the boundary
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r , 0 u  r 0, o f the abundance domain Q . In this case Q = Q , Tabs -  r„0 u  r o* and 

^ref = r., u  F ,,, and the boundary conditions for the probability G]'2 are the 
following

G}v2 = 0, r e r , 0u r 0„  - ^  = 0, r e r „  - ^ -  = 0, x e T t> 0 . (12)
or, ox.

(2) Extinction o f  species i from one local community

Let us consider extinction o f species i from only one local community. By 
G .{x , t ) we denote the probability that species / has not gone extinct by time t from

ththe p  local community, p  = 1,2 , if  at the initial time moment t -  0 its abundance 
was x . Note that the extinction of the ith species from a local community occurs when 
its abundance reaches zero in this community, that is, the abundance o f species i 
reaches the boundary r o, . Thus, Q = JT, f aA( = F0, and f re/ = T,, U T,0 u  H , . Then

the boundary conditions for G- are the following

ll (1
t f = 0 ,  x € T0*, ~—L- = 0, JCGr,0u r ,„  L ^ - = 0, xgT ,,; / > 0. (13)

ox2 Sx,

Similarly we can define the boundary conditions for the problem of extinction 
o f species i from the second local community. In that case Q -  Q , Fais -  r . 0, 

r ref — T|» r 0. T,, and

G f=  0, x g r„0, ^ -  = 0, x g T,,, ^ L  = 0, xG T o .u r,.; t>  0. (14)
ox2 ox,

Based on the probability that the abundance o f species i at time t remains in 
the abundance domain Q given the abundance x = (x,,x2) g Q o f species i at time 0, 
we can easily calculate the mean and higher moments o f the first passage time to the 
boundary o f the abundance domain Q . The mean T' of the first passage time to 

the boundary f aAj is calculated from the equation

1 0 ~2rp\dlT  d T n z. i—1_ n i_ 2 + u n  -  2 v dxx dx2 j  «*», u*2

r ) T  A T ] _
+ Vx- ^  + V2 ^ f  = - l ,  x b Q ,  (15)

ox, ox

and the k th moment T k o f the first passage time is calculated from the equation
/

_ t ,-k „a (16)
A l  _  2 +  ^ 2 2  -  2

O X , O X 2 j Sx, dx2

These equations are supplemented with the absorbing boundary condition (10) 
on Tabs and reflecting boundary conditions (11) on Tre/. For each example given in
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Section 5.3 the boundary conditions (10) and (11) can be detailed in the same form, 
see Equations (12)-(14).

5.4 Probability o f species extinction from one local 
community before the other local community

Another important problem in conservation biology is in which community a species 
will go locally extinct first, and how the species abundance in the local communities 
affects the probability o f species extinction from each local community. To address 
this problem we denote by Qf the probability o f extinction o f species i from the p th 
local community before its extinction from the qth local community, where p  - 1,2 

P = 2, Then the probability that species i goes extinct from the first
p  = 1.

local community before the second local community can be calculated from the 
following equation

i f -  52g ’ n  d2Q j \ v dQl i V dQ)

and q =

DU 2 + Q 2 „ 2 ox, dx2 j
+ V ^  + Vt ^ L  = 0, x e Q, (17)

ox, ox2

Since the abundance level x, = 0 is attained when the species is extinct from 
the first local community, the probability o f extinction at this abundance level is 1, 
and, therefore, the boundary condition at T0, is the following

Q '=  1, x e  r o„. (18)

On the other hand, the abundance level x2 = 0 is attained when the species is 
extinct from the second local community, and the probability o f extinction at this 
abundance level is 0

Q,'= 0, x e T,0. (19)

At the boundary T,. u  E,, we impose the reflecting boundary conditions in the form

& - - 0 ,  x e r „  M . o ,  x e f y .  (20)
ox2 ox,

Note that for Q? only the boundary conditions (18) and (19) are reversed.

Similarly to the problem of the probability of extinction event in one local 
community before the extinction event in the other local community, we can consider 
the problem about the probability o f extinction in one local community versus the 
probability o f monodominance in the same or in the other local community. For these 
problems we need only to modify boundary conditions (18)-(20).
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5.5 Sensitivity analysis
In this section the average first time to species extinction in the local communities is 
studied subject to different immigration probabilities from the metacommunity m m 
and the immigration probabilities between local communities m . The study o f the 
first time to extinction is also supplemented with the analysis o f the probability of 
species extinction in one local community before its extinction from the other local 
community.

To perform the sensitivity analysis for the time to species extinction from the 
local community let us first recall the classification o f species abundance dynamics in 
two local communities. According to this classification we distinguished six different 
scenarios o f the species abundance dynamics in two local communities when the 
species abundance in the metacommunity is relatively small, that is mi < 0.5 (see 
Chapter 4):

Scenario (i). The species is highly persistent in the local communities, that is, 
its chance o f extinction or monodominance in each or in both local 
communities is very small;

Scenario (ii). The species has very high chance o f extinction and very small 
chance o f monodominance in one local community when it is absent from the 
other local community. However, when the species is monodominant in one 
local community its chance o f extinction and monodominance in the other 
local community is very small;

Scenario (iii). The species has very high chance of extinction and very small 
chance o f monodominance in one local community regardless o f the species 
abundance in the other local community;

Scenario (v). The species has very high chance o f extinction and very small 
chance o f monodominance in one local community when it is absent from the 
other local community, and the species has very small chance o f extinction 
and very high chance o f monodominance in each local community when it is 
monodominant in the other local community;

Scenario (vi). The species has very high chance o f extinction and very small 
chance of monodominance in one local community when it is absent from the 
other local community, and the species has very high chance o f extinction and 
monodominance in one local community when it is monodominant in the 
other local community;

Scenario (ix). The species is, most o f the time, extinct or monodominant in 
each local community, that is, it has very high chance o f extinction and 
monodominance in local communities.

The sensitivity analysis for the mean first extinction time of species from local 
communities is performed in accordance to the above species abundance dynamics 
classification. Figure 5.1 illustrates for each species abundance scenario the first 
extinction time o f species from the first local community, the probability o f species
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extinction from the first local community before its extinction from the second local 
community, and also the mean first extinction time o f species from either local 
community.

For Scenario (i) o f the species abundance dynamics, the mean first time to 
species extinction from the first local community is very large, and this time is almost 
independent of the initial species abundance in the local communities; moreover, the 
mean first time to species extinction from the first or second local community is also 
large and independent of the initial species abundances in two local communities. 
This shows that for Scenario (i) the species is highly persistent in the two local 
communities regardless o f its abundance in both o f them. The plot for the probability 
o f species extinction from the first local community before its extinction from the 
second local community shows that the extinction o f the species is equally probable 
from the first and the second local community regardless o f the species initial 
abundance.

Since for Scenario (ii) the species is still highly persistent in the first local 
community if  it is monodominant in the second local community, the average first 
time to extinction o f the species from the first local community in this case is very 
high and this time is almost independent o f the species initial abundance in the first 
local community. However, if  the species has low abundance in the second local 
community the average first time to extinction from the first local community 
increases significantly with respect to the species abundance in it. Figure 5.1 (ii) 
shows that the probability o f the species extinction from the first local community 
before its extinction from the second local community is almost 1/2 if the species is 
highly abundant or monodominant in the second local community, and this 
probability decreases significantly if the species is almost extinct from the second 
local community. The above analysis demonstrates that for Scenario (ii) the role of 
the immigration between local communities is very high; therefore, the species 
abundance level in one local community has large effect on the species abundance 
dynamics, the species extinction time and probability in the other local community.

For Scenario (iii) the mean first time to extinction of the species from the first 
local community is almost independent o f the species abundance in the second local 
community, and the species has significantly higher chance to extinction from the 
local community in which its abundance is smaller, see Figure 5.1 (iii). Therefore, the 
prevalent role on the species abundance dynamics and extinction in this scenario 
plays the immigration from the metacommunity.

For Scenarios (v), (vi) and (ix) the mean first time to species extinction from 
the first local community is significantly larger if  the species has higher abundance in 
the second local community. This characteristic shows that the effect of immigration 
between local communities plays an important role on the species abundance 
dynamics and species extinction. Also, it is worth noting from Figures 5.1 (v, vi, ix) 
that for Scenario (ix) the mean first time to extinction from the first local community 
increases almost linearly with respect to the species initial abundance in it, however, 
for Scenarios (v) and (vi) this relationship is nonlinear. In Scenario (ix) the mean first 
time to extinction from the first or second local community increases also almost 
linearly with respect to the species initial abundance in the local communities.
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5.6 Comparison o f extinction time in local 
community connected only to metacommunity 
and connected to both metacommunity and 
other local community

In this section the effect o f the immigration intensity between local communities m' 
on the mean first time to species extinction from one local community is investigated. 
The mean first time to species extinction from one local community connected to the 
metacommunity and the other local community is compared to the mean first time to 
species extinction from one local community connected only to the metacommunity. 
Note that the species extinction time in the model for one local community connected 
only to the metacommunity was examined using the continuous probabilistic 
approach in (Babak 2006).

Figures 5.2 (a,b,c) demonstrate the plots o f the mean first time to species 
extinction from the local community for three different values o f the immigration 
probability from the metacommunity m m. In the case o f two connected local 
communities these figures illustrate the mean first time to species extinction from the 
first local community calculated for different initial species abundances in the first 
local community as an averaged value for all possible initial species abundances in 
the second local community. Figures 5.2 (a,b,c) clearly show that the mean first time 
to species extinction from one local community connected with the other local 
community and with the metacommunity converges to the mean first time to species 
extinction from one local community connected only to the metacommunity as the 
immigration probability between local communities m1 tends to zero. Moreover, the 
mean first time to species extinction from the local community connected to both the 
metacommunity and the other local community is almost always larger than the mean 
first time to species extinction from the local community connected only to the 
metacommunity.

Figure 5.2 (a) shows the average first time to species extinction from one local 
community for high immigration probability from the metacommunity, mm -  0.1. In 
this case the species abundance dynamics is typical for Scenario (i) for all values of 
ml . Therefore, the behavior of the average first time to species extinction with 
respect to the initial species abundance in the local community is similar for different 
m1. Specifically, the average extinction time is almost independent on the initial 
species abundance in the local community. This behavior of the average first time to 
extinction is typical for highly persistent species in the local community, since the 
extinction time and probability o f extinction for such species are almost independent 
o f the species initial abundance.

Figure 5.2 (b) shows the average first time to extinction from one local 
community for intermediate immigration probability from the metacommunity, 
mm =0.01. We know that for such value o f the immigration probability mm, the
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immigration probability between local communities m 1 can significantly change the 
species abundance dynamics scenario in the local community (see Chapter 4) as well 
as the structure o f the average first time to species extinction (see Figure 5.2 (b)). Let 
us examine the effect o f m' on the extinction time and probability in detail.

For the values o f the immigration probability m' larger than 0.003 the species 
abundance dynamics is typical for Scenario (ii). For this scenario the species has very 
high chance o f extinction and very small chance of monodominance in the local 
community when it is absent from the other local community, and very small chance 
of extinction or monodominance in the local community when the species is 
monodominant in the other local community. In this case the average first time to 
extinction increases almost linearly with respect to the non-zero initial species 
abundance in the local community.

For the values o f the immigration probability m1 smaller than 0.003 the 
species abundance dynamics is typical for Scenario (iii). For this scenario the species 
has very high chance o f extinction and very small chance o f monodominance in the 
local community regardless of the species abundance in the other local community. In 
this case the average first time to species extinction increases nonlinearly with respect 
to the species initial abundance in the local community, thus the initial species 
abundance plays a very important role on the species persistence in the local 
community.

Finally, Figure 5.2 (c) shows the effect o f the immigration probability 
between local communities m' on the average first time to species extinction for very 
small immigration probability from the metacommunity, mm = 0.004. As in the 
previous example (Figure 5.2(b)) the species abundance dynamics scenario varies 
with respect to the value o f the immigration probability between local communities 
ml . For very large immigration probabilities m! ( m1 > 0.71), the species abundance 
dynamics is typical for Scenario (ii). In this case the average extinction time from the 
local community is large and increases almost linearly with respect to the species 
initial abundance, therefore the species is highly persistent in the local community.

For very small immigration probabilities ml (m 1 < 0.002), the species 
abundance dynamics is representative for Scenario (ix) with very high chances of 
species extinction or monodominance in the local communities. Therefore, due to 
high possibility o f either species extinction or monodominance, the average first time 
to species extinction from the local community increases almost linearly with respect 
to the initial species abundance. It is worth noting that only in the case o f Scenario 
(ix) the average first time to species extinction decreases with respect to the 
immigration probability m1. This counter-intuitive behavior o f the species extinction 
time can be explained by the fact that for Scenario (ix) the chance o f species 
monodominance in one local community is larger for smaller immigration probability 
between local communities m‘ . Since for the monodominant species in the local 
community the time to extinction is larger than for non-monodominant species, the 
increase in the probability o f species monodominance increases the time that the
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species abundance remains close to the monodominance level, and therefore, 
increases the time to species extinction from the local community.

We now consider the average first time to species extinction for intermediate 
values of the immigration probability m , 0.002 < m! < 0.71. In this case the species 
abundance dynamics is typical for Scenario (v) if 0.004 < ml < 0.71, and for Scenario 
(vi) if  0.002 < m ‘ < 0.004 .

For these scenarios the species has very high chance o f extinction and very 
small chance o f monodominance in the local community if the species abundance is 
low in the other local community, and the chance of species monodominance in the 
local community is high when the species is monodominant in the other local 
community. The structure o f the average extinction time is not stable for these 
intermediate scenarios. For smaller values o f ml from the considered interval the 
average first time to extinction increases gradually with respect to the initial species 
abundance in the local community, whereas for larger values of m' the average first 
time to extinction increases sharply for small initial species abundances, and is almost 
linear for larger initial species abundances.

5.7 Conclusions and discussion
In this chapter the extinction time and probability were investigated for a species in 
two equal local communities connected with each other and with the metacommunity 
through immigration. Using Kolmogorov-Fokker-Planck backward equation the 
models for:

• the persistence probability o f a species in two local communities,

•  the average first time to extinction o f a species from one local
community,

• the average first time to extinction o f a species from the first or second
local community, and

• the probability that a species will go extinct from one local community
before its extinction from the other local community

were derived and analyzed. Similar continuous probabilistic approach to the above 
problems was used for analysis o f species abundance dynamics in one zero-sum local 
community (Babak, 2006). However, the continuous model for two local 
communities presented in this paper is much more complicated due to increased 
dimensionality o f the problem.

The sensitivity analysis o f the average first time to species extinction from the 
first local community, the probability o f species extinction from the first local 
community before the second local community, and the average first time to species 
extinction from at least one local community is provided in Section 5.5. This analysis 
is performed subject to the type o f species abundance dynamics in two equal local
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communities developed in Chapter 4. It was distinguished that for different species 
abundance dynamics scenario in two equal local communities, the structure of the 
average first time to species extinction varies significantly. Specifically, if the local 
communities connected closely to the metacommunity (high immigration probability 
mm, Scenario (i)), then the first time to species extinction is almost independent of 
the initial species abundance in the local communities, and the species has the same 
chance o f extinction from the first and second local communities regardless of the 
species initial abundances in them. This character of the species extinction time and 
probability confirms that in the case of Scenario (i) the species is highly persistent.

For smaller immigration probabilities from the metacommunity mm, the 
average first time to extinction o f a species is more sensitive to the species initial 
abundance in the local communities. In such case the level of connection between the 
local communities (the immigration probability between local communities m l ) plays 
more important role on the species abundance dynamics in the local communities and 
on the species extinction time. Therefore, the species in the local communities need 
more careful treatment for conservation purposes. For example if  the immigration 
probabilities mm and m' are very small and the local communities are very weakly 
connected with each other and with the metacommunity (Scenarios (vi) and (ix)), the 
average first time to species extinction from one local community is almost 
proportional to the initial species abundance in this local community, and, therefore, 
the species with lower abundances are much more vulnerable than the species with 
higher abundances.

It is worth noting that from the sensitivity analysis o f the species extinction 
time and probability presented in Section 5.5, one can easily predict the development 
of species abundance in two local communities with respect to the level of 
connectedness o f local communities with each other and with the metacommunity.

The sensitivity analysis clearly illustrates the effect of species abundance, 
species fraction in the metacommunity and immigration probabilities on the 
extinction dynamics o f a given species in local communities. This analysis is 
particularly important for the population viability analysis of rare species. The 
analysis shows that the rare species are not necessary at high risk o f extinction. For 
example, when local communities are closely connected to the metacommunity, the 
persistence time (mean time to extinction) for rare species is almost the same as for 
common species. Therefore, the extinction risk o f rare species in this case is also 
close to the extinction risk o f common species. However, if  local communities are 
weakly connected to the metacommunity, the risk of extinction o f rare species is 
much higher than the risk of extinction o f common species. In this case the rare 
species are potential candidates for conservation actions.

Also in this chapter (Section 5.6), the comparison study of the species 
extinction time in two local communities and in one local community was performed. 
It was noted that in most cases the average first time to species extinction from one 
local community connected only to the metacommunity is smaller than the average 
first time to species extinction from one local community connected to both the 
metacommunity and the other local community, see Figures 5.2(a-c). This property
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shows the effect o f the spatial structure of living communities on the species 
persistence in them. Specifically, in living communities involving more complex 
structure o f interactions with other living communities or sources of organisms in the 
ecosystem the species persistence is higher than in living communities connected 
only to one source o f living organisms.

It was also observed from the comparison analysis that the average first time 
to species extinction from the local community very weakly connected to the other 
local community is very close to the average first time to species extinction from one 
local community isolated from the other local community. This rather obvious 
observation states that if  the local communities are weakly connected ( m1 is very 
small) then the effect o f the species abundance in one local community on the species 
extinction time, probability and distribution in the other local community is 
negligible. Therefore, the species abundance dynamics in two weakly connected 
equal local communities can be easily obtained based on the study o f the species 
abundance dynamics in one local community (Hubbell 2001; Babak 2006).

Finally, the models for the species extinction time and extinction in two local 
communities proposed in this chapter would allow us to understand more deeply the 
effect o f the spatially structured habitats on the species persistence and abundance 
dynamics. The knowledge about the structure o f the interactions between living 
habitats or communities, the intensity of immigration processes between them and the 
species composition in connected habitats can help to determine conservation actions 
to prevent species extinction (Kareiva 1987, Doak et al. 1992, Hall and Caswell 1999, 
Johnson et al. 2004). The analysis o f the model for species abundance dynamics in 
two local communities clearly shows that even simple spatial structure of living 
habitats can significantly influence the species persistence and species composition in 
local communities.
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Figure 5.1: Effect o f the type o f species abundance dynamics scenario on species 
abundance evolution in the two equal local communities o f size J  = 200. The 
numbers o f death events per unit time interval in local communities are fix -  fj,2 = 1. 
The species metacommunity relative abundance is coi = 0.2 < 1/2 . Figures in the top
row show the mean first time to species extinction in the first local community 
calculated using Eq. (16) with boundary conditions in the form (14); figures in the 
middle row show the probability o f extinction o f the species from the first local 
community before the second local community calculated using Eqs. (18)-(21); and 
figures in the bottom row show the mean first time to species extinction either from 
the first local community or from the second local community calculated using Eq. 
(16) with boundary conditions in the form (13).
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(V) (vi) (ix)

Figure 5.1: Cont. The values o f the immigration probabilities are chosen to be the 
following: (/) m m - 0 . 1 ,  w7= 0 .1 ; (ii) tnm -  0.01, ml =0.01; (iii) m m = 0.01,
n i  = 0.001; (v) mm = 0.005 , rri = 0.005 ; (vi) m m = 0.005 , m = 0.002 ; (ix) 
mm -  0.001, rri =0.001.
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Case:
Two local 
communities

Case;
One local 
community

(a)

Figure 5.2: Effect o f the immigration probability m' on the average first time to 
extinction in the first local community, and comparison o f the average times to 
extinction in one local community connected only to the metacommunity (Hubbell’s 
zero-sum model for local community) and in one local community connected to both 
the metacommunity and the other local community o f the same size, (a) mm =0.1 
(Scenario (i) for all values o f m l ); (b) mm -  0.01 (Scenario (iii) for m < 0.003 and
Scenario (ii) for ml >0.003); (c) m"‘ = 0.001 (Scenario (ix) for m‘ < 0.002 and
Scenario (v) for 0.002 < ml < 0.0045, Scenario (vi) for 0.0045 < m1 < 0.71 and
Scenario (ii) for ml >0.71). The size o f the local community is J  = 200, and the
metacommunity relative abundance o f species i is a>i = 0.2 .
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Chapter 6 
Analysis o f  species abundance 
distribution in two semi-isolated  
local communities

6.1 Introduction
The biodiversity and species dynamics in complex ecological systems was 
investigated on different levels of organization from small open communities, 
components o f all living systems, to all closed networks of open local communities 
(MacArthur and Wilson 1967; Hubbell 2001; Hanski and Gilpin 1997). 
Understanding the mechanisms o f species abundance dynamics on all different levels 
o f community organization is of high concern in viability analysis and ecosystem 
management and restoration (Primack 2002). The research on this matter dates back 
to works o f Fisher et al. (1943) and Preston (1948). Since that time many different 
models for species abundance dynamics were proposed based on different biological 
principles (MacArthur 1957; 1960; Bulmer 1974; May 1975; Caswell 1976; Sugihara 
1980; Engen & Lande 1996).

One o f the newest and most controversial biological principles is the principle 
o f neutrality for community organization which consists in assuming no differences 
between individuals of different species and no trophic hierarchy o f community 
(Hubbell 2001; Gaston & Chown 2005). Using the principle o f neutrality, Hubbell 
(2001) predicted the existence o f new statistical distribution o f relative species 
abundance, called the zero-sum multinomial and explained species area relationships. 
The zero-sum multinomial distribution was derived for communities which fulfill the 
zero-sum principle. This principle states that the sum of all changes in abundances is 
always zero, that is, the total number o f individuals in the community is a conserved 
quantity (Hubbell 2001).

The analytical formalization o f Hubbell's neutral theory was proposed for two 
types o f living communities with respect to their isolation or connectedness to other 
living communities through immigration processes. The closed living communities, 
also called metacommunities, are considered as such evolutionary biogeographic 
units in which species can generate, live and go extinct (Hu et al. 2006). The opened 
living (local) communities in contrast to the metacommunities obtain new individuals
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through immigration from other communities or from the metacommunity. 
Metacommunities can be subdivided into several opened local communities linked by 
dispersal o f species.

The dynamics o f species abundances in local community depends on species 
representation in the metacommunity, on the intensity o f immigration from the 
metacommunity and, o f course, on the size o f local community. To formulate the 
model for species abundance dynamics, Hubbell defined the change in the number of 
individuals o f species i per unit time step using the transition probabilities for the 
species abundances. If we denote the number o f individuals o f the i th species in a 
local community by N, and the size o f local community by J . Then, the respective 
transition probabilities for abundance of species i per unit time step are (Hubbell

w t ( n  I N )  = 1 -  w t ( n -1 1 n ) -  w t { n  + 11 n) ,

where 03i is the fractional metacommunity relative species abundance of the /th  
species, and m is the probability that a death in the local community will be replaced 
by an immigrant (Hubbell, 1997; 2001). The total size o f the local community J  can

total number species.

Based on the assumption o f neutrality and the zero-sum principle, Hubbell 
(2001) also proposed a model for species abundance dynamics in two equal local 
communities connected with each other and with the metacommunity through 
immigration. This model was formulated by modifying the model for one local 
community. For analysis of the proposed model for two equal local communities 
Hubbell applied a discrete Markov Chain approach (Hubbell 2001). Using this 
approach Hubbell obtained the equilibrium abundance distribution for one species 
and compared the species abundances in two local communities using the covariance 
coefficient. However, in the view of high computation difficulty of the discrete 
approach, the study of Hubbell’s model for species abundance dynamics in two local 
communities is restricted only to very small local communities.

In this chapter we propose a new spatially implicit model for species 
abundance dynamics in two semi-isolated local communities, i.e., two islands or 
habitats in the global ecological network o f living communities. Though, the 
proposed model is spatially implicit, it can be considered as a link between spatially 
implicit and spatially explicit models for species abundance dynamics. This is 
because the connected with each other local communities are positioned in the global 
ecological network o f living communities in such way that only one o f them can 
obtain immigrants directly from the rest o f the ecological system. Such positioning is,

1997,2001)

/ x N (  J - N  ^
JF;.(A/-1|/v) = — (1 - m ) ---------+ ,

(1)

be represented as a sum of all species abundances J  = ^ =| N i , where S  denotes the
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for example, typical for the local communities located close to the boundary o f the 
ecological system or metacommunity.

The model for species abundance dynamics in two local communities 
proposed in this chapter is constructed within the framework of the Hubbell’s zero- 
sum neutral theory for local communities. That is, the local communities are assumed 
to satisfy the zero-sum principle and the species are considered to be neutral. The 
developed model for two semi-isolated local communities is analyzed using 
continuous probabilistic technique. This technique allowed us not only to derive the 
species abundance distribution for local communities o f any size, but also to make a 
classification of the species abundance dynamics in two semi-isolated local 
communities with respect to immigration intensities, species abundance in the 
metacommunity and size o f local communities.

The chapter is organized as follows. In Section 6,2, we will propose a discrete 
model for species abundance dynamics in two semi-isolated local communities. In 
Section 6.3, we modify this discrete model to formulate a continuous model for 
probability density o f species abundances in two semi-isolated local communities 
using Kolmogorov-Fokker-Planck forward equation. In this section we also derive the 
models for species abundance distributions in two equilibrium local communities, for 
marginal species abundance distribution for each local community and for additive 
species abundance distribution in both local communities. In Section 6.4, we analyze 
the model for equilibrium species abundance distributions in two local communities, 
and make a classification o f species abundance dynamics in two local communities. 
According to this classification we distinguish realistic scenarios for species 
abundance dynamics in two local communities with respect to the immigration 
probability, species metacommunity relative abundance and size o f local 
communities. And, finally, in Sections 6.5 and 6.6, we present several examples for 
possible scenarios o f species abundance dynamics in two semi-isolated local 
communities, and discuss the ecological motives underlying each o f these scenarios.

6.2 Formulation of discrete model for species
abundance dynamics in two local communities

Let us consider two zero-sum local communities of the same size connected with 
each other and with the metacommunity - a large reservoir o f organisms of different 
species with unchanged species abundance fractions. Assume that the local 
communities are semi-isolated from the metacommunity, that is, only one of the two 
local communities, say, the first local community, can obtain immigrants from the 
metacommunity. Further, we will refer to the first local community as non-isolated 
local community, and to the second local community as semi-isolated local 
community.

A discrete model for species abundance dynamics in two zero-sum local 
communities o f the same size is formulated as follows. Let denote the size o f local
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communities by J , and the number of individuals o f species i in the first and second 
local communities by N u and N 2 j , respectively. Then the change in the number of
individuals of species i per unit time step in the first (non-isolated) local community 
can be defined using the following transition probabilities

, \ N  (  , I - N  , I  -  N  ^
Wu ( N , - \ \ N „ N 2) = ^  0 - m m- m ' ) ^ - — -±  + m m(\-col) + m l :

J  V  J - 1 J

J  ~ N} ^/1 m N x m . 1 N 2
WU{N , + 1|JV„JV2) = ^ - ^ ( 1  - m m - m ' ) j ^  + mm<a, + m l ^ J ,  (2)

1 ^ 1. ^ ) = - i  I N „N ,) - f ru{N, +i  I n , , ^ ) ,

where N r = N r j , r -  1,2 ; cot is a fractional metacommunity relative species

abundance o f species i ,  m m is the probability that a death in the first local 
community will be replaced by an immigrant from the metacommunity and m l is the 
probability that a death in a local community will be replaced by an immigrant from 
another local community, m = m m + m ‘ .

The change in the number of individuals o f species i per unit time step in the 
second (semi-isolated) local community is defined similarly using the following 
transition probabilities

W2J{N2- l \ N v N 2) = ^ - ( ( l - m ‘) J- ~ N2 + m ' j ~ N ' '
J J - 1 J J

Wv {N2+ \ \ N x, N 2) = 1— ^  + —  , (3)
f  \ r  a t  \

J J - 1 J

W2J{N2 1 tfp JV2) = \ - w2,{n 2- 1 1 N x, N 2) - W 2.{N2 + 1 1 N v N 2).

The transition probabilities given by expressions (2) and (3) can be explained
N  J - N d

as follows. The fractions —j -  and — j —1-  in the transition probabilities

Wpj{Np - l \ N p, N q) and Wp j(Np + 1 1 N p, N q), respectively, account for death of one 

individual in species i  and one individual in other species. The numbers

(1 - m m- m ' ) - - — , (1 - m m - m 1)———  and (1 - m 1) ^ 2 , (1 - m 1)———  define the 
J - \  J - 1 J - 1 J - 1

probabilities o f birth in the first and second local communities, respectively. The 
probabilities o f immigration from the metacommunity into the first local community 
o f an individual o f species i and an individual o f other species are given by mma>l

N  J - N
and m m(l-a>i) ,  respectively. Finally, the numbers m ‘ - j -  and ml — y - 2- define the
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probabilities of immigration from local community q into local community p  of an

Moreover, if  we assume that the species abundance dynamics in one local 
community is independent o f the species abundance dynamics in another local 
community. Then, the transition probabilities for dynamics o f species i in both local 
communities are defined as follows

where A p = -1,0,1 for p  = 1,2.

6.3 Continuous probabilistic approach
6.3.1 Model for species abundance dynamics in two local 

communities
In order to derive the continuous model for species abundance distribution in two 
zero-sum local communities, we define the transition probabilities for the change 
AN j o f the number o f individuals N p J of the i th species in local community p ,

p  = 1,2 per time step At as

where p p is the number o f death events per unit time interval in local community p  .

Then the joint transition probabilities for the change in the species abundance 
in both local communities are the following

individual o f species i and an individual o f other species, q =

(5)

(6)

where A p = -1,0,1; p -  1,2.
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6.3.2 Dynamics of species abundance distribution. Kolmogorov- 
Fokker-Planck forward equation

Let us define the change in the abundance o f the /th  species in both local 
communities per time step At as a vector A/V, = (ANu ,AN2j) , where

&NpJ = N pi(t + A t ) - N pJ(t),  p  = 1,2; and let N i = (Nu , N 2j) and x = (x,,x2).

Because the species abundance in one local community per one time step At 
changes only by one individual or remain the same, the variables AN pj can attain

only values -1,0 and 1. And therefore the mean and the second moment o f the change 
in the abundance of the /th  species per infinitely small time interval At can be 
calculated as

D(x)

where

V(x)

A i(x ) Dn (x) 
D2 i ( x )  D22 ( x )

Vx(x)
KV2 ( X) ;  

= lim —
Ar->0 f a

= lim —
A(-*0 f a

'EiAN^lN^x)
E(AN2J\ N , = x \

E(ANU2 1 N i = x) E(ANUiAN2 . \ N, = x) 

E{NNuAN2i | N, = x) E(AN2J2 1 N i = x)

co,
J J  J

V2(x) = p 2m‘
J  J

A i(x) =
f

M\ 2(1 -  ntm -  m‘) + mm(1 -  a,) ^  + mmcoi J - X ,  I J  -  X ,  X. , X ,  J  -  X. 
 1 +  m -------  +  m — ------- L

J J  J J  J

r
D22{x) = p 2 2(1 - m ' ) X^ - Xl)- + m

J  J
+ m x, J  - x 2

7 j
D n (x) = D2 , ( x )  = 0.(7)

Let us now define the abundances x, and x2 o f the / th species in the first and 
second local communities as continuous variables allowing any real values from the 
interval [0,J ] . Then the conditional probability, p{x, t) ,  that the /th  species has
abundances x, and x2 in the first and second local community at time t satisfies the 
following Kolmogorov-Fokker-Planck forward equation

dp_ = }_ 
d t ~  2

r d2P up  i 82D22p
5x, dx,

dVxp  dV2p
dx.

, x = (x1,x2)e f2  = (0,Jr)x (0 ,/) ,  t > T , {  8)

where x = (x ,,x2) e Q  = (0, J ) x ( 0 ,y ) ,  t > t , and V and D are the first and second 
moment o f the change in the abundance o f the / th species per time step At as 
At -> 0 defined in (7).
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Equation (8) is supplemented with the initial condition defining p°(x) ,  the 
probability density o f the /th  species abundances x, and x 2 in the two local 
communities at the initial time moment t = t

p(x , r )  = p°(x) , x e Q ,  (9)

and the natural boundary conditions

2 Sx,
n, +

J
rL dLh i E - V

2 dx2 2 j
n2 = 0, x e T , t> r, (10)

where T is the boundary o f the abundance domain Q , and the vector n = («,, n2) is 
the outward normal to the boundary. Note that the boundary conditions (10) are 
sufficient for conservation o f probability density

JJp(x ,r)dx ,dx2 = J |/? 0(x)dx,dx2 = 1, f o r a l l f > r .  (11)
a n

In order to define the natural boundary conditions (10) more precisely, we 
need to specify the boundary T o f the abundance domain Q = (0 ,J )x (0 ,J )  and the 
outward normal vectors n at each boundary abundance o f Q .

It is clear that the abundance boundary T  consists o f four parts 
r  = r ° * u r * 1u r ' * u r * \  where r°* = { 0 } x (o ,j) , r* 1 = ( o , j ) x { j} ,

T1* = { /} x (0 ,y ) and T*0 = (0,J)  x {0}. Therefore the outward normal vectors are 

given by n°‘ = (r?,r%) = (-1,0) for T ° \ w1* =(«,'*,/jJ*) = (1,0) for T1*,

n*° = (n*°,n*2°) = (0,-1) for T*0, and n x -  (n*\n*2 ) = (0,1) for T*1.

Then the boundary conditions (10) for each part of the boundary separately 
can be rewritten as follows

i d £ n £ - y p  = o, x e r ° * u r ' ‘ , L ^ 2 2 P - v 2p  = o, x € r ‘° u r * '.  ( io 5)
2 dxt 2 dx2

6.3.3 Equilibrium species abundance distribution in two local 
communities

Equilibrium species abundance distribution is an important tool for studying species 
abundance dynamics in local communities. It can be considered as a long time limit 
o f species abundance distribution in local communities or as a stabilized species 
abundance distribution in absence o f external factors or model perturbations.

It follows from model (8 )-(ll)  for the dynamics o f the abundance density of 
species i , that the equilibrium (steady state) abundance density o f species i in two 
local communities fulfils the following elliptic differential equation
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0 = 1
2

d 2D uP d D 22P
fix. ck,

dV,P dV2P
fix, fix,

( 12)

and boundary conditions (10) or (10’) with the total probability over domain Q equal 
to 1 (see also E q.(ll)).

6.3.4 Marginal species abundance distribution in one local 
community

The marginal species abundance distribution is used for comparison o f the species 
abundance distribution in one o f the two local communities and in both local 
communities.

The formulae for the marginal species abundance distribution can be easily 
obtained using the following expression for the q th local community

j

p q > t)=\p{xx,x2,t)dxp , xq e  (0, J )  (13)
o

where q = { ^
12: p  = \.

6.3.5 Additive species abundance distribution in both local 
communities

Another problem of interest for community ecologists is the species abundance 
distribution in both local communities, that is the distribution o f x, + x2. Based on 
this distribution a comparison study o f the abundance distributions in each local 
community and in the merged two local communities can be performed.

The species abundance distribution in both local communities can be defined
as

z z
p * ( z , t )  = ^p(xx, z - x x,t)(k\ -  ^ p ( z - x 2,x2,t)dx2 , z e i l  = (Q,2J) (14)

0 0

where p ( x }, x 2,t) under the integral sign is set to be 0 outside the domain Q .

6.3.6 Correlation between species abundances in two local 
communities

One o f the important characteristics o f the relationship between species abundance 
distributions in two local communities is the magnitude o f their correlation. In order
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to define it, we derive first the formulae for the covariance and variances o f the 
species abundances in local communities

Cov{NXi,N 2i) = j j ( x x - E (N pi))(x2- E ( N pi))p(xx,x2,t)dxxdx2 , (15)
n

Var(Npi) = j j ^  - E ( N pi))(xp - E ( N pi))p(xx,x2,t)dxxdx2 , p  = 1,2;
a

where

E (N P,i) = \ \ x pp{xx,x2,t)dxxdx2 , p  = 1,2;
a

Then, the correlation coefficient is found as 

r  Cov(NUi,N 2J)

12 JV ar(N u )Var{N2i) '

6.4 Analysis of the model
6.4.1 Analysis of the boundary conditions for the species 

abundance density function
A change in species abundance distribution with respect to different values of the 
immigration probabilities, the species metacommunity relative abundance, the 
community sizes and the number o f death events per unit time interval can be 
investigated by imposing different boundary condition on equation (8) or (12).

First we consider mixed boundary conditions (10) (or (10’)). These boundary 
conditions can be rewritten as

- £ > 2 2  —  2 dx

- A  2 1

dp

+
dp_
8xx

f \ 8D,

1 5A,
2 dxx

2 dx,

p  =  o ,  X 6 r ° ’ u r r

p  =  o ,  x  e  r*° u  r * (10” )

The critical boundary abundances at which the mixed boundary conditions 
degenerate to the zero flux boundary conditions are found by solving the following 
equations

2 dx.
— A 0.

1 SD

2 dx„
pp -V„ = 0, P  = 1,2: (17)

X „ = J

where
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1 dDup
2 dx.

■VxP:

Mi
(mm+tnl)(J  + 1 )-2  

J ( J - 1)
x, -  m‘

J  + 1
-xn + -

J 2 2 J - 1
mm +m l) m ^ J  + l^

------------  + m co,
2 (J -1 ) J

1 dD22p
2 dx, - V iP = M2

r m‘(J  + 1 )-2  , J  + 1
J ( J - l ) J

X, +  -
1

-m j + i

J - l
(18)

are non-increasing functions with respect to x2 and x ,, respectively.

Note that the zero flux boundary conditions, also known as Neumann 
Boundary conditions, imply zero gradient o f the probability o f species abundances at 
the boundary abundances.

After substitution of Eq. (18) into Eq. (17), we obtain the following formulae 
for calculation o f the boundary critical abundances (0,x2) , ( J , x 2) ,  (x,°,0) and 

( x ,V )  where the respective boundary conditions given by equations (10” ) 
degenerate to the zero flux boundary conditions

' \ - { m m+m') J 2
X°2 =

mm+m ! J
m ( J - l ) ( y  + l) 2 m ‘ J  + l

m T 
co— J ,  

m

x2 =
\ - ( r n m+rri) J 2 mm+m l J

m ( J - 1 ) ( J  + 1) 2m' J  + l
m

+ J  + ( l - « , .) —- J , 
m

x, =
^ \ - m l J 2

+  -
J

m1 (J  - 1)( J  +1) 2( J  +1)
, X| — J  -

^ 1 -m ' J 2
+  -

J
ml ( J - 1 ) ( J  + 1) 2( J  +1)

.(19)

For large local communities, the above formulae can be simplified to the 
subsequent

x2 =
m 2m1

m T 
-oo— J , 

m
1 mm +m i \

m 2 ml
i t  1 T+ J  + ( l -cod)— - J , 

m

( 1 - t r i  O
m l 2

x i  = J -
r i / A1 -m  1

V m ‘ + 2 y
(20)

6.4.2 Structure of species abundance distribution in the semi­
isolated local community

Let us first consider the behavior of the species abundance distribution in the semi­
isolated (second) local community when the species is extinct or monodominant in

the first local community. Since the function
1 dD.22 - V 2 in (18) is non-increasing
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with respect to x ,, we can infer that if  the critical value x,° o f the species abundance

can be reached in the first local community, i.e., x,° < 7 ,  then the derivative — is
dx2

negative at the abundance levels (0,0) and (0, 7 ) ,  and is positive at the
dx2

abundance levels (7,0) and ( J , J ) .  Similarly, if  the critical species abundance value 

x,° cannot be reached in the first local community, i.e., x,° > 7 ,  then the derivative

is negative at the abundance levels (0,0) and (7,0), and is positive at the
dx2 dx2

abundance levels (0,7) and (7 ,7 ) . The signs o f the derivative — at the comer
dx2

abundances define the two types o f the structure for the species abundance 
distribution in the second local community when the species is absent or 
monodominant in the first local community. These species abundance distributions 
are either U-shaped or S-shaped as shown in Figure 6.1.

The U-shaped species abundance distribution in the second local community, 
when the species abundance in the first local community is equal to 0 or 7 ,  describes 
that most o f the time the species abundance in the second local community is at levels 
0 or 7 .  In this case the species has very high chance o f extinction or monodominance 
in the second local community.

When the species abundance distribution in the second local community is S- 
shaped, the species abundance is most of time at the abundance level 0, and the 
probability that the species abundance riches the level 7  is very small. Thus, the 
species with S-shaped species abundance distribution in the second local community 
has very high chance to extinction and very small chance of monodominance, when 
the species abundance in the first local community is equal to 0 or 7 .

6.4.3 Structure of species abundance distribution in the non 
isolated local community

The source for new individuals in the first local community is larger than in the 
second local community, since the first local community obtains new immigrants not 
only from the second local community, but also from the metacommunity. As result, 
the number o f different structures for the species abundance distribution in the first 
local community at the boundary species abundances in the second local community 
is larger than the number o f structures o f the species abundance distribution in the 
second local community at the boundary species abundances in the first local 
community.

To describe possible cases for the species abundance distribution in the first
1 dDlocal community, let us consider the non-increasing function  — in (18) with
2 dx,
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respect to x2 for the two values of the species abundance in the first local community 
x, = 0 and x, = J .

1 3D
The signs o f  11 -  FJ at the boundary abundances (0,0) and (J,0) define

2 dx,
the type o f the species abundance in the first local community when the species is

1 3D
absent in the second local community. Similarly, the signs o f  — at the

2 dx,
boundary abundances (0,J )  and (J , J ) define the type of the species abundance in 
the first local community when the species is monodominant in the second local

community. To define the sign o f the —• ^ U- - F l at the boundary abundances we
2 dx,

consider the values o f x“ and x{ at which the fun c tio n  —- V] degenerate to
2 dx,

zero. For example, if x® < 0 , then -  Vxp  < 0 and —  > 0  at (0,0) and
2 dx, dx,

(0, J ) , thus we can conclude that the probability o f species abundance increases for
small species abundances in the first local community when the species is absent or

monodominant in the second local community. If  x° > J , then —  < 0 at (0,0) and
dx,

( 0 ,J ) , and the probability o f species abundance decreases for small species 
abundances in the first local community when the species is absent or monodominant

in the second local community. Finally, if  0 < x° < J , then —  < 0 at (0,0) and
dx,

> 0 at (0, J ) , thus the probability of species abundance decreases for small
dx,
species abundances in the first local community when the species is absent in the 
second local community, and it increases for small species abundances in the first 
local community when the species is monodominant in the second local community.

Similar conclusions with respect to behavior of the species abundance 
distribution for the large species abundances in the first local community at the
boundary abundances x0 = 0 and x2 = J  can be made from location of the

abundance value x J2 with respect to the three intervals (-oo,0), [0,J )  and [J,+oo).

In total, 9 locations are possible for the pair x® and x J2 with respect to critical 
abundances 0 and J . The respective types for the species abundance distribution in 
the first local community, when the species is absent and monodominant in the 
second local community, are illustrated in Figure 6.2.

Note that due to constraint on the sum of nonnegative immigration
probabilities mm and m l (this sum cannot exceed 1), for each values o f the
metacommunity relative abundance and the size o f local communities J  the
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number o f possible types for species abundance distribution in the first local 
community is smaller than 9. For example, in the case when 0 < n>( < 1 /2 , the types 
(zz), (z'z'z), (v), (vz) and (zx) for species abundance distribution in the first local 
community when x2 = 0 and x2 = J  are always possible, furthermore, in addition to

these species abundance types the type (z) is possible for — -—  < cot < —. Similarly,
2(.^ I 1) 2

for 1 / 2 < ty, < 1, the types (z'v), (v), (vz'z-), (vz'z') and (zx) for species abundance
distribution in the first local community are always possible, and, in addition to these

types the type (z) is possible for — < coi < 1--------— . If coi = 1 / 2 , the 3 possible
2 2 (J  “f“ 1)

types o f species abundance distribution in the first local community are (z), (v) and 
(zx).

The local community size plays also a critical rule in determining possible 
combinations for the species abundance distributions in the first local community at 
the boundary abundances x2 = 0 and x2 = J . For example, the combination (z) is 
only possible when the size of the local community is large enough, that is when

J >  ^  T- l .
2 mm \cot ,1 -  col}

6.4.4 Classification of the species abundance dynamics in both 
local communities

Based on the previous analysis o f species abundance distribution types in one local 
community when the species is absent or monodominant in the other local community 
we can define the type o f the joint species abundance distribution for both local 
communities.

Hereafter, we will refer to different types o f joint species abundance 
distributions as the scenarios for species abundance dynamics in two local 
communities. The number o f the scenario for the species abundance dynamics will be 
defined based on both, the number o f the type for species abundance distribution in 
the first local community when the species is absent or monodominant in the second 
local community, and the number o f the type for species abundance distribution in the 
second local community when when the species is absent or monodominant in the 
first local community.

Which scenario for the species abundance dynamics is observed in two local 
communities depends on the values of the immigration probabilities m ' and mm, the 
species metacommunity relative abundance coi and on the size o f local communities 
J . Table 6.1 states the conditions on the parameters o f the continuous model required 
for each possible species abundance dynamics scenario to be attained. Based on this 
table, the number o f the species abundance scenario can be defined easily from the 
values o f ml , mm, and J  .
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Figures 6.3 illustrate all possible species abundance scenarios with respect to 
the metacommunity relative abundance. The permissible regions for the immigration 
probabilities tnm and m! in Figure 6.3 are shown using the triangles with the vertices 
(0,0), (0,1) and (1,0). Such shape of the permissible region for m m and ml is dictated 
by the constraint that the sum of the nonnegative immigration probabilities cannot 
exceed 1. The permissible triangles are divided into two parts by the horizontal

2 J
dashed line ml = m ‘ , where m \ = ------------------- . This line defines the type o f the

J J ( 2 J - \ ) ( J  + Y) ^
species abundance distribution in the second local community i2. Specifically, if  the

pair o f immigration probabilities (mm ,m ’) belongs to upper sub-triangle, or m1 > m'j,

then i2 = (v ) ; otherwise, if (tnm ,m r) belongs to lower sub-domain o f the permissible

triangle, or m 1 < m lj ,  then i2 = (ix).

The upper and lower sub-domains o f the permissible triangles for the 
immigration probabilities are further divided into smaller parts using the lines 
m m(2coi( J - l )  + \) + ml = 2 J / ( J  + \ ) ,  mm (2(1 -  co,)(J- l )  + l) + m! = 2 J  l(J  + 1), 

m m {2(0, (J  - 1) +1) + m' (2 J  -1 ) = 2 J  /(J  +1) and

m m(2(\-coi) ( J - \ )  + \) + m ' ( 2 J - \ )  = 2 J l{ J  + \). The resulting parts define the type 

o f the species abundance distribution in the first local community z, on the basis of 
the value o f the pair (mm,m ‘) . As it is shown in Figures 6.3, not all types z, are 
possible for the fixed values o f the metacommunity relative abundance co, and the 
size of local communities J . For example, if  the type o f the species abundance 
distribution in the second local community i2 is (v), then for 

2 J  — 1
co, < <s/’2 = --------------------- , the type z, can only be either (v) or (zz); for

2 ( J - l ) ( 2 J  + l) 1 3 k j \ j,

f t / ’2 < co, < 1 /2 ,  /| can only be (v), (ii) or (/); for co, = 1 /2 ,  can only be (v) or (/);

for 1 / 2 < co, < 1 -  f t / ,2, z, can only be (v), (z'v) or (z); and for co, > 1 -  f t / ’2, the type z,
can only be either (v) or (zv). Similarly, if the type of the species abundance

distribution in the second local community L is (ix), then for co, < coJ,x = ---- ----- , the
2 ' 2 (J  + 1)

five possible types for z, are (zz), (z’z’z), (v), (vz) and (ix); for coJ'x <co, < 1 /2 , the six 

possible types for z, are (z), (zz), (z’z’z), (v), (vz) and (ix); for co, — 1 / 2 , z, can only be (z) 

or (v) or (ix); for 1/ 2 < co, < 1 -  f t / ’1, the six possible types for z, are (z), (z’v), (v), (vz'z), 

(vz'z'z) and (ix); and, finally, for co, > 1 - f t / ’1, the only possible types for z, are (z'v), (v), 
(vz'z), (vz’z'z) and (ix).

Finally, let us note that the maximal number of all possible scenarios is 9: 
three species abundance scenarios for z'2 = (zx) and six species abundance scenarios 
for z'2 = (v ) . The minimal number o f scenarios in two local communities is 7. All 
these scenarios can easy distinguished from Figures 6.3.
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6.5 Sensitivity analysis
In this section we will analyze different scenarios for the species abundance dynamics 
in two semi-isolated local communities using the equilibrium species abundance 
probability density in the two local communities (landscape and contour plots), the 
equilibrium marginal species abundance probability densities for each local 
community and the additive marginal species abundance probability densities for 
joint local communities, see Figure 6.4. Based on the correlation coefficient between 
species abundances in two local communities, we will also discuss the similarities 
between species abundance dynamics in two local communities, see Figure 6.5.

6.5.1 Analysis o f different species abundance dynamics 
scenarios

Let us study the abundance dynamics of a particular species, say species i , in two 
local communities of size J  = 200, using the analysis of the equilibrium species 
abundance distributions. We assume that the frequencies of death events in both local 
communities are equal, i.e., //, = ju2. Since the values of the equal frequencies of 
death events in two local communities play only a role o f the time scales in the 
dynamics of the species abundances in the local communities, and they specify the 
speed o f the convergence to equilibrium species abundance distributions, the 
equilibrium species abundance distribution is independent of the values o f parameters 
//, and ju2. Thus, in all experiments we will use a constant value o f 0.0001 for the 
parameters ju{ and ju2.

In our study we consider only the case when species i has small relative 
abundance in the metacommunity, that is, coi = 0.2 < 1/2 . The analysis o f the species 

abundance dynamics for common species (coj > 1 /2 )  can be provided in analogous 
manner.

It was already mentioned in the previous section that the maximal number of 
possible scenarios for the species abundance dynamics in the case when the 
metacommunity relative abundance is smaller than 1/2 is 9, these are scenarios (i,ix), 
(ii,ix), (iii.ix), (v,ix), (vi.ix), (ix.ix), (i,v), (ii,v) and (v,v). To illustrate all these 
scenarios the realistic values for the immigration probabilities are chosen.

Since the species in the second semi-isolated local community has only two 
possible structures o f the species abundance distribution, we divide all possible 
species abundance dynamics scenarios into two groups: (i,ix), (ii.ix), (iii,ix), (v,ix), 
(vi,ix) and (ix,ix) with the species abundance distribution in the second local 
community o f type (ix); and (i,v), (ii,v) and (v,v) with the species abundance 
distribution in the second local community of type (v). Each of these groups of 
scenarios will be examined separately.
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Let us start the analysis of the species abundance dynamics in the two local 
communities from the case when the local communities are weakly connected, that is, 
when the immigration probability between local communities m is small. The 
possible scenarios for the species abundance dynamics then are scenarios ii.ix), (iijx), 
(iiijx), (v,ix), (vi, ix) and (ixjx). For these scenarios, the common type (ix) o f the 
species abundance distribution in the second local community is characterized by the 
U-shaped form when the species is absent or monodominant in the first local 
community. That is, the species in the second local community has high chance to 
either go extinct or become monodominant. Note that for this group o f species 
abundance dynamics scenarios, the structure o f the species abundance distribution in 
the first local community can vary between types (/'), (ii), (Hi), (v), (vi) and (ix).

We begin our analysis o f each scenario in the first group composed of 
scenarios (i,ix), {iijx), (iiijx), (v jx ), (vijx) and (ixjx) from scenario (ix, ix) which is 
associated with small probabilities o f immigration m m and m‘ .

For scenario (ixjx) all boundary species abundance distributions are U- 
shaped, see Figures 6.1 and 6.2. Thus, the maximal probability o f the species 
abundances is achieved at the abundance levels (0,0), (J ,0 ), (0, J )  and ( J , J ) ,  and 
the minimal probability is achieved inside of the abundance domain Q , see Figure
6.4. This type o f the species abundance for scenario (ix, ix) can be explained using 
high similarity o f the species abundance for this scenario to the case o f the species 
abundance dynamics in two isolated local communities, that is, in local communities 
which neither obtain new immigrants from the metacommunity nor interchange 
immigrants between each other. Specifically, the similarity follows from the fact that 
if  the immigration intensities are very small, new immigrants appear in local 
communities o f scenario (ix,ix) very seldom, and the time interval between 
immigration events is very large. Thus, the species abundance dynamics for scenario 
(ixjx) is the same as in isolated local communities.

It is known from analysis o f species abundance dynamics in one isolated zero- 
sum local community that the species abundance dynamics in such local community 
possess two absorbing states at zero abundance level and at the monodominance level 
(Hubbell 2001). For the two local isolated communities species abundance dynamics 
is much more complicated, it has four absorbing states (0,0), (J ,0 ), (0,J )  and 
( J , J ) . As result the probability that the species abundance will achieve one o f these 
absorbing states and remain there equals 1. Because in scenario (ixjx), the 
immigration intensity is very small, the species abundance combinations (0,0), 
(J ,0), (0,J )  and ( J ,J )  are also most probable among all possible species abundance 
combinations from the domain Q . Thus, the probability that the species will go 
extinct or become monodominant in such local communities is very high and, 
therefore, the species abundance distribution at the boundary o f the abundance 
domain Q  is U-shaped. Note that Figures 6.4 for scenario (ixjx) show that the 
equilibrium marginal species abundance probability densities for each local 
community are also U-shaped. However, the additive species abundance distribution 
in both local communities for this scenario is significantly different from both 
marginal species abundance distributions. Specifically, the additive species
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abundance distribution in both local communities is W-shaped and has local 
maximums not only at the species abundance levels 0 and 2 J , but also at abundance 
level J . Note that when the additive species abundance distribution reaches level J , 
the species o f interest is monodominant in one local community and absent in the 
other local community.

Similar species abundance dynamics to discussed above is observed for 
scenario (vi.ix) which is characterized by higher probability of imigration probability 
from the metacommunity than for scenario {ixjx). For this scenario the species 
abundance in the first local community when the species is absent in the second local 
community is S-shaped. Thus, the probability that species monodominate in the first 
local community and go extinct in the second local community is significantly lower 
than in scenario {ixjx). As result, the additive species abundance distribution plot for 
scenario {vijx) shows that the probability o f the species abundance at the abundance 
level J  is significantly smaller than for scenario {ixjx). However, as in scenario 
{ixjx) the marginal species abundance distributions are still U-shaped and the species 
abundances (0,0), ( 0 ,/ )  and {J ,J )  have maximal probabilities, see Figures 6.4.

Now let us consider scenario {vjx) for which the local communities are more 
closely connected with each other than in scenario {vijx). The species abundance 
distribution in this case for the first local community becomes reverse S-shaped, that 
is the chance o f the species extinction in the first local community when the species is 
monodominant in the second local community is much lower than for scenario {vijx). 
Furthermore, the probability o f the additive abundance J  for scenario (v, ix) is 
smaller than for scenarios {vijx) and {ixjx) and the additive species abundance 
probability density as result becomes almost U-shaped. Note, however, that for 
scenario (v, ix) the maximal probability is still achieved at the boundary abundance 
levels (0,0) and {J, J ) , and the marginal species abundance distributions are still U- 
shaped as in scenarios {vijx) and {ixjx), see Figures 6.4 .

The structure o f the species abundance distributions for scenarios (iiijx) and 
(iijx) can be described using the same species abundance distribution contours at the 
boundary abundances x, = 0 , x, = J  and x2 = 0  as fo scenarios (vjx)  and (vijx). 
Moreover, for scenarios (iiijx) and (iijx), the marginal species abundance 
distributions in the two local communities are the same, that is, in the first local 
community the marginal species abundance distribution as for scenarios (iiijx) and 
(iijx) is S-shaped and in the second local community it is U-shaped. Note, however, 
that the species abundance dynamics in the first local community when the species is 
monodominant in the second local community is S-shaped for Scenario (iiijx) and 
reverse U-shaped for Scenario (iijx).

On the contrary to scenario (vjx), for scenario (Hi, ix), the immigration process 
from the metacommunity dominates the immigration process between local 
communities. Thus, due to high number of new immigrants o f different species from 
the metacommunity, the species monodominance in the first local community 
becomes less probable than for scenarios (vjx), (vijx) and (ixjx). But, the 
immigration intensity from the metacommunity is still too low to prevent high chance 
o f the species extinction from the first local community.
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In scenario (ii.ix), immigration between local community balances 
immigration from the metacommunity. Then due to high rate of the immigrantion 
between local communities, the probability o f species extinction from the first local 
community becomes smaller when species is monodominant in the second local 
community. Thus, species in the first local community has higher chance of 
persistence when species is monodominant in the second local community.

For both scenarios (ii,ix) and (iii.ix), the additive species abundance 
distribution inr both local communities attains it maximal value at the zero abundance 
and minimal value at the abundance level 2 J . However, the probability of additive 
species abundance at the level J  for scenario {iiijx) is higher than for scenario (iijx). 
Note also that the shape o f the additive species abundance distribution in the case of 
scenario (iijx) is a combination o f U and S shapes, and for scenario (iiijx) it is a 
combination o f U and reverse U shapes, see Figures 6.4.

For the last possible scenario in the first group, scenario (i,ix), the immigration 
probability from the metacommunity is large. As result, due to higher species 
turnover in the first local community the probability of the species extinction from the 
first local community is smaller than the probability of species persistence. The 
species abundance distribution in the first local community attains properties o f type 
(0, that is, the species abundance distribution in the first local community is reverse 
U-shaped when the species is absent and monodominant in the second local 
community, see Figure 6.4. Furthermore, the marginal species abundance distribution 
in the first local community is also reverse U-shaped, whereas in the second local 
community it is U-shaped. The shape o f the additive species abundance distribution is 
also closer to the reverse U shape. This means that the species is highly persistent not 
only in the first local community connected to the metacommunity, but also in both 
local communities.

Now let us consider the second group of species abundance dynamics 
scenarios, that is, scenarios (i,v), (ii,v) and (v,v). For all these scenarios, the species 
abundance distribution in the second (semi-isolated) local community is S-shaped 
when the species is absent in the first local community, and is always reverse S- 
shaped when the species is monodominant in the first local community. Moreover, 
note that for all scenarios o f the second group characteristic is that the first local 
community impacts significantly the species abundance dynamics in the second local 
communities. Specifically, when the species is of zero or low abundance in the first 
local community, the rate o f the species extinction from the second local community 
is the highest, and when the species is monodominant in the first local community, 
the rate o f species extinction from the second local community is the lowest.

For scenario (v,v), the probability o f the immigration from the 
metacommunity into the first local community is smaller than in scenarios (i,v) and 
(ii,v). The species abundance distribution in the first local community is o f type (v), 
that is, it is S-shaped when the species is absent from the second local community and 
reverse S-shaped when the species is monodominant in the second local community. 
Thus, since the species abundance in both local communities is most o f the time close 
to abundance levels (0,0) and (J , J ) ,  the chance of species extinction and
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monodominance in both local communities is very high. This can be also confirmed 
by the landscape plot o f species abundance distribution in both local communities and 
from the U-shaped plot of additive species abundance distribution, see Figure 6.4. 
Moreover, note from Figure 6.4 which shows the marginal species abundance 
distributions for both local communities that probability of species extinction from 
one local community and monodominance in the other local community is also 
relatively high.

For scenario (ii,v) we can observe that when the immigration from the 
metacommunity increases, the species abundance dynamics starts to change in the 
first local community when the species is monodominant in the second local 
community. The shape o f the species abundance distribution in the first local 
community when x2 = J  is reverse U-shaped, and the marginal species abundance 
distribution in this local community becomes is S-shaped, see Figure 6.4. As a result 
o f higher rate o f immigration o f other species in the first local community, the 
probability o f species monodominance in it decreases significantly in comparison to 
scenario (v,v). However, because the intensity o f immigration is relatively small, 
species extinction from the first local community as well as from both local 
communities is observed. The S-shaped plot for additive species abundance 
distribution also shows that the chance o f species monodominance in both local 
communities is much lower than the species extinction from both o f them, see Figure
6.4.

For the last scenario (i, v) in second group, the rate o f immigration from the 
metacommunity is very high. This affects both local communities in such a way that 
species becomes highly persistent in both o f local communities. Figure 6.4 show the 
reverse U-shaped marginal and additive species abundance distributions as well as the 
landscape and contour plots characteristic for local communities in which species are 
most o f time present in both local communities; and for which the chance o f species 
extinction is very small.

6.5.2 Correlation between species abundances in two local 
communities

The similarity between species abundance dynamics in two local communities can be 
evaluated using correlation coefficient between them. This correlation coefficient can 
be easily calculated from the probability density o f species abundances in both local 
communities using equation (16).

Figure 6.5 shows the plot o f correlation between species abundances in two 
local communities as a function o f immigration probabilities mm and m ‘ . From this 
figure, one can clearly see that for very small probability o f immigration from the 
metacommunity mm, the correlation between species abundance in two local 
communities is close to 1, and for very small probability o f immigration between 
local communities m [ , the correlation between species abundances in two local 
communities is close to 0.
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To explain high correlation between species abundances in two local 
communities for small values of immigration probability mm, let us consider the 
limiting case for the immigration from the metacommunity, that is, consider local 
communities with no immigration from the metacommunity. Similarly to the case of 
only one local community considered in (Hubbell, 2001; Babak, 2006), for isolated 
local communities from the metacommunity ( mm = 0 )  the abundance dynamics for 
species possesses two absorbing states corresponding to either extinction o f the 
species from both local communities, or monodominance in them. When the species 
abundance in both local communities becomes equal to (0,0) or (J , J ) , the 
correlation coefficient between species abundances in such two deterministic local 
communities is equal to 1, that is, there is a perfect linear correlation between local 
communities. If  the local communities are very weakly connected to the 
metacommunity, i.e., m m is very small, the analogous patterns o f the species 
abundance dynamics are observed to the case when rnm = 0 , and, therefore, the 
correlation coefficient between species abundances in both local communities is close 
to 1.

Small correlation between species abundances in two local communities can 
be explained by considering mutually isolated local communities, i.e., m' = 0 . In the 
mutually isolated local communities the species abundance dynamics in the semi­
isolated (second) local community possesses two absorbing states at the levels 0 and 
J , and the species abundance dynamics in the non-isolated (first) local community is 
independent o f the species abundance dynamics in the semi-isolated local 
community. Thus, when m‘ = 0 , the species abundances in the local communities are 
changing independently each o f other. As result, the correlation between species 
abundances is zero. If  the connection between local communities is very weak, the 
species abundance dynamics in one local community is almost independent in the 
other local community. Thus, the correlation coefficient in this case is very small.

From Figure 6.5 we can also conclude that when the probability of 
immigration from the metacommunity is fixed, the correlation increases with increase 
in the immigration between local communities. This is because the similarity of 
species abundance dynamics in two local communities increases with increase in the 
intensity o f immigration between local communities. On the other hand, when the 
probability o f immigration between local communities is fixed, the correlation 
between local communities reduces with increase in the immigration from the 
metacommunity. This is due to the fact that balance between local and global 
immigration processes is shifted towards the prevalence o f the immigration from the 
metacommunity, resulting in less similarity in the species abundance composition for 
both local communities.

In general, when analyzing different scenarios for species abundance 
dynamics, we, however, noticed that for each scenario the range of possible 
correlation coefficients between species abundances in two local communities is 
large. The values o f the correlation coefficient for the same scenario can even vary 
from 0 to 1, for example, this is observed for scenarios (ixjx)  and (vi.ix) with 
coi < 1 /2 ; and for scenarios (ixjx) and (viii.ix) with coj > 1 /2 . Thus, only based on
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the value of correlation between species abundances in local communities it is 
impossible to predict the type o f species abundance dynamics in these local 
communities. However, some analysis o f the similarity between species abundance 
dynamics in two local communities with respect to for different scenarios can be 
performed. For example, if  o)i < 1 /2  we can note that the value o f the correlation 
coefficient is high and the species abundance structures in the local communities are 
more similar to each other for scenarios (v,v) and (v, ix) than for scenario (Hi, ix).

6.6 Conclusions and discussion
In this chapter we have proposed a new model for species abundance dynamics in two 
local communities. The local communities under investigation are connected to each 
other and semi-isolated from the metacommunity, that is, only one o f the local 
communities obtains immigrants from the metacommunity directly. The 
metacommunity is thought as a large source of organisms of different species with 
constant fractions o f species abundances. The model is formulated in accordance with 
specifications set up by Hubbell theory for species abundance dynamics in zero-sum 
local community. The species in the proposed model are considered to be neutral, that 
is, individuals o f different species are assumed to have the same birth-death- 
immigration characteristics and no trophic hierarchy.

To analyze the model for species abundance dynamics we applied a 
continuous probabilistic approach based on the Kolmogorov-Fokker-Planck forward 
equation for the distribution o f species abundances in two local communities. Note 
that similar approach was used for analysis o f species abundance dynamics in one 
zero-sum local community (Babak, 2006); however, for two local communities the 
model has higher dimensionality, and requires more thorough analysis than the model 
for only one local community.

The main objective of this chapter was to analyze the species abundance 
dynamics based on the equilibrium state o f the species abundance distribution in two 
local communities. Under the equilibrium state of the species abundances in two local 
communities the long time behavior o f the species abundances can be understood.

The investigation o f the equilibrium species abundance distribution we started 
from considering the properties o f the boundary conditions for the steady state 
problem of the Kolmogorov-Fokker-Planck forward model. We first investigated the 
effect o f the species abundance in one local community on the species abundance 
distribution in the other local community, particularly, for each local community we 
found such values o f the species abundance that the change in the species abundance 
distribution in the other connected local community is not significant when the 
species is absent or monodominant in it. The outcome o f the analysis o f the species 
abundances distributions at the boundary levels was a realistic classification o f the 
species abundance distributions in both local communities with respect to different 
ecological characteristics such as immigration probabilities, species representation in 
the metacommunity and, o f course, the size o f local communities. Based on different
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types o f the species abundance distribution in the local communities, we defined 
several scenarios o f the species abundance dynamics in both local communities. 
Different scenarios of species abundance dynamics were distinguished with respect to 
such ecological characteristics as species persistence, extinction and monodominance 
in one or both local communities. Such characterization o f species abundance 
dynamics in local communities allowed us to predict the species abundance in local 
communities and also to define the needs in conservation actions to prevent species 
extinction.

In this chapter, similarities o f species abundance dynamics in two local 
communities were investigated using correlation coefficient between species 
abundances in both local communities. It was found that for fixed probability of 
immigration from the metacommunity, the correlation increases with increase in the 
rate o f immigration between local communities; whereas, for fixed probability of 
immigration between local communities, the correlation decreases with increase in 
the immigration from the metacommunity. It was also observed that the type of 
species abundance dynamics in both local communities cannot be determined based 
on similarity or dissimilarity between species abundance in two local communities, 
since the ranges o f the correlation coefficients overlap for most o f the species 
abundance scenarios.

To sum up, the chapter we would like to underline that the model for species 
abundance dynamics in two semi-isolated local communities proposed in this chapter 
allow to understand more deeply the processes in connected through immigration 
local habitats or islands. This model can be considered as a link between spatially 
implicit and spatially explicit models o f species abundance dynamics, since 
introduction of spatial characteristics requires discretization o f ecological 
communities or habitats into two or more small component parts. The proposed 
model is applicable to the case when a large living habitat can be divided into a 
network o f small local habitats, which contains two types o f communities: non­
isolated communities connected with all other habitats in the network through 
immigration process and partially (semi-) isolated communities connected only to 
some other but not all communities in the network. We are confident that the results 
presented here will be useful for landscape ecology, particularly for the study o f 
population dynamics in fragmented landscapes, and conservation management.
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x ,  — J

0 X, J'2

(ix)

x = J

0 x. J'2

Figure 6.1: The shapes o f the probability density o f species abundance in the second 
(semi-isolated) local community if  the species is absent x, = 0 (lower line) and 
monodominant x2 = J  in the first local community. These shapes are constructed 

based on the values x° and x{ with respect to location on the interval [0 ,J ) . 
Possible combinations (v) and (ix) are independent o f the value o f the 
metacommunity relative abundance a>l .
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Figure 6.2: The shapes o f the probability density o f species abundance in the first 
(non-isolated) local community if  the species is absent x2 = 0 (lower line) and 
monodominant x2 = J  in the second local community. These shapes are constructed 
based on the values x2 and x2 with respect to location on the interval [0 ,J ) .  
Possible combinations for a>i < 1 /2  are in the upper triangle o f the figure, i.e., cases 
(i)-(iii), (v), (vz) and (ix). Possible combinations for coi > 1 /2  are in the lower triangle 
o f the figure, i.e., cases (/), (z'v), (v) and (vii)-(ix).
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Table 6.1: The conditions for parameters o f the model required for each possible
2 Jspecies abundance dynamics scenario. Here mlj

(2J  -  1)(J +1)
and

2 J  

A _  J  + 1
■m

2 a ( J - I )  + 1

Community 2 Community 1
Scenario Type Condition Type Condition

0>)
(v) { (0 mm > m a x {m J !0|(m,),mJA_ 0̂|(m,)}

(ii.v) m > nij (ii) m l l_ai(mI) < m m < m l ai(ml)
Civ.v) (iv) < « , (ml) < m m (m1)
(v,v) (v) m'n < m i n (m1)}
(i,ix) (0 mm > m ^ { m l 0>|(ml) , m l l_(0|(m,))
(iijx) (ix)

ml < mlj
(i‘) maxjm'",,^ ( m ' ) , ((2./ -  l)m ')}< (m7)

{iiijx) (iii)

(ivjx) (iv) max{wj,«, 0”')><,!-«, (C2-7 -1 V)}< m” < (m7)
(vjx) (v) ((2J  ~ l)mI)>mj,i-at H2J  ~

< max{ffjy>a)j (rri),mmJ X_ai (m1)}
(vijx) (Vi) m l l_0Ji( { 2 J - l ) m l) < m m<

< mm{mj}_r0i (m1), ((2 J  -  l)m7)}
(vii.ix) (vii) < „ > 7)< m m< < 4_ J ( 2 J - l ) r n 7)
(viiijx) (viii) /h^ ( ( 2 . / - 1 ) 7 h7) < / b" <

< m in{"C, ( V  ),< !-,» , (C2-7 -  l)w ')}
(ixjx) (ix) < m in{ m ^  ((2J  -  l)™7) , ^  ((2J  - 1 )m!)}
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Figure 6.3: The effect o f the metacommunity relative abundance coi on possible type 

(/15/2) o f the species abundance density in both local communities based on the types 
o f the species abundance distribution in each local community given the species is 
absent or monodominant in the other local community. The horizontal dashed line 
splits the two possible types i2 = (v) and i2 = (ix) of the species abundance 
distributions in the second local community when the species is absent or 
monodominant in the first local community, that is, i2 = (v) if  mf >m'j , and i2 = (ix)

2 J
if  ml < ml, , where = -------------------- .

J J (2 J  - 1)( J  +1)
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/
mj

( ix )
0 mmmj,m 1 m

Figure 6.3. Cont. The possible type o f the species abundance distribution in the first 
local community Tx when the species is absent or monodominant in the second local 
community are restricted by the sum of the nonnegative values o f the immigration 
probabilities m m and ml which is not larger than 1 and are defined separately with 
respect to the value T2, or either the pair (mm,m !) is above or below the line 

, 2 Jm _ -------------------  The range o f the metacommunity relative abundance co is
(2 J  - 1)( J  +1) J

divided into seven parts with respect to the values coJ'] =   —  and
2(J  + 1)

, ,  2 J  - 1
co ’  ---------------------. The intermediate values o f the immigration probability mm

2{J - 1)(2 J  +1) 6 P y
2 J

when m1 = 0 are defined using the relationship = --------------------------- .
J'a (2co{J -1 )  + +1)
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Figure 6.4:. Illustration o f possible scenarios for species abundance probability 
density in two semi-isolated local communities with respect to different values o f the 
immigration probabilities mm and m l . The local communities are o f the size J  = 200 
with the same frequencies o f the death events //, = jj2 . The species metacommunity 
relative abundance is coi = 0.2 < 1 /2 . Figures in the first row show the landscape log-
plots and figures in the second row show the contour plots for the equilibrium species 
abundance probability densities obtained using numerical approximations for problem 
(11)-(13). The values o f the immigration probabilities are chosen to be the following:
(,i,ix) mm = 0.1, 
rri = 0.002.

m =0 .002; (ii,ix) mm = 0.02, m =0.002; (iii.ix) m *= 0.01,

156

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



J

<N

0 x.0 J1

J

K

0 x0 J

J

0
0 Jl

  Community 1
— - Community 2

X0 JP

  Community 1
— - Community 2

X0 JP

  Community 1
— - Community 2

X0 Jp

*

0 2JJ

*

2J 0 J 2J

Figure 6.4: Cont. Figures in the third row show the equilibrium marginal probability 
density functions for the species abundance in the first and second local communities 
and figures in the forth row show the additive equilibrium species abundance 
probability functions calculated using Equation (15). The values o f the immigration 
probabilities are chosen to be the following: (v,ix) mm =0.005, ml =0.0045 ; (vijx) 
mm = 0.005, ml = 0.002 ; (ixjx) tnm = 0.002 , ml = 0.002 .
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Figure 6.4: Cont. The values o f the immigration probabilities are chosen to be the 
following: (i,v) mm -  0.1, m' -  0.1; (ii,v) mm -  0.01, m! -  0.01; (v,v) mm -  0.005, 
ml = 0.05.
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Figure 6.5: Correlation between abundance of species i in two semi-isolated local 
communities as a function o f probability o f immigration from the metacommunity 
mm and from another local community ml , mm +ml <1 . The size o f local community 
J  -  200 and the metacommunity species relative abundance o)i = 0.2.
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Chapter 7 
Species extinction time and 
probability in two semi-isolated  
local communities

7.1 Introduction
Neutral theory may be used to provide general insights into how species respond to 
spatially structured and nonhomogeneous habitats (Chave and Leigh Jr. 2002, 
Ovaskainen and Hanski 2003, Sole et al. 2004, Gilbert et al. 2006). The effect of 
spatial structure on the species distribution in living communities can be measured 
using different biodiversity indices (Chave and Leigh Jr. 2002, Condit et al. 2002, 
Borda-de Agua et al. 2002). Another important group o f quantities for measure of the 
species dynamics in living communities is related to extinction processes (Hubbell 
2001, Lande et al. 2003, Ginzburg et al. 1982, Grimm and Wissel 2004, etc.). This 
group o f measures includes extinction time [mean variance, distribution] (Lande et al. 
2003, Newman et al. 2004), probability o f extinction [risk of extinction] (Lande 
1993), extinction thresholds (Keymer et al. 2000, Ovaskainen and Hanski 2003), and 
persistence probability (Grimm and Wissel 2004).

Several various analytic, numerical and statistic methods were applied for 
analysis o f extinction processes in living communities, including parametric and non- 
parametric estimation (Solow 2005), maximum likelihood methods (Ludwig 1996a), 
Bayesian analysis (Solow 1993, Ludwig 1996b), Fourier series analysis (Newman 
and Eble 1999), time series analysis (Hakoyama and Iwasa 2000), diffusion 
approximations (Lande et al. 2003). However, relatively smaller attention was 
addressed to investigation o f extinction processes in neutral theory (Leigh 1981, 
Hubbell 2001, Ricklefs 2003, 2006, Nee 2005, Rosenzweig 1995).

In this chapter the relationships between the extinction processes, and 
immigration and demographic processes are investigated for structured neutral local 
communities, using a neutral model for the species abundance dynamics in two semi­
isolated local communities, that is, such local communities that are connected with 
each other but only one o f local communities is connected to the metacommunity 
through immigration. The investigation o f species abundance dynamics for this model 
was performed in Chapter 6 based on the sensitivity analysis o f the equilibrium
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species abundance distributions in two local communities with respect to immigration 
and demographic factors. In Chapter 6, a continuous probabilistic approach was used 
to investigate the species abundance dynamics in two local communities, and 
proposed a realistic classification o f species abundance behavior in local communities 
subject to different chances o f species extinction, monodominance and persistence.

This chapter is addressed to the study o f extinction time and probability of 
species in two semi-isolated local communities o f the same size by means of a 
continuous probabilistic approach. Using Kolmogorov-Fokker-Planck backward 
equation, I derive models for the species persistence probability in two local 
communities, and the average first time to species extinction. I consider two scenarios 
for species extinction: species extinction from one given local community (from only 
non-isolated or only semi-isolated local community), and species extinction from 
either the non-isolated or semi-isolated local community. In addition, I calculate the 
probability o f species extinction from one local community before the other local 
community for different species abundances in two local communities. Using this 
probability I can answer the question from each local community the species would 
most likely go extinct first. Finally, I make a comparison analysis o f species 
extinction dynamics in two local communities and in one local community. This 
analysis gives us an example of comparison between species abundance dynamics in 
spatially structured ecological communities (ecological communities involving 
interaction between many different neighboring habitat patches) and unstructured 
ecological communities (ecological communities with no spatial factors). The main 
question of this comparison study is whether spatial structure or more complex 
geometry o f habitat interactions (Thrall et al. 2003, Park et al. 2002, Wiegand et al. 
2002, McCarthy 1996, Lehtinen et al. 2003) has and important effect on the species 
persistence in local community.

This chapter is organized as follows. In Section 7 .2 ,1 recall the formulation of 
the model for species abundance dynamics in two semi-isolated local communities, 
that is, such connected with each other local communities that only one o f them is 
connected to the metacommunity through immigration (see Chapter 6). In Section 
7.3, the model for distribution o f the first time to species extinction is derived using 
Kolmogorov-Fokker-Planck backward equation. Based on this model, the average 
first time to species extinction and higher moments o f the first time to species 
extinction are calculated for two problems. In the first problem the extinction of the 
species is considered from only non-isolated local community or from only semi­
isolated local community, and in the second problem the extinction o f the species is 
considered from either semi-isolated or non-isolated local community. In Section 7.4, 
the model for probability of species extinction from one local community before the 
species extinction from the other local community is developed. In Section 7.5, the 
sensitivity analysis for the average extinction time and the probability o f extinction 
from one local community before the other local community is provided with respect 
to such ecological characteristics as immigration probability between local 
communities and immigration probability from the metacommunity. Finally, in 
Section 7.6, the comparison study is performed for the time to species extinction from 
the non-isolated local community (connected to both the other local community and 
to the metacommunity), the time to species extinction from semi-isolated local
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community (connected only to the other local community) and the time to species 
extinction from the local community connected only to the metacommunity.

7.2 Discrete model for species abundance 
dynamics in two semi-isolated local 
communities

The model for species abundance dynamics in two semi-isolated local communities 
o f the same size connected through immigration with each other and with the 
metacommunity is derived in Chapter 6. In this model the local communities are 
semi-isolated from the metacommunity, that is, only one o f the two local 
communities, say, the first local community, can obtain immigrants from the 
metacommunity. Further, we will refer to the first local community as non-isolated 
local community, and to the second local community as semi-isolated local 
community. The discrete model for species abundance dynamics in this case is 
formulated as follows.

Let denote the size o f local communities by J , and the number o f individuals of 
species i in the first and second local communities by N u  and N 2J, respectively.

Then the change in the number o f individuals o f species i per unit time step in the 
first (non-isolated) local community is defined using the following transition 
probabilities

N t („  „ J - N ^
J

Wu {Nl - \ \ N ],N 2) = ^ -  (1 - r n m- m ' )  — —^  + mm(1 - a>,) + rri
v J - 1 ' J

(N, + 1 1 N ,, AT,) = J  J * '  ((1 -  m" -  + m"iol +m' ^  j ,  (1)

I f f u N t )= l - W u (N , - 1 1 + 1 1 N „ N ,) ,

where N r = N r j , r = 1,2; coi is a fractional metacommunity relative species

abundance of species i ,  m m is the probability that a death in the first local 
community will be replaced by an immigrant from the metacommunity and m 1 is the 
probability that a death in a local community will be replaced by an immigrant from 
another local community, m - m T  \ m l .

The change in the number o f individuals of species i per unit time step in the second 
(semi-isolated) local community is defined similarly using the following transition 
probabilities
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( 2 )

Moreover, if we assume that the species abundance dynamics in one local community 
is independent of the species abundance dynamics in another local community. Then, 
the transition probabilities for dynamics o f species i in both local communities are 
defined as follows

where A p = -1,0,1 for p  = 1,2.

In order to derive the continuous model for species abundance distribution in two 
zero-sum local communities, we define the transition probabilities for the change 
AN pJ o f the number o f individuals N p i o f the / th species in local community p ,

p  = 1,2 per time step At as

where p p is the number o f death events per unit time interval in local community p  .

Then the joint transition probabilities for the change in the species abundance in both 
local communities are the following

where A p -  -1,0,1; p  = 1,2.

Let us denote the change in the abundance of the /th  species in both local 
communities per time step At as a vector ANj -  (ANU,AN2J) , where

Because the species abundance in one local community per one time step At changes 
only by one individual or remain the same, the variables AZV . can attain only values
-1,0 and 1. And therefore the mean and the second moment of the change in the 
abundance o f the / th species per infinitely small time interval At can be calculated as

(4)

(5)

M f p j  = N p,i ( t + A0  -  N p,i (0  > P = U  ’ and let N i = (N U > N 2,i) and x = (x,, x2).

v (  x r  i r^Atfj^xri
V(x) = = lim —  ,

[V2(x ) j  A'-̂ ° At {^E(AN2j | A, = x)J
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D ( x ) .

where

A i(* ) A 2 W )  1 
y D 2 ,(x) D 22( x )22 v-vy

lim —
a;->o Ar

E (A N U2 \ N , = x )  E (A N liAN2J | N (. =  x)  

E ( A N liA N u  | Nj = x) E {A N 2f  | N,  =  x)  ,

A 1 ( * ) —

/  * i N « > - 7
v

+ p xm
J  J

, V2 (x) -  p 2m l
J  J

2(1 X]{J X|) + mm(1 -  a>.) ^  + mma>i +
7 (7 -1 )  7  ' J

I J  -  X ,  X , 1 X ,  J  -  X ,  ^
+ m  + m — ------ L

7 7 J  J

(6)

D 22 ( x )  =  fj2 ->/•, K x2( 7 - x 2) , 7 - x ,  x2 , x , 7 - x 2
2(1 - w  ) — ------- — + m --------- + m — -----------------

7 (7 -1 )  7 J  J  J

D u (x) = D 2l (x)  = 0 . (7)

7.3 Distribution o f Persistence and extinction 
times. Kolmogorov-Fokker-Planck backward 
equation

Let us now define the abundances x, and x2 of species i in the first (non-isolated) 
and second (semi-isolated) local communities as a continuous variables allowing any 
real values from the interval [0 ,7 ]; and let p , { y , s  \ x, t )  be the probability density

that species i has abundance y  = (yi, y 2) in both local communities at time s  given 
the abundance x = (x,,x2) of species i at time t , t < s .

Then we can define the probability,

A (x ,/;Q )=  J j> ,(£ * |x ,0 )d £ , (8)
£2

that the abundance o f species i at time t  remains in the abundance domain 
Q c f l  = (0 ,J )x  (0,7) given the abundance x = (x,,x2) e  O o f species i at time 0, as 
a solution o f the Kolmogorov backward equation (Gardiner, 1983)

dG, 1 
dt ~ 2

D # 2 .L + D1̂1 a 2 ^  u 22 _ 2 
O X , O X 2 J

+  V i ^ -  +  V 2 ^ J- ,  x g Q ,  / >0, (9)
3x, dx2

where V  and D  are the first and second moments o f the change in the abundance of 
species i per time step At  as At  —> 0 defined in (6) and (7).
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Since at the initial time moment, say at time 0, the species abundance in both
local communities belongs to the abundance domain Q  (the probability that the
species abundance belongs to the domain Q is 1), the following initial condition is 
imposed

Gj (x,0) = 1, r e f l .  (10)

Depending on the ecological formulation of the problem we set either 
absorbing or reflecting boundary conditions. In general, let T be the boundary o f the 
species abundances domain Q , and let T = FaAs u  Tref, where Faii and Tref denote

absorbing and reflecting parts o f the boundary T , and 0 = fafon fre/. Then at the

absorbing boundary Tafo o f the abundance domain Q we assume that

Gi=  0, x e f abs, t>  0, (11)

and at the reflecting boundary Tref, the boundary condition is

Dxx̂ n x+D22̂ n 2 = 0, x e f re/, t > 0, (12)
oxx ox2

where the vector n = (nx,n2) is the outward normal to the boundary o f the domain Q. 

defined on Tref ■

Note that G, (x, t) defines the probability distribution o f time by which species 

i has not crossed the boundary r afo given the species abundance in both local 

communities x = (x1;x2) at the initial time 1 = 0 . Using this distribution we can easily 

calculate the probability that species i will cross the boundary Tabs by time t as

^ ( x ,0  = l-G ,(x ,0 .  (13)

This probability we will use to define the probability of species extinction, the mean 
and variance o f the first passage time to species extinction etc.

Let us now consider the abundance domain Q = (0, J )x (0 ,. /)  in more detail. 
The boundary T  o f this domain can be divided into four distinct parts 
r  = r ° * u r * l u r ,* u r ‘°, such that r°* ={0}x(o,y), r* 1 = (o ,j)x { /} ,
T 1* = {J} x (0 ,J )  and r*° = (0, J )  x {0}. The outward normal vectors for each part of 

the boundary T  are the following: n°* = {nx\ n 2 ) = (-1,0) for T°*,

«'* = (n'*,«2*) = (1>0) for F 1*, = (n® ,n*2 ) = (0,-1) for T*0, and
n l ={nx\ n 2 ) = (0,1) for T*1.

The following examples of the species abundance dynamics in two local 
communities can be considered.

(1) Extinction o f  species i from  at least one local community
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Let us denote by G}v2(x,t) the probability that species i has not gone extinct 
by time t from any local community if  at the initial time moment t = 0 its abundance 
was x . To define the boundary conditions for G 'f2 note that the extinction o f species 
i from at least one local community occurs when its abundance reaches zero level in 
at least one local community, that is, the abundance o f species i reaches the boundary
r . 0 u r 0, o f the abundance domain Q . In this case Q = Q ,  r a6j = r„0 u r o, and 

r ^ = r (1u r , „  and the boundary conditions for the probability G 'f2 are the 
following

G f 2 =0, x e r , 0u r 0„ —i— = 0, xeT .,, = 0, x e f , ,  t >  0. (14)
ox2 3x,

(2) Extinction o f  species i from  the firs t (non-isolated) local community

Let us consider extinction o f species i from only one local community. By 
G ({x,t) we denote the probability that species i has not gone extinct by time t from 
the p  th local community, p  = 1,2, if  at the initial time moment t = 0 its abundance 
was x . Note that the extinction o f the i th species from the first local community 
occurs when its abundance reaches zero level in this community, that is, the 
abundance o f species i reaches the boundary r o, . Thus, Q = Q , Tahs -  r o, and

T,, u  T.0 u  T ,,. Then the boundary conditions for G] are the following

Gj = 0, x e  r o„, ^-*- = 0, x e r , u r , „  ^ -  = 0, xeT ,,; f> 0 . (15)
dx2 ox,

(3) Extinction o f  species i from  the second (semi-isolated) local community

Similarly to the problem of extinction from the first local community, we can define 
the boundary conditions for the problem of extinction of species i from the second
(semi-isolated) local community. In that case Q = Q » -  r„0, Yref -  r,» u  r 0» u  r„,
and

G f=  0, x<=n0, M -  = o, x e r , , ,  M -  = 0, r e T j .u r , , ;  t > 0. (16)
OX2 OXj

Based on the probability that the abundance o f species i at time t remains in 
the abundance domain Q given the abundance x = (x ,,x2) e Q of species i at time 0, 
we can easily calculate the mean and higher moments of the first passage time to the 
boundary o f the abundance domain Q . The mean T. of the first passage time to

the boundary Fahs is calculated from the equation

1 f  d2Tx d2T ' Nn - — i—u n  '
^ 1 1  2 22  ^  2

OX] OX 2 j

„dT) _ BT' , p;+ V,—— ^L2—------ -1, x e Q, (17)
ox, ox2
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and the k  th moment T k o f the first passage time is calculated from the equation

f  rpk
A

d x 2  r p k

dx. 2 + ̂ 22
d j ;
dx

dTk dTk + V , ^  + K '
2

dx.
:-rk-t x e Q. (18)

These equations are supplemented with the absorbing boundary condition (11)
on Tahs and reflecting boundary conditions (12) on Tref . For each example given in
Section 7.3 the boundary conditions (11) and (12) can be detailed in the same form, 
see Equations (14)-(16).

7.4 Probability o f species extinction from one local 
community before its extinction from the other 
local community

Another important problem in conservation biology is in which community the 
species will go locally extinct first. To address this problem we denote by Qk the 
probability o f extinction o f species i from the p  th local community before its

extinction from the q th local community, where p  - 1,2 and q = j* ’ P Then
[2: p  = 1.

the probability that species i goes extinct from the first (non-isolated) local 
community before the second (semi-isolated) local community can be calculated from 
the following equation

1 D ?QL+d  #Ql
u \\ ,  2 22 - 2 v dx2 j

+ V , ^ l + V2^ 0 ,  x e Q ,  (19)
dx, dx2

Since the abundance level x, = 0 is attained when the species is extinct from 
the first (non-isolated) local community, the probability o f extinction at this 
abundance level is 1, and, therefore, the boundary condition at ro, is the following

e ; = l ,  x  e  ro„. (20)

On the other hand, the abundance level x2 = 0 is attained when the species is
extinct from the second (semi-isolated) local community, and the probability of 
extinction at this abundance level is 0

Q )= 0, x e r , 0. (21)

At the boundary T,, u  T,, we impose the reflecting boundary conditions in the form

# ? U  d- f  = 0, x gr,„. (22)
dx2 ox.
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Note that for Q? only the boundary conditions (20) and (21) are reversed. The other 

way to calculate Q? is based on the following relationship

g ; + 02=i- (23)
Similarly to the problem of the probability of extinction event in one local 

community before the extinction event in the other local community, we can consider 
the problem about the probability of extinction in one local community versus the 
probability o f monodominance in the same or in the other local community. For these 
problems we need only to modify boundary conditions (20)-(22).

7.5 Sensitivity analysis
In this section the effect o f the immigration probability from the metacommunity mm 
and the immigration probability between local communities m1 on the average first 
time to species extinction in the local communities and on the probability o f species 
extinction from one local community before its extinction from the other local 
community will be examined.

To perform the sensitivity analysis for the time to species extinction from the 
local community let us first recall the classification of species abundance dynamics in 
two semi-isolated local communities. According to this classification we 
distinguished nine different scenarios o f the species abundance dynamics in two local 
communities when the species abundance in the metacommunity is relatively small, 
that is cot < 0.5 (see Chapter 6). Different species abundance scenarios in two local
communities are derived based on the type o f the species abundance distribution in 
each local community.

From analysis presented in Chapter 6, it is possible to distinguish two groups 
o f the species abundance dynamics scenarios with respect to the type of the species 
abundance distribution in the second (semi-isolated) local community. The first group 
o f the species abundance dynamics scenarios includes Scenarios (i,ix), (ii,ix), (iii,ix), 
(v,ix), (vi,ix) and (ix,ix). For all these scenarios the chance of species extinction or 
monodominance in the second local community is very high. The second group o f the 
species abundance dynamics scenarios includes Scenarios (i,v), (ii,v) and (v,v). For 
these scenarios the chance o f species extinction from the second local community is 
very high if  the species has low abundance in the first local community, and the 
chance o f species monodominance in the second local community is very high if the 
species has high (close to monodominant level) abundance in the first local 
community.

With respect to the behavior of the species in the first (non-isolated) local 
community the species abundance scenarios can be characterized as follows:
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Scenarios (i,ix) and (i,v). The species is highly persistent in the first local 
community, that is, the probabilities o f the species extinction and 
monodominance in this local community are very small.

Scenarios (ii,ix) and (ii,v). If  the species abundance in the second local 
community is very high then the species is highly persistent in the first local 
community; and if  the species abundance in the second local community is 
very small then the species has very high chance of extinction from the first 
local community.

Scenarios (v,ix) and (v,v). If  the species abundance in the second local 
community is very high then the species has very high chance of 
monodominance in the first local community; however, if  the species 
abundance in the second local community is very small then the species has 
very high chance of extinction from the first local community.

Scenario (iii,ix). The species has very high chance o f extinction and very 
small chance of monodominance in the first local community regardless its 
abundance in the second local community.

Scenario (ix,ix). The species has very high chance of extinction or 
monodominance in the first local community regardless its abundance in the 
second local community.

Scenario (vi,ix). The species has very high chance of extinction in the first 
local community regardless its abundance in the second local community, and 
the chance of species monodominance in the first local community is very 
high only if  the species is highly abundant or monodominant in the second 
local community.

The sensitivity analysis for the mean first time o f species extinction from local 
communities is performed in accordance to the above species abundance dynamics 
classification. For each species abundance scenario, Figure 7.1 illustrates the average 
first extinction time o f species from the first (non-isolated) local community, the 
average first extinction time o f species from the second (semi-isolated) local 
community, the probability o f species extinction from the first (non-isolated) local 
community before its extinction from the second (semi-isolated) local community, 
and also the average first extinction time o f species from either the first local 
community or the second local community.

Let us start to analyze the extinction time and probability from Scenarios (i,ix) 
and (i,v). Figures 7.1 (i,ix) and 7.1 (i,v) show that for these scenarios the average first 
time to species extinction from the first local community is very large and this time is 
almost independent of the initial species abundance in both local communities, 
moreover, the probability of species extinction from the first local community before 
its extinction from the second local community is very small. As a result, the species 
in the first local community from these scenarios are highly persistent. The average 
first time to species extinction from the second local community is different for 
Scenarios (i,ix) and (i,v). Specifically, for Scenario (i,ix) the role o f the immigration 
probability between local communities is very small, therefore, the second local
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community is almost completely isolated, and the species is extinct or monodominant 
most o f the time in this local community. The average time to species extinction from 
the second local community is almost proportional to the species abundance in it. 
Since the local communities are very weakly connected, the average time to species 
extinction from the second local community is independent o f the species abundance 
in the first local community. The plot for the average first time to species extinction 
from at least one local community for Scenario (i,ix) shows that this time increases 
with respect to the initial species abundance in the second local community, and is 
almost independent o f the initial species abundance in the first local community. In 
contrast, for Scenario (v,ix) the role o f the immigration probability between local 
communities is large and the species abundance in the first local community has 
strong effect on the species persistence in the second local community. As a result the 
average first time to species extinction from the second local community is almost 
independent of the initial species abundance except the case when the initial species 
abundance in the first local community is small. The species is still highly persistent 
in the second local community, however, the average first time to species extinction 
from the second local community is much smaller than from the first local 
community, and the probability o f extinction from the second local community is 
much higher than the probability of extinction from the first local community. 
Finally, for Scenario (v,ix) the plot o f the average first time to species extinction from 
either the first or second local community indicates that this time to extinction is 
almost independent o f the initial species abundance in the local communities.

Let us now consider Scenarios (ii,ix) and (ii,v). For these scenarios the 
immigration probability from the metacommunity is relatively high, however, the role 
of the immigration between local communities cannot be neglected. Figures for the 
average first time to species extinction from the first local community clearly indicate 
dependence o f this time on the initial species abundances in both local communities. 
These figures also show that the structure of the average first time to species 
extinction from the first local community is very similar for Scenarios (ii,ix) and 
(ii,v), and the average first time to extinction from the first local community is 
relatively large for all non-zero initial species abundances in this local community. 
However, the average first time to species extinction from the second local 
community is different for Scenarios (ii,ix) and (ii,v) as a result o f different types of 
the species abundance distributions in the second (semi-isolated) local community. 
Since for Scenario (ii,ix) the local communities are very weakly connected, the 
average first time to species extinction from the second local community is almost 
independent of the initial species abundance in the first local community. In contrast, 
for Scenario (ii,v) this time is obviously related to the species abundance in both local 
communities. It also worth noting that for Scenario (ii,v) the probability o f species 
extinction from the first local community is smaller than the probability o f species 
extinction from the second local community; however, for Scenario (ii,ix) this 
probability is clearly dependent on the initial species abundance in the second local 
community. The average first time to species extinction from either the first or second 
local community is much higher for Scenario (ii,v) than for Scenario (ii,ix); 
moreover, this time has different structure o f dependence on the initial species 
abundances in local communities for these scenarios. Specifically, in the case of
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Scenario (ii,ix) the average first time to species extinction from either the first or 
second local community is clearly asymmetric with respect to the initial species 
abundances in the local communities, whereas for Scenario (ii,v) higher symmetry of 
this time to species extinction is observed with respect to species abundances 
(x,,x2) = (a,b) and (x,,x2) = (b,a) in local communities.

The structure o f the extinction time and probability for Scenario (iii,ix) is very 
similar to those for Scenario (ii,ix). For Scenario (iii,ix) the immigration probability 
between local communities is small, and the immigration from the metacommunity 
also dominates over the immigration between local communities. As a result, the 
average first time to species extinction from the second local community is almost 
independent on the species abundance in the first local community. It is worth to 
notice that the value of the time to species extinction for Scenario (iii,ix) is smaller 
than for Scenario (ii,ix), that is species would go extinct faster in the case of the 
species abundance dynamics from Scenario (iii,ix) than from Scenario (ii,ix).

In spite o f the immigration intensities for Scenarios (v,ix), (vi,ix) and (ix,ix) 
are small, the role o f the immigration probabilities for these species abundance 
dynamics scenarios is almost equally important for species extinction time and 
probability. For Scenario (ix,ix) the species has very high chance o f monodominance 
in one or both local communities and the species abundance can remain at the 
monodominance level for relatively long time. Therefore, the average first time to 
species extinction in the case o f Scenario (ix,ix) is relatively larger than for Scenarios 
(v,ix) and (vi,ix) with smaller chance o f species monodominance in the local 
communities. It worth noting that, whereas the average first time to species extinction 
from the first local community is larger for Scenario (v,ix) than for Scenario (vi,ix), 
the average first time to species extinction from the second local community is 
smaller for Scenario (v,ix) than for Scenario (vi,ix).

Finally, let us consider Scenario (v,v). For this species abundance dynamics 
scenario the immigration between local communities dominates over the immigration 
from the metacommunity. Figures for the average first time of species extinction from 
the first local community and from the second local community clearly show that the 
species abundance in one local community has large effect on the time to extinction 
from the other local community. Moreover, for Scenario (v,v) the average first time to 
species extinction from the first local community is close to the average first time to 
species extinction from the second local community; however, the probability of 
extinction from the second (semi-isolated) local community is slightly larger than the 
probability of extinction from the first (non-isolated) local community.
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7.6 Comparison of average first times to extinction 
from local community connected only to 
metacommunity and to both metacommunity 
and other local community

In this section the effect o f the immigration probability between local communities 
ml on the mean first time to species extinction from the first (non-isolated) local 
community, and on the mean first time to species extinction from the second (semi­
isolated) local community is studied. Furthermore, the comparison study o f the 
species extinction time from the local community connected to both the 
metacommunity and the other local community and the species extinction time from 
the local community connected only to the metacommunity (Babak 2006) is provided.

Figures 7.2 (a,b,c) illustrate the plots o f the mean first time to species 
extinction from the first (non-isolated) local community for three different values of 
the immigration probability from the metacommunity mm. In the case o f two 
connected local communities the mean first time to species extinction from the first 
local community is calculated for different initial species abundances in the first local 
community as an averaged value for all possible initial species abundances in the 
second (semi-isolated) local community. Figures 7.2 (a,b,c) clearly show that the 
mean first time to species extinction from the first local community connected with 
the second local community and with the metacommunity converges to the mean first 
time to species extinction from one local community connected only to the 
metacommunity as the immigration probability between local communities m‘ tends 
to zero. Moreover, the mean first time to species extinction from the local community 
connected to both the metacommunity and the other local community is larger than 
the mean first time to species extinction from the local community connected only to 
the metacommunity.

Figure 7.2 (a) shows the average first time to species extinction from the first 
(non-isolated) local community for high immigration probability from the 
metacommunity, mm = 0.1. In this case the species abundance dynamics is typical for 
Scenario (i,ix) for ml < 0.005 and for Scenario (i,v) otherwise. Since the species 
abundance distribution in the first local community is of the same type (i), the 
behavior of the average first time to species extinction from the first local community 
with respect to the initial species abundances is similar for different m‘. Specifically, 
the average extinction time is almost independent o f the initial species abundance in 
the first local community. This behavior o f the average first time to extinction is 
typical for highly persistent species in the local community, since the extinction time 
and probability o f extinction for such species is almost independent of the species 
initial abundance.

Figure 7.2 (b) shows the average first time to extinction from the first local 
community for intermediate immigration probability from the metacommunity, 
m m = 0.01. We know that for such value o f the immigration probability m m, the
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immigration probability between local communities ml can significantly change the 
species abundance dynamics scenario in the local community (see Chapter 6) as well 
as the structure o f the average first time to species extinction (see Figure 7.2 (b)). Let 
us examine the effect o f ml on the extinction time and probability in detail.

For the values o f the immigration probability ml larger than 0.005 the species 
abundance dynamics is typical for Scenario (ii,v). For this scenario the species has 
very high chance o f extinction and very small chance o f monodominance in the first 
local community when it is absent from the second local community, and very small 
chance o f extinction or monodominance in the first local community when the species 
is monodominant in the second local community. For Scenario (ii,v), the average first 
time to extinction from the first local community is large and increases almost 
linearly with respect to the non-zero initial species abundance in the local community. 
In this case a positive effect o f the species abundance in the second local community 
on the average first time to species extinction from the first local community is 
observed due to close association between local communities.

For the values of the immigration probability m' smaller than 0.003 the 
species abundance dynamics is typical for Scenario (iii,ix). For this scenario the 
species has very high chance of extinction and very small chance o f monodominance 
in the first (non-isolated) local community regardless o f the species abundance in the 
second (semi-isolated) local community. In this case the average first time to species 
extinction increases nonlinearly with respect to the species initial abundance in the 
local community, therefore, the initial species abundance plays a very important role 
for the species persistence in the non-isolated local community.

For the intermediate values o f the immigration probability m l , 
0.003 < m l < 0.005, the structure of the average first time to species extinction is 
gradually switching from the case with small immigration probability ml (Scenario 
((iii,ix))) to the case with large immigration probability ml (Scenario ((ii,v))).

Figure 7.2 (c) shows the effect o f the immigration probability between local 
communities ml on the average first time to species extinction from the first local 
community for very small immigration probability from the metacommunity, 
mm = 0.004. As in the previous example (Figure 7.2(b)) the species abundance 
dynamics scenario varies with respect to the value of the immigration probability 
between local communities m !. For very large immigration probabilities m' 
(m l > 0.71), the species abundance dynamics is typical for Scenario (ii,v). In this case 
the average extinction time from the local community is large and increases almost 
linearly with respect to the species initial abundance, therefore the species is highly 
persistent in the local community, see also Figure 7.2 (b). For very small immigration 
probabilities ml (m ! <0.002), the species abundance dynamics is representative for 
Scenario (ix,ix) with very high chances of species extinction or monodominance in 
the local communities. Therefore, for this scenario due to high possibility of either 
species extinction or monodominance, the average first time to species extinction 
from the local community increases almost linearly with respect to the initial species 
abundance.
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Let us now consider the average first time to species extinction for 
intermediate values o f the immigration probability m l , 0.002 < m l < 0.71. In this case 
the species abundance dynamics is typical for Scenario (v,v) if  0.005 < m l <0.71, 
Scenario (v,ix) if  0.004 < m! < 0.005 and for Scenario (vi,ix) if  0.002 < m ‘ < 0.004. 
For these scenarios the species has very high chance o f extinction and very small 
chance o f monodominance in the first local community if the species abundance is 
low in the other local community, and the chance o f species monodominance in the 
first local community is high when the species is monodominant in the other local 
community. The structure o f the average extinction time is not stable for these 
intermediate scenarios. For smaller values o f ml from the considered interval the 
average first time to extinction increases gradually with respect to the initial species 
abundance in the local community, whereas for larger values of ml the average first 
time to extinction increases sharply for small initial species abundances, and is almost 
linear for larger initial species abundances. It also worth noting that for Scenario (v,v) 
the average first time to species extinction from the first local community is much 
larger than for Scenarios (v,ix) and (vi,ix). Note also that for Scenario (v,v) the 
structure o f the species extinction time is more similar to that for Scenario (ii,v) with 
very large immigration probabilities ml , whereas for Scenarios (v,ix) and (vi,ix) the 
structure o f the extinction time is more similar to that for Scenario (ix,ix) with very 
small immigration probabilities m '.

Let us now consider the effect of the immigration probability between local 
communities ml on the average first time to species extinction from the second 
(semi-isolated) local community, see Figure 7.3. Figure 7.3 illustrates the extinction 
time from the second local community for high immigration probability from the 
metacommunity m m, m m -  0.1. For such value o f mm, the species abundance 
dynamics in local communities varies for different values o f ml , i.e., for closely 
connected local communities, ml > 0.005 the species abundance dynamics is typical 
for Scenario (i,v), and for weakly connected local communities, m! < 0.005 the 
species abundance dynamics is typical for Scenario (i,ix).

In the case of Scenario (i,v) the average first time to species extinction from 
the second local community is almost independent of the initial species abundance in 
this local community. Moreover, the extinction time from the second local 
community is increasing with respect to the immigration probability between local 
communities. This characteristic shows a positive effect of closely connected local 
communities on the average first extinction time. In the case o f Scenario (i,ix) the 
average first time to species extinction from the second local community is almost 
proportional to the initial species abundance in the second local community. On the 
contrary to Scenario (i,v), the extinction time from the second local community is 
decreasing with respect to the immigration probability between local communities. 
Such behavior of the extinction time from the second local community for Scenario 
(i,ix) can be explained based on larger probability o f species monodominance in the 
second local community for smaller immigration probability between local 
communities. Due to larger chance of species monodominance in the second local 
community and longer remaining time of the species at the monodominance level o f
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abundance for smaller immigration probabilities m l , the average first time to species 
extinction in the second local community decreases with respect to m' for Scenario 
(i,ix).

Finally, it also worth noting that the time to species extinction from semi­
isolated local community connected only to the other local community but isolated 
from the metacommunity is much shorter then the time to species extinction from the 
local community connected only to the metacommunity.

7.7 Conclusions and discussion
In this chapter the extinction time and probability were investigated for a species in 
two semi-isolated local communities, that is, in the case when both local communities 
are connected with each other through immigration, but only one local community is 
connected with the metacommunity. Using Kolmogorov-Fokker-Planck backward 
equation the models for:

• the species persistence probability in two local communities,

• the average first time to species extinction from non-isolated and from
semi-isolated local community,

• the average first time to species extinction from either non-isolated or
semi-isolated local community, and

• the probability that the species will go extinct from one local
community before its extinction from the other local community

were derived and analyzed. Note that similar continuous probabilistic approach to the 
above problems was used for analysis o f species abundance dynamics in one zero- 
sum local community (Babak, 2006).

The sensitivity analysis o f the average first time to species extinction from one 
community, the probability o f species extinction from one local community before 
the other local community, and the average first time to species extinction from either 
local community is provided in Section 7.5. This analysis is performed subject to the 
type o f species abundance dynamics in two semi-isolated local communities 
developed in Chapter 6. It was distinguished that for different species abundance 
dynamics scenarios in two semi-isolated local communities, the structure of the 
average first time to species extinction and the probability of extinction vary 
significantly. Specifically,

■ the average first time to species extinction from the local community is larger 
if  the local community is more closely connected to the metacommunity 
and/or to the other local commuity;

■ the average first time to species extinction from the non-isolated local 
community is almost independent of the initial species abundance if  the
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immigration from the metacommunity is very high regardless o f species 
abundance in the other, semi-isolated, local community;

■ the average first time to species extinction from the semi-isolated local 
community is smaller than the average first time to species extinction from the 
non-isolated local community; therefore, the species goes extinct from the 
semi-isolated local community faster than from the non-isolated local 
community;

■ if  the non-isolated local community is closely connected to the
metacommunity, the chance of species extinction from the semi-isolated local 
community is much larger than the chance of species extinction from the non­
isolated local community, moreover, this chance is almost independent o f the 
initial species abundance in both local communities;

■ if  the non-isolated local community is weakly connected to the
metacommunity, then the average first time o f species extinction from any one 
local community is strongly correlated to the species abundance in it, and the 
average first time o f species extinction from either local community is 
strongly correlated to the species abundance in both o f them.

From the comparison study of the species extinction times in two local 
communities and in one local community presented in Section 7.6, the following 
relationships for the extinction time can be established:

■ the average first time to species extinction from the local community
connected to both the other local community and to the metacommunity is
larger than the average first time to species extinction from the local 
community connected only to the metacommunity, that is, the species is more 
persistent in the local community in spatially structured ecosystem;

■ the average first time to species extinction from the local community 
connected to both the other local community and to the metacommunity 
converges to the average first time to species extinction from the local 
community connected only to the metacommunity as the immigration 
probability between local communities decreases;

■ the average first time to species extinction from the local community 
connected only to the other non-isolated local community is smaller than the 
average first time to species extinction from the local community connected 
only to the metacommunity, that is, the species is more persistent in the local 
community connected directly to the large source o f organisms (the 
metacommunity) than in the local community connected to small source of 
organisms (the other local community).

The presented results for the species abundance dynamics in two semi-isolated 
local communities show how the structure o f living communities influences species 
persistence in living communities, species extinction dynamics and probability. The 
main message from the analysis o f species extinction dynamics in two semi-isolated 
local communities is that the species extinction time and probability are highly 
influenced by the location o f the local community in the ecological system.
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Specifically, the species extinction time from the local community is positively 
related to the size o f directly connected reservoirs of living organisms (living 
communities) and the number o f such reservoirs.
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(i,ix) (ii,ix) (iii,ix)

Figure 7.1: Effect o f the type o f species abundance dynamics scenario on species 
abundance evolution in the two semi-isolated local communities o f size J  -  2 00 . The 
numbers o f death events per unit time interval in local Communities are fj.x = //2 = 1. 
The species metacommunity relative abundance is coi = 0.2 < 1/2 . Figures in the 1-st
row show the mean first time to species extinction in the first local community 
calculated using Eq. (17) with boundary conditions in the form (15); figures in the 2- 
rd row show the mean first time to species extinction in the second local community 
calculated using Eq. (17) with boundary conditions in the form (16).
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( v , ix )  ( v i , ix )  ( ix , ix )

Figure 7.1: Cont. Figures in the 3-rd row show the probability o f extinction o f the 
species from the first local community before the second local community calculated 
using Eqs. (19)-(22); and figures in the 4-th row show the mean first time to species 
extinction either from the first local community or from the second local community 
calculated using Eq. (17) with boundary conditions in the form (14).
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( i ,v )  ( i i ,v )  ( v ,v )

Figure 7.1: Cont. The values o f the immigration probabilities are chosen to be the 
following: Scenario (i,ix) m'n = 0.1, ml = 0.002 ; Scenario (ii,ix) m m = 0.02,
m! =  0.002; Scenario (iii,ix) mm = 0.01, ml =  0.002; Scenario (v,ix) mm -  0.005,
ml = 0.0045; Scenario (vi,ix) mm = 0.005, w/ = 0.002; Scenario (ix,ix) mm = 0.002,
ml = 0.002; Scenario (z',v) mm = 0.1, = 0.1 ; Scenario (zz',v) = 0.01,
m1 = 0.01; Scenario (v,v) = 0.005, m1 =  0.05 .
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Case:""’
Two local communities

05' Case:
o >lQne local community

(a)
Figure 7.2: Effect o f the immigration probability ml on the average first time to 
extinction in the first (non-isolated) local community, and comparison o f the average 
times to extinction in one local community connected only to the metacommunity 
(Hubbell’s zero-sum model for local community) and in one local community 
connected to both the metacommunity and the other local community o f the same 
size. The size o f the local community is J  = 200, and the metacommunity relative 
abundance o f species i is coi = 0.2 . (a) mm = 0.1 (Scenario (i,ix) for m < 0.005 and 

Scenario (i,v) for m1 > 0.005).
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Figure 7.2: Cont. (b) mm = 0.01 (Scenario (iii,ix) for m < 0.003, Scenario (ii,ix) for 
0.003 < m l < 0.005 and Scenario (ii,v) for ml > 0.005 ).
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0.01 

Scenario <v.v)0.0001 
Scenario (ix.ix)

0.996

'“tin,s.

• v

(c)

Figure 7.2: Cont. (c) mm =0.004 (Scenario (ix,ix) for m! <0.002, Scenario (vi,ix) 
for 0.002 < ml < 0.0045, Scenario (v,ix) for 0.0045 < m1 < 0.005 , Scenario (v,v) for 
0.005 < m l < 0.71 and Scenario (ii,v) for m1 > 0.71).
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Figure 7.3: Effect o f the immigration probability ml on the average first time to 
extinction in the second (semi-isolated) local community, and comparison o f the 
average times to extinction in one local community connected only to the 
metacommunity (Hubbell’s zero-sum model for local community) and in the semi­
isolated local community connected to the other local community o f the same size, 
but isolated from the metacommunity. The size o f the local community is J  — 200, 
and the metacommunity relative abundance o f species i is 0)t -  0.2. = 0.1

(Scenario (i,ix) for ml < 0.005 and Scenario (i,v) for ml > 0.005).
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Chapter 8 
General conclusions

The unified neutral theory of biodiversity and biogeography proposed by Hubbell 
(2001) aims to explain the species diversity and relative species abundance in 
ecological communities relying on the principles of zero-sum game and neutrality. Up 
to this time the zero-sum neutral model o f Hubbell was analyzed only using discrete 
techniques such as Markov chain analysis (Hubbell 2001), master birth-death 
ordinary differential equations for the species abundance probability distribution (eg., 
Volkov et al. 2003, Vallade and Houchmandzadeh 2003, McKane et al. 2004) and 
using sampling analysis (eg., Alonso and McKane 2004, Etienne and Alonso 2005).

In this thesis (Chapter 2), I analyzed Hubbell's neutral model for species 
abundance dynamics in a local community using a continuous probabilistic approach. 
A continuous probabilistic technique based on the Kolmogorov-Fokker-Planck 
forward and backward equations was applied for the investigation o f the processes in 
the local communities. This technique gave me the possibility not only to work with 
communities of any size, but also to derive such important quantities in conservation 
biology as the probability distributions o f the persistence time and the first passage 
time to extinction and fixation. I also proposed a realistic classification for the species 
abundance dynamics in the local community with respect to the immigration 
intensity, species metacommunity relative abundance, and, o f course, the size o f the 
local community. The results of my analysis for the distribution o f the extinction time 
were evaluated and verified through the simulation study of Hubbell's neutral zero- 
sum model. It was shown that for the species with large initial abundances, the 
distribution o f the first passage time to extinction is very close to a Gamma 
distribution, as it was presumed by Hubbell (2001), but for the species with small 
initial abundance, the Gamma distribution does not produce a good fit to the first 
passage time to extinction.

The goal o f the second part of my work (Chapters 3-7) was to analyze the 
effects o f  spatially structured habitat heterogeneities on the species abundance 
dynamics and extinction characteristics in zero-sum neutral local communities. I 
developed three macroecological models for species abundance dynamics in 
structured habitats. Specifically, I proposed the model for species abundance 
dynamics in a local community at the edge between two distinct ecological systems 
or metacommunities (Chapter 3, see also Figure 1.2), the model for species 
abundance dynamics in two local communities connected with each other and with
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the metacommunity through immigration (Chapters 4 and 5, see also Figure 1.3), and 
the model for species abundance dynamics in two local communities connected with 
each other but with only one o f them connected to the metacommunity (Chapters 6 
and 7, see also Figure 1.4). The developed models are designed to characterize real 
ecological situations. For example, grassland-forest transitions at small scale in 
British Columbia can be viewed as an example o f the model for the edge effects 
between two distinct ecological systems (Bai et al. 2004). Stepping stone models of 
population structure and matrix stage structured models can be considered as an 
example for the species abundance dynamics models in two local communities 
(Kimura and Weiss 1964, Lutscher and Lewis 2004). The models for two local 
communities can be also used for description o f the species structure on separated 
islands, or in different patches within the same living habitat (MacArthur and Wilson 
1967, Formann 1995).

The models for the species abundance dynamics in structured ecological 
communities were analyzed using continuous probabilistic technique. This technique 
allowed us to:

■ derive the models for the dynamics of species abundance distribution in 
local communities;

■ develop the models for the equilibrium (steady-state) species abundance 
distribution in local communities;

■ calculate indices o f diversity and evenness (Simpson index, Shannon index, 
Simpson evenness index);

■ calculate correlation between species abundances in two connected local 
communities;

■ make a realistic classification o f the species abundance dynamics in local 
communities with respect to the probabilities o f species persistence, 
extinction and monodominance in local communities;

■ derive the models for the probability o f species persistence in a local 
community, and for the extinction risk - the probability o f species extinction 
from a local community within a specified time interval;

* calculate the mean and variance o f the time to species local extinction, the
first passage time to species extinction;

■ calculate the probability o f species extinction from one local community 
before it becomes extinct from the other local community;

■ perform sensitivity analyses o f species abundance distributions and the time 
to species extinction with respect to immigration probabilities, frequency of 
death events, species fraction in the metacommunity and the size o f the local 
community.

The main conclusions from the analysis o f the models for structured 
ecological communities are the following:

188

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



■ local communities at the edge maintain higher diversity and higher intensity 
o f species interchange than those inside o f homogeneous ecosystems 
(Chapter 3);

■ the type of species abundance behavior in a local community can be 
predicted from knowledge about such parameters as the size o f the local 
community, fraction o f the species abundance in the metacommunity, 
immigration probabilities, death frequency and the location of the local 
community within an ecological network o f living habitats (Chapters 3, 4 
and 6);

■ higher similarity o f the species abundance dynamics in two local 
communities is observed for larger values o f the immigration probability 
between local communities. Specifically, for fixed probability of 
immigration from the metacommunity, the correlation between species 
abundances in two local communities increases with an increase in the 
immigration between local communities, and, vice versa, for fixed 
probability o f immigration between local communities, the correlation 
decreases with an increase in the immigration from the metacommunity 
(Chapters 4 and 6);

■ the average first time to species extinction from a local community is larger 
if  the local community is more closely connected to the metacommunity 
and/or to the other local commuity (Chapters 5 and 7);

■ the time to species extinction and probability of species persistence are 
larger for local communities, which can obtain new immigrants from more 
than one source o f organisms (Chapters 5 and 7); the size o f external sources 
o f organisms is positively related to the chance of species extinction and 
extinction time (Chapter 7).

Models developed in this thesis for species abundance dynamics in spatially 
structured local communities describe the processes in local communities connected 
through immigration with each other and with the metacommunity. These models for 
two local communities can be considered as a link between spatially implicit and 
spatially explicit models of species abundance dynamics. This is because introduction 
o f spatial characteristics requires discretization of ecological communities into two or 
more smaller component communities.

In conclusion I would like to add that I strongly believe that a better, more 
mechanistic understanding o f ecological communities is urgently needed in order to 
accurately predict spatial distribution and temporal dynamics o f living species. The 
knowledge about such important ecological characteristics derived in this thesis as the 
time to species extinction, extinction risk, and type o f species distribution in 
ecological communities is crucial for predicting the species abundance in local 
communities and also for defining the necessary approaches in conservation actions 
to prevent species extinction. I hope my research will not only contribute to such a 
basic ecological understanding o f living communities, but will also enhance our 
ability to assess and manage human influences on them and to motivate further 
theoretical and empirical investigations. The results obtained in this thesis should be

189

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



especially useful for landscape ecology, particularly for the study o f population 
dynamics in fragmented landscapes.
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